WO2019161764A1 - 功率配置方法和终端 - Google Patents

功率配置方法和终端 Download PDF

Info

Publication number
WO2019161764A1
WO2019161764A1 PCT/CN2019/075544 CN2019075544W WO2019161764A1 WO 2019161764 A1 WO2019161764 A1 WO 2019161764A1 CN 2019075544 W CN2019075544 W CN 2019075544W WO 2019161764 A1 WO2019161764 A1 WO 2019161764A1
Authority
WO
WIPO (PCT)
Prior art keywords
ratio
uplink
terminal
time slot
symbol
Prior art date
Application number
PCT/CN2019/075544
Other languages
English (en)
French (fr)
Inventor
冯三军
姜大洁
潘学明
周帅
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to US16/976,034 priority Critical patent/US11375497B2/en
Priority to ES19756852T priority patent/ES2952932T3/es
Priority to EP19756852.0A priority patent/EP3761724B1/en
Publication of WO2019161764A1 publication Critical patent/WO2019161764A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/3833Hand-held transceivers
    • H04B1/3838Arrangements for reducing RF exposure to the user, e.g. by changing the shape of the transceiver while in use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/246TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter calculated in said terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/262TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account adaptive modulation and coding [AMC] scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a power configuration method and a terminal.
  • a 5th generation (5th generation, 5G) communication system there are various power levels similar to those of a Long Term Evolution (LTE) system, for example, Power Class 2, the maximum transmit power of the power class.
  • Power Class 2 the maximum transmit power of the power class.
  • the power of this power class can be referred to as high power
  • the maximum transmit power of power class 3 is 23 dBm, which can be referred to as a low power level or a default power level.
  • the terminal's Specific Absorption Ratio (SAR) may exceed the standard.
  • the embodiments of the present disclosure provide a power configuration method and a terminal to solve the problem that the radiation SAR of the terminal may exceed the standard.
  • an embodiment of the present disclosure further provides a power configuration method, which is applied to a terminal, and includes:
  • the high power transmission is used, wherein the high power is higher than the maximum power of the default power level
  • low power transmission is used, wherein the low power is not higher than the maximum transmission power of the default power level.
  • an embodiment of the present disclosure provides a terminal, including:
  • a determining module configured to determine an uplink resource ratio
  • a first transmitting module configured to use a high power transmission when an uplink resource ratio is less than a first ratio, where the high power is higher than a maximum power of a default power level
  • the second transmitting module is configured to use a low power transmission when the uplink resource ratio is greater than or equal to the first ratio, where the low power is not higher than a maximum transmit power of the default power level.
  • an embodiment of the present disclosure provides a terminal, including: a memory, a processor, and a computer program stored on the memory and executable on the processor, where the computer program is executed by the processor.
  • an embodiment of the present disclosure provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by a processor, the power configuration method provided by the embodiment of the present disclosure is implemented. A step of.
  • the uplink resource ratio is determined; when the uplink resource ratio is less than the first ratio, the high power transmission is used, where the high power is higher than the maximum power of the default power level; When the ratio is greater than or equal to the first ratio, low power transmission is used, wherein the low power is not higher than the maximum transmission power of the default power level, so that the radiation SAR of the terminal can be avoided.
  • FIG. 1 is a structural diagram of a network system to which an embodiment of the present disclosure is applicable;
  • FIG. 2 is a flowchart of a power configuration method according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of another power configuration method according to an embodiment of the present disclosure.
  • FIG. 5 is a structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 6 is a structural diagram of another terminal according to an embodiment of the present disclosure.
  • FIG. 7 is a structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 8 is a structural diagram of another terminal according to an embodiment of the present disclosure.
  • FIG. 9 is a structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present disclosure.
  • the terminal 11 and the base station 12 are included.
  • the terminal 11 may be a user equipment (User Equipment, UE). Or other terminal devices, such as: a mobile phone, a tablet personal computer, a laptop computer, a personal digital assistant (PDA), a mobile Internet device (MID), or wearable
  • PDA personal digital assistant
  • MID mobile Internet device
  • wearable A terminal device such as a device (Wearable Device)
  • the terminal 11 can communicate with the base station 12, for example, SDU transmission between the terminal 11 and the base station 12.
  • the foregoing base station 12 may be a base station of 5G and later versions (eg, gNB, 5G NR NB), or a base station in other communication systems, or a Node B, an evolved Node B, or other words in the field, as long as The same technical effect, the base station is not limited to a specific technical vocabulary. It should be noted that in the embodiment of the present disclosure, only the 5G base station is taken as an example, but the specific type of the base station 12 is not limited.
  • FIG. 2 is a flowchart of a power configuration method according to an embodiment of the present disclosure. The method is applied to a terminal, as shown in FIG. 2, and includes the following steps:
  • Step 201 Determine an uplink resource proportion.
  • the determining the ratio of the uplink resources may determine whether the proportion of the uplink resources is smaller than the first ratio, for example, 50%. Of course, in the embodiment of the present disclosure, it is not limited to 50%, for example, it may be 45%. Or 55% and so on.
  • step 201 may directly determine that the uplink resource ratio is smaller than the first ratio for a specific slot format, for example, a pre-defined slot format in the protocol, or a network pre-configured slot format, and the like. Of course, step 201 may also be to determine resources of a specific time period or some slot formats to determine the proportion of its uplink resources.
  • the foregoing first ratio may be preset by the terminal, or pre-defined in the protocol, or pre-configured by the network, and the like.
  • Step 202 When the uplink resource ratio is less than the first ratio, use high power transmission, where the high power is higher than the maximum power of the default power level.
  • high-power transmission may be used because the uplink resource ratio is smaller than the first ratio, that is, the number of times the terminal transmits is relatively small, thereby using high-power transmission.
  • the radiation SAR of the terminal is not high, and thus the radiation SAR of the terminal is prevented from exceeding the standard.
  • the foregoing default power level may be pre-configured by the terminal, or predefined in the protocol, or pre-configured by the network, for example, Power Class 3, and the maximum transmit power of the power level may be 23 dBm. .
  • the high power may also be a maximum transmit power that is less than or equal to another power level, such as Power Class 2, and the maximum transmit power of the power level may be 26 dBm.
  • the power level may also be The terminal is pre-configured, or pre-defined in the protocol, or pre-configured by the network.
  • Step 203 When the uplink resource ratio is greater than or equal to the first ratio, use low power transmission, where the low power is not higher than a maximum transmit power of the default power level.
  • the uplink resource ratio determined in step 201 is greater than or equal to the first ratio, low power transmission is used because the uplink resource ratio is greater than or equal to the first ratio. If high power transmission is used, the terminal's radiation SA may exceed the standard. Use low power transmission to avoid excessive SAR of the terminal.
  • the uplink resource ratio is determined; when the uplink resource ratio is less than the first ratio, the high power transmission is used, where the high power is higher than the maximum power of the default power level; When the ratio is greater than or equal to the first ratio, low power transmission is used, wherein the low power is not higher than the maximum transmission power of the default power level, so that the radiation SAR of the terminal can be avoided.
  • FIG. 3 is a flowchart of another power configuration method according to an embodiment of the present disclosure. The method is applied to a terminal. As shown in FIG. 3, the method includes the following steps:
  • Step 301 Determine an uplink resource proportion.
  • Step 302 When the uplink resource ratio is less than the first ratio, use high power transmission, where the high power is higher than the maximum power of the default power level.
  • the high-power transmission may be performed by using the high-power transmission in the case where the uplink resource ratio is smaller than the first ratio or in the resource whose uplink resource ratio is smaller than the first ratio.
  • high power transmission is used in the time slot of the first slot format or the second slot format described above.
  • the high power transmission when the uplink resource ratio is smaller than the first ratio, the high power transmission is used, including:
  • the terminal works in a time slot of a preset slot format, a high power transmission is used, wherein an uplink symbol proportion of the preset slot format is smaller than the first ratio.
  • the preset slot format may be a pre-configured slot format, for example, a terminal pre-configuration, or a protocol pre-defined or a network pre-configured slot format, where the uplink symbol proportion is smaller than the first ratio.
  • the terminal can directly determine that the uplink resource ratio is smaller than the first specificity for the foregoing pre-slot format, and can perform no further judgment, thereby improving terminal working efficiency.
  • the pre-slot format described above may be a subset of all slot formats specified by the protocol.
  • the terminal can always use the above high power transmission.
  • the network configuration terminal may work in the time slot of the preset time slot format, so that the terminal can use high power transmission.
  • the determining an uplink resource ratio includes:
  • the terminal works in a time slot of a preset slot format, determining that the uplink resource ratio is smaller than the first ratio
  • the working time slot of the terminal is not limited to the preset time slot format, determine the proportion of uplink resources in a specific time period.
  • the high power transmission may be used if the uplink resource ratio is less than the first ratio in the specific time period; if the uplink resource ratio in the specific time period is greater than or equal to the first ratio, The low power transmission can be used.
  • the uplink resource ratio can be directly determined to be smaller than the first ratio, so that no further judgment can be performed, thereby improving the working efficiency of the terminal.
  • the working time slot of the terminal is not limited to the preset time slot format, and the working time slot of the terminal is not limited to the preset time slot format, for example, the working time slot of the terminal includes a preset time slot format and other times.
  • the time slot of the slot format, or the working time slot of the terminal does not include the time slot of the preset slot format.
  • the specific time period may be a time period configured by the network, or a predefined time period of the protocol, or a time period determined by the terminal. For example: 2ms, 2.5ms, 5ms, 20ms, 40ms or 1 minute, or a multiple of a frame (10ms).
  • the time period may also be a configuration period of a slot format set by the network, such as 5 ms, 20 ms, or a multiple of a frame (10 ms).
  • the terminal may dynamically determine whether the uplink resource ratio in the specific time period is less than the first ratio. If the uplink resource ratio in the time period is less than the first ratio, the high power transmission is used, and vice versa. Low-power transmission, in order to avoid the terminal radiation SAR exceeding the standard, improve the flexibility of the terminal to control the transmission power, in order to improve the terminal performance. Specifically, if the uplink resource ratio in the time period is less than the first ratio, the high power transmission is used in the time period, or the high power transmission is used in the next one or more time periods of the time period, or It is also possible to use high power transmission during the time period and for the next one or more time periods of the time period.
  • the case of using low power transmission may also be that low power transmission is used during the time period, or low power transmission is used during the next one or more time periods of the time period, or, during this time period, And the next one or more time periods of the time period use low power transmission.
  • the uplink symbol may be defined as follows:
  • the flexible symbol in the time slot is not used as an uplink symbol
  • the flexible symbol in the time slot is used as the uplink symbol according to the third ratio.
  • the flexible symbol may not be used as the uplink symbol, and the flexible symbol is used as the guard interval (GP) symbol.
  • GP guard interval
  • the flexible symbol may be described as an uplink symbol.
  • an uplink symbol configured for uplink transmission needs to be added.
  • the flexible symbol introduced by the 5G communication system can be used as an uplink symbol, a downlink symbol, or a flexible symbol used as a GP.
  • the number of symbol thresholds may be pre-configured by the terminal, or pre-defined in the protocol, or pre-configured by the network, for example: 3 or 4 symbols. Of course, the number of symbols may also be determined according to the total number of symbols included in the time slot. .
  • the third ratio may be pre-configured by the terminal, or pre-defined in the protocol, or pre-configured by the network, for example: 50% or 45% or 55%, and the like.
  • determining, by using the foregoing, the proportion of uplink resources in a specific time period including:
  • the uplink time slot and the uplink symbol are counted to determine the uplink resource ratio in a specific time period.
  • the uplink time slot of the specific time period is counted to determine the uplink time slot in the specific time period.
  • the ratio may be determined by counting uplink symbols in a specific time period to determine the proportion of uplink time slots in the specific time period.
  • the proportion of the uplink time slot or the proportion of the uplink symbol is smaller than the first ratio, high power transmission is used.
  • determining the proportion of uplink resources in a specific time period may also be referred to as identifying, counting, or determining the proportion of uplink resources in a specific time period.
  • the definition of the uplink symbol can be referred to the foregoing description, and details are not described herein, and the same beneficial effects can be achieved.
  • the above uplink time slot can be defined as follows:
  • the uplink time slot includes: a time slot in which an uplink symbol ratio exceeds a second ratio;
  • the flexible symbol in the time slot is not used as an uplink symbol
  • the flexible symbol in the time slot is used as the uplink symbol according to the third ratio.
  • the uplink time slot may be defined as a time slot in which the uplink symbol ratio exceeds the second ratio.
  • the uplink symbol is defined in the foregoing manner.
  • the flexible symbol is used as the uplink symbol according to the third ratio.
  • the terminal or the network selects a subset of a slot format in which the uplink slot ratio is not more than 50%, for example, the above-mentioned preset slot format.
  • the terminal or the network selects a subset of a slot format in which the uplink symbol ratio does not exceed 50%, for example, the foregoing preset slot format.
  • a subset of the slot format in which the upstream symbol ratio is no more than 50% is selected. For high-power terminals, if configured in this subset, it can be transmitted with high power; or if it is not in this subset, high-power transmission can be avoided.
  • Step 303 When the uplink resource ratio is greater than or equal to the first ratio, use low power transmission, where the low power is not higher than a maximum transmit power of the default power level.
  • the foregoing use of the low-power transmission may be performed in a case where the uplink resource ratio is greater than or equal to the first ratio, or in a resource whose uplink resource ratio is greater than or equal to the first ratio, using low-power transmission.
  • low power transmission is used in time slots of the slot format other than the first slot format and the second slot format described above.
  • the foregoing determining an uplink resource ratio includes:
  • the high power transmission may be used if the uplink resource ratio is less than the first ratio in the specific time period; if the uplink resource ratio in the specific time period is greater than or equal to the first ratio, The low power transmission can be used.
  • the specific time period may be a time period configured by the network, or a predefined time period of the protocol, or a time period determined by the terminal. For example: 5ms, 20ms or 1 minute, or a multiple of a frame (10ms).
  • the time period may also be a configuration period of a slot format set by the network, such as 5 ms, 20 ms, or a multiple of a frame (10 ms).
  • the terminal may dynamically determine that the uplink resource proportion in the specific time period is less than. If the uplink resource proportion in the time period is less than the first ratio, the high power transmission is used in the specific time period, and vice versa.
  • the use of low-power transmission in order to avoid the terminal radiation SAR exceeding the standard, while improving the flexibility of the terminal to control the transmission power, in order to improve the terminal performance.
  • the uplink resource ratio in the time period is less than the first ratio
  • the high power transmission is used in the time period, or the high power transmission is used in the next one or more time periods of the time period, or It is also possible to use high power transmission during the time period and for the next one or more time periods of the time period.
  • the case of using low power transmission may also be that low power transmission is used during the time period, or low power transmission is used during the next one or more time periods of the time period, or, during this time period, And the next one or more time periods of the time period use low power transmission.
  • determining the proportion of uplink resources in a specific time period may be as described in the foregoing embodiment, for example, determining the proportion of uplink resources in a specific time period, including:
  • the definition of the uplink time slot and the uplink symbol can be referred to the foregoing description, and details are not described herein, and the same beneficial effects can be achieved.
  • the proportion of the uplink time slot or the uplink symbol in a specific time period is smaller than the first ratio, the high power transmission is used, and vice versa, the low power transmission is used.
  • the terminal adopts the back.
  • Retreat measures can be as follows:
  • the terminal may perform evaluation if the uplink resource ratio is higher than a certain period (or a certain period of time). Or equal to a certain ratio, then fall back to low power transmission.
  • the terminal may use a high power level to transmit in a subsequent period. For example: the following implementation:
  • the method may further include:
  • Step 304 If it is detected that the uplink resource proportion is smaller than the first ratio of resources, the high power transmission is used.
  • the terminal uses the low-power transmission, if the uplink resource ratio is less than the first-scale resource, the high-power transmission is used, thereby implementing the variability of the terminal transmit power, so as to improve the terminal. Work performance.
  • the method may further include:
  • the low power transmission is used if it is detected that the uplink resource ratio is greater than or equal to the first ratio of resources.
  • the configuration of the network to the terminal is not limited to a subset of the slot format in which the uplink time slot or the uplink symbol ratio does not exceed 50%, and the terminal can self-evaluate, if the uplink uplink transmission ratio is low in a certain period (for example, the actual does not exceed 50%), it is also possible to adopt high-power transmission after a certain period; if the terminal uplink transmission ratio is high in a certain period (for example, more than 50%), the terminal will reduce the transmission power by itself.
  • a plurality of optional implementation manners are added on the basis of the embodiment shown in FIG. 2, and both can avoid the terminal radiation SAR exceeding the standard, and can also improve the working performance of the terminal.
  • FIG. 4 is a flowchart of another power configuration method according to an embodiment of the present disclosure.
  • the method is applied to a base station or a network device. As shown in FIG. 4, the method includes the following steps:
  • Step 401 Determine whether the terminal uses high power transmission, where the high power is higher than a maximum power of a default power level
  • Step 402 If it is determined that the terminal uses the high-power transmission, the terminal allocates the resource to the terminal in a time period in which the terminal uses the high-power transmission, where the uplink resource proportion of the resource allocated to the terminal is smaller than the first ratio. .
  • the determining that the terminal uses high power transmission includes:
  • the terminal is configured to work in a time slot of a preset slot format, wherein an uplink symbol proportion of the preset slot format is smaller than the first ratio.
  • the method for calculating the ratio of the uplink resources includes:
  • the flexible symbol in the time slot is not used as an uplink symbol
  • the flexible symbol in the time slot is used as the uplink symbol according to the third ratio.
  • the uplink time slot includes: a time slot in which an uplink symbol ratio exceeds a second ratio;
  • the flexible symbol in the time slot is not used as an uplink symbol
  • the flexible symbol in the time slot is used as the uplink symbol according to the third ratio.
  • the embodiment is the implementation manner of the base station corresponding to the embodiment shown in FIG. 2 and FIG. 3, and the specific implementation manners can refer to the related embodiments of the embodiment shown in FIG. 2 and FIG. 3, and achieve the same beneficial effects. In order to avoid repeated explanations, we will not repeat them here.
  • FIG. 5 is a structural diagram of a terminal according to an embodiment of the present disclosure. As shown in FIG. 5, the terminal 500 includes:
  • a determining module 501 configured to determine an uplink resource ratio
  • the first transmitting module 502 is configured to use a high power transmission when the uplink resource ratio is less than the first ratio, where the high power is higher than a maximum power of the default power level;
  • the second transmitting module 503 is configured to use a low power transmission when the uplink resource ratio is greater than or equal to the first ratio, where the low power is not higher than a maximum transmit power of the default power level.
  • the first transmitting module 502 is configured to use a high-power transmission if the terminal works in a time slot of a preset time slot format, where an uplink symbol proportion of the preset time slot format is smaller than The first ratio is stated.
  • the determining module 501 is configured to determine, if the terminal works in a time slot of a preset slot format, that the uplink resource ratio is smaller than the first ratio;
  • the determining module 501 is configured to determine, when the working time slot of the terminal is not limited to the preset time slot format, determine the proportion of uplink resources in a specific time period.
  • the determining module 501 is configured to determine a proportion of uplink resources in a specific time period.
  • the determining module 501 is configured to determine a proportion of uplink time slots in the specific time period.
  • the determining module 501 is configured to determine a proportion of uplink symbols in the specific time period.
  • the specific time period is a time period configured by the network, or a predefined time period of the protocol, or a time period determined by the terminal.
  • the flexible symbol in the time slot is not used as an uplink symbol
  • the flexible symbol in the time slot is used as the uplink symbol according to the third ratio.
  • the uplink time slot includes: a time slot in which an uplink symbol ratio exceeds a second ratio;
  • the flexible symbol in the time slot is not used as an uplink symbol
  • the flexible symbol in the time slot is used as the uplink symbol according to the third ratio.
  • the terminal 500 further includes:
  • the third transmitting module 504 is configured to use the high power transmission if detecting that the uplink resource proportion is smaller than the first ratio of resources.
  • the terminal provided by the embodiment of the present disclosure can implement various processes implemented by the terminal in the method embodiment of FIG. 2 to FIG. 3, and details are not described herein again to avoid repetition.
  • the terminal can avoid the radiation SAR exceeding the standard.
  • FIG. 7 is a structural diagram of a base station according to an embodiment of the present disclosure. As shown in FIG. 7, the base station 700 includes:
  • the determining module 701 is configured to determine whether the terminal uses high power transmission, wherein the high power is higher than a maximum power of the default power level;
  • the configuration module 702 is configured to: if it is determined that the terminal uses the high-power transmission, configure the terminal resource to be used in the time that the terminal uses the high-power transmission, where the uplink resource proportion of the resource allocated to the terminal is less than The first ratio.
  • the determining that the terminal uses high power transmission includes:
  • the terminal is configured to work in a time slot of a preset slot format, wherein an uplink symbol proportion of the preset slot format is smaller than the first ratio.
  • the method for calculating the ratio of the uplink resources includes:
  • the flexible symbol in the time slot is not used as an uplink symbol
  • the flexible symbol in the time slot is used as the uplink symbol according to the third ratio.
  • the uplink time slot includes: a time slot in which an uplink symbol ratio exceeds a second ratio;
  • the flexible symbol in the time slot is not used as an uplink symbol
  • the flexible symbol in the time slot is used as the uplink symbol according to the third ratio.
  • the base station provided by the embodiment of the present disclosure can implement various processes implemented by the base station in the method embodiment of FIG. 4, and details are not described herein again to avoid repetition.
  • the base station can avoid the terminal radiation SAR exceeding the standard.
  • FIG. 8 is a schematic structural diagram of hardware of a terminal that implements various embodiments of the present disclosure.
  • the terminal 800 includes, but is not limited to, a radio frequency unit 801, a network module 802, an audio output unit 803, an input unit 804, a sensor 805, a display unit 806, a user input unit 807, an interface unit 808, a memory 809, a processor 810, and a power supply. 811 and other components.
  • the terminal structure shown in FIG. 8 does not constitute a limitation of the terminal, and the terminal may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle terminal, a wearable device, and a pedometer.
  • the processor 810 is configured to determine an uplink resource ratio.
  • the radio frequency unit 801 is configured to use a high power transmission when the uplink resource ratio is less than the first ratio, where the high power is higher than a maximum power of the default power level;
  • the radio frequency unit 801 is further configured to use a low power transmission when the uplink resource ratio is greater than or equal to the first ratio, where the low power is not higher than a maximum transmit power of the default power level.
  • the processor 810 uses the high power transmission, including:
  • the terminal works in a time slot of a preset slot format, a high power transmission is used, wherein an uplink symbol proportion of the preset slot format is smaller than the first ratio.
  • determining, by the processor 810, an uplink resource proportion including:
  • the terminal works in a time slot of a preset slot format, determining that the uplink resource ratio is smaller than the first ratio
  • the working time slot of the terminal is not limited to the preset time slot format, determine the proportion of uplink resources in a specific time period.
  • determining, by the processor 810, an uplink resource proportion including:
  • the determining, by the processor 810, the proportion of uplink resources in a specific time period including:
  • the specific time period is a time period configured by the network, or a predefined time period of the protocol, or a time period determined by the terminal.
  • the flexible symbol in the time slot is not used as an uplink symbol
  • the flexible symbol in the time slot is used as the uplink symbol according to the third ratio.
  • the uplink time slot includes: a time slot in which an uplink symbol ratio exceeds a second ratio;
  • the flexible symbol in the time slot is not used as an uplink symbol
  • the flexible symbol in the time slot is used as the uplink symbol according to the third ratio.
  • the radio frequency unit 801 is further configured to: if it is detected that the uplink resource proportion is smaller than the first ratio resource, when the uplink resource ratio is greater than or equal to the first ratio, The high power transmission is then used.
  • the terminal can avoid the radiation SAR exceeding the standard.
  • the radio frequency unit 801 can be used for receiving and transmitting signals during and after receiving or transmitting information or during a call. Specifically, after receiving downlink data from the base station, the processing is processed by the processor 810; The uplink data is sent to the base station.
  • radio frequency unit 801 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio unit 801 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides the user with wireless broadband Internet access through the network module 802, such as helping the user to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 803 can convert the audio data received by the radio frequency unit 801 or the network module 802 or stored in the memory 809 into an audio signal and output as a sound. Moreover, the audio output unit 803 can also provide audio output (eg, call signal reception sound, message reception sound, etc.) associated with a particular function performed by the terminal 800.
  • the audio output unit 803 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 804 is for receiving an audio or video signal.
  • the input unit 804 may include a graphics processing unit (GPU) 8041 and a microphone 8042 that images an still picture or video obtained by an image capturing device (such as a camera) in a video capturing mode or an image capturing mode.
  • the data is processed.
  • the processed image frame can be displayed on display unit 806.
  • Image frames processed by graphics processor 8041 may be stored in memory 809 (or other storage medium) or transmitted via radio unit 801 or network module 802.
  • the microphone 8042 can receive sound and can process such sound as audio data.
  • the processed audio data can be converted to a format output that can be transmitted to the mobile communication base station via the radio unit 801 in the case of a telephone call mode.
  • Terminal 800 also includes at least one type of sensor 805, such as a light sensor, motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 8061 according to the brightness of the ambient light, and the proximity sensor can close the display panel 8061 and/or when the terminal 800 moves to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • sensor 805 may also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be described here.
  • the display unit 806 is for displaying information input by the user or information provided to the user.
  • the display unit 806 can include a display panel 8061.
  • the display panel 8061 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the user input unit 807 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 807 includes a touch panel 8071 and other input devices 8072.
  • the touch panel 8071 also referred to as a touch screen, can collect touch operations on or near the user (such as a user using a finger, a stylus, or the like on the touch panel 8071 or near the touch panel 8071. operating).
  • the touch panel 8071 may include two parts of a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 810 receives commands from the processor 810 and executes them.
  • the touch panel 8071 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the user input unit 807 may also include other input devices 8072.
  • the other input devices 8072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, and are not described herein again.
  • the touch panel 8071 can be overlaid on the display panel 8061.
  • the touch panel 8071 detects a touch operation thereon or nearby, the touch panel 8071 transmits to the processor 810 to determine the type of the touch event, and then the processor 810 according to the touch.
  • the type of event provides a corresponding visual output on display panel 8061.
  • the touch panel 8071 and the display panel 8061 are two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 8071 can be integrated with the display panel 8061.
  • the input and output functions of the terminal are implemented, and are not limited herein.
  • the interface unit 808 is an interface in which an external device is connected to the terminal 800.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device having an identification module, and an audio input/output. (I/O) port, video I/O port, headphone port, and more.
  • the interface unit 808 can be configured to receive input from an external device (eg, data information, power, etc.) and transmit the received input to one or more components within the terminal 800 or can be used at the terminal 800 and external devices Transfer data between.
  • Memory 809 can be used to store software programs as well as various data.
  • the memory 809 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • memory 809 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the processor 810 is the control center of the terminal, and connects various parts of the entire terminal using various interfaces and lines, by executing or executing software programs and/or modules stored in the memory 809, and calling data stored in the memory 809, executing The terminal's various functions and processing data, so as to monitor the terminal as a whole.
  • the processor 810 can include one or more processing units; optionally, the processor 810 can integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, an application, etc., and a modulation solution
  • the processor mainly handles wireless communication. It can be understood that the above modem processor may not be integrated into the processor 810.
  • the terminal 800 may further include a power source 811 (such as a battery) for supplying power to various components.
  • a power source 811 such as a battery
  • the power source 811 may be logically connected to the processor 810 through a power management system to manage charging, discharging, and power management through the power management system. And other functions.
  • terminal 800 includes some functional modules not shown, and details are not described herein again.
  • an embodiment of the present disclosure further provides a terminal, including a processor 810, a memory 809, a computer program stored on the memory 809 and executable on the processor 810, where the computer program is executed by the processor 810
  • a terminal including a processor 810, a memory 809, a computer program stored on the memory 809 and executable on the processor 810, where the computer program is executed by the processor 810
  • FIG. 9 is a structural diagram of another base station according to an embodiment of the present disclosure.
  • the base station 900 includes a processor 901, a transceiver 902, a memory 903, and a bus interface, where:
  • the processor 901 is configured to determine whether the terminal uses high power transmission, where the high power is higher than a maximum power of a default power level;
  • the transceiver 902 is configured to: if it is determined that the terminal uses the high-power transmission, configure the terminal resource to be used in the time that the terminal uses the high-power transmission, where the uplink resource proportion of the resource allocated to the terminal is less than The first ratio.
  • the determining that the terminal uses high power transmission includes:
  • the terminal is configured to work in a time slot of a preset slot format, wherein an uplink symbol proportion of the preset slot format is smaller than the first ratio.
  • the method for calculating the ratio of the uplink resources includes:
  • the flexible symbol in the time slot is not used as an uplink symbol
  • the flexible symbol in the time slot is used as the uplink symbol according to the third ratio.
  • the uplink time slot includes: a time slot in which an uplink symbol ratio exceeds a second ratio;
  • the flexible symbol in the time slot is not used as an uplink symbol
  • the flexible symbol in the time slot is used as the uplink symbol according to the third ratio.
  • the above base station can avoid the terminal radiation SAR exceeding the standard.
  • the transceiver 902 is configured to receive and transmit data under the control of the processor 901, and the transceiver 902 includes at least two antenna ports.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 901 and various circuits of memory represented by memory 903.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 902 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 901 is responsible for managing the bus architecture and general processing, and the memory 903 can store data used by the processor 901 in performing operations.
  • an embodiment of the present disclosure further provides a base station, including a processor 901, a memory 903, a computer program stored on the memory 903 and executable on the processor 901, where the computer program is executed by the processor 901
  • a base station including a processor 901, a memory 903, a computer program stored on the memory 903 and executable on the processor 901, where the computer program is executed by the processor 901
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, implements various processes of the power configuration method embodiment of the terminal or the base station side, and Can achieve the same technical effect, in order to avoid duplication, no longer repeat here.
  • the computer readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the foregoing embodiment method can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is better.
  • Implementation Based on such understanding, the technical solution of the present disclosure, which is essential or contributes to the related art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM).
  • the instructions include a number of instructions for causing a terminal (which may be a cell phone, computer, server, air conditioner, or network device, etc.) to perform the methods described in various embodiments of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

本公开实施例提供一种功率配置方法和终端,该方法包括:确定上行资源占比;当上行资源占比小于第一比例时,使用高功率发射,其中,所述高功率高于默认功率等级的最大发射功率;当上行资源占比大于或者等于所述第一比例时,使用低功率发射,其中,所述低功率不高于所述默认功率等级的最大发射功率。

Description

功率配置方法和终端
相关申请的交叉引用
本申请主张在2018年2月26日在中国提交的中国专利申请号No.201810160268.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种功率配置方法和终端。
背景技术
在第五代(5th generation,5G)通信***中,存在和长期演进(Long Term Evolution,LTE)***类似的多种功率等级,例如:功率等级2(Power Class2),该功率等级的最大发射功率为26dBm,该功率等级的功率可以称作高功率,而功率等级3的最大发射功率为23dBm,该功率等级可以称作低功率等级或者默认功率等级。在最大发射功率高于23dBm,终端的辐射比吸收率(Specific Absorption Ratio,SAR)就可能会存在超标的情况。
发明内容
本公开实施例提供一种功率配置方法和终端,以解决终端的辐射SAR可能会存在超标的问题。
第一方面,本公开实施例还提供了一种功率配置方法,应用于终端,包括:
确定上行资源占比;
当上行资源占比小于第一比例时,使用高功率发射,其中,所述高功率高于默认功率等级的最大发射功率;
当上行资源占比大于或者等于所述第一比例时,使用低功率发射,其中,所述低功率不高于所述默认功率等级的最大发射功率。
第二方面,本公开实施例提供了一种终端,包括:
确定模块,用于确定上行资源占比;
第一发射模块,用于当上行资源占比小于第一比例时,使用高功率发射,其中,所述高功率高于默认功率等级的最大发射功率;
第二发射模块,用于当上行资源占比大于或者等于所述第一比例时,使用低功率发射,其中,所述低功率不高于所述默认功率等级的最大发射功率。
第三方面,本公开实施例提供了一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现本公开实施例提供的功率配置方法中的步骤。
第四方面,本公开实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现本公开实施例提供的功率配置方法的步骤。
在本公开实施例中,通过确定上行资源占比;当上行资源占比小于第一比例时,使用高功率发射,其中,所述高功率高于默认功率等级的最大发射功率;当上行资源占比大于或者等于所述第一比例时,使用低功率发射,其中,所述低功率不高于所述默认功率等级的最大发射功率,从而能够避免终端的辐射SAR超标。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例可应用的一种网络***的结构图;
图2是本公开实施例提供的一种功率配置方法的流程图;
图3是本公开实施例提供的另一种功率配置方法的流程图;
图4是本公开实施例提供的另一种功率配置方法的流程图;
图5是本公开实施例提供的一种终端的结构图;
图6是本公开实施例提供的另一种终端的结构图;
图7是本公开实施例提供的一种基站的结构图;
图8是本公开实施例提供的另一种终端的结构图;
图9是本公开实施例提供的另一种基站的结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
请参见图1,图1是本公开实施例可应用的一种网络***的结构图,如图1所示,包括终端11和基站12,其中,终端11可以是用户设备(User Equipment,UE)或者其他终端设备,例如:手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本公开实施例中并不限定终端11的具体类型。终端11可以与基站12之间进行通信,例如:终端11与基站12之间进行SDU传输。上述基站12可以是5G及以后版本的基站(例如:gNB、5G NR NB),或者其他通信***中的基站,或者称之为节点B,演进节点B,或者所述领域中其他词汇,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本公开实施例中仅以5G基站为例,但是并不限定基站12的具体类型。
请参见图2,图2是本公开实施例提供的一种功率配置方法的流程图,该方法应用于终端,如图2所示,包括以下步骤:
步骤201、确定上行资源占比。
其中,上述确定上行资源占比,可以是确定上行资源占比是否会小于第一比例,例如:50%,当然,本公开实施例中,并不限定是50%,例如:还可以是45%或者55%等等。另外,步骤201针对特定的时隙格式可以直接确定其上行资源占比小于第一比例,例如:协议中预先定义的时隙格式,或者网络预先配置的时隙格式等等。当然,步骤201也可以是对特定时间段或者一些时隙格式的资源进行确定,以确定出其上行资源的占比。
需要说明的是,本公开实施例中,上述第一比例可以是终端预先设置的, 或者协议中预先定义的,或者网络预先配置的等等。
步骤202、当上行资源占比小于第一比例时,使用高功率发射,其中,所述高功率高于默认功率等级的最大发射功率。
若步骤201中确定的上行资源占比小于第一比例,则可以使用高功率发射,因为,由于上行资源占比小于上述第一比例,也就是说终端发射的次数比较少,从而使用高功率发射,终端的辐射SAR不高,进而避免终端的辐射SAR超标。
需要说明的是,上述默认功率等级可以是终端预先配置的,或者协议中预先定义的,或者网络预先配置的,例如:功率等级3(Power Class 3),该功率等级的最大发射功率可以是23dBm。
当然,上述高功率还可以是小于或者等于另一功率等级的最大发射功率,如功率等级2(Power Class 2),该功率等级的最大发射功率可以是26dBm,同理,该功率等级也可以是终端预先配置的,或者协议中预先定义的,或者网络预先配置的。
步骤203、当上行资源占比大于或者等于所述第一比例时,使用低功率发射,其中,所述低功率不高于所述默认功率等级的最大发射功率。
若步骤201中确定的上行资源占比大于或者等于第一比例,使用低功率发射,因为,上行资源占比大于或者等于第一比例,如果使用高功率发射,终端的辐射SA可能会超标,进而使用低功率发射,以避免终端的辐射SAR超标。
通过上述步骤,可以实现在上行资源占比小于第一比例时,使用高功率发射,反之,使用低功率发射从而可以避免终端的辐射SAR超标。
需要说明的是,上述方法可以应用于5G***,但对此不作限定,只要能够实现基本相同的功能,适用于其他通信***,例如:可以应用6G***或者其他应用高功率发射的通信***等等。
在本公开实施例中,通过确定上行资源占比;当上行资源占比小于第一比例时,使用高功率发射,其中,所述高功率高于默认功率等级的最大发射功率;当上行资源占比大于或者等于所述第一比例时,使用低功率发射,其中,所述低功率不高于所述默认功率等级的最大发射功率,从而能够避免终 端的辐射SAR超标。
请参见图3,图3是本公开实施例提供的另一种功率配置方法的流程图,该方法应用于终端,如图3所示,包括以下步骤:
步骤301、确定上行资源占比。
步骤302、当上行资源占比小于第一比例时,使用高功率发射,其中,所述高功率高于默认功率等级的最大发射功率。
其中,上述使用高功率发射可以是,在上行资源占比小于第一比例的情况下,或者在上行资源占比小于第一比例的资源中,使用高功率发射。例如:在上述第一时隙格式或者第二时隙格式的时隙中使用高功率发射。
作为一种可选的实施方式中,所述当上行资源占比小于第一比例时,使用高功率发射,包括:
若所述终端工作在预设时隙格式的时隙中,使用高功率发射,其中,所述预设时隙格式的上行符号占比小于所述第一比例。
其中,上述预设时隙格式可以是预先配置的时隙格式,例如:终端预先配置、或者协议预先定义或者网络预先配置的时隙格式,上行符号占比小于所述第一比例。
这样,可以实现针对上述预先时隙格式终端可以直接确定其上行资源占比小于第一特定,而可以不进行进一步的判断,从而可以提高终端工作效率。另外,上述预先时隙格式可以是协议规定的所有时隙格式的子集。另外,终端如果终始工作在上述预设时隙格式的情况下,终端可以一直使用上述高功率发射。或者可以是网络配置终端工作上述预设时隙格式的时隙中,从而终端可以使用高功率发射。
可选的,所述确定上行资源占比,包括:
若所述终端工作在预设时隙格式的时隙中,则确定上行资源占比小于所述第一比例;或者
若所述终端的工作时隙未限制在预设时隙格式中,则确定特定时间段内上行资源的占比。
其中,若所述特定时间段内上行资源占比小于所述第一比例,则可以使用所述高功率发射;若所述特定时间段内上行资源占比大于或者等于所述第 一比例,则可以使用所述低功率发射。
该实施方式中,终端工作在预设时隙格式的时隙中,则可以直接确定上行资源占比小于所述第一比例,从而可以不进行进一步的判断,从而可以提高终端工作效率。
其中,上述工作时隙未限制在预设时隙格式中可以是,终端的工作时隙并没有限制在预设时隙格式中,例如:终端的工作时隙包括预设时隙格式和其他时隙格式的时隙,或者终端的工作时隙不包括预设时隙格式的时隙。
其中,所述特定时间段可以为网络配置的时间段,或者协议预定义的时间段,或者所述终端确定的时间段等。例如:2ms、2.5ms、5ms、20ms、40ms或者1分钟,或者是帧(10ms)的倍数等。另外,该时间段也可以是网络设置的时隙格式(slot format)的配置周期,如5ms、20ms,或者是帧(10ms)的倍数等。
该实施方式中,可以实现终端动态地确定特定时间段内上行资源占比是否小于第一比例,若该时间段内上行资源占比小于所述第一比例,则使用高功率发射,反之,使用低功率发射,进而在避免终端辐射SAR超标的同时,提高终端控制发射功率的灵活性,以提高终端工作性能。具体可以是,该时间段内上行资源占比小于所述第一比例,则在该时间段内使用高功率发射,或者在该时间段的下一个或者多个时段内使用高功率发射,或者,还可以是在该时间段内,以及该时间段的下一个或者多个时间段使用高功率发射。而使用低功率发射的情况也可以是,在该时间段内使用低功率发射,或者在该时间段的下一个或者多个时段内使用低功率发射,或者,还可以是在该时间段内,以及该时间段的下一个或者多个时间段使用低功率发射。
可选的,该实施方式中,关于上行符号可以通过如下方式进行定义:
对于灵活符号(flexible symbol)数小于或者等于符号数门限值的时隙,该时隙内的灵活符号不作为上行符号;
对于灵活符号大于所述符号数门限值的时隙,该时隙内的灵活符号按照第三比例作为上行符号。
其中,灵活符号不作为上行符号可以是,将灵活符号作为保护间隔(Guard Period,GP)符号。
需要说明的是,这里是针对灵活符号可能作为上行符号进行说明,在实际统计过程中,还需要添加被配置进行上行传输的上行符号。其中,上述灵活符号为5G通信***引入的可以用作上行符号、下行符号或者不传输用作GP的灵活符号。符号数门限值可以是终端预先配置的,或者协议中预先定义,或者网络预先配置的,例如:3或者4个符号,当然,这个符号数具体也可以是根据时隙所包括的符号总数确定。而第三比例可以是终端预先配置的,或者协议中预先定义,或者网络预先配置的,例如:50%或者45%或者55%等等。例如:一个时隙内有<=Y(如Y=4或3)个灵活符号时,这些灵活符号假设用作GP,不算做上行符号;而一个时隙内有>Y(如Y=4或3)个灵活符号时,这些灵活符号按照一定比例Z(如Z=50%)算做上行符号;例如:某时隙中包括6个灵活符号,而上述符号数门限值为3或者4,则将这6个灵活符号按照50%作为上行符号,即6个灵活符号算做3个上行符号。需要说明的是,当某时隙中灵活符号的第三比例不为整数时,可以采用向上取整,向下取整的方式确定上行符号的数量。
该实施方式中,由于针对灵活符号进行灵活的统计,从而避免由于5G通信***引入的灵活符号导致的终端辐射SAR超标的情况。
可选的,上述实施方式中,上述确定特定时间段内上行资源的占比,包括:
确定所述特定时间段内上行时隙的占比;或者
确定所述特定时间段内上行符号的占比。
这样可以实现通过统计上行时隙和上行符号,以确定特定时间段上行资源占比,具体可以是通过对特定时间段的上行时隙进行统计,以确定所述特定时间段内上行时隙的占比,或者可以是通过对特定时间段内的上行符号进行统计,以确定所述特定时间段内上行时隙的占比。当上行时隙的占比或者上行符号的占比小于第一比例时,使用高功率发射。当然,本公开实施例中,确定特定时间段内上行资源的占比也可以是称作识别、统计或者判定特定时间段内上行资源的占比。
其中,在确定上行资源的占比过程中,上行符号的定义可以参见上述描述,此处不作赘述,且可以达到相同有益效果。
而上述上行时隙可以通过如下方式进行定义:
所述上行时隙包括:上行符号占比超过第二比例的时隙;
其中,对于灵活符号数小于或者等于符号数门限值的时隙,该时隙内的灵活符号不作为上行符号;
对于灵活符号大于所述符号数门限值的时隙,该时隙内的灵活符号按照第三比例作为上行符号。
这样可以定义上行时隙为上行符号占比超过第二比例的时隙,其中,第二比例可以是终端预先配置的,或者协议中预先定义,或者网络预先配置的,例如:70%或者65%或者75%等等,例如:上行符号占比超过一个门限X(如X=70%)的时隙算作上行时隙。
其中,在定义上行时隙过程中,需要通过上述方式定义上行符号,其中,灵活符号按照第三比例作为上行符号可以参见上面描述,此处不作赘述,且可以达到相同的有益效果。
例如:终端或者网络选择一个上行时隙配比不超过50%的时隙格式(slot format)的子集,例如:上述预设时隙格式。规定上行时隙定义为:上行符号占比超过一个门限X(如X=70%)的时隙算作上行时隙;其中,灵活符号的统计方法为:一个时隙内有<=Y(如Y=4或3)个灵活符号时,这些灵活符号假设用作GP,不算做上行符号;一个时隙内有>Y(如Y=4或3)个灵活符号时,这些灵活符号按照一定比例Z(如Z=50%)算做上行符号。对于高功率终端,如果配置在这个子集中,则可以用高功率发射;或者规定不在这个子集中时,可以不用高功率发射。
又例如:终端或者网络选择一个上行符号配比不超过50%的时隙格式(slot format)的子集,例如:上述预设时隙格式。其中灵活符号的统计方法为:一个slot内有<=Y(如Y=4或3)个灵活符号时,这些灵活符号假设用作GP,不算做UL符号;一个时隙内有>Y(如Y=4或3)个灵活符号时,这些灵活符号按照一定比例Z(如Z=50%)算做上行符号。这样,根据如上标准,选择一个上行符号配比在不超过50%的时隙格式(slot format)的子集。对于高功率终端,如果配置在这个子集中,则可以用高功率发射;或者规定不在这个子集中时,可以不用高功率发射。
步骤303、当上行资源占比大于或者等于所述第一比例时,使用低功率发射,其中,所述低功率不高于所述默认功率等级的最大发射功率。
其中,上述使用低功率发射可以是,在上行资源占比大于或者等于第一比例的情况下,或者在上行资源占比大于或者等于第一比例的资源中,使用低功率发射。例如:在上述第一时隙格式和第二时隙格式之外的时隙格式的时隙中使用低功率发射。
作为另一种可选的实施方式,上述确定上行资源占比,包括:
确定特定时间段内上行资源的占比。
其中,若所述特定时间段内上行资源占比小于所述第一比例,则可以使用所述高功率发射;若所述特定时间段内上行资源占比大于或者等于所述第一比例,则可以使用所述低功率发射。
其中,所述特定时间段可以为网络配置的时间段,或者协议预定义的时间段,或者所述终端确定的时间段等。例如:5ms、20ms或者1分钟,或者是帧(10ms)的倍数等。另外,该时间段也可以是网络设置的时隙格式(slot format)的配置周期,如5ms、20ms,或者是帧(10ms)的倍数等。
该实施方式中,可以实现终端动态地确定特定时间段内上行资源占比小于,若该时间段内上行资源占比小于所述第一比例,则在该特定时间段内使用高功率发射,反之,使用低功率发射,进而在避免终端辐射SAR超标的同时,提高终端控制发射功率的灵活性,以提高终端工作性能。具体可以是,该时间段内上行资源占比小于所述第一比例,则在该时间段内使用高功率发射,或者在该时间段的下一个或者多个时段内使用高功率发射,或者,还可以是在该时间段内,以及该时间段的下一个或者多个时间段使用高功率发射。而使用低功率发射的情况也可以是,在该时间段内使用低功率发射,或者在该时间段的下一个或者多个时段内使用低功率发射,或者,还可以是在该时间段内,以及该时间段的下一个或者多个时间段使用低功率发射。
其中,上述确定特定时间段内上行资源的占比可以参见上面实施方式的描述,例如:上述确定特定时间段内上行资源的占比,包括:
确定所述特定时间段内上行时隙的占比;或者
确定所述特定时间段内上行符号的占比。
其中,在确定上行资源的占比过程中,上行时隙以及上行符号的定义可以参见上述描述,此处不作赘述,且可以达到相同有益效果。
该实施方式中,可以实现若特定时间段内上行时隙或者上行符号的占比小于上述第一比例,则使用高功率发射,反之,使用低功率发射。
需要说明的是,上述当上行资源占比大于或者等于所述第一比例时,使用低功率发射,也可以称作,在当上行资源占比大于或者等于所述第一比例时,终端采用回退措施。其中,回退措施可以如下:
如果网络配置不满足上述预设时隙格式,或者上行资源占比不小于上述第一比例的条件,终端可以进行评估,如果在一定周期(或者称作一定时间段)内上行资源占比高于或者等于一定比例,则回退到低功率发射。当然,如果终端在一定周期内检测到上述预设时隙格式,或者上行资源占比小于上述第一比例,则可以在后续的周期中,使用高功率等级发射。例如:如下实施方式:
如图3所示,所述当上行资源占比大于或者等于所述第一比例时,使用低功率发射之后,所述方法还可以包括:
步骤304、若检测到上行资源占比小于所述第一比例的资源,则使用所述高功率发射。
该实施方式中,可以实现在终端使用低功率发射后,如果检测到上行资源占比小于所述第一比例的资源,则使用高功率发射,从而实现终端发射功率的可变性,以提高终端的工作性能。
当然,当上行资源占比小于第一比例时,使用高功率发射之后,还可以包括:
若检测到上行资源占比大于或者等于所述第一比例的资源,则使用所述低功率发射。例如:网络给终端的配置没有限制在上行时隙或者上行符号配比不超过50%的时隙格式子集中,终端可以自行评估,如果在一定周期内终端上行发射比例较低(例如实际没有超过50%),也可以采用在一定周期后采用高功率发射;如果一定周期内终端上行发射比例较高(例如超过50%),终端将自行降低发射功率。
本实施例中,在图2所示的实施例的基础上增加了多种可选的实施方式, 且均可以避免终端辐射SAR超标,还可以提高终端的工作性能。
请参见图4,图4是本公开实施例提供的另一种功率配置方法的流程图,该方法应用于基站或者网络设备,如图4所示,包括以下步骤:
步骤401、判断终端是否使用高功率发射,其中,所述高功率高于默认功率等级的最大发射功率;
步骤402、若确定所述终端使用高功率发射,则在所述终端使用高功率发射的时间内配置给所述终端资源,其中,配置给所述终端的资源的上行资源占比小于第一比例。
可选的,所述确定所述终端使用高功率发射,包括:
配置所述终端工作在预设时隙格式的时隙中,其中,所述预设时隙格式的上行符号占比小于所述第一比例。
可选的,所述上行资源占比的计算方法,包括:
确定所述终端使用高功率发射的时间内上行时隙的占比;或者
确定所述终端使用高功率发射的时间内上行符号的占比。
通过上述计算方法,以确定给所述终端配置的资源。
可选的,对于灵活符号数小于或者等于符号数门限值的时隙,该时隙内的灵活符号不作为上行符号;
对于灵活符号大于所述符号数门限值的时隙,该时隙内的灵活符号按照第三比例作为上行符号。
可选的,所述上行时隙包括:上行符号占比超过第二比例的时隙;
其中,对于灵活符号数小于或者等于符号数门限值的时隙,该时隙内的灵活符号不作为上行符号;
对于灵活符号大于所述符号数门限值的时隙,该时隙内的灵活符号按照第三比例作为上行符号。
需要说明的是,本实施例作为图2和3所示的实施例对应的基站的实施方式,其具体的实施方式可以参见图2和3所示的实施例相关说明,以及达到相同的有益效果,为了避免重复说明,此处不再赘述。
请参见图5,图5是本公开实施例提供的一种终端的结构图,如图5所示,终端500包括:
确定模块501,用于确定上行资源占比;
第一发射模块502,用于当上行资源占比小于第一比例时,使用高功率发射,其中,所述高功率高于默认功率等级的最大发射功率;
第二发射模块503,用于当上行资源占比大于或者等于所述第一比例时,使用低功率发射,其中,所述低功率不高于所述默认功率等级的最大发射功率。
可选的,所述第一发射模块502用于若所述终端工作在预设时隙格式的时隙中,使用高功率发射,其中,所述预设时隙格式的上行符号占比小于所述第一比例。
可选的,所述确定模块501用于若所述终端工作在预设时隙格式的时隙中,则确定上行资源占比小于所述第一比例;或者
所述确定模块501用于若所述终端的工作时隙未限制在预设时隙格式中,则确定特定时间段内上行资源的占比。
可选的,所述确定模块501用于确定特定时间段内上行资源的占比。
可选的,所述确定模块501用于确定所述特定时间段内上行时隙的占比;或者
所述确定模块501用于确定所述特定时间段内上行符号的占比。
可选的,所述特定时间段为网络配置的时间段,或者协议预定义的时间段,或者所述终端确定的时间段。
可选的,对于灵活符号数小于或者等于符号数门限值的时隙,该时隙内的灵活符号不作为上行符号;
对于灵活符号大于所述符号数门限值的时隙,该时隙内的灵活符号按照第三比例作为上行符号。
可选的,所述上行时隙包括:上行符号占比超过第二比例的时隙;
其中,对于灵活符号数小于或者等于符号数门限值的时隙,该时隙内的灵活符号不作为上行符号;
对于灵活符号大于所述符号数门限值的时隙,该时隙内的灵活符号按照第三比例作为上行符号。
可选的,如图6所示,所述终端500还包括:
第三发射模块504,用于若检测到上行资源占比小于所述第一比例的资源,则使用所述高功率发射。
本公开实施例提供的终端能够实现图2至图3的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述。终端可以避免辐射SAR超标。
请参见图7,图7是本公开实施例提供的一种基站的结构图,如图7所示,基站700包括:
判断模块701,判断终端是否使用高功率发射,其中,所述高功率高于默认功率等级的最大发射功率;
配置模块702,用于若确定所述终端使用高功率发射,则在所述终端使用高功率发射的时间内配置给所述终端资源,其中,配置给所述终端的资源的上行资源占比小于第一比例。
可选的,所述确定所述终端使用高功率发射,包括:
配置所述终端工作在预设时隙格式的时隙中,其中,所述预设时隙格式的上行符号占比小于所述第一比例。
可选的,所述上行资源占比的计算方法,包括:
确定所述终端使用高功率发射的时间内上行时隙的占比;或者
确定所述终端使用高功率发射的时间内上行符号的占比。
可选的,对于灵活符号数小于或者等于符号数门限值的时隙,该时隙内的灵活符号不作为上行符号;
对于灵活符号大于所述符号数门限值的时隙,该时隙内的灵活符号按照第三比例作为上行符号。
可选的,所述上行时隙包括:上行符号占比超过第二比例的时隙;
其中,对于灵活符号数小于或者等于符号数门限值的时隙,该时隙内的灵活符号不作为上行符号;
对于灵活符号大于所述符号数门限值的时隙,该时隙内的灵活符号按照第三比例作为上行符号。
本公开实施例提供的基站能够实现图4的方法实施例中基站实现的各个过程,为避免重复,这里不再赘述。基站可以避免终端辐射SAR超标。
图8为实现本公开各个实施例的一种终端的硬件结构示意图,
该终端800包括但不限于:射频单元801、网络模块802、音频输出单元803、输入单元804、传感器805、显示单元806、用户输入单元807、接口单元808、存储器809、处理器810、以及电源811等部件。本领域技术人员可以理解,图8中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,处理器810,用于确定上行资源占比;
射频单元801,用于当上行资源占比小于第一比例时,使用高功率发射,其中,所述高功率高于默认功率等级的最大发射功率;
射频单元801还用于当上行资源占比大于或者等于所述第一比例时,使用低功率发射,其中,所述低功率不高于所述默认功率等级的最大发射功率。
可选的,处理器810执行的当上行资源占比小于第一比例时,使用高功率发射,包括:
若所述终端工作在预设时隙格式的时隙中,使用高功率发射,其中,所述预设时隙格式的上行符号占比小于所述第一比例。
可选的,处理器810执行的确定上行资源占比,包括:
若所述终端工作在预设时隙格式的时隙中,则确定上行资源占比小于所述第一比例;或者
若所述终端的工作时隙未限制在预设时隙格式中,则确定特定时间段内上行资源的占比。
可选的,处理器810执行的确定上行资源占比,包括:
确定特定时间段内上行资源的占比。
可选的,处理器810执行的确定特定时间段内上行资源的占比,包括:
确定所述特定时间段内上行时隙的占比;或者
确定所述特定时间段内上行符号的占比。
可选的,所述特定时间段为网络配置的时间段,或者协议预定义的时间段,或者所述终端确定的时间段。
可选的,对于灵活符号数小于或者等于符号数门限值的时隙,该时隙内 的灵活符号不作为上行符号;
对于灵活符号大于所述符号数门限值的时隙,该时隙内的灵活符号按照第三比例作为上行符号。
可选的,所述上行时隙包括:上行符号占比超过第二比例的时隙;
其中,对于灵活符号数小于或者等于符号数门限值的时隙,该时隙内的灵活符号不作为上行符号;
对于灵活符号大于所述符号数门限值的时隙,该时隙内的灵活符号按照第三比例作为上行符号。
可选的,所述当上行资源占比大于或者等于所述第一比例时,使用低功率发射之后,射频单元801还用于:若检测到上行资源占比小于所述第一比例的资源,则使用所述高功率发射。
终端可以避免辐射SAR超标。
应理解的是,本公开实施例中,射频单元801可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器810处理;另外,将上行的数据发送给基站。通常,射频单元801包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元801还可以通过无线通信***与网络和其他设备通信。
终端通过网络模块802为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元803可以将射频单元801或网络模块802接收的或者在存储器809中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元803还可以提供与终端800执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元803包括扬声器、蜂鸣器以及受话器等。
输入单元804用于接收音频或视频信号。输入单元804可以包括图形处理器(Graphics Processing Unit,GPU)8041和麦克风8042,图形处理器8041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元806上。经图形处理器8041处理后的图像帧可以存储在存储器809(或其它存储 介质)中或者经由射频单元801或网络模块802进行发送。麦克风8042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元801发送到移动通信基站的格式输出。
终端800还包括至少一种传感器805,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板8061的亮度,接近传感器可在终端800移动到耳边时,关闭显示面板8061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器805还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元806用于显示由用户输入的信息或提供给用户的信息。显示单元806可包括显示面板8061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板8061。
用户输入单元807可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元807包括触控面板8071以及其他输入设备8072。触控面板8071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板8071上或在触控面板8071附近的操作)。触控面板8071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器810,接收处理器810发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板8071。除了触控面板8071,用户输入单元807还可以包括其他输入设备8072。具体地,其他输入设备8072可以包括但不限于物理键盘、功能键(比如音量控制按键、 开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板8071可覆盖在显示面板8061上,当触控面板8071检测到在其上或附近的触摸操作后,传送给处理器810以确定触摸事件的类型,随后处理器810根据触摸事件的类型在显示面板8061上提供相应的视觉输出。虽然在图8中,触控面板8071与显示面板8061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板8071与显示面板8061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元808为外部装置与终端800连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元808可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端800内的一个或多个元件或者可以用于在终端800和外部装置之间传输数据。
存储器809可用于存储软件程序以及各种数据。存储器809可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器809可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器810是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器809内的软件程序和/或模块,以及调用存储在存储器809内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器810可包括一个或多个处理单元;可选的,处理器810可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作***、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器810中。
终端800还可以包括给各个部件供电的电源811(比如电池),可选的,电源811可以通过电源管理***与处理器810逻辑相连,从而通过电源管理 ***实现管理充电、放电、以及功耗管理等功能。
另外,终端800包括一些未示出的功能模块,在此不再赘述。
可选的,本公开实施例还提供一种终端,包括处理器810,存储器809,存储在存储器809上并可在所述处理器810上运行的计算机程序,该计算机程序被处理器810执行时实现上述功率配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
参见图9,图9是本公开实施例提供的另一种基站的结构图,如图9所示,该基站900包括:处理器901、收发机902、存储器903和总线接口,其中:
处理器901,用于判断终端是否使用高功率发射,其中,所述高功率高于默认功率等级的最大发射功率;
收发机902,用于若确定所述终端使用高功率发射,则在所述终端使用高功率发射的时间内配置给所述终端资源,其中,配置给所述终端的资源的上行资源占比小于第一比例。
可选的,所述确定所述终端使用高功率发射,包括:
配置所述终端工作在预设时隙格式的时隙中,其中,所述预设时隙格式的上行符号占比小于所述第一比例。
可选的,所述上行资源占比的计算方法,包括:
确定所述终端使用高功率发射的时间内上行时隙的占比;或者
确定所述终端使用高功率发射的时间内上行符号的占比。
可选的,对于灵活符号数小于或者等于符号数门限值的时隙,该时隙内的灵活符号不作为上行符号;
对于灵活符号大于所述符号数门限值的时隙,该时隙内的灵活符号按照第三比例作为上行符号。
可选的,所述上行时隙包括:上行符号占比超过第二比例的时隙;
其中,对于灵活符号数小于或者等于符号数门限值的时隙,该时隙内的灵活符号不作为上行符号;
对于灵活符号大于所述符号数门限值的时隙,该时隙内的灵活符号按照第三比例作为上行符号。
上述基站可以避免终端辐射SAR超标。
其中,收发机902,用于在处理器901的控制下接收和发送数据,所述收发机902包括至少两个天线端口。
在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器901代表的一个或多个处理器和存储器903代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机902可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器901负责管理总线架构和通常的处理,存储器903可以存储处理器901在执行操作时所使用的数据。
可选的,本公开实施例还提供一种基站,包括处理器901,存储器903,存储在存储器903上并可在所述处理器901上运行的计算机程序,该计算机程序被处理器901执行时实现上述功率配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述终端或者基站侧的功率配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (22)

  1. 一种功率配置方法,应用于终端,包括:
    确定上行资源占比;
    当上行资源占比小于第一比例时,使用高功率发射,其中,所述高功率高于默认功率等级的最大发射功率;
    当上行资源占比大于或者等于所述第一比例时,使用低功率发射,其中,所述低功率不高于所述默认功率等级的最大发射功率。
  2. 如权利要求1所述的方法,其中,所述当上行资源占比小于第一比例时,使用高功率发射,包括:
    若所述终端工作在预设时隙格式的时隙中,使用高功率发射,其中,所述预设时隙格式的上行符号占比小于所述第一比例。
  3. 如权利要求2所述的方法,其中,所述确定上行资源占比,包括:
    若所述终端工作在预设时隙格式的时隙中,则确定上行资源占比小于所述第一比例;或者
    若所述终端的工作时隙未限制在预设时隙格式中,则确定特定时间段内上行资源的占比。
  4. 如权利要求1所述的方法,其中,所述确定上行资源占比,包括:
    确定特定时间段内上行资源的占比。
  5. 如权利要求4所述的方法,其中,所述确定特定时间段内上行资源的占比,包括:
    确定所述特定时间段内上行时隙的占比;或者
    确定所述特定时间段内上行符号的占比。
  6. 如权利要求4所述的方法,其中,所述特定时间段为网络配置的时间段,或者协议预定义的时间段,或者所述终端确定的时间段。
  7. 如权利要求2或5所述的方法,其中,对于灵活符号数小于或者等于符号数门限值的时隙,该时隙内的灵活符号不作为上行符号;
    对于灵活符号大于所述符号数门限值的时隙,该时隙内的灵活符号按照第三比例作为上行符号。
  8. 如权利要求5所述的方法,其中,所述上行时隙包括:上行符号占比超过第二比例的时隙;
    其中,对于灵活符号数小于或者等于符号数门限值的时隙,该时隙内的灵活符号不作为上行符号;
    对于灵活符号大于所述符号数门限值的时隙,该时隙内的灵活符号按照第三比例作为上行符号。
  9. 如权利要求1至6中任一项所述的方法,所述当上行资源占比大于或者等于所述第一比例时,使用低功率发射之后,所述方法还包括:
    若检测到上行资源占比小于所述第一比例的资源,则使用所述高功率发射。
  10. 如权利要求1所述的方法,其中,所述确定上行资源占比,包括:
    确定所述终端使用高功率发射的时间内上行符号的占比为所述上行资源占比。
  11. 一种终端,包括:
    确定模块,用于确定上行资源占比;
    第一发射模块,用于当上行资源占比小于第一比例时,使用高功率发射,其中,所述高功率高于默认功率等级的最大发射功率;
    第二发射模块,用于当上行资源占比大于或者等于所述第一比例时,使用低功率发射,其中,所述低功率不高于所述默认功率等级的最大发射功率。
  12. 如权利要求11所述的终端,其中,所述第一发射模块用于若所述终端工作在预设时隙格式的时隙中,使用高功率发射,其中,所述预设时隙格式的上行符号占比小于所述第一比例。
  13. 如权利要求12所述的终端,其中,所述确定模块用于若所述终端工作在预设时隙格式的时隙中,则确定上行资源占比小于所述第一比例;或者
    所述确定模块用于若所述终端的工作时隙未限制在预设时隙格式中,则确定特定时间段内上行资源的占比。
  14. 如权利要求11所述的终端,其中,所述确定模块用于确定特定时间段内上行资源的占比。
  15. 如权利要求14所述的终端,其中,
    所述确定模块用于确定所述特定时间段内上行时隙的占比;或者
    所述确定模块用于确定所述特定时间段内上行符号的占比。
  16. 如权利要求14所述的终端,其中,所述特定时间段为网络配置的时间段,或者协议预定义的时间段,或者所述终端确定的时间段。
  17. 如权利要求12或15所述的终端,其中,对于灵活符号数小于或者等于符号数门限值的时隙,该时隙内的灵活符号不作为上行符号;
    对于灵活符号大于所述符号数门限值的时隙,该时隙内的灵活符号按照第三比例作为上行符号。
  18. 如权利要求15所述的终端,其中,所述上行时隙包括:上行符号占比超过第二比例的时隙;
    其中,对于灵活符号数小于或者等于符号数门限值的时隙,该时隙内的灵活符号不作为上行符号;
    对于灵活符号大于所述符号数门限值的时隙,该时隙内的灵活符号按照第三比例作为上行符号。
  19. 如权利要求11至16中任一项所述的终端,还包括:
    第三发射模块,用于若检测到上行资源占比小于所述第一比例的资源,则使用所述高功率发射。
  20. 如权利要求11所述的方法,其中,所述确定模块确定上行资源占比包括:
    所述确定模块确定所述终端使用高功率发射的时间内上行符号的占比为所述上行资源占比。
  21. 一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至10中任一项所述的功率配置方法中的步骤。
  22. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至10中任一项所述的功率配置方法的步骤。
PCT/CN2019/075544 2018-02-26 2019-02-20 功率配置方法和终端 WO2019161764A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/976,034 US11375497B2 (en) 2018-02-26 2019-02-20 Power configuration method and terminal
ES19756852T ES2952932T3 (es) 2018-02-26 2019-02-20 Método de configuración de potencia y terminal
EP19756852.0A EP3761724B1 (en) 2018-02-26 2019-02-20 Power configuration method and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810160268.XA CN110198560B (zh) 2018-02-26 2018-02-26 一种功率配置方法和终端
CN201810160268.X 2018-02-26

Publications (1)

Publication Number Publication Date
WO2019161764A1 true WO2019161764A1 (zh) 2019-08-29

Family

ID=67686996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075544 WO2019161764A1 (zh) 2018-02-26 2019-02-20 功率配置方法和终端

Country Status (7)

Country Link
US (1) US11375497B2 (zh)
EP (1) EP3761724B1 (zh)
CN (1) CN110198560B (zh)
ES (1) ES2952932T3 (zh)
HU (1) HUE063612T2 (zh)
PT (1) PT3761724T (zh)
WO (1) WO2019161764A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019214966A1 (en) * 2018-05-11 2019-11-14 Nokia Technologies Oy Broadcast operation with bi-directional subframe slots in multibeam deployment
EP3796009B1 (en) * 2019-09-18 2024-03-06 Rohde & Schwarz GmbH & Co. KG Sar measurement for a combined 5g and lte rf device
CN113163435B (zh) * 2020-01-22 2022-11-22 华为技术有限公司 确定回退功率的方法和调整发射功率的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170265148A1 (en) * 2016-03-09 2017-09-14 Qualcomm Incorporated Power control based on sar and/or harq
CN108702709A (zh) * 2018-05-31 2018-10-23 北京小米移动软件有限公司 控制上行发射功率的方法和装置、基站及用户设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8718694B2 (en) 2007-12-07 2014-05-06 Interdigital Patent Holdings, Inc. Method and apparatus of signaling and procedure to support uplink power level determination
WO2009075548A1 (en) 2007-12-12 2009-06-18 Lg Electronics Inc. A method for controlling uplink power control considering multiplexing rate/ratio
US20110281612A1 (en) * 2008-09-22 2011-11-17 Ntt Docomo, Inc. Mobile station and radio base station
US8934937B1 (en) 2010-01-22 2015-01-13 Amazon Technologies, Inc. Using sensors to trigger transmit power management
KR101196811B1 (ko) * 2011-03-16 2012-11-06 서울대학교산학협력단 동적 셀간간섭 회피를 위한 방법 및 이를 위한 장치
CN102869080B (zh) * 2011-12-22 2015-03-25 电信科学技术研究院 一种上行传输的功率控制方法及装置
US9144028B2 (en) * 2012-12-31 2015-09-22 Motorola Solutions, Inc. Method and apparatus for uplink power control in a wireless communication system
US9949220B2 (en) * 2015-03-27 2018-04-17 Qualcomm Incorporated Uplink scheduling with power control command in an FDD half-duplex network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170265148A1 (en) * 2016-03-09 2017-09-14 Qualcomm Incorporated Power control based on sar and/or harq
CN108702709A (zh) * 2018-05-31 2018-10-23 北京小米移动软件有限公司 控制上行发射功率的方法和装置、基站及用户设备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Uplink duty cycle restrictions to enable NR HPUE", 3GPP TSG-RAN WG4 #86 R4-1802242, 19 February 2018 (2018-02-19), XP051402512 *
OPPO: "Discussion on HPUE NR TDD UL DL configurations", 3GPP TSG-RAN WG4 #86 R4-1801584, 14 February 2018 (2018-02-14), XP051401947 *
VIVO: "Discussion on NR TDD UL/DL configurations and HPUE behaviour", 3GPP TSG-RAN WG4 ADHOC 1801 R4-1800414, 15 January 2018 (2018-01-15), XP051388047 *
VIVO: "Further discussion on NR TDD UL/DL configurations and HPUE behaviour", 3GPP TSG-RAN WG4 MEETING#86 R4-1802713, 19 February 2018 (2018-02-19), XP051402856 *

Also Published As

Publication number Publication date
EP3761724A1 (en) 2021-01-06
CN110198560A (zh) 2019-09-03
US11375497B2 (en) 2022-06-28
CN110198560B (zh) 2020-11-13
PT3761724T (pt) 2023-08-18
EP3761724A4 (en) 2021-04-21
ES2952932T3 (es) 2023-11-07
EP3761724B1 (en) 2023-07-19
US20200413386A1 (en) 2020-12-31
HUE063612T2 (hu) 2024-01-28

Similar Documents

Publication Publication Date Title
US11848773B2 (en) Transmit antenna switching method and terminal device
US11582791B2 (en) PUCCH collision processing method and terminal
US11876749B2 (en) DCI transmission method, terminal, and base station
US11936474B2 (en) Transmission antenna switching method and terminal device
WO2021027713A1 (zh) 上行传输方法、上行传输控制方法及相关设备
WO2020182124A1 (zh) 传输方法、网络设备和终端
WO2020200096A1 (zh) Ssb传输指示方法、装置、终端、设备和介质
WO2019134658A1 (zh) 辅小区状态的指示方法及通信设备
WO2019161764A1 (zh) 功率配置方法和终端
WO2020073805A1 (zh) 上行传输的指示方法、终端及网络侧设备
WO2020228537A1 (zh) 资源确定方法、资源指示方法、终端及网络侧设备
US20220110036A1 (en) Random access method and terminal
US20210219247A1 (en) Power headroom reporting method and terminal device
CN112667339B (zh) 屏幕刷新率的设置方法、终端以及计算机可读介质
US20210092766A1 (en) Random Access Resource Selection Method And Terminal Device
WO2021000778A1 (zh) 上行发送丢弃方法、上行发送丢弃配置方法及相关设备
WO2020192673A1 (zh) 资源配置方法、资源确定方法、网络侧设备和终端
WO2020221235A1 (zh) 下行控制信息的接收方法、发送方法、终端和网络侧设备
WO2019157915A1 (zh) Csi资源类型的确定方法、终端和网络侧设备
US20220248463A1 (en) Listen-before-talk failure processing method, terminal, and network side device
WO2020169003A1 (zh) 控制信号的发送方法及传输节点
WO2019184761A1 (zh) 测量结果的指示方法、终端和基站
WO2019137307A1 (zh) Bsr上报方法和移动终端
WO2020147812A1 (zh) 数据反馈信息处理方法、装置、移动终端及存储介质
US11570724B2 (en) Method for PH calculation and terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19756852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019756852

Country of ref document: EP

Effective date: 20200928