WO2019159959A1 - Piezoelectric element-driven valve and flow volume control device - Google Patents

Piezoelectric element-driven valve and flow volume control device Download PDF

Info

Publication number
WO2019159959A1
WO2019159959A1 PCT/JP2019/005082 JP2019005082W WO2019159959A1 WO 2019159959 A1 WO2019159959 A1 WO 2019159959A1 JP 2019005082 W JP2019005082 W JP 2019005082W WO 2019159959 A1 WO2019159959 A1 WO 2019159959A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric element
valve
heat insulating
insulating spacer
control device
Prior art date
Application number
PCT/JP2019/005082
Other languages
French (fr)
Japanese (ja)
Inventor
土肥 亮介
勝幸 杉田
薫 平田
川田 幸司
池田 信一
西野 功二
Original Assignee
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン filed Critical 株式会社フジキン
Priority to JP2020500515A priority Critical patent/JPWO2019159959A1/en
Publication of WO2019159959A1 publication Critical patent/WO2019159959A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K49/00Means in or on valves for heating or cooling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/06Drive circuits; Control arrangements or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure

Definitions

  • the present invention relates to a piezoelectric element drive type valve that controls opening and closing of a valve element using a piezoelectric element, and a flow rate control device that uses this to control the flow rate.
  • the pressure type flow rate control device can control the flow rate of various fluids with high accuracy by a relatively simple mechanism that combines a piezoelectric element driven valve and a throttle (for example, an orifice plate). Widely used in plants (for example, Patent Document 1).
  • Patent Document 2 discloses a piezoelectric element drive type valve configured to open and close a valve body (for example, a metal diaphragm valve body) with an actuator using a piezoelectric element (hereinafter, also referred to as “piezoelectric actuator”). It is disclosed. Piezoelectric element-driven valves are classified into a normal open type and a normal close type, and a mechanism for converting the expansion of the piezoelectric actuator into the opening / closing operation of the valve body is provided according to each type.
  • a general piezoelectric actuator built in a piezoelectric element driven valve has a structure in which a laminated piezoelectric element or a single piezoelectric element is sealed in a metal case, and the allowable temperature range of the piezoelectric element is For example, it is set to ⁇ 20 to 120 ° C. For this reason, there is a limit to the temperature of the fluid to be controlled.
  • Patent Document 3 discloses a high-temperature heat-resistant piezoelectric element-driven valve for enabling control of a fluid having a temperature exceeding the allowable temperature range of the piezoelectric actuator.
  • a heat dissipation spacer is provided between the piezoelectric actuator and the valve body, and a configuration in which heat from the fluid is not easily transmitted to the piezoelectric element is employed.
  • the present invention has been made in view of the above problems, and has as its main object to provide a piezoelectric element-driven valve capable of controlling even a fluid having a temperature exceeding the allowable temperature range of the piezoelectric actuator, and a flow rate control device including the same.
  • a piezoelectric element driven valve includes a piezoelectric element for detaching and seating a valve body from a valve seat, a heat insulating spacer disposed between the valve body and the piezoelectric element, and a piezoelectric element.
  • the heat insulating spacer is provided with a plurality of holes penetrating along the direction intersecting the stacking direction of the heat insulating spacer and the piezoelectric element.
  • a flow rate control device is provided in a valve body in which a flow path is formed, a piezoelectric element drive type valve provided in the flow path, and a flow path on the downstream side of the piezoelectric element drive type valve.
  • a pressure sensor provided between the piezoelectric element driven valve and the throttle part, and the piezoelectric element driven valve is extendable to allow the valve body to be separated from and seated on the valve seat.
  • the heat insulating spacer includes the heat insulating spacer and the piezoelectric element.
  • a plurality of holes penetrating along the direction crossing the stacking direction is formed.
  • the strain sensor includes a first strain gauge that detects displacement in the extension direction of the piezoelectric element and a second strain gauge that detects displacement in a direction orthogonal to the extension direction.
  • the plurality of holes formed in the heat insulating spacer are a hole extending along a first direction intersecting the stacking direction, and a second direction intersecting the stacking direction and the first direction. And a hole extending along a second direction different from the first direction.
  • the heat insulating spacer is formed of an invar material.
  • the piezoelectric element driven valve has a support cylinder body that accommodates the piezoelectric element and the heat insulating spacer and is supported so as to move up and down with respect to the valve body, and the piezoelectric element extends.
  • the normally closed type valve is configured such that the support cylinder moves.
  • an opening that overlaps at least partially with a hole provided in the heat insulating spacer is formed in the support cylinder.
  • the heat insulating spacer has a temperature at an upper end portion equal to or lower than a heat resistant temperature of the piezoelectric element by heat insulation while heat received from a fluid flowing through the flow path is transferred from the lower end portion to the upper end portion of the heat insulating spacer. Thus, a length between the lower end and the upper end is set.
  • FIG. 4 is a diagram illustrating an exemplary bridge circuit for obtaining a strain sensor output used in an embodiment of the present invention. It is a figure which shows the attachment aspect of a some strain sensor, (a) and (b) show another aspect, respectively. It is a typical figure showing composition of a flow control device by an embodiment of the present invention. It is a partial cross section figure which shows the piezoelectric element drive type valve which concerns on another embodiment of this invention.
  • FIG. 1 shows a piezoelectric element driven valve 100 according to an embodiment of the present invention.
  • the piezoelectric element driven valve 100 is attached to the valve body 1 in which the flow path F is formed, and is provided so as to control the flow rate of the fluid flowing through the flow path F.
  • the valve body 1 is made of, for example, stainless steel, and includes a hole that forms part of the valve chamber, a fluid inlet, a fluid outlet, a fluid passage, a valve chamber, a valve seat 5, and the like.
  • a metal diaphragm as the valve body 2 of the piezoelectric element driven valve 100 is disposed so as to be detachable from the valve seat 5 through the flow path F.
  • the valve body 2 is formed of, for example, a thin plate of nickel chrome alloy steel, and is formed in an inverted dish shape with a central portion slightly bulging upward.
  • the shape of the valve body 2 may be flat, and the material may be stainless steel, Inconel alloy, or other alloy steel.
  • the valve body 2 may be formed of a single diaphragm or may be formed by laminating two to three diaphragms.
  • the valve body (metal diaphragm) 2 is disposed in the valve chamber so as to be opposed to the valve seat 5, and the peripheral portion of the valve body 2 with respect to the valve body 1 by the presser adapter 4, the split base 26 and the cylinder body fixing / guide body 25. Holding fixed.
  • the presser adapter 4, the cylinder fixing / guide body 25, the split base 26 and the like are made of metal such as stainless steel. Further, the central portion of the valve body 2 is in contact with a valve body presser 3 fixed to a support cylinder 23 described later, and the valve body 2 is moved to and detached from the valve seat 5 by moving the valve body presser 3. be able to.
  • the heat insulating spacer 40 is disposed between the valve body 2 and the piezoelectric actuator 10, and these are accommodated inside the support cylinder 23.
  • the support cylinder 23 is formed by connecting the upper cylinder 23U that accommodates the piezoelectric actuator 10 and the lower cylinder 23L that accommodates the heat insulating spacer, but the support cylinder 23 is integrated. It may be provided as a typical cylinder.
  • the support cylinder 23 is formed in a cylindrical shape, and a cylindrical diameter-reduced portion having a reduced diameter for accommodating the lower cradle 9, the elastic member 18, and the like is formed in a lower portion of the support cylinder 23. . Further, an opening for fitting the valve body presser 3 is formed at the lowermost end portion of the support cylinder 23, and the valve body presser 3 is inserted and fixed therein.
  • FIG. 2A is a longitudinal sectional view of the supporting cylinder 23 (here, the lower cylinder 23L), and FIG. 2B is a sectional view taken along the line AA in FIG. 2A.
  • both side portions of the outer wall portion are removed over a certain length and depth, so that the split base pieces constituting the split base 26 are disposed on both sides.
  • a hole 23a is formed for insertion and combination in an opposing manner. That is, from both sides of the hole 23a, the half-divided split base pieces forming the split base 26 are assembled so as to face each other, and are integrally held and fixed as the split base 26 by the cylinder fixing / guide body 25.
  • the elastic member 18 is inserted into the bottom 23b of the reduced diameter portion 23d before the split base piece is assembled.
  • the valve body 1 to which the piezoelectric element driving valve 100 is attached is fixed to the primary connection portion 29A and the secondary connection portion 29B via a gasket 29C.
  • the piezoelectric element drive type valve 100, the valve body 1, the primary connection portion 29A, and the secondary connection portion 29B may be integrally accommodated in a protective case (not shown). Further, a control circuit board connected to the piezoelectric actuator 10 may be accommodated in the protective case. Furthermore, when incorporating in a pressure type flow control device, the valve body 1 may be provided with a pressure sensor communicating with the flow path.
  • the piezoelectric element drive type valve 100 can be assembled by a method similar to the method described in Patent Document 3, for example.
  • the piezoelectric element drive type valve 100 of the present embodiment is a normally closed type valve.
  • a valve opening signal is input from a control circuit (not shown) through the connector 15 (for example, input voltage: 0 to 120 V)
  • the piezoelectric actuator 10 extends by a set value (for example, 0 to 45 ⁇ m).
  • a pushing force of 40 to 80 kgf acts on the support cylinder 23, and the support cylinder 23 receives the elastic force of the elastic member 18 in a state where the shaft core is held by the O-ring inside the cylinder fixing / guide body 25.
  • it increases by the set value.
  • the valve body 2 is separated from the valve seat 5 by its elastic force and opened.
  • the piezoelectric actuator 10 returns to the original length dimension.
  • the elastic force of the elastic member 18 causes the piezoelectric actuator to The bottom portion of the support cylinder 23 is pushed downward, and the valve body 2 is brought into contact with the valve seat 5 by the valve body presser 3 to be closed.
  • a metal sealed laminated piezoelectric actuator in which a piezo stack in which piezoelectric elements are laminated is sealed in a metal container can be used.
  • This type of metal sealed laminated piezoelectric actuator is, for example, Nippon Special Ceramics Co., Ltd. What is marketed from etc. can be used.
  • the piezoelectric element drive type valve 100 of the present embodiment lifts and supports the valve body 2, the piezoelectric actuator 10 for opening and closing the valve body 2, and the piezoelectric actuator 10 so as to be away from the fluid flow path.
  • a heat insulating spacer 40 for insulating heat transmitted from the fluid flowing through the fluid flow path to the piezoelectric actuator 10 is provided.
  • the piezoelectric actuator 10 and the heat insulating spacer 40 are accommodated in the support cylinder 23.
  • at least a portion for accommodating the heat insulating spacer 40 is formed of the same material as the heat insulating spacer 40.
  • the heat insulating spacer 40 is preferably formed of a material having a low thermal expansion coefficient (preferably 2 ⁇ 10 ⁇ 6 / K or less) such as invar material such as invar, super invar, and stainless invar.
  • the lower cylindrical body 23L is also made of the same material as the heat insulating spacer 40, that is, a material having a low coefficient of thermal expansion (preferably 2 ⁇ 10 ⁇ 6 / K or less, such as invar material such as invar, super invar, and stainless invar).
  • the upper cylindrical body 23U is preferably formed of a material having a small thermal expansion coefficient, and can be formed of the same material as the lower cylindrical body 23L.
  • the heat insulating spacer 40 is preferably formed from a highly heat conductive material such as a metal or an alloy from the viewpoint of heat insulating efficiency, and an Invar material is also suitable in this respect.
  • a highly heat conductive material such as a metal or an alloy from the viewpoint of heat insulating efficiency
  • an Invar material is also suitable in this respect.
  • Specific examples of the invar material include an Fe-36 wt% Ni alloy.
  • the invar material has a low thermal conductivity, it can be suitably used for a heat insulating material.
  • the heat insulating spacer 40 insulates the heat received from the fluid flowing through the flow path F from the lower end portion of the heat insulating spacer 40 to the upper end portion, whereby the temperature of the upper end portion of the heat insulating spacer 40, that is, in the illustrated example, the heat insulating
  • the length (height dimension) of the heat insulating spacer 40 is set so that the temperature at the location where the spacer 40 and the piezoelectric actuator 10 are in contact with each other is equal to or lower than the heat resistant temperature of the piezoelectric actuator 10.
  • the heat insulating spacer 40 is formed in a columnar shape having the same height and diameter as the piezoelectric actuator 10 as shown in the illustrated example.
  • the lower cylindrical body 23L can use the supporting cylindrical body that has been used for housing the piezoelectric actuator 10 in the related art as it is.
  • the heat insulating spacer 40 supports the piezoelectric actuator 10 at a lifted position so as to be away from the flow path F, a part of the heat of the high-temperature fluid flowing through the flow path F is transferred to the piezoelectric actuator 10. Before, it is insulated by the heat insulating spacer 40. As a result, even if the temperature of the fluid flowing through the flow path F exceeds the allowable temperature range of the piezoelectric actuator 10, the temperature of the piezoelectric actuator 10 can be suppressed within the allowable temperature range.
  • the support cylinder 23 that accommodates and supports the heat insulating spacer 40 and the piezoelectric actuator 10 is formed of the same material as the heat insulating spacer 40, the heat insulation of the heat insulating spacer 40 and the portion surrounding the heat insulating spacer 40 are surrounded.
  • the thermal elongation of the support cylinder 23 can be made equal or substantially equal. As a result, even when a valve lift of a minute lift of 50 ⁇ m or less, for example, can be controlled with high accuracy.
  • the heat insulating spacer 40 in this embodiment has a stacking direction of the heat insulating spacer 40 and the piezoelectric actuator 10 (or a stacking direction of a plurality of piezoelectric elements when a piezo stack is used).
  • a plurality of holes 40H are formed along a direction intersecting the vertical direction D1 (in the figure, the orthogonal horizontal direction). More specifically, the first hole 40H1 penetrating along the first horizontal direction D2 and the second hole penetrating along the second horizontal direction D3 orthogonal to the first hole 40H1 (the frontward direction in FIG. 1). Holes 40H2.
  • a rod-like heat insulating spacer 40 extending in the longitudinal direction is used, and the vertical direction D1 corresponds to the longitudinal direction of the heat insulating spacer 40.
  • the heat insulation spacer 40 the thing of the aspect which laminated
  • the surface area of the heat insulating spacer 40 can be increased, and the heat conducted can be dissipated to the outside and the heat insulating property can be improved.
  • the temperature of the piezoelectric element of the piezoelectric actuator 10 can be maintained at 100 ° C. or lower due to the heat insulating effect of the heat insulating spacer 40.
  • the piezoelectric element drive type valve 100 can be suitably used even in applications where the temperature is higher than conventional.
  • the drilling of the plurality of holes 40H can be performed relatively easily using a drill or the like, even if the insulating spacer 40 is made of Invar material. For this reason, high temperature tolerance can be improved effectively at low cost.
  • an opening 23H is also provided in the support cylinder 23 at a position corresponding to the hole 40H provided in the heat insulating spacer 40.
  • the opening 23 ⁇ / b> H of the support cylinder 23 is preferably formed so as to at least partially overlap the hole 40 ⁇ / b> H provided in the heat insulating spacer 40.
  • the number and shape of the holes 40H may be various as long as desired rigidity is maintained in the heat insulating spacer 40, and may be, for example, 2 to 10 round holes.
  • the shape of the hole may be, for example, a long hole, a square hole, a triangular hole, or the like.
  • the hole may be formed by the screw hole, and thereby the surface area of the hole can be expanded, and the heat insulation efficiency can be improved.
  • the drilling directions of the plurality of holes may be different from each other or the same direction.
  • a piezoelectric element drive type valve 110 according to another embodiment shown in FIG. 7 shows an example in which the hole 40H is a long hole and the upper hole 40H1 and the lower hole 40H2 are parallel to each other. It is.
  • the strain sensor 20 for directly detecting the degree of expansion of the piezoelectric element constituting the piezoelectric actuator 10 is fixed to the side surface of the piezoelectric element.
  • the piezoelectric actuator 10 used in the present embodiment will be described.
  • FIG. 3A is an exploded view of the outer cylinder 10a and a plurality of piezoelectric elements 10b (hereinafter sometimes referred to as piezo stacks) accommodated in a line in the cylinder 10a.
  • FIG. 3B shows a state in which the connector portion 10c shown in FIG.
  • the strain sensor 20 is directly attached to at least one of the plurality of piezoelectric elements 10b by an adhesive or the like.
  • the strain sensor 20 is disposed on the side surface of the piezoelectric element.
  • the strain sensor 20 includes a first strain gauge 20z that detects strain in the stacking direction of the piezoelectric elements, that is, the z direction that is the main extension direction of the piezo stack.
  • the second strain gauge 20x detects strain in the x direction orthogonal to the main extension direction.
  • KFR-02N, KFGS-1, and KFGS-3 manufactured by Kyowa Denki Co., Ltd. can be used.
  • the piezoelectric actuator 10 may be configured by a single piezoelectric element housed in a cylindrical body and a strain sensor attached to this side surface.
  • the first strain gauge 20z is attached to the side surface of the piezoelectric element so that the entire first strain gauge 20z is in contact with the piezoelectric element, and the second strain gauge 20x crosses the central portion of the first strain gauge 20z. Affixed to the piezoelectric element.
  • the first strain gauge 20z and the second strain gauge 20x can detect the extension amount of the piezoelectric element as a change in electric resistance of the first strain gauge 20z and the second strain gauge 20x.
  • the connector portion 10c is connected to a pair of drive voltage terminals 22a and 22b for applying a drive voltage to the piezo stack 10b and one terminal of the first strain gauge 20z.
  • the first strain sensor output terminal 24a, the strain sensor common output terminal 24c commonly connected to the other terminal of the first strain gauge 20z and one terminal of the second strain gauge 20x, and the second strain gauge 20x.
  • a second strain sensor output terminal 24b connected to the other terminal is provided.
  • the plurality of piezoelectric elements constituting the piezo stack 10b are electrically connected to the drive voltage terminals 22a and 22b by a known circuit configuration, and all of the piezoelectric elements are applied by applying a voltage to the drive voltage terminals 22a and 22b. Can be extended in the stacking direction.
  • the first and second strain sensor output terminals 24a and 24b and the strain sensor common output terminal 24c are connected to a circuit provided on the external substrate, and a bridge circuit including the first strain gauge 20z and the second strain gauge 20x is provided. Is formed. In this bridge circuit, changes in the resistance values of the first strain gauge 20z and the second strain gauge 20x can be detected.
  • FIG. 4 shows an exemplary equivalent circuit for detecting resistance value changes of the first strain gauge 20z and the second strain gauge 20x.
  • resistors R1 and R2 provided between the branch points AD and between the branch points CD correspond to fixed resistors of known resistance values provided on the external substrate.
  • the resistor R3 provided between A and B corresponds to the first strain gauge 20z
  • the resistance values of the first strain gauge 20z and the second strain gauge 20x and the resistance values of the two fixed resistors R1 and R2 are set to be the same. For example, both are set to 120 ohms or 350 ohms. Is set.
  • the branch point A corresponds to the first strain sensor output terminal 24a
  • the branch point B corresponds to the strain sensor common output terminal 24c
  • the branch point C corresponds to the second strain sensor output terminal 24b.
  • the change in the resistance value of the first strain gauge 20z or the second strain gauge 20x in a state where a predetermined bridge applied voltage is applied between the branch points AC is the bridge output signal (branch point B- D (potential difference between D) is detected.
  • the bridge output signal is typically zero in the initial state in which no stress is generated in the first and second strain gauges 20z and 20x. Show.
  • the piezoelectric element to which the strain sensor 20 is attached expands in the z direction and contracts in the x direction orthogonal thereto.
  • the resistance value of the first strain gauge 20z increases corresponding to the expansion amount of the piezoelectric element
  • the resistance value of the second strain gauge 20x decreases corresponding to the contraction amount of the piezoelectric element.
  • the bridge output signal increases as the amount of distortion in decreases. For this reason, when the piezo stack is displaced, the bridge output signal fluctuates corresponding to the sum of the increased amount of strain of the first strain gauge 20z and the decreased amount of strain of the second strain gauge 20x. As a result, the bridge output signal can be amplified.
  • the bridge circuit by configuring the bridge circuit using the first strain gauge 20z and the second strain gauge 20x orthogonal to the first strain gauge 20z, it is possible to correct the resistance value change of the strain sensor 20 due to the temperature change. It is. This is because, for example, when the piezoelectric element expands due to a rise in temperature, the expansion works as an element for increasing the bridge output signal for the first strain gauge 20z, whereas This is because a bridge output signal that acts as an element for reducing the bridge output signal and in which the increase and decrease elements due to temperature are offset is obtained. For this reason, even when the piezoelectric element itself expands or contracts due to a change in temperature, the influence on the bridge output signal is reduced, and the extension degree of the piezoelectric element can be accurately measured. become.
  • strain sensors 20 may be attached to the side surfaces of the plurality of piezoelectric elements 10b.
  • the strain sensor 20 may be attached to each of two side surfaces that intersect at 90 ° of the piezoelectric element 10b.
  • the strain sensor 20 may be attached to each of two opposing side surfaces of the piezoelectric element 10b.
  • FIG. 6 is a schematic diagram showing the configuration of the flow control device 200.
  • the flow control device 200 includes a pressure control valve 66 provided in the flow path F on the inflow side of the gas G0, a flow control valve 68 provided on the downstream side of the pressure control valve 66, a downstream side of the pressure control valve 66, and A first (or upstream) pressure sensor 63 that detects an upstream pressure P 1 on the upstream side of the flow control valve 68 and a throttle portion 62 disposed on the downstream side of the pressure control valve 66 are provided.
  • the throttle unit 62 is configured by an orifice plate disposed on the upstream side of the flow control valve 68. Since the orifice plate has a fixed orifice area, the orifice plate functions as a throttle with a fixed opening.
  • the “throttle section” is a portion in which the cross-sectional area of the flow path is limited to be smaller than the cross-sectional area of the front and rear flow paths, and includes, for example, an orifice plate, a critical nozzle, a sonic nozzle However, it can also be configured using other things.
  • the throttle portion includes a valve structure as a variable orifice whose opening is the distance between the valve seat of the valve and the valve body. Such a valve structure functions as a throttle portion having a variable opening.
  • the flow control device 200 of the present embodiment also detects a second (or downstream) pressure sensor 64 that measures a downstream pressure P 2 downstream of the flow control valve 68 and a pressure P 0 upstream of the pressure control valve 66.
  • the inflow pressure sensor 65 is provided.
  • the flow control device 200 may not include the second pressure sensor 64 or the inflow pressure sensor 65 in another aspect.
  • the first pressure sensor 63 can measure the upstream pressure P 1 which is the fluid pressure between the pressure control valve 66 and the throttle unit 62 or the flow rate control valve 68, and the second pressure sensor 64 can measure the throttle unit 62 or The downstream pressure P 2 of the flow control valve 68 can be measured.
  • the inflow pressure sensor 65 measures an inflow pressure P 0 of a material gas, an etching gas, a carrier gas, or the like supplied to the flow rate control device 200 from a connected gas supply device (for example, a raw material vaporizer or a gas supply source). can do.
  • the inflow pressure P 0 can be used to control the gas supply amount and gas supply pressure from the gas supply device.
  • the downstream side of the flow rate control valve 68 is typically connected to, for example, a process chamber of a semiconductor manufacturing apparatus via a downstream valve (not shown).
  • a vacuum pump is connected to the process chamber.
  • the gas G1 whose flow rate is controlled is supplied from the flow rate control device 200 to the process chamber while the inside of the process chamber is evacuated.
  • the downstream valve for example, a known air driven valve whose opening / closing operation is controlled by compressed air, an electromagnetic valve, or the like can be used.
  • the flow path F of the flow control device 200 may be constituted by a pipe or a flow path hole formed in a metal block.
  • the first and second pressure sensors 63 and 64 may include, for example, a silicon single crystal sensor chip and a diaphragm.
  • the pressure control valve 66 may be, for example, a known piezoelectric element drive type valve that drives a metal diaphragm valve body with a piezoelectric actuator. As will be described later, the opening degree of the pressure control valve 66 is controlled in accordance with a signal output from the first pressure sensor 63. For example, the upstream pressure P 1 output from the first pressure sensor 63 is input. Feedback control is performed to maintain the set value.
  • the flow control valve 68 includes a valve element disposed so as to be attached to and detached from the valve seat, a piezoelectric element for moving the valve element, and a strain sensor 20 that detects an extension amount of the piezoelectric element.
  • the piezoelectric element driving type valve is provided with the piezoelectric element driving type valve 100 shown in FIG.
  • the flow rate control valve 68 is feedback controlled to drive the piezoelectric element based on a signal output from the strain sensor 20.
  • the flow control device 200 includes a first control circuit 67 that controls the opening / closing operation of the pressure control valve 66 based on the output of the first pressure sensor 63.
  • the first control circuit 67 is configured to feedback control the pressure control valve 66 so that the difference between the set upstream pressure received from the outside and the output of the first pressure sensor 63 becomes zero.
  • the upstream pressure P 1 on the downstream side of the pressure control valve 66 and the upstream side of the flow rate control valve 68 can be maintained at the set value.
  • the flow control device 200 also has a second control circuit 69 that receives the output from the strain sensor 20 provided in the flow control valve 68 as a piezo valve displacement and controls the drive of the flow control valve 68 based on this output. ing.
  • FIG. 6 shows a mode in which the first control circuit 67 and the second control circuit 69 are separately provided, but these may be provided integrally.
  • the first control circuit 67 and the second control circuit 69 may be built in the flow control device 200 or may be provided outside the flow control device 200.
  • the first control circuit 67 and the second control circuit 69 are typically constituted by a CPU, a memory (storage device) M such as a ROM or a RAM, an A / D converter, and the like, and execute a flow rate control operation described later.
  • the computer program comprised in this may be included.
  • the first control circuit 67 and the second control circuit 69 can be realized by a combination of hardware and software.
  • the flow control device 200 controls the flow control valve 66 while the first control circuit 67 and the second control circuit 69 control the pressure control valve 66 so that the upstream pressure P 1 output from the first pressure sensor 63 becomes a set value.
  • the flow rate of the fluid flowing downstream of the flow rate control valve 68 is controlled by controlling the driving of the 68 piezoelectric elements 10b.
  • the flow rate control device 200 has a critical expansion condition P 1 / P 2 ⁇ about 2 (P 1 : fluid pressure upstream of the throttle (upstream pressure), P 2 : fluid pressure downstream of the throttle (downstream pressure)).
  • P 1 fluid pressure upstream of the throttle
  • P 2 fluid pressure downstream of the throttle (downstream pressure)
  • the flow rate Q is considered to be approximately proportional to the upstream pressure P 1 and the valve opening Av of the flow control valve 68. Further, when the second pressure sensor 64 is provided, the flow rate can be calculated even when the difference between the upstream pressure P 1 and the downstream pressure P 2 is small and the above critical expansion condition is not satisfied.
  • FIG. 1 in the flow control device including the pressure control valve, the flow control valve provided on the downstream side of the pressure control valve, and the throttle unit provided on the downstream side of the pressure control valve, FIG.
  • the illustrated piezoelectric element drive type valve 100 of the present embodiment may be used as the pressure control valve 66 in the flow rate control device 200 shown in FIG.
  • the piezoelectric element drive type valve 100 may be used for both the pressure control valve 66 and the flow rate control valve 68.
  • the present invention is not limited to the above embodiment, and can be modified without departing from the spirit of the present invention.
  • the pressure control type flow control device has been described in the above embodiment, the present invention can be applied to a control method other than the pressure control method, for example, a thermal flow control device using a thermal sensor.
  • the fluid control device including the self-elastic elastic return type metal diaphragm valve body has been described.
  • those skilled in the art can apply the present invention to valve bodies other than the metal diaphragm. It is self-evident.
  • a flow control device includes a pressure control valve and a throttle unit, and pressure controls feedback control of the pressure control valve based on an output from a pressure sensor provided between the pressure control valve and the throttle unit.
  • the pressure control valve may use the piezoelectric element drive type valve 100 shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Details Of Valves (AREA)

Abstract

Provided is a piezoelectric element-driven valve 100 configured to be able to control a fluid having a temperature exceeding a use range temperature of a piezoelectric actuator. The piezoelectric element-driven valve 100 comprises: a piezoelectric element 10b for causing a valve body 2 to be separated from or seated on a valve seat 5; a heat-insulating spacer 40 disposed between the valve body 2 and the piezoelectric element 10b; and a distortion sensor 20 fixed to the piezoelectric element 10b. The heat-insulating spacer 40 has a plurality of holes 40H penetrating therethrough in a direction intersecting a stacking direction D1 of the heat-insulating spacer 40 and the piezoelectric element 10b.

Description

圧電素子駆動式バルブおよび流量制御装置Piezoelectric element driven valve and flow control device
 本発明は、圧電素子を利用して弁体を開閉制御する圧電素子駆動式バルブおよびこれを用いて流量を制御する流量制御装置に関する。 The present invention relates to a piezoelectric element drive type valve that controls opening and closing of a valve element using a piezoelectric element, and a flow rate control device that uses this to control the flow rate.
 圧力式流量制御装置は、圧電素子駆動式バルブと絞り部(例えばオリフィスプレート)とを組み合せた比較的簡単な機構によって各種流体の流量を高精度に制御することができるので、半導体製造装置や化学プラントにおいて広く利用されている(例えば、特許文献1)。 The pressure type flow rate control device can control the flow rate of various fluids with high accuracy by a relatively simple mechanism that combines a piezoelectric element driven valve and a throttle (for example, an orifice plate). Widely used in plants (for example, Patent Document 1).
 特許文献2には、圧電素子を用いたアクチュエータ(以下、「圧電アクチュエータ」と記すこともある)で弁体(例えば、金属ダイヤフラム弁体)を開閉させるように構成された圧電素子駆動式バルブが開示されている。圧電素子駆動式バルブにはノーマルオープン型とノーマルクローズ型とがあり、それぞれの型に応じて、圧電アクチュエータの伸長を弁体の開閉動作に変換するための機構が設けられている。 Patent Document 2 discloses a piezoelectric element drive type valve configured to open and close a valve body (for example, a metal diaphragm valve body) with an actuator using a piezoelectric element (hereinafter, also referred to as “piezoelectric actuator”). It is disclosed. Piezoelectric element-driven valves are classified into a normal open type and a normal close type, and a mechanism for converting the expansion of the piezoelectric actuator into the opening / closing operation of the valve body is provided according to each type.
特開2004-138425号公報JP 2004-138425 A 特開2007-192269号公報JP 2007-192269 A 特開2011-117499号公報JP 2011-117499 A
 圧電素子駆動式バルブに内蔵されている一般的な圧電アクチュエータは、積層された圧電素子または単一の圧電素子が金属ケース内に密封された構造を有しており、圧電素子の許容温度範囲は例えば-20~120℃に設定されている。そのため、制御する流体の温度に制限があった。 A general piezoelectric actuator built in a piezoelectric element driven valve has a structure in which a laminated piezoelectric element or a single piezoelectric element is sealed in a metal case, and the allowable temperature range of the piezoelectric element is For example, it is set to −20 to 120 ° C. For this reason, there is a limit to the temperature of the fluid to be controlled.
 この問題に対して、特許文献3には、圧電アクチュエータの許容温度範囲を超える温度の流体でも制御可能とするための高温耐熱型の圧電素子駆動式バルブが開示されている。特許文献3に記載の圧電駆動式バルブでは、圧電アクチュエータと弁体との間に放熱スペーサが設けられており、流体からの熱が圧電素子に伝わりにくい構成が採用されている。 In response to this problem, Patent Document 3 discloses a high-temperature heat-resistant piezoelectric element-driven valve for enabling control of a fluid having a temperature exceeding the allowable temperature range of the piezoelectric actuator. In the piezoelectric drive type valve described in Patent Document 3, a heat dissipation spacer is provided between the piezoelectric actuator and the valve body, and a configuration in which heat from the fluid is not easily transmitted to the piezoelectric element is employed.
 しかしながら、更なる高温対策が求められる近年の用途では、従来の圧電素子駆動式バルブの放熱性が十分でない場合もあり、より安定して使用できる圧電素子駆動式バルブが求められていた。 However, in recent applications where further measures against high temperatures are required, there is a case where the heat dissipation of the conventional piezoelectric element driving valve is not sufficient, and a piezoelectric element driving valve that can be used more stably has been required.
 本発明は、上記課題を鑑みてなされたものであり、圧電アクチュエータの許容温度範囲を超える温度の流体でも制御可能な圧電素子駆動式バルブおよびこれを備えた流量制御装置を提供することを主たる目的とする。 The present invention has been made in view of the above problems, and has as its main object to provide a piezoelectric element-driven valve capable of controlling even a fluid having a temperature exceeding the allowable temperature range of the piezoelectric actuator, and a flow rate control device including the same. And
 本発明の実施形態による圧電素子駆動式バルブは、弁体を弁座に離着座させるための圧電素子と、前記弁体と前記圧電素子との間に配置された断熱スペーサと、前記圧電素子に固定された歪センサとを有し、前記断熱スペーサには、前記断熱スペーサと前記圧電素子との積層方向に交差する方向に沿って貫通する複数の孔が設けられている。
 本発明の実施形態による流量制御装置は、流路が形成された弁本体と、前記流路に設けられた圧電素子駆動式バルブと、前記圧電素子駆動式バルブの下流側の流路に設けられた絞り部と、前記圧電素子駆動式バルブと前記絞り部との間に設けられた圧力センサとを備え、前記圧電素子駆動式バルブは、弁体を弁座に離着座させるために伸長可能な圧電素子と、前記弁体と前記圧電素子との間に配置された断熱スペーサと、前記圧電素子に固定された歪センサとを有し、前記断熱スペーサには、前記断熱スペーサと前記圧電素子との積層方向に交差する方向に沿って貫通する複数の孔が形成されている。
 ある実施形態において、前記歪センサは、前記圧電素子の伸長方向の変位を検知する第1歪ゲージと、前記伸長方向と直交する方向の変位を検知する第2歪ゲージとを含む。
 ある実施形態において、前記断熱スペーサに形成された前記複数の孔は、前記積層方向に交差する第1方向に沿って延びる孔と、前記積層方向に交差する第2方向であって前記第1方向とは異なる第2方向に沿って延びる孔とを含む。
 ある実施形態において、前記断熱スペーサは、インバー材で形成されている。
 ある実施形態において、前記圧電素子駆動式バルブは、前記圧電素子と前記断熱スペーサとを収容し、前記弁本体に対して上下動可能に支持された支持筒体を有し、前記圧電素子の伸長により、前記支持筒体が移動するように構成されたノーマルクローズ型のバルブである。
 ある実施形態において、前記支持筒体に、前記断熱スペーサに設けられた孔と少なくとも部分的に重なる開口部が形成されている。
 ある実施形態において、前記断熱スペーサは、前記流路を流れる流体から受けた熱が断熱スペーサの下端部から上端部へ伝熱する間の断熱により上端部の温度が前記圧電素子の耐熱温度以下となるように、前記下端部と上端部との間の長さが設定されている。
A piezoelectric element driven valve according to an embodiment of the present invention includes a piezoelectric element for detaching and seating a valve body from a valve seat, a heat insulating spacer disposed between the valve body and the piezoelectric element, and a piezoelectric element. The heat insulating spacer is provided with a plurality of holes penetrating along the direction intersecting the stacking direction of the heat insulating spacer and the piezoelectric element.
A flow rate control device according to an embodiment of the present invention is provided in a valve body in which a flow path is formed, a piezoelectric element drive type valve provided in the flow path, and a flow path on the downstream side of the piezoelectric element drive type valve. And a pressure sensor provided between the piezoelectric element driven valve and the throttle part, and the piezoelectric element driven valve is extendable to allow the valve body to be separated from and seated on the valve seat. A piezoelectric element; a heat insulating spacer disposed between the valve element and the piezoelectric element; and a strain sensor fixed to the piezoelectric element. The heat insulating spacer includes the heat insulating spacer and the piezoelectric element. A plurality of holes penetrating along the direction crossing the stacking direction is formed.
In one embodiment, the strain sensor includes a first strain gauge that detects displacement in the extension direction of the piezoelectric element and a second strain gauge that detects displacement in a direction orthogonal to the extension direction.
In one embodiment, the plurality of holes formed in the heat insulating spacer are a hole extending along a first direction intersecting the stacking direction, and a second direction intersecting the stacking direction and the first direction. And a hole extending along a second direction different from the first direction.
In one embodiment, the heat insulating spacer is formed of an invar material.
In one embodiment, the piezoelectric element driven valve has a support cylinder body that accommodates the piezoelectric element and the heat insulating spacer and is supported so as to move up and down with respect to the valve body, and the piezoelectric element extends. Thus, the normally closed type valve is configured such that the support cylinder moves.
In one embodiment, an opening that overlaps at least partially with a hole provided in the heat insulating spacer is formed in the support cylinder.
In one embodiment, the heat insulating spacer has a temperature at an upper end portion equal to or lower than a heat resistant temperature of the piezoelectric element by heat insulation while heat received from a fluid flowing through the flow path is transferred from the lower end portion to the upper end portion of the heat insulating spacer. Thus, a length between the lower end and the upper end is set.
本発明に係る圧電素子駆動式バルブの一実施形態を示す一部断面図である。It is a partial sectional view showing one embodiment of a piezoelectric element drive type valve concerning the present invention. (a)は支持筒体の断面図、(b)は(a)のA-A線に沿った断面図である。(A) is a cross-sectional view of the support cylinder, and (b) is a cross-sectional view taken along line AA of (a). 本発明の実施形態で用いられる圧電アクチュエータを示す図であり、(a)は筒体および内部に収容されるピエゾスタックを示し、(b)はコネクタ部を示す。It is a figure which shows the piezoelectric actuator used by embodiment of this invention, (a) shows the cylinder and the piezo stack accommodated in an inside, (b) shows a connector part. 本発明の実施形態で用いられる歪センサ出力を得るための例示的なブリッジ回路を示す図である。FIG. 4 is a diagram illustrating an exemplary bridge circuit for obtaining a strain sensor output used in an embodiment of the present invention. 複数の歪センサの取り付け態様を示す図であり、(a)および(b)はそれぞれ別の態様を示す。It is a figure which shows the attachment aspect of a some strain sensor, (a) and (b) show another aspect, respectively. 本発明の実施形態による流量制御装置の構成を示す模式的な図である。It is a typical figure showing composition of a flow control device by an embodiment of the present invention. 本発明の別の実施形態に係る圧電素子駆動式バルブを示す一部断面図である。It is a partial cross section figure which shows the piezoelectric element drive type valve which concerns on another embodiment of this invention.
 以下、図面を参照しながら本発明の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。
 図1は、本発明の実施形態による圧電素子駆動式バルブ100を示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.
FIG. 1 shows a piezoelectric element driven valve 100 according to an embodiment of the present invention.
 圧電素子駆動式バルブ100は、流路Fが形成された弁本体1に取り付けられており、流路Fを流れる流体の流量を制御するように設けられている。弁本体1は例えばステンレス鋼製であり、弁室の一部を形成する孔部および流体入口、流体出口、流体通路、弁室および弁座5等をそれぞれ備えている。 The piezoelectric element driven valve 100 is attached to the valve body 1 in which the flow path F is formed, and is provided so as to control the flow rate of the fluid flowing through the flow path F. The valve body 1 is made of, for example, stainless steel, and includes a hole that forms part of the valve chamber, a fluid inlet, a fluid outlet, a fluid passage, a valve chamber, a valve seat 5, and the like.
 また、流路Fに介在して、圧電素子駆動式バルブ100の弁体2としての金属ダイヤフラムが弁座5に対して離着座可能に配置されている。弁体2は、例えばニッケルクロム合金鋼の薄板により形成されており、中央部が上方へ僅かに膨出した逆皿形に形成されている。弁体2の形状は平板状であってもよく、また、材質もステンレス鋼やインコネル合金やその他の合金鋼であってもよい。弁体2は、1枚のダイヤフラムから形成されていてもよいし、2~3枚のダイヤフラムを積層して形成されていてもよい。 Further, a metal diaphragm as the valve body 2 of the piezoelectric element driven valve 100 is disposed so as to be detachable from the valve seat 5 through the flow path F. The valve body 2 is formed of, for example, a thin plate of nickel chrome alloy steel, and is formed in an inverted dish shape with a central portion slightly bulging upward. The shape of the valve body 2 may be flat, and the material may be stainless steel, Inconel alloy, or other alloy steel. The valve body 2 may be formed of a single diaphragm or may be formed by laminating two to three diaphragms.
 弁体(金属ダイヤフラム)2は、弁座5と対向状に弁室内へ配設され、その周縁部が、押えアダプター4、割りベース26および筒体固定・ガイド体25によって弁本体1に対して保持固定されている。なお、押えアダプター4、筒体固定・ガイド体25、割りベース26等はステンレス鋼等の金属製である。また、弁体2の中央部は、後述する支持筒体23に固定された弁体押え3と当接しており、弁体押え3を移動させることによって弁体2を弁座5に離着座させることができる。 The valve body (metal diaphragm) 2 is disposed in the valve chamber so as to be opposed to the valve seat 5, and the peripheral portion of the valve body 2 with respect to the valve body 1 by the presser adapter 4, the split base 26 and the cylinder body fixing / guide body 25. Holding fixed. The presser adapter 4, the cylinder fixing / guide body 25, the split base 26 and the like are made of metal such as stainless steel. Further, the central portion of the valve body 2 is in contact with a valve body presser 3 fixed to a support cylinder 23 described later, and the valve body 2 is moved to and detached from the valve seat 5 by moving the valve body presser 3. be able to.
 本実施形態の圧電素子駆動式バルブ100では、弁体2と圧電アクチュエータ10との間に断熱スペーサ40が配置されており、これらは支持筒体23の内側に収容されている。本実施形態では、支持筒体23が、圧電アクチュエータ10を収容する上部筒体23Uと、断熱スペーサを収容する下部筒体23Lとを連結することによって形成されているが、支持筒体23は一体的な筒体として設けられていてもよい。 In the piezoelectric element drive type valve 100 of the present embodiment, the heat insulating spacer 40 is disposed between the valve body 2 and the piezoelectric actuator 10, and these are accommodated inside the support cylinder 23. In the present embodiment, the support cylinder 23 is formed by connecting the upper cylinder 23U that accommodates the piezoelectric actuator 10 and the lower cylinder 23L that accommodates the heat insulating spacer, but the support cylinder 23 is integrated. It may be provided as a typical cylinder.
 支持筒体23は、円筒状に形成されおり、支持筒体23の下方部には、下部受台9および弾性部材18等を収納する縮径された円筒状の縮径部が形成されている。また、支持筒体23の最下端部は弁体押え3を嵌着するための開口が形成されており、ここに弁体押え3が挿入固定されている。 The support cylinder 23 is formed in a cylindrical shape, and a cylindrical diameter-reduced portion having a reduced diameter for accommodating the lower cradle 9, the elastic member 18, and the like is formed in a lower portion of the support cylinder 23. . Further, an opening for fitting the valve body presser 3 is formed at the lowermost end portion of the support cylinder 23, and the valve body presser 3 is inserted and fixed therein.
 図2(a)は支持筒体23(ここでは下部筒体23L)の縦断面図、図2(b)は図2(a)のA-A線に沿った断面図であり、支持筒体23の太径部23cと縮径部23dの境界近傍には、その外壁部の両側部を一定の長さおよび深さに亘って削除することにより、割りベース26を構成する割りベース片を両側から対向状に挿入組合せするための孔部23aが形成されている。即ち、孔部23aの両側から、割りベース26を形成する半割り状の割りベース片が対向状に組み付けされ、筒体固定・ガイド体25により割りベース26として一体的に保持固定される。なお、割りベース片を組付けする前に縮径部23dの底部23bへは弾性部材18が挿着されることは勿論である。 2A is a longitudinal sectional view of the supporting cylinder 23 (here, the lower cylinder 23L), and FIG. 2B is a sectional view taken along the line AA in FIG. 2A. In the vicinity of the boundary between the large-diameter portion 23c and the reduced-diameter portion 23d, both side portions of the outer wall portion are removed over a certain length and depth, so that the split base pieces constituting the split base 26 are disposed on both sides. A hole 23a is formed for insertion and combination in an opposing manner. That is, from both sides of the hole 23a, the half-divided split base pieces forming the split base 26 are assembled so as to face each other, and are integrally held and fixed as the split base 26 by the cylinder fixing / guide body 25. Of course, the elastic member 18 is inserted into the bottom 23b of the reduced diameter portion 23d before the split base piece is assembled.
 なお、図1に示すように、本実施形態では、圧電素子駆動式バルブ100が取り付けられた弁本体1が、1次接続部29Aおよび2次接続部29Bにガスケット29Cを介して固定されている。圧電素子駆動式バルブ100、弁本体1、1次接続部29Aおよび2次接続部29Bは、図示しない保護ケース内に一体的に収容されていてよい。また、保護ケース内には、圧電アクチュエータ10に接続された制御回路板が収容されていてもよい。さらに、圧力式流量制御装置に組み込む場合、弁本体1には、流路と連通する圧力センサが取り付けられていてもよい。圧電素子駆動式バルブ100の組立ては、例えば、特許文献3に記載の方法と同様の方法で行うことができる。 As shown in FIG. 1, in this embodiment, the valve body 1 to which the piezoelectric element driving valve 100 is attached is fixed to the primary connection portion 29A and the secondary connection portion 29B via a gasket 29C. . The piezoelectric element drive type valve 100, the valve body 1, the primary connection portion 29A, and the secondary connection portion 29B may be integrally accommodated in a protective case (not shown). Further, a control circuit board connected to the piezoelectric actuator 10 may be accommodated in the protective case. Furthermore, when incorporating in a pressure type flow control device, the valve body 1 may be provided with a pressure sensor communicating with the flow path. The piezoelectric element drive type valve 100 can be assembled by a method similar to the method described in Patent Document 3, for example.
 本実施形態の圧電素子駆動式バルブ100は、ノーマルクローズ型のバルブであり、制御回路(図示省略)からコネクター15を介して開弁信号が入力(例えば入力電圧:0~120V)されると、圧電アクチュエータ10は設定値(例えば0~45μm)だけ伸長する。これにより、例えば40~80kgfの押し上げ力が支持筒体23に働き、筒体固定・ガイド体25内側のOリングにより軸芯を保持された状態で支持筒体23が弾性部材18の弾性力に抗して上記設定値だけ上昇する。その結果、弁体2がその弾性力によって弁座5から離座し、開弁される。 The piezoelectric element drive type valve 100 of the present embodiment is a normally closed type valve. When a valve opening signal is input from a control circuit (not shown) through the connector 15 (for example, input voltage: 0 to 120 V), The piezoelectric actuator 10 extends by a set value (for example, 0 to 45 μm). As a result, for example, a pushing force of 40 to 80 kgf acts on the support cylinder 23, and the support cylinder 23 receives the elastic force of the elastic member 18 in a state where the shaft core is held by the O-ring inside the cylinder fixing / guide body 25. On the contrary, it increases by the set value. As a result, the valve body 2 is separated from the valve seat 5 by its elastic force and opened.
 一方、開弁入力がoffになる、すなわち、圧電素子への電圧無印加状態では、圧電アクチュエータ10が元の長さ寸法の状態に復帰し、その結果、弾性部材18の弾性力により圧電アクチュエータの支持筒体23の底部が下方向へ押し下げられ、弁体押え3により弁体2が弁座5へ当座し、閉弁状態となる。 On the other hand, when the valve opening input is turned off, that is, when no voltage is applied to the piezoelectric element, the piezoelectric actuator 10 returns to the original length dimension. As a result, the elastic force of the elastic member 18 causes the piezoelectric actuator to The bottom portion of the support cylinder 23 is pushed downward, and the valve body 2 is brought into contact with the valve seat 5 by the valve body presser 3 to be closed.
 圧電アクチュエータ10としては、圧電素子を積層したピエゾスタックを金属容器内に密封した金属密封型積層圧電アクチュエータを用いることができ、この種の金属密封型積層圧電アクチュエータは、例えば、日本特殊陶業株式会社等から販売されているものを使用することができる。 As the piezoelectric actuator 10, a metal sealed laminated piezoelectric actuator in which a piezo stack in which piezoelectric elements are laminated is sealed in a metal container can be used. This type of metal sealed laminated piezoelectric actuator is, for example, Nippon Special Ceramics Co., Ltd. What is marketed from etc. can be used.
 上記のように、本実施形態の圧電素子駆動式バルブ100は、弁体2と、弁体2を開閉駆動するための圧電アクチュエータ10と、圧電アクチュエータ10を流体流路から遠ざけるように持上げ支持するとともに、流体流路を流れる流体から圧電アクチュエータ10へ伝わる熱を断熱するための断熱スペーサ40を有しており、圧電アクチュエータ10と断熱スペーサ40とは、支持筒体23内に収容されている。支持筒体23は、ある好適な態様において、少なくとも断熱スペーサ40を収容する部分が、断熱スペーサ40と同じ材料で形成されている。 As described above, the piezoelectric element drive type valve 100 of the present embodiment lifts and supports the valve body 2, the piezoelectric actuator 10 for opening and closing the valve body 2, and the piezoelectric actuator 10 so as to be away from the fluid flow path. At the same time, a heat insulating spacer 40 for insulating heat transmitted from the fluid flowing through the fluid flow path to the piezoelectric actuator 10 is provided. The piezoelectric actuator 10 and the heat insulating spacer 40 are accommodated in the support cylinder 23. In a preferred embodiment, at least a portion for accommodating the heat insulating spacer 40 is formed of the same material as the heat insulating spacer 40.
 具体的には、断熱スペーサ40は、インバー、スーパーインバー、ステンレスインバー等のインバー材のように熱膨張係数の小さい材料(好ましくは、2×10-6/K以下)で形成されることが好ましい。同様に、下部筒体23Lもまた、断熱スペーサ40と同じ材料、すなわちインバー、スーパーインバー、ステンレスインバー等のインバー材のように熱膨張係数の小さい材料(好ましくは、2×10-6/K以下)で形成されることが好ましい。さらに、上部筒体23Uも熱膨張係数の小さい材料で形成することが好ましく、下部筒体23Lと同じ材料で形成することができる。なお、断熱スペーサ40は、断熱効率の観点から、金属、合金等の高熱伝導性材料から形成されていることが好ましく、その点でもインバー材は適している。具体的なインバー材としては、例えばFe-36wt%Ni合金を挙げることができる。また、インバー材は、熱伝導率が低いので、断熱材の用途に好適に用いることができる。 Specifically, the heat insulating spacer 40 is preferably formed of a material having a low thermal expansion coefficient (preferably 2 × 10 −6 / K or less) such as invar material such as invar, super invar, and stainless invar. . Similarly, the lower cylindrical body 23L is also made of the same material as the heat insulating spacer 40, that is, a material having a low coefficient of thermal expansion (preferably 2 × 10 −6 / K or less, such as invar material such as invar, super invar, and stainless invar). ). Furthermore, the upper cylindrical body 23U is preferably formed of a material having a small thermal expansion coefficient, and can be formed of the same material as the lower cylindrical body 23L. The heat insulating spacer 40 is preferably formed from a highly heat conductive material such as a metal or an alloy from the viewpoint of heat insulating efficiency, and an Invar material is also suitable in this respect. Specific examples of the invar material include an Fe-36 wt% Ni alloy. Moreover, since the invar material has a low thermal conductivity, it can be suitably used for a heat insulating material.
 断熱スペーサ40は、流路Fを流れる流体から受けた熱を断熱スペーサ40の下端部から上端部へ伝える間に断熱することにより、断熱スペーサ40の上端部の温度、即ち、図示例では、断熱スペーサ40と圧電アクチュエータ10とが接する箇所の温度が、圧電アクチュエータ10の耐熱温度以下となるように、断熱スペーサ40の長さ(高さ寸法)が設定されている。 The heat insulating spacer 40 insulates the heat received from the fluid flowing through the flow path F from the lower end portion of the heat insulating spacer 40 to the upper end portion, whereby the temperature of the upper end portion of the heat insulating spacer 40, that is, in the illustrated example, the heat insulating The length (height dimension) of the heat insulating spacer 40 is set so that the temperature at the location where the spacer 40 and the piezoelectric actuator 10 are in contact with each other is equal to or lower than the heat resistant temperature of the piezoelectric actuator 10.
 好ましくは、断熱スペーサ40は、図示例のように、圧電アクチュエータ10と高さおよび直径が同じ円柱状に形成される。そうすることで、下部筒体23Lは、従来において圧電アクチュエータ10を収容するために用いられていた支持筒体をそのまま利用することができる。 Preferably, the heat insulating spacer 40 is formed in a columnar shape having the same height and diameter as the piezoelectric actuator 10 as shown in the illustrated example. By doing so, the lower cylindrical body 23L can use the supporting cylindrical body that has been used for housing the piezoelectric actuator 10 in the related art as it is.
 また、断熱スペーサ40は、圧電アクチュエータ10を流路Fから遠ざけるようにリフトアップした位置に支持しているので、流路Fを流れる高温流体の熱の一部は、圧電アクチュエータ10に伝熱する前に、断熱スペーサ40によって断熱される。その結果、流路Fを流れる流体の温度が圧電アクチュエータ10の許容温度範囲を超えていても、圧電アクチュエータ10の温度を許容温度範囲内に抑えることが可能となる。 Further, since the heat insulating spacer 40 supports the piezoelectric actuator 10 at a lifted position so as to be away from the flow path F, a part of the heat of the high-temperature fluid flowing through the flow path F is transferred to the piezoelectric actuator 10. Before, it is insulated by the heat insulating spacer 40. As a result, even if the temperature of the fluid flowing through the flow path F exceeds the allowable temperature range of the piezoelectric actuator 10, the temperature of the piezoelectric actuator 10 can be suppressed within the allowable temperature range.
 さらに、断熱スペーサ40と圧電アクチュエータ10を収容して支持している支持筒体23を断熱スペーサ40と同じ材料で形成した場合、断熱スペーサ40の熱による伸びと、断熱スペーサ40の周囲を囲む部分の支持筒体23の熱による伸びとを等しいかほぼ等しくすることができる。その結果、例えば50μm以下という微小リフトのバルブリフトを制御する場合であっても、精度よく制御することが可能となる。 Furthermore, when the support cylinder 23 that accommodates and supports the heat insulating spacer 40 and the piezoelectric actuator 10 is formed of the same material as the heat insulating spacer 40, the heat insulation of the heat insulating spacer 40 and the portion surrounding the heat insulating spacer 40 are surrounded. The thermal elongation of the support cylinder 23 can be made equal or substantially equal. As a result, even when a valve lift of a minute lift of 50 μm or less, for example, can be controlled with high accuracy.
 また、図1に示すように、本実施形態における断熱スペーサ40には、断熱スペーサ40と圧電アクチュエータ10との積層方向(あるいは、ピエゾスタックを用いる場合には複数の圧電素子の積層方向)である垂直方向D1と交差する方向(図例では、直交する水平方向)に沿って複数の孔40Hが形成されている。より具体的には、第1の水平方向D2に沿って貫通する第1の孔40H1と、これに直交する第2の水平方向D3(図1における紙面奥手前方向)に沿って貫通する第2の孔40H2とが設けられている。なお、本実施形態では、長手方向に延びる棒状の断熱スペーサ40が用いられており、上記の垂直方向D1は、断熱スペーサ40の長手方向に対応する。ただし、断熱スペーサ40としては、複数のスペーサ部材を積層した態様のものを用いることもできる。 As shown in FIG. 1, the heat insulating spacer 40 in this embodiment has a stacking direction of the heat insulating spacer 40 and the piezoelectric actuator 10 (or a stacking direction of a plurality of piezoelectric elements when a piezo stack is used). A plurality of holes 40H are formed along a direction intersecting the vertical direction D1 (in the figure, the orthogonal horizontal direction). More specifically, the first hole 40H1 penetrating along the first horizontal direction D2 and the second hole penetrating along the second horizontal direction D3 orthogonal to the first hole 40H1 (the frontward direction in FIG. 1). Holes 40H2. In the present embodiment, a rod-like heat insulating spacer 40 extending in the longitudinal direction is used, and the vertical direction D1 corresponds to the longitudinal direction of the heat insulating spacer 40. However, as the heat insulation spacer 40, the thing of the aspect which laminated | stacked the several spacer member can also be used.
 このように断熱スペーサ40に、複数の孔40Hを形成することによって、断熱スペーサ40の表面積を増やすことができ、伝導する熱を外部に放熱し、断熱性を向上させることができる。これにより、例えば、弁体2の部分での温度が例えば300℃以上のときにも、断熱スペーサ40の断熱効果により、圧電アクチュエータ10の圧電素子の温度を100℃以下に維持し得る。このため従来よりも高温の用途でも圧電素子駆動式バルブ100は好適に使用され得る。 As described above, by forming the plurality of holes 40H in the heat insulating spacer 40, the surface area of the heat insulating spacer 40 can be increased, and the heat conducted can be dissipated to the outside and the heat insulating property can be improved. Thereby, for example, even when the temperature of the valve body 2 is, for example, 300 ° C. or higher, the temperature of the piezoelectric element of the piezoelectric actuator 10 can be maintained at 100 ° C. or lower due to the heat insulating effect of the heat insulating spacer 40. For this reason, the piezoelectric element drive type valve 100 can be suitably used even in applications where the temperature is higher than conventional.
 複数の孔40Hの穿孔は、インバー材の断熱スペーサ40であっても、ドリルなどを用いて比較的容易に実行することができる。このため、低コストで高温耐性を効果的に向上させることができる。 The drilling of the plurality of holes 40H can be performed relatively easily using a drill or the like, even if the insulating spacer 40 is made of Invar material. For this reason, high temperature tolerance can be improved effectively at low cost.
 また、断熱スペーサ40に設けた孔40Hと対応する位置において支持筒体23にも開口部23Hが設けられている。支持筒体23の開口部23Hは、断熱スペーサ40に設けられた孔40Hと少なくとも部分的に重なるように形成されていることが好ましい。このように支持筒体23にも開口部23Hを設けておくことで、孔40Hからの断熱効果を向上させることができる。 Further, an opening 23H is also provided in the support cylinder 23 at a position corresponding to the hole 40H provided in the heat insulating spacer 40. The opening 23 </ b> H of the support cylinder 23 is preferably formed so as to at least partially overlap the hole 40 </ b> H provided in the heat insulating spacer 40. Thus, by providing the opening 23H also in the support cylinder 23, the heat insulation effect from the hole 40H can be improved.
 孔40Hの個数および形状は、断熱スペーサ40に所望の剛性が維持される限り、種々の態様であってよく、例えば、2~10個の丸孔であってよい。孔の形状は、例えば、長穴、四角孔、三角孔などであってもよい。また、孔はネジ穴によって形成されていてもよく、これによって孔の表面積を拡大し、断熱効率が向上し得る。さらに、複数の孔の穿孔方向は、互いに異なるものであってもよいし、同一方向であってもよい。図7に示す、別の実施形態による圧電素子駆動式バルブ110は、孔40Hを長孔とし、上側の孔40H1と下側の孔40H2の貫通方向が平行となるように構成した例を示すものである。 The number and shape of the holes 40H may be various as long as desired rigidity is maintained in the heat insulating spacer 40, and may be, for example, 2 to 10 round holes. The shape of the hole may be, for example, a long hole, a square hole, a triangular hole, or the like. Moreover, the hole may be formed by the screw hole, and thereby the surface area of the hole can be expanded, and the heat insulation efficiency can be improved. Furthermore, the drilling directions of the plurality of holes may be different from each other or the same direction. A piezoelectric element drive type valve 110 according to another embodiment shown in FIG. 7 shows an example in which the hole 40H is a long hole and the upper hole 40H1 and the lower hole 40H2 are parallel to each other. It is.
 また、本実施形態の圧電素子駆動式バルブ100では、圧電アクチュエータ10を構成する圧電素子の伸長度を直接的に検出するための歪センサ20が圧電素子の側面に固定されている。以下、本実施形態で用いられる圧電アクチュエータ10の具体的な構成を説明する。 Further, in the piezoelectric element drive type valve 100 of the present embodiment, the strain sensor 20 for directly detecting the degree of expansion of the piezoelectric element constituting the piezoelectric actuator 10 is fixed to the side surface of the piezoelectric element. Hereinafter, a specific configuration of the piezoelectric actuator 10 used in the present embodiment will be described.
 図3(a)は、外側の筒体10aと、この筒体10a内に一列に並べられた状態で収容される複数の圧電素子10b(以下、ピエゾスタックと呼ぶ場合がある)とを分解して示し、図3(b)は、図3(a)に示すコネクタ部10cを正面方向から見た状態を示す。 FIG. 3A is an exploded view of the outer cylinder 10a and a plurality of piezoelectric elements 10b (hereinafter sometimes referred to as piezo stacks) accommodated in a line in the cylinder 10a. FIG. 3B shows a state in which the connector portion 10c shown in FIG.
 図3(a)に示すように、圧電アクチュエータ10において、複数の圧電素子10bのうちの少なくとも1つには、接着剤等によって歪センサ20が直接的に取り付けられている。歪センサ20は、圧電素子の側面に配置されており、本実施形態においては、圧電素子の積層方向、すなわち、ピエゾスタックの主伸長方向であるz方向の歪を検出する第1歪ゲージ20zと、主伸長方向と直交するx方向の歪を検出する第2歪ゲージ20xとによって構成されている。第1歪ゲージ20zおよび第2歪ゲージ20xとしては、例えば、株式会社共和電業社製のKFR-02NやKFGS-1、KFGS-3等を用いることができる。なお、圧電アクチュエータ10は、他の態様において、筒体に収容された単一の圧電素子およびこの側面に取り付けられた歪センサによって構成されていてもよい。 As shown in FIG. 3A, in the piezoelectric actuator 10, the strain sensor 20 is directly attached to at least one of the plurality of piezoelectric elements 10b by an adhesive or the like. The strain sensor 20 is disposed on the side surface of the piezoelectric element. In the present embodiment, the strain sensor 20 includes a first strain gauge 20z that detects strain in the stacking direction of the piezoelectric elements, that is, the z direction that is the main extension direction of the piezo stack. The second strain gauge 20x detects strain in the x direction orthogonal to the main extension direction. As the first strain gauge 20z and the second strain gauge 20x, for example, KFR-02N, KFGS-1, and KFGS-3 manufactured by Kyowa Denki Co., Ltd. can be used. In another aspect, the piezoelectric actuator 10 may be configured by a single piezoelectric element housed in a cylindrical body and a strain sensor attached to this side surface.
 本実施形態において、第1歪ゲージ20zは全体が圧電素子と接するように圧電素子の側面に貼り付けられており、第2歪ゲージ20xは第1歪ゲージ20zの中央部をまたいで交差するように圧電素子に貼り付けられている。第1歪ゲージ20zおよび第2歪ゲージ20xは、圧電素子の伸長量を、第1歪ゲージ20zおよび第2歪ゲージ20xの電気抵抗の変化として検出することができる。 In the present embodiment, the first strain gauge 20z is attached to the side surface of the piezoelectric element so that the entire first strain gauge 20z is in contact with the piezoelectric element, and the second strain gauge 20x crosses the central portion of the first strain gauge 20z. Affixed to the piezoelectric element. The first strain gauge 20z and the second strain gauge 20x can detect the extension amount of the piezoelectric element as a change in electric resistance of the first strain gauge 20z and the second strain gauge 20x.
 また、図3(b)に示すように、コネクタ部10cには、ピエゾスタック10bに駆動電圧を印加するための一対の駆動電圧端子22a、22bと、第1歪ゲージ20zの一方の端子に接続された第1歪センサ出力端子24aと、第1歪ゲージ20zの他方の端子および第2歪ゲージ20xの一方の端子に共通に接続された歪センサ共通出力端子24cと、第2歪ゲージ20xの他方の端子に接続された第2歪センサ出力端子24bとが設けられている。 As shown in FIG. 3B, the connector portion 10c is connected to a pair of drive voltage terminals 22a and 22b for applying a drive voltage to the piezo stack 10b and one terminal of the first strain gauge 20z. The first strain sensor output terminal 24a, the strain sensor common output terminal 24c commonly connected to the other terminal of the first strain gauge 20z and one terminal of the second strain gauge 20x, and the second strain gauge 20x. A second strain sensor output terminal 24b connected to the other terminal is provided.
 ピエゾスタック10bを構成する複数の圧電素子は、公知の回路構成によって駆動電圧端子22a、22bに電気的に接続されており、駆動電圧端子22a、22bに電圧を印加することによって、圧電素子の全てをスタック方向に伸長させることができる。 The plurality of piezoelectric elements constituting the piezo stack 10b are electrically connected to the drive voltage terminals 22a and 22b by a known circuit configuration, and all of the piezoelectric elements are applied by applying a voltage to the drive voltage terminals 22a and 22b. Can be extended in the stacking direction.
 第1および第2歪センサ出力端子24a、24bおよび歪センサ共通出力端子24cは、外部基板に設けられた回路に接続されており、第1歪ゲージ20zおよび第2歪ゲージ20xを含むブリッジ回路が形成されている。このブリッジ回路において、第1歪ゲージ20zおよび第2歪ゲージ20xの抵抗値の変化を検出することができる。 The first and second strain sensor output terminals 24a and 24b and the strain sensor common output terminal 24c are connected to a circuit provided on the external substrate, and a bridge circuit including the first strain gauge 20z and the second strain gauge 20x is provided. Is formed. In this bridge circuit, changes in the resistance values of the first strain gauge 20z and the second strain gauge 20x can be detected.
 図4は、第1歪ゲージ20zおよび第2歪ゲージ20xの抵抗値変化を検出するための例示的な等価回路を示す。図4に示す等価回路において、分岐点A-D間および分岐点C-D間に設けられた抵抗R1、R2は、外部基板上に設けられた既知抵抗値の固定抵抗に対応し、分岐点A-B間に設けられた抵抗R3は、第1歪ゲージ20zに対応し、分岐点B-C間に設けられた抵抗R4は、第2歪ゲージ20xに対応する。本実施形態では、第1歪ゲージ20zおよび第2歪ゲージ20xの抵抗値と、2つの固定抵抗R1、R2の抵抗値とは同じに設定されており、例えば、いずれも120オーム又は350オームに設定されている。 FIG. 4 shows an exemplary equivalent circuit for detecting resistance value changes of the first strain gauge 20z and the second strain gauge 20x. In the equivalent circuit shown in FIG. 4, resistors R1 and R2 provided between the branch points AD and between the branch points CD correspond to fixed resistors of known resistance values provided on the external substrate. The resistor R3 provided between A and B corresponds to the first strain gauge 20z, and the resistor R4 provided between the branch points BC and corresponds to the second strain gauge 20x. In the present embodiment, the resistance values of the first strain gauge 20z and the second strain gauge 20x and the resistance values of the two fixed resistors R1 and R2 are set to be the same. For example, both are set to 120 ohms or 350 ohms. Is set.
 また、図4において、分岐点Aは、第1歪センサ出力端子24aに対応し、分岐点Bは、歪センサ共通出力端子24cに対応し、分岐点Cは、第2歪センサ出力端子24bに対応する。この等価回路において、分岐点A-C間に所定のブリッジ印加電圧が印加された状態で、第1歪ゲージ20zまたは第2歪ゲージ20xの抵抗値の変化は、ブリッジ出力信号(分岐点B-D間の電位差)の変化として検出される。なお、上記のように各抵抗R1~R4の大きさが同じである場合、第1および第2歪ゲージ20z、20xに応力が生じていない初期状態において、ブリッジ出力信号は典型的にはゼロを示す。 In FIG. 4, the branch point A corresponds to the first strain sensor output terminal 24a, the branch point B corresponds to the strain sensor common output terminal 24c, and the branch point C corresponds to the second strain sensor output terminal 24b. Correspond. In this equivalent circuit, the change in the resistance value of the first strain gauge 20z or the second strain gauge 20x in a state where a predetermined bridge applied voltage is applied between the branch points AC is the bridge output signal (branch point B- D (potential difference between D) is detected. Note that when the resistances R1 to R4 have the same magnitude as described above, the bridge output signal is typically zero in the initial state in which no stress is generated in the first and second strain gauges 20z and 20x. Show.
 ピエゾスタック10bに駆動電圧が印加されたとき、歪センサ20が取り付けられた圧電素子はz方向に伸長するとともに、これと直交するx方向においては収縮する。このとき、第1歪ゲージ20zの抵抗値は、圧電素子の伸長量に対応して増加し、第2歪ゲージ20xの抵抗値は、圧電素子の収縮量に対応して減少する。 When a driving voltage is applied to the piezo stack 10b, the piezoelectric element to which the strain sensor 20 is attached expands in the z direction and contracts in the x direction orthogonal thereto. At this time, the resistance value of the first strain gauge 20z increases corresponding to the expansion amount of the piezoelectric element, and the resistance value of the second strain gauge 20x decreases corresponding to the contraction amount of the piezoelectric element.
 そして、図4に示す等価回路では、ピエゾスタック10bに駆動電圧が印加されてこれが伸長したとき、第1歪ゲージ20zにおける歪み量が増大してブリッジ出力信号が増加するとともに、第2歪ゲージ20xにおける歪み量が減少することによってもブリッジ出力信号が増加する。このため、ピエゾスタック変位時には、第1歪ゲージ20zの歪み量の増加分と、第2歪ゲージ20xの歪み量の減少分との合計に対応するブリッジ出力信号の変動が生じることになる。これにより、ブリッジ出力信号を増幅させることができる。 In the equivalent circuit shown in FIG. 4, when a drive voltage is applied to the piezo stack 10 b and is expanded, the amount of strain in the first strain gauge 20 z increases to increase the bridge output signal and the second strain gauge 20 x. The bridge output signal also increases as the amount of distortion in decreases. For this reason, when the piezo stack is displaced, the bridge output signal fluctuates corresponding to the sum of the increased amount of strain of the first strain gauge 20z and the decreased amount of strain of the second strain gauge 20x. As a result, the bridge output signal can be amplified.
 また、上記のように第1歪ゲージ20zと、これに直交する第2歪ゲージ20xとを用いてブリッジ回路を構成することによって、温度変化による歪センサ20の抵抗値変化を補正することが可能である。これは、例えば温度が上昇することによって圧電素子が膨張したとき、その膨張が、第1歪ゲージ20zに対してはブリッジ出力信号を増加させる要素として働くのに対して、第2歪ゲージ20xに対してはブリッジ出力信号を減少させる要素として働き、温度による増加要素と減少要素とが相殺されたブリッジ出力信号が得られるからである。このため、温度の変化に起因して圧電素子自体の膨張または収縮が生じているときであっても、ブリッジ出力信号への影響は低減され、精度よく圧電素子の伸長度を測定することが可能になる。 In addition, as described above, by configuring the bridge circuit using the first strain gauge 20z and the second strain gauge 20x orthogonal to the first strain gauge 20z, it is possible to correct the resistance value change of the strain sensor 20 due to the temperature change. It is. This is because, for example, when the piezoelectric element expands due to a rise in temperature, the expansion works as an element for increasing the bridge output signal for the first strain gauge 20z, whereas This is because a bridge output signal that acts as an element for reducing the bridge output signal and in which the increase and decrease elements due to temperature are offset is obtained. For this reason, even when the piezoelectric element itself expands or contracts due to a change in temperature, the influence on the bridge output signal is reduced, and the extension degree of the piezoelectric element can be accurately measured. become.
 なお、上記には、圧電素子の1つの側面に歪センサ20を貼り付ける態様を説明したが、より多くの歪センサ20を用いてもよい。例えば、図5(a)に示すように、複数の圧電素子10bの側面にそれぞれ歪センサ20を貼り付けてもよい。また、図5(b)に示すように圧電素子10bの90°で交わる2つの側面のそれぞれに歪センサ20を貼り付けてもよい。さらに、圧電素子10bの対向する2つの側面のそれぞれに歪センサ20を貼り付けてもよい。 In addition, although the aspect which affixed the strain sensor 20 on one side surface of a piezoelectric element was demonstrated above, more strain sensors 20 may be used. For example, as shown in FIG. 5A, the strain sensors 20 may be attached to the side surfaces of the plurality of piezoelectric elements 10b. Further, as shown in FIG. 5B, the strain sensor 20 may be attached to each of two side surfaces that intersect at 90 ° of the piezoelectric element 10b. Further, the strain sensor 20 may be attached to each of two opposing side surfaces of the piezoelectric element 10b.
 上記のように、圧電素子に複数の歪センサ20を設けて、これらの出力を合成、平均化することによって、精度、温度補正性能を向上させ得る。また、複数の歪センサ20の出力を相互に比較し、これらの差が大きいときにはいずれかの歪センサ20が異常であると判定、診断することも可能である。 As described above, by providing a plurality of strain sensors 20 in the piezoelectric element and synthesizing and averaging these outputs, accuracy and temperature correction performance can be improved. It is also possible to compare the outputs of a plurality of strain sensors 20 and determine and diagnose that one of the strain sensors 20 is abnormal when the difference between them is large.
 以下、本実施形態の圧電素子駆動式バルブ100を用いて構成される本実施形態の流量制御装置200を説明する。
 図6は、流量制御装置200の構成を示す模式図である。流量制御装置200は、ガスG0の流入側の流路Fに設けられた圧力制御バルブ66と、圧力制御バルブ66の下流側に設けられた流量制御バルブ68と、圧力制御バルブ66の下流側かつ流量制御バルブ68の上流側の上流圧力P1を検出する第1(または上流)圧力センサ63と、圧力制御バルブ66の下流側に配置された絞り部62とを備えている。
Hereinafter, the flow control device 200 of the present embodiment configured using the piezoelectric element drive type valve 100 of the present embodiment will be described.
FIG. 6 is a schematic diagram showing the configuration of the flow control device 200. The flow control device 200 includes a pressure control valve 66 provided in the flow path F on the inflow side of the gas G0, a flow control valve 68 provided on the downstream side of the pressure control valve 66, a downstream side of the pressure control valve 66, and A first (or upstream) pressure sensor 63 that detects an upstream pressure P 1 on the upstream side of the flow control valve 68 and a throttle portion 62 disposed on the downstream side of the pressure control valve 66 are provided.
 本実施形態では、絞り部62は、流量制御バルブ68の上流側に配置されたオリフィスプレートによって構成されている。オリフィスプレートは、オリフィスの面積が固定されているので、開度が固定された絞り部として機能する。なお、本明細書において、「絞り部」とは、流路の断面積を、前後の流路断面積より小さく制限した部分であり、例えば、オリフィスプレートや臨界ノズル、音速ノズルなどを用いて構成されるが、他のものを用いて構成することもできる。また、本明細書において、絞り部には、バルブの弁座と弁体との距離を開度とする可変オリフィスとしてのバルブ構造も含まれる。このようなバルブ構造は、開度が可変の絞り部として機能する。 In the present embodiment, the throttle unit 62 is configured by an orifice plate disposed on the upstream side of the flow control valve 68. Since the orifice plate has a fixed orifice area, the orifice plate functions as a throttle with a fixed opening. In the present specification, the “throttle section” is a portion in which the cross-sectional area of the flow path is limited to be smaller than the cross-sectional area of the front and rear flow paths, and includes, for example, an orifice plate, a critical nozzle, a sonic nozzle However, it can also be configured using other things. In the present specification, the throttle portion includes a valve structure as a variable orifice whose opening is the distance between the valve seat of the valve and the valve body. Such a valve structure functions as a throttle portion having a variable opening.
 本実施形態の流量制御装置200はまた、流量制御バルブ68の下流側の下流圧力P2を測定する第2(または下流)圧力センサ64と、圧力制御バルブ66の上流側の圧力P0を検出する流入圧力センサ65とを備えている。ただし、流量制御装置200は、他の態様において、第2圧力センサ64や流入圧力センサ65を備えていなくてもよい。 The flow control device 200 of the present embodiment also detects a second (or downstream) pressure sensor 64 that measures a downstream pressure P 2 downstream of the flow control valve 68 and a pressure P 0 upstream of the pressure control valve 66. The inflow pressure sensor 65 is provided. However, the flow control device 200 may not include the second pressure sensor 64 or the inflow pressure sensor 65 in another aspect.
 第1圧力センサ63は、圧力制御バルブ66と絞り部62または流量制御バルブ68との間の流体圧力である上流圧力P1を測定することができ、第2圧力センサ64は、絞り部62または流量制御バルブ68の下流圧力P2を測定することができる。また、流入圧力センサ65は、接続されたガス供給装置(例えば原料気化器やガス供給源等)から流量制御装置200に供給される材料ガス、エッチングガスまたはキャリアガスなどの流入圧力P0を測定することができる。流入圧力P0は、ガス供給装置からのガス供給量やガス供給圧を制御するために利用され得る。 The first pressure sensor 63 can measure the upstream pressure P 1 which is the fluid pressure between the pressure control valve 66 and the throttle unit 62 or the flow rate control valve 68, and the second pressure sensor 64 can measure the throttle unit 62 or The downstream pressure P 2 of the flow control valve 68 can be measured. The inflow pressure sensor 65 measures an inflow pressure P 0 of a material gas, an etching gas, a carrier gas, or the like supplied to the flow rate control device 200 from a connected gas supply device (for example, a raw material vaporizer or a gas supply source). can do. The inflow pressure P 0 can be used to control the gas supply amount and gas supply pressure from the gas supply device.
 流量制御バルブ68の下流側は、典型的には下流弁(図示せず)を介して、例えば、半導体製造装置のプロセスチャンバに接続されている。プロセスチャンバには真空ポンプが接続されており、典型的には、プロセスチャンバの内部が真空引きされた状態で、流量制御装置200から流量制御されたガスG1がプロセスチャンバに供給される。下流弁としては、例えば、圧縮空気により開閉動作が制御される公知の空気駆動弁(Air Operated Valve)や電磁弁等を用いることができる。 The downstream side of the flow rate control valve 68 is typically connected to, for example, a process chamber of a semiconductor manufacturing apparatus via a downstream valve (not shown). A vacuum pump is connected to the process chamber. Typically, the gas G1 whose flow rate is controlled is supplied from the flow rate control device 200 to the process chamber while the inside of the process chamber is evacuated. As the downstream valve, for example, a known air driven valve whose opening / closing operation is controlled by compressed air, an electromagnetic valve, or the like can be used.
 流量制御装置200の流路Fは、配管によって構成されていてもよいし、金属製ブロックに形成した流路孔によって構成されていてもよい。第1および第2圧力センサ63、64は、例えばシリコン単結晶のセンサチップとダイヤフラムとを内蔵するものであってよい。 The flow path F of the flow control device 200 may be constituted by a pipe or a flow path hole formed in a metal block. The first and second pressure sensors 63 and 64 may include, for example, a silicon single crystal sensor chip and a diaphragm.
 また、圧力制御バルブ66は、例えば、金属製ダイヤフラム弁体を圧電アクチュエータで駆動する公知の圧電素子駆動式バルブであってよい。後述するように、圧力制御バルブ66は、第1圧力センサ63から出力される信号に応じてその開度が制御され、例えば、第1圧力センサ63が出力する上流圧力P1が、入力された設定値に維持されるようにフィードバック制御される。 The pressure control valve 66 may be, for example, a known piezoelectric element drive type valve that drives a metal diaphragm valve body with a piezoelectric actuator. As will be described later, the opening degree of the pressure control valve 66 is controlled in accordance with a signal output from the first pressure sensor 63. For example, the upstream pressure P 1 output from the first pressure sensor 63 is input. Feedback control is performed to maintain the set value.
 また、本実施形態において、流量制御バルブ68は、弁座に離着座するように配置された弁体と、弁体を移動させるための圧電素子と、圧電素子の伸長量を検出する歪センサ20とを備えた圧電素子駆動式のバルブであり、図1に示した圧電素子駆動式バルブ100を用いて構成されている。流量制御バルブ68は、歪センサ20から出力される信号に基づいて圧電素子の駆動がフィードバック制御される。 In the present embodiment, the flow control valve 68 includes a valve element disposed so as to be attached to and detached from the valve seat, a piezoelectric element for moving the valve element, and a strain sensor 20 that detects an extension amount of the piezoelectric element. The piezoelectric element driving type valve is provided with the piezoelectric element driving type valve 100 shown in FIG. The flow rate control valve 68 is feedback controlled to drive the piezoelectric element based on a signal output from the strain sensor 20.
 流量制御装置200は、第1圧力センサ63の出力に基づいて圧力制御バルブ66の開閉動作を制御する第1制御回路67を備えている。第1制御回路67は、外部から受け取った設定上流圧力と第1圧力センサ63の出力との差がゼロになるように圧力制御バルブ66をフィードバック制御するように構成されている。これにより、圧力制御バルブ66の下流側かつ流量制御バルブ68の上流側の上流圧力P1を設定値に維持することが可能である。 The flow control device 200 includes a first control circuit 67 that controls the opening / closing operation of the pressure control valve 66 based on the output of the first pressure sensor 63. The first control circuit 67 is configured to feedback control the pressure control valve 66 so that the difference between the set upstream pressure received from the outside and the output of the first pressure sensor 63 becomes zero. Thus, the upstream pressure P 1 on the downstream side of the pressure control valve 66 and the upstream side of the flow rate control valve 68 can be maintained at the set value.
 また、流量制御装置200は、流量制御バルブ68に設けられた歪センサ20からの出力をピエゾバルブ変位として受け取り、この出力に基づいて流量制御バルブ68の駆動を制御する第2制御回路69を有している。なお、図6には、第1制御回路67と第2制御回路69とが別個に設けられた態様が示されているが、これらは一体的に設けられていてもよい。 The flow control device 200 also has a second control circuit 69 that receives the output from the strain sensor 20 provided in the flow control valve 68 as a piezo valve displacement and controls the drive of the flow control valve 68 based on this output. ing. FIG. 6 shows a mode in which the first control circuit 67 and the second control circuit 69 are separately provided, but these may be provided integrally.
 第1制御回路67および第2制御回路69は、流量制御装置200に内蔵されたものであってもよいし、流量制御装置200の外部に設けられたものであってもよい。第1制御回路67および第2制御回路69は、典型的には、CPU、ROMやRAMなどのメモリ(記憶装置)M、A/Dコンバータ等によって構成され、後述する流量制御動作を実行するように構成されたコンピュータプログラムを含んでいてよい。第1制御回路67および第2制御回路69は、ハードウェアおよびソフトウェアの組み合わせによって実現され得る。 The first control circuit 67 and the second control circuit 69 may be built in the flow control device 200 or may be provided outside the flow control device 200. The first control circuit 67 and the second control circuit 69 are typically constituted by a CPU, a memory (storage device) M such as a ROM or a RAM, an A / D converter, and the like, and execute a flow rate control operation described later. The computer program comprised in this may be included. The first control circuit 67 and the second control circuit 69 can be realized by a combination of hardware and software.
 流量制御装置200は、第1制御回路67および第2制御回路69によって、第1圧力センサ63が出力する上流圧力P1が設定値になるように圧力制御バルブ66を制御しながら、流量制御バルブ68の圧電素子10bの駆動を制御することにより、流量制御バルブ68の下流側に流れる流体の流量を制御するように構成されている。流量制御装置200は、特に、臨界膨張条件P1/P2≧約2(P1:絞り部上流側の流体圧力(上流圧力)、P2:絞り部下流側の流体圧力(下流圧力))を満たすとき、絞り部62または流量制御バルブ68を通過するガスの流量が、下流圧力P2によらず上流圧力P1によって決まるという原理を利用して流量制御を行うことができる。 The flow control device 200 controls the flow control valve 66 while the first control circuit 67 and the second control circuit 69 control the pressure control valve 66 so that the upstream pressure P 1 output from the first pressure sensor 63 becomes a set value. The flow rate of the fluid flowing downstream of the flow rate control valve 68 is controlled by controlling the driving of the 68 piezoelectric elements 10b. In particular, the flow rate control device 200 has a critical expansion condition P 1 / P 2 ≧ about 2 (P 1 : fluid pressure upstream of the throttle (upstream pressure), P 2 : fluid pressure downstream of the throttle (downstream pressure)). When the above condition is satisfied, the flow rate can be controlled using the principle that the flow rate of the gas passing through the throttle unit 62 or the flow rate control valve 68 is determined by the upstream pressure P 1 regardless of the downstream pressure P 2 .
 臨界膨張条件を満たすとき、流量制御バルブ68の下流側の流量Qは、Q=K1・Av・P1(K1は流体の種類と流体温度に依存する定数)によって与えられる。流量Qは、上流圧力P1および流量制御バルブ68の弁開度Avに概ね比例するものと考えられる。また、第2圧力センサ64を備える場合、上流圧力P1と下流圧力P2との差が小さく、上記の臨界膨張条件を満足しない場合であっても流量を算出することができ、各圧力センサによって測定された上流圧力P1および下流圧力P2に基づいて、所定の計算式:Q=K2・Av・P2 m(P1-P2n(ここでK2は流体の種類と流体温度に依存する定数、m、nは実際の流量を元に導出される指数)から流量Qを算出することができる。 When the critical expansion condition is satisfied, the flow rate Q downstream of the flow control valve 68 is given by Q = K 1 · Av · P 1 (K 1 is a constant depending on the type of fluid and the fluid temperature). The flow rate Q is considered to be approximately proportional to the upstream pressure P 1 and the valve opening Av of the flow control valve 68. Further, when the second pressure sensor 64 is provided, the flow rate can be calculated even when the difference between the upstream pressure P 1 and the downstream pressure P 2 is small and the above critical expansion condition is not satisfied. Based on the upstream pressure P 1 and the downstream pressure P 2 measured by the following formula: Q = K 2 · Av · P 2 m (P 1 −P 2 ) n (where K 2 is the fluid type and The flow rate Q can be calculated from constants depending on the fluid temperature, m and n are indices derived based on the actual flow rate.
 なお、上記のように、圧力制御バルブと、圧力制御バルブの下流側に設けられた流量制御バルブと、圧力制御バルブの下流側に設けられた絞り部とを備える流量制御装置において、図1に示した本実施形態の圧電素子駆動式バルブ100は、図6に示す流量制御装置200における圧力制御バルブ66として用いられてもよい。もちろん、圧力制御バルブ66および流量制御バルブ68の双方に、圧電素子駆動式バルブ100が用いられてもよい。 As described above, in the flow control device including the pressure control valve, the flow control valve provided on the downstream side of the pressure control valve, and the throttle unit provided on the downstream side of the pressure control valve, FIG. The illustrated piezoelectric element drive type valve 100 of the present embodiment may be used as the pressure control valve 66 in the flow rate control device 200 shown in FIG. Of course, the piezoelectric element drive type valve 100 may be used for both the pressure control valve 66 and the flow rate control valve 68.
 本発明は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において変更することが可能である。例えば、上記実施形態においては圧力制御式の流量制御装置について説明したが、本発明は、圧力制御式以外の制御方式、例えば、熱式センサによる熱式の流量制御装置にも適用可能である。また、上記実施形態においては自己弾性による弾性復帰型の金属ダイヤフラム弁体を備える流体制御装置について説明したが、本発明は、金属ダイヤフラム以外の弁体についても適用可能であることは当業者であれば自明である。 The present invention is not limited to the above embodiment, and can be modified without departing from the spirit of the present invention. For example, although the pressure control type flow control device has been described in the above embodiment, the present invention can be applied to a control method other than the pressure control method, for example, a thermal flow control device using a thermal sensor. In the above embodiment, the fluid control device including the self-elastic elastic return type metal diaphragm valve body has been described. However, those skilled in the art can apply the present invention to valve bodies other than the metal diaphragm. It is self-evident.
 また、上記には圧力制御バルブ66と流量制御バルブ68とを備える流量制御装置200について説明したが、これに限られない。本発明の実施形態による流量制御装置は、圧力制御バルブと絞り部とを備え、圧力制御バルブと絞り部との間に設けられた圧力センサからの出力に基づいて圧力制御バルブをフィードバック制御する圧力式流量制御装置において、圧力制御バルブとして図1に示した圧電素子駆動式バルブ100を用いたものであってもよい。 In addition, although the flow control device 200 including the pressure control valve 66 and the flow control valve 68 has been described above, the present invention is not limited to this. A flow control device according to an embodiment of the present invention includes a pressure control valve and a throttle unit, and pressure controls feedback control of the pressure control valve based on an output from a pressure sensor provided between the pressure control valve and the throttle unit. In the flow rate control device, the pressure control valve may use the piezoelectric element drive type valve 100 shown in FIG.
1 弁本体
2 弁体
3 弁体押え
9 下部受台
10 圧電アクチュエータ
10b 圧電素子
18 弾性部材
20 歪センサ
20z 第1歪ゲージ
20x 第2歪ゲージ
23 支持筒体
25 筒体固定・ガイド体
26 割りベース
40 断熱スペーサ
40H 孔
62 絞り部
63 第1圧力センサ
66 圧力制御バルブ
67 第1制御回路
68 流量制御バルブ
69 第2制御回路
100 圧電素子駆動式バルブ
200 流量制御装置
DESCRIPTION OF SYMBOLS 1 Valve main body 2 Valve body 3 Valve body presser 9 Lower receiving base 10 Piezoelectric actuator 10b Piezoelectric element 18 Elastic member 20 Strain sensor 20z First strain gauge 20x Second strain gauge 23 Support cylinder 25 Cylindrical fixation / guide body 26 Split base 40 Heat insulation spacer 40H Hole 62 Restriction portion 63 First pressure sensor 66 Pressure control valve 67 First control circuit 68 Flow control valve 69 Second control circuit 100 Piezoelectric element driven valve 200 Flow control device

Claims (8)

  1.  弁体を弁座に離着座させるための圧電素子と、
     前記弁体と前記圧電素子との間に配置された断熱スペーサと、
     前記圧電素子に固定された歪センサとを有し、
     前記断熱スペーサには、前記断熱スペーサと前記圧電素子との積層方向に交差する方向に沿って貫通する複数の孔が設けられている、圧電素子駆動式バルブ。
    A piezoelectric element for separating and seating the valve body on the valve seat;
    A heat insulating spacer disposed between the valve element and the piezoelectric element;
    A strain sensor fixed to the piezoelectric element;
    The piezoelectric element driving type valve, wherein the heat insulating spacer is provided with a plurality of holes penetrating along a direction intersecting a stacking direction of the heat insulating spacer and the piezoelectric element.
  2.  流路が形成された弁本体と、
     前記流路に設けられた圧電素子駆動式バルブと、
     前記圧電素子駆動式バルブの下流側の流路に設けられた絞り部と、
     前記圧電素子駆動式バルブと前記絞り部との間に設けられた圧力センサとを備える流量制御装置であって、
     前記圧電素子駆動式バルブは、
      弁体を弁座に離着座させるために伸長可能な圧電素子と、
      前記弁体と前記圧電素子との間に配置された断熱スペーサと、
      前記圧電素子に固定された歪センサとを有し、
     前記断熱スペーサには、前記断熱スペーサと前記圧電素子との積層方向に交差する方向に沿って貫通する複数の孔が形成されている、流量制御装置。
    A valve body in which a flow path is formed;
    A piezoelectric element driven valve provided in the flow path;
    A throttle portion provided in a flow path on the downstream side of the piezoelectric element driven valve;
    A flow rate control device comprising a pressure sensor provided between the piezoelectric element drive type valve and the throttle part,
    The piezoelectric element driven valve is
    A piezoelectric element that can be extended to detach the valve body from the valve seat;
    A heat insulating spacer disposed between the valve element and the piezoelectric element;
    A strain sensor fixed to the piezoelectric element;
    The flow control device, wherein the heat insulating spacer is formed with a plurality of holes penetrating along a direction intersecting a stacking direction of the heat insulating spacer and the piezoelectric element.
  3.  前記歪センサは、前記圧電素子の伸長方向の変位を検知する第1歪ゲージと、前記伸長方向と直交する方向の変位を検知する第2歪ゲージとを含む、請求項2に記載の流量制御装置。 3. The flow rate control according to claim 2, wherein the strain sensor includes a first strain gauge that detects a displacement in the extension direction of the piezoelectric element and a second strain gauge that detects a displacement in a direction orthogonal to the extension direction. apparatus.
  4.  前記断熱スペーサに形成された前記複数の孔は、前記積層方向に交差する第1方向に沿って延びる孔と、前記積層方向に交差する第2方向であって前記第1方向とは異なる第2方向に沿って延びる孔とを含む、請求項2又は3に記載の流量制御装置。 The plurality of holes formed in the heat insulating spacer include a hole extending along a first direction intersecting the stacking direction, and a second direction intersecting the stacking direction and different from the first direction. The flow control device according to claim 2, comprising a hole extending along the direction.
  5.  前記断熱スペーサは、インバー材で形成されている、請求項2乃至4のいずれかに記載の流量制御装置。 The flow control device according to any one of claims 2 to 4, wherein the heat insulating spacer is made of an invar material.
  6.  前記圧電素子駆動式バルブは、前記圧電素子と前記断熱スペーサとを収容し、前記弁本体に対して上下動可能に支持された支持筒体を有し、
     前記圧電素子の伸長により、前記支持筒体が移動するように構成されたノーマルクローズ型のバルブである、請求項2乃至5のいずれかに記載の流量制御装置。
    The piezoelectric element drive type valve accommodates the piezoelectric element and the heat insulating spacer, and has a support cylinder supported to be movable up and down with respect to the valve body.
    The flow rate control device according to any one of claims 2 to 5, wherein the flow rate control device is a normally closed valve configured to move the support cylinder body by extension of the piezoelectric element.
  7.  前記支持筒体に、前記断熱スペーサに設けられた孔と少なくとも部分的に重なる開口部が形成されている、請求項6に記載の流量制御装置。 The flow rate control device according to claim 6, wherein an opening that at least partially overlaps a hole provided in the heat insulating spacer is formed in the support cylinder.
  8.  前記断熱スペーサは、前記流路を流れる流体から受けた熱が断熱スペーサの下端部から上端部へ伝熱する間の断熱により上端部の温度が前記圧電素子の耐熱温度以下となるように、前記下端部と上端部との間の長さが設定されている、請求項2乃至7のいずれかに記載の流量制御装置。 The heat insulating spacer is heated so that heat received from the fluid flowing through the flow path is transferred from the lower end of the heat insulating spacer to the upper end, so that the temperature of the upper end becomes equal to or lower than the heat resistant temperature of the piezoelectric element. The flow control device according to any one of claims 2 to 7, wherein a length between the lower end portion and the upper end portion is set.
PCT/JP2019/005082 2018-02-19 2019-02-13 Piezoelectric element-driven valve and flow volume control device WO2019159959A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020500515A JPWO2019159959A1 (en) 2018-02-19 2019-02-13 Piezoelectric drive valve and flow control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018027177 2018-02-19
JP2018-027177 2018-02-19

Publications (1)

Publication Number Publication Date
WO2019159959A1 true WO2019159959A1 (en) 2019-08-22

Family

ID=67618655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005082 WO2019159959A1 (en) 2018-02-19 2019-02-13 Piezoelectric element-driven valve and flow volume control device

Country Status (2)

Country Link
JP (1) JPWO2019159959A1 (en)
WO (1) WO2019159959A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117626A1 (en) * 2019-12-11 2021-06-17 京セラ株式会社 Piezoelectric actuator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318388A (en) * 1976-08-03 1978-02-20 Nec Corp Air cooled heat sink for flat package type semiconductor device
JPH0211979A (en) * 1988-06-28 1990-01-17 Kiyohara Masako Fine flow controller
JP2004156720A (en) * 2002-11-07 2004-06-03 Smc Corp Poppet valve with heater
JP2004162733A (en) * 2002-11-08 2004-06-10 Stec Inc Valve coping with high temperature
JP2011117499A (en) * 2009-12-01 2011-06-16 Fujikin Inc Piezoelectrically driven valve and piezoelectrically driven flow volume control apparatus
JP2016138844A (en) * 2015-01-29 2016-08-04 パナソニックIpマネジメント株式会社 Strain sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318388A (en) * 1976-08-03 1978-02-20 Nec Corp Air cooled heat sink for flat package type semiconductor device
JPH0211979A (en) * 1988-06-28 1990-01-17 Kiyohara Masako Fine flow controller
JP2004156720A (en) * 2002-11-07 2004-06-03 Smc Corp Poppet valve with heater
JP2004162733A (en) * 2002-11-08 2004-06-10 Stec Inc Valve coping with high temperature
JP2011117499A (en) * 2009-12-01 2011-06-16 Fujikin Inc Piezoelectrically driven valve and piezoelectrically driven flow volume control apparatus
JP2016138844A (en) * 2015-01-29 2016-08-04 パナソニックIpマネジメント株式会社 Strain sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117626A1 (en) * 2019-12-11 2021-06-17 京セラ株式会社 Piezoelectric actuator

Also Published As

Publication number Publication date
JPWO2019159959A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
US11054052B2 (en) Piezoelectric-element-driven valve and flow rate control device
JP7216425B2 (en) Flow controller
EP2488925B1 (en) Method and apparatus for gas flow control
TWI422765B (en) Piezoelectric drive valve and piezoelectric drive type flow control device
KR102456760B1 (en) Piezo actuator type valve
KR101209762B1 (en) Flow sensor and mass flow control device using it
KR20120139588A (en) Flow rate measuring device and flow rate controller
KR102343611B1 (en) Self-diagnosis method of flow control device
US20240160230A1 (en) Flow rate control device
WO2019159959A1 (en) Piezoelectric element-driven valve and flow volume control device
JP6818357B2 (en) Piezoelectric valve and flow control device
WO2014201032A1 (en) High flow piezo type valve
JP6815910B2 (en) Pressure sensor
JP2023141049A (en) Pressure-type flow rate control device and vaporization supply device
JP2017009563A (en) Pressure sensor
JP2024053813A (en) Flow rate control device, vaporization supply device, and method for manufacturing flow rate control device
Prigodskiy Development of high-sensitivity piezoresistive pressure sensors for− 0.5...+ 0.5 kPa

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500515

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754760

Country of ref document: EP

Kind code of ref document: A1