WO2019160012A1 - Optical bioinformation measurement device and adhesive member - Google Patents

Optical bioinformation measurement device and adhesive member Download PDF

Info

Publication number
WO2019160012A1
WO2019160012A1 PCT/JP2019/005278 JP2019005278W WO2019160012A1 WO 2019160012 A1 WO2019160012 A1 WO 2019160012A1 JP 2019005278 W JP2019005278 W JP 2019005278W WO 2019160012 A1 WO2019160012 A1 WO 2019160012A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
living body
emitting element
adhesive member
Prior art date
Application number
PCT/JP2019/005278
Other languages
French (fr)
Japanese (ja)
Inventor
添田 薫
良 下北
Original Assignee
アルプスアルパイン株式会社
ジーニアルライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社, ジーニアルライト株式会社 filed Critical アルプスアルパイン株式会社
Publication of WO2019160012A1 publication Critical patent/WO2019160012A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters

Definitions

  • the present disclosure relates to an optical biological information measuring device and an adhesive member for mounting the optical biological information measuring device on a living body.
  • Patent Document an apparatus for measuring arterial blood oxygen saturation in a living tissue based on a ratio of the intensity of transmitted light that has passed through the living tissue to irradiation light when the living tissue is irradiated with light
  • An optical biological information measuring device includes a light emitting unit, a light receiving unit that receives light emitted from the light emitting unit, and a reflection that reflects light emitted from the light emitting unit and reflected from the living body.
  • a reflection-type optical biological information measuring device including an adhesive member that adheres to the surface of the biological body.
  • the above-described means provides an optical biological information measuring device that can be attached to a living body more easily.
  • FIG. 5A It is another sectional view of the adhesion member shown in Drawing 5A. It is sectional drawing of the biosensor with which the subject's skin surface was mounted
  • FIG. 7A It is sectional drawing of the adhesive member shown to FIG. 7A. It is another sectional view of the adhesion member shown in Drawing 7A. It is another sectional drawing of the adhesion member shown in Drawing 7A. It is a top view which shows another structural example of an adhesion member. It is sectional drawing of the adhesive member shown to FIG. 8A. It is another sectional drawing of the adhesion member shown in Drawing 8A. It is a top view which shows another structural example of an adhesion member.
  • FIG. 1 is a functional block diagram of the biosensor 10.
  • 2A and 2B are bottom perspective views illustrating a configuration example of the biosensor 10.
  • FIG. 2A shows a state where the adhesive member 50 is not attached
  • FIG. 2B shows a state where the adhesive member 50 is attached.
  • FIG. 3 is an enlarged view of the measurement surface R1, which is a portion surrounded by a dotted line in FIG. 2A.
  • the living body sensor 10 is a portable sensor and has a measurement surface R1 configured to face the surface of the living body.
  • the measurement surface R1 is configured to directly contact at least one of the subject's forehead, wrist, ankle, and the like.
  • the measurement surface R1 is a flat surface.
  • the biosensor 10 is configured to be attached to at least one skin surface such as a subject's forehead, wrist, and ankle via the adhesive member 50 without using a band or the like.
  • the biological sensor 10 is configured to estimate the biological information of the subject and transmit the estimated biological information to the outside by wireless communication. As shown in FIG. 2B, for example, the biological sensor 10 is configured with a width W of 40 mm, a depth D of 30 mm, and a height H of 10 mm.
  • the biological sensor 10 is a wearable sensor, and includes a light emitting unit 11, a light receiving unit 12, a control unit 13, a wireless communication unit 14, a substrate 15, and a case 18, as shown in FIGS.
  • the substrate 15 is accommodated in a case 18 in a state where the light emitting unit 11, the light receiving unit 12, the control unit 13, and the wireless communication unit 14 are mounted.
  • the broken line of FIG. 3 represents the hidden line.
  • the biosensor 10 has a power supply circuit (not shown) that realizes battery operation.
  • the biosensor 10 may include at least one of a triaxial gyro sensor, a triaxial acceleration sensor, a skin temperature sensor, and the like.
  • the light emitting unit 11 includes a light emitting element package 11a, a light emitting element package 11b, and a drive circuit 11c as shown in FIG.
  • the light-emitting element package 11a includes a light-emitting element 11a1 and a light-emitting element 11a2 that are light-emitting diode elements or laser elements that emit light including near-infrared light in one package.
  • the light-emitting element package 11b includes a light-emitting element 11b1 and a light-emitting element 11b2 that are light-emitting diode elements or laser elements that emit light including near-infrared light in one package.
  • the drive circuit 11c is configured to drive each of the light emitting element 11a1, the light emitting element 11a2, the light emitting element 11b1, and the light emitting element 11b2.
  • the light emitting element 11a1 and the light emitting element 11b1 form a pair. Specifically, each of the light emitting element 11a1 and the light emitting element 11b1 is configured to emit light including a wavelength ⁇ 1 shorter than 805 nm.
  • each of the light emitting element 11a2 and the light emitting element 11b2 is configured to emit light including a wavelength ⁇ 2 longer than 805 nm.
  • 805 nm is a wavelength with little influence of absorption by water that occupies most of the living body as a subject.
  • the biological sensor 10 can estimate biological information with high accuracy by observing the difference in the absorbance of internal hemoglobin using a wavelength of around 805 nm.
  • the wavelength ⁇ 1 is 760 nm and the wavelength ⁇ 2 is 850 nm.
  • the wavelength ⁇ 1 may be another value such as 780 nm, for example.
  • the wavelength ⁇ 2 may be another value such as 830 nm, for example.
  • the light emitting element may be configured to emit light other than near infrared light such as red light.
  • the wavelength ⁇ 1 may be 640 nm
  • the wavelength ⁇ 2 may be 940 nm.
  • the wavelength range of near infrared light emitted from the light emitting element 11a1 and the light emitting element 11b1 is, for example, 760 ⁇ 50 nm
  • the wavelength range of near infrared light emitted from the light emitting element 11a2 and the light emitting element 11b2 is, for example, 850 ⁇ 50 nm. is there. More preferably, the wavelength range of near infrared light emitted from the light emitting element 11a1 and the light emitting element 11b1 is 760 ⁇ 20 nm
  • the wavelength range of near infrared light emitted from the light emitting element 11a2 and the light emitting element 11b2 is 850 ⁇ 20 nm.
  • the light emitting element 11a2 and the light emitting element 11b2 may be omitted.
  • each of the light emitting element 11a1 and the light emitting element 11b1 may be configured to emit both near-infrared light having a wavelength ⁇ 1 and near-infrared light having a wavelength ⁇ 2.
  • the light receiving unit 12 includes a light receiving element package 12a and an amplifier circuit 12b.
  • the light receiving element package 12a has a light receiving element 12a1 that outputs a signal (light receiving signal) corresponding to the received near-infrared light in one package.
  • the light receiving element 12a1 is formed of, for example, a photodiode element or a phototransistor element.
  • the light receiving element package 12a may have two or more light receiving elements in one package.
  • the amplifier circuit 12b is configured to amplify a light reception signal output from the light receiving element 12a1 included in the light receiving element package 12a.
  • the light receiving element 12a1 is configured to have sensitivity to near infrared light having a wavelength near the wavelength ⁇ 1 and near infrared light having a wavelength near the wavelength ⁇ 2. In the present embodiment, the light receiving element 12a1 is configured to receive near infrared light having a wavelength in the range of 760 ⁇ 50 nm and near infrared light having a wavelength in the range of 850 ⁇ 50 nm.
  • the light receiving element is preferably configured such that the light receiving sensitivity increases with the wavelength of the light emitting element. Therefore, the light receiving element package 12a may be configured to include a light receiving element having the maximum light receiving sensitivity at the wavelength ⁇ 1 and a light receiving element having the maximum light receiving sensitivity at the wavelength ⁇ 2.
  • the measurement surface R1 is configured to include the reflection unit 20, as shown in FIG. 2A.
  • the reflecting unit 20 is configured to reflect the light emitted from the light emitting unit 11 and reflected from the living body. And it is comprised so that the light reflected by the reflection part 20 may be reflected again with a biological body, and may reach the light-receiving part 12.
  • a metal film (gold plating) using gold (Au) is applied to the reflecting surface of the reflecting portion 20.
  • FIG. 4 shows the relationship between the wavelength of light and the reflectance of the metal film.
  • the solid line shows the characteristics of the metal film using gold (Au)
  • the broken line shows the characteristics of the metal film using aluminum (Al)
  • the alternate long and short dash line shows the characteristics of aluminum (Al) and silicon monoxide (SiO).
  • the characteristic of the used metal film is shown.
  • the metal film using gold (Au) shows a higher reflectance with respect to near-infrared light than the metal film using other metals.
  • a metal film using a metal other than gold (Au) may be formed on the reflecting portion 20.
  • the light receiving element package 12a is disposed on the substrate 15 so as to be sandwiched between the light emitting element package 11a and the light emitting element package 11b.
  • a window part W1a for exposing the light emitting element package 11a, a window part W1b for exposing the light emitting element package 11b, and a window part W2 for exposing the light receiving element package 12a are formed.
  • Window part W1a, window part W1b, and window part W2 are formed with the material which has translucency.
  • the window part W1a, the window part W1b, and the window part W2 are formed of polyethylene terephthalate (PET).
  • Part of the light emitted from the light emitting element package 11a and passing through the window W1a is reflected by the living body and then reaches the light receiving element package 12a through the window W2. Further, another part of the light emitted from the light emitting element package 11a and having passed through the window portion W1a is reflected by the living body and travels toward the reflecting portion 20.
  • the light directed toward the reflection part 20 repeats reflection at the reflection part 20 and reflection by the living body one or more times, and then reaches the light receiving element package 12a through the window part W2. The same applies to the light emitted from the light emitting element package 11b and passing through the window portion W1b.
  • the control unit 13 is configured to control the light emitting unit 11 and the light receiving unit 12.
  • the control part 13 is comprised with the microcomputer. Specifically, the control unit 13 transmits a timing signal to the drive circuit 11c of the light emitting unit 11, and controls the light emitting unit 11 to emit near infrared light.
  • the control unit 13 simultaneously emits near infrared light from the light emitting element 11a1 and the light emitting element 11b1, for example. And the control part 13 stops light emission, after continuing the light emission over predetermined time. Thereafter, the control unit 13 causes near-infrared light to be emitted simultaneously from the light emitting element 11a2 and the light emitting element 11b2. And the control part 13 stops light emission, after continuing the light emission over predetermined time. In this way, the control unit 13 alternately emits near-infrared light having a wavelength ⁇ 1 and near-infrared light having a wavelength ⁇ 2.
  • the control unit 13 uses, for example, a built-in analog-digital conversion circuit, and an output signal (digital signal) that can digitally process the amplified received light signal (analog signal information) output from the amplifier circuit 12b of the light receiving unit 12. Format signal information). Then, the control unit 13 estimates at least one biological information such as blood hemoglobin, blood oxygen concentration, and pulse rate based on the converted output signal. Thus, the control unit 13 functions as a biological information estimation unit.
  • the wireless communication unit 14 is configured to control wireless communication between the biosensor 10 and the outside.
  • the wireless communication unit 14 is configured by a wireless communication IC.
  • the wireless communication unit 14 transmits the biological information estimated by the control unit 13 to the outside by communication using a wireless communication standard such as Bluetooth (registered trademark).
  • the biosensor 10 may transmit signal information as primary information used for estimation of biometric information to the outside by wireless communication, instead of biometric information as secondary information.
  • the external device is configured to estimate the biological information based on the signal information.
  • the substrate 15 is configured to hold the light emitting unit 11, the light receiving unit 12, the control unit 13, and the wireless communication unit 14.
  • substrate 15 is a printed circuit board by which the wiring pattern was formed with the copper foil on the glass epoxy board
  • the light emitting element 11a1, the light emitting element 11a2, the light emitting element 11b1, and the light emitting element 11b2 are configured to be aligned on the virtual line L1 on the surface of the substrate 15, as shown in FIG.
  • the light receiving element 12a1 is disposed on a virtual line L2 perpendicular to the virtual line L1.
  • the distance L1a between the light emitting element 11a1 and the virtual line L2 is equal to the distance L1b between the light emitting element 11b1 and the virtual line L2.
  • the distance L2a between the light emitting element 11a2 and the virtual line L2 is equal to the distance L2b between the light emitting element 11b1 and the virtual line L2.
  • the interval L1a and the interval L1b are larger than the interval L2a and the interval L2b, but may be smaller than the interval L2a and the interval L2b.
  • the four light emitting elements are arranged in order of the light emitting element 11a1, the light emitting element 11a2, the light emitting element 11b2, and the light emitting element 11b1 from the left along the virtual line L1, but the light emitting element 11a2 and the light emitting element are arranged from the left.
  • the element 11a1, the light emitting element 11b1, and the light emitting element 11b2 may be arranged in this order.
  • the light emitting element 11a1, the light emitting element 11a2, the light emitting element 11b1, and the light emitting element 11b2 may be arranged in this order from the left.
  • the element 11a1, the light emitting element 11b2, and the light emitting element 11b1 may be arranged in this order.
  • the interval L1a, the interval L1b, the interval L2a, and the interval L2b are in the range of 4 to 11 mm, for example.
  • the interval L1a and the interval L1b are 4 mm.
  • the interval L1a and the interval L1b may be different from each other. The same applies to the interval L2a and the interval L2b.
  • the light emitting element 11a1, the light emitting element 11a2, the light emitting element 11b1, the light emitting element 11b2, and the light receiving element 12a1 are mounted on the lower surface of the substrate 15 (the surface on the measurement surface R1 side).
  • the drive circuit 11 c, the amplifier circuit 12 b, the control unit 13, and the wireless communication unit 14 are mounted on the upper surface of the substrate 15.
  • at least one of the drive circuit 11 c, the amplifier circuit 12 b, the control unit 13, and the wireless communication unit 14 may be mounted on the lower surface of the substrate 15. The same applies to the power supply circuit.
  • the adhesive member 50 is a biocompatible member that adheres to the surface of the living body.
  • the adhesive member 50 desirably forms a barrier layer having at least one of a water shielding function, an air shielding function, a heat insulating function, a water repellent function, a hydrophobic function, and an antifouling function.
  • the adhesive member 50 is attached to a flat measurement surface R1 configured to face the living body surface and is configured to adhere to the living body surface. That is, the adhesive member 50 is configured to be positioned between the biosensor 10 and the skin surface when the biosensor 10 is attached to the subject's skin surface.
  • the adhesive member 50 is formed with a window portion 50W as a notch portion. That is, a space that penetrates the adhesive member 50 is formed in the central portion of the adhesive member 50.
  • This space defines a measurement space MS in which light derived from the light emitting element can travel between the measurement surface R1 and the living body surface with little attenuation. That is, there is no member such as a tape that attenuates light in the measurement space MS.
  • the window part 50W is formed so that the light emitting element package 11a, the light emitting element package 11b, the light receiving element package 12a, and at least a part of the reflecting part 20 are exposed to the measurement space MS.
  • the adhesive member 50 has a rectangular ring shape, but may have another ring shape such as an annular shape, an elliptical ring shape, or a hexagonal ring shape.
  • the window 50W has a rectangular shape, but may have another shape such as a circle, an ellipse, or a hexagon. Moreover, a part of the ring may be cut out.
  • the adhesive member 50 may be a member having high flexibility so as to bend along the curve of the adherend surface, or a member having high rigidity so as not to bend along the curve of the adherend surface. May be. Moreover, the adhesive member 50 may be a member having elasticity or flexibility so as to absorb the unevenness of the adherend surface.
  • the adherend surface is, for example, the lower surface (surface on the ⁇ Z side) of the biosensor 10 including the measurement surface R1.
  • FIG. 5A is a top view of the adhesive member 50.
  • 5B is a cross-sectional view of the XZ plane including the alternate long and short dash line L3 in FIG. 5A as viewed from the ⁇ Y side.
  • 5C is a cross-sectional view of the XZ plane including the alternate long and short dash line L4 in FIG. 5A as viewed from the ⁇ Y side.
  • the adhesive member 50 includes a sensor-side adhesive layer 51, a light shielding layer 52, and a living body-side adhesive layer 53.
  • each layer is shown thicker than it actually is for clarity.
  • the sensor-side adhesive layer 51 is a biocompatible member that adheres to the measurement surface R1 of the biosensor 10.
  • the sensor side adhesive layer 51 is formed of, for example, an acrylic adhesive or a silicon adhesive.
  • the sensor-side adhesive layer 51 may be a double-sided tape configured such that one surface adheres to the biosensor 10 and the other surface adheres to the light shielding layer 52.
  • the light shielding layer 52 is a member that prevents external light from entering the measurement space MS. External light is light other than the light originating from a light emitting element, for example.
  • the light shielding layer 52 is formed of, for example, a member including a pigment that absorbs light included in the light receiving wavelength band of the light receiving element. You may form with the member containing the pigment which reflects the light contained in the light reception wavelength range of a light receiving element.
  • the light shielding layer 52 is typically formed of an opaque and colored member. In the present embodiment, the light shielding layer 52 is a black layer containing carbon black that absorbs near infrared light. However, the light shielding layer 52 may be a layer having a color other than black.
  • the light shielding layer 52 not only prevents outside light from entering the measurement space MS, but also prevents light originating from the light emitting element from leaking to the outside. Therefore, the light shielding layer 52 can prevent the light leaking outside from being misidentified as a signal.
  • the living body side adhesive layer 53 is a biocompatible member that adheres to the surface of the living body.
  • the living body side adhesive layer 53 is formed of, for example, an acrylic adhesive or a silicon adhesive.
  • the living body side adhesive layer 53 may be a double-sided tape configured such that one surface adheres to the surface of the living body and the other surface adheres to the light shielding layer 52.
  • the living body side adhesive layer 53 is formed so as to have a lower adhesive strength than the sensor side adhesive layer 51. This is to prevent the adhesive member 50 from remaining attached to the living body surface when the living body sensor 10 is removed from the living body surface. This configuration can prevent accidental ingestion of the adhesive member 50.
  • the lower surface (the ⁇ Z side surface) of the living body side adhesive layer 53 may be formed so that the adhesive force is weaker than the upper surface (the + Z side surface).
  • the living body-side adhesive layer 53 is formed of a biocompatible member so that an inflammatory reaction such as a rash and a skin allergy does not occur even when it comes into contact with the skin of the subject.
  • the sensor-side adhesive layer 51 that basically does not contact the skin is also formed of a biocompatible member. This is to prevent an inflammatory reaction from occurring when the sensor-side adhesive layer 51 accidentally contacts the skin.
  • an operator (including a subject) who handles the biosensor 10 can easily and easily remove the biosensor 10 in a short time without using a complicated mounting mechanism using a belt or a band. Can be attached to.
  • the operator can easily perform re-mounting and can improve the positioning accuracy of the biosensor 10. Therefore, a biosensor that is easy to use in daily life can be provided.
  • a biological sensor that can be used in medical (especially critical care) sites that are required to measure biological information of a subject quickly and without taking time can be provided.
  • a biosensor that can be used at a watching site where it is required that there is as little discomfort such as pain associated with wearing as much as possible can be provided.
  • the adhesive member 50 attached to the subject can block external light from entering the measurement space MS. Therefore, when the biological sensor 10 to which the adhesive member 50 is attached is used, highly reliable biological information can be estimated even when the biological sensor 10 is used outdoors.
  • the reflecting unit 20 can reflect the weak scattered light emitted from the light emitting unit 11 and reflected by the living body toward the living body. Therefore, the light receiving unit 12 not only emits the light emitted from the light emitting unit 11 and is reflected by the living body and goes directly to the light receiving unit 12, but also the light that is repeatedly reflected one or more times between the reflecting unit 20 and the living body. Can receive light. As a result, the biological sensor 10 can estimate the biological information of the subject with higher accuracy, or can cause an external device to estimate the biological information of the subject with higher accuracy.
  • FIG. 6 is a cross-sectional view of the biosensor mounted on the skin surface of the subject.
  • FIG. 2B is a cross-sectional view of the XZ plane including the alternate long and short dash line L5 in FIG. 2B as viewed from the ⁇ Y side.
  • the hollow case 18 is shown as a solid member for clarity of illustration.
  • the biosensor 10 is mounted on the skin surface CS of the subject via the adhesive member 50 without using a complicated mounting mechanism using a band or the like.
  • the reflecting unit 20 emits the weak scattered light emitted from each of the light emitting element package 11a and the light emitting element package 11b and reflected by the living body. It can be reflected toward. Therefore, the light receiving element package 12a is not only the light emitted from each of the light emitting element package 11a and the light emitting element package 11b and reflected by the living body to reach the light receiving element package 12a, but also 1 or between the reflecting portion 20 and the living body. It can receive light that has been reflected multiple times. As a result, the biological sensor 10 can estimate the biological information of the subject with higher accuracy, or can cause an external device to estimate the biological information of the subject with higher accuracy.
  • the biological sensor 10 as the reflective optical biological information measuring device includes the light emitting unit 11, the light receiving unit 12 that receives the light emitted from the light emitting unit 11, and the light emitting unit. 11 and the reflection part 20 which reflects the light emitted by 11 and reflected by the living body.
  • the biosensor 10 has an adhesive member 50 that adheres to the surface of the living body. With this configuration, an optical biological information measuring device that can be more easily attached to a living body can be provided. Therefore, the biosensor 10 that can be used at a lifesaving emergency site, a monitoring site, or the like can be provided.
  • the reflection unit 20 can increase the ratio of the amount of light received by the light receiving unit 12 to the amount of light emitted by the light emitting unit 11. Therefore, the biosensor 10 can reduce the light emission energy while realizing the measurement of the biometric information quickly and with high accuracy. That is, the reflection unit 20 can promote energy saving.
  • the biological sensor 10 has, for example, a flat measurement surface R1 configured to face the biological surface. And the light emission part 11, the light-receiving part 12, the reflection part 20, and the adhesion member 50 are arrange
  • the adhesive member 50 includes, for example, a sensor side adhesive layer 51, a light shielding layer 52, and a living body side adhesive layer 53.
  • the light shielding layer 52 is disposed so as to surround the light emitting unit 11, the light receiving unit 12, and at least a part of the reflecting unit 20, for example.
  • the adhesive member 50 may be supplied as a disposable product.
  • 7A to 7D show a configuration example of the adhesive member 50 as a disposable product.
  • FIG. 7A is a top view of the adhesive member 50.
  • FIG. 7B is a cross-sectional view of the XZ plane including the alternate long and short dash line L6 in FIG. 7A as viewed from the ⁇ Y side.
  • 7C and 7D are cross-sectional views of the XZ plane including the alternate long and short dash line L7 in FIG. 7A when viewed from the ⁇ Y side.
  • the adhesive member 50 includes a sensor-side adhesive layer 51, a light shielding layer 52, a biological-side adhesive layer 53, a sensor-side film layer 54, and a biological-side film layer 55.
  • a sensor-side adhesive layer 51 for clarity, each layer is shown thicker than it actually is.
  • the adhesive member 50 is supplied in a state where the sensor side film layer 54 is attached to the sensor side adhesive layer 51 and the living body side film layer 55 is attached to the living body side adhesive layer 53.
  • the adhesive member 50 of FIGS. 7A to 7D may be supplied together with the biological sensor 10.
  • the set of the biosensor 10 and the adhesive member 50 is in a state where the sensor-side adhesive layer 51 is adhered to the biosensor 10 and the biological-side film layer 55 is attached to the biological-side adhesive layer 53. It may be supplied.
  • the sensor-side film layer 54 is a member that protects the sensor-side adhesive layer 51 so that the sensor-side adhesive layer 51 can be prevented from drying or sticking to other members other than the biosensor 10. It is configured.
  • the sensor-side film layer 54 includes a knob portion 54T so that an operator (including a subject) can easily peel the sensor-side film layer 54 when the adhesive member 50 is adhered to the biosensor 10. ing. As shown in FIG. 7D, the operator pinches the knob portion 54T with a finger and peels the sensor side film layer 54 from the sensor side adhesive layer 51 to expose the surface (+ Z side surface) of the sensor side adhesive layer 51. be able to.
  • the living body side film layer 55 is a member that protects the living body side adhesive layer 53, and is configured to prevent the living body side adhesive layer 53 from drying or sticking to other members other than the living body surface.
  • the living body side film layer 55 is provided with a knob portion 55T so that an operator (including a subject) can easily peel off the living body side film layer 55 when the adhesive member 50 is adhered to the surface of the living body. Yes.
  • the operator pinches the knob portion 55T with a finger and peels the biological-side film layer 55 from the biological-side adhesive layer 53 to thereby remove the surface of the biological-side adhesive layer 53 (on the ⁇ Z side). Surface) can be exposed.
  • the knob portion 54T and the knob portion 55T are both arranged on the same side (+ X side) of the adhesive member 50 as shown in FIG. 7A, but may be arranged on different sides.
  • the knob portion 54T may be disposed on the + Y side of the adhesive member 50
  • the knob portion 55T may be disposed on the ⁇ Y side of the adhesive member 50.
  • the knob portion 54T and the knob portion 55T are arranged so as not to overlap in the Z-axis direction, but may be arranged so as to overlap in the Z-axis direction.
  • the operator peels the sensor-side film layer 54 from the sensor-side adhesive layer 51 and exposes the surface of the sensor-side adhesive layer 51 to bring the surface into contact with the measurement surface R1 of the biosensor 10,
  • the adhesive member 50 can be adhered to the biological sensor 10.
  • the worker is in a state where the adhesive member 50 is adhered to the biological sensor 10 and the biological side film layer 55 is peeled off from the biological side adhesive layer 53 to expose the surface of the biological side adhesive layer 53.
  • the biological sensor 10 (strictly, the adhesive member 50) can be attached (adhered) to the biological surface.
  • the adhesive member 50 is typically configured to allow a plurality of remounts of the biosensor 10 to the surface of the living body. Therefore, the operator can perform remounting a plurality of times before finding an appropriate mounting position of the biosensor 10 on the surface of the living body.
  • the operator does not remove the living body side film layer 55 from the living body side adhesive layer 53, that is, in a state where the living body side film layer 55 is attached to the living body side adhesive layer 53.
  • the living body side film layer 55 may be brought into contact with the living body surface. This is because an appropriate mounting position of the biological sensor 10 with respect to the biological surface is found. In this case, the operator can suppress a decrease in the adhesive strength of the living body side adhesive layer 53 due to the reattachment.
  • the biosensor 10 after an operator finds the suitable mounting position of the biosensor 10 with respect to the biological body surface, it peels the biological body side film layer 55 from the biological body side adhesive layer 53, and makes the surface of the biological body side adhesive layer 53 contact the biological body surface.
  • the biological sensor 10 (strictly speaking, the biological-side adhesive layer 53) can be adhered to the biological surface.
  • FIGS. 8A to 8C show another configuration example of the adhesive member 50.
  • FIG. 8A is a top view of the adhesive member 50.
  • 8B is a cross-sectional view of the XZ plane including the alternate long and short dash line L8 in FIG. 8A as viewed from the ⁇ Y side.
  • FIG. 8C is a cross-sectional view of the XZ plane including the alternate long and short dash line L9 in FIG. 8A when viewed from the ⁇ Y side.
  • the adhesive member 50 includes a sensor-side adhesive layer 51, a light shielding layer 52, and a living body-side adhesive layer 53.
  • each layer is shown thicker than it actually is for clarity.
  • the adhesive member 50 of FIGS. 8A to 8C is that the outer edge of the sensor side adhesive layer 51 is surrounded by the light shielding layer 52 and the outer edge of the living body side adhesive layer 53 is surrounded by the light shielding layer 52. Although different from the adhesive member 50 of FIG. 5C, the other points are the same as the adhesive member 50 of FIGS. 5A to 5C. Therefore, description of common parts is omitted, and different parts are described in detail.
  • the 8A to 8C includes a central portion 52M and an edge portion 52T.
  • the central portion 52M is a plate-like portion extending along the XY plane, and has a rectangular ring shape so as to surround the measurement space MS.
  • the edge portion 52T is a rectangular ring-shaped portion formed so as to extend along the outer edge of the central portion 52M and to protrude in the + Z direction and the ⁇ Z direction from the central portion 52M.
  • the portion of the edge 52T that protrudes to the + Z side has a rectangular ring shape so as to surround the sensor-side adhesive layer 51. Further, a portion of the edge portion 52T that protrudes toward the ⁇ Z side has a rectangular ring shape so as to surround the living body side adhesive layer 53. However, the edge 52T may be formed so as to protrude only to either the + Z side or the ⁇ Z side.
  • the light shielding layer 52 can more reliably block external light from entering the measurement space MS. This is because the light shielding layer 52 can block external light that enters the measurement space MS via the sensor-side adhesive layer 51 and external light that attempts to enter the measurement space MS via the living body-side adhesive layer 53. .
  • the adhesive member 50 of FIGS. 8A to 8C may be supplied as a disposable product, similar to the adhesive member 50 of FIGS. 7A to 7D.
  • the adhesive member 50 of FIGS. 8A to 8C has the sensor-side film layer 54 attached to the sensor-side adhesive layer 51 and the living-body-side film layer 55 attached to the living-body-side adhesive layer 53. It may be supplied in the state. 8A to 8C may be supplied together with the biosensor 10.
  • the set of the biosensor 10 and the adhesive member 50 is in a state where the sensor-side adhesive layer 51 is adhered to the biosensor 10 and the biological-side film layer 55 is attached to the biological-side adhesive layer 53. It may be supplied.
  • the biological sensor 10 is configured such that the control unit 13 estimates biological information using near-infrared light, but the control unit 13 uses other wavelengths such as green light or blue light.
  • the living body information may be estimated using the light.
  • the sensor-side adhesive layer 51 is formed in an annular shape so as to surround the measurement space MS.
  • the sensor-side adhesive layer 51 is composed of a combination of a plurality of independent regions 51a to 51d. May be. The same applies to the living body side adhesive layer 53.
  • the adhesive member 50 has the surface area of the sensor-side adhesive layer 51 (the area of the surface on the + Z side) equal to the surface area of the living body-side adhesive layer 53 (the ⁇ Z side). It is configured to be the same as the area of the surface. However, the sensor-side adhesive layer 51 may have a surface area different from that of the living body-side adhesive layer 53. For example, the sensor-side adhesive layer 51 is configured such that the surface area of the sensor-side adhesive layer 51 is larger than the surface area of the biological-side adhesive layer 53 so that the adhesive force of the sensor-side adhesive layer 51 is stronger than the adhesive force of the biological-side adhesive layer 53. Also good.
  • the adhesive member 50 is configured not to protrude from the case 18 of the biosensor 10 in the XY plane, but seems to protrude from the case 18 in the XY plane. It may be configured.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

A biosensor (10) as a reflection-type optical bioinformation measurement device pertaining to an embodiment of the present invention is provided with a light-emitting part (11), a light-receiving part (12) for receiving light emitted by the light-emitting part (11), and a reflecting part (20) for reflecting light emitted by the light-emitting part (11) and reflected by an organism. The biosensor (10) has an adhesive member (50) for adhering to an organism surface. The biosensor (10) also has a flat measurement surface (R1) configured so as to face the organism surface. The light-emitting part (11), the light-receiving part (12), the reflecting part (20), and the adhesive member (50) are disposed on the measurement surface (R1).

Description

光学式生体情報測定装置及び粘着部材Optical biological information measuring device and adhesive member
 本開示は、光学式生体情報測定装置、及び、光学式生体情報測定装置を生体に装着する粘着部材に関する。 The present disclosure relates to an optical biological information measuring device and an adhesive member for mounting the optical biological information measuring device on a living body.
 従来、生体組織に光を照射したときの照射光に対する、生体組織を透過した透過光の強度の比に基づいて生体組織における動脈血酸素飽和度を測定するための装置が知られている(特許文献1参照。)。 Conventionally, an apparatus for measuring arterial blood oxygen saturation in a living tissue based on a ratio of the intensity of transmitted light that has passed through the living tissue to irradiation light when the living tissue is irradiated with light (Patent Document) 1).
特開2012-191983号公報JP 2012-191983 A
 しかしながら、特許文献1に記載されるような、発光部と受光部とが生体を挟んで互いに反対側に設けられる構成を採る、いわゆる透過型の装置は、使用の際に生体に巻き付けられる必要があり、装着が煩雑である。 However, a so-called transmission-type device that employs a configuration in which a light emitting unit and a light receiving unit are provided on opposite sides of a living body as described in Patent Document 1 needs to be wound around the living body when used. Yes, wearing is complicated.
 そこで、より簡単に生体に装着できる光学式生体情報測定装置を提供することが望ましい。 Therefore, it is desirable to provide an optical biological information measuring device that can be attached to a living body more easily.
 本発明の実施形態に係る光学式生体情報測定装置は、発光部と、前記発光部で発せられた光を受ける受光部と、前記発光部で発せられ且つ生体で反射された光を反射する反射部と、を備えた反射型の光学式生体情報測定装置であって、生体表面に粘着する粘着部材を有する。 An optical biological information measuring device according to an embodiment of the present invention includes a light emitting unit, a light receiving unit that receives light emitted from the light emitting unit, and a reflection that reflects light emitted from the light emitting unit and reflected from the living body. A reflection-type optical biological information measuring device including an adhesive member that adheres to the surface of the biological body.
 上述の手段により、より簡単に生体に装着できる光学式生体情報測定装置が提供される。 The above-described means provides an optical biological information measuring device that can be attached to a living body more easily.
本発明の一実施形態に係る生体センサの機能ブロック図である。It is a functional block diagram of the biosensor which concerns on one Embodiment of this invention. 生体センサの底面斜視図である。It is a bottom perspective view of a biosensor. 粘着部材が取り付けられた生体センサの底面斜視図である。It is a bottom perspective view of a biosensor to which an adhesive member is attached. 生体センサの測定面の拡大図である。It is an enlarged view of the measurement surface of a biosensor. 光の波長と金属膜の反射率との関係を示す図である。It is a figure which shows the relationship between the wavelength of light, and the reflectance of a metal film. 粘着部材の構成例を示す上面図である。It is a top view which shows the structural example of an adhesion member. 図5Aに示す粘着部材の断面図である。It is sectional drawing of the adhesive member shown to FIG. 5A. 図5Aに示す粘着部材の別の断面図である。It is another sectional view of the adhesion member shown in Drawing 5A. 被検者の皮膚表面に装着された生体センサの断面図である。It is sectional drawing of the biosensor with which the subject's skin surface was mounted | worn. 粘着部材の別の構成例を示す上面図である。It is a top view which shows another structural example of an adhesion member. 図7Aに示す粘着部材の断面図である。It is sectional drawing of the adhesive member shown to FIG. 7A. 図7Aに示す粘着部材の別の断面図である。It is another sectional view of the adhesion member shown in Drawing 7A. 図7Aに示す粘着部材の更に別の断面図である。It is another sectional drawing of the adhesion member shown in Drawing 7A. 粘着部材の更に別の構成例を示す上面図である。It is a top view which shows another structural example of an adhesion member. 図8Aに示す粘着部材の断面図である。It is sectional drawing of the adhesive member shown to FIG. 8A. 図8Aに示す粘着部材の別の断面図である。It is another sectional drawing of the adhesion member shown in Drawing 8A. 粘着部材の更に別の構成例を示す上面図である。It is a top view which shows another structural example of an adhesion member.
 以下、本発明の実施形態に係る光生体情報測定装置の一例である生体センサ10について図面を参照して説明する。図1は、生体センサ10の機能ブロック図である。図2A及び図2Bは、生体センサ10の構成例を示す底面斜視図である。具体的には、図2Aは、粘着部材50が取り付けられていない状態を示し、図2Bは粘着部材50が取り付けられた状態を示す。図3は、図2Aの点線で囲まれた部分である測定面R1の拡大図である。 Hereinafter, a biosensor 10 which is an example of an optical biometric information measuring apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a functional block diagram of the biosensor 10. 2A and 2B are bottom perspective views illustrating a configuration example of the biosensor 10. FIG. Specifically, FIG. 2A shows a state where the adhesive member 50 is not attached, and FIG. 2B shows a state where the adhesive member 50 is attached. FIG. 3 is an enlarged view of the measurement surface R1, which is a portion surrounded by a dotted line in FIG. 2A.
 生体センサ10は、携帯型のセンサであり、生体表面に向き合うように構成された測定面R1を有している。測定面R1は、被検者の額、手首及び足首等の少なくとも1つに直接接するように構成されている。本実施形態では、測定面R1は、平坦面である。具体的には、生体センサ10は、バンド等を用いずに粘着部材50を介して、被検者の額、手首及び足首等の少なくとも1つの皮膚表面に貼り付けられるように構成されている。また、生体センサ10は、被検者の生体情報を推定するとともに推定した生体情報を無線通信により外部に送信できるように構成されている。生体センサ10は、例えば図2Bに示すように、幅Wが40mm、奥行きDが30mm、高さHが10mmで構成されている。 The living body sensor 10 is a portable sensor and has a measurement surface R1 configured to face the surface of the living body. The measurement surface R1 is configured to directly contact at least one of the subject's forehead, wrist, ankle, and the like. In the present embodiment, the measurement surface R1 is a flat surface. Specifically, the biosensor 10 is configured to be attached to at least one skin surface such as a subject's forehead, wrist, and ankle via the adhesive member 50 without using a band or the like. The biological sensor 10 is configured to estimate the biological information of the subject and transmit the estimated biological information to the outside by wireless communication. As shown in FIG. 2B, for example, the biological sensor 10 is configured with a width W of 40 mm, a depth D of 30 mm, and a height H of 10 mm.
 本実施形態では、生体センサ10は、ウェアラブルセンサであり、図1~図3に示すように、発光部11、受光部12、制御部13、無線通信部14、基板15及びケース18を有する。基板15は、図3に示すように、発光部11、受光部12、制御部13及び無線通信部14が実装された状態でケース18に収容されている。なお、図3の破線は隠れ線を表している。また、生体センサ10は、電池動作を実現する図示しない電源回路を有している。また、生体センサ10は、3軸のジャイロセンサ、3軸の加速度センサ及び肌温度センサ等の少なくとも1つを有していてもよい。 In the present embodiment, the biological sensor 10 is a wearable sensor, and includes a light emitting unit 11, a light receiving unit 12, a control unit 13, a wireless communication unit 14, a substrate 15, and a case 18, as shown in FIGS. As shown in FIG. 3, the substrate 15 is accommodated in a case 18 in a state where the light emitting unit 11, the light receiving unit 12, the control unit 13, and the wireless communication unit 14 are mounted. In addition, the broken line of FIG. 3 represents the hidden line. The biosensor 10 has a power supply circuit (not shown) that realizes battery operation. The biosensor 10 may include at least one of a triaxial gyro sensor, a triaxial acceleration sensor, a skin temperature sensor, and the like.
 発光部11は、図1に示すように、発光素子パッケージ11a、発光素子パッケージ11b、及び、ドライブ回路11cを有する。発光素子パッケージ11aは、近赤外光を含む光を発する発光ダイオード素子若しくはレーザ素子等である発光素子11a1及び発光素子11a2を1つのパッケージ内に有している。同様に、発光素子パッケージ11bは、近赤外光を含む光を発する発光ダイオード素子若しくはレーザ素子等である発光素子11b1及び発光素子11b2を1つのパッケージ内に有している。ドライブ回路11cは、発光素子11a1、発光素子11a2、発光素子11b1及び発光素子11b2のそれぞれを駆動できるように構成されている。 The light emitting unit 11 includes a light emitting element package 11a, a light emitting element package 11b, and a drive circuit 11c as shown in FIG. The light-emitting element package 11a includes a light-emitting element 11a1 and a light-emitting element 11a2 that are light-emitting diode elements or laser elements that emit light including near-infrared light in one package. Similarly, the light-emitting element package 11b includes a light-emitting element 11b1 and a light-emitting element 11b2 that are light-emitting diode elements or laser elements that emit light including near-infrared light in one package. The drive circuit 11c is configured to drive each of the light emitting element 11a1, the light emitting element 11a2, the light emitting element 11b1, and the light emitting element 11b2.
 本実施形態では、発光素子11a1及び発光素子11b1は対を形成している。具体的には、発光素子11a1及び発光素子11b1のそれぞれは、805nmよりも短い波長λ1を含む光を発することができるように構成されている。 In the present embodiment, the light emitting element 11a1 and the light emitting element 11b1 form a pair. Specifically, each of the light emitting element 11a1 and the light emitting element 11b1 is configured to emit light including a wavelength λ1 shorter than 805 nm.
 同様に、発光素子11a2及び発光素子11b2は対を形成している。具体的には、発光素子11a2及び発光素子11b2のそれぞれは、805nmよりも長い波長λ2を含む光を発することができるように構成されている。 Similarly, the light emitting element 11a2 and the light emitting element 11b2 form a pair. Specifically, each of the light emitting element 11a2 and the light emitting element 11b2 is configured to emit light including a wavelength λ2 longer than 805 nm.
 805nmは、被検者としての生体の大部分を占める水による吸収の影響が少ない波長である。生体センサ10は、例えば、805nm前後の波長を使用して体内ヘモグロビンの吸光度の差を観察することで生体情報を精度よく推定できる。 805 nm is a wavelength with little influence of absorption by water that occupies most of the living body as a subject. For example, the biological sensor 10 can estimate biological information with high accuracy by observing the difference in the absorbance of internal hemoglobin using a wavelength of around 805 nm.
 本実施形態では、波長λ1は760nmであり、波長λ2は850nmである。但し、波長λ1は、例えば、780nm等の他の値であってもよい。また、波長λ2は、例えば、830nm等の他の値であってもよい。 In this embodiment, the wavelength λ1 is 760 nm and the wavelength λ2 is 850 nm. However, the wavelength λ1 may be another value such as 780 nm, for example. The wavelength λ2 may be another value such as 830 nm, for example.
 発光素子は、赤色光等の近赤外光以外の光を発するように構成されていてもよい。例えば、波長λ1は640nmであってもよく、波長λ2は940nmであってもよい。 The light emitting element may be configured to emit light other than near infrared light such as red light. For example, the wavelength λ1 may be 640 nm, and the wavelength λ2 may be 940 nm.
 発光素子11a1及び発光素子11b1が発する近赤外光の波長範囲は、例えば、760±50nmであり、発光素子11a2及び発光素子11b2が発する近赤外光の波長範囲は、例えば、850±50nmである。より好ましくは、発光素子11a1及び発光素子11b1が発する近赤外光の波長範囲は760±20nmであり、発光素子11a2及び発光素子11b2が発する近赤外光の波長範囲は850±20nmである。このような波長範囲を限定する構成により、生体センサ10は、受光部12の出力をより大きくしてS/N比を高くすることができる。 The wavelength range of near infrared light emitted from the light emitting element 11a1 and the light emitting element 11b1 is, for example, 760 ± 50 nm, and the wavelength range of near infrared light emitted from the light emitting element 11a2 and the light emitting element 11b2 is, for example, 850 ± 50 nm. is there. More preferably, the wavelength range of near infrared light emitted from the light emitting element 11a1 and the light emitting element 11b1 is 760 ± 20 nm, and the wavelength range of near infrared light emitted from the light emitting element 11a2 and the light emitting element 11b2 is 850 ± 20 nm. With such a configuration that limits the wavelength range, the biological sensor 10 can increase the output of the light receiving unit 12 and increase the S / N ratio.
 発光素子11a2及び発光素子11b2は省略されてもよい。この場合、発光素子11a1及び発光素子11b1のそれぞれは、波長λ1の近赤外光と波長λ2の近赤外光の両方を別々に発することができるように構成されていてもよい。 The light emitting element 11a2 and the light emitting element 11b2 may be omitted. In this case, each of the light emitting element 11a1 and the light emitting element 11b1 may be configured to emit both near-infrared light having a wavelength λ1 and near-infrared light having a wavelength λ2.
 受光部12は、図1に示すように、受光素子パッケージ12a及び増幅回路12bを有する。受光素子パッケージ12aは、受光した近赤外光に応じた信号(受光信号)を出力する受光素子12a1を1つのパッケージ内に有している。受光素子12a1は、例えば、フォトダイオード素子又はフォトトランジスタ素子等で形成されている。受光素子パッケージ12aは、2つ以上の受光素子を1つのパッケージ内に有していてもよい。増幅回路12bは、受光素子パッケージ12aが有する受光素子12a1が出力する受光信号を増幅するように構成されている。 As shown in FIG. 1, the light receiving unit 12 includes a light receiving element package 12a and an amplifier circuit 12b. The light receiving element package 12a has a light receiving element 12a1 that outputs a signal (light receiving signal) corresponding to the received near-infrared light in one package. The light receiving element 12a1 is formed of, for example, a photodiode element or a phototransistor element. The light receiving element package 12a may have two or more light receiving elements in one package. The amplifier circuit 12b is configured to amplify a light reception signal output from the light receiving element 12a1 included in the light receiving element package 12a.
 受光素子12a1は、波長λ1近傍の波長の近赤外光と、波長λ2近傍の波長の近赤外光とに感度を有するように構成されている。本実施形態では、受光素子12a1は、760±50nmの範囲の波長の近赤外光と、850±50nmの範囲の波長の近赤外光とを受光できるように構成されている。 The light receiving element 12a1 is configured to have sensitivity to near infrared light having a wavelength near the wavelength λ1 and near infrared light having a wavelength near the wavelength λ2. In the present embodiment, the light receiving element 12a1 is configured to receive near infrared light having a wavelength in the range of 760 ± 50 nm and near infrared light having a wavelength in the range of 850 ± 50 nm.
 受光素子は、発光素子の波長で受光感度が大きくなるように構成されていることが好ましい。そのため、受光素子パッケージ12aは、波長λ1において受光感度が最大となる受光素子と、波長λ2において受光感度が最大となる受光素子とを含むように構成されていてもよい。 The light receiving element is preferably configured such that the light receiving sensitivity increases with the wavelength of the light emitting element. Therefore, the light receiving element package 12a may be configured to include a light receiving element having the maximum light receiving sensitivity at the wavelength λ1 and a light receiving element having the maximum light receiving sensitivity at the wavelength λ2.
 本実施形態では、測定面R1は、図2Aに示すように、反射部20を含むように構成されている。反射部20は、発光部11で発せられ且つ生体で反射された光を反射するように構成されている。そして、反射部20で反射した光が再び生体で反射して受光部12に達するように構成されている。 In the present embodiment, the measurement surface R1 is configured to include the reflection unit 20, as shown in FIG. 2A. The reflecting unit 20 is configured to reflect the light emitted from the light emitting unit 11 and reflected from the living body. And it is comprised so that the light reflected by the reflection part 20 may be reflected again with a biological body, and may reach the light-receiving part 12. FIG.
 本実施形態では、反射部20の反射面には金(Au)を用いた金属膜(金メッキ)が施されている。図4は、光の波長と金属膜の反射率との関係を示す。実線は、金(Au)を用いた金属膜の特性を示し、破線は、アルミニウム(Al)を用いた金属膜の特性を示し、一点鎖線は、アルミニウム(Al)と一酸化ケイ素(SiO)を用いた金属膜の特性を示す。図4に示すように、金(Au)を用いた金属膜は、他の金属を用いた金属膜に比べ、近赤外光に関する高い反射率を示している。但し、反射部20には、金(Au)以外の他の金属を用いた金属膜が形成されていてもよい。 In the present embodiment, a metal film (gold plating) using gold (Au) is applied to the reflecting surface of the reflecting portion 20. FIG. 4 shows the relationship between the wavelength of light and the reflectance of the metal film. The solid line shows the characteristics of the metal film using gold (Au), the broken line shows the characteristics of the metal film using aluminum (Al), and the alternate long and short dash line shows the characteristics of aluminum (Al) and silicon monoxide (SiO). The characteristic of the used metal film is shown. As shown in FIG. 4, the metal film using gold (Au) shows a higher reflectance with respect to near-infrared light than the metal film using other metals. However, a metal film using a metal other than gold (Au) may be formed on the reflecting portion 20.
 受光素子パッケージ12aは、図3に示すように、基板15上で発光素子パッケージ11aと発光素子パッケージ11bとの間に挟まれて配置されている。そして、反射部20には、発光素子パッケージ11aを露出させる窓部W1a、発光素子パッケージ11bを露出させる窓部W1b、及び、受光素子パッケージ12aを露出させる窓部W2が形成されている。窓部W1a、窓部W1b及び窓部W2は、透光性を有する材料で形成されている。本実施形態では、窓部W1a、窓部W1b及び窓部W2は、ポリエチレンテレフタレート(PET)で形成されている。 As shown in FIG. 3, the light receiving element package 12a is disposed on the substrate 15 so as to be sandwiched between the light emitting element package 11a and the light emitting element package 11b. In the reflection part 20, a window part W1a for exposing the light emitting element package 11a, a window part W1b for exposing the light emitting element package 11b, and a window part W2 for exposing the light receiving element package 12a are formed. Window part W1a, window part W1b, and window part W2 are formed with the material which has translucency. In this embodiment, the window part W1a, the window part W1b, and the window part W2 are formed of polyethylene terephthalate (PET).
 発光素子パッケージ11aで発せられ窓部W1aを通過した光の一部は生体で反射した後で窓部W2を通って受光素子パッケージ12aに達する。また、発光素子パッケージ11aで発せられ窓部W1aを通過した光の別の一部は生体で反射して反射部20に向かう。反射部20に向かった光は、反射部20での反射と生体での反射を1回又は複数回繰り返し、その後に窓部W2を通って受光素子パッケージ12aに達する。発光素子パッケージ11bで発せられ窓部W1bを通過した光についても同様である。 Part of the light emitted from the light emitting element package 11a and passing through the window W1a is reflected by the living body and then reaches the light receiving element package 12a through the window W2. Further, another part of the light emitted from the light emitting element package 11a and having passed through the window portion W1a is reflected by the living body and travels toward the reflecting portion 20. The light directed toward the reflection part 20 repeats reflection at the reflection part 20 and reflection by the living body one or more times, and then reaches the light receiving element package 12a through the window part W2. The same applies to the light emitted from the light emitting element package 11b and passing through the window portion W1b.
 制御部13は、発光部11及び受光部12を制御できるように構成されている。本実施形態では、制御部13は、マイクロコンピュータで構成されている。具体的には、制御部13は、発光部11のドライブ回路11cにタイミング信号を送信し、発光部11が近赤外光を発するように制御する。 The control unit 13 is configured to control the light emitting unit 11 and the light receiving unit 12. In this embodiment, the control part 13 is comprised with the microcomputer. Specifically, the control unit 13 transmits a timing signal to the drive circuit 11c of the light emitting unit 11, and controls the light emitting unit 11 to emit near infrared light.
 制御部13は、例えば、発光素子11a1及び発光素子11b1から同時に近赤外光を発光させる。そして、制御部13は、所定時間にわたってその発光を継続させた後で発光を停止させる。その後、制御部13は、発光素子11a2及び発光素子11b2から同時に近赤外光を発光させる。そして、制御部13は、所定時間にわたってその発光を継続させた後で発光を停止させる。このようにして、制御部13は、波長λ1の近赤外光と波長λ2の近赤外光とを交互に発光させる。 The control unit 13 simultaneously emits near infrared light from the light emitting element 11a1 and the light emitting element 11b1, for example. And the control part 13 stops light emission, after continuing the light emission over predetermined time. Thereafter, the control unit 13 causes near-infrared light to be emitted simultaneously from the light emitting element 11a2 and the light emitting element 11b2. And the control part 13 stops light emission, after continuing the light emission over predetermined time. In this way, the control unit 13 alternately emits near-infrared light having a wavelength λ1 and near-infrared light having a wavelength λ2.
 制御部13は、例えば、内蔵のアナログ-デジタル変換回路を用い、受光部12の増幅回路12bから出力された増幅後の受光信号(アナログ形式の信号情報)を、デジタル処理可能な出力信号(デジタル形式の信号情報)に変換する。そして、制御部13は、この変換後の出力信号に基づき、血中ヘモグロビン、血中酸素濃度及び脈拍数等の少なくとも1つの生体情報を推定する。このように、制御部13は、生体情報推定部として機能する。 The control unit 13 uses, for example, a built-in analog-digital conversion circuit, and an output signal (digital signal) that can digitally process the amplified received light signal (analog signal information) output from the amplifier circuit 12b of the light receiving unit 12. Format signal information). Then, the control unit 13 estimates at least one biological information such as blood hemoglobin, blood oxygen concentration, and pulse rate based on the converted output signal. Thus, the control unit 13 functions as a biological information estimation unit.
 無線通信部14は、生体センサ10と外部との無線通信を制御するように構成されている。本実施形態では、無線通信部14は、無線通信ICで構成されている。無線通信部14は、例えば、制御部13で推定した生体情報を、Bluetooth(登録商標)等の無線通信規格を用いた通信により外部に送信する。生体センサ10は、二次情報としての生体情報ではなく、生体情報の推定に用いる一次情報としての信号情報を無線通信により外部に送信してもよい。この場合、外部にある機器は、信号情報に基づき生体情報を推定するように構成される。 The wireless communication unit 14 is configured to control wireless communication between the biosensor 10 and the outside. In the present embodiment, the wireless communication unit 14 is configured by a wireless communication IC. For example, the wireless communication unit 14 transmits the biological information estimated by the control unit 13 to the outside by communication using a wireless communication standard such as Bluetooth (registered trademark). The biosensor 10 may transmit signal information as primary information used for estimation of biometric information to the outside by wireless communication, instead of biometric information as secondary information. In this case, the external device is configured to estimate the biological information based on the signal information.
 基板15は、発光部11、受光部12、制御部13及び無線通信部14を保持するように構成されている。本実施形態では、基板15は、ガラスエポキシ基板に銅箔で配線パターンが形成されたプリント基板である。そして、発光素子11a1、発光素子11a2、発光素子11b1及び発光素子11b2は、図3に示すように、基板15の表面で仮想線L1上に並ぶように構成されている。また、受光素子12a1は、仮想線L1に垂直な仮想線L2上に配置されている。発光素子11a1と仮想線L2との間隔L1aは、発光素子11b1と仮想線L2との間隔L1bに等しい。また、発光素子11a2と仮想線L2との間隔L2aは、発光素子11b1と仮想線L2との間隔L2bに等しい。本実施形態では、間隔L1a及び間隔L1bは、間隔L2a及び間隔L2bより大きいが、間隔L2a及び間隔L2bより小さくてもよい。 The substrate 15 is configured to hold the light emitting unit 11, the light receiving unit 12, the control unit 13, and the wireless communication unit 14. In this embodiment, the board | substrate 15 is a printed circuit board by which the wiring pattern was formed with the copper foil on the glass epoxy board | substrate. The light emitting element 11a1, the light emitting element 11a2, the light emitting element 11b1, and the light emitting element 11b2 are configured to be aligned on the virtual line L1 on the surface of the substrate 15, as shown in FIG. The light receiving element 12a1 is disposed on a virtual line L2 perpendicular to the virtual line L1. The distance L1a between the light emitting element 11a1 and the virtual line L2 is equal to the distance L1b between the light emitting element 11b1 and the virtual line L2. Further, the distance L2a between the light emitting element 11a2 and the virtual line L2 is equal to the distance L2b between the light emitting element 11b1 and the virtual line L2. In the present embodiment, the interval L1a and the interval L1b are larger than the interval L2a and the interval L2b, but may be smaller than the interval L2a and the interval L2b.
 また、本実施形態では、4つの発光素子は、仮想線L1に沿って左から発光素子11a1、発光素子11a2、発光素子11b2及び発光素子11b1の順に並んでいるが、左から発光素子11a2、発光素子11a1、発光素子11b1及び発光素子11b2の順に並んでいてもよく、左から発光素子11a1、発光素子11a2、発光素子11b1及び発光素子11b2の順に並んでいてもよく、左から発光素子11a2、発光素子11a1、発光素子11b2及び発光素子11b1の順に並んでいてもよい。 In the present embodiment, the four light emitting elements are arranged in order of the light emitting element 11a1, the light emitting element 11a2, the light emitting element 11b2, and the light emitting element 11b1 from the left along the virtual line L1, but the light emitting element 11a2 and the light emitting element are arranged from the left. The element 11a1, the light emitting element 11b1, and the light emitting element 11b2 may be arranged in this order. The light emitting element 11a1, the light emitting element 11a2, the light emitting element 11b1, and the light emitting element 11b2 may be arranged in this order from the left. The element 11a1, the light emitting element 11b2, and the light emitting element 11b1 may be arranged in this order.
 間隔L1a、間隔L1b、間隔L2a及び間隔L2bは、例えば、4~11mmの範囲内である。本実施形態では、間隔L1a及び間隔L1bは4mmである。間隔L1aと間隔L1bは、互いに異なる値であってもよい。間隔L2a及び間隔L2bについても同様である。 The interval L1a, the interval L1b, the interval L2a, and the interval L2b are in the range of 4 to 11 mm, for example. In the present embodiment, the interval L1a and the interval L1b are 4 mm. The interval L1a and the interval L1b may be different from each other. The same applies to the interval L2a and the interval L2b.
 本実施形態では、発光素子11a1、発光素子11a2、発光素子11b1、発光素子11b2及び受光素子12a1は、基板15の下面(測定面R1側の面)に実装されている。そして、ドライブ回路11c、増幅回路12b、制御部13及び無線通信部14は、基板15の上面に実装されている。但し、ドライブ回路11c、増幅回路12b、制御部13及び無線通信部14のうちの少なくとも1つは、基板15の下面に実装されていてもよい。電源回路についても同様である。 In the present embodiment, the light emitting element 11a1, the light emitting element 11a2, the light emitting element 11b1, the light emitting element 11b2, and the light receiving element 12a1 are mounted on the lower surface of the substrate 15 (the surface on the measurement surface R1 side). The drive circuit 11 c, the amplifier circuit 12 b, the control unit 13, and the wireless communication unit 14 are mounted on the upper surface of the substrate 15. However, at least one of the drive circuit 11 c, the amplifier circuit 12 b, the control unit 13, and the wireless communication unit 14 may be mounted on the lower surface of the substrate 15. The same applies to the power supply circuit.
 粘着部材50は、生体表面に粘着する生体適合性部材である。粘着部材50は、望ましくは、遮水機能、遮気機能、断熱機能、撥水機能、疎水機能及び防汚機能の少なくとも1つを有するバリア層を形成する。本実施形態では、粘着部材50は、図2Bに示すように、生体表面に向き合うように構成された平坦な測定面R1に取り付けられ、且つ、生体表面に粘着するように構成されている。すなわち、粘着部材50は、生体センサ10が被検者の皮膚表面に取り付けられた際に、生体センサ10と皮膚表面との間に位置するように構成されている。 The adhesive member 50 is a biocompatible member that adheres to the surface of the living body. The adhesive member 50 desirably forms a barrier layer having at least one of a water shielding function, an air shielding function, a heat insulating function, a water repellent function, a hydrophobic function, and an antifouling function. In the present embodiment, as shown in FIG. 2B, the adhesive member 50 is attached to a flat measurement surface R1 configured to face the living body surface and is configured to adhere to the living body surface. That is, the adhesive member 50 is configured to be positioned between the biosensor 10 and the skin surface when the biosensor 10 is attached to the subject's skin surface.
 粘着部材50には、図2Bに示すように、切り欠き部としての窓部50Wが形成されている。すなわち、粘着部材50の中央部分には、粘着部材50を貫通する空間が形成されている。この空間は、発光素子に由来する光が測定面R1と生体表面との間でほとんど減衰せずに進むことが可能な測定空間MSを定める。すなわち、測定空間MSには、テープ等、光を減衰させてしまう部材が存在しない。窓部50Wは、発光素子パッケージ11a、発光素子パッケージ11b及び受光素子パッケージ12aと、反射部20の少なくとも一部とが測定空間MSに露出するように形成されている。 As shown in FIG. 2B, the adhesive member 50 is formed with a window portion 50W as a notch portion. That is, a space that penetrates the adhesive member 50 is formed in the central portion of the adhesive member 50. This space defines a measurement space MS in which light derived from the light emitting element can travel between the measurement surface R1 and the living body surface with little attenuation. That is, there is no member such as a tape that attenuates light in the measurement space MS. The window part 50W is formed so that the light emitting element package 11a, the light emitting element package 11b, the light receiving element package 12a, and at least a part of the reflecting part 20 are exposed to the measurement space MS.
 本実施形態では、粘着部材50は、矩形環形状を有するが、円環形状、楕円環形状又は六角環形状等の他の環形状を有していてもよい。また、窓部50Wは、矩形状を有するが、円形、楕円形又は六角形等の他の形状を有していてもよい。また、環の一部は切り欠かれていてもよい。 In the present embodiment, the adhesive member 50 has a rectangular ring shape, but may have another ring shape such as an annular shape, an elliptical ring shape, or a hexagonal ring shape. The window 50W has a rectangular shape, but may have another shape such as a circle, an ellipse, or a hexagon. Moreover, a part of the ring may be cut out.
 また、粘着部材50は、被粘着面の湾曲に沿って湾曲するように高い柔軟性を有する部材であってもよく、被粘着面の湾曲に沿って湾曲しないように高い剛性を有する部材であってもよい。また、粘着部材50は、被粘着面の凹凸を吸収できるような弾性又は柔軟性を有する部材であってもよい。被粘着面は、例えば、測定面R1を含む生体センサ10の下面(-Z側の面)である。 The adhesive member 50 may be a member having high flexibility so as to bend along the curve of the adherend surface, or a member having high rigidity so as not to bend along the curve of the adherend surface. May be. Moreover, the adhesive member 50 may be a member having elasticity or flexibility so as to absorb the unevenness of the adherend surface. The adherend surface is, for example, the lower surface (surface on the −Z side) of the biosensor 10 including the measurement surface R1.
 ここで、図5A~図5Cを参照し、粘着部材50の詳細について説明する。図5A~図5Cは、粘着部材50の構成例を示す。具体的には、図5Aは粘着部材50の上面図である。図5Bは、図5Aの一点鎖線L3を含むXZ平面を-Y側から見た断面図である。図5Cは、図5Aの一点鎖線L4を含むXZ平面を-Y側から見た断面図である。 Here, the details of the adhesive member 50 will be described with reference to FIGS. 5A to 5C. 5A to 5C show configuration examples of the adhesive member 50. FIG. Specifically, FIG. 5A is a top view of the adhesive member 50. 5B is a cross-sectional view of the XZ plane including the alternate long and short dash line L3 in FIG. 5A as viewed from the −Y side. 5C is a cross-sectional view of the XZ plane including the alternate long and short dash line L4 in FIG. 5A as viewed from the −Y side.
 図5B及び図5Cに示すように、粘着部材50は、センサ側粘着層51、遮光層52及び生体側粘着層53を含む。図5B及び図5Cでは、明瞭化のため、各層は実際よりも厚く示されている。 5B and 5C, the adhesive member 50 includes a sensor-side adhesive layer 51, a light shielding layer 52, and a living body-side adhesive layer 53. In FIGS. 5B and 5C, each layer is shown thicker than it actually is for clarity.
 センサ側粘着層51は、生体センサ10の測定面R1に粘着する生体適合性部材である。センサ側粘着層51は、例えば、アクリル系粘着剤又はシリコン系粘着剤等で形成される。センサ側粘着層51は、一方の面が生体センサ10に粘着し、他方の面が遮光層52に粘着するように構成された両面テープであってもよい。 The sensor-side adhesive layer 51 is a biocompatible member that adheres to the measurement surface R1 of the biosensor 10. The sensor side adhesive layer 51 is formed of, for example, an acrylic adhesive or a silicon adhesive. The sensor-side adhesive layer 51 may be a double-sided tape configured such that one surface adheres to the biosensor 10 and the other surface adheres to the light shielding layer 52.
 遮光層52は、測定空間MSに外光が入るのを防止する部材である。外光は、例えば、発光素子に由来する光以外の光である。遮光層52は、例えば、受光素子の受光波長帯に含まれる光を吸収する顔料を含む部材で形成される。受光素子の受光波長帯に含まれる光を反射する顔料を含む部材で形成されていてもよい。遮光層52は、典型的には、不透明且つ有色な部材で形成されている。本実施形態では、遮光層52は、近赤外光を吸収するカーボンブラックを含む黒色層である。但し、遮光層52は、黒以外の色を有する層であってもよい。 The light shielding layer 52 is a member that prevents external light from entering the measurement space MS. External light is light other than the light originating from a light emitting element, for example. The light shielding layer 52 is formed of, for example, a member including a pigment that absorbs light included in the light receiving wavelength band of the light receiving element. You may form with the member containing the pigment which reflects the light contained in the light reception wavelength range of a light receiving element. The light shielding layer 52 is typically formed of an opaque and colored member. In the present embodiment, the light shielding layer 52 is a black layer containing carbon black that absorbs near infrared light. However, the light shielding layer 52 may be a layer having a color other than black.
 遮光層52は、測定空間MSに外光が入るのを防止するばかりでなく、発光素子に由来する光が外部に漏れるのも防止できる。そのため、遮光層52は、外部に漏れた光が何らかの信号であると誤認されてしまうのを防止できる。 The light shielding layer 52 not only prevents outside light from entering the measurement space MS, but also prevents light originating from the light emitting element from leaking to the outside. Therefore, the light shielding layer 52 can prevent the light leaking outside from being misidentified as a signal.
 生体側粘着層53は、生体表面に粘着する生体適合性部材である。生体側粘着層53は、例えば、アクリル系粘着剤又はシリコン系粘着剤等で形成される。生体側粘着層53は、一方の面が生体表面に粘着し、他方の面が遮光層52に粘着するように構成された両面テープであってもよい。 The living body side adhesive layer 53 is a biocompatible member that adheres to the surface of the living body. The living body side adhesive layer 53 is formed of, for example, an acrylic adhesive or a silicon adhesive. The living body side adhesive layer 53 may be a double-sided tape configured such that one surface adheres to the surface of the living body and the other surface adheres to the light shielding layer 52.
 本実施形態では、生体側粘着層53は、センサ側粘着層51よりも粘着力が弱くなるように形成されている。生体センサ10を生体表面から取り外したときに粘着部材50が生体表面に付着したままとならないようにするためである。この構成は、粘着部材50の誤飲の発生を防止できる。同様の理由により、生体側粘着層53の下面(-Z側の面)は、上面(+Z側の面)よりも粘着力が弱くなるように形成されていてもよい。 In the present embodiment, the living body side adhesive layer 53 is formed so as to have a lower adhesive strength than the sensor side adhesive layer 51. This is to prevent the adhesive member 50 from remaining attached to the living body surface when the living body sensor 10 is removed from the living body surface. This configuration can prevent accidental ingestion of the adhesive member 50. For the same reason, the lower surface (the −Z side surface) of the living body side adhesive layer 53 may be formed so that the adhesive force is weaker than the upper surface (the + Z side surface).
 また、本実施形態では、生体側粘着層53は、被検者の皮膚に接触したとしても、かぶれ及び皮膚アレルギ等の炎症反応が起きないように生体適合性部材で形成されている。また、基本的に皮膚に接触することがないセンサ側粘着層51も生体適合性部材で形成されている。センサ側粘着層51が誤って皮膚に接触した場合に炎症反応が起きないようにするためである。 In the present embodiment, the living body-side adhesive layer 53 is formed of a biocompatible member so that an inflammatory reaction such as a rash and a skin allergy does not occur even when it comes into contact with the skin of the subject. The sensor-side adhesive layer 51 that basically does not contact the skin is also formed of a biocompatible member. This is to prevent an inflammatory reaction from occurring when the sensor-side adhesive layer 51 accidentally contacts the skin.
 以上の構成により、生体センサ10を扱う作業者(被検者を含む。)は、ベルト又はバンド等を利用した複雑な装着機構を用いることなく、生体センサ10を短時間で簡単に被検者に装着することができる。また、作業者は、装着のやり直しを簡単に行うことができ、生体センサ10の位置決め精度を高めることができる。そのため、日常生活の中でも使いやすい生体センサが提供され得る。また、素早く且つ手間を掛けることなく被検者の生体情報が計測されることが求められる医療(特に救命救急)の現場でも使用可能な生体センサが提供され得る。また、装着に関する痛み等の違和感ができるだけ少ないことが求められる見守りの現場でも使用可能な生体センサが提供され得る。 With the above configuration, an operator (including a subject) who handles the biosensor 10 can easily and easily remove the biosensor 10 in a short time without using a complicated mounting mechanism using a belt or a band. Can be attached to. In addition, the operator can easily perform re-mounting and can improve the positioning accuracy of the biosensor 10. Therefore, a biosensor that is easy to use in daily life can be provided. In addition, a biological sensor that can be used in medical (especially critical care) sites that are required to measure biological information of a subject quickly and without taking time can be provided. In addition, a biosensor that can be used at a watching site where it is required that there is as little discomfort such as pain associated with wearing as much as possible can be provided.
 また、被検者に取り付けられた粘着部材50は、測定空間MSへの外光の侵入を遮断できる。そのため、粘着部材50が取り付けられた生体センサ10が用いられる場合には、生体センサ10が屋外で使用される場合であっても、信頼性の高い生体情報が推定され得る。 In addition, the adhesive member 50 attached to the subject can block external light from entering the measurement space MS. Therefore, when the biological sensor 10 to which the adhesive member 50 is attached is used, highly reliable biological information can be estimated even when the biological sensor 10 is used outdoors.
 また、反射部20は、発光部11で発せられ且つ生体で反射された微弱な散乱光を生体に向けて反射させることができる。そのため、受光部12は、発光部11で発せられ且つ生体で反射されて受光部12に直行する光ばかりではなく、反射部20と生体との間で1又は複数回反射を繰り返した光をも受光できる。その結果、生体センサ10は、被検者の生体情報をより高精度に推定でき、或いは、外部の機器に被検者の生体情報をより高精度に推定させることができる。 Further, the reflecting unit 20 can reflect the weak scattered light emitted from the light emitting unit 11 and reflected by the living body toward the living body. Therefore, the light receiving unit 12 not only emits the light emitted from the light emitting unit 11 and is reflected by the living body and goes directly to the light receiving unit 12, but also the light that is repeatedly reflected one or more times between the reflecting unit 20 and the living body. Can receive light. As a result, the biological sensor 10 can estimate the biological information of the subject with higher accuracy, or can cause an external device to estimate the biological information of the subject with higher accuracy.
 次に、図6を参照し、粘着部材50による更なる効果について説明する。図6は、被検者の皮膚表面に装着された生体センサの断面図である。具体的には、図2Bの一点鎖線L5を含むXZ平面を-Y側から見た断面図である。図6では、図の明瞭化のため、中空のケース18が中実の部材として示されている。 Next, further effects of the adhesive member 50 will be described with reference to FIG. FIG. 6 is a cross-sectional view of the biosensor mounted on the skin surface of the subject. Specifically, FIG. 2B is a cross-sectional view of the XZ plane including the alternate long and short dash line L5 in FIG. 2B as viewed from the −Y side. In FIG. 6, the hollow case 18 is shown as a solid member for clarity of illustration.
 図6に示すように、生体センサ10は、バンド等を利用した複雑な装着機構を用いることなく、粘着部材50を介して被検者の皮膚表面CSに装着されている。この状態において、反射部20は、図中の点線矢印で示す光の経路から分かるように、発光素子パッケージ11a及び発光素子パッケージ11bのそれぞれで発せられ且つ生体で反射された微弱な散乱光を生体に向けて反射させることができる。そのため、受光素子パッケージ12aは、発光素子パッケージ11a及び発光素子パッケージ11bのそれぞれで発せられ且つ生体で反射されて受光素子パッケージ12aに至る光ばかりではなく、反射部20と生体との間で1又は複数回反射を繰り返した光をも受光できる。その結果、生体センサ10は、被検者の生体情報をより高精度に推定でき、或いは、外部の機器に被検者の生体情報をより高精度に推定させることができる。 As shown in FIG. 6, the biosensor 10 is mounted on the skin surface CS of the subject via the adhesive member 50 without using a complicated mounting mechanism using a band or the like. In this state, as can be seen from the light path indicated by the dotted arrow in the drawing, the reflecting unit 20 emits the weak scattered light emitted from each of the light emitting element package 11a and the light emitting element package 11b and reflected by the living body. It can be reflected toward. Therefore, the light receiving element package 12a is not only the light emitted from each of the light emitting element package 11a and the light emitting element package 11b and reflected by the living body to reach the light receiving element package 12a, but also 1 or between the reflecting portion 20 and the living body. It can receive light that has been reflected multiple times. As a result, the biological sensor 10 can estimate the biological information of the subject with higher accuracy, or can cause an external device to estimate the biological information of the subject with higher accuracy.
 上述のように、本発明の実施形態に係る反射型の光学式生体情報測定装置としての生体センサ10は、発光部11と、発光部11で発せられた光を受ける受光部12と、発光部11で発せられ且つ生体で反射された光を反射する反射部20と、を備えている。また、生体センサ10は、生体表面に粘着する粘着部材50を有している。この構成により、より簡単に生体に装着できる光学式生体情報測定装置が提供され得る。そのため、救命救急の現場及び見守りの現場等でも使用可能な生体センサ10が提供され得る。 As described above, the biological sensor 10 as the reflective optical biological information measuring device according to the embodiment of the present invention includes the light emitting unit 11, the light receiving unit 12 that receives the light emitted from the light emitting unit 11, and the light emitting unit. 11 and the reflection part 20 which reflects the light emitted by 11 and reflected by the living body. The biosensor 10 has an adhesive member 50 that adheres to the surface of the living body. With this configuration, an optical biological information measuring device that can be more easily attached to a living body can be provided. Therefore, the biosensor 10 that can be used at a lifesaving emergency site, a monitoring site, or the like can be provided.
 また、反射部20は、発光部11が発する光量に対する、受光部12が受ける光量の比率を大きくすることができる。そのため、生体センサ10は、迅速で且つ高精度な生体情報の測定を実現しながらも発光エネルギを低減させることができる。すなわち、反射部20は、省エネルギ化を促進できる。 Further, the reflection unit 20 can increase the ratio of the amount of light received by the light receiving unit 12 to the amount of light emitted by the light emitting unit 11. Therefore, the biosensor 10 can reduce the light emission energy while realizing the measurement of the biometric information quickly and with high accuracy. That is, the reflection unit 20 can promote energy saving.
 生体センサ10は、例えば、生体表面に向き合うように構成された平坦な測定面R1を有する。そして、発光部11、受光部12、反射部20及び粘着部材50は、測定面R1に沿って配置されている。この構成により、生体センサ10を扱う作業者(被検者を含む。)は、ベルト又はバンド等を利用した複雑な装着機構を用いることなく、生体センサ10を短時間で簡単に被検者に装着することができる。 The biological sensor 10 has, for example, a flat measurement surface R1 configured to face the biological surface. And the light emission part 11, the light-receiving part 12, the reflection part 20, and the adhesion member 50 are arrange | positioned along the measurement surface R1. With this configuration, an operator (including a subject) who handles the biosensor 10 can easily and easily connect the biosensor 10 to the subject in a short time without using a complicated mounting mechanism using a belt or a band. Can be installed.
 粘着部材50は、例えば、センサ側粘着層51、遮光層52及び生体側粘着層53で構成されている。この場合、遮光層52は、例えば、発光部11と、受光部12と、反射部20の少なくとも一部とを囲むように配置されている。この構成により、被検者に取り付けられた粘着部材50は、測定空間MSへの外光の侵入を遮断できる。そのため、生体センサ10は、S/N比を高めることができる。その結果、粘着部材50が取り付けられた生体センサ10が用いられる場合には、生体センサ10が屋外で使用される場合であっても、信頼性の高い生体情報が推定され得る。 The adhesive member 50 includes, for example, a sensor side adhesive layer 51, a light shielding layer 52, and a living body side adhesive layer 53. In this case, the light shielding layer 52 is disposed so as to surround the light emitting unit 11, the light receiving unit 12, and at least a part of the reflecting unit 20, for example. With this configuration, the adhesive member 50 attached to the subject can block external light from entering the measurement space MS. Therefore, the biosensor 10 can increase the S / N ratio. As a result, when the biological sensor 10 to which the adhesive member 50 is attached is used, highly reliable biological information can be estimated even when the biological sensor 10 is used outdoors.
 粘着部材50は、ディスポーザブル製品として供給されてもよい。図7A~図7Dは、ディスポーザブル製品としての粘着部材50の構成例を示す。具体的には、図7Aは粘着部材50の上面図である。図7Bは、図7Aの一点鎖線L6を含むXZ平面を-Y側から見た断面図である。図7C及び図7Dは、図7Aの一点鎖線L7を含むXZ平面を-Y側から見た断面図である。 The adhesive member 50 may be supplied as a disposable product. 7A to 7D show a configuration example of the adhesive member 50 as a disposable product. Specifically, FIG. 7A is a top view of the adhesive member 50. FIG. 7B is a cross-sectional view of the XZ plane including the alternate long and short dash line L6 in FIG. 7A as viewed from the −Y side. 7C and 7D are cross-sectional views of the XZ plane including the alternate long and short dash line L7 in FIG. 7A when viewed from the −Y side.
 図7B~図7Dに示すように、粘着部材50は、センサ側粘着層51、遮光層52、生体側粘着層53、センサ側フィルム層54及び生体側フィルム層55を含む。図7B~図7Dでは、明瞭化のため、各層は実際よりも厚く示されている。 7B to 7D, the adhesive member 50 includes a sensor-side adhesive layer 51, a light shielding layer 52, a biological-side adhesive layer 53, a sensor-side film layer 54, and a biological-side film layer 55. In FIGS. 7B-7D, for clarity, each layer is shown thicker than it actually is.
 図7A~図7Dの粘着部材50は、ディスポーザブル製品として、生体センサ10とは別に供給されるように構成されている。そのため、粘着部材50は、センサ側フィルム層54がセンサ側粘着層51に貼り付けられ、且つ、生体側フィルム層55が生体側粘着層53に貼り付けられた状態で供給される。 7A to 7D are configured to be supplied separately from the biosensor 10 as a disposable product. Therefore, the adhesive member 50 is supplied in a state where the sensor side film layer 54 is attached to the sensor side adhesive layer 51 and the living body side film layer 55 is attached to the living body side adhesive layer 53.
 但し、図7A~図7Dの粘着部材50は、生体センサ10と共に供給されてもよい。この場合、生体センサ10と粘着部材50のセットは、センサ側粘着層51を生体センサ10に粘着させた状態で、且つ、生体側フィルム層55が生体側粘着層53に貼り付けられた状態で供給されてもよい。 However, the adhesive member 50 of FIGS. 7A to 7D may be supplied together with the biological sensor 10. In this case, the set of the biosensor 10 and the adhesive member 50 is in a state where the sensor-side adhesive layer 51 is adhered to the biosensor 10 and the biological-side film layer 55 is attached to the biological-side adhesive layer 53. It may be supplied.
 センサ側フィルム層54は、センサ側粘着層51を保護する部材であり、センサ側粘着層51が乾燥したり、生体センサ10以外の他の部材に粘着したりしてしまうのを防止できるように構成されている。また、センサ側フィルム層54は、作業者(被検者を含む。)が粘着部材50を生体センサ10へ粘着させる際にセンサ側フィルム層54を簡単に剥がせるように、つまみ部54Tを備えている。作業者は、図7Dに示すように、つまみ部54Tを指でつまんでセンサ側フィルム層54をセンサ側粘着層51から剥がすことでセンサ側粘着層51の表面(+Z側の面)を露出させることができる。 The sensor-side film layer 54 is a member that protects the sensor-side adhesive layer 51 so that the sensor-side adhesive layer 51 can be prevented from drying or sticking to other members other than the biosensor 10. It is configured. The sensor-side film layer 54 includes a knob portion 54T so that an operator (including a subject) can easily peel the sensor-side film layer 54 when the adhesive member 50 is adhered to the biosensor 10. ing. As shown in FIG. 7D, the operator pinches the knob portion 54T with a finger and peels the sensor side film layer 54 from the sensor side adhesive layer 51 to expose the surface (+ Z side surface) of the sensor side adhesive layer 51. be able to.
 生体側フィルム層55は、生体側粘着層53を保護する部材であり、生体側粘着層53が乾燥したり、生体表面以外の他の部材に粘着したりしてしまうのを防止できるように構成されている。また、生体側フィルム層55は、作業者(被検者を含む。)が粘着部材50を生体表面へ粘着させる際に生体側フィルム層55を簡単に剥がせるように、つまみ部55Tを備えている。作業者は、センサ側フィルム層54の場合と同様に、つまみ部55Tを指でつまんで生体側フィルム層55を生体側粘着層53から剥がすことで生体側粘着層53の表面(-Z側の面)を露出させることができる。 The living body side film layer 55 is a member that protects the living body side adhesive layer 53, and is configured to prevent the living body side adhesive layer 53 from drying or sticking to other members other than the living body surface. Has been. The living body side film layer 55 is provided with a knob portion 55T so that an operator (including a subject) can easily peel off the living body side film layer 55 when the adhesive member 50 is adhered to the surface of the living body. Yes. As in the case of the sensor-side film layer 54, the operator pinches the knob portion 55T with a finger and peels the biological-side film layer 55 from the biological-side adhesive layer 53 to thereby remove the surface of the biological-side adhesive layer 53 (on the −Z side). Surface) can be exposed.
 本実施形態では、つまみ部54T及びつまみ部55Tは何れも、図7Aに示すように、粘着部材50の同じ側(+X側)に配置されているが、互いに異なる側に配置されていてもよい。例えば、つまみ部54Tが粘着部材50の+Y側に配置され、つまみ部55Tが粘着部材50の-Y側に配置されていてもよい。また、つまみ部54T及びつまみ部55Tは、Z軸方向で重ならないように配置されているが、Z軸方向で重なるように配置されていてもよい。 In the present embodiment, the knob portion 54T and the knob portion 55T are both arranged on the same side (+ X side) of the adhesive member 50 as shown in FIG. 7A, but may be arranged on different sides. . For example, the knob portion 54T may be disposed on the + Y side of the adhesive member 50, and the knob portion 55T may be disposed on the −Y side of the adhesive member 50. Further, the knob portion 54T and the knob portion 55T are arranged so as not to overlap in the Z-axis direction, but may be arranged so as to overlap in the Z-axis direction.
 作業者は、例えば、センサ側フィルム層54をセンサ側粘着層51から剥がしてセンサ側粘着層51の表面を露出させた状態で、その表面を生体センサ10の測定面R1に接触させることで、粘着部材50を生体センサ10に粘着できる。 For example, the operator peels the sensor-side film layer 54 from the sensor-side adhesive layer 51 and exposes the surface of the sensor-side adhesive layer 51 to bring the surface into contact with the measurement surface R1 of the biosensor 10, The adhesive member 50 can be adhered to the biological sensor 10.
 その後、作業者は、粘着部材50を生体センサ10に粘着させた状態で、且つ、生体側フィルム層55を生体側粘着層53から剥がして生体側粘着層53の表面を露出させた状態で、その表面を生体表面に接触させることで、生体センサ10(厳密には粘着部材50)を生体表面に装着(粘着)できる。 Thereafter, the worker is in a state where the adhesive member 50 is adhered to the biological sensor 10 and the biological side film layer 55 is peeled off from the biological side adhesive layer 53 to expose the surface of the biological side adhesive layer 53. By bringing the surface into contact with the biological surface, the biological sensor 10 (strictly, the adhesive member 50) can be attached (adhered) to the biological surface.
 粘着部材50は、典型的には、生体表面に対する生体センサ10の複数回の装着し直しを許容できるように構成されている。そのため、作業者は、生体表面に対する生体センサ10の適切な装着位置を見つけるまでに複数回の装着し直しを行うことができる。但し、作業者は、生体側フィルム層55を生体側粘着層53から剥がす前に、すなわち、生体側フィルム層55が生体側粘着層53に貼り付けられた状態で、生体センサ10(厳密には生体側フィルム層55)を生体表面に接触させてもよい。生体表面に対する生体センサ10の適切な装着位置を見つけるためである。この場合、作業者は、装着し直しによる生体側粘着層53の粘着力の低下を抑えることができる。そして、作業者は、生体表面に対する生体センサ10の適切な装着位置を見つけた後で、生体側フィルム層55を生体側粘着層53から剥がし、生体側粘着層53の表面を生体表面に接触させることで、生体センサ10(厳密には生体側粘着層53)を生体表面に粘着させることができる。 The adhesive member 50 is typically configured to allow a plurality of remounts of the biosensor 10 to the surface of the living body. Therefore, the operator can perform remounting a plurality of times before finding an appropriate mounting position of the biosensor 10 on the surface of the living body. However, the operator does not remove the living body side film layer 55 from the living body side adhesive layer 53, that is, in a state where the living body side film layer 55 is attached to the living body side adhesive layer 53. The living body side film layer 55) may be brought into contact with the living body surface. This is because an appropriate mounting position of the biological sensor 10 with respect to the biological surface is found. In this case, the operator can suppress a decrease in the adhesive strength of the living body side adhesive layer 53 due to the reattachment. And after an operator finds the suitable mounting position of the biosensor 10 with respect to the biological body surface, it peels the biological body side film layer 55 from the biological body side adhesive layer 53, and makes the surface of the biological body side adhesive layer 53 contact the biological body surface. Thus, the biological sensor 10 (strictly speaking, the biological-side adhesive layer 53) can be adhered to the biological surface.
 このようにして、作業者は、複雑な装着機構を用いることなく、生体センサ10を短時間で簡単に被検者に装着することができる。 In this way, the operator can easily attach the biological sensor 10 to the subject in a short time without using a complicated attachment mechanism.
 次に、図8A~図8Cを参照し、粘着部材50の別の構成例について説明する。図8A~図8Cは、粘着部材50の別の構成例を示す。具体的には、図8Aは粘着部材50の上面図である。図8Bは、図8Aの一点鎖線L8を含むXZ平面を-Y側から見た断面図である。図8Cは、図8Aの一点鎖線L9を含むXZ平面を-Y側から見た断面図である。 Next, another configuration example of the adhesive member 50 will be described with reference to FIGS. 8A to 8C. 8A to 8C show another configuration example of the adhesive member 50. FIG. Specifically, FIG. 8A is a top view of the adhesive member 50. 8B is a cross-sectional view of the XZ plane including the alternate long and short dash line L8 in FIG. 8A as viewed from the −Y side. FIG. 8C is a cross-sectional view of the XZ plane including the alternate long and short dash line L9 in FIG. 8A when viewed from the −Y side.
 図8B及び図8Cに示すように、粘着部材50は、センサ側粘着層51、遮光層52及び生体側粘着層53を含む。図8B及び図8Cでは、明瞭化のため、各層は実際よりも厚く示されている。 8B and 8C, the adhesive member 50 includes a sensor-side adhesive layer 51, a light shielding layer 52, and a living body-side adhesive layer 53. In FIGS. 8B and 8C, each layer is shown thicker than it actually is for clarity.
 図8A~図8Cの粘着部材50は、センサ側粘着層51の外縁が遮光層52で囲まれ、且つ、生体側粘着層53の外縁が遮光層52で囲まれている点で、図5A~図5Cの粘着部材50と異なるが、その他の点で図5A~図5Cの粘着部材50と同じである。そのため、共通部分の説明を省略し、相違部分を詳細に説明する。 The adhesive member 50 of FIGS. 8A to 8C is that the outer edge of the sensor side adhesive layer 51 is surrounded by the light shielding layer 52 and the outer edge of the living body side adhesive layer 53 is surrounded by the light shielding layer 52. Although different from the adhesive member 50 of FIG. 5C, the other points are the same as the adhesive member 50 of FIGS. 5A to 5C. Therefore, description of common parts is omitted, and different parts are described in detail.
 図8A~図8Cの遮光層52は、中央部52M及び縁部52Tで構成されている。中央部52Mは、XY平面に沿って延びる板状の部分であり、測定空間MSを囲むように矩形環形状を有する。縁部52Tは、中央部52Mの外縁に沿うように且つ中央部52Mから+Z方向及び-Z方向のそれぞれに突出するように形成される矩形環形状の部分である。 8A to 8C includes a central portion 52M and an edge portion 52T. The central portion 52M is a plate-like portion extending along the XY plane, and has a rectangular ring shape so as to surround the measurement space MS. The edge portion 52T is a rectangular ring-shaped portion formed so as to extend along the outer edge of the central portion 52M and to protrude in the + Z direction and the −Z direction from the central portion 52M.
 縁部52Tのうち+Z側に突出する部分は、センサ側粘着層51を囲むように矩形環形状を有する。また、縁部52Tのうち-Z側に突出する部分は、生体側粘着層53を囲むように矩形環形状を有する。但し、縁部52Tは、+Z側又は-Z側の何れか一方にのみ突出するように形成されていてもよい。 The portion of the edge 52T that protrudes to the + Z side has a rectangular ring shape so as to surround the sensor-side adhesive layer 51. Further, a portion of the edge portion 52T that protrudes toward the −Z side has a rectangular ring shape so as to surround the living body side adhesive layer 53. However, the edge 52T may be formed so as to protrude only to either the + Z side or the −Z side.
 この構成により、遮光層52は、測定空間MSへの外光の侵入をより確実に遮断できる。遮光層52は、センサ側粘着層51を介して測定空間MSへ侵入しようとする外光、及び、生体側粘着層53を介して測定空間MSへ侵入しようとする外光を遮断できるためである。 With this configuration, the light shielding layer 52 can more reliably block external light from entering the measurement space MS. This is because the light shielding layer 52 can block external light that enters the measurement space MS via the sensor-side adhesive layer 51 and external light that attempts to enter the measurement space MS via the living body-side adhesive layer 53. .
 また、図8A~図8Cの粘着部材50は、図7A~図7Dの粘着部材50と同様に、ディスポーザブル製品として供給されてもよい。この場合、図8A~図8Cの粘着部材50は、センサ側フィルム層54がセンサ側粘着層51に貼り付けられた状態で、且つ、生体側フィルム層55が生体側粘着層53に貼り付けられた状態で供給されてもよい。また、図8A~図8Cの粘着部材50は、生体センサ10と共に供給されてもよい。この場合、生体センサ10と粘着部材50のセットは、センサ側粘着層51を生体センサ10に粘着させた状態で、且つ、生体側フィルム層55が生体側粘着層53に貼り付けられた状態で供給されてもよい。 Further, the adhesive member 50 of FIGS. 8A to 8C may be supplied as a disposable product, similar to the adhesive member 50 of FIGS. 7A to 7D. In this case, the adhesive member 50 of FIGS. 8A to 8C has the sensor-side film layer 54 attached to the sensor-side adhesive layer 51 and the living-body-side film layer 55 attached to the living-body-side adhesive layer 53. It may be supplied in the state. 8A to 8C may be supplied together with the biosensor 10. In this case, the set of the biosensor 10 and the adhesive member 50 is in a state where the sensor-side adhesive layer 51 is adhered to the biosensor 10 and the biological-side film layer 55 is attached to the biological-side adhesive layer 53. It may be supplied.
 以上、本発明の好ましい実施形態について詳説した。しかしながら、本発明は、上述した実施形態に制限されることはない。上述した実施形態は、本発明の範囲を逸脱することなしに、種々の変形及び置換等が適用され得る。また、上述の実施形態を参照して説明された特徴のそれぞれは、技術的に矛盾しない限り、適宜に組み合わされてもよい。 The above is a detailed description of a preferred embodiment of the present invention. However, the present invention is not limited to the above-described embodiment. Various modifications and substitutions may be applied to the above-described embodiment without departing from the scope of the present invention. Moreover, each of the features described with reference to the above-described embodiments may be appropriately combined as long as there is no technical contradiction.
 例えば、上記実施形態では、生体センサ10は、制御部13が近赤外光を用いて生体情報を推定するように構成されているが、制御部13が緑色光又は青色光等の他の波長の光を用いて生体情報を推定するように構成されていてもよい。 For example, in the above embodiment, the biological sensor 10 is configured such that the control unit 13 estimates biological information using near-infrared light, but the control unit 13 uses other wavelengths such as green light or blue light. The living body information may be estimated using the light.
 また、上記実施形態では、センサ側粘着層51は、測定空間MSを取り囲むように環状に形成されているが、図9に示すように、独立した複数の領域51a~51dの組み合わせで構成されていてもよい。生体側粘着層53についても同様である。 In the above embodiment, the sensor-side adhesive layer 51 is formed in an annular shape so as to surround the measurement space MS. However, as shown in FIG. 9, the sensor-side adhesive layer 51 is composed of a combination of a plurality of independent regions 51a to 51d. May be. The same applies to the living body side adhesive layer 53.
 また、上記実施形態では、粘着部材50は、図5A~図5Cに示すように、センサ側粘着層51の表面積(+Z側の面の面積)が、生体側粘着層53の表面積(-Z側の面の面積)と同じになるように構成されている。但し、センサ側粘着層51の表面積が生体側粘着層53の表面積と異なるように構成されていてもよい。例えば、センサ側粘着層51の粘着力が生体側粘着層53の粘着力よりも強くなるよう、センサ側粘着層51の表面積が生体側粘着層53の表面積よりも大きくなるように構成されていてもよい。 In the above embodiment, as shown in FIGS. 5A to 5C, the adhesive member 50 has the surface area of the sensor-side adhesive layer 51 (the area of the surface on the + Z side) equal to the surface area of the living body-side adhesive layer 53 (the −Z side). It is configured to be the same as the area of the surface. However, the sensor-side adhesive layer 51 may have a surface area different from that of the living body-side adhesive layer 53. For example, the sensor-side adhesive layer 51 is configured such that the surface area of the sensor-side adhesive layer 51 is larger than the surface area of the biological-side adhesive layer 53 so that the adhesive force of the sensor-side adhesive layer 51 is stronger than the adhesive force of the biological-side adhesive layer 53. Also good.
 また、上記実施形態では、粘着部材50は、図2Bに示すように、XY平面において、生体センサ10のケース18からはみ出さないように構成されているが、XY平面において、ケース18からはみ出るように構成されていてもよい。 In the above embodiment, as shown in FIG. 2B, the adhesive member 50 is configured not to protrude from the case 18 of the biosensor 10 in the XY plane, but seems to protrude from the case 18 in the XY plane. It may be configured.
 本願は、2018年2月16日に出願した日本国特許出願2018-025673号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本願に参照により援用する。 This application claims priority based on Japanese Patent Application No. 2018-025673 filed on Feb. 16, 2018, the entire contents of which are incorporated herein by reference.
 10・・・生体センサ 11・・・発光部 11a、11b・・・発光素子パッケージ 11a1、11a2、11b1、11b2・・・発光素子 11c・・・ドライブ回路 12・・・受光部 12a1・・・受光素子 12b・・・増幅回路 13・・・制御部 14・・・無線通信部 15・・・基板 18・・・ケース 20・・・反射部 50・・・粘着部材 50W・・・窓部 51・・・センサ側粘着層 51a~51d・・・領域 52・・・遮光層 52M・・・中央部 52T・・・縁部 53・・・生体側粘着層 54・・・センサ側フィルム層 54T・・・つまみ部 55・・・生体側フィルム層 55T・・・つまみ部 CS・・・皮膚表面 MS・・・測定空間 R1・・・測定面 W1a、W1b、W2・・・窓部 DESCRIPTION OF SYMBOLS 10 ... Biosensor 11 ... Light emission part 11a, 11b ... Light emitting element package 11a1, 11a2, 11b1, 11b2 ... Light emitting element 11c ... Drive circuit 12 ... Light receiving part 12a1 ... Light reception Element 12b ... Amplification circuit 13 ... Control unit 14 ... Wireless communication unit 15 ... Substrate 18 ... Case 20 ... Reflecting part 50 ... Adhesive member 50W ... Window part 51. ··· Sensor side adhesive layer 51a to 51d ··· region 52 ··· Shading layer · 52M · · · center portion · 52T · · · edge portion · 53 · biological side adhesive layer · · · 54 · sensor side film layer ··· 54T · · · -Knob part 55 ... Living body side film layer 55T ... Knob part CS ... Skin surface MS ... Measurement space R1 ... Measurement surface W1a, W1b, W ... window

Claims (5)

  1.  発光部と、前記発光部で発せられた光を受ける受光部と、前記発光部で発せられ且つ生体で反射された光を反射する反射部と、を備えた反射型の光学式生体情報測定装置であって、
     生体表面に粘着する粘着部材を有する、
     光学式生体情報測定装置。
    A reflective optical biological information measuring apparatus comprising: a light emitting unit; a light receiving unit that receives light emitted from the light emitting unit; and a reflecting unit that reflects light emitted from the light emitting unit and reflected from a living body. Because
    Having an adhesive member that adheres to the surface of the living body,
    Optical biological information measuring device.
  2.  生体表面に向き合うように構成された平坦な測定面を有し、
     前記発光部、前記受光部、前記反射部及び前記粘着部材は前記測定面に配置されている、
     請求項1に記載の光学式生体情報測定装置。
    Having a flat measuring surface configured to face the surface of the living body,
    The light emitting unit, the light receiving unit, the reflecting unit, and the adhesive member are disposed on the measurement surface,
    The optical biological information measuring device according to claim 1.
  3.  前記粘着部材は、粘着層と遮光層を含み、
     前記遮光層は、前記発光部、前記受光部及び前記反射部を囲むように配置されている、
     請求項1又は2に記載の光学式生体情報測定装置。
    The adhesive member includes an adhesive layer and a light shielding layer,
    The light shielding layer is disposed so as to surround the light emitting unit, the light receiving unit, and the reflecting unit.
    The optical biological information measuring device according to claim 1 or 2.
  4.  前記遮光層は、前記粘着層を取り囲むように構成されている、
     請求項3に記載の光学式生体情報測定装置。
    The light shielding layer is configured to surround the adhesive layer.
    The optical biological information measuring device according to claim 3.
  5.  発光部と、前記発光部で発せられた光を受ける受光部と、前記発光部で発せられ且つ生体で反射された光を反射する反射部と、を備えた反射型の光学式生体情報測定装置に取り付けられる粘着部材であって、
     生体表面に向き合うように構成された前記光学式生体情報測定装置の平坦な測定面に取り付けられ、且つ、生体表面に粘着するように構成されている、
     粘着部材。
    A reflective optical biological information measuring apparatus comprising: a light emitting unit; a light receiving unit that receives light emitted from the light emitting unit; and a reflecting unit that reflects light emitted from the light emitting unit and reflected from a living body. An adhesive member attached to
    It is attached to the flat measurement surface of the optical biological information measuring device configured to face the biological surface, and is configured to adhere to the biological surface.
    Adhesive member.
PCT/JP2019/005278 2018-02-16 2019-02-14 Optical bioinformation measurement device and adhesive member WO2019160012A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-025673 2018-02-16
JP2018025673A JP2021061871A (en) 2018-02-16 2018-02-16 Optical biological information measuring device and adhesive member

Publications (1)

Publication Number Publication Date
WO2019160012A1 true WO2019160012A1 (en) 2019-08-22

Family

ID=67619390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005278 WO2019160012A1 (en) 2018-02-16 2019-02-14 Optical bioinformation measurement device and adhesive member

Country Status (2)

Country Link
JP (1) JP2021061871A (en)
WO (1) WO2019160012A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08215180A (en) * 1994-12-24 1996-08-27 Boehringer Mannheim Gmbh Device for property detemination of tissue
JP2008099890A (en) * 2006-10-19 2008-05-01 Sharp Corp Living body information measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08215180A (en) * 1994-12-24 1996-08-27 Boehringer Mannheim Gmbh Device for property detemination of tissue
JP2008099890A (en) * 2006-10-19 2008-05-01 Sharp Corp Living body information measuring device

Also Published As

Publication number Publication date
JP2021061871A (en) 2021-04-22

Similar Documents

Publication Publication Date Title
EP2745771B1 (en) Living organism sensor
JP2547840Y2 (en) Oximeter probe
US10299724B2 (en) Wristwatch including an integrated pulse oximeter or other modules that sense physiological data
EP2745772B1 (en) Living organism sensor
KR101335976B1 (en) Single use pulse oximeter
JP5410357B2 (en) Laminated adhesive optical sensor
TW453862B (en) Near infrared spectrophotometric monitoring assembly for non-invasive monitoring of blood oxygenation levels in a subjects's body
US8452364B2 (en) System and method for attaching a sensor to a patient's skin
JP2001149349A (en) Sensor for living body
JP2004329406A (en) Medical sensor, pulse type oxygen concentration sensor, and kit for attaching these sensors to body of patient
JP5446915B2 (en) Biological information detector and biological information measuring device
US20090012380A1 (en) Deformable physiological sensor
JP2013000540A (en) Pulse wave detector, and pulse wave detection system
WO2019160012A1 (en) Optical bioinformation measurement device and adhesive member
JP2008126017A (en) Optical sensor, and measurement system using the same
JP4393568B2 (en) Pulse wave measuring instrument
WO2019167781A1 (en) Device for optical measurement of biological information, translucent film, and method for attaching translucent film to device for optical measurement of biological information
JP2020142077A (en) Sensor structure
CN114376532B (en) Reflection type photoplethysmography sensor and biological information measuring device
WO2018051975A1 (en) Biological information measurement device
JP2019136442A (en) Biological information measurement device
WO2019181268A1 (en) Biological information measurement device
JP2006102171A (en) Pulse wave measuring instrument
US11872017B2 (en) Detecting device and measuring device
CN217033574U (en) SPO2 sensor with strong anti-interference performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP