WO2019163270A1 - 生体対象物のピックアップ装置 - Google Patents

生体対象物のピックアップ装置 Download PDF

Info

Publication number
WO2019163270A1
WO2019163270A1 PCT/JP2018/046339 JP2018046339W WO2019163270A1 WO 2019163270 A1 WO2019163270 A1 WO 2019163270A1 JP 2018046339 W JP2018046339 W JP 2018046339W WO 2019163270 A1 WO2019163270 A1 WO 2019163270A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction
container
living body
chip
medium
Prior art date
Application number
PCT/JP2018/046339
Other languages
English (en)
French (fr)
Inventor
大 坂本
京彦 熊谷
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2020502047A priority Critical patent/JPWO2019163270A1/ja
Priority to US16/969,162 priority patent/US20200398265A1/en
Priority to EP18906806.7A priority patent/EP3739035A4/en
Priority to CN201880088783.XA priority patent/CN111699241A/zh
Publication of WO2019163270A1 publication Critical patent/WO2019163270A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/021Pipettes, i.e. with only one conduit for withdrawing and redistributing liquids
    • B01L3/0217Pipettes, i.e. with only one conduit for withdrawing and redistributing liquids of the plunger pump type
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/04Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus by injection or suction, e.g. using pipettes, syringes, needles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates

Definitions

  • the present invention relates to a pickup device that picks up a biological object, such as a cell or a cell mass, contained in a container, from the container using a suction tip.
  • a biological object such as a cell or a cell mass
  • a biological object such as a cell or a cell mass
  • the sorted biological object is moved to a movement destination container.
  • the movement source container include a plate having a large number of wells intended to individually accommodate biological objects, and a petri dish having a flat bottom surface on which a large number of biological objects are landed.
  • a living body object stored in the destination container is imaged by an imaging device, a desired living body object cell is selected based on the obtained image, and the selected living body object is chipped.
  • An operation of sucking (pickup) and transferring to a destination container is performed (for example, Patent Document 1).
  • the chip has a suction hole for a living body object at its lower end and is attached to a head that can move in the horizontal and vertical directions.
  • the head includes a suction mechanism that generates a suction force in the suction hole.
  • a suction sequence is executed in which the head is lowered to bring the suction hole of the chip closer to the target living body object, and the suction mechanism generates a suction force on the suction hole. Is done.
  • the suction sequence is executed under certain conditions regardless of the type of the container or the culture medium, the nature of the biological object, and the like. That is, under any conditions, the suction hole of the chip is made to approach a living body object by a certain distance and sucked with a certain amount of suction. In such a fixed suction sequence, suction of a biological object may fail or a suction error may occur in which a plurality of biological objects are sucked simultaneously.
  • An object of the present invention is to provide a pick-up device for a living body object that can suppress a suction error when a living body object contained in a container is sucked with a chip.
  • a biological object pick-up device includes a base on which a container having an upper surface opening that accommodates a biological object and a medium is placed; and the biological object is disposed above the base.
  • a chip having a suction hole for sucking from the container is attached to the lower end, has a suction mechanism for generating suction force in the suction hole, and controls a head that can move in the horizontal and vertical directions, and the operation of the head.
  • a control unit that causes the chip to perform the suction operation of sucking the living body object, and an input unit that can input information to the control unit are provided, and the input unit is a first related to an aspect of the container.
  • At least one of the second information about the culture medium and the third information about the living body object is received as suction control information, and the control unit performs the suction operation when performing the suction operation. Based on your information, amount of vertical movement of the chips mounted on the head, and / or to control the amount of suction to aspirate the biological object and media into the chip from the suction holes.
  • FIG. 1 is a diagram schematically illustrating a configuration example of a cell moving device to which a biological object pickup device according to the present invention is applied.
  • 2A is a cross-sectional view of a chip mounted on the head, and a diagram showing a moving mechanism and a suction mechanism of the chip.
  • FIG. 2B is a cross-sectional view of the chip during a suction operation, and
  • FIG. C) is an enlarged view of a part q in FIG.
  • FIG. 3A is an explanatory diagram of the suction range of the tip, and
  • FIG. 3B is a map showing the relationship between the success rate of suction of the biological object by the tip and the height and distance.
  • FIG. 1 is a diagram schematically illustrating a configuration example of a cell moving device to which a biological object pickup device according to the present invention is applied.
  • 2A is a cross-sectional view of a chip mounted on the head, and a diagram showing a moving mechanism and a suction mechanism of the
  • FIG. 4 is a diagram schematically illustrating a first example of a suction sequence according to the present embodiment.
  • FIG. 5A and FIG. 5B are diagrams illustrating the operation of the first example.
  • FIG. 6 is a diagram schematically illustrating a second example of the suction sequence.
  • 7A and 7B are diagrams illustrating the operation of the second example.
  • 8A and 8B are diagrams schematically illustrating a third example of the suction sequence.
  • FIG. 9 is a diagram schematically illustrating a fourth example of the suction sequence.
  • FIG. 10 is a block diagram showing a configuration of the cell moving device.
  • FIG. 11 is a diagram illustrating a display example on the display unit.
  • FIG. 12 is a flowchart of a cell pickup operation using the cell moving device.
  • a cell derived from a living body can be typically exemplified.
  • cells derived from living organisms include single cells (cells) such as blood cells and single cells, tissue fragments such as Histoculture and CTOS, cell aggregates such as spheroids and organoids, zebrafish, nematodes, and fertilized eggs An individual such as 2D or 3D colony.
  • biological objects include tissues, microorganisms, small-sized species, and the like. In the embodiment described below, an example is shown in which the biological object is a cell or a cell aggregate formed by aggregating several to several hundreds of thousands of cells (hereinafter collectively referred to simply as “cell C”). .
  • FIG. 1 is a diagram schematically showing an overall configuration of a cell transfer device S to which a biological object pickup device according to the present invention is applied.
  • a cell moving device S that moves cells C between two containers, specifically, between the first container 2 or the second container 3 and the microplate 4 is illustrated.
  • the cell transfer device S is disposed on a translucent base 1 having an upper surface which is a horizontal mounting surface, a camera unit 5 disposed on the lower side of the base 1, and an upper side of the base 1. And a head unit 6.
  • a translucent base 1 having an upper surface which is a horizontal mounting surface
  • a camera unit 5 disposed on the lower side of the base 1
  • a head unit 6 At the first placement position P1 of the base 1, either the first container 2 or the petri dish-type second container 3 having a grid-like well is placed, and the microplate 4 is placed at the second placement position P2. Is placed.
  • the first container 2 and the second container 3 are examples of the “container” of the present invention. Although only two containers 2 and 3 are shown in FIG. 1, other types of containers are also applicable in this embodiment. That is, any one or a plurality of containers selected from the group of three or more containers can be placed at the first placement position P ⁇ b> 1 of the base 1.
  • the head unit 6 is equipped with a plurality of heads 61 to which the chip 10 for sucking and discharging the cells C is attached and movable along the Z direction (up and down direction).
  • the camera unit 5 and the head unit 6 are movable in the X direction (horizontal direction) and the direction perpendicular to the paper surface of FIG. 1 (Y direction).
  • the first container 2 or the second container 3 and the microplate 4 are placed on the upper surface of the base 1 within the movable range of the head unit 6.
  • the cell transfer device S individually picks up the cells C from each of the plurality of chips 10 from the first container 2 or the second container 3 holding a large number of cells C, and the picked-up cells are microplates 4. And the cells C are individually or simultaneously discharged from the plurality of chips 10 to the wells 41 of the microplate 4. Prior to the aspiration of the cells C, the cells C held in the first container 2 or the second container 3 are imaged by the camera unit 5 and selected to select the high-quality cells C to be moved to the microplate 4 Work is done.
  • the base 1 is a rectangular flat plate having a predetermined rigidity and part or all of which is made of a translucent material.
  • a preferred base 1 is a glass plate.
  • the first container 2 and the second container 3 are containers from which the cells C are moved.
  • the first container 2 and the second container 3 are containers having upper surface openings 2 ⁇ / b> H and 3 ⁇ / b> H that contain the cells C and the culture medium L thereof.
  • the medium 3 and the cells C are put into the first container 2 and the second container 3 through the upper surface openings 2H and 3H, and the cells C are sucked by the suction tip 10.
  • the 1st container 2 and the 2nd container 3 what was produced with the translucent resin material and glass is used. This is for enabling the cell C carried in the first container 2 and the second container 3 to be observed by the camera unit 5.
  • the first container 2 includes a plurality of wells 22 made of a grid-like compartment for containing the cells C inside the container.
  • the lattice wall 23 that partitions the wells 22 is disposed on the bottom surface 21 of the first container 2.
  • the well 22 is a compartment intended to hold the cells C individually when a cell suspension in which a large number of cells C are dispersed in the medium L is introduced into the first container 2 from the upper surface opening 2H. It is.
  • the cells C are deposited on the bottom surface 21 in each well 22.
  • the second container 3 is a petri dish type container that does not have a grid-like compartment or the like.
  • the entire bottom surface 31 of the second container 3 is a flat flat portion.
  • the bottom surface 31 may be provided with a wall section that is divided into roughly divided sections, for example, divided into two or four sections, each of which is intended to accommodate a plurality of cells C.
  • a plurality of cells C land on the bottom surface 31 (planar portion).
  • the microplate 4 has a plurality of wells 41 from which cells C are discharged.
  • the well 41 is a hole with a bottom opened on the upper surface of the microplate 4.
  • a single well 41 accommodates the required number of cells C together with the liquid medium 3. Usually, the required number is one.
  • the microplate 4 is also made of a translucent resin material or glass. This is because the cell C carried in the well 41 can be observed by the camera unit 5 arranged below the microplate 4.
  • the camera unit 5 captures images of the cells C held in the first and second containers 2 and 3 or the microplate 4 from the lower surface side thereof, and includes a lens unit 51 and a camera body 52.
  • the lens unit 51 is an objective lens used in an optical microscope, and includes a lens group that forms an optical image with a predetermined magnification and a lens barrel that houses the lens group.
  • the camera body 52 includes an image sensor such as a CCD image sensor.
  • the lens unit 51 forms an optical image of the imaging object on the light receiving surface of the imaging element.
  • the camera unit 5 is movable in the X direction and the Y direction below the base 1 along a guide rail 5G extending in the left-right direction parallel to the base 1. Further, the lens unit 51 is movable in the Z direction for the focusing operation.
  • the head unit 6 is provided to pick up the cells C from the first and second containers 2 and 3 and move them to the microplate 4.
  • the head unit 6 includes a plurality of heads 61 and a head body 62 to which these heads 61 are assembled. Including. At the tip of each head 61, a suction chip 10 that performs suction (pickup) and discharge of one or a plurality of cells C is mounted.
  • the head main body 62 holds the head 61 so as to be movable up and down in the + Z and ⁇ Z directions (up and down directions), and is movable in the + X and ⁇ X directions (horizontal direction) along the guide rail 6G.
  • the head main body 62 can also move in the Y direction. That is, the head 61 can move in the XYZ directions.
  • FIG. 2A is a cross-sectional view of the chip 10 mounted on the head 61, and a diagram showing a moving mechanism and a suction mechanism of the chip 10.
  • the tip 10 is composed of an assembly of a syringe 11 and a plunger 12.
  • the syringe 11 includes a tubular passage 11P serving as a suction path for the cells C.
  • the plunger 12 moves forward and backward in the tubular passage 11P while being in sliding contact with the inner peripheral wall of the syringe 11 that defines the tubular passage 11P.
  • the syringe 11 includes a syringe base end portion 111 made of a large-diameter cylindrical body and a syringe body portion 112 made of a thin and long cylindrical body.
  • the tubular passage 11P is formed in the syringe body 112.
  • a syringe tip 113 which is the lower end of the syringe body 112 is provided with a suction hole t serving as an opening through which the cells C accommodated in the containers 2 and 3 are sucked or discharged.
  • One end of the tubular passage 11P is connected to the suction hole t.
  • the syringe base end portion 111 is connected to the other end side of the syringe body portion 112 via a tapered portion.
  • the upper end portion of the syringe base end portion 111 is fitted and attached to the lower end of the head 61.
  • the plunger 12 includes a plunger base end portion 121 made of a cylindrical body, a needle-like plunger main body portion 122 that continues below the plunger base end portion 121, and a plunger front end portion 123 that is the lower end of the plunger main body portion 122.
  • the outer diameter of the plunger base end 121 is set smaller than the inner diameter of the syringe base end 111 by a predetermined length.
  • the outer diameter of the plunger main body 122 is set slightly smaller than the inner diameter of the tubular passage 11P.
  • the plunger 12 is assembled to the syringe 11 in such a manner that the plunger base end 121 is accommodated in the syringe base end 111 and the plunger main body 122 is inserted into the tubular passage 11P of the syringe main body 112.
  • the plunger tip 123 protrudes from the suction hole t.
  • a rod 61 ⁇ / b> R that is movable in the vertical direction within the internal space of the head 61 is attached to the upper end of the plunger base end portion 121.
  • a head motor 63 that functions as a mechanism for moving the chip 10 in the vertical direction and a suction mechanism for generating a suction force in the suction hole t of the chip 10 is attached to the head 61.
  • the head motor 63 is a plurality of motors incorporated in the head main body 62, and includes a head lifting motor 631 and a plunger lifting motor 632.
  • the plunger lifting / lowering motor 632 is an example of a suction mechanism.
  • the head elevating motor 631 is a motor serving as a driving source for elevating the head 61 relative to the head main body 62.
  • the head 61 is raised and lowered by driving the head raising and lowering motor 631, the chip 10 attached to the lower end of the head 61 is also raised and lowered. That is, the height position of the suction hole t of the chip 10 can be set to a desired position by controlling the operation of the head lifting motor 631.
  • the plunger lifting / lowering motor 632 is a motor serving as a driving source for lifting / lowering the rod 61R in the internal space of the head 61.
  • the plunger 12 attached to the rod 61R is also moved up and down.
  • a suction force is generated in the suction hole t
  • a discharge force is generated in the suction hole t. That is, by the operation control of the plunger lifting / lowering motor 632, the suction operation and the discharge operation of the cell C by the chip 10 can be controlled.
  • FIG. 2 (A) shows a state where the plunger 12 is lowered most. This state is a state before the suction of the cells C or a state in which the sucked cells C are discharged to the chip 10. Plunger tip 123 projects slightly downward from syringe tip 113.
  • FIG. 2B shows a state where the plunger 12 is raised by a predetermined height. This state is the state of the chip 10 during the suction operation for sucking the cells C.
  • FIG. 2 (C) shows an enlarged view of a q portion (a peripheral portion of the suction hole t) in FIG. 2 (B).
  • the plunger tip 123 is submerged inside the tubular passage 11P. At this time, a suction force is generated in the suction hole t, and the fluid around the suction hole t, in the present embodiment, the medium L containing the cells C is formed in the tubular passage 11P by the infiltration of the plunger tip 123. Suction into the suction space H. That is, the medium L containing the cells C is held in the suction space H. After the suction operation, when the plunger 12 is moved downward, the fluid held in the suction space H is discharged from the suction hole t.
  • the suction amount of the fluid can be adjusted by the rising height of the plunger 12, and the suction speed of the fluid can be adjusted by the rising speed of the plunger 12. That is, the suction amount and the suction speed can be set to desired values by controlling the operation of the plunger lifting / lowering motor 632.
  • FIG. 3A is an explanatory diagram of the suction range of the chip 10, and FIG. 3B is a map showing the relationship between the success rate of suction of cells C by the chip 10, the height and the distance.
  • FIG. 3A shows a state where the plunger 12 is raised relative to the syringe 11 and the plunger tip 123 is immersed in the tubular passage 11P, that is, a suction operation is being performed.
  • the suction hole t faces the cell C that has landed on the landing surface 13.
  • the amount of liquid sucked into the syringe 11, here the amount of medium containing cells C, is determined by the inner diameter a 1 of the tubular passage 11 P and the immersion length a 2 of the plunger tip 123.
  • the suction range E which is a range in which the liquid flow toward the direction of being taken into the suction hole t due to the generation of the suction force to the suction hole t, It is determined by the height a3 with respect to the landing surface 13 and the suction amount.
  • the suction operation is performed in a state where one or a plurality of cells C to be sucked are within the suction range E, the probability of sucking the cells C into the syringe 11 can be increased. That is, the cells C existing within the distance a4 (spot diameter of the suction range E) where the suction range E intersects the landing surface 13 can be sucked into the syringe 11.
  • FIG. 3 (B) shows the success rate of suction of cells C when the viscosity of the medium and the suction amount are constant.
  • An inner diameter a1 of the tubular passage 11P of the used syringe 11 is 0.18 mm.
  • the horizontal axis corresponds to the distance a4 shown in FIG. 3A, the distance (mm) from the axis g of the tubular passage 11P, and the vertical axis represents the height (mm) corresponding to the height a3.
  • the region (1) in FIG. 3B is a region where the height a3 is high and the cell C is separated from the axis g, and the cell C suction success rate is the lowest (60% -70%).
  • the suction success rate slightly increases (70% -80%) in the area (2) inside the area (1), and the suction succeeds in the area (3) where the height is 0.3 mm or less and the distance is 0.2 mm or less. The rate increases to 80% -90%. Further, in the area (4) where the height is 0.2 mm or less and the distance is 0.1 mm or less, the suction success rate reaches 90% -100%. If such suction characteristics are experimentally obtained for various chips 10, the suction range E (distance a4) in which the cells C can be sucked can be set to a desired range by setting the suction amount and the height a3. Can be set to
  • a suction sequence is performed in which the suction hole t of the chip 10 is brought close to the target cell C and a suction force is generated in the suction hole t.
  • the cells C are sucked into the chip 10 together with the culture medium.
  • the suction sequence is executed under certain conditions regardless of the container containing the cells C, the type of the medium, the nature of the cells C, and the like. That is, under any conditions, the suction hole t of the chip 10 is brought close to the cell C by a certain distance and sucked with a certain amount of suction.
  • suction of cells C may fail to be sucked or a plurality of cells C may be sucked simultaneously.
  • the suction mistake is suppressed by appropriately setting the suction sequence according to the type of the container and the medium, the property of the cell C, and the like.
  • some specific examples of the suction sequence will be described.
  • FIG. 4 is a diagram schematically illustrating a first example of a suction sequence according to the present embodiment.
  • the case where the container from which the cells C are moved is the first container 2 in the form of a container in which a plurality of wells 22 are present.
  • a lattice wall 23 that partitions the plurality of wells 22 is erected on the bottom surface 21 inside the first container 2.
  • the medium L is injected.
  • the liquid injection amount of the medium L is an amount such that the upper surface of the medium L is positioned higher than the upper end opening edge 23T of the well 22. That is, the lattice wall 23 is immersed in the culture medium L.
  • the cells C are introduced from the upper surface opening 2H of the first container 2.
  • Each of the wells 22 is intended to accommodate one cell C. However, since the cell suspension is introduced, one or more cells C actually enter one well 22 or a well 22 that does not contain the cells C is generated. Nevertheless, some wells 22 are in a state where only one cell C has entered. Since the isolated cell C can be easily judged as good or bad by imaging with the camera unit 5, those determined as “good” among them are targeted for suction (movement) by the chip 10.
  • the chip 10 in which the XY coordinates are aligned with one well 22 containing one cell C (t) serving as a suction target for performing a suction operation is disposed above the well 22. It shows the state.
  • FIG. 5 (A) and FIG. 5 (B) are diagrams showing the operation of the first example of the suction sequence.
  • the chip 10 When the chip 10 performs a suction operation on the target cells C (t) accommodated in the well 22 immersed in the medium L, the chip 10 is lowered so that the suction hole t enters the well 22. .
  • the position of the suction hole t flush with the syringe tip 113 is above the target cell C (t) accommodated in the well 22,
  • the downward movement amount of the chip 10 is controlled so as to be a position below the upper end opening edge 23T. That is, if the height of the upper end opening edge 23T from the bottom surface 21 is b1, the suction hole t is lowered to a position closer to the bottom surface 21 by a predetermined entry length b2 than the height b1.
  • the penetration length b2 is selected so that the lower end of the suction range E of the chip 10 reaches the bottom surface 21 where the target cell C (t) is in contact.
  • the suction hole t is positioned directly above the target cell C (t). If the entry length b2 is too deep, the syringe tip 113 or the plunger tip 123 contacts the target cell C (t) and is damaged due to an error in the axis control accuracy of the head 61 to which the chip 10 is attached. obtain. Therefore, the penetration length b2 is set to a depth that does not allow the chip 10 to contact the target cell C (t) even when the accuracy error is taken into consideration.
  • FIG. 5A shows a state before the chip 10 starts the suction operation. That is, the plunger 12 is lowered most, and the plunger tip 123 protrudes slightly from the suction hole t of the syringe tip 113.
  • FIG. 5B shows a state in which the chip 10 has completed the suction operation.
  • the plunger tip 123 is immersed in the tubular passage 11P by a predetermined immersion length. By this immersion operation, a suction force is generated in the suction hole t, and the target cell C (t) is sucked together with the culture medium L in the suction space H generated near the lower end of the tubular passage 11P by the immersion.
  • the suction operation is executed in a state where the suction hole t enters the well 22 that stores the target cell C (t). For this reason, it is possible to make it difficult for the medium L to flow due to the suction operation in the peripheral well 22 adjacent to the well 22. Accordingly, it is possible to prevent the cells C housed in the peripheral wells 22 from being sucked incidentally when the suction operation for the target cells C (t) is performed. That is, only the target cell C (t) can be sucked into the chip 10.
  • the medium L corresponding to the suction range E is taken into the chip 10 in the well 22 where the target cells C (t) were present. From the gap between the chip 10 and the upper end opening edge 23T, a flow in which the medium L enters the well 22 is generated so as to fill the intake. When this flow is large, the chip 10 can also suck the cells C accommodated in the adjacent wells 22 at the same time. For this reason, it is desirable that the immersion length of the plunger tip 123, that is, the suction amount of the culture medium L from the suction hole t is smaller than the volume of one well 22. Thereby, generation
  • FIG. 6 is a diagram schematically illustrating a second example of the suction sequence according to the present embodiment.
  • the container from which the cells C are moved is the petri dish-type second container 3 that does not have a grid-like section or the like.
  • the second container 3 has the bottom surface 31 formed of a flat plane portion.
  • the cell suspension in which the cells C are dispersed in the medium L is introduced from the upper surface opening 3 ⁇ / b> H, so that a plurality of cells C are deposited on the bottom surface 31.
  • the cells C are dispersedly deposited on the bottom surface 31 in an isolated state or in a state where a plurality of cells C are in a lump shape.
  • FIG. 6 shows a state in which the chip 10 in which the XY coordinates are aligned with one cell C (t) serving as a suction target for performing the suction operation is disposed above the target cell C (t). Yes.
  • the other cell C existing at the position closest to the target cell C (t) is referred to as an adjacent cell C (n).
  • FIGS. 7A and 7B are diagrams illustrating the operation of the second example of the suction sequence.
  • the second container 3 having no lattice wall 23 as in the first container 2 of the first example adjacent cells C (n) are easily sucked simultaneously by the suction flow generated when the target cells C (t) are sucked.
  • the height position of the suction hole t with respect to the target cell C (t) is set.
  • FIG. 7A shows a state immediately before the suction operation is performed in a state where the suction hole t is arranged at a height position (A> 0.5 ⁇ B) that does not satisfy the above conditional expression.
  • the chip 10 includes a suction range E1 corresponding to the height position.
  • the suction range E1 In general, at a height position where the distance A is 1/2 or more of the distance B, there is a high probability that the adjacent cell C (n) is included in the suction range E1. For this reason, when the suction operation is executed, not only the target cell C (t) but also the adjacent cell C (n) is sucked at the same time, which is not desirable.
  • FIG. 7B shows a state immediately before the suction operation is performed in a state where the suction hole t is arranged at a height position (0 ⁇ A ⁇ 0.5 ⁇ B) that satisfies the above conditional expression. Shows the state. That is, the suction hole t is brought close to the target cell C (t) so that the distance A is 1 ⁇ 2 or less of the distance B.
  • the chip 10 has a suction range E2 that is narrower than the suction range E1 of FIG.
  • the adjacent cells C (n) of the target cells C (t) By setting the suction sequence for setting the height position of the suction hole t in consideration of the distance B with respect to (), the probability of sucking only the target cell C (t) into the chip 10 can be increased.
  • FIGS. 8A and 8B are diagrams schematically illustrating a third example of the suction sequence.
  • the suction sequence is changed depending on the difference in the viscosity of the medium L is shown.
  • the higher the viscosity of the culture medium L the narrower the suction range E of the chip 10, that is, the range in which suction flow is generated in the peripheral culture medium L by generating suction force to the suction hole t.
  • the viscosity of the medium L is higher, there is a situation in which it becomes difficult to discharge the cells C once sucked into the chip 10 from the suction holes t unless the amount of the medium L sucked into the chip 10 is reduced.
  • the second container 3 shown in FIG. 8 (A) it is assumed that the first medium L1 and cells C having a predetermined first viscosity are accommodated.
  • the second container 3 shown in FIG. 8B contains the second medium L2 having a second viscosity higher than the first viscosity and the cells C.
  • the first medium L1 is a liquid medium
  • the second medium L2 is a semi-solid medium such as Matrigel (trade name of Corning).
  • the height of the suction hole t with respect to the bottom surface 31 is set to a predetermined height a31. In this case, a suction range E3 corresponding to the height a31 and the suction amount is formed.
  • the suction range E4 is narrower than the suction range E3.
  • the suction hole t is set to the same height a31 as in the case of the first culture medium L1 and the suction operation is executed, the cells C that have landed on the bottom surface 31 cannot be sucked into the chip 10. Accordingly, when the suction operation is performed on the cells C in the second medium L2, the height position of the suction hole t is set to a height that is lower by ⁇ a than the height a31 in the case of the first medium L1. Set to a32.
  • the suction hole t is set at a position closer to the cell C by ⁇ a, and the suction operation is executed. Thereby, the cell C comes to be included in the suction range E4, and the cell C can be sucked into the chip 10. According to the above third example, even when the use of the culture media L1 and L2 having different viscosities is assumed, it is possible to suppress the occurrence of mistaken suction of the cells C.
  • FIG. 9 is a diagram schematically illustrating a fourth example of the suction sequence.
  • the suction sequence is changed depending on the difference in the adhesive force of the cells C to the bottom surfaces 21 and 31 of the first container 2 and the second container 3.
  • the adhesion to the bottom surfaces 21 and 31 may be different. If the same suction sequence is applied to the cells C having different adhesive forces, the probability that a mistake in the suction of the cells C will increase.
  • the suction sequence is set so that the suction hole t is closer to the cell C or the suction amount is increased. An example of setting is shown.
  • the first cell C ⁇ b> 1 (first biological object) that is landed on the bottom surface 21 with the first adhesive force in the two wells 22 of the first container 2, and the first cell C ⁇ b> 1 with respect to the bottom surface 21.
  • the example in which the 2nd cell C2 (2nd biological target object) which grounds with the 2nd adhesive force stronger than an adhesive force exists is shown.
  • an example is shown in which the height position of the suction hole t during the suction operation is changed according to the adhesive force of the cells C to the bottom surface 21.
  • the chip 10 sucks the first cell C1
  • the height of the suction hole t with respect to the bottom surface 21 is set to a predetermined height h1.
  • a suction range E5 corresponding to the height h1 and the suction amount is formed.
  • the position of the suction hole t causes the first cell C1 to perform the suction operation.
  • the height h2 is set closer to the second cell C2 than the height h1 in the case.
  • the suction range E6 is apparently narrower than the suction range E5, but when the suction amount to the tip 10 is the same, that is, when the immersion amount of the plunger tip 123 is the same, the second cell C2
  • the suction force acting on can be made larger than that of the first cell C1. Therefore, even when the second cell C2 is firmly attached to the bottom surface 21 than the first cell C1, the second cell C2 can be sucked into the chip 10.
  • the suction force acting on the second cell C2 having a higher adhesive force during the suction operation by the chip 10 can be increased as compared with the case of the first cell C1.
  • Various suction sequences can be employed. For example, it is possible to adopt a mode in which the suction amount of the medium L to the chip 10 is larger than that of the first cell C1 when the second cell C2 is sucked. In this case, the amount of immersion of the plunger tip 123 is increased when the second cell C2 is sucked compared to the case of the first cell C1.
  • the suction force may be increased by increasing the suction speed of the culture medium L from the suction hole t by increasing the rising speed of the plunger 12. Further, when the suction operation by the chip 10 is executed in a plurality of times, the total suction force may be increased by increasing the number of times of suction. Furthermore, these means for increasing the suction force may be used in combination with the operation of bringing the suction hole t of the fourth example closer to the second cell C2.
  • the suction sequence may be changed according to other elements of the cell C.
  • the suction sequence may be changed depending on the size and shape of the cell C, the accommodation posture in the first container 2 and the second container 3, and the like.
  • the cells C close to a spherical shape can be sucked into the chip 10 with a relatively weak suction force than the cells C having a distorted shape.
  • the suction force is relatively weak compared to the case where the cell C is landing on its side. Can be sucked into the chip 10.
  • the aspiration sequence may be changed depending on the ease of disintegration of the cells C, the number of cells to be aspirated, and the like.
  • FIG. 10 is a block diagram showing an electrical configuration of the cell transfer device S.
  • the cell moving device S includes a camera unit 5 that images an imaging target on the imaging optical axis, a lens drive motor 53 that moves the lens unit 51 up and down, and a pickup of the cells C in the first container 2 or the second container 3.
  • a head motor 63 in the head unit 6 that performs the operation, a shaft motor 64 that moves the head unit 6 in the XY directions, and a control unit 7 are provided.
  • the control unit 7 controls the lens driving motor 53 to control the operation of the lens unit 51 and performs predetermined processing on the image information acquired by the camera main body 52.
  • the control unit 7 also includes a head motor 63 and a shaft motor 64. By controlling this, the pickup operation and the movement operation of the cell C are also controlled.
  • the lens drive motor 53 moves in the vertical direction with a predetermined resolution through a power transmission mechanism (not shown) by rotating in the forward or reverse direction. By this movement, the focal position of the lens unit 51 is adjusted to the cell C that has landed in the first container 2 and the second container 3. As indicated by a dotted line in FIG. 10, the first container 2, the second container 3 itself, or the first container 2, the second container are not replaced by the lens unit 51, but by another motor instead of the lens driving motor 53.
  • the base 1 that is a stage on which the container 3 is placed may be moved up and down.
  • the head motor 63 is a motor serving as a drive source for the operation of raising and lowering the head 61 with respect to the head main body 62 and the operation of generating the suction force and the discharge force in the suction hole t of the chip 10 attached to the head 61.
  • the shaft motor 64 is a motor serving as a drive source for moving the head unit 6 (head main body 62) along the guide rail 6G (FIG. 1).
  • the control unit 7 is composed of a personal computer, for example, and operates to include a drive control unit 71, an image processing unit 72, and a calculation unit 73 functionally by executing a predetermined program.
  • the drive control unit 71 controls the operation of the lens drive motor 53, the head motor 63, and the shaft motor 64. Specifically, the drive control unit 71 gives a control pulse for moving the lens unit 51 in the vertical direction at a predetermined pitch, for example, several tens of ⁇ m pitch, to the lens drive motor 53 for the focusing operation. Although omitted from FIG. 10, the drive control unit 71 also controls the operation of the camera shaft drive motor that moves the camera unit 5 along the guide rail 5G. Further, the drive control unit 71 also controls the mechanical operation of the head unit 6. The drive control unit 71 controls the head motor 63 to control the raising / lowering operation of the head 61 and the operation of generating the suction force or the discharge force in the suction hole t of the chip 10.
  • the image processing unit 72 performs image processing such as edge detection processing and pattern recognition processing with feature amount extraction on the image data acquired by the camera body 52.
  • the image processing unit 72 acquires image data of the first container 2 or the second container 3 carrying the cells C, and recognizes the cells C existing on the first container 2 or the second container 3 by the image processing. Based on the recognition result, the cell C to be moved is specified.
  • the calculation unit 73 mainly controls the suction operation of causing the chip 10 to suck the cells C by controlling the operation of the head 61.
  • the calculation unit 73 functionally includes a setting unit 731 for setting a suction sequence, and a storage unit 732 for storing various data and setting values.
  • the display unit 74 is a display that displays an image of the cell C taken by the camera unit 5 and displays the suction sequence.
  • the input unit 75 includes a keyboard, a mouse, and the like, and is a terminal that receives various types of input information for the control unit 7 from an operator.
  • the input unit 75 receives, as suction control information D1, at least one of the first information related to the state of the container containing the cells C, the second information related to the culture medium L, and the third information related to the cells C.
  • the setting unit 731 of the calculation unit 73 causes the head 61 (chip 10) to perform the suction operation of the cell C, the amount of vertical movement of the chip 10 based on the suction control information D1 received by the input unit 75, And / or a suction amount for sucking the cells C and the medium L from the suction hole t into the chip 10 is set.
  • the first information include the first container 2 which is a container having a plurality of wells 22 previously shown in the first example of the aspiration sequence, and the bottom surface 31 as a flat portion shown in the second example. It is the information regarding the 2nd container 3 which is a container provided.
  • the first information may be, for example, shape data such as the size, volume, grid width, and height of the container to be used, or data such as the type and model of the container. In the latter case, shape data associated with the type or model number of the container that is scheduled to be used is stored in the storage unit 732 in advance.
  • the setting unit 731 determines the amount of vertical movement of the chip 10, that is, the height position of the suction hole t and the medium L containing the cells C into the chip 10 during the suction operation according to the first information. Set the suction amount.
  • the drive control unit 71 controls the head motor 63 (the head lifting / lowering motor 631 and the plunger lifting / lowering motor 632), and causes the head 61 to perform the operation as described above.
  • the setting unit 731 sets the downward movement amount of the chip 10 so that the suction hole t is positioned below the upper end opening edge 23T of the well 22 as shown in FIG. To do. Further, in the second example, as shown in FIG. 7, the setting unit 731 is configured so that the suction hole t is positioned at a height position that satisfies the relationship “0 ⁇ distance A ⁇ 0.5 ⁇ distance B”. A downward movement amount of 10 is set.
  • the specific example of the second information relates to the amount of the medium L as shown in the first example of the suction sequence, that is, the amount to be higher than the upper end opening edge 23T, and the viscosity of the medium L shown in the third example.
  • Information may be, for example, data itself such as the type of liquid, semi-solid, solid or material of the medium, viscosity, amount, etc., or data such as a management number of the medium. good. In the latter case, various data associated with the management number of the medium scheduled to be used is stored in the storage unit 732 in advance.
  • the setting unit 731 sets the downward movement amount and the suction amount of the chip 10 according to such second information. For example, in the above third example, as shown in FIG.
  • the setting unit 731 sets the downward movement amount of the chip 10 so that the suction hole t is positioned closer to the cell C.
  • the third information include data on the cell C obtained experimentally and empirically such as the adhesion force of the cell C to the bottom surface 21 as shown in the fourth example of the suction sequence, as well as the cell C. Data such as the type, shape, size, color tone, and storage attitude of the container.
  • the setting unit 731 sets the downward movement amount and the suction amount of the chip 10 according to such third information.
  • the setting unit 731 is configured so that the suction hole t is closer to the second cell C having a higher adhesive force than the first cell C1 having a low adhesive force. Set the downward movement amount.
  • the setting unit 731 sets the suction amount of the medium L to the chip 10 to be larger than that of the first cell C1 when the second cell C2 is sucked.
  • FIG. 11 is a diagram showing a display example on the display unit 74.
  • a setting example regarding the chip 10, the containers 2 and 3, the medium L, and the cells C input from the input unit 75 to the setting unit 731 is shown.
  • the suction sequence selected according to these settings is “sequence A”, and the contents of “sequence A”, that is, the suction height (the height position of the suction hole t) and the suction amount are displayed.
  • the operator after confirming this display, gives an instruction to execute the suction operation to the control unit 7.
  • FIG. 12 is a flowchart of a cell suction operation using the cell transfer device S.
  • suction control information D1 including at least one of the above-described first information to third information is received by input unit 75 (step S1).
  • the setting unit 731 of the calculation unit 73 sets a suction sequence. That is, the most suitable suction sequence in the container, culture medium, cell type and property is selected (step S2).
  • the drive control unit 71 causes the camera unit 5 to store the cell C carried in the first container 2 or the second container 3 which is a container placed at the first placement position P1 (FIG. 1).
  • An image is taken (step S3).
  • the drive control unit 71 drives the lens unit 51 through the lens drive motor 53 to focus on the cell C in the container and execute an imaging operation.
  • the image processing unit 72 performs predetermined image processing on the image acquired by the camera body 52. By this image processing, the cells C reflected in the acquired image are recognized, and the calculation unit 73 quantifies the outline contour, area, volume, etc., size, shape, color tone, etc. of each cell C.
  • the obtained feature amount is derived (step S4).
  • the calculation unit 73 selects a cell C to be moved to the microplate 4, that is, a cell C to be aspirated by the chip 10 attached to the head 61 among the cells C included in the image based on these feature amounts. .
  • the selected cell C is numbered n (step S5).
  • the drive control unit 71 operates the shaft motor 64 to move the head 61 (chip 10) in the XY direction over the n-th cell C (step S7). After the movement in the XY direction or during the movement, the drive control unit 71 starts a suction operation according to the suction sequence set in step S2. That is, the drive control unit 71 drives the head lifting / lowering motor 631 (FIG. 2) of the head motor 63 to start the descent of the head 61, and the position where the suction hole t becomes the height position as set in the suction sequence. (Step S8).
  • the drive control unit 71 drives the plunger lifting / lowering motor 632 (suction mechanism) to move the plunger 12 so that the suction amount becomes the set value of the suction sequence. Raise. Thereby, the nth cell C is sucked into the chip 10 (step S9). After the suction or during the suction, the drive control unit 71 raises the head 61 (step S10).
  • step S11 determines whether or not the suction of all the numbered cells C has been completed. If it is not completed (NO in step S11), the drive control unit 71 increments n by 1 (step S12), returns to step S7, and repeats the process. On the other hand, when the suction is completed (YES in step S11), the process ends.
  • the amount of movement of the chip 10 in the vertical direction and / or the amount of suction in the suction operation of the cell C is accepted by the input unit 75.
  • Control is performed according to the control information D1. That is, the aspect of the suction operation is changed according to information on the aspects of the first container 2 and the second container 3, the culture medium L, and the cells C (biological object). Therefore, it is possible to set an optimal suction sequence according to the suction control information D1 instead of a uniform cell C suction sequence, and as a result, the occurrence of a mistake in suction of the cell C can be suppressed.
  • a biological object pick-up device includes a base on which a container having an upper surface opening that accommodates a biological object and a medium is placed; and the biological object is disposed above the base.
  • a chip having a suction hole for sucking from the container is attached to the lower end, has a suction mechanism for generating suction force in the suction hole, and controls a head that can move in the horizontal and vertical directions, and the operation of the head.
  • a control unit that causes the chip to perform the suction operation of sucking the living body object, and an input unit that can input information to the control unit are provided, and the input unit is a first related to an aspect of the container.
  • At least one of the second information about the culture medium and the third information about the living body object is received as suction control information, and the control unit performs the suction operation when performing the suction operation. Based on your information, amount of vertical movement of the chips mounted on the head, and / or to control the amount of suction to aspirate the biological object and media into the chip from the suction holes.
  • the amount of vertical movement of the chip and / or the amount of suction in the suction operation is controlled according to the suction control information received by the input unit. That is, it is possible to change the mode of the suction operation according to information on the container mode, the culture medium, and the biological object. Therefore, it is possible to set an optimal suction sequence according to the suction control information, instead of a uniform biological object suction sequence, and as a result, it is possible to suppress the occurrence of suction mistakes.
  • the first information is information indicating that the container has a plurality of wells that house biological objects in the container
  • the second information is The control unit is housed in the well when the information indicates that the amount of the medium in which the upper surface of the medium is higher than the upper end opening edge of the well is held in the container.
  • the position of the suction hole is above the living body object accommodated in the well and below the upper end opening edge of the well. It is desirable to control the amount of movement of the chip so that
  • each biological object is expected to be accommodated in each well.
  • the suction operation is performed in a state where the suction hole enters the well that accommodates the living body target of the suction target. For this reason, it is possible to make it difficult for the flow accompanying the suction operation to occur in the peripheral well adjacent to the well. Accordingly, it is possible to prevent the biological object housed in the peripheral well from being aspirated incidentally when the suction operation of the suction target to the biological object is performed. That is, only the living body target of the suction target can be sucked into the chip.
  • the control unit determines the distance between the suction hole and the one biological object as A, and the one biological object.
  • the distance between an object and another living object closest to the one living object is B, 0 ⁇ distance A ⁇ 0.5 ⁇ distance B It is desirable to control the amount of movement of the tip so that the suction hole is located at a position satisfying this relationship.
  • a plurality of biological objects can exist on the flat portion of the bottom surface of the container without interposing a partition wall or the like.
  • the other adjacent living body object is easily sucked at the same time by the suction flow generated in the suction operation with respect to one living body object.
  • the suction hole close to the biological target object of the suction target so that the distance A is 1/2 or less of the distance B, only the biological target object is sucked into the chip. The probability of making it possible can be increased.
  • the second information is information on the viscosity of the medium
  • the medium to be stored in the container has a first medium having a predetermined first viscosity
  • the control unit performs the suction operation on the biological object in the second medium.
  • the amount of movement of the chip is controlled so that the position of the suction hole is closer to the living body object than when the suction operation is performed on the living body object in the first medium. Is desirable.
  • the range in which the flow accompanying the suction can be generated tends to become narrower as the viscosity of the medium increases. That is, the suction range tends to narrow as the viscosity of the medium increases.
  • the suction operation is performed on the biological object in the second medium having a higher viscosity, the suction hole is more formed in the biological object than in the first medium. Approach the object. Therefore, even when the use of culture media having different viscosities is assumed, the occurrence of suction mistakes can be suppressed.
  • the third information is information related to an adhesive force of the biological object to the bottom surface of the container, and the biological object to be accommodated in the container is
  • the control unit includes: When the suction operation is performed on the second biological object, the position of the suction hole is closer to the biological object than when the suction operation is performed on the first biological object.
  • the amount of movement of the tip is controlled so as to be in the position, and / or the amount of suction by the tip is made larger than in the case where the suction operation is performed on the first biological object.
  • the control unit includes: When the suction operation is performed on the second biological object, the position of the suction hole is closer to the biological object than when the suction operation is performed on the first biological object.
  • the amount of movement of the tip is controlled so as to be in the position, and / or the amount of suction by the tip is made larger than in the case where the suction operation is performed on the first biological object.
  • the adhesive strength to the bottom of the container may differ.
  • the suction hole is made more biological than the first biological object. Move closer or increase the amount of suction. That is, the suction force acting on the second biological object during the suction operation is increased as compared with the case of the first biological object. Therefore, even when suction of a living body object having different adhesive strength to the bottom surface is assumed, it is possible to suppress the occurrence of a suction error.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

細胞移動装置(S)は、チップ(10)が下端に装着されたヘッド(61)と、ヘッド(61)の動作を制御することで、チップ(10)に細胞(C)を吸引させる吸引動作を実行させる制御部(7)と、制御部(7)に情報を入力可能な入力部(75)とを備える。入力部(75)は、容器(2、3)の態様に関する第1情報、培地に関する第2情報及び細胞に関する第3情報のうちの少なくとも一つの情報を、吸引制御情報(D1)として受け付ける。制御部(7)は、前記吸引動作を実行させる際、吸引制御情報(D1)に基づいて、チップ(10)の上下方向の移動量、及び/又は、吸引孔(t)からチップ(10)内へ細胞(C)及び培地(L)を吸引させる吸引量を制御する。

Description

生体対象物のピックアップ装置
 本発明は、容器に収容された、例えば細胞又は細胞塊のような生体対象物を、吸引用チップを用いて前記容器からピックアップするピックアップ装置に関する。
 例えば医療や生物学的な研究の用途では、細胞又は細胞塊等の生体対象物を移動元容器において選別し、選別された生体対象物を移動先容器へ移動する作業が行われることがある。前記移動元容器としては、例えば生体対象物を個別に収容することが企図された多数のウェルを有するプレートや、多数個の生体対象物が着床する平坦な底面を有するシャーレなどが例示される。
 前記移動の作業においては、前記移動先容器に収容された生体対象物を撮像装置で撮像し、得られた画像に基づき所望の生体対象物胞を選別し、選別された生体対象物をチップで吸引(ピックアップ)して移動先容器に移載する、という作業が行われる(例えば特許文献1)。前記チップは、生体対象物の吸引孔を下端に備え、水平方向及び上下方向に移動可能なヘッドに取り付けられる。前記ヘッドには、前記吸引孔に吸引力を発生させる吸引機構が備えられている。
 生体対象物をチップで吸引させるに際しては、前記ヘッドを下降させて前記チップの吸引孔をターゲットの生体対象物に接近させ、前記吸引機構で前記吸引孔に吸引力を発生させるという吸引シーケンスが実行される。この吸引シーケンスにより、培地と共に生体対象物が前記チップ内へ吸引される。従来、吸引シーケンスは、容器や培地の種別、生体対象物の性質等に拘わらず、一定の条件で実行されている。すなわち、どの様な条件下にあっても、前記チップの吸引孔を生体対象物に対して一定の距離だけ接近させ、一定の吸引量で吸引させている。このような一定の吸引シーケンスでは、生体対象物の吸引に失敗したり、複数の生体対象物を同時に吸引したりする吸引ミスが発生することがあった。
国際公開第2015/087371号
 本発明の目的は、容器に収容された生体対象物をチップで吸引させるに際し、吸引ミスを抑止できる生体対象物のピックアップ装置を提供することにある。
 本発明の一局面に係る生体対象物のピックアップ装置は、生体対象物及び培地を収容する上面開口の容器が載置される基台と、前記基台の上方に配置され、前記生体対象物を前記容器から吸引する吸引孔を有するチップが下端に装着され、前記吸引孔に吸引力を発生させる吸引機構を有し、水平方向及び上下方向に移動可能なヘッドと、前記ヘッドの動作を制御することで、前記チップに前記生体対象物を吸引させる吸引動作を実行させる制御部と、前記制御部に情報を入力可能な入力部と、を備え、前記入力部は、前記容器の態様に関する第1情報、前記培地に関する第2情報及び前記生体対象物に関する第3情報のうちの少なくとも一つの情報を、吸引制御情報として受け付け、前記制御部は、前記吸引動作を実行させる際、前記吸引制御情報に基づいて、前記ヘッドに装着された前記チップの上下方向の移動量、及び/又は、前記吸引孔から前記チップ内へ前記生体対象物及び培地を吸引させる吸引量を制御する。
図1は、本発明に係る生体対象物のピックアップ装置が適用される細胞移動装置の構成例を概略的に示す図である。 図2(A)は、ヘッドに装着されるチップの断面図と、該チップの移動機構及び吸引機構とを示す図、図2(B)は、吸引動作時のチップの断面図、図2(C)は、図2(B)のq部の拡大図である。 図3(A)は、チップの吸引範囲の説明図、図3(B)は、チップによる生体対象物の吸引成功率と高さ及び距離との関係を示すマップである。 図4は、本実施形態に係る吸引シーケンスの第1例を模式的に示す図である。 図5(A)及び図5(B)は、前記第1例の動作を示す図である。 図6は、吸引シーケンスの第2例を模式的に示す図である。 図7(A)及び図7(B)は、前記第2例の動作を示す図である。 図8(A)及び図8(B)は、吸引シーケンスの第3例を模式的に示す図である。 図9は、吸引シーケンスの第4例を模式的に示す図である。 図10は、上記細胞移動装置の構成を示すブロック図である。 図11は、表示部における表示例を示す図である。 図12は、前記細胞移動装置を用いた細胞ピックアップ動作のフローチャートである。
 以下、本発明の実施形態を、図面に基づいて詳細に説明する。本発明に係る生体対象物のピックアップ装置では、多岐に亘る生体対象物をピックアップ(吸引)対象とすることができる。本発明が適用可能な生体対象物としては、代表的には生体由来の細胞を例示することができる。ここでの生体由来の細胞は、例えば血球系細胞やシングル化細胞などのシングルセル(細胞)、HistocultureやCTOSなどの組織小片、スフェロイドやオルガノイドなどの細胞凝集塊、ゼブラフィッシュ、線虫、受精卵などの個体、2D又は3Dのコロニー等である。この他、生体対象物として、組織、微生物、小サイズの種等を例示することができる。以下に説明する実施形態では、生体対象物が細胞又は細胞が数個~数十万個凝集してなる細胞凝集塊(以下、これらを総称して単に「細胞C」という)である例を示す。
 [細胞移動装置の全体構成]
 図1は、本発明に係る生体対象物のピックアップ装置が適用される細胞移動装置Sの全体構成を概略的に示す図である。ここでは、細胞Cを2つの容器間、具体的には第1容器2又は第2容器3とマイクロプレート4との間で移動させる細胞移動装置Sを例示している。
 細胞移動装置Sは、水平な載置面である上面を有する透光性の基台1と、基台1の下方側に配置されたカメラユニット5と、基台1の上方側に配置されたヘッドユニット6とを含む。基台1の第1載置位置P1には、格子状のウェルを備える第1容器2又はシャーレ型の第2容器3のいずれかが載置され、第2載置位置P2にはマイクロプレート4が載置されている。第1容器2及び第2容器3は、本発明の「容器」の一例である。なお、図1では2つの容器2、3だけを示しているが、本実施形態では、さらに他の形式の容器も適用可能である。つまり、3個以上の容器群から選ばれるいずれか一つ又は複数の容器を、基台1の第1載置位置P1に載置することが可能である。
 ヘッドユニット6は、細胞Cの吸引及び吐出を行うチップ10が装着され、Z方向(上下方向)に沿って移動可能なヘッド61を複数備える。カメラユニット5及びヘッドユニット6は、X方向(水平方向)と、図1の紙面に垂直な方向(Y方向)とに移動可能である。第1容器2又は第2容器3とマイクロプレート4とは、ヘッドユニット6の移動可能範囲内において、基台1の上面に載置されている。
 大略的に細胞移動装置Sは、細胞Cを多数保持している第1容器2又は第2容器3から複数のチップ10の各々で細胞Cを個別にピックアップし、ピックアップされた細胞をマイクロプレート4まで移動すると共に、当該マイクロプレート4のウェル41に複数のチップ10から細胞Cを個別又は同時に吐出する装置である。細胞Cの吸引の前に、カメラユニット5により第1容器2又は第2容器3に保持されている細胞Cが撮像され、マイクロプレート4への移動対象とされる良質な細胞Cを選別する選別作業が行われる。
 以下、細胞移動装置Sの各部を説明する。基台1は、所定の剛性を有し、その一部又は全部が透光性の材料で形成される長方形の平板である。好ましい基台1は、ガラスプレートである。基台1をガラスプレートのような透光性材料によって形成することで、基台1の下方に配置されたカメラユニット5にて、基台1の上面に配置された第1、第2容器2、3及びマイクロプレート4を、当該基台1を通して撮像させることが可能となる。
 第1容器2及び第2容器3は、細胞Cの移動元となる容器である。第1容器2、第2容器3は、細胞C及びその培地Lを収容する、上面開口2H、3Hを有する容器である。これら上面開口2H、3Hを通して、培地3及び細胞Cが第1容器2、第2容器3内に投入され、また、吸引チップ10により細胞Cが吸引される。第1容器2、第2容器3としては、透光性の樹脂材料やガラスで作製されたものが用いられる。これは、カメラユニット5により、第1容器2及び第2容器3に担持された細胞Cを観察可能とするためである。
 第1容器2は、当該容器の内部に、細胞Cを収容する格子状区画からなる複数のウェル22を備えている。これらウェル22を区画する格子壁23は、第1容器2の底面21上に配置されている。ウェル22は、培地Lに多数の細胞Cが分散された細胞懸濁液が上面開口2Hから第1容器2に投入されたような場合に、細胞Cを個別に保持することが企図された区画である。細胞Cは、各ウェル22内において、底面21に着床する。
 一方、第2容器3は、格子状の区画等を具備しないシャーレ型の容器である。第2容器3の底面31の全体が、平坦な平面部からなる。なお、底面31に、各々に複数の細胞Cを収容することを企図した、大略的な区画、例えば2分割又は4分割程度の区画に区分する壁部が具備されていても良い。前記細胞懸濁液が上面開口3Hから第2容器3に投入されると、複数の細胞Cが底面31(平面部)に着床する。
 マイクロプレート4は、細胞Cが吐出される複数のウェル41を有する。ウェル41は、マイクロプレート4の上面に開口した有底の孔である。1つのウェル41には、液体の培地3と共に必要個数の細胞Cが収容される。通常、必要個数は1個である。マイクロプレート4もまた、透光性の樹脂材料やガラスで作製されたものが用いられる。これは、マイクロプレート4の下方に配置されたカメラユニット5により、ウェル41に担持された細胞Cを観察可能とするためである。
 カメラユニット5は、第1、第2容器2、3又はマイクロプレート4に保持されている細胞Cの画像を、これらの下面側から撮像するもので、レンズ部51及びカメラ本体52を備える。レンズ部51は、光学顕微鏡に用いられている対物レンズであり、所定倍率の光像を結像させるレンズ群と、このレンズ群を収容するレンズ鏡筒とを含む。カメラ本体52は、CCDイメージセンサのような撮像素子を備える。レンズ部51は、前記撮像素子の受光面に撮像対象物の光像を結像させる。カメラユニット5は、基台1と平行に左右方向に延びるガイドレール5Gに沿って、基台1の下方においてX方向及びY方向に移動可能である。また、レンズ部51は、合焦動作のためにZ方向に移動可能である。
 ヘッドユニット6は、細胞Cを第1、第2容器2、3からピックアップしてマイクロプレート4へ移動させるために設けられ、複数本のヘッド61と、これらヘッド61が組み付けられるヘッド本体62とを含む。各ヘッド61の先端には、1又は複数個の細胞Cの吸引(ピックアップ)及び吐出を行う吸引チップ10が装着されている。ヘッド本体62は、ヘッド61を+Z及び-Z方向(上下方向)に昇降可能に保持し、ガイドレール6Gに沿って+X及び-X方向(水平方向)に移動可能である。なお、ヘッド本体62は、Y方向にも移動可能である。つまりヘッド61は、XYZ方向に移動可能である。
 [チップ及びヘッドの詳細]
 図2(A)は、ヘッド61に装着されるチップ10の断面図と、該チップ10の移動機構及び吸引機構とを示す図である。チップ10は、シリンジ11とプランジャ12との組立体からなる。シリンジ11は、細胞Cの吸引経路となる管状通路11Pを内部に備えている。プランジャ12は、管状通路11Pを画定するシリンジ11の内周壁と摺接しつつ管状通路11P内を進退移動する。
 シリンジ11は、大径の円筒体からなるシリンジ基端部111と、細径で長尺の円筒体からなるシリンジ本体部112とを含む。管状通路11Pは、シリンジ本体部112に形成されている。シリンジ本体部112の下端であるシリンジ先端部113には、容器2、3に収容された細胞Cの吸引又は吐出が行われる開口となる吸引孔tが設けられている。この吸引孔tに、管状通路11Pの一端が連なっている。シリンジ基端部111は、シリンジ本体部112の他端側に、テーパ状の部分を介して連設されている。シリンジ基端部111の上端部分は、ヘッド61の下端に嵌め込み装着されている。
 プランジャ12は、円筒体からなるプランジャ基端部121と、このプランジャ基端部121の下方に連なる針状のプランジャ本体部122と、プランジャ本体部122の下端であるプランジャ先端部123とを含む。プランジャ基端部121の外径は、シリンジ基端部111の内径よりも所定長だけ小さく設定されている。プランジャ本体部122の外径は、管状通路11Pの内径よりも僅かに小さく設定されている。
 プランジャ基端部121がシリンジ基端部111内に収容され、プランジャ本体部122がシリンジ本体部112の管状通路11Pに挿通される態様で、シリンジ11に対してプランジャ12が組み付けられている。プランジャ本体部122がシリンジ本体部112に最も深く挿通された図2(A)の状態では、プランジャ先端部123は吸引孔tから突出する。プランジャ基端部121の上端には、ヘッド61の内部空間内において上下方向に移動可能なロッド61Rが取り付けられている。
 ヘッド61に対して、チップ10の上下方向への移動機構、及びチップ10の吸引孔tに吸引力を発生させる吸引機構として機能するヘッドモータ63が付設されている。ヘッドモータ63は、ヘッド本体62内に組み込まれる複数のモータであって、ヘッド昇降モータ631とプランジャ昇降モータ632とを含む。プランジャ昇降モータ632は、吸引機構の一例である。
 ヘッド昇降モータ631は、ヘッド61をヘッド本体62に対して昇降させる駆動源となるモータである。ヘッド昇降モータ631の駆動によってヘッド61が昇降されると、このヘッド61の下端に装着されているチップ10も昇降する。つまり、チップ10の吸引孔tの高さ位置は、ヘッド昇降モータ631の動作制御によって所望の位置に設定することができる。
 プランジャ昇降モータ632は、ロッド61Rを、ヘッド61の内部空間内において昇降させる駆動源となるモータである。プランジャ昇降モータ632の駆動によってロッド61Rが昇降されると、このロッド61Rに取り付けられたプランジャ12も昇降する。プランジャ12がシリンジ11に対して上昇することで、吸引孔tには吸引力が発生し、プランジャ12が下降することで、吸引孔tには吐出力が発生する。つまり、プランジャ昇降モータ632の動作制御によって、チップ10による細胞Cの吸引動作及びその吐出動作を制御することができる。
 図2(A)は、プランジャ12が最も下降された状態を示している。この状態は、細胞Cの吸引を行う前の状態、乃至は、チップ10に吸引した細胞Cを吐出した状態である。プランジャ先端部123は、シリンジ先端部113よりも僅かに下方へ突出している。図2(B)は、プランジャ12が所定高さだけ上昇された状態を示している。この状態は、細胞Cの吸引を行う吸引動作時のチップ10の状態である。図2(C)には、図2(B)のq部(吸引孔tの周辺部)の拡大図が示されている。
 吸引動作時には、プランジャ先端部123は管状通路11Pの内部に没する。この際、吸引孔tに吸引力が発生し、該吸引孔tの周囲の流体、本実施形態では細胞Cを含む培地Lは、プランジャ先端部123の内没により管状通路11P内に形成された吸引空間Hへ吸引される。つまり、細胞Cを含む培地Lが、吸引空間Hにおいて保持される。この吸引動作の後、プランジャ12を下方向へ移動させると、吸引空間H内に保持された前記流体は、吸引孔tから吐出される。前記流体の吸引量は、プランジャ12の上昇高さにより、また前記流体の吸引速度は、プランジャ12の上昇速度によって調整することができる。すなわち、前記吸引量及び前記吸引速度は、プランジャ昇降モータ632の動作制御によって所望の値に設定することができる。
 [チップの吸引特性]
 図3(A)は、チップ10の吸引範囲の説明図、図3(B)は、チップ10による細胞Cの吸引成功率と高さ及び距離との関係を示すマップである。図3(A)は、プランジャ12がシリンジ11に対して相対的に上昇し、プランジャ先端部123が管状通路11P内に没入した状態、つまり吸引動作が実行されている状態を示している。吸引孔tは、着床面13に着床した細胞Cと正対している。
 シリンジ11内への液体の吸引量、ここでは細胞Cを含む培地の吸引量は、管状通路11Pの内径a1とプランジャ先端部123の没入長a2とで決まる。また、シリンジ先端部113の周辺の前記液体において、吸引孔tへの吸引力の発生によって当該吸引孔tへ取り込まれる方向に向かう液体流動が生じる範囲である吸引範囲Eは、シリンジ先端部113の着床面13に対する高さa3と、前記吸引量とにより定まる。1回の吸引動作により、概ね吸引範囲E内の体積分の液体、若しくはそれよりも多い目の体積分の液体がシリンジ11内へ吸引される。従って、この吸引範囲E内に、1又は複数個の吸引対象の細胞Cが収まる状態で吸引動作を行えば、当該細胞Cをシリンジ11内へ吸引させる確率を高めることができる。つまり、吸引範囲Eが着床面13と交差する距離a4(吸引範囲Eのスポット径)内に存在する細胞Cを、シリンジ11内へ吸引させ得る。
 図3(B)は、培地の粘度及び前記吸引量を一定とした場合における、細胞Cの吸引成功率を示している。使用したシリンジ11の管状通路11Pの内径a1は0.18mmである。横軸は、図3(A)に示す距離a4に相当し、管状通路11Pの軸心gからの距離(mm)を、縦軸は高さa3に相当する高さ(mm)をそれぞれ示している。例えば、距離=0のポイントにおける高さ0.1~0.3の吸引成功率は、図3(A)に示す軸心g上における高さ方向の吸引成功率を示している。
 図3(B)の領域(1)は、高さa3が高く且つ細胞Cが軸心gから離間しており、最も細胞Cの吸引成功率が低い(60%-70%)領域である。領域(1)の内側の領域(2)では吸引成功率がやや上昇し(70%-80%)、高さ=0.3mm以下、距離=0.2mm以下の領域(3)では、吸引成功率は80%-90%に上昇する。さらに、高さ=0.2mm以下、距離=0.1mm以下の領域(4)では、吸引成功率は90%-100%に達する。各種のチップ10について、このような吸引特性を実験的に求めておけば、吸引量と高さa3とを設定することで、細胞Cを吸引可能な吸引範囲E(距離a4)を所望の範囲に設定することができる。
 細胞Cをチップ10で吸引させるに際しては、チップ10の吸引孔tをターゲットの細胞Cに接近させ、吸引孔tに吸引力を発生させるという吸引シーケンスが実行される。この吸引シーケンスにより、培地と共に細胞Cがチップ10内へ吸引される。この際、上記の吸引範囲Eを参照して、吸引孔tのターゲット細胞Cへの接近距離が設定される。従来、前記吸引シーケンスは、細胞Cを収容している容器や培地の種別、細胞Cの性質等に拘わらず、一定の条件で実行されている。すなわち、どの様な条件下にあっても、チップ10の吸引孔tを細胞Cに対して一定の距離だけ接近させ、一定の吸引量で吸引させている。このような一定の吸引シーケンスでは、細胞Cの吸引に失敗したり、複数の細胞Cを同時に吸引したりする吸引ミスが発生することがある。本実施形態では、容器や培地の種別、細胞Cの性質等に応じて吸引シーケンスを適正に設定することで、前記吸引ミスを抑止する。以下、吸引シーケンスの具体例のいくつかを説明する。
 [吸引シーケンスの第1例]
 図4は、本実施形態に係る吸引シーケンスの第1例を模式的に示す図である。ここでは、細胞Cの移動元となる容器が、複数のウェル22が存在する容器の態様の第1容器2である場合を例示している。第1容器2の内部には、複数のウェル22を区画する格子壁23が底面21上に立設されている。第1容器2には、培地Lが注液されている。培地Lの注液量は、当該培地Lの上面が、ウェル22の上端開口縁23Tよりも高い位置となる量である。つまり、格子壁23が培地L内に浸漬された状態である。
 細胞Cが培地Lに分散された細胞懸濁液の状態で、細胞Cは第1容器2の上面開口2Hから投入される。ウェル22は、各々1個の細胞Cを収容することを企図したものである。しかし、前記細胞懸濁液の投入という形態を取るので、実際には1つのウェル22に1個または2個以上の細胞Cが入り込んだり、細胞Cが収容できていないウェル22が生じたりする。とはいえ、いくつかのウェル22には、1つの細胞Cだけが入り込んだ状態となる。単離された細胞Cは、カメラユニット5による撮像で良否が判定し易いので、これらの中で「良」と判定されたものがチップ10での吸引(移動)対象とされる。図4では、吸引動作を実行する吸引ターゲットとなる1つの細胞C(t)を収容している1つのウェル22にXY座標が位置合わせられたチップ10が、当該ウェル22の上方に配置されている状態を示している。
 図5(A)及び図5(B)は、吸引シーケンスの第1例の動作を示す図である。培地L内に浸漬されたウェル22に収容されたターゲット細胞C(t)に対し、チップ10により吸引動作を実行させるに際しては、吸引孔tがウェル22内に入り込むようにチップ10が下降される。詳しくは、図5(A)に示すように、シリンジ先端部113と面一の吸引孔tの位置が、ウェル22に収容されたターゲット細胞C(t)よりも上方であって、ウェル22の上端開口縁23Tよりも下方の位置となるようにチップ10の下降移動量が制御される。つまり、上端開口縁23Tの底面21からの高さをb1とすると、この高さb1よりも所定の進入長b2だけ底面21に近い位置まで、吸引孔tが下降される。
 進入長b2は、チップ10の吸引範囲Eの下端が、ターゲット細胞C(t)が接面している底面21に届く深さに選ばれる。また、好ましくは、吸引孔tがターゲット細胞C(t)の真上に位置付けられる。なお、進入長b2が深すぎると、チップ10が装着されたヘッド61の軸制御精度の誤差等により、シリンジ先端部113又はプランジャ先端部123がターゲット細胞C(t)に接触してダメージを与え得る。従って、進入長b2は、前記精度誤差を考慮してもチップ10がターゲット細胞C(t)に接触しない程度の深さに設定される。
 図5(A)は、チップ10が吸引動作を開始する前の状態である。すなわち、プランジャ12が最も下降し、プランジャ先端部123がシリンジ先端部113の吸引孔tから僅かに突出した状態である。一方、図5(B)は、チップ10が吸引動作を完了した状態を示している。プランジャ先端部123が、所定の没入長だけ管状通路11P内に没入している。この没入動作によって、吸引孔tに吸引力が発生すると共に、前記没入によって管状通路11Pの下端付近に生じる吸引空間H内に、培地Lと共にターゲット細胞C(t)が吸引される。
 吸引シーケンスの第1例によれば、吸引孔tがターゲット細胞C(t)を収容するウェル22内に入り込んだ状態で、前記吸引動作が実行される。このため、当該ウェル22に隣接する周辺のウェル22内に、前記吸引動作に伴う培地Lの流動が生じ難くすることができる。従って、ターゲット細胞C(t)に対する吸引動作の実行の際に、周辺のウェル22に収容されている細胞Cが付随的に吸引されてしまうことを防止できる。つまり、ターゲット細胞C(t)だけをチップ10内に吸引させることができる。
 なお、前記吸引動作により、ターゲット細胞C(t)が存在していたウェル22内において吸引範囲Eに相当する分の培地Lがチップ10内に取り入れられる。この取り入れ分を埋めるように、チップ10と上端開口縁23Tとの間の隙間から、培地Lが当該ウェル22内に入り込む流動が発生する。この流動が大きいと、隣接するウェル22に収容された細胞Cも同時にチップ10が吸引しかねない。このため、プランジャ先端部123の没入長、つまり吸引孔tからの培地Lの吸引量は、1つのウェル22の容積よりも少ない量とすることが望ましい。これにより、隣接するウェル22から細胞Cを引き込むような流動の発生を抑制することができる。
 [吸引シーケンスの第2例]
 図6は、本実施形態に係る吸引シーケンスの第2例を模式的に示す図である。ここでは、細胞Cの移動元となる容器が、格子状の区画等を具備しないシャーレ型の態様の第2容器3である場合を例示している。既述通り、第2容器3は平坦な平面部からなる底面31を有している。細胞Cが培地Lに分散された細胞懸濁液が上面開口3Hから投入されることで、複数の細胞Cが底面31に着床している。細胞Cは、単離した状態、若しくは複数個が塊状となった状態で、底面31に分散的に着床している。図6では、吸引動作を実行する吸引ターゲットとなる1つの細胞C(t)にXY座標が位置合わせられたチップ10が、当該ターゲット細胞C(t)の上方に配置されている状態を示している。なお、ターゲット細胞C(t)に最も近い位置に存在する他の細胞Cを、隣接細胞C(n)と呼ぶ。
 図7(A)及び図7(B)は、吸引シーケンスの第2例の動作を示す図である。第1例の第1容器2の如き格子壁23が存在しない第2容器3では、ターゲット細胞C(t)の吸引の際に発生する吸引流動により、隣接細胞C(n)が同時に吸引され易くなる。このような同時吸引を防止できるように吸引範囲Eを規制するため、吸引孔tのターゲット細胞C(t)に対する高さ位置が設定される。具体的には、吸引孔tとターゲット細胞C(t)との間の距離をA、ターゲット細胞C(t)と隣接細胞C(n)との距離をBとするとき、
  0<距離A<0.5×距離B
の関係を満たす高さ位置に吸引孔tが位置するように、チップ10の下降移動量が制御される。
 図7(A)は、上記の条件式を満たさない高さ位置(A>0.5×B)に吸引孔tが配置された状態で、吸引動作が実行される直前の状態を示している。この場合、チップ10は、その高さ位置に応じた吸引範囲E1を具備する。一般に、距離Aが距離Bの1/2以上となるような高さ位置では、その吸引範囲E1内に隣接細胞C(n)が包含されてしまう確率が高くなる。このため、前記吸引動作を実行すると、ターゲット細胞C(t)だけでなく、隣接細胞C(n)も同時に吸引してしまう確率が高くなり、望ましくない。
 これに対し、図7(B)は、上記の条件式を満たさす高さ位置(0<A<0.5×B)に吸引孔tが配置された状態で、吸引動作が実行される直前の状態を示している。つまり、距離Aが距離Bの1/2以下となるように、吸引孔tをターゲット細胞C(t)に接近させている。この場合、チップ10は、図7(A)の吸引範囲E1よりも範囲が狭い吸引範囲E2となる。このように規制された吸引範囲E2とすることにより、隣接細胞C(n)を当該吸引範囲E2の範囲外とすることができ、隣接細胞C(n)の同時吸引を抑止することができる。この第2例の通り、複数の細胞Cが平面状の底面31に存在するような第2容器3に対して吸引動作を実行する場合には、ターゲット細胞C(t)の隣接細胞C(n)に対する距離Bを考慮して吸引孔tの高さ位置を設定する吸引シーケンスを設定することで、ターゲット細胞C(t)だけをチップ10内に吸引させる確率を高めることができる。
 [吸引シーケンスの第3例]
 図8(A)及び図8(B)は、吸引シーケンスの第3例を模式的に示す図である。この第3例では、培地Lの粘度の相違によって吸引シーケンスを変更する例を示す。一般に、培地Lの粘度が高い程、チップ10の吸引範囲E、つまり吸引孔tへ吸引力を発生することにより周辺の培地Lに吸引流動が発生する範囲は狭くなる。また、培地Lの粘度が高い程、チップ10へ吸引させる培地Lの量を少なくしないと、一旦チップ10内に吸引した細胞Cを吸引孔tから吐出し難くなる、という事情もある。これらに鑑み、第3例では、容器への収容対象となる培地として粘度の異なる複数の培地が存在する場合、粘度が高い培地であるほど、吸引孔tをより細胞Cに接近させるように吸引シーケンスを設定する例を示す。
 図8(A)に示す第2容器3には、所定の第1粘度を有する第1培地L1と細胞Cとが収容されているものとする。一方、図8(B)に示す第2容器3には、前記第1粘度よりも高粘度である第2粘度を有する第2培地L2と細胞Cとが収容されているものとする。例えば、第1培地L1は液体培地であり、第2培地L2はマトリゲル(コーニング社商品名)のような半固形培地である。図8(A)に示すように、第1培地L1中の細胞Cを吸引する場合、吸引孔tの底面31に対する高さは所定高さa31に設定される。この場合、高さa31と吸引量とに応じた吸引範囲E3が形成されることになる。
 一方、図8(B)に示すように、第1培地L1よりも高粘度の第2培地L2内において吸引動作を行う場合、その吸引範囲E4は吸引範囲E3よりも狭くなる。このため、吸引孔tを第1培地L1の場合と同じ高さa31に設定して吸引動作を実行させたのでは、底面31に着床した細胞Cをチップ10内へ吸引させることができない。従って、第2培地L2中の細胞Cに対して前記吸引動作を実行させる際には、吸引孔tの高さ位置を、第1培地L1の場合の高さa31に比べて、Δaだけ低い高さa32に設定する。つまり、吸引孔tをΔaだけ細胞Cにより近い位置に設定して、吸引動作を実行させる。これにより、細胞Cは吸引範囲E4に包含されるようになり、細胞Cをチップ10内へ吸引させることができる。以上の第3例によれば、粘度の異なる培地L1、L2の使用が想定されている場合でも、細胞Cの吸引ミスの発生を抑制することができる。
 [吸引シーケンスの第4例]
 図9は、吸引シーケンスの第4例を模式的に示す図である。この第4例では、細胞Cの第1容器2、第2容器3の底面21、31に対する接着力の相違によって吸引シーケンスを変更する例を示す。細胞Cの性質によっては、底面21、31に対する接着力が異なる場合がある。接着力の異なる細胞Cに対して、同一の吸引シーケンスを適用したのでは、細胞Cの吸引ミスが発生する確率が高くなる。この第4例では、より強い接着力の細胞Cに対して吸引動作を実行させる際には、吸引孔tをより細胞Cに接近させたり、より吸引量を多くしたりするように吸引シーケンスを設定する例を示す。
 図9では、第1容器2の2つのウェル22にそれぞれ、底面21に対して第1接着力で着床する第1細胞C1(第1生体対象物)と、底面21に対して前記第1接着力よりも強い第2接着力で着床する第2細胞C2(第2生体対象物)とが存在している例を示している。ここでは、吸引動作時における吸引孔tの高さ位置を、底面21に対する細胞Cの接着力に応じて変更する例を示している。チップ10に第1細胞C1を吸引させる場合、吸引孔tの底面21に対する高さは所定高さh1に設定される。この場合、高さh1と吸引量とに応じた吸引範囲E5が形成されることになる。
 一方、第1細胞C1よりも高い接着力を有する第2細胞C2に対してチップ10に吸引動作を実行させる際に、吸引孔tの位置が、第1細胞C1に対して吸引動作を実行させる場合の高さh1に比べて、より第2細胞C2に近い高さh2の位置となるように設定する。これにより、吸引範囲E6は吸引範囲E5に比べて見かけ上は狭くなるが、チップ10への吸引量が同じである場合、つまりプランジャ先端部123の没入量が同じである場合、第2細胞C2に作用する吸引力を、第1細胞C1よりも大きくすることができる。従って、第2細胞C2が第1細胞C1よりも強固に底面21に着床している場合でも、第2細胞C2をチップ10へ吸引させることができる。このように第4例によれば、底面21に対する接着力が異なる細胞Cの吸引が想定されている場合でも、吸引ミスの発生を抑制することができる。
 なお、上記第4例において、チップ10による吸引動作の際に、より高い接着力を有する第2細胞C2に作用する吸引力が、第1細胞C1の場合に比べて大きくすることができる限りにおいて、種々の吸引シーケンスを採用することができる。例えば、チップ10への培地Lの吸引量を、第2細胞C2の吸引時には、第1細胞C1よりも多くする態様を採用することができる。この場合、プランジャ先端部123の没入量を、第2細胞C2の吸引の際には第1細胞C1の場合に比べて大きくすることになる。
 或いは、プランジャ12の上昇速度を早くすることによって、吸引孔tからの培地Lの吸引速度を早くすることで、吸引力を大きくするようにしても良い。また、チップ10による吸引動作を複数回に分けて実行させるような場合には、吸引回数を増加させることで、トータルとしての吸引力を大きくするようにしても良い。さらに、これらの吸引力を増強させる手段と、上記第4例の吸引孔tをより第2細胞C2に接近させる動作とを併用しても良い。
 また、上記第4例では、細胞Cの底面21に対する接着力に着目したが、細胞Cの他の要素に応じて、吸引シーケンスを変更するようにしても良い。例えば、細胞Cの大小や形状、第1容器2,第2容器3内への収容姿勢等によって吸引シーケンスを変更しても良い。例えば、球形状に近い細胞Cは、歪な形状を有する細胞Cよりも比較的弱い吸引力にてチップ10内に吸引させることが可能である。また、楕円球の形状を有する細胞Cにおいて、当該細胞Cが直立に近い状態で底面21に着床している場合は、横倒しで着床している場合に比べて、も比較的弱い吸引力にてチップ10内に吸引させることが可能である。さらに、細胞Cの崩壊のし易さ、吸引する細胞の個数等によって吸引シーケンスを変更しても良い。
 [細胞移動装置の電気的構成]
 図10は、細胞移動装置Sの電気的構成を示すブロック図である。細胞移動装置Sは、撮像光軸上の撮像対象物を撮像するカメラユニット5と、レンズ部51を上下動させるレンズ駆動モータ53と、第1容器2又は第2容器3内の細胞Cのピックアップ動作を行わせるヘッドユニット6内のヘッドモータ63と、ヘッドユニット6をXY方向に移動させる軸モータ64と、制御部7とを備える。制御部7は、レンズ駆動モータ53を制御してレンズ部51の動作を制御すると共にカメラ本体52により取得された画像情報に対して所定の処理を行い、また、ヘッドモータ63及び軸モータ64とを制御することによって、細胞Cのピックアップ動作及び移動動作も制御する。
 レンズ駆動モータ53は、正回転又は逆回転することで、図略の動力伝達機構を介して、レンズ部51を所定の分解能で上下方向に移動させる。この移動によって、第1容器2、第2容器3に着床している細胞Cにレンズ部51の焦点位置が合わせられる。なお、図10において点線で示しているように、レンズ部51ではなく、レンズ駆動モータ53に代替する他のモータによって、第1容器2、第2容器3自体、若しくは第1容器2、第2容器3が載置されるステージである基台1を上下動させるようにしても良い。
 ヘッドモータ63は、ヘッド本体62に対するヘッド61の昇降動作、ヘッド61に装着されたチップ10の吸引孔tに、吸引力及び吐出力を発生させる動作の駆動源となるモータである。軸モータ64は、ガイドレール6G(図1)に沿ってヘッドユニット6(ヘッド本体62)を移動させる駆動源となるモータである。
 制御部7は、例えばパーソナルコンピューター等からなり、所定のプログラムが実行されることで、機能的に駆動制御部71、画像処理部72及び演算部73を備えるように動作する。
 駆動制御部71は、レンズ駆動モータ53、ヘッドモータ63及び軸モータ64の動作を制御する。具体的には駆動制御部71は、合焦動作のために、レンズ駆動モータ53にレンズ部51を上下方向に所定のピッチ、例えば数十μmピッチで移動させるための制御パルスを与える。また、図10では記載を省いているが、駆動制御部71は、カメラユニット5をガイドレール5Gに沿って移動させるカメラ軸駆動モータの動作も制御する。さらに、駆動制御部71は、ヘッドユニット6のメカ動作も制御する。駆動制御部71は、ヘッドモータ63を制御して、ヘッド61の昇降動作及びチップ10の吸引孔tに吸引力又は吐出力を発生させる動作を制御する。
 画像処理部72は、カメラ本体52により取得された画像データに対して、エッジ検出処理や特徴量抽出を伴うパターン認識処理などの画像処理を施す。画像処理部72は、細胞Cを担持する第1容器2又は第2容器3の画像データを取得し、第1容器2又は第2容器3上に存在する細胞Cを前記画像処理によって認識する。この認識結果に基づいて、移動対象とする細胞Cが特定される。
 演算部73は、主に、ヘッド61の動作を制御することで、チップ10に細胞Cを吸引させる吸引動作を制御する。演算部73は、機能的に、吸引シーケンスの設定を行う設定部731と、各種のデータや設定値を記憶する記憶部732とを備える。表示部74は、カメラユニット5が撮像した細胞Cの画像を表示する他、吸引シーケンスに関する表示等を行うディスプレイである。入力部75は、キーボードやマウス等からなり、操作者より、制御部7に対する各種の入力情報を受け付ける端末である。
 入力部75は、細胞Cを収容する容器の態様に関する第1情報、培地Lに関する第2情報及び細胞Cに関する第3情報のうちの少なくとも一つの情報を、吸引制御情報D1として受け付ける。演算部73の設定部731は、ヘッド61(チップ10)に細胞Cの吸引動作を実行させる際、入力部75に受け付けられた吸引制御情報D1に基づいて、チップ10の上下方向の移動量、及び/又は、吸引孔tからチップ10内へ細胞C及び培地Lを吸引させる吸引量を設定する。
 前記第1情報の具体例は、先に吸引シーケンスの第1例で示した複数のウェル22が存在する態様の容器である第1容器2、第2例で示した平面部としての底面31を備える容器である第2容器3に関する情報である。前記第1情報は、例えば使用する容器のサイズ、容積、格子幅や高さ等の形状データそのものであっても良いし、当該容器の種別、型式等のデータであっても良い。後者の場合、使用が予定されている容器の前記種別や型式番号に紐付けされた形状データが、予め記憶部732に記憶される。設定部731は、このような第1情報に応じて、吸引動作時において、チップ10の上下方向の移動量、つまり吸引孔tの高さ位置や、チップ10内への細胞Cを含む培地Lの吸引量を設定する。これを受けて、駆動制御部71が、ヘッドモータ63(ヘッド昇降モータ631及びプランジャ昇降モータ632)を制御して、前記設定の通りの動作をヘッド61に実行させる。
 例えば、上掲の第1例では、図5に示したように、吸引孔tがウェル22の上端開口縁23Tよりも下方位置となるように、設定部731はチップ10の下降移動量を設定する。また、第2例では、図7に示したように、「0<距離A<0.5×距離B」の関係を満たす高さ位置に吸引孔tが位置するように、設定部731はチップ10の下降移動量を設定する。
 前記第2情報の具体例は、吸引シーケンスの第1例で示したような培地Lの量、すなわち上端開口縁23Tよりも高い位置となる量や、第3例で示した培地Lの粘度に関する情報である。前記第2情報は、例えば、培地の液体、半固形、固形の別や材質等の種別、粘度、量などのデータそのものであっても良いし、当該培地の管理番号等のデータであっても良い。後者の場合、使用が予定されている培地の管理番号に紐付けされた各種データが、予め記憶部732に記憶される。設定部731は、このような第2情報に応じて、チップ10の下降移動量や吸引量を設定する。例えば、上掲の第3例では、図8に示したように、高粘度の第2培地L2の細胞Cに対して吸引動作を実行させる場合には、低粘度の第1培地L1の場合よりもより細胞Cに近く吸引孔tが位置するように、設定部731はチップ10の下降移動量を設定する。
 前記第3情報の具体例は、吸引シーケンスの第4例で示したような、細胞Cの底面21に対する接着力のように、実験的、経験的に求められる細胞Cに関するデータの他、細胞Cの種別、形状、大きさ、色調、容器への収容姿勢などのデータである。設定部731は、このような第3情報に応じて、チップ10の下降移動量や吸引量を設定する。例えば、上掲の第4例では、高接着力の第2細胞Cの吸引時には、低接着力の第1細胞C1の場合よりも吸引孔tが接近するように、設定部731はチップ10の下降移動量を設定する。これに加えて、或いは、これに代替して、設定部731はチップ10への培地Lの吸引量を、第2細胞C2の吸引時には、第1細胞C1よりも多く設定する。
 図11は、表示部74における表示例を示す図である。ここでは、入力部75から設定部731に入力されたチップ10、容器2、3、培地L、細胞Cに関する設定例が示されている。また、これら設定に応じて選択された吸引シーケンスが「シーケンスA」であり、その「シーケンスA」の内容、すなわち吸引高さ(吸引孔tの高さ位置)、吸引量が表示されている。操作者は、この表示を確認した上で、制御部7に吸引動作の実行指示を与えるものである。
 [細胞移動装置の動作フロー]
 図12は、細胞移動装置Sを用いた細胞吸引動作のフローチャートである。図10も参照して、処理が開始されると、入力部75に上述の第1情報~第3情報の少なくとも一つを含む吸引制御情報D1が受け付けられる(ステップS1)。この吸引制御情報D1に応じて、演算部73の設定部731が吸引シーケンスを設定する。つまり、容器、培地、細胞の種別や性質等において最も適した吸引シーケンスを選択する(ステップS2)。
 続いて、駆動制御部71が、カメラユニット5に、第1載置位置P1(図1)に載置されている容器である第1容器2又は第2容器3に担持されている細胞Cを撮像させる(ステップS3)。具体的には、駆動制御部71は、レンズ駆動モータ53を通してレンズ部51を駆動して、容器内の細胞Cに合焦させて撮像動作を実行させる。続いて、画像処理部72が、カメラ本体52が取得した画像に対して所定の画像処理を行う。この画像処理によって、取得された画像に映り込んでいる細胞Cが認識されると共に、演算部73が、個々の細胞Cについての外形輪郭、面積や体積等ぼサイズ、形状、色調等を数値化した特徴量を導出する(ステップS4)。
 さらに演算部73は、これら特徴量に基づいて、画像内に含まれる細胞Cのうち、マイクロプレート4への移動対象、つまりヘッド61に装着されたチップ10による吸引対象となる細胞Cを選定する。選定された細胞Cにはナンバリングnが付される(ステップS5)。これを受けて、駆動制御部71は、n=1に設定して吸引動作を開始する(ステップS6)。
 駆動制御部71は、軸モータ64を動作させて、ヘッド61(チップ10)を、n番の細胞Cの上空へXY方向に移動させる(ステップS7)。XY方向への移動後或いは移動の途中に、駆動制御部71は、ステップS2で設定された吸引シーケンスに応じた吸引動作を開始させる。すなわち、駆動制御部71は、ヘッドモータ63のヘッド昇降モータ631(図2)を駆動してヘッド61の下降を開始させ、吸引孔tが前記吸引シーケンスの設定値通りの高さ位置となる位置で停止させる(ステップS8)。ヘッド61の下降完了後、或いは下降の途中で、駆動制御部71は、プランジャ昇降モータ632(吸引機構)を駆動して、前記吸引シーケンスの設定値通りの吸引量となるように、プランジャ12を上昇させる。これにより、n番の細胞Cがチップ10内に吸引される(ステップS9)。吸引後、或いは吸引の途中で、駆動制御部71は、ヘッド61を上昇させる(ステップS10)。
 その後、駆動制御部71は、ナンバリングを付した細胞Cの全ての吸引が完了したか否かを判定する(ステップS11)。未完了である場合(ステップS11でNO)、駆動制御部71は、nを1つインクリメントし(ステップS12)、ステップS7に戻って処理を繰り返す。一方、吸引を完了した場合(ステップS11でYES)、処理を終える。
 以上説明した通りの、本実施形態に係る細胞移動装置Sによれば、細胞Cの吸引動作におけるチップ10の上下方向の移動量、及び/又は、吸引量が、入力部75に受け付けられた吸引制御情報D1に応じて制御される。つまり、第1容器2及び第2容器3の態様、培地L、細胞C(生体対象物)に関する情報に応じて前記吸引動作の態様を変更する。従って、画一的な細胞Cの吸引シーケンスではなく、吸引制御情報D1に応じた最適な吸引シーケンスを設定することが可能となり、結果として細胞Cの吸引ミスの発生を抑止することができる。
 [上記実施形態に包含される発明]
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。
 本発明の一局面に係る生体対象物のピックアップ装置は、生体対象物及び培地を収容する上面開口の容器が載置される基台と、前記基台の上方に配置され、前記生体対象物を前記容器から吸引する吸引孔を有するチップが下端に装着され、前記吸引孔に吸引力を発生させる吸引機構を有し、水平方向及び上下方向に移動可能なヘッドと、前記ヘッドの動作を制御することで、前記チップに前記生体対象物を吸引させる吸引動作を実行させる制御部と、前記制御部に情報を入力可能な入力部と、を備え、前記入力部は、前記容器の態様に関する第1情報、前記培地に関する第2情報及び前記生体対象物に関する第3情報のうちの少なくとも一つの情報を、吸引制御情報として受け付け、前記制御部は、前記吸引動作を実行させる際、前記吸引制御情報に基づいて、前記ヘッドに装着された前記チップの上下方向の移動量、及び/又は、前記吸引孔から前記チップ内へ前記生体対象物及び培地を吸引させる吸引量を制御する。
 このピックアップ装置によれば、前記吸引動作における前記チップの上下方向の移動量、及び/又は、吸引量が、前記入力部に受け付けられた前記吸引制御情報に応じて制御される。つまり、容器の態様、培地、生体対象物に関する情報に応じて前記吸引動作の態様を変更することが可能となる。従って、画一的な生体対象物の吸引シーケンスではなく、前記吸引制御情報に応じた最適な吸引シーケンスを設定することが可能となり、結果として吸引ミスの発生を抑止することができる。
 上記の生体対象物のピックアップ装置において、前記第1情報が、前記容器の内部に生体対象物を収容する複数のウェルが存在する容器の態様であることを示す情報であり、前記第2情報が、前記培地の上面が前記ウェルの上端開口縁よりも高い位置となる量の培地が、前記容器内に保持されることを示す情報である場合において、前記制御部は、前記ウェルに収容された生体対象物に対して前記吸引動作を実行させる際に、前記吸引孔の位置が、前記ウェルに収容された前記生体対象物よりも上方であって、前記ウェルの上端開口縁よりも下方の位置となるように前記チップの移動量を制御することが望ましい。
 上記態様の容器では、各ウェルに生体対象物が各々収容されることが予定される。上記ピックアップ装置によれば、前記吸引孔が吸引ターゲットの生体対象物を収容するウェル内に入り込んだ状態で、前記吸引動作が実行される。このため、当該ウェルに隣接する周辺のウェル内に、前記吸引動作に伴う流動が生じ難くすることができる。従って、前記吸引ターゲットの生体対象物に対する吸引動作の実行の際に、前記周辺のウェルに収容されている生体対象物が付随的に吸引されてしまうことを防止できる。つまり、前記吸引ターゲットの生体対象物だけを前記チップ内に吸引させることができる。
 上記の生体対象物のピックアップ装置において、前記第1情報が、前記容器の底面に複数の生体対象物が着床可能な平面部を備える容器の態様であることを示す情報である場合において、前記制御部は、前記底面に着床した一の生体対象物に対して前記吸引動作を実行させる際に、前記吸引孔と前記一の生体対象物との間の距離をA、前記一の生体対象物と当該一の生体対象物に最も近い他の生体対象物との間の距離をBとするとき、
  0<距離A<0.5×距離B
の関係を満たす位置に前記吸引孔が位置するように前記チップの移動量を制御することが望ましい。
 上記態様の容器では、区画壁等が間に介在することなく、複数の生体対象物が容器底面の平面部に存在し得ることになる。この場合、一の生体対象物に対する前記吸引動作の際に発生する吸引流動により、隣接する他の生体対象物が同時に吸引され易くなる。しかし、上記の関係式の通り、距離Aが距離Bの1/2以下となるように前記吸引孔を吸引ターゲットの生体対象物に接近させることで、当該生体対象物だけを前記チップ内に吸引させる確率を高めることができる。
 上記の生体対象物のピックアップ装置において、前記第2情報が、前記培地の粘度に関する情報であって、前記容器への収容対象となる培地が、所定の第1粘度を有する第1培地と、前記第1粘度よりも高粘度である第2粘度を有する第2培地とが存在する場合において、前記制御部は、前記第2培地中の生体対象物に対して前記吸引動作を実行させる際に、前記吸引孔の位置が、前記第1培地中の生体対象物に対して前記吸引動作を実行させる場合に比べて、より生体対象物に近い位置となるように前記チップの移動量を制御することが望ましい。
 一般に、前記吸引孔に一定の吸引力を発生させた場合、培地の粘度が高くなるほど、吸引に伴う流動を発生させることができる範囲が狭くなる傾向がある。つまり、培地の粘度が高くなるほど、吸引範囲が狭くなる傾向がある。上記ピックアップ装置によれば、より高粘度の前記第2培地中の生体対象物に対して前記吸引動作を実行させる際には、前記第1培地中の場合に比べて前記吸引孔をより生体対象物に接近させる。従って、粘度の異なる培地の使用が想定されている場合でも、吸引ミスの発生を抑制することができる。
 上記の生体対象物のピックアップ装置において、前記第3情報が、生体対象物の前記容器の底面に対する接着力に関する情報であって、前記容器への収容対象となる生体対象物が、前記底面に対して第1接着力で着床する第1生体対象物と、前記第1接着力よりも強い第2接着力で着床する第2生体対象物とが存在する場合において、前記制御部は、前記第2生体対象物に対して前記吸引動作を実行させる際に、前記吸引孔の位置が、前記第1生体対象物に対して前記吸引動作を実行させる場合に比べて、より生体対象物に近い位置となるように前記チップの移動量を制御する、及び/又は、前記チップによる前記吸引量が、前記第1生体対象物に対して前記吸引動作を実行させる場合に比べて、より多くなるように制御することが望ましい。
 生体対象物の性質によっては、容器の底面に対する接着力が異なる場合がある。上記ピックアップ装置によれば、より強い接着力の第2生体対象物に対して前記吸引動作を実行させる際には、前記第1生体対象物の場合に比べて前記吸引孔をより生体対象物に接近させたり、より吸引量を多くしたりする。つまり、前記吸引動作の際に前記第2生体対象物に作用する吸引力が、前記第1生体対象物の場合に比べて大きくされる。従って、底面に対する接着力が異なる生体対象物の吸引が想定されている場合でも、吸引ミスの発生を抑制することができる。
 本発明によれば、容器に収容された生体対象物をチップで吸引させるに際し、吸引ミスを抑止できる生体対象物のピックアップ装置を提供することができる。
 

Claims (5)

  1.  生体対象物及び培地を収容する上面開口の容器が載置される基台と、
     前記基台の上方に配置され、前記生体対象物を前記容器から吸引する吸引孔を有するチップが下端に装着され、前記吸引孔に吸引力を発生させる吸引機構を有し、水平方向及び上下方向に移動可能なヘッドと、
     前記ヘッドの動作を制御することで、前記チップに前記生体対象物を吸引させる吸引動作を実行させる制御部と、
     前記制御部に情報を入力可能な入力部と、を備え、
     前記入力部は、前記容器の態様に関する第1情報、前記培地に関する第2情報及び前記生体対象物に関する第3情報のうちの少なくとも一つの情報を、吸引制御情報として受け付け、
     前記制御部は、前記吸引動作を実行させる際、前記吸引制御情報に基づいて、前記ヘッドに装着された前記チップの上下方向の移動量、及び/又は、前記吸引孔から前記チップ内へ前記生体対象物及び培地を吸引させる吸引量を制御する、
    生体対象物のピックアップ装置。
  2.  請求項1に記載の生体対象物のピックアップ装置において、
     前記第1情報が、前記容器の内部に生体対象物を収容する複数のウェルが存在する容器の態様であることを示す情報であり、
     前記第2情報が、前記培地の上面が前記ウェルの上端開口縁よりも高い位置となる量の培地が、前記容器内に保持されることを示す情報である場合において、
     前記制御部は、前記ウェルに収容された生体対象物に対して前記吸引動作を実行させる際に、前記吸引孔の位置が、前記ウェルに収容された前記生体対象物よりも上方であって、前記ウェルの上端開口縁よりも下方の位置となるように前記チップの移動量を制御する、生体対象物のピックアップ装置。
  3.  請求項1に記載の生体対象物のピックアップ装置において、
     前記第1情報が、前記容器の底面に複数の生体対象物が着床可能な平面部を備える容器の態様であることを示す情報である場合において、
     前記制御部は、
      前記底面に着床した一の生体対象物に対して前記吸引動作を実行させる際に、
      前記吸引孔と前記一の生体対象物との間の距離をA、前記一の生体対象物と当該一の生体対象物に最も近い他の生体対象物との間の距離をBとするとき、
      0<距離A<0.5×距離B
    の関係を満たす位置に前記吸引孔が位置するように前記チップの移動量を制御する、生体対象物のピックアップ装置。
  4.  請求項1に記載の生体対象物のピックアップ装置において、
     前記第2情報が、前記培地の粘度に関する情報であって、前記容器への収容対象となる培地が、所定の第1粘度を有する第1培地と、前記第1粘度よりも高粘度である第2粘度を有する第2培地とが存在する場合において、
     前記制御部は、前記第2培地中の生体対象物に対して前記吸引動作を実行させる際に、前記吸引孔の位置が、前記第1培地中の生体対象物に対して前記吸引動作を実行させる場合に比べて、より生体対象物に近い位置となるように前記チップの移動量を制御する、生体対象物のピックアップ装置。
  5.  請求項1に記載の生体対象物のピックアップ装置において、
     前記第3情報が、生体対象物の前記容器の底面に対する接着力に関する情報であって、前記容器への収容対象となる生体対象物が、前記底面に対して第1接着力で着床する第1生体対象物と、前記第1接着力よりも強い第2接着力で着床する第2生体対象物とが存在する場合において、
     前記制御部は、
      前記第2生体対象物に対して前記吸引動作を実行させる際に、
      前記吸引孔の位置が、前記第1生体対象物に対して前記吸引動作を実行させる場合に比べて、より生体対象物に近い位置となるように前記チップの移動量を制御する、及び/又は、
      前記チップによる前記吸引量が、前記第1生体対象物に対して前記吸引動作を実行させる場合に比べて、より多くなるように制御する、生体対象物のピックアップ装置。
PCT/JP2018/046339 2018-02-20 2018-12-17 生体対象物のピックアップ装置 WO2019163270A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020502047A JPWO2019163270A1 (ja) 2018-02-20 2018-12-17 生体対象物のピックアップ装置
US16/969,162 US20200398265A1 (en) 2018-02-20 2018-12-17 Device for picking up biological subject
EP18906806.7A EP3739035A4 (en) 2018-02-20 2018-12-17 DEVICE FOR THE SAMPLING OF A BIOLOGICAL SUBJECT
CN201880088783.XA CN111699241A (zh) 2018-02-20 2018-12-17 生物对象物的拾取装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018027699 2018-02-20
JP2018-027699 2018-12-19

Publications (1)

Publication Number Publication Date
WO2019163270A1 true WO2019163270A1 (ja) 2019-08-29

Family

ID=67687599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046339 WO2019163270A1 (ja) 2018-02-20 2018-12-17 生体対象物のピックアップ装置

Country Status (5)

Country Link
US (1) US20200398265A1 (ja)
EP (1) EP3739035A4 (ja)
JP (1) JPWO2019163270A1 (ja)
CN (1) CN111699241A (ja)
WO (1) WO2019163270A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084943A1 (ja) * 2019-10-30 2021-05-06 ロート製薬株式会社 培養操作装置
WO2022065458A1 (ja) * 2020-09-24 2022-03-31 株式会社ニコン 生物体に力を加える方法および生物体加力装置
WO2022145086A1 (ja) * 2020-12-28 2022-07-07 ヤマハ発動機株式会社 細胞移動装置
JP7460053B2 (ja) 2020-06-12 2024-04-02 株式会社ピーエムティー 操作装置及び操作方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022084356A (ja) * 2020-11-26 2022-06-07 株式会社島津製作所 細胞ピッキング装置および細胞ピッキング方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599932A (ja) * 1991-10-04 1993-04-23 Aloka Co Ltd 血液試料の分注方法
JPH0783939A (ja) * 1993-09-13 1995-03-31 Aloka Co Ltd マイクロプレート用吸引方法及び吸引装置
JP2003083851A (ja) * 2001-09-13 2003-03-19 Olympus Optical Co Ltd 分注すべき液体の分注装置
JP2006149226A (ja) * 2004-11-25 2006-06-15 Fujitsu Ltd 微小物体の捕獲装置及び方法
WO2010022391A2 (en) * 2008-08-22 2010-02-25 Azte Arizona Technology Enterprises Integrated, automated system for the study of cell and tissue function
JP2014204671A (ja) * 2013-04-10 2014-10-30 コバレントマテリアル株式会社 細胞培養担体
WO2015087371A1 (ja) 2013-12-12 2015-06-18 ヤマハ発動機株式会社 対象物の移動装置
JP2016106623A (ja) * 2014-11-26 2016-06-20 東ソー株式会社 細胞回収のための標本作製方法
JP2017023112A (ja) * 2015-07-28 2017-02-02 ヤマハ発動機株式会社 対象物移動方法及び装置
WO2017110005A1 (ja) * 2015-12-25 2017-06-29 ヤマハ発動機株式会社 対象物のピックアップ方法
WO2017110004A1 (ja) * 2015-12-25 2017-06-29 ヤマハ発動機株式会社 対象物移動方法及び装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076998B2 (ja) * 1987-12-04 1995-01-30 富士写真フイルム株式会社 自動分注器および点着方法
US20060211132A1 (en) * 1998-01-09 2006-09-21 Rico Miledi Method for high throughput drop dispensing of specific patterns
US7776584B2 (en) * 2003-08-01 2010-08-17 Genetix Limited Animal cell colony picking apparatus and method
EP1930724B1 (en) * 2005-09-05 2020-08-12 Universal Bio Research Co., Ltd. Various substances holder and various substances holder treating method
JP2008197037A (ja) * 2007-02-15 2008-08-28 Yaskawa Electric Corp 分注装置およびそのコントローラと分注方法
JP5896104B2 (ja) * 2011-06-24 2016-03-30 国立大学法人佐賀大学 細胞の立体構造体製造装置
WO2016070100A1 (en) * 2014-10-31 2016-05-06 The Regents Of The University Of California Neural circuit probe
US10168347B2 (en) * 2016-05-23 2019-01-01 Becton, Dickinson And Company Liquid dispenser with manifold mount for modular independently-actuated pipette channels
JP6387427B2 (ja) * 2017-01-31 2018-09-05 ヤマハ発動機株式会社 対象物の移動装置
EP3594692B1 (en) * 2017-03-08 2021-10-13 Hitachi High-Tech Corporation Automatic analysis device and automatic analysis method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599932A (ja) * 1991-10-04 1993-04-23 Aloka Co Ltd 血液試料の分注方法
JPH0783939A (ja) * 1993-09-13 1995-03-31 Aloka Co Ltd マイクロプレート用吸引方法及び吸引装置
JP2003083851A (ja) * 2001-09-13 2003-03-19 Olympus Optical Co Ltd 分注すべき液体の分注装置
JP2006149226A (ja) * 2004-11-25 2006-06-15 Fujitsu Ltd 微小物体の捕獲装置及び方法
WO2010022391A2 (en) * 2008-08-22 2010-02-25 Azte Arizona Technology Enterprises Integrated, automated system for the study of cell and tissue function
JP2014204671A (ja) * 2013-04-10 2014-10-30 コバレントマテリアル株式会社 細胞培養担体
WO2015087371A1 (ja) 2013-12-12 2015-06-18 ヤマハ発動機株式会社 対象物の移動装置
JP2016106623A (ja) * 2014-11-26 2016-06-20 東ソー株式会社 細胞回収のための標本作製方法
JP2017023112A (ja) * 2015-07-28 2017-02-02 ヤマハ発動機株式会社 対象物移動方法及び装置
WO2017110005A1 (ja) * 2015-12-25 2017-06-29 ヤマハ発動機株式会社 対象物のピックアップ方法
WO2017110004A1 (ja) * 2015-12-25 2017-06-29 ヤマハ発動機株式会社 対象物移動方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3739035A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084943A1 (ja) * 2019-10-30 2021-05-06 ロート製薬株式会社 培養操作装置
JP7460053B2 (ja) 2020-06-12 2024-04-02 株式会社ピーエムティー 操作装置及び操作方法
WO2022065458A1 (ja) * 2020-09-24 2022-03-31 株式会社ニコン 生物体に力を加える方法および生物体加力装置
WO2022145086A1 (ja) * 2020-12-28 2022-07-07 ヤマハ発動機株式会社 細胞移動装置

Also Published As

Publication number Publication date
US20200398265A1 (en) 2020-12-24
JPWO2019163270A1 (ja) 2021-01-07
CN111699241A (zh) 2020-09-22
EP3739035A4 (en) 2021-04-21
EP3739035A1 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
WO2019163270A1 (ja) 生体対象物のピックアップ装置
JP6883648B2 (ja) 細胞ハンドリング装置
WO2017110005A1 (ja) 対象物のピックアップ方法
WO2018193719A1 (ja) 細胞移動装置及び細胞移動方法
JP6450476B2 (ja) 対象物移動方法及び装置
JP2007166981A (ja) 注入装置及び方法
JP7018078B2 (ja) 撮像システム
WO2019150756A1 (ja) 生体対象物の移動方法及び移動装置
US20200339935A1 (en) Pretreatment method for cell migration and cell migration device
WO2019146291A1 (ja) 生体対象物処理装置
EP3739036B1 (en) Biological subject transfer device
WO2022145086A1 (ja) 細胞移動装置
JP7254413B2 (ja) 生体対象物の処理装置
JP6710772B2 (ja) 細胞移動装置及び細胞移動方法
JP6735207B2 (ja) 細胞の撮像方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906806

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020502047

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018906806

Country of ref document: EP

Effective date: 20200812

NENP Non-entry into the national phase

Ref country code: DE