WO2019159792A1 - Resin structure and method for manufacturing resin structure - Google Patents

Resin structure and method for manufacturing resin structure Download PDF

Info

Publication number
WO2019159792A1
WO2019159792A1 PCT/JP2019/004271 JP2019004271W WO2019159792A1 WO 2019159792 A1 WO2019159792 A1 WO 2019159792A1 JP 2019004271 W JP2019004271 W JP 2019004271W WO 2019159792 A1 WO2019159792 A1 WO 2019159792A1
Authority
WO
WIPO (PCT)
Prior art keywords
base layer
fiber
fibers
layer
resin structure
Prior art date
Application number
PCT/JP2019/004271
Other languages
French (fr)
Japanese (ja)
Inventor
聡子 森岡
箕浦 潔
惠太 和田
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201980012833.0A priority Critical patent/CN111712380B/en
Priority to KR1020207018845A priority patent/KR20200123087A/en
Priority to JP2019508269A priority patent/JP7234917B2/en
Publication of WO2019159792A1 publication Critical patent/WO2019159792A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer

Definitions

  • the present invention relates to a resin structure that exhibits a liquid repellent effect by having a fiber layer composed of a large number of fibers on the surface, and a method for producing the resin structure.
  • Patent Documents 2 and 3 As a fine structure that exhibits a liquid repellent effect, a composite shape that is oriented in a direction other than the direction perpendicular to the surface of the structure and has a fiber shape on an anisotropic protrusion or uneven protrusion is proposed. (Patent Documents 2 and 3).
  • Patent Document 4 a method of impregnating a lubricating liquid in a network structure entangled with each other in a three-dimensional direction has been proposed.
  • JP 2004-170935 A International Publication No. 2015/159825 JP 2016-155258 A JP 2016-11375 A
  • Patent Documents 1 to 4 described above have insufficient liquid repellency, and droplets may remain attached to the film as a structure, and the expected liquid repellency effect can be obtained.
  • There is a problem in durability such as a problem that the liquid crystal cannot be formed and the shape of the fine structure collapses due to external force and the liquid repellency decreases.
  • Patent Document 4 has a problem that the type of liquid is limited or the liquid repellency is low because the lubricating liquid needs to be changed depending on the type of liquid.
  • the resin structure of the present invention that solves the above problem is a resin structure including a base layer and a fiber layer composed of a large number of fibers,
  • the fiber layer is on the side close to the base layer and the fiber extends in a substantially vertical state with respect to the surface of the base layer; and the fiber is on the side away from the base layer and the fiber is on the base layer And a substantially parallel portion extending in a substantially parallel state with respect to the surface of All of the fibers constituting the fiber layer are bonded to the surface of the base layer and extend from the surface of the base layer.
  • the resin structure of the present invention that solves the above problem is a resin structure including a base layer and a fiber layer composed of a large number of fibers,
  • the fibers constituting the fiber layer are bonded to the surface of the base layer and extend from the surface of the base layer, and the area of the portion where the fibers are bonded on the surface of the base layer is the fiber layer of the base layer 5 to 40% of the surface area of the surface on which is formed,
  • the ratio of the area occupied by the fibers is 80% or more of the surface area of the base layer.
  • the manufacturing method of this invention which manufactures the resin structure which solves the said subject is a method of manufacturing a resin structure, A step of disposing a resin composition on the surface of the mold having a plurality of minute holes formed on the surface thereof; Pressing the mold and the resin composition while heating, and press-fitting a portion of the resin composition into the hole; A step of cooling the resin composition in a state where a part of the resin composition is in the hole; While stretching the resin composition in the hole, the resin composition is peeled off from the mold to form a large number of fibers stretched by the resin composition.
  • the fiber layer is on the side close to the base layer, and the fiber extends in a state substantially perpendicular to the surface of the base layer; and
  • the resin structure is formed of a substantially parallel portion on the side away from the base layer and in which the fibers extend in a substantially parallel state with respect to the surface of the base layer.
  • the manufacturing method of this invention which manufactures the resin structure which solves the said subject is a method of manufacturing a resin structure, A step of disposing a resin composition on the surface of the mold having a plurality of minute holes formed on the surface thereof; Pressing the mold and the resin composition while heating, and press-fitting a portion of the resin composition into the hole; A step of cooling the resin composition in a state where a part of the resin composition is in the hole; While stretching the resin composition in the hole, the resin composition is peeled off from the mold to form a large number of fibers stretched by the resin composition.
  • the resin structure of the present invention forms a layer of air between the droplet and the base layer when the droplet is adhered, the contact area between the droplet and air is increased by the fiber layer composed of a large number of fibers.
  • the liquid repellent function can be remarkably improved by the surface tension of the droplets.
  • the tip of the fiber extends substantially parallel to the surface of the base layer, the liquid repellency can be maintained even when the shape is deformed by an external force.
  • the infiltration of the liquid can be suppressed and the liquid repellency can be maintained by the air layer formed by the fibers close to the base layer extending substantially vertically.
  • FIG. 1 is a schematic cross-sectional view of a film which is a resin structure of the present invention.
  • FIG. 2 is a schematic perspective view of a film which is a resin structure of the present invention.
  • FIG. 3 is a schematic surface view of a film which is a resin structure of the present invention.
  • FIG. 4 is a schematic diagram showing the structure of the surface of the base layer of the film which is the resin structure of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing an example of an apparatus for producing a film that is a resin structure of the present invention.
  • FIG. 6 is a schematic plan view of the peeling means in the apparatus for producing a film that is the resin structure of the present invention as seen from the film width direction.
  • FIG. 1 is a schematic cross-sectional view of a film which is a resin structure of the present invention.
  • FIG. 2 is a schematic perspective view of a film which is a resin structure of the present invention.
  • FIG. 3 is a schematic surface
  • FIG. 7 is a schematic cross-sectional view showing another example of an apparatus for producing a film that is a resin structure of the present invention.
  • FIG. 8 is a cross-sectional photograph of the resin structure of the present invention, which was used to determine a substantially vertical portion and a substantially parallel portion of the fiber layer, a power spectrum diagram obtained by Fourier transform, and a fiber angle distribution diagram. It is an example.
  • FIG. 9 is a surface photograph of the resin structure (film) of Example 1 using a scanning electron microscope.
  • 10 is a cross-sectional photograph of the resin structure (film) of Example 1 taken with a scanning electron microscope.
  • FIG. 11 is a surface photograph of the resin structure (film) of Example 2 using a scanning electron microscope.
  • FIG. 12 is a cross-sectional photograph of the resin structure (film) of Example 2 taken with a scanning electron microscope.
  • FIG. 13 is a surface photograph of the resin structure (film) of Example 3 taken with a scanning electron microscope.
  • FIG. 14 is a cross-sectional photograph of the resin structure (film) of Example 3 taken with a scanning electron microscope.
  • FIG. 15 is a surface photograph of the resin structure (film) of Comparative Example 1 using a scanning electron microscope.
  • FIG. 16 is a cross-sectional photograph of the resin structure (film) of Comparative Example 1 using a scanning electron microscope.
  • the resin structure of the present invention is a structure including a base layer and a fiber layer composed of a large number of fibers, wherein the fiber layer is on the side close to the base layer and the fibers are on the surface of the base layer.
  • a substantially vertical portion extending in a substantially vertical state, and a substantially parallel portion on a side away from the base layer and the fibers extending in a state substantially parallel to the surface of the base layer; All of the fibers constituting the fiber layer are bonded to the surface of the base layer and extend from the surface of the base layer.
  • the resin structure of the present invention is a resin structure including a base layer and a fiber layer composed of a large number of fibers, and the fibers constituting the fiber layer are bonded to the surface of the base layer.
  • the area of the surface of the base layer extending from the surface of the base layer to which the fibers are bonded is 5 to 40% of the surface area of the surface of the base layer on which the fiber layer is formed.
  • the ratio of the area occupied by the fibers when the resin structure is viewed from the surface on the fiber side is 80% or more of the surface area of the base layer.
  • FIG. 1 is a schematic sectional view of a film which is a resin structure of the present invention
  • FIG. 2 is a schematic perspective view.
  • the resin structure 10 includes a base layer 11 and a fiber layer 14 including a large number of fibers 13.
  • the fibers 13 present on the surface 12 of the base layer 11 are bonded to the surface 12 of the base layer 11 and extend from the surface 12.
  • the fiber 13 is a portion having a convex shape with respect to the surface 12 of the base layer 11 as shown in FIG. 1 which is a schematic cross-sectional view, and the fibers 13 exist independently and discretely. It is preferable to do.
  • the shape of the fiber 13 may be any shape, but is preferably a weight-like shape, and may be swollen at the tip of the fiber 13.
  • the fiber layer 14 composed of a large number of fibers 13 is on the side close to the surface 12 of the base layer 11, and the substantially vertical portion in which the fibers 13 extend in a substantially vertical state with respect to the surface 12 of the base layer 11.
  • 15 and a substantially parallel portion 16 which is on the side away from the surface 12 of the base layer 11 and in which the fibers 13 extend in a state of being substantially parallel to the surface 12 of the base layer 11.
  • the fiber 13 is substantially perpendicular to the surface 12 of the base layer 11 means that the substantially vertical portion 15 extends at an angle of 60 ° to 120 ° with respect to the surface 12 of the base layer 11.
  • the fiber 13 is substantially parallel to the surface 12 of the base layer 11 means that the substantially parallel portion 16 extends at an angle of 0 ° to 30 ° and 150 ° to 180 ° with respect to the surface 12 of the base layer 11.
  • Whether the fiber 13 extends in a substantially vertical state or in a substantially parallel state with respect to the surface 12 of the base layer 11 is determined by image analysis of a cross-sectional photograph of the fiber layer 14 by two-dimensional Fourier transform. Judgment is made using the power spectrum obtained in this way. A detailed determination method will be described in [Measurement method] described later.
  • Reference Documents 1 to 3 and Reference URL 1 The principle of image analysis by two-dimensional Fourier transform is described in detail in, for example, Reference Documents 1 to 3 and Reference URL 1 below.
  • Reference 1 Toshiharu Emae, “Method for analyzing physical properties of paper using image processing”, Paper Pulp Technology Times, 48 (11), 1-5 (2005)
  • Reference 2 Enomae, T., Han, Y.-H. and Isogai, A., "Fiber orientation distribution of paper surface calculated by image analysis," Proceedings of International Papermaking and Environment Conference, Tianjin, PRChina (May 12- 14), Book2, 355-368 (2004)
  • Reference 3 Enomae, T., Han, Y.-H.
  • the fibers 13 are substantially parallel in the substantially parallel portion 16, the interval between the fibers 13 is appropriately narrowed, and the liquid droplets are difficult to enter between the fibers 13, thereby exhibiting liquid repellency. Since the fibers 13 are substantially vertical in the substantially vertical portion 15, an air layer is well formed between the fibers 13, and the liquid repellency is improved. Here, if the fiber 13 is inclined beyond the substantially vertical state in the substantially vertical portion 15, the fiber 13 is inclined at the root, and it becomes difficult to support the fiber 13 on the side away from the base layer 11 independently. As a result, it becomes difficult to form an air layer and liquid repellency may be lowered.
  • the fibers 13 are often relatively sparse in the substantially vertical portion 15 and the fibers 13 are relatively dense in the approximately parallel portion 16.
  • the fibers 13 are relatively sparse in the substantially vertical portion 15
  • an air layer is well formed in the fiber layer 14 and the liquid repellency is improved. Since the fibers 13 are relatively dense at the substantially parallel portion 16, the penetration of the liquid into the fiber layer 14 is prevented and the liquid repellency is improved.
  • FIG. 3 is a schematic surface view of the film which is the resin structure 10 of the present invention as seen from the surface on the fiber side
  • FIG. 4 is a schematic view showing the structure of the base layer surface of the film which is the resin structure 10 of the present invention.
  • 3 is a view of the resin structure 10 of FIG. 1 as viewed from the direction A
  • FIG. 4 is a view of the resin structure 10 of FIG. 1 as viewed from the BB cross section.
  • one surface of the resin structure 10 is substantially covered with a fiber layer 14 composed of a large number of fibers 13.
  • the ratio of the area occupied by the fibers 13 is 80% or more of the surface area of the base layer 11.
  • the ratio of the area of the surface 12 of the base layer 11 bonded to the fiber 13 is 5 to 40% of the surface area of the surface of the base layer 11 on which the fiber layer 14 is formed. is there. That is, on the surface of the resin structure 10, the fibers 13 are in a dense state covering almost the whole, and liquid droplets are difficult to enter between the fibers 13, so that liquid repellency is exhibited.
  • the proportion of air is larger than the area of the portion bonded to the fiber 13, the air layer is well formed between the fibers 13 and the liquid repellency is improved.
  • the ratio of the area occupied by the fibers 13 when viewed from the surface of the fiber layer 14 side of the resin structure 10 is obtained by binarizing the observation photograph of the surface of the resin structure 10 using a scanning electron microscope. It can be obtained using an image.
  • the ratio of the area of the surface 12 of the base layer 11 where the fibers 13 are bonded can be determined by the following method (i) or (ii).
  • the fiber layer 14 is cut in parallel with the base layer 11 immediately above the base layer 11 of the resin structure 10, and an observation photograph of the cut surface is obtained using a scanning electron microscope, and the cross-sectional observation photograph is binarized. Obtained using images.
  • observation photographs are obtained using a scanning electron microscope.
  • the value measured by the above method (i) is the ratio of the area of the surface 12 of the base layer 11 where the fibers 13 are bonded.
  • the fibers are very thin such that the fiber diameter is 1 ⁇ m or less, and even if the fiber layer 14 is cut by the method (i) above, the fibers 13 fall down due to the cutting edge of the cutting blade, and the fiber layer 14 is cut.
  • the value measured by the method of (ii) be the ratio of the area of the portion of the surface 12 of the base layer 11 where the fibers 13 are bonded.
  • the fiber diameter is 0.05 ⁇ m or more and 3 ⁇ m or less on the surface of the resin structure 10, it becomes easy to form an air layer in the gap between the fibers, and the contact area between the droplets and the air becomes large. This is preferable because of increased properties.
  • the fiber diameter is more preferably 0.1 ⁇ m or more and 0.5 ⁇ m or less. When the fiber diameter is 0.05 ⁇ m or more, the fiber is not cut or easily deformed, and durability is improved. Furthermore, since the fiber 13 is hard to cut when the resin forming the fiber 13 is stretched, a sufficient fiber layer 14 can be formed.
  • the fiber diameter when the fiber diameter is 0.1 ⁇ m or more, when the resin forming the fiber 13 is stretched, the fiber 13 is unlikely to fall on the surface of the base layer, and a sufficient substantially vertical portion is easily formed.
  • the fiber diameter is 3 ⁇ m or less, an air layer can be sufficiently formed between the fibers, and a liquid repellent effect is exhibited.
  • the fiber diameter when the fiber diameter is 0.5 ⁇ m or less, when the resin is stretched to form the fibers 13, the fibers 13 are easily entangled with each other, so that it is easy to form a sufficient substantially parallel portion on the side away from the base layer. .
  • the fiber diameter refers to an observation photograph of the surface using a scanning electron microscope, selects arbitrary 30 fibers 13 and measures the maximum width of each of the fibers. This is the average of the maximum widths of the middle 20 fibers 13 excluding 5 from the small width.
  • the number of the fibers 13 is 2000 or more and 3 ⁇ 10 6 or less in 10000 ⁇ m 2 of the surface 12 of the base layer 11, the droplets on the surface of the resin structure 10 are easily supported by the fibers 13. It is preferable because the liquid repellency is enhanced by increasing the contact area between the droplet and air.
  • the number of the fibers 13 in 10000 ⁇ m 2 is 3 ⁇ 10 6 or less, a sufficient air layer can exist between the fibers 13 when the droplets adhere, so that the contact area with the air is sufficient, and the liquid repellent effect Is expressed.
  • the number of the fibers 13 in 10000 ⁇ m 2 on the surface 12 of the base layer 11 is 2000 or more, the distance between the fibers 13 is appropriately narrow, and the droplets are difficult to enter between the fibers 13. Contact with the droplet does not occur and liquid repellency is exhibited.
  • the fiber diameter is 0.5 ⁇ m or less
  • the number of fibers 13 in 10,000 ⁇ m 2 on the surface 12 of the base layer 11 is 10,000 or more, the droplets on the surface of the resin structure 10 are fibers 13. It becomes easy to be supported and is more preferable.
  • the number of the fibers 13 is obtained by obtaining an observation photograph using a scanning electron microscope for the cut surface obtained by cutting the resin structure 10 directly above the base layer 11 of the resin structure 10 and parallel to the base layer 11.
  • a surface mold of the resin structure 10 may be taken with liquid silicone rubber and read from a surface image of the mold.
  • the surface of the liquid silicone rubber becomes a surface having a large number of holes corresponding to the bottom surface of the fiber 13 (the surface bonded to the surface 12 of the base layer 11).
  • a scanning electron micrograph of this surface is obtained and the number of fibers 13 is determined.
  • an observation photograph using a scanning electron microscope is obtained for each cross-section obtained by cutting the resin structure 10 in two cross-sections perpendicular to and perpendicular to the surface of the resin structure 10. It is also possible to obtain the number of fibers 13 per 10000 ⁇ m 2 by obtaining the number of fibers 13 per 100 ⁇ m present in the product and taking the product thereof.
  • the thickness of the fiber layer 14 is preferably 5 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the fiber layer 14 refers to a cross-sectional observation photograph taken using a scanning electron microscope for a cross section obtained by cutting the structure in a cross section perpendicular to the surface of the resin structure 10, and from the surface 12 of the base layer 11. This is a value obtained by measuring 10 points where the distance to the outermost surface is large and averaging the distances of these 10 points.
  • the fiber layer 14 is 5 ⁇ m or more, an air layer can be formed between the fiber 13 and the fiber 13 when the droplet adheres, so that a liquid repellent effect is obtained.
  • the fiber layer is 50 ⁇ m or less, it does not take time to obtain the fibers 13. Further, the durability is sufficient, for example, the fibers 13 are not easily fallen or deformed.
  • the resin structure 10 of the present invention can be suitably used as a film, but is not limited to a film and may have any shape as long as the surface can be thermoformed. From the viewpoint of, a film is preferable.
  • the material of the resin structure 10 may be any material as long as it can form the fibers 13, such as fluororesin, silicone resin, polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate, and polybutylene terephthalate.
  • Polyester resins, polyethylene resins, polystyrene, polypropylene, polyisobutylene, polybutene, polymethylpentene, and other polyolefin resins, polyamide resins, polyimide resins, polyether resins, polyesteramide resins, polyetherester resins, acrylic resins Resins, polyurethane resins, polycarbonate resins, polyvinyl chloride resins and the like are preferably used.
  • fluororesins and silicone resins having a low surface energy are particularly preferred, and polyolefin resins such as polyethylene, polystyrene, polypropylene, polyisobutylene, polybutene, and polymethylpentene.
  • a material of the resin structure 10 it is preferable to include these resins as main components.
  • a main component means the component which occupies 50 mass% or more when the whole resin which comprises a resin structure is 100 mass%.
  • 50 mass% or more is preferable and, as for the main component, 80 mass% or more is more preferable.
  • additives can be added to the material of the resin structure 10 of the present invention at the time of polymerization or after polymerization.
  • additives that can be added and blended include, for example, organic fine particles, inorganic fine particles, dispersants, dyes, fluorescent brighteners, antioxidants, weathering agents, antistatic agents, mold release agents, thickeners, Examples include plasticizers, pH adjusters, and salts.
  • a releasing agent low surface tension carboxylic acids such as long chain carboxylic acids or long chain carboxylates and derivatives thereof, and low surface tension alcohols such as long chain alcohols and derivatives thereof, and modified silicone oils. It is preferable to add a small amount of a compound or the like during polymerization.
  • the resin structure 10 may have another layer laminated on the side opposite to the side on which the fiber layer 14 of the base layer 11 is laminated.
  • the above material may be used only for the base layer 11 and the fiber layer 14.
  • the resin structure 10 may be a continuous body or a single wafer.
  • the thickness of the resin structure 10 is not particularly limited.
  • the method for producing the resin structure of the present invention comprises a step of arranging a resin composition on a surface of a mold having a plurality of minute holes formed on the surface, the mold and the mold A step of pressing the resin composition while heating and press-fitting a part of the resin composition into the hole (hereinafter referred to as “press-fitting process”), a part of the resin composition being A step of cooling the resin composition in a state (hereinafter referred to as a “cooling step”), and the resin composition is peeled off from the mold while the resin composition in the hole is stretched.
  • a resin structure composed of a fiber layer composed of the fiber and a base layer not containing the fiber by forming a large number of fibers in which the resin composition is stretched (hereinafter referred to as “pulling”).
  • the above steps are performed in this order.
  • the fiber layer is on the side close to the base layer, the fiber extends in a substantially vertical state with respect to the surface of the base layer, and on the side away from the base layer,
  • a resin structure is formed that includes fibers and substantially parallel portions extending in a substantially parallel state to the surface of the base layer.
  • the peeling step pressure is applied to the resin structure from a direction substantially perpendicular to the fiber layer.
  • the fiber layer is on the side close to the base layer, the fiber extends substantially perpendicular to the surface of the base layer, and the fiber layer is on the side away from the base layer.
  • a step of forming the fibers by a substantially parallel portion extending in a state where the fibers are substantially parallel to the surface of the base layer and the fibers are entangled with each other hereinafter referred to as a “pressurizing step”).
  • FIG.5 is a schematic cross-sectional view of manufacturing apparatuses 50 and 70 for manufacturing the resin structure 10 (film) having the fiber layer 14 on the surface 12 of the base layer 11.
  • FIG. 6 is a schematic cross-sectional view showing the operation of peeling the resin structure 10 (film) from the mold in the manufacturing apparatus 50.
  • the material film 10 ′ is pulled out from the unwinding roll 51 in advance, and then, in the press unit 54, a heated mold 53 with fine holes formed on the surface is formed.
  • a fine protrusion structure corresponding to the fine holes of the mold 53 on the surface of the film 10' Form.
  • the molding part is a peeling unit that peels from the mold 53 a press unit 54 that forms a predetermined fine protrusion structure, and a film 10 '' that is attached to the mold 53 by pressurization and has a fine protrusion structure formed on the surface.
  • the peeling means 55 includes a pair of peeling rolls 55 ⁇ / b> A and a peeling auxiliary roll 55 ⁇ / b> B arranged in parallel to hold the peeled film 10 so as to hold it in an S shape.
  • One surface of the film 10 ′ sent intermittently is thermoformed by the mold 53 in the press unit 54 to obtain a film 10 ′′ having a fine protrusion structure formed on the surface. After the thermoforming, as shown in FIG.
  • the peeling means 55 is moved toward the upstream side, whereby the film 10 ′′ attached to the mold 53 is sequentially peeled from the mold 53, and the base layer 11. A film 10 having a fiber layer 14 on the surface 12 is obtained. Thereafter, the film 10 is wound around the winding roll 56.
  • reference numerals 57 and 58 denote pressure plates, and 59 and 60 denote buffer means provided to smoothly perform intermittent conveyance in the mold 53 portion of the film 10 ′.
  • the diameter of the fiber 13 formed by stretching the formed fine protrusion structure The thickness of the fiber layer 14 can be changed.
  • the temperature of the mold 53 at the time of molding is set to be equal to or higher than the melting point of the resin composition that is the material of the film 10
  • the temperature of the mold 53 at the time of peeling is set to be equal to or higher than the glass transition temperature of the resin composition that is the material of the film 10.
  • the stretched fibers 13 themselves are not rigid, the stretched fibers 13 fall in a non-uniform direction when the tips of the fibers 13 are separated from the mold 53, and the fibers 13 are entangled with each other. At this time, since the fiber 13 is finally entangled from the mold 53, that is, from the tip of the fiber 13, the entangled fiber 13 is densely packed in the portion away from the surface 12 of the base layer 11 of the film 10. The substantially parallel part 16 extended in the state substantially parallel with respect to the base layer 11 is formed.
  • the fiber 13 is closer to the surface 12 of the base layer 11 than the substantially parallel portion 16.
  • a substantially vertical portion 15 extending in a substantially vertical state is formed.
  • the stretched fiber 13 has a relatively high rigidity and the fiber 13 has a small entanglement
  • the density of the fiber layer 14 the inclination angle of the fiber 13, the fiber layer
  • the thickness of 14 can be adjusted. For example, if the pressure is increased, the fiber layer 14 becomes thinner, the fibers 13 on the tip side are inclined and become substantially parallel, and the density of the fibers 13 at the substantially parallel portion 16 increases.
  • the film 10 ′ is pulled out from the unwinding roll 73, and is supplied by the heating roll 75 onto the endless belt-shaped mold 76 in which a fine hole structure is formed on the heated surface.
  • the outer surface of the mold 76 is formed with discretely arranged fine holes and heated by the heating roll 75 immediately before coming into contact with the film 10 ′.
  • the continuously supplied film 10 ′ is pressed against the surface of the mold 76 with the fine hole structure processed by the nip roll 77, and a fine protrusion structure corresponding to the fine hole of the mold 76 is formed on the surface of the film 10 ′. It is formed.
  • the temperature at which the film 10 ′ is pressed against the surface on which the microporous structure of the mold 76 has been processed is equal to or higher than the glass transition temperature of the film 10 ′. It is more preferable that the temperature is equal to or higher than the melting temperature of the film 10 ′.
  • the film 10 ′′ having a fine protrusion structure formed on the surface is conveyed to the outer surface position of the cooling roll 78 in a state of being in close contact with the surface of the mold 76.
  • the film 10 ′′ is cooled by heat conduction through the mold 76 by the cooling roll 78, and then peeled off from the mold 76 while the fine protrusion structure formed by the peeling roll 79 is stretched, and the surface of the base layer 11 is peeled off.
  • a film 10 having a fiber layer 14 on 12 is obtained.
  • the film 10 is taken up on a take-up roll 82.
  • the diameter of the fiber 13 and the thickness of the fiber layer 14 formed by stretching the formed fine protrusion structure are changed. can do.
  • the density of the fiber layer 14, the inclination angle of the fiber 13, and the thickness of the fiber layer 14 can be adjusted. For example, if the pressure is increased, the fiber layer 14 becomes thinner, the fibers 13 on the tip side are inclined and become substantially parallel, and the density of the fibers 13 at the substantially parallel portion 16 increases.
  • the area ratio occupied by the minute holes formed on the surfaces of the molds 53 and 76 is that the area ratio is approximately the ratio of the area of the base layer 11 of the film 10 that is bonded to the fiber 13.
  • the area ratio occupied by minute holes formed on the surfaces of the molds 53 and 76 is preferably 5% to 40%.
  • the diameter of the minute holes formed on the surfaces of the molds 53 and 76 is preferably 0.05 ⁇ m to 3 ⁇ m, more preferably 0.1 ⁇ m to 0.5 ⁇ m. When the diameter of the minute holes formed on the surfaces of the molds 53 and 76 is 0.05 ⁇ m or more, a part of the film 10 ′ is easily press-fitted in the press-fitting process.
  • the fiber 13 stretched in the peeling process is not easily collapsed on the surface of the base layer, and a substantially vertical portion is easily formed. Moreover, if it is 0.5 ⁇ m or less, the tip end portion of the fiber 13 stretched in the peeling process is likely to fall, and the fibers 13 are likely to be entangled in the substantially parallel portion 16. In addition, when the thickness is 3 ⁇ m or less, the fiber 13 stretched in the peeling process is easily deformed in the pressing process.
  • the depth of the minute holes formed on the surfaces of the molds 53 and 76 is preferably 2.5 times or more the hole diameter. If the depth of the hole is 2.5 times or more of the hole diameter, the area where the injected resin is in contact with the side surface of the hole of the mold 53, 76 by the press-fitting step is 10 times or more the surface area of the hole part, It is preferable that the resin is easily stretched in the peeling process.
  • the depth of the hole with respect to the hole diameter is more preferably 10 times or more. There is no particular upper limit to the value of the hole depth relative to the hole diameter, but it is preferably about 100 times due to the ease of hole formation.
  • Such a method for producing the dies 53 and 76 having a plurality of fine holes formed on the surface includes a method of directly performing cutting, laser processing and electron beam processing on the metal surface, and a direct coating on the plating film formed on the metal surface. After forming a convex shape reversed with micropores by laser processing or electron beam processing on the metal surface or the plating film formed on the metal surface by cutting, laser processing or electron beam processing, electroforming The method of producing a micropore shape by is mentioned. In addition, after applying the resist on the substrate, the resist is formed with a predetermined patterning by a photolithographic technique, and then the substrate is etched to form a shape. Examples include a method for obtaining a structure.
  • the molds 53 and 76 having a fine pore structure on the surface can also be produced.
  • the materials of the molds 53 and 76 may be silicon wafers, various metal materials, glass, ceramics, plastics, carbon materials, etc., as long as they have strength and workability with required accuracy. Specifically, Si, SiC, SiN, polycrystalline Si, glass, Ni, Cr, Cu, Al, Fe, Ti, C and further one or more of these may be included. Moreover, you may produce by etching the surface of the metal mold
  • the shape of the fiber 13 can be controlled by adjusting the conditions of the press-fitting process, the cooling process, and the peeling process in addition to the shape of the fine holes on the surfaces of the molds 53 and 76. For example, if the hole diameter in the shape of fine holes on the surfaces of the molds 53 and 76 is reduced, the fiber diameter is reduced. By changing the cooling temperature in the cooling process and the stretching speed in the peeling process, the fiber diameter and the fiber are changed. The thickness of the layer 14 can be changed.
  • the pressure applied can be appropriately changed depending on the form of the fiber 13, and the inclination angle, the degree of density, and the thickness of the fiber layer 14 can be changed by the pressure.
  • the surface of the fiber 13 obtained as described above has a functional group having a low surface energy, It is particularly desirable to coat a fluorine group.
  • Such a coating treatment method is not particularly limited as long as the structure of the fiber 13 is not filled with a coating material.
  • LB method Langmuir Blodget method
  • PVD method physical vapor deposition method
  • CVD method Chemical vapor deposition method
  • self-organization method self-organization method
  • sputtering method and a method in which a single molecule diluted with a solvent is applied. It is also possible to form the fiber 13 by the above-mentioned method after performing a liquid repellent treatment with an arbitrary thickness on the film 10 ′ forming the fiber 13 with the above-described material.
  • the resin structure of the present invention can be used for building materials such as biodevices such as cell culture sheets and biochips, optical devices such as optical films and anisotropic films, liquid repellent sheets, and antifouling sheets, taking advantage of its surface characteristics. It can be used suitably. Moreover, since the resin structure of this invention contains not only liquid repellency but the air layer in the base layer vicinity of the resin structure, it can be used also for other uses, such as a heat insulation sheet.
  • the presence or absence of 16 is determined by the following procedure. (1) A 10 mm ⁇ 10 mm sample is cut out from an arbitrary location of the resin structure 10. One cut surface is arbitrarily selected from the four cut surfaces of the sample. About the selected cut surface, the observation object is the right end portion viewed with the fiber layer 14 on the upper side and the base layer 11 on the lower side.
  • the elliptical approximate inclination angle distribution of the fiber 13 is such that the average value of the average amplitude of 60 degrees or more and 120 degrees or less is compared with the average value of the average amplitude of 0 degrees or more and less than 60 degrees and greater than 120 degrees and 180 degrees or less.
  • it is large it is determined that the fibers 13 in this cross-sectional photograph are in a substantially vertical state.
  • the right end portion viewed from the fiber layer 14 on the upper side and the base layer 11 on the lower side is an observation object, and items (2) to (5) Do the same work. Further, the sample is cut through the center of the 10 mm ⁇ 10 mm sample in parallel with the cut surface selected in the item (1), and the left and right central portions of the cut surface are set as observation objects, and the items (2) to (5) Do the same work.
  • the one-third portion farthest from any base layer 11 of the three observation objects is in a state in which the fibers 13 are substantially parallel, the one-third farthest from the base layer 11 of the fiber layer 14 The part is determined to be a substantially parallel part. If the one-third portion closest to any of the base layers 11 of the three observation targets is the fiber 13 in a substantially vertical state, the one-third portion closest to the base layer 11 of the fiber layer 14 is a substantially vertical portion. It is determined that
  • FIG. 8A shows a cross-sectional photograph used for image analysis by two-dimensional Fourier transform
  • FIG. 8B shows a power spectrum obtained by image analysis
  • FIG. FIG. 8 shows an example in which the fiber 13 extends in a state substantially parallel to the surface 12 of the base layer 11.
  • the Fiber Orientation Analysis Ver. 8.03 was used in order to Fourier transform the basal plane dislocation image. This Fourier transform software extracts the luminance information of each point from the image data, performs a Fourier transform process, and calculates the power spectrum and average amplitude Aave. Processing for obtaining ( ⁇ ) is performed. Detailed procedures are described in Reference Documents 1 to 3 and Reference URL 1 described above.
  • the image is converted into a bitmap in advance in order to extract numerical information on luminance. Further, in order to perform fast Fourier transform, adjustment is made in advance so that the number of pixels on one side of the image is an integer multiple of four.
  • Fourier transform processing is performed on an image having an aspect ratio of 3 or more, the original image is pasted in the direction in which the aspect ratio of the image to be Fourier transformed is reduced, and the Fourier transform processing is performed as one image. Do.
  • the film 10 molded in Examples and the like was cut out to 10 mm ⁇ 10 mm, and the surface was observed with a secondary electron image at a magnification of 10,000 times with a scanning electron microscope (Keyence VE-7800, Inc.).
  • the image size at this time was 12.1 ⁇ m ⁇ 9.1 ⁇ m.
  • the number of pixels was 1280 pixels ⁇ 960 pixels, and the size of one pixel was 9.4 nm ⁇ 9.5 nm.
  • the observation photograph was binarized into black and white, and the area of the bright portion of the image (hereinafter referred to as “white portion”) in the entire image was defined as the ratio of the area occupied by the fibers 13 viewed from the surface on the fiber layer 14 side.
  • the threshold for binarization is an intermediate light amount value between two light amount peaks indicating a white portion and a dark portion (hereinafter referred to as “black portion”), and binarization before and after the light amount value is performed.
  • the light quantity value with the smallest change in the ratio of the white part and the black part was set.
  • the number of pixels was 1280 pixels ⁇ 960 pixels, and the size of one pixel was 9.4 nm ⁇ 9.5 nm.
  • the observation photograph was binarized into black and white, and the area of the bright portion of the image (hereinafter referred to as “white portion”) in the entire image was defined as the area of the surface 12 of the base layer 11 where the fibers 13 were bonded.
  • the threshold value for binarization is an intermediate light amount value between two light amount peaks indicating a white portion and a dark portion (hereinafter referred to as “black portion”), and in binarization before and after the light amount value.
  • black portion dark portion
  • the film 10 is cut in two directions perpendicular to and perpendicular to the surface of the film 10, and each cross section is magnified 5000 times using a scanning electron microscope (Keyence Corporation VE-7800). And observed.
  • the image size at this time was 24.3 ⁇ m ⁇ 18.2 ⁇ m.
  • the number of pixels was 1280 pixels ⁇ 960 pixels, and the size of one pixel was 19.0 nm ⁇ 19.0 nm.
  • the number of fibers 13 present in the cross section and the average cross-sectional width of the fibers 13 were determined, and the ratio of the fibers 13 bonded per unit length of the base layer 11 in each cross section was determined from the product. Further, the product of the proportions of fibers 13 in each cross section was determined, and the value was defined as the ratio of the area of the surface 12 of the base layer 11 where the fibers 13 were bonded.
  • the film 10 molded in Examples and the like was cut out to 10 mm ⁇ 10 mm, and the surface was observed with a secondary electron image at a magnification of 10,000 times with a scanning electron microscope (Keyence VE-7800, Inc.).
  • the image size at this time was 12.1 ⁇ m ⁇ 9.1 ⁇ m.
  • the number of pixels was 1280 pixels ⁇ 960 pixels, and the size of one pixel was 9.4 nm ⁇ 9.5 nm. From the observation photograph, arbitrary 30 fibers 13 were selected, and the average of the widths of the middle 20 fibers 13 obtained by removing 5 from the wide width and 5 from the small width was the fiber.
  • the diameter The diameter.
  • the film 10 molded in Examples and the like was cut out to 10 mm ⁇ 10 mm, and the surface was observed with a secondary electron image at a magnification of 10,000 times with a scanning electron microscope (Keyence VE-7800, Inc.).
  • the image size at this time was 12.1 ⁇ m ⁇ 9.1 ⁇ m.
  • the number of pixels was 1280 pixels ⁇ 960 pixels, and the size of one pixel was 9.4 nm ⁇ 9.5 nm.
  • the number of fibers 13 is read from this image. At the time of measuring the number of the fibers 13, the measurement was performed while marking the fibers 13 using the Snipping Tool.
  • the number of fibers obtained by this method was converted to the number of fibers in 10,000 ⁇ m 2 .
  • the surface of the film 10 may be taken with liquid silicone rubber or the like and read from the surface image of the mold.
  • the film 10 is peeled off from the cured liquid silicone rubber, the surface of the liquid silicone rubber becomes a surface in which many holes corresponding to the bottom surface of the fiber 13 are opened. A scanning electron micrograph of this surface is obtained to determine the number of fibers 13.
  • the film 10 formed in Examples and the like was cut in a direction perpendicular to the surface of the film 10, and the cross section thereof was observed with a scanning electron microscope (Keyence VE-7800) at a magnification of 5000 times.
  • the image size at this time was 24.3 ⁇ m ⁇ 18.2 ⁇ m.
  • the number of pixels was 1280 pixels ⁇ 960 pixels, and the size of one pixel was 19.0 nm ⁇ 19.0 nm.
  • a cured resin Cutting or polishing can be performed after the film 10 is hardened together with the fiber layer 14 so that the structure of the fiber layer 14 is not destroyed by ice or ice.
  • the cured resin is made hydrophilic after lyophilic treatment (corona discharge treatment or plasma treatment) within a range that does not destroy the surface structure of the film 10. It can be hardened with ice or ice and cut.
  • the film 10 formed in Examples and the like was cut into 10 mm ⁇ 30 mm, and the contact angle of water droplets was measured using a contact angle meter (Kyowa Interface Science Co., Ltd., CA-D type). Pure water was used as the measurement liquid, and 1.41 ⁇ L of pure water was dropped onto the film surface. The measurement was performed at 10 points in the film, and the average value of the 10 points was defined as the contact angle.
  • Non-adhesion test The film 10 molded in Examples and the like was cut into 10 mm ⁇ 30 mm, and fixed to a fixing jig so that the measurement surface was on top. Thereafter, with the fixing jig tilted at 45 °, 0.3 ml of yogurt (Morinaga biplane plain yogurt sweetened type) was dropped, and the time until the droplet moved 20 mm after dropping was measured. Moreover, the adhesion residue of yogurt was observed visually. The case where there was no adhesion residue was marked with ⁇ , and the others were marked with ⁇ .
  • Example 1 Film A 100 ⁇ m thick film containing a polymer mainly composed of polypropylene (melting point: 144 ° C., glass transition temperature: ⁇ 20 ° C.) was used. (2) Mold On the surface of the stainless steel plate, a material mainly composed of Ni was coated with a thickness of about 100 ⁇ m. Thereafter, a mold was produced in which a fine pore structure having a diameter of about 0.3 ⁇ m to 0.6 ⁇ m and a depth of about 7 ⁇ m to 10 ⁇ m was formed on the entire surface of the mold surface by laser processing. The area where the fine holes were formed was 20% with respect to the surface where the fine holes were formed.
  • the press unit 54 is a mechanism that is pressurized by a hydraulic pump.
  • Two pressurizing plates 57 and 58 are attached inside the press unit 54 and are connected to a heating device and a cooling device, respectively.
  • the mold 53 is installed on the upper surface of the lower pressure plate 57.
  • a peeling means 55 for peeling the film 10 ′′ attached to the mold 53 is installed in the press unit 54.
  • the mold temperature at the time of molding was set to 160 ° C., and a pressure of 10 MPa was applied over the entire surface.
  • the pressurizing time was 60 seconds.
  • the mold temperature at the time of peeling was 50 ° C.
  • the separation distance between the peeling roll and the film was 0.3 mm.
  • the peeled film was pressed with a nip roll 62 at 0.6 MPa, then sent to the downstream winding unit 61 side and wound up.
  • FIG. 9 is a surface photograph of the fiber-formed surface of the film 10 molded in Example 1 using a scanning electron microscope (Keyence VE-7800).
  • FIG. 2 is a cross-sectional photograph of the molded film 10 taken with a scanning electron microscope (Keyence VE-7800).
  • the formed film 10 was composed of a base layer 11 and a fiber layer 14 in which a large number of fibers 13 were formed.
  • the fiber layer 14 includes a substantially vertical portion 15 made of fibers 13 that are substantially perpendicular to the surface 12 of the base layer 11 on the side close to the base layer 11, and a surface that is substantially away from the surface 12 of the base layer 11 on the side away from the base layer 11.
  • Liquid repellency / droplet transfer effect 1.41 ⁇ L of water is dropped on the surface of the fiber layer 14 of the molded film 10 and a contact angle meter (Kyowa Interface Science Co., Ltd., CA-D type) is used. Used to measure the contact angle of water droplets. When a water droplet is dropped, the water droplet rolls on the surface of the film 10 and cannot be kept in one place, so that the contact angle cannot be measured. In addition, 0.3 ml of yogurt was dropped on the surface of the film 10 inclined at 45 °, and the time from the dropping to the movement of 20 mm was 0.2 s, and there was no adhesion residue.
  • Example 2 (1) Film The same film as in Example 1 was used. (2) Mold The same mold as in Example 1 was used. (3) Molding apparatus and conditions The same molding apparatus 50 as in Example 1 was used, and a film was molded under the same conditions as in Example 1 except that the mold temperature at the time of molding was 150 ° C.
  • FIG. 11 is a surface photograph of the fiber-formed surface of the film 10 molded in Example 2 by a scanning electron microscope (Keyence VE-7800).
  • FIG. 2 is a cross-sectional photograph of the molded film 10 taken with a scanning electron microscope (Keyence VE-7800).
  • the formed film 10 was composed of a base layer 11 and a fiber layer 14 in which a large number of fibers 13 were formed.
  • the fiber layer 14 includes a substantially vertical portion 15 made of fibers 13 that are substantially perpendicular to the surface 12 of the base layer 11 on the side close to the base layer 11, and a surface that is substantially away from the surface 12 of the base layer 11 on the side away from the base layer 11.
  • the fibers 13 which became parallel, and was comprised with the substantially horizontal part 16 extended in the state in which the fibers were entangled. In the substantially vertical portion 15, the fibers 13 are relatively sparse, and in the approximately parallel portion 16, the fibers 13 are relatively dense.
  • the fiber diameter was 0.6 ⁇ m, and the fiber layer thickness was 5.0 ⁇ m.
  • the number of fibers 13 formed at 10,000 ⁇ m 2 was 10300.
  • the area of the part where the fibers 13 are bonded on the surface 12 of the base layer 11 was measured by the method (i). The measured values of the obtained fiber 13 are shown in Table 1.
  • Example 3 (1) Film The same film as in Example 1 was used. (2) Mold The same mold as in Example 1 was used. (3) Molding apparatus and conditions The same molding apparatus 50 as in Example 1 was used, and a film was molded under the same conditions as in Example 1 except that the mold temperature at the time of peeling was 80 ° C.
  • FIG. 13 is a surface photograph of the fiber-formed surface of the film 10 molded in Example 3 by a scanning electron microscope (Keyence VE-7800), and FIG. 2 is a cross-sectional photograph of the molded film 10 taken with a scanning electron microscope (Keyence VE-7800).
  • the formed film 10 was composed of a base layer 11 and a fiber layer 14 in which a large number of fibers 13 were formed.
  • the fiber layer 14 includes a substantially vertical portion 15 made of fibers 13 that are substantially perpendicular to the surface of the base layer on the side close to the base layer 11, and a fiber 13 that is substantially parallel to the surface of the base layer on the side away from the base layer 11.
  • the substantially parallel part 16 extended in the state which consists of fibers and was entangled.
  • the fibers 13 are relatively sparse, and in the approximately parallel portion 16, the fibers 13 are relatively dense.
  • the fiber diameter was 0.45 ⁇ m, and the thickness of the fiber layer 14 was 6.0 ⁇ m.
  • the number of fibers 13 formed at 10,000 ⁇ m 2 was 12700.
  • the area of the part where the fibers 13 are bonded on the surface 12 of the base layer 11 was measured by the method (ii). The measured values of the obtained fiber 13 are shown in Table 1.
  • the press unit 54 is a mechanism that is pressurized by a hydraulic pump. Two pressurizing plates 57 and 58 are attached inside the press unit 54 and are connected to a heating device and a cooling device, respectively.
  • the mold 53 is installed on the upper surface of the lower pressure plate 57. Further, a peeling means 55 for peeling the film 10 ′′ attached to the mold 53 is installed in the press unit 54.
  • the mold temperature at the time of molding was set to 165 ° C., and the pressure was 5 MPa over the entire surface.
  • the pressurization time was 30 seconds.
  • the mold temperature at the time of peeling was 80 ° C.
  • the separation distance between the peeling roll 55A and the mold 53 was 0.3 mm.
  • the peeled film 10 was sent out to the downstream winding unit 61 side and wound up.
  • FIG. 15 is a surface photograph of the molding surface of the film molded in Comparative Example 1 using a scanning electron microscope (Keyence VE-7800), and FIG. 16 is molded in Comparative Example 1.
  • 2 is a cross-sectional photograph of the film taken with a scanning electron microscope (Keyence VE-7800).
  • the formed film was composed of a base layer and a large number of fibers formed on the entire surface of the base layer.
  • the average diameter of the fiber was 0.35 ⁇ m, the average height was 1.2 ⁇ m, and the fiber was not stretched.
  • the number of fibers formed at 10,000 ⁇ m 2 was 14300.
  • the range of the fiber inclination angle in the cross section obtained by cutting the film in a direction perpendicular to the surface of the base layer is 20 ° to more than 70% of the protrusions in the cross section perpendicular to the surface of the base layer.
  • the range was 45 °.
  • the drawing direction of the fiber was constant, there was no rough portion, and the fiber was not composed of a substantially parallel part and a substantially vertical part.
  • the area of the part where the fibers are bonded on the surface of the base layer was measured by the method (ii). The measured values of the obtained fibers are shown in Table 1.
  • the resin structure of the present invention is liquid repellent on the surface of microchannels, cell culture sheets, packaging materials, antifouling or waterproof sheets, recording materials, screens, separators, ion exchange membranes, battery membrane materials, displays, optical materials, etc. It is suitably used for products and parts that require high performance.

Abstract

Provided is a highly liquid-repellent and highly durable resin structure, in which the liquid-repellency is not deteriorated even by external conditions. A resin structure according to the present invention has a liquid-repellency, and includes: a base layer; and a fiber layer comprising a multitude of fibers. The fiber layer includes: a substantially perpendicular section which is located close to the base layer and in which the fibers extend substantially perpendicular to the surface of the base layer; and a substantially parallel section which is located away from the base layer and in which the fibers extend substantially parallel to the surface of the base layer. All the fibers constituting the fiber layer are connected to the surface of the base layer, and extend from the surface of the base layer.

Description

樹脂構造体および樹脂構造体の製造方法Resin structure and method for producing resin structure
 本発明は、表面に多数の繊維で構成された繊維層を有することで撥液効果を発現する樹脂構造体と、その樹脂構造体の製造方法に関する。 The present invention relates to a resin structure that exhibits a liquid repellent effect by having a fiber layer composed of a large number of fibers on the surface, and a method for producing the resin structure.
 従来、構造体の表面で撥液効果を発現させる手段として、フッ素系ポリマーなどの表面エネルギーの低い樹脂を構造体にコーティングする手法を適用することが多かった。しかし、コーティングだけでは撥液性能に限界があり、期待どおりの撥液性を得られないことがあった。そこで構造体の表面に微細構造を付加することによってコーティング以上の撥液性を得る方法が提案されている(特許文献1)。 Conventionally, as a means for expressing the liquid repellency effect on the surface of the structure, a technique of coating the structure with a resin having a low surface energy such as a fluoropolymer has been often applied. However, there is a limit to the liquid repellency by coating alone, and the liquid repellency as expected may not be obtained. Therefore, a method has been proposed in which a liquid repellency higher than coating is obtained by adding a fine structure to the surface of the structure (Patent Document 1).
 また、撥液効果を発現させる微細構造として、構造体の表面に垂直な方向以外に指向され、異方性を有している突起や凹凸形状の凸部に繊維形状を有する複合形状が提案されている(特許文献2、3)。 In addition, as a fine structure that exhibits a liquid repellent effect, a composite shape that is oriented in a direction other than the direction perpendicular to the surface of the structure and has a fiber shape on an anisotropic protrusion or uneven protrusion is proposed. (Patent Documents 2 and 3).
 さらに、滑水、滑油性を向上させる手段として、三次元方向に相互に絡み合った網目構造内に潤滑液を含浸させる方法が提案されている(特許文献4)。 Furthermore, as a means for improving the lubrication and oil lubrication properties, a method of impregnating a lubricating liquid in a network structure entangled with each other in a three-dimensional direction has been proposed (Patent Document 4).
特開2004-170935号公報JP 2004-170935 A 国際公開第2015/159825号International Publication No. 2015/159825 特開2016-155258号公報JP 2016-155258 A 特開2016-11375号公報JP 2016-11375 A
 しかしながら、上記した特許文献1~4に記載された技術では、撥液性が不十分で、液滴が構造体であるフィルム上に付着したまま残ることがあり、期待した撥液性効果が得られないという問題や、外力などによって微細構造の形状が崩れて撥液性が低下するなど、耐久性に問題がある。 However, the techniques described in Patent Documents 1 to 4 described above have insufficient liquid repellency, and droplets may remain attached to the film as a structure, and the expected liquid repellency effect can be obtained. There is a problem in durability, such as a problem that the liquid crystal cannot be formed and the shape of the fine structure collapses due to external force and the liquid repellency decreases.
 また、特許文献4に記載の技術では、液の種類によって潤滑液を変更する必要があるため、液の種類が限定されたり、撥液性能が低かったりするという問題がある。 Further, the technique described in Patent Document 4 has a problem that the type of liquid is limited or the liquid repellency is low because the lubricating liquid needs to be changed depending on the type of liquid.
 (1)上記課題を解決する本発明の樹脂構造体は、基層と、多数の繊維で構成された繊維層と、を含む樹脂構造体であって、
 前記繊維層が、前記基層に近い側にあり前記繊維が前記基層の表面に対して略垂直の状態で延在している略垂直部と、前記基層から離れた側にあり前記繊維が前記基層の表面に対して略平行の状態で延在している略平行部と、で構成されており、
 前記繊維層を構成する前記繊維の全てが、前記基層の表面に結合されて基層の表面から延在している。
(1) The resin structure of the present invention that solves the above problem is a resin structure including a base layer and a fiber layer composed of a large number of fibers,
The fiber layer is on the side close to the base layer and the fiber extends in a substantially vertical state with respect to the surface of the base layer; and the fiber is on the side away from the base layer and the fiber is on the base layer And a substantially parallel portion extending in a substantially parallel state with respect to the surface of
All of the fibers constituting the fiber layer are bonded to the surface of the base layer and extend from the surface of the base layer.
 (2)また、上記課題を解決する本発明の樹脂構造体は、基層と、多数の繊維で構成された繊維層と、を含む樹脂構造体であって、
 前記繊維層を構成する繊維が、前記基層の表面と結合して基層の表面から延在しており、前記基層の表面における前記繊維が結合している部分の面積が、前記基層の前記繊維層が形成されている面の表面積の5~40%であって、
 前記樹脂構造体を前記繊維側の表面から見たときに前記繊維が占める面積の割合が、前記基層の表面積の80%以上である。
(2) Moreover, the resin structure of the present invention that solves the above problem is a resin structure including a base layer and a fiber layer composed of a large number of fibers,
The fibers constituting the fiber layer are bonded to the surface of the base layer and extend from the surface of the base layer, and the area of the portion where the fibers are bonded on the surface of the base layer is the fiber layer of the base layer 5 to 40% of the surface area of the surface on which is formed,
When the resin structure is viewed from the surface on the fiber side, the ratio of the area occupied by the fibers is 80% or more of the surface area of the base layer.
 (3)また、上記課題を解決する樹脂構造体を製造する本発明の製造方法は、樹脂構造体を製造する方法であって、
 表面に微小な孔が複数形成された金型の、その微小な孔が形成された面に、樹脂組成物を配置する工程、
 前記金型と前記樹脂組成物とを加熱しながら押圧して、前記樹脂組成物の一部を前記孔の中に圧入する工程、
 前記樹脂組成物の一部が前記孔の中にある状態で、前記樹脂組成物を冷却する工程、
 前記孔の中にある前記樹脂組成物を引き伸ばしながら、前記樹脂組成物を前記金型から引き剥がし、前記樹脂組成物が引き伸ばされた多数の繊維を形成することで、前記繊維で構成された繊維層と前記繊維を含まない基層とで構成された樹脂構造体を形成する工程、
 を含み、前記各工程をこの順に行うことで、前記繊維層が、前記基層に近い側にあり、前記繊維が前記基層の表面に対して略垂直の状態で延在している略垂直部と、前記基層から離れた側にあり、前記繊維が前記基層の表面に対して略平行の状態で延在している略平行部と、で構成された樹脂構造体を形成する。
(3) Moreover, the manufacturing method of this invention which manufactures the resin structure which solves the said subject is a method of manufacturing a resin structure,
A step of disposing a resin composition on the surface of the mold having a plurality of minute holes formed on the surface thereof;
Pressing the mold and the resin composition while heating, and press-fitting a portion of the resin composition into the hole;
A step of cooling the resin composition in a state where a part of the resin composition is in the hole;
While stretching the resin composition in the hole, the resin composition is peeled off from the mold to form a large number of fibers stretched by the resin composition. Forming a resin structure composed of a layer and a base layer not containing the fiber,
And by performing the steps in this order, the fiber layer is on the side close to the base layer, and the fiber extends in a state substantially perpendicular to the surface of the base layer; and The resin structure is formed of a substantially parallel portion on the side away from the base layer and in which the fibers extend in a substantially parallel state with respect to the surface of the base layer.
 (4)また、上記課題を解決する樹脂構造体を製造する本発明の製造方法は、樹脂構造体を製造する方法であって、
 表面に微小な孔が複数形成された金型の、その微小な孔が形成された面に、樹脂組成物を配置する工程、
 前記金型と前記樹脂組成物とを加熱しながら押圧して、前記樹脂組成物の一部を前記孔の中に圧入する工程、
 前記樹脂組成物の一部が前記孔の中にある状態で、前記樹脂組成物を冷却する工程、
 前記孔の中にある前記樹脂組成物を引き伸ばしながら、前記樹脂組成物を前記金型から引き剥がし、前記樹脂組成物が引き伸ばされた多数の繊維を形成することで、前記繊維で構成された繊維層と前記繊維を含まない基層とで構成された樹脂構造体を形成する工程、
 前記繊維層に対して略垂直な方向から前記樹脂構造体に圧力を加えて、前記繊維層を、前記基層に近い側にあり、前記繊維が前記基層の表面に対して略垂直の状態で延在している略垂直部と、前記基層から離れた側にあり、前記繊維が前記基層の表面に対して略平行の状態で延在している略平行部と、で構成されるようにする工程、
を含み、前記各工程をこの順に行う。
(4) Moreover, the manufacturing method of this invention which manufactures the resin structure which solves the said subject is a method of manufacturing a resin structure,
A step of disposing a resin composition on the surface of the mold having a plurality of minute holes formed on the surface thereof;
Pressing the mold and the resin composition while heating, and press-fitting a portion of the resin composition into the hole;
A step of cooling the resin composition in a state where a part of the resin composition is in the hole;
While stretching the resin composition in the hole, the resin composition is peeled off from the mold to form a large number of fibers stretched by the resin composition. Forming a resin structure composed of a layer and a base layer not containing the fiber,
Pressure is applied to the resin structure from a direction substantially perpendicular to the fiber layer, the fiber layer is on the side close to the base layer, and the fiber extends in a state substantially perpendicular to the surface of the base layer. A substantially vertical portion that is present, and a substantially parallel portion that is on the side away from the base layer and in which the fibers extend in a substantially parallel state with respect to the surface of the base layer. Process,
The steps are performed in this order.
 本発明の樹脂構造体は、多数の繊維で構成された繊維層によって、液滴付着時に液滴と基層との間に空気の層を形成させるため、液滴と空気との接触面積が増え、液滴の表面張力により撥液機能を著しく向上させることができる。また、繊維の先端が基層の表面に対して略平行に延在しているため、外力によって形状が変形した場合でも撥液性を維持することができる。
 さらに、液が繊維間に侵入しようとした場合でも、基層に近い側の繊維が略垂直に延在することによって出来た空気層により液の侵入を抑制し、撥液性を維持できる。また、基層から離れた側の繊維の先端で液を撥液するため、液だれによる液と基層との接触がおき難くなり、撥液性の低下を抑制でき、より安定的で効果の高い撥液性能や防汚効果を発現できる。
Since the resin structure of the present invention forms a layer of air between the droplet and the base layer when the droplet is adhered, the contact area between the droplet and air is increased by the fiber layer composed of a large number of fibers. The liquid repellent function can be remarkably improved by the surface tension of the droplets. Moreover, since the tip of the fiber extends substantially parallel to the surface of the base layer, the liquid repellency can be maintained even when the shape is deformed by an external force.
Furthermore, even when the liquid tries to enter between the fibers, the infiltration of the liquid can be suppressed and the liquid repellency can be maintained by the air layer formed by the fibers close to the base layer extending substantially vertically. In addition, since the liquid is repelled at the tip of the fiber on the side away from the base layer, it becomes difficult for the liquid to come into contact with the base layer due to dripping, and a decrease in liquid repellency can be suppressed, making the repellency more stable and effective. Liquid performance and antifouling effect can be expressed.
図1は、本発明の樹脂構造体であるフィルムの概略断面図である。FIG. 1 is a schematic cross-sectional view of a film which is a resin structure of the present invention. 図2は、本発明の樹脂構造体であるフィルムの概略斜視図である。FIG. 2 is a schematic perspective view of a film which is a resin structure of the present invention. 図3は、本発明の樹脂構造体であるフィルムの概略表面図である。FIG. 3 is a schematic surface view of a film which is a resin structure of the present invention. 図4は、本発明の樹脂構造体であるフィルムの基層表面の構造を表す概略図である。FIG. 4 is a schematic diagram showing the structure of the surface of the base layer of the film which is the resin structure of the present invention. 図5は、本発明の樹脂構造体であるフィルムを製造する装置の一例を示す断面概略図である。FIG. 5 is a schematic cross-sectional view showing an example of an apparatus for producing a film that is a resin structure of the present invention. 図6は、本発明の樹脂構造体であるフィルムを製造する装置における剥離手段をフィルム幅方向から見た概略平面図である。FIG. 6 is a schematic plan view of the peeling means in the apparatus for producing a film that is the resin structure of the present invention as seen from the film width direction. 図7は、本発明の樹脂構造体であるフィルムを製造する装置の別の例を示す断面概略図である。FIG. 7 is a schematic cross-sectional view showing another example of an apparatus for producing a film that is a resin structure of the present invention. 図8は、繊維層の略垂直部、略平行部の判断に用いた、本発明の樹脂構造体の走査型電子顕微鏡による断面写真、およびフーリエ変換で得たパワースペクトル図、繊維の角度分布図の一例である。FIG. 8 is a cross-sectional photograph of the resin structure of the present invention, which was used to determine a substantially vertical portion and a substantially parallel portion of the fiber layer, a power spectrum diagram obtained by Fourier transform, and a fiber angle distribution diagram. It is an example. 図9は、実施例1の樹脂構造体(フィルム)の走査型電子顕微鏡による表面写真である。FIG. 9 is a surface photograph of the resin structure (film) of Example 1 using a scanning electron microscope. 図10は、実施例1の樹脂構造体(フィルム)の走査型電子顕微鏡による断面写真である。10 is a cross-sectional photograph of the resin structure (film) of Example 1 taken with a scanning electron microscope. 図11は、実施例2の樹脂構造体(フィルム)の走査型電子顕微鏡による表面写真である。FIG. 11 is a surface photograph of the resin structure (film) of Example 2 using a scanning electron microscope. 図12は、実施例2の樹脂構造体(フィルム)の走査型電子顕微鏡による断面写真である。12 is a cross-sectional photograph of the resin structure (film) of Example 2 taken with a scanning electron microscope. 図13は、実施例3の樹脂構造体(フィルム)の走査型電子顕微鏡による表面写真である。FIG. 13 is a surface photograph of the resin structure (film) of Example 3 taken with a scanning electron microscope. 図14は、実施例3の樹脂構造体(フィルム)の走査型電子顕微鏡による断面写真である。FIG. 14 is a cross-sectional photograph of the resin structure (film) of Example 3 taken with a scanning electron microscope. 図15は、比較例1の樹脂構造体(フィルム)の走査型電子顕微鏡による表面写真である。FIG. 15 is a surface photograph of the resin structure (film) of Comparative Example 1 using a scanning electron microscope. 図16は、比較例1の樹脂構造体(フィルム)の走査型電子顕微鏡による断面写真である。FIG. 16 is a cross-sectional photograph of the resin structure (film) of Comparative Example 1 using a scanning electron microscope.
 [樹脂構造体]
 本発明の樹脂構造体は、基層と、多数の繊維で構成された繊維層と、を含む構造体であって、前記繊維層が、前記基層に近い側にあり前記繊維が前記基層の表面に対して略垂直の状態で延在している略垂直部と、前記基層から離れた側にあり前記繊維が前記基層の表面に対して略平行の状態で延在している略平行部と、で構成されており、前記繊維層を構成する前記繊維の全てが、前記基層の表面に結合されて基層の表面から延在している。
[Resin structure]
The resin structure of the present invention is a structure including a base layer and a fiber layer composed of a large number of fibers, wherein the fiber layer is on the side close to the base layer and the fibers are on the surface of the base layer. A substantially vertical portion extending in a substantially vertical state, and a substantially parallel portion on a side away from the base layer and the fibers extending in a state substantially parallel to the surface of the base layer; All of the fibers constituting the fiber layer are bonded to the surface of the base layer and extend from the surface of the base layer.
 また、本発明の樹脂構造体は、基層と、多数の繊維で構成された繊維層と、を含む樹脂構造体であって、前記繊維層を構成する繊維が、前記基層の表面と結合して前記基層の表面から延在しており、前記基層の表面における前記繊維が結合している部分の面積が、前記基層の前記繊維層が形成されている面の表面積の5~40%であって、前記樹脂構造体を前記繊維側の表面から見たときに前記繊維が占める面積の割合が、前記基層の表面積の80%以上である。 The resin structure of the present invention is a resin structure including a base layer and a fiber layer composed of a large number of fibers, and the fibers constituting the fiber layer are bonded to the surface of the base layer. The area of the surface of the base layer extending from the surface of the base layer to which the fibers are bonded is 5 to 40% of the surface area of the surface of the base layer on which the fiber layer is formed. The ratio of the area occupied by the fibers when the resin structure is viewed from the surface on the fiber side is 80% or more of the surface area of the base layer.
 本発明の表面に繊維を有する樹脂構造体の実施形態を図面を用いて説明する。図1は本発明の樹脂構造体であるフィルムの概略断面図、図2は概略斜視図である。 Embodiments of a resin structure having fibers on the surface of the present invention will be described with reference to the drawings. FIG. 1 is a schematic sectional view of a film which is a resin structure of the present invention, and FIG. 2 is a schematic perspective view.
 樹脂構造体10は、基層11と、多数の繊維13で構成された繊維層14とで構成されている。基層11の表面12に存在する繊維13は、基層11の表面12に結合されて表面12から延在している。ここで繊維13とは、概略断面図である図1に図示されているように、基層11の表面12に対し凸の形状をとる部分のことであり、繊維13は独立して離散的に存在することが好ましい。繊維13の形状はどのような形状であってもよいが、錘状の形状であることが好ましく、繊維13の先端で膨らみがあってもよい。また、多数の繊維13で構成された繊維層14は、基層11の表面12に近い側にあり、繊維13が基層11の表面12に対して略垂直の状態で延在している略垂直部15と、基層11の表面12から離れた側にあり、繊維13が基層11の表面12に対して略平行の状態で延在している略平行部16とで構成されている。なお、「繊維13が基層11の表面12に対して略垂直」とは、略垂直部15が基層11の表面12に対し、60°~120°の角度で延在していることを意味し、「繊維13が基層11の表面12に対して略平行」とは、略平行部16が基層11の表面12に対し、0°~30°、および150°~180°の角度で延在していることを意味する。 The resin structure 10 includes a base layer 11 and a fiber layer 14 including a large number of fibers 13. The fibers 13 present on the surface 12 of the base layer 11 are bonded to the surface 12 of the base layer 11 and extend from the surface 12. Here, the fiber 13 is a portion having a convex shape with respect to the surface 12 of the base layer 11 as shown in FIG. 1 which is a schematic cross-sectional view, and the fibers 13 exist independently and discretely. It is preferable to do. The shape of the fiber 13 may be any shape, but is preferably a weight-like shape, and may be swollen at the tip of the fiber 13. The fiber layer 14 composed of a large number of fibers 13 is on the side close to the surface 12 of the base layer 11, and the substantially vertical portion in which the fibers 13 extend in a substantially vertical state with respect to the surface 12 of the base layer 11. 15 and a substantially parallel portion 16 which is on the side away from the surface 12 of the base layer 11 and in which the fibers 13 extend in a state of being substantially parallel to the surface 12 of the base layer 11. “The fiber 13 is substantially perpendicular to the surface 12 of the base layer 11” means that the substantially vertical portion 15 extends at an angle of 60 ° to 120 ° with respect to the surface 12 of the base layer 11. "The fiber 13 is substantially parallel to the surface 12 of the base layer 11" means that the substantially parallel portion 16 extends at an angle of 0 ° to 30 ° and 150 ° to 180 ° with respect to the surface 12 of the base layer 11. Means that
 繊維13が基層11の表面12に対して略垂直の状態で延在しているのか、略平行の状態で延在しているのかは、繊維層14の断面写真を2次元フーリエ変換による画像解析して取得したパワースペクトルを用いて判定する。詳細な判断方法は後述する[測定方法]に記載する。 Whether the fiber 13 extends in a substantially vertical state or in a substantially parallel state with respect to the surface 12 of the base layer 11 is determined by image analysis of a cross-sectional photograph of the fiber layer 14 by two-dimensional Fourier transform. Judgment is made using the power spectrum obtained in this way. A detailed determination method will be described in [Measurement method] described later.
 2次元フーリエ変換による画像解析の原理については、例えば、以下の参考文献1~3、参考URL1に詳細に記載されている。
参考文献1: 江前敏晴、”画像処理を用いた紙の物性解析法”、紙パルプ技術タイムス、48(11)、1-5(2005)
参考文献2: Enomae, T., Han, Y.-H. and Isogai, A., "Fiber orientation distribution of paper surface calculated by image analysis," Proceedings of International Papermaking and Environment Conference, Tianjin, P.R.China(May 12-14), Book2, 355-368(2004)
参考文献3: Enomae, T., Han, Y.-H. and Isogai, A., "Nondestructive determination of fiber orientation distribution of fiber surface by image analysis," Nordic Pulp Research Journal 21(2): 253-259(2006)
参考URL1: http://www.enomae.com/FiberOri/index.htm(2018年1月現在)。
The principle of image analysis by two-dimensional Fourier transform is described in detail in, for example, Reference Documents 1 to 3 and Reference URL 1 below.
Reference 1: Toshiharu Emae, “Method for analyzing physical properties of paper using image processing”, Paper Pulp Technology Times, 48 (11), 1-5 (2005)
Reference 2: Enomae, T., Han, Y.-H. and Isogai, A., "Fiber orientation distribution of paper surface calculated by image analysis," Proceedings of International Papermaking and Environment Conference, Tianjin, PRChina (May 12- 14), Book2, 355-368 (2004)
Reference 3: Enomae, T., Han, Y.-H. and Isogai, A., "Nondestructive determination of fiber orientation distribution of fiber surface by image analysis," Nordic Pulp Research Journal 21 (2): 253-259 ( 2006)
Reference URL 1: http://www.enomae.com/FiberOri/index.htm (as of January 2018).
 略平行部16において繊維13が略平行であるので、繊維13の間隔が適度に狭くなり、液滴が繊維13の間に入りにくくなるため、撥液性が発現する。略垂直部15において繊維13が略垂直であるので、繊維13の間に空気層がうまく形成され、撥液性が向上する。ここで略垂直部15において繊維13が略垂直の状態を超えて傾斜すると、根元で繊維13が傾斜してしまい、基層11から離れた側の繊維13を自立して支えることが難しくなる。その結果、空気層が形成され難くなり、撥液性が低下することがある。 Since the fibers 13 are substantially parallel in the substantially parallel portion 16, the interval between the fibers 13 is appropriately narrowed, and the liquid droplets are difficult to enter between the fibers 13, thereby exhibiting liquid repellency. Since the fibers 13 are substantially vertical in the substantially vertical portion 15, an air layer is well formed between the fibers 13, and the liquid repellency is improved. Here, if the fiber 13 is inclined beyond the substantially vertical state in the substantially vertical portion 15, the fiber 13 is inclined at the root, and it becomes difficult to support the fiber 13 on the side away from the base layer 11 independently. As a result, it becomes difficult to form an air layer and liquid repellency may be lowered.
 略垂直部15と略平行部16とを対比すると、略垂直部15では繊維13が相対的に疎に、略平行部16では繊維13が相対的に密になっていることが多い。略垂直部15で繊維13が相対的に疎となっていると、繊維層14に空気層がうまく形成され、撥液性が向上する。略平行部16で繊維13が相対的に密となることで、繊維層14への液の侵入が妨げられ撥液性が向上する。 When comparing the substantially vertical portion 15 and the substantially parallel portion 16, the fibers 13 are often relatively sparse in the substantially vertical portion 15 and the fibers 13 are relatively dense in the approximately parallel portion 16. When the fibers 13 are relatively sparse in the substantially vertical portion 15, an air layer is well formed in the fiber layer 14 and the liquid repellency is improved. Since the fibers 13 are relatively dense at the substantially parallel portion 16, the penetration of the liquid into the fiber layer 14 is prevented and the liquid repellency is improved.
 次に、本発明の樹脂構造体の実施形態を別の観点から説明する。図3は本発明の樹脂構造体10であるフィルムを繊維側の表面から見た概略表面図、図4は本発明の樹脂構造体10であるフィルムの基層表面の構造を示す概略図である。図3は、図1の樹脂構造体10をAの方向から見た図であり、図4は図1の樹脂構造体10をB-B断面から見た図である。 Next, an embodiment of the resin structure of the present invention will be described from another viewpoint. 3 is a schematic surface view of the film which is the resin structure 10 of the present invention as seen from the surface on the fiber side, and FIG. 4 is a schematic view showing the structure of the base layer surface of the film which is the resin structure 10 of the present invention. 3 is a view of the resin structure 10 of FIG. 1 as viewed from the direction A, and FIG. 4 is a view of the resin structure 10 of FIG. 1 as viewed from the BB cross section.
 図3に示すように、樹脂構造体10は、多数の繊維13で構成された繊維層14により、その一方の表面がほぼ覆い尽くされている。樹脂構造体10を繊維層14側の表面から見た時に、繊維13が占める面積の割合は基層11の表面積の80%以上である。
 また、図4に示すように、基層11の表面12において、繊維13と結合している部分の面積の割合は、基層11の繊維層14が形成されている面の表面積の5~40%である。
 すなわち、樹脂構造体10の表面においては繊維13がほぼ全体を覆った密の状態となっており、液滴が繊維13の間に入りにくくなるため、撥液性が発現する。基層11の表面12においては、繊維13と結合している部分の面積よりも、空気の占める割合の方が多いため、繊維13の間に空気層がうまく形成され、撥液性が向上する。
As shown in FIG. 3, one surface of the resin structure 10 is substantially covered with a fiber layer 14 composed of a large number of fibers 13. When the resin structure 10 is viewed from the surface on the fiber layer 14 side, the ratio of the area occupied by the fibers 13 is 80% or more of the surface area of the base layer 11.
Further, as shown in FIG. 4, the ratio of the area of the surface 12 of the base layer 11 bonded to the fiber 13 is 5 to 40% of the surface area of the surface of the base layer 11 on which the fiber layer 14 is formed. is there.
That is, on the surface of the resin structure 10, the fibers 13 are in a dense state covering almost the whole, and liquid droplets are difficult to enter between the fibers 13, so that liquid repellency is exhibited. On the surface 12 of the base layer 11, since the proportion of air is larger than the area of the portion bonded to the fiber 13, the air layer is well formed between the fibers 13 and the liquid repellency is improved.
 樹脂構造体10の繊維層14の側の表面から見た時に、繊維13が占める面積の割合は、走査型電子顕微鏡を用いて樹脂構造体10の表面の観察写真を取得し、その二値化画像を用いて求めることが出来る。 The ratio of the area occupied by the fibers 13 when viewed from the surface of the fiber layer 14 side of the resin structure 10 is obtained by binarizing the observation photograph of the surface of the resin structure 10 using a scanning electron microscope. It can be obtained using an image.
 基層11の表面12における繊維13が結合している部分の面積の割合は、以下の(i)または(ii)の方法で求めることができる。
(i) 樹脂構造体10の基層11の直上で基層11に平行に繊維層14を切断し、走査型電子顕微鏡を用いてその切断面の観察写真を取得し、その断面観察写真の二値化画像を用いて求める。
(ii) 樹脂構造体10の表面に垂直で、直交する二方向の断面で樹脂構造体10を切断した各断面について、それぞれ走査型電子顕微鏡を用いて観察写真を取得する。各断面の観察写真から、断面に存在する繊維13の本数と繊維13の平均断面幅を求め、それらの積から各断面における基層11の単位長さあたりに繊維13が結合している割合を求める。さらに各断面での繊維13が結合している割合の積を求め、その値を基層11の表面12における繊維13が結合している部分の面積の割合とする。この方法は、上記(i)の方法より簡便に求めることができる。
The ratio of the area of the surface 12 of the base layer 11 where the fibers 13 are bonded can be determined by the following method (i) or (ii).
(i) The fiber layer 14 is cut in parallel with the base layer 11 immediately above the base layer 11 of the resin structure 10, and an observation photograph of the cut surface is obtained using a scanning electron microscope, and the cross-sectional observation photograph is binarized. Obtained using images.
(Ii) With respect to each cross section obtained by cutting the resin structure 10 in two cross sections perpendicular to and orthogonal to the surface of the resin structure 10, observation photographs are obtained using a scanning electron microscope. From the observation photograph of each cross section, the number of fibers 13 present in the cross section and the average cross section width of the fibers 13 are obtained, and the ratio of the fibers 13 bonded per unit length of the base layer 11 in each cross section is obtained from the product thereof. . Further, the product of the ratios of the fibers 13 in each cross section is obtained, and the value is set as the ratio of the area of the surface 12 of the base layer 11 where the fibers 13 are bonded. This method can be obtained more easily than the method (i) above.
 本願発明では、上記(i)の方法で測定した値を、基層11の表面12における繊維13が結合している部分の面積の割合とする。ただし、繊維径が1μm以下といったように繊維が非常に細く、上記(i)の方法で繊維層14を切断しようとしても、切断刃の刃先により繊維13が倒れてしまい、繊維層14の切断が困難となる場合、上記(ii)の方法で測定した値を、基層11の表面12における繊維13が結合している部分の面積の割合とする。 In the present invention, the value measured by the above method (i) is the ratio of the area of the surface 12 of the base layer 11 where the fibers 13 are bonded. However, the fibers are very thin such that the fiber diameter is 1 μm or less, and even if the fiber layer 14 is cut by the method (i) above, the fibers 13 fall down due to the cutting edge of the cutting blade, and the fiber layer 14 is cut. When it becomes difficult, let the value measured by the method of (ii) be the ratio of the area of the portion of the surface 12 of the base layer 11 where the fibers 13 are bonded.
 樹脂構造体10の表面において、繊維径が0.05μm以上、3μm以下であると、繊維間の隙間に空気層を形成しやすくなり、液滴と空気の接触面積が大きくなることにより、撥液性が高まるため好ましい。繊維径は0.1μm以上、0.5μm以下であることがより好ましい。繊維径が0.05μm以上であると繊維が切れたり、変形しにくくなり、耐久性が向上する。さらに、繊維13を形成する樹脂を引伸ばす時に繊維13が切れにくいので、十分な繊維層14を形成できる。特に、繊維径が0.1μm以上であると、繊維13を形成する樹脂を引き伸ばす時に、繊維13が基層表面において倒れ難くなり、十分な略垂直部を形成しやすい。繊維径が3μm以下であると、繊維間に十分に空気層を形成できるようになり、撥液効果が発現する。特に、繊維径が0.5μm以下であると、繊維13を形成するのに樹脂を引き伸ばす時に、繊維13同士が絡まりやすくなることで、基層から離れた側に十分な略平行部を形成しやすい。ここで繊維径とは、走査型電子顕微鏡を用いた表面の観察写真を取得し、任意の30本の繊維13を選んでその各々の最大幅を計測し、最大幅の大きなものから5本と幅の小さなものから5本を除いた、中間の20本の繊維13の最大幅の平均をとったものである。 If the fiber diameter is 0.05 μm or more and 3 μm or less on the surface of the resin structure 10, it becomes easy to form an air layer in the gap between the fibers, and the contact area between the droplets and the air becomes large. This is preferable because of increased properties. The fiber diameter is more preferably 0.1 μm or more and 0.5 μm or less. When the fiber diameter is 0.05 μm or more, the fiber is not cut or easily deformed, and durability is improved. Furthermore, since the fiber 13 is hard to cut when the resin forming the fiber 13 is stretched, a sufficient fiber layer 14 can be formed. In particular, when the fiber diameter is 0.1 μm or more, when the resin forming the fiber 13 is stretched, the fiber 13 is unlikely to fall on the surface of the base layer, and a sufficient substantially vertical portion is easily formed. When the fiber diameter is 3 μm or less, an air layer can be sufficiently formed between the fibers, and a liquid repellent effect is exhibited. In particular, when the fiber diameter is 0.5 μm or less, when the resin is stretched to form the fibers 13, the fibers 13 are easily entangled with each other, so that it is easy to form a sufficient substantially parallel portion on the side away from the base layer. . Here, the fiber diameter refers to an observation photograph of the surface using a scanning electron microscope, selects arbitrary 30 fibers 13 and measures the maximum width of each of the fibers. This is the average of the maximum widths of the middle 20 fibers 13 excluding 5 from the small width.
 繊維13の本数は、基層11の表面12の10000μm中に2000本以上、3×10本以下であると、樹脂構造体10の表面にある液滴が繊維13で支持されやすくなり、液滴と空気との接触面積が大きくなることにより、撥液性が高まるため好ましい。10000μm中の繊維13の本数が3×10本以下であると、液滴付着時に繊維13の間に十分な空気層が存在できるので、空気との接触面積が十分であり、撥液効果が発現する。基層11の表面12の10000μm中の繊維13の本数が2000本以上であると、繊維13の間隔が適度に狭くなり、液滴が繊維13の間に入りにくくなり、基層11の表面と液滴との接触が起こらず、撥液性が発現する。特に、繊維径が0.5μm以下の場合には、基層11の表面12の10000μm中の繊維13の本数が10000本以上であると、樹脂構造体10の表面にある液滴が繊維13で支持されやすくなり、より好ましい。ここで繊維13の本数は、樹脂構造体10の基層11の直上で基層11に平行に樹脂構造体10を切断した切断面について、走査型電子顕微鏡を用いて観察写真を取得し、その写真から読み取ることができる。また、液状シリコーンゴムなどで樹脂構造体10の表面の型を取り、その型の表面画像から読み取ってもよい。硬化した液状シリコーンゴムから樹脂構造体10を剥ぎ取った時、液状シリコーンゴムの表面は、繊維13の底面(基層11の表面12に結合する面)に対応する孔が多数開いた表面となる。この表面の走査型電子顕微鏡写真を取得し、繊維13の個数を求める。また、簡便には、樹脂構造体10の表面に垂直で、直交する二方向の断面で樹脂構造体10を切断した各断面について、それぞれ走査型電子顕微鏡を用いた観察写真を取得し、各断面に存在する100μmあたりの繊維13の本数を求め、その積をとることにより、10000μmあたりの繊維13の本数を求めることもできる。 When the number of the fibers 13 is 2000 or more and 3 × 10 6 or less in 10000 μm 2 of the surface 12 of the base layer 11, the droplets on the surface of the resin structure 10 are easily supported by the fibers 13. It is preferable because the liquid repellency is enhanced by increasing the contact area between the droplet and air. When the number of the fibers 13 in 10000 μm 2 is 3 × 10 6 or less, a sufficient air layer can exist between the fibers 13 when the droplets adhere, so that the contact area with the air is sufficient, and the liquid repellent effect Is expressed. When the number of the fibers 13 in 10000 μm 2 on the surface 12 of the base layer 11 is 2000 or more, the distance between the fibers 13 is appropriately narrow, and the droplets are difficult to enter between the fibers 13. Contact with the droplet does not occur and liquid repellency is exhibited. In particular, when the fiber diameter is 0.5 μm or less, when the number of fibers 13 in 10,000 μm 2 on the surface 12 of the base layer 11 is 10,000 or more, the droplets on the surface of the resin structure 10 are fibers 13. It becomes easy to be supported and is more preferable. Here, the number of the fibers 13 is obtained by obtaining an observation photograph using a scanning electron microscope for the cut surface obtained by cutting the resin structure 10 directly above the base layer 11 of the resin structure 10 and parallel to the base layer 11. Can be read. Alternatively, a surface mold of the resin structure 10 may be taken with liquid silicone rubber and read from a surface image of the mold. When the resin structure 10 is peeled off from the cured liquid silicone rubber, the surface of the liquid silicone rubber becomes a surface having a large number of holes corresponding to the bottom surface of the fiber 13 (the surface bonded to the surface 12 of the base layer 11). A scanning electron micrograph of this surface is obtained and the number of fibers 13 is determined. In addition, for each cross-section obtained by cutting the resin structure 10 in two cross-sections perpendicular to and perpendicular to the surface of the resin structure 10, an observation photograph using a scanning electron microscope is obtained. It is also possible to obtain the number of fibers 13 per 10000 μm 2 by obtaining the number of fibers 13 per 100 μm present in the product and taking the product thereof.
 繊維層14の厚みは5μm以上、50μm以下であることが好ましい。ここで繊維層14の厚みとは、樹脂構造体10の表面に垂直な断面で構造体を切断した断面について、走査型電子顕微鏡を用いた断面の観察写真を取得し、基層11の表面12から最表面までの距離が大きい箇所を10点測定し、それら10点の距離を平均した値のことをいう。繊維層14が5μm以上であると、液滴付着時に繊維13との間に空気の層を形成できるので、撥液効果が得られる。繊維層が50μm以下であると、繊維13を得ることに時間を要さない。また、繊維13が倒れたり、変形しにくくなるなど、耐久性が十分となる。 The thickness of the fiber layer 14 is preferably 5 μm or more and 50 μm or less. Here, the thickness of the fiber layer 14 refers to a cross-sectional observation photograph taken using a scanning electron microscope for a cross section obtained by cutting the structure in a cross section perpendicular to the surface of the resin structure 10, and from the surface 12 of the base layer 11. This is a value obtained by measuring 10 points where the distance to the outermost surface is large and averaging the distances of these 10 points. When the fiber layer 14 is 5 μm or more, an air layer can be formed between the fiber 13 and the fiber 13 when the droplet adheres, so that a liquid repellent effect is obtained. When the fiber layer is 50 μm or less, it does not take time to obtain the fibers 13. Further, the durability is sufficient, for example, the fibers 13 are not easily fallen or deformed.
 本発明の樹脂構造体10は、フィルムとして好適に使用することができるが、フィルムに限定されることはなく、表面の熱成形が可能なものであればいかなる形状でもよいが、生産性やコストの観点から、フィルムが好ましい。 The resin structure 10 of the present invention can be suitably used as a film, but is not limited to a film and may have any shape as long as the surface can be thermoformed. From the viewpoint of, a film is preferable.
 さらに、樹脂構造体10の材料は、繊維13を形成できる材料であればいかなるものでもよく、フッ素樹脂やシリコーン系樹脂、ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂、ポリエチレン、ポリスチレン、ポリプロピレン、ポリイソブチレン、ポリブテン、ポリメチルペンテン等のポリオレフィン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂、ポリエステルアミド系樹脂、ポリエーテルエステル系樹脂、アクリル系樹脂、ポリウレタン系樹脂、ポリカーボネート系樹脂、またはポリ塩化ビニル系樹脂などが好ましく用いられる。特に、表面エネルギーの低いフッ素系樹脂やシリコーン系樹脂、ポリエチレン、ポリスチレン、ポリプロピレン、ポリイソブチレン、ポリブテン、ポリメチルペンテン等のポリオレフィン系樹脂などが好ましく用いられる。樹脂構造体10の材料としてはこれらの樹脂を主たる成分として含むことが好ましい。なお、主たる成分とは樹脂構造体を構成する樹脂全体を100質量%としたときに50質量%以上を占める成分をいう。なお、主たる成分は50質量%以上が好ましく、80質量%以上がより好ましい。 Further, the material of the resin structure 10 may be any material as long as it can form the fibers 13, such as fluororesin, silicone resin, polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate, and polybutylene terephthalate. Polyester resins, polyethylene resins, polystyrene, polypropylene, polyisobutylene, polybutene, polymethylpentene, and other polyolefin resins, polyamide resins, polyimide resins, polyether resins, polyesteramide resins, polyetherester resins, acrylic resins Resins, polyurethane resins, polycarbonate resins, polyvinyl chloride resins and the like are preferably used. Particularly preferred are fluororesins and silicone resins having a low surface energy, and polyolefin resins such as polyethylene, polystyrene, polypropylene, polyisobutylene, polybutene, and polymethylpentene. As a material of the resin structure 10, it is preferable to include these resins as main components. In addition, a main component means the component which occupies 50 mass% or more when the whole resin which comprises a resin structure is 100 mass%. In addition, 50 mass% or more is preferable and, as for the main component, 80 mass% or more is more preferable.
 さらに、本発明の樹脂構造体10の材料には、重合時または重合後に各種の添加剤を加えることができる。添加配合することができる添加剤の例としては、例えば、有機微粒子、無機微粒子、分散剤、染料、蛍光増白剤、酸化防止剤、耐候剤、帯電防止剤、離型剤、増粘剤、可塑剤、pH調整剤および塩などが挙げられる。特に、離型剤として、長鎖カルボン酸、もしくは長鎖カルボン酸塩、などの低表面張力のカルボン酸やその誘導体、および、長鎖アルコールやその誘導体、変性シリコーンオイルなどの低表面張力のアルコール化合物等を重合時に少量添加することが好ましく行われる。 Furthermore, various additives can be added to the material of the resin structure 10 of the present invention at the time of polymerization or after polymerization. Examples of additives that can be added and blended include, for example, organic fine particles, inorganic fine particles, dispersants, dyes, fluorescent brighteners, antioxidants, weathering agents, antistatic agents, mold release agents, thickeners, Examples include plasticizers, pH adjusters, and salts. In particular, as a releasing agent, low surface tension carboxylic acids such as long chain carboxylic acids or long chain carboxylates and derivatives thereof, and low surface tension alcohols such as long chain alcohols and derivatives thereof, and modified silicone oils. It is preferable to add a small amount of a compound or the like during polymerization.
 また、樹脂構造体10は、基層11の繊維層14が積層されている側とは反対側に別の層が積層されていてもよい。この場合、基層11と繊維層14のみに上記の材料を使用してもよい。この別の層を、基層11を構成する樹脂よりも強度や耐熱性の高い樹脂で構成することにより、成形時における平面性を高めて、樹脂構造体10の変形やしわを抑制することができる。 Further, the resin structure 10 may have another layer laminated on the side opposite to the side on which the fiber layer 14 of the base layer 11 is laminated. In this case, the above material may be used only for the base layer 11 and the fiber layer 14. By constructing this other layer with a resin having higher strength and heat resistance than the resin constituting the base layer 11, it is possible to improve the flatness at the time of molding and suppress deformation and wrinkling of the resin structure 10. .
 さらに、樹脂構造体10は連続体であっても枚葉体であってもよい。樹脂構造体10の厚みは特に制限されるものではない。 Furthermore, the resin structure 10 may be a continuous body or a single wafer. The thickness of the resin structure 10 is not particularly limited.
 [樹脂構造体の製造方法]
 本発明の樹脂構造体を製造する方法は、表面に微小な孔が複数形成された金型の、その微小な孔が形成された面に、樹脂組成物を配置する工程、前記金型と前記樹脂組成物とを加熱しながら押圧して、前記樹脂組成物の一部を前記孔の中に圧入する工程(以下、「圧入工程」とする)、前記樹脂組成物の一部が前記孔の中にある状態で、前記樹脂組成物を冷却する工程(以下、「冷却工程」とする)、前記孔の中にある前記樹脂組成物を引き伸ばしながら、前記樹脂組成物を前記金型から引き剥がし、前記樹脂組成物が引き伸ばされた多数の繊維を形成することで、前記繊維で構成された繊維層と前記繊維を含まない基層とで構成された樹脂構造体を形成する工程(以下、「引き剥がし工程」とする)、を含み、前記各工程をこの順に行うことで、前記繊維層が、前記基層に近い側にあり、前記繊維が前記基層の表面に対して略垂直の状態で延在している略垂直部と、前記基層から離れた側にあり、前記繊維が前記基層の表面に対して略平行の状態で延在している略平行部と、で構成された樹脂構造体を形成する。
[Production method of resin structure]
The method for producing the resin structure of the present invention comprises a step of arranging a resin composition on a surface of a mold having a plurality of minute holes formed on the surface, the mold and the mold A step of pressing the resin composition while heating and press-fitting a part of the resin composition into the hole (hereinafter referred to as “press-fitting process”), a part of the resin composition being A step of cooling the resin composition in a state (hereinafter referred to as a “cooling step”), and the resin composition is peeled off from the mold while the resin composition in the hole is stretched. Forming a resin structure composed of a fiber layer composed of the fiber and a base layer not containing the fiber by forming a large number of fibers in which the resin composition is stretched (hereinafter referred to as “pulling”). The above steps are performed in this order. The fiber layer is on the side close to the base layer, the fiber extends in a substantially vertical state with respect to the surface of the base layer, and on the side away from the base layer, A resin structure is formed that includes fibers and substantially parallel portions extending in a substantially parallel state to the surface of the base layer.
 また、前記各工程を経ただけでは、所望の形状の樹脂構造体が形成できていない場合には、前記引き剥がし工程の後に、前記繊維層に対して略垂直な方向から前記樹脂構造体に圧力を加えて、前記繊維層を前記基層に近い側にあり、前記繊維が前記基層の表面に対して略垂直となる状態で延在している略垂直部と、前記基層から離れた側にあり、前記繊維が前記基層の表面に対して略平行で、繊維同士が絡まった状態で延在している略平行部と、で構成されるようにする工程(以下、「加圧工程」とする)、を行ってもよい。 In addition, when the resin structure having a desired shape cannot be formed only through the respective steps, after the peeling step, pressure is applied to the resin structure from a direction substantially perpendicular to the fiber layer. In addition, the fiber layer is on the side close to the base layer, the fiber extends substantially perpendicular to the surface of the base layer, and the fiber layer is on the side away from the base layer. And a step of forming the fibers by a substantially parallel portion extending in a state where the fibers are substantially parallel to the surface of the base layer and the fibers are entangled with each other (hereinafter referred to as a “pressurizing step”). ).
 本発明の樹脂構造体10の一形態であるフィルムは、例えば図5、図6、図7に示すような装置を介したプロセスによって製造することができる。
 図5、図7は、基層11の表面12に繊維層14を有する樹脂構造体10(フィルム)を製造するための製造装置50、70の断面概略図を示している。また、図6は製造装置50において、樹脂構造体10(フィルム)を金型から剥離する動作を示した断面概略図である。
The film which is one form of the resin structure 10 of this invention can be manufactured by the process through an apparatus as shown, for example in FIG.5, FIG.6, FIG.7.
5 and 7 are schematic cross-sectional views of manufacturing apparatuses 50 and 70 for manufacturing the resin structure 10 (film) having the fiber layer 14 on the surface 12 of the base layer 11. FIG. 6 is a schematic cross-sectional view showing the operation of peeling the resin structure 10 (film) from the mold in the manufacturing apparatus 50.
 図5に示す例では、巻出ユニット52において、あらかじめ材料のフィルム10’を巻出ロール51から引き出し、次に、プレスユニット54において、表面に微細な孔が形成され加熱された金型53を、間欠的に送られてくるフィルム10’に押し付けて加圧し、その後、接触状態を保持したまま冷却することにより、フィルム10’の表面に金型53の微細な孔に応じた微細な突起構造を形成する。 In the example shown in FIG. 5, in the unwinding unit 52, the material film 10 ′ is pulled out from the unwinding roll 51 in advance, and then, in the press unit 54, a heated mold 53 with fine holes formed on the surface is formed. By pressing the film 10 'intermittently sent and pressurizing it, and then cooling it while maintaining the contact state, a fine protrusion structure corresponding to the fine holes of the mold 53 on the surface of the film 10' Form.
 成形部は所定の微細な突起構造を形成するプレスユニット54と、加圧により金型53に貼り付けられて表面に微細な突起構造が形成されたフィルム10’’を金型53から剥離する剥離手段55から構成される。剥離手段55は、剥離されたフィルム10をS字状に抱き付かせるように把持する一対の平行に配置された剥離ロール55Aと剥離補助ロール55Bからなる。間欠的に送られてきたフィルム10’の一面がプレスユニット54内で金型53によって熱成形され、表面に微細な突起構造が形成されたフィルム10’’が得られる。熱成形後に、図6に示すように上記剥離手段55が上流側に向けて移動されることにより、金型53に貼り付いていたフィルム10’’が金型53から順次剥離され、基層11の表面12に繊維層14を有するフィルム10が得られるようになっている。その後、フィルム10は巻取ロール56に巻き取られる。
 なお、図5において、57、58は加圧プレート、59、60はフィルム10’の金型53部分における間欠搬送を円滑に行わせるために設けられたバッファ手段を示している。
The molding part is a peeling unit that peels from the mold 53 a press unit 54 that forms a predetermined fine protrusion structure, and a film 10 '' that is attached to the mold 53 by pressurization and has a fine protrusion structure formed on the surface. Consists of means 55. The peeling means 55 includes a pair of peeling rolls 55 </ b> A and a peeling auxiliary roll 55 </ b> B arranged in parallel to hold the peeled film 10 so as to hold it in an S shape. One surface of the film 10 ′ sent intermittently is thermoformed by the mold 53 in the press unit 54 to obtain a film 10 ″ having a fine protrusion structure formed on the surface. After the thermoforming, as shown in FIG. 6, the peeling means 55 is moved toward the upstream side, whereby the film 10 ″ attached to the mold 53 is sequentially peeled from the mold 53, and the base layer 11. A film 10 having a fiber layer 14 on the surface 12 is obtained. Thereafter, the film 10 is wound around the winding roll 56.
In FIG. 5, reference numerals 57 and 58 denote pressure plates, and 59 and 60 denote buffer means provided to smoothly perform intermittent conveyance in the mold 53 portion of the film 10 ′.
 図6において、剥離ロール55Aと金型53との離間距離55Hや、剥離時の金型53の温度を調整することにより、成形された微細な突起構造を引き伸ばして形成される繊維13の径や繊維層14の厚みを変更することができる。例えば、成形時の金型53の温度をフィルム10の材料である樹脂組成物の融点以上にし、剥離時の金型53の温度をフィルム10の材料である樹脂組成物のガラス転移温度以上にするなどの方法があげられる。 In FIG. 6, by adjusting the separation distance 55H between the peeling roll 55A and the mold 53 and the temperature of the mold 53 at the time of peeling, the diameter of the fiber 13 formed by stretching the formed fine protrusion structure The thickness of the fiber layer 14 can be changed. For example, the temperature of the mold 53 at the time of molding is set to be equal to or higher than the melting point of the resin composition that is the material of the film 10, and the temperature of the mold 53 at the time of peeling is set to be equal to or higher than the glass transition temperature of the resin composition that is the material of the film 10. And the like.
 引き伸ばされた繊維13そのものに剛性がない場合、引き伸ばされた繊維13同士は、繊維13の先端が金型53から離れることにより不均一な方向に倒れ、繊維13同士が絡まり合う。このとき、繊維13が最後に金型53から離れる部分、すなわち、繊維13の先端部分から絡まることになるため、フィルム10の基層11の表面12から離れた部分において、絡まり合った繊維13が密になり、基層11に対して略平行の状態で延在する略平行部16を形成する。他方、剥離時にはじめに金型53から剥離する繊維13の基層11の直上部分はほとんど絡まり合うことがないため、略平行部16よりも基層11に近い側に、繊維13が基層11の表面12に対して略垂直の状態で延在する略垂直部15を形成する。 When the stretched fibers 13 themselves are not rigid, the stretched fibers 13 fall in a non-uniform direction when the tips of the fibers 13 are separated from the mold 53, and the fibers 13 are entangled with each other. At this time, since the fiber 13 is finally entangled from the mold 53, that is, from the tip of the fiber 13, the entangled fiber 13 is densely packed in the portion away from the surface 12 of the base layer 11 of the film 10. The substantially parallel part 16 extended in the state substantially parallel with respect to the base layer 11 is formed. On the other hand, since the portion immediately above the base layer 11 of the fiber 13 that is peeled off from the mold 53 at the beginning at the time of peeling is hardly entangled, the fiber 13 is closer to the surface 12 of the base layer 11 than the substantially parallel portion 16. On the other hand, a substantially vertical portion 15 extending in a substantially vertical state is formed.
 また、引き伸ばされた繊維13の剛性が比較的大きく、繊維13の絡まりが小さい場合には、図5のニップロール62によって圧力を加えることによって、繊維層14の疎密や繊維13の傾斜角度、繊維層14の厚みを調整することができる。例えば、圧力を大きくすれば、繊維層14は薄くなり、先端側の繊維13が傾斜して略平行となり、略平行部16での繊維13の密度が上昇する。 Further, when the stretched fiber 13 has a relatively high rigidity and the fiber 13 has a small entanglement, by applying pressure by the nip roll 62 in FIG. 5, the density of the fiber layer 14, the inclination angle of the fiber 13, the fiber layer The thickness of 14 can be adjusted. For example, if the pressure is increased, the fiber layer 14 becomes thinner, the fibers 13 on the tip side are inclined and become substantially parallel, and the density of the fibers 13 at the substantially parallel portion 16 increases.
 図7に示す例では、フィルム10’が巻出ロール73から引き出され、加熱ロール75により、加熱された表面に微細な孔構造が形成されたエンドレスベルト状の金型76上に供給される。 In the example shown in FIG. 7, the film 10 ′ is pulled out from the unwinding roll 73, and is supplied by the heating roll 75 onto the endless belt-shaped mold 76 in which a fine hole structure is formed on the heated surface.
 金型76の外表面には独立して離散的に配置された微細孔が形成されて、フィルム10’と接触する直前に加熱ロール75によって加熱される。連続的に供給されるフィルム10’はニップロール77により金型76の微細孔構造が加工された表面に押し付けられ、フィルム10’の表面に金型76の微細な孔に応じた微細な突起構造が形成される。フィルム10’の表面が金型76の微細孔に十分入りこむために、フィルム10’が金型76の微細孔構造が加工された表面に押しつけられる際の温度は、フィルム10’のガラス転移温度以上が好ましく、フィルム10’の溶融温度以上であることがより好ましい。 The outer surface of the mold 76 is formed with discretely arranged fine holes and heated by the heating roll 75 immediately before coming into contact with the film 10 ′. The continuously supplied film 10 ′ is pressed against the surface of the mold 76 with the fine hole structure processed by the nip roll 77, and a fine protrusion structure corresponding to the fine hole of the mold 76 is formed on the surface of the film 10 ′. It is formed. In order for the surface of the film 10 ′ to sufficiently penetrate into the micropores of the mold 76, the temperature at which the film 10 ′ is pressed against the surface on which the microporous structure of the mold 76 has been processed is equal to or higher than the glass transition temperature of the film 10 ′. It is more preferable that the temperature is equal to or higher than the melting temperature of the film 10 ′.
 その後、表面に微細な突起構造が形成されたフィルム10’’は、金型76の表面と密着された状態で冷却ロール78の外表面位置まで搬送される。フィルム10’’は、冷却ロール78によって金型76を介して熱伝導により冷却された後、剥離ロール79によって成形された微細な突起構造を引き伸ばされながら金型76から剥離され、基層11の表面12に繊維層14を有するフィルム10が得られる。フィルム10は、巻取ロール82に巻き取られる。このようなプロセスにより、繊維13が形成されたフィルム10を連続的に高い生産性をもって熱成形していくことができる。 Thereafter, the film 10 ″ having a fine protrusion structure formed on the surface is conveyed to the outer surface position of the cooling roll 78 in a state of being in close contact with the surface of the mold 76. The film 10 ″ is cooled by heat conduction through the mold 76 by the cooling roll 78, and then peeled off from the mold 76 while the fine protrusion structure formed by the peeling roll 79 is stretched, and the surface of the base layer 11 is peeled off. A film 10 having a fiber layer 14 on 12 is obtained. The film 10 is taken up on a take-up roll 82. By such a process, the film 10 on which the fibers 13 are formed can be continuously thermoformed with high productivity.
 剥離ロール79と金型76との離間距離79Hや、冷却ロール78の温度を調整することにより、成形された微細な突起構造を引き伸ばして形成される繊維13の径や繊維層14の厚みを変更することができる。 By adjusting the separation distance 79H between the peeling roll 79 and the mold 76 and the temperature of the cooling roll 78, the diameter of the fiber 13 and the thickness of the fiber layer 14 formed by stretching the formed fine protrusion structure are changed. can do.
 また、ニップロール81によって圧力を加えることによって、繊維層14の疎密や繊維13の傾斜角度、繊維層14の厚みを調整することができる。例えば、圧力を大きくすれば、繊維層14は薄くなり、先端側の繊維13が傾斜して略平行となり、略平行部16での繊維13の密度が上昇する。 Further, by applying pressure by the nip roll 81, the density of the fiber layer 14, the inclination angle of the fiber 13, and the thickness of the fiber layer 14 can be adjusted. For example, if the pressure is increased, the fiber layer 14 becomes thinner, the fibers 13 on the tip side are inclined and become substantially parallel, and the density of the fibers 13 at the substantially parallel portion 16 increases.
 金型53、76の表面に形成された微小な孔の占める面積割合は、この面積割合が、ほぼフィルム10の基層11の表面において、繊維13と結合している部分の面積の割合となるため、金型53、76の表面に形成された微小な孔の占める面積割合は、5%~40%であることが好ましい。金型53、76の表面に形成された微小な孔の径は、好ましくは、0.05μm~3μm、より好ましくは、0.1μm~0.5μmである。金型53、76の表面に形成された微小な孔の径が0.05μm以上であると、圧入工程においてフィルム10’の一部を圧入しやすい。また、0.1μm以上であると、引き剥がし工程において引き伸ばされた繊維13が基層表面において倒れ難くなり、略垂直部を形成しやすい。また、0.5μm以下であると、引き剥がし工程において引き伸ばされた繊維13の先端部が倒れやすく、略平行部16において繊維13同士が絡まりやすい。また、3μm以下であると、引き剥がし工程において引き伸ばされた繊維13を加圧工程で変形させやすい。 The area ratio occupied by the minute holes formed on the surfaces of the molds 53 and 76 is that the area ratio is approximately the ratio of the area of the base layer 11 of the film 10 that is bonded to the fiber 13. The area ratio occupied by minute holes formed on the surfaces of the molds 53 and 76 is preferably 5% to 40%. The diameter of the minute holes formed on the surfaces of the molds 53 and 76 is preferably 0.05 μm to 3 μm, more preferably 0.1 μm to 0.5 μm. When the diameter of the minute holes formed on the surfaces of the molds 53 and 76 is 0.05 μm or more, a part of the film 10 ′ is easily press-fitted in the press-fitting process. Further, when the thickness is 0.1 μm or more, the fiber 13 stretched in the peeling process is not easily collapsed on the surface of the base layer, and a substantially vertical portion is easily formed. Moreover, if it is 0.5 μm or less, the tip end portion of the fiber 13 stretched in the peeling process is likely to fall, and the fibers 13 are likely to be entangled in the substantially parallel portion 16. In addition, when the thickness is 3 μm or less, the fiber 13 stretched in the peeling process is easily deformed in the pressing process.
 金型53、76の表面に形成された微小な孔の深さは、孔径の2.5倍以上であることが好ましい。孔の深さが孔径の2.5倍以上であると、圧入工程によって、圧入された樹脂が金型53、76の孔の側面と接する面積が孔部分の表面積の10倍以上となって、引き剥がし工程において樹脂が引き伸ばされやすく好ましい。孔径に対する孔の深さは10倍以上がより好ましい。孔径に対する孔の深さの値に特に上限はないが、孔形成の容易さから100倍程度とするのが好ましい。 The depth of the minute holes formed on the surfaces of the molds 53 and 76 is preferably 2.5 times or more the hole diameter. If the depth of the hole is 2.5 times or more of the hole diameter, the area where the injected resin is in contact with the side surface of the hole of the mold 53, 76 by the press-fitting step is 10 times or more the surface area of the hole part, It is preferable that the resin is easily stretched in the peeling process. The depth of the hole with respect to the hole diameter is more preferably 10 times or more. There is no particular upper limit to the value of the hole depth relative to the hole diameter, but it is preferably about 100 times due to the ease of hole formation.
 このような、表面に微細な孔が複数形成された金型53、76の作製方法は、金属表面に直接切削やレーザー加工や電子線加工を施工する方法、金属表面に形成した鍍金皮膜に直接切削やレーザー加工や電子線加工を施工する方法、これらの金属表面や、金属表面に形成した鍍金皮膜にレーザー加工や電子線加工などにより、微細孔と反転した凸形状を作製した後、電気鋳造により微細孔形状を作製する方法が挙げられる。また、レジストを基板の上に塗布した後、フォトリソグラフィー手法によって所定のパターンニングでレジストを形成した後、基板をエッチング処理して形状を形成し、レジスト除去後に電気鋳造でその反転パターンにより微細孔構造を得る方法などが挙げられる。 Such a method for producing the dies 53 and 76 having a plurality of fine holes formed on the surface includes a method of directly performing cutting, laser processing and electron beam processing on the metal surface, and a direct coating on the plating film formed on the metal surface. After forming a convex shape reversed with micropores by laser processing or electron beam processing on the metal surface or the plating film formed on the metal surface by cutting, laser processing or electron beam processing, electroforming The method of producing a micropore shape by is mentioned. In addition, after applying the resist on the substrate, the resist is formed with a predetermined patterning by a photolithographic technique, and then the substrate is etched to form a shape. Examples include a method for obtaining a structure.
 また、金型表面にエッチングを施すことにより、微細孔構造を表面に有した金型53、76を作製することもできる。金型53、76の材料としてはシリコンウエハ、各種金属材料、ガラス、セラミック、プラスチック、炭素材料等、強度と要求される精度の加工性を有するものであればよく、具体的には、Si、SiC、SiN、多結晶Si、ガラス、Ni、Cr、Cu、Al、Fe、Ti、Cさらにはこれらを1種以上含むものでよい。また、これらを主成分としたアモルファス構造を表面に有する金型の表面を強酸性の液体によりエッチングすることにより作製してもよい。 Further, by performing etching on the mold surface, the molds 53 and 76 having a fine pore structure on the surface can also be produced. The materials of the molds 53 and 76 may be silicon wafers, various metal materials, glass, ceramics, plastics, carbon materials, etc., as long as they have strength and workability with required accuracy. Specifically, Si, SiC, SiN, polycrystalline Si, glass, Ni, Cr, Cu, Al, Fe, Ti, C and further one or more of these may be included. Moreover, you may produce by etching the surface of the metal mold | die which has the amorphous structure which has these as a main component on the surface with a strongly acidic liquid.
 繊維13の形状は、金型53、76の表面の微細な孔の形状以外に、圧入工程、冷却工程、引き剥がし工程の各工程の条件を調整することでも制御できる。たとえば、金型53、76の表面の微細な孔の形状の孔径を小さくすれば繊維径は小さくなり、冷却工程での冷却温度や引き剥がし工程での引き伸ばし速度を変更することで繊維径や繊維層14の厚みを変更することができる。 The shape of the fiber 13 can be controlled by adjusting the conditions of the press-fitting process, the cooling process, and the peeling process in addition to the shape of the fine holes on the surfaces of the molds 53 and 76. For example, if the hole diameter in the shape of fine holes on the surfaces of the molds 53 and 76 is reduced, the fiber diameter is reduced. By changing the cooling temperature in the cooling process and the stretching speed in the peeling process, the fiber diameter and the fiber are changed. The thickness of the layer 14 can be changed.
 また、加圧工程において、加える圧力は繊維13の形態によって適宜変更でき、圧力によって繊維層14の傾斜角度、疎密の程度、厚みを変更することができる。 Further, in the pressurizing step, the pressure applied can be appropriately changed depending on the form of the fiber 13, and the inclination angle, the degree of density, and the thickness of the fiber layer 14 can be changed by the pressure.
 本発明においては、水との接触角をさらに大きくして撥液性をより向上させようとする場合には、上記のようにして得られた繊維13の表面に、表面エネルギーの低い官能基、特にフッ素基を被覆することが望ましい。 In the present invention, when the contact angle with water is further increased to improve the liquid repellency, the surface of the fiber 13 obtained as described above has a functional group having a low surface energy, It is particularly desirable to coat a fluorine group.
 このような被覆処理方法としては、繊維13の構造を被覆材料によって埋めてしまうことのない方法であれば特に限定されないが、例えば、ラングミュアーブロジェット法(LB法)、物理蒸着法(PVD法)、化学蒸着法(CVD法)、自己組織化法、スパッタ法、単分子を溶剤で希釈したものを塗布する方法などが挙げられる。
 なお、繊維13を形成するフィルム10’上に、上記のような材料による任意の厚さの撥液処理を施したのち、上記した方法によって繊維13を形成するようにすることもできる。
Such a coating treatment method is not particularly limited as long as the structure of the fiber 13 is not filled with a coating material. For example, the Langmuir Blodget method (LB method), physical vapor deposition method (PVD method) ), Chemical vapor deposition method (CVD method), self-organization method, sputtering method, and a method in which a single molecule diluted with a solvent is applied.
It is also possible to form the fiber 13 by the above-mentioned method after performing a liquid repellent treatment with an arbitrary thickness on the film 10 ′ forming the fiber 13 with the above-described material.
 本発明の樹脂構造体はその表面特性を活かして、例えば細胞培養シートやバイオチップ等のバイオデバイス、光学フィルムや異方性フィルム等の光学デバイス、撥液シート、防汚シート等の建築資材に好適に用いることができる。
 また、本発明の樹脂構造体は、撥液性のみならず、樹脂構造体の基層近傍に空気層を含んでいることから、断熱シート等他の用途でも使用することができる。
The resin structure of the present invention can be used for building materials such as biodevices such as cell culture sheets and biochips, optical devices such as optical films and anisotropic films, liquid repellent sheets, and antifouling sheets, taking advantage of its surface characteristics. It can be used suitably.
Moreover, since the resin structure of this invention contains not only liquid repellency but the air layer in the base layer vicinity of the resin structure, it can be used also for other uses, such as a heat insulation sheet.
 [測定方法]
 [略垂直部、略平行部の判定]
 実施例等で成形したフィルム10において、繊維13が基層11の表面12に対して略垂直の状態で延在している略垂直部15、および略平行の状態で延在している略平行部16の有無は、以下の手順で判定する。
 (1)樹脂構造体10の任意の場所から、10mm×10mmのサンプルを切り出す。サンプルの4つの切断面のうちから任意に1つの切断面を選ぶ。選択した切断面について、繊維層14を上側、基層11を下側にして見た右端部分を観察対象とする。
 (2)走査型電子顕微鏡を用いて、(1)項の観察対象の断面観察写真を取得する。観察倍率は5000倍とし、観察対象範囲は24.3um×18.2um、画素数は1280画素×960画素であり、1画素の大きさは19.0nm×19.0nmとなる。取得した写真をトリミングして、繊維層14のみの写真とし、基層11の表面12と平行な方向に3分割する。分割された部分のうち、基層11から最も離れた部分と基層11に最も近い部分の断面写真に対して、それぞれ2次元フーリエ変換による画像解析を施してパワースペクトル画像を取得する。
[Measuring method]
[Determination of substantially vertical part and substantially parallel part]
In the film 10 formed in the example or the like, the substantially vertical portion 15 in which the fibers 13 extend in a substantially vertical state with respect to the surface 12 of the base layer 11 and the substantially parallel portion in which the fibers 13 extend in a substantially parallel state. The presence or absence of 16 is determined by the following procedure.
(1) A 10 mm × 10 mm sample is cut out from an arbitrary location of the resin structure 10. One cut surface is arbitrarily selected from the four cut surfaces of the sample. About the selected cut surface, the observation object is the right end portion viewed with the fiber layer 14 on the upper side and the base layer 11 on the lower side.
(2) Using a scanning electron microscope, obtain a cross-sectional observation photograph of the observation target in (1). The observation magnification is 5000 times, the observation target range is 24.3 um × 18.2 um, the number of pixels is 1280 pixels × 960 pixels, and the size of one pixel is 19.0 nm × 19.0 nm. The acquired photograph is trimmed to obtain a photograph of only the fiber layer 14 and is divided into three in a direction parallel to the surface 12 of the base layer 11. Among the divided portions, a power spectrum image is obtained by performing image analysis by two-dimensional Fourier transform on a cross-sectional photograph of a portion farthest from the base layer 11 and a portion closest to the base layer 11.
 (3)得られたパワースペクトル画像から全方位における平均明度を算出しプロットした後、最小二乗法を用いて楕円に近似する。
 (4)基層11の表面12と平行な方向を0度として、楕円近似されたパワースペクトル画像から、基層11の表面12とのなす角度が0~180度の各角度について振幅の平均値をプロットし、繊維13の楕円近似傾斜角度分布を算出する。
 (5)繊維13の楕円近似傾斜角度分布が、0度以上30度以下および150度以上180度以下のそれぞれの平均振幅の平均値が、30度より大きく150度未満の平均振幅の平均値と比較して大きい場合、この断面写真中の繊維13は略平行の状態と判定する。繊維13の楕円近似傾斜角度分布が、60度以上120度以下の平均振幅の平均値が、0度以上60度未満および120度より大きく180度以下のそれぞれの平均振幅の平均値と比較して大きい場合、この断面写真中の繊維13は略垂直の状態であると判定する。
(3) After calculating and plotting the average brightness in all directions from the obtained power spectrum image, it is approximated to an ellipse using the least square method.
(4) The average value of the amplitude is plotted for each angle of 0 to 180 degrees with respect to the surface 12 of the base layer 11 from the elliptically approximated power spectrum image with the direction parallel to the surface 12 of the base layer 11 set to 0 degree. Then, the elliptical approximate inclination angle distribution of the fiber 13 is calculated.
(5) The average value of the average amplitude of the elliptical approximate inclination angle distribution of the fibers 13 in the range of 0 degrees to 30 degrees and 150 degrees to 180 degrees is greater than 30 degrees and less than 150 degrees. When the comparison is larger, it is determined that the fibers 13 in the cross-sectional photograph are substantially parallel. The elliptical approximate inclination angle distribution of the fiber 13 is such that the average value of the average amplitude of 60 degrees or more and 120 degrees or less is compared with the average value of the average amplitude of 0 degrees or more and less than 60 degrees and greater than 120 degrees and 180 degrees or less. When it is large, it is determined that the fibers 13 in this cross-sectional photograph are in a substantially vertical state.
 (6)(1)項で選択した切断面に対向する切断面についても、繊維層14を上側、基層11を下側にして見た右端部分を観察対象とし、(2)~(5)項と同じ作業を行う。さらに、10mm×10mmのサンプルの中心を通り、(1)項で選択した切断面と平行にサンプルを切断し、この切断面の左右の中心部分を観察対象とし、(2)~(5)項と同じ作業を行う。
 (7)3つの観察対象のいずれの基層11から最も離れた3分の1の部分が、繊維13が略平行の状態であれば、繊維層14の基層11から最も離れた3分の1の部分は略平行部であると判定する。3つの観察対象のいずれの基層11に最も近い3分の1の部分が、繊維13が略垂直の状態であれば、繊維層14の基層11に最も近い3分の1の部分は略垂直部であると判定する。
(6) Regarding the cut surface facing the cut surface selected in the item (1), the right end portion viewed from the fiber layer 14 on the upper side and the base layer 11 on the lower side is an observation object, and items (2) to (5) Do the same work. Further, the sample is cut through the center of the 10 mm × 10 mm sample in parallel with the cut surface selected in the item (1), and the left and right central portions of the cut surface are set as observation objects, and the items (2) to (5) Do the same work.
(7) If the one-third portion farthest from any base layer 11 of the three observation objects is in a state in which the fibers 13 are substantially parallel, the one-third farthest from the base layer 11 of the fiber layer 14 The part is determined to be a substantially parallel part. If the one-third portion closest to any of the base layers 11 of the three observation targets is the fiber 13 in a substantially vertical state, the one-third portion closest to the base layer 11 of the fiber layer 14 is a substantially vertical portion. It is determined that
 2次元フーリエ変換による画像解析に用いた断面写真を図8(a)、画像解析で取得したパワースペクトルを図8(b)、繊維13の角度分布図を図8(c)に示す。図8は、繊維13が基層11の表面12に対して略平行の状態で延在している例である。
 本実施例では、基底面転位像をフーリエ変換するために、前述の参考文献1~3の著者らが開発したFiber Orientation Analysis Ver.8.03を用いた。このフーリエ変換ソフトは、画像データから各点の輝度の情報を取り出し、フーリエ変換処理を行い、パワースペクトルと平均振幅Aave.(θ)を求める処理を行う。詳細な手順は、前述の参考文献1~3および参考URL1に記載されている。このソフトで画像をフーリエ変換処理するためには、輝度の数値情報を取り出すために画像を予めビットマップ化する。さらに高速フーリエ変換を行うために、画像の一辺のピクセル数が4の整数倍となるように予め調整する。画像のピクセル数が縦横比3以上の画像をフーリエ変換処理する場合は、フーリエ変換処理する画像の縦横比が小さくなる方向に元の画像を5枚貼り合わせ、1枚の画像としてフーリエ変換処理を行う。 
FIG. 8A shows a cross-sectional photograph used for image analysis by two-dimensional Fourier transform, FIG. 8B shows a power spectrum obtained by image analysis, and FIG. FIG. 8 shows an example in which the fiber 13 extends in a state substantially parallel to the surface 12 of the base layer 11.
In this example, in order to Fourier transform the basal plane dislocation image, the Fiber Orientation Analysis Ver. 8.03 was used. This Fourier transform software extracts the luminance information of each point from the image data, performs a Fourier transform process, and calculates the power spectrum and average amplitude Aave. Processing for obtaining (θ) is performed. Detailed procedures are described in Reference Documents 1 to 3 and Reference URL 1 described above. In order to perform Fourier transform processing on an image with this software, the image is converted into a bitmap in advance in order to extract numerical information on luminance. Further, in order to perform fast Fourier transform, adjustment is made in advance so that the number of pixels on one side of the image is an integer multiple of four. When Fourier transform processing is performed on an image having an aspect ratio of 3 or more, the original image is pasted in the direction in which the aspect ratio of the image to be Fourier transformed is reduced, and the Fourier transform processing is performed as one image. Do.
 フーリエ変換処理は一義的に決まった処理であるため、同様の処理を行うことができるものであれば、他のソフトでもよい。ただし、配向性評価のために開発された本ソフトでは、Aave.(θ)を求めることができるのが特徴である。他のソフトで、Aave.(θ)を自動的にすることができない場合には、輝度を(x、y)座標にマッピングしたものであるパワースペクトルを用いて、同様の計算をする必要がある。  Since the Fourier transform process is uniquely determined, other software may be used as long as the same process can be performed. However, in this software developed for evaluating the orientation, Aave. It is a feature that (θ) can be obtained. In other software, Aave. When (θ) cannot be made automatic, it is necessary to perform the same calculation using a power spectrum in which luminance is mapped to (x, y) coordinates. *
 [繊維層側の表面から見た繊維が占める面積の割合]
 実施例等で成形したフィルム10を10mm×10mmに切り出し、走査型電子顕微鏡((株)キーエンス VE-7800)にて、倍率10000倍にて表面を二次電子像で観察した。このときの画像サイズは12.1um×9.1umであった。なお、画素数は1280画素×960画素であり、1画素の大きさは9.4nm×9.5nmであった。観察写真を白黒の二値化して、全体に占める画像の明るい部分(以下、「白部分」という)の面積を繊維層14の側の表面から見た繊維13が占める面積の割合とした。二値化のしきい値は、白部分と暗い部分(以下、「黒部分」という)を示す2つ光量のピークの中間の光量値であって、その光量値の前後での二値化において、白部分と黒部分の割合の変化が最も小さい光量値とした。
[Ratio of the area occupied by the fiber viewed from the surface on the fiber layer side]
The film 10 molded in Examples and the like was cut out to 10 mm × 10 mm, and the surface was observed with a secondary electron image at a magnification of 10,000 times with a scanning electron microscope (Keyence VE-7800, Inc.). The image size at this time was 12.1 μm × 9.1 μm. The number of pixels was 1280 pixels × 960 pixels, and the size of one pixel was 9.4 nm × 9.5 nm. The observation photograph was binarized into black and white, and the area of the bright portion of the image (hereinafter referred to as “white portion”) in the entire image was defined as the ratio of the area occupied by the fibers 13 viewed from the surface on the fiber layer 14 side. The threshold for binarization is an intermediate light amount value between two light amount peaks indicating a white portion and a dark portion (hereinafter referred to as “black portion”), and binarization before and after the light amount value is performed. The light quantity value with the smallest change in the ratio of the white part and the black part was set.
 [基層の表面における繊維が結合している部分の面積]
 [方法(i)]  実施例等で成形したフィルム10を10mm×10mmに切出し、フィルム10の基層11から1μm以内の位置でフィルム10の基層11に平行に繊維層14を切断し、切断した断面から切り落とされた繊維13を風で除去した。走査型電子顕微鏡((株)キーエンス VE-7800)にて、倍率10000倍にて表面12を二次電子像で観察した。このときの画像サイズは12.1μm×9.1μmであった。なお、画素数は1280画素×960画素であり、1画素の大きさは9.4nm×9.5nmであった。観察写真白黒の二値化して、全体に占める画像の明るい部分(以下、「白部分」という)の面積を、基層11の表面12における繊維13が結合している部分の面積とした。二値化のしきい値は、白部分と暗い部分(以下、「黒部分」という)を示す2つの光量のピークの中間の光量値であって、その光量値の前後での二値化において、白部分と黒部分の割合の変化が最も小さい光量値とした。
 ただし、上記方法(i)で繊維層14を切断する際に、繊維13が非常に細くて切断刃の刃先により繊維13が倒れてしまい、基層11からの繊維層14の切断が困難な場合には、以下の方法(ii)により求めた。
[Area of the part where the fibers are bonded on the surface of the base layer]
[Method (i)] The film 10 formed in Examples and the like is cut out to 10 mm × 10 mm, the fiber layer 14 is cut in parallel to the base layer 11 of the film 10 at a position within 1 μm from the base layer 11 of the film 10, and the cut cross section The fiber 13 cut off from the fiber was removed by wind. The surface 12 was observed as a secondary electron image at a magnification of 10,000 with a scanning electron microscope (Keyence VE-7800, Inc.). The image size at this time was 12.1 μm × 9.1 μm. The number of pixels was 1280 pixels × 960 pixels, and the size of one pixel was 9.4 nm × 9.5 nm. The observation photograph was binarized into black and white, and the area of the bright portion of the image (hereinafter referred to as “white portion”) in the entire image was defined as the area of the surface 12 of the base layer 11 where the fibers 13 were bonded. The threshold value for binarization is an intermediate light amount value between two light amount peaks indicating a white portion and a dark portion (hereinafter referred to as “black portion”), and in binarization before and after the light amount value. The light quantity value with the smallest change in the ratio of the white part and the black part was set.
However, when the fiber layer 14 is cut by the above method (i), the fiber 13 is very thin and the fiber 13 falls down due to the cutting edge of the cutting blade, and it is difficult to cut the fiber layer 14 from the base layer 11. Was determined by the following method (ii).
 [方法(ii)] フィルム10の表面に対して垂直で、直交する二方向でフィルム10を切断し、各断面を走査型電子顕微鏡((株)キーエンス VE-7800)を用いて倍率5000倍にて観察した。このときの画像サイズは24.3μm×18.2μmであった。なお、画素数は1280画素×960画素であり、1画素の大きさは19.0nm×19.0nmであった。断面に存在する繊維13の本数と繊維13の平均断面幅を求め、その積から各断面においる基層11の単位長さあたりに繊維13が結合している割合を求めた。さらに各断面での繊維13が結合している割合の積を求め、その値を基層11の表面12における繊維13が結合している部分の面積の割合とした。 [Method (ii)] The film 10 is cut in two directions perpendicular to and perpendicular to the surface of the film 10, and each cross section is magnified 5000 times using a scanning electron microscope (Keyence Corporation VE-7800). And observed. The image size at this time was 24.3 μm × 18.2 μm. The number of pixels was 1280 pixels × 960 pixels, and the size of one pixel was 19.0 nm × 19.0 nm. The number of fibers 13 present in the cross section and the average cross-sectional width of the fibers 13 were determined, and the ratio of the fibers 13 bonded per unit length of the base layer 11 in each cross section was determined from the product. Further, the product of the proportions of fibers 13 in each cross section was determined, and the value was defined as the ratio of the area of the surface 12 of the base layer 11 where the fibers 13 were bonded.
 [繊維径の測定]
 実施例等で成形したフィルム10を10mm×10mmに切り出し、走査型電子顕微鏡((株)キーエンス VE-7800)にて、倍率10000倍にて表面を二次電子像で観察した。このときの画像サイズは12.1μm×9.1μmであった。なお、画素数は1280画素×960画素であり、1画素の大きさは9.4nm×9.5nmであった。観察写真から、任意の30本の繊維13を選び、幅の大きなものから5本と幅の小さなものから5本を除いた、中間の20本の繊維13の幅の平均を取ったものを繊維径とした。
[Measurement of fiber diameter]
The film 10 molded in Examples and the like was cut out to 10 mm × 10 mm, and the surface was observed with a secondary electron image at a magnification of 10,000 times with a scanning electron microscope (Keyence VE-7800, Inc.). The image size at this time was 12.1 μm × 9.1 μm. The number of pixels was 1280 pixels × 960 pixels, and the size of one pixel was 9.4 nm × 9.5 nm. From the observation photograph, arbitrary 30 fibers 13 were selected, and the average of the widths of the middle 20 fibers 13 obtained by removing 5 from the wide width and 5 from the small width was the fiber. The diameter.
 [繊維の本数の測定]
 実施例等で成形したフィルム10を10mm×10mmに切り出し、走査型電子顕微鏡((株)キーエンス VE-7800)にて、倍率10000倍にて表面を二次電子像で観察した。このときの画像サイズは12.1μm×9.1μmであった。なお、画素数は1280画素×960画素であり、1画素の大きさは9.4nm×9.5nmであった。この画像から繊維13の本数を読み取る。繊維13の本数測定時にはSnipping Toolを用いて繊維13に目印を付けながら測定を行った。この方法で得られた繊維本数を10000μm中の繊維本数に換算した。
 また、繊維13が絡まり、繊維13の本数を表面の観察写真から読み取ることが難しい場合は、液状シリコーンゴムなどでフィルム10の表面の型を取り、その型の表面画像から読み取ってもよい。硬化した液状シリコーンゴムからフィルム10を剥ぎ取った時、液状シリコーンゴムの表面は、繊維13の底面に対応する孔が多数開いた表面となる。この表面の走査型電子顕微鏡写真を取得し、繊維13の本数を求める。
[Measurement of the number of fibers]
The film 10 molded in Examples and the like was cut out to 10 mm × 10 mm, and the surface was observed with a secondary electron image at a magnification of 10,000 times with a scanning electron microscope (Keyence VE-7800, Inc.). The image size at this time was 12.1 μm × 9.1 μm. The number of pixels was 1280 pixels × 960 pixels, and the size of one pixel was 9.4 nm × 9.5 nm. The number of fibers 13 is read from this image. At the time of measuring the number of the fibers 13, the measurement was performed while marking the fibers 13 using the Snipping Tool. The number of fibers obtained by this method was converted to the number of fibers in 10,000 μm 2 .
When the fibers 13 are entangled and it is difficult to read the number of the fibers 13 from the surface observation photograph, the surface of the film 10 may be taken with liquid silicone rubber or the like and read from the surface image of the mold. When the film 10 is peeled off from the cured liquid silicone rubber, the surface of the liquid silicone rubber becomes a surface in which many holes corresponding to the bottom surface of the fiber 13 are opened. A scanning electron micrograph of this surface is obtained to determine the number of fibers 13.
 [繊維層厚みの測定]
 実施例等で成形したフィルム10をフィルム10の表面に対して垂直な方向で切断し、その断面を走査型電子顕微鏡((株)キーエンス VE-7800)を用いて倍率5000倍にて観察した。このときの画像サイズは24.3μm×18.2μmであった。なお、画素数は1280画素×960画素であり、1画素の大きさは19.0nm×19.0nmであった。断面の観察写真について、基層11の表面から最表面までの距離が大きい箇所を10点測定し、それら10点の距離を平均した値を繊維層14の厚みとした。
 なお、フィルム10を表面に垂直な断面で切断する際や、フィルム10の基層11の直上で基層11に平行にフィルム10を切断する際には、フィルム10を単独で切断するほかに、硬化樹脂や氷などにより繊維層14の構造を崩さないように繊維層14ごとフィルム10を固めた上で、切削や研磨などを行う事ができる。フィルム10の撥液性が高く樹脂や氷などを保持することが困難な場合、フィルム10の表面構造を崩さない範囲の親液処理(コロナ放電処理やプラズマ処理)などにより親水化した後に硬化樹脂や氷で固め、切断することが可能である。
[Measurement of fiber layer thickness]
The film 10 formed in Examples and the like was cut in a direction perpendicular to the surface of the film 10, and the cross section thereof was observed with a scanning electron microscope (Keyence VE-7800) at a magnification of 5000 times. The image size at this time was 24.3 μm × 18.2 μm. The number of pixels was 1280 pixels × 960 pixels, and the size of one pixel was 19.0 nm × 19.0 nm. About the observation photograph of a cross section, ten points | pieces where the distance from the surface of the base layer 11 to the outermost surface was large were measured, and the value which averaged the distance of those 10 points | pieces was made into the thickness of the fiber layer 14. FIG.
In addition, when the film 10 is cut in a cross section perpendicular to the surface, or when the film 10 is cut in parallel with the base layer 11 immediately above the base layer 11 of the film 10, in addition to cutting the film 10 alone, a cured resin Cutting or polishing can be performed after the film 10 is hardened together with the fiber layer 14 so that the structure of the fiber layer 14 is not destroyed by ice or ice. When the film 10 has high liquid repellency and it is difficult to retain resin or ice, the cured resin is made hydrophilic after lyophilic treatment (corona discharge treatment or plasma treatment) within a range that does not destroy the surface structure of the film 10. It can be hardened with ice or ice and cut.
 [撥液性の測定]
 実施例等で成形したフィルム10を10mm×30mmに切り出し、接触角計(協和界面科学(株)製、CA-D型)を用いて、水滴の接触角を測定した。測定液は純水を用い、1.41μLの純水をフィルム表面に滴下した。測定はフィルム内の10点を測定し、10点の平均した値を接触角とした。
[Measurement of liquid repellency]
The film 10 formed in Examples and the like was cut into 10 mm × 30 mm, and the contact angle of water droplets was measured using a contact angle meter (Kyowa Interface Science Co., Ltd., CA-D type). Pure water was used as the measurement liquid, and 1.41 μL of pure water was dropped onto the film surface. The measurement was performed at 10 points in the film, and the average value of the 10 points was defined as the contact angle.
 [非付着性試験]
 実施例等で成形したフィルム10を10mm×30mmに切り出し、固定用冶具に測定面が上になるように固定した。その後固定用冶具を45°に傾斜させた状態で、ヨーグルト(森永ビヒダスプレーンヨーグルト加糖タイプ)を0.3ml滴下し、液滴が滴下後から20mm移動するまでの時間を測定した。また、ヨーグルトの付着残りを目視にて観察した。付着残りがないものを○、それ以外を×とした。
[Non-adhesion test]
The film 10 molded in Examples and the like was cut into 10 mm × 30 mm, and fixed to a fixing jig so that the measurement surface was on top. Thereafter, with the fixing jig tilted at 45 °, 0.3 ml of yogurt (Morinaga biplane plain yogurt sweetened type) was dropped, and the time until the droplet moved 20 mm after dropping was measured. Moreover, the adhesion residue of yogurt was observed visually. The case where there was no adhesion residue was marked with ◯, and the others were marked with ×.
 [耐久性試験]
 実施例等で成形したフィルム10を10mm×30mmに切り出してサンプルとし、100mm×100mmのトレーにサンプルを固定して、200mlの純水をトレー内に注ぎ、24時間浸漬した。24時間後にサンプルを取り出して、常温で24時間乾燥し、乾燥後に接触角計(協和界面科学(株)製、CA-D型)を用いて、水滴の接触角を測定した。測定液は純水を用い、1.41μLの純水をサンプル表面に滴下した。測定はサンプル内の10点を測定し、10点の平均した値を耐久試験後の接触角として、耐久試験前後の接触角の変化を算出した。また、液滴がサンプル表面に付着せず接触角が測定できない場合は、耐久試験前後の接触角の変化のあり、なしを評価した。
[Durability test]
The film 10 formed in Examples and the like was cut into 10 mm × 30 mm to obtain a sample, the sample was fixed to a 100 mm × 100 mm tray, 200 ml of pure water was poured into the tray, and immersed for 24 hours. After 24 hours, a sample was taken out and dried at room temperature for 24 hours. After drying, the contact angle of water droplets was measured using a contact angle meter (Kyowa Interface Science Co., Ltd., CA-D type). Pure water was used as the measurement liquid, and 1.41 μL of pure water was dropped onto the sample surface. In the measurement, 10 points in the sample were measured, and the change of the contact angle before and after the durability test was calculated using the average value of the 10 points as the contact angle after the durability test. Moreover, when the droplet did not adhere to the sample surface and the contact angle could not be measured, the presence or absence of a change in the contact angle before and after the durability test was evaluated.
 (実施例1)
 (1)フィルム
 ポリプロピレンを主体としたポリマー(融点が144℃、ガラス転移温度が-20℃)を含む厚み100μmのフィルムを用いた。
 (2)金型
 ステンレス板の表面に、Niを主体とした材料を厚さ100μm程度被覆した。その後、金型表面に対し、レーザー加工で直径が0.3μmから0.6μm程度、深さ7μmから10μm程度の微細孔構造が全面に形成された金型を作製した。微細孔が形成された領域は微細孔が形成された表面に対して、20%であった。
Example 1
(1) Film A 100 μm thick film containing a polymer mainly composed of polypropylene (melting point: 144 ° C., glass transition temperature: −20 ° C.) was used.
(2) Mold On the surface of the stainless steel plate, a material mainly composed of Ni was coated with a thickness of about 100 μm. Thereafter, a mold was produced in which a fine pore structure having a diameter of about 0.3 μm to 0.6 μm and a depth of about 7 μm to 10 μm was formed on the entire surface of the mold surface by laser processing. The area where the fine holes were formed was 20% with respect to the surface where the fine holes were formed.
 (3)成形装置および条件
 装置は図5に示すような成形装置50を適用した。プレスユニット54は油圧ポンプで加圧される機構で、内部に加圧プレート57、58が上下に2枚取り付けられ、それぞれ、加熱装置、冷却装置に連結されている。金型53は下側の加圧プレート57の上面に設置される。また、金型53に貼りついたフィルム10’’を剥離するための剥離手段55がプレスユニット54内に設置されている。
 成形時の金型温度は160℃とし、加圧力としては全面で10MPaの圧力がかかるようにした。加圧時間としては60秒であった。また、剥離時の金型温度は50℃であった。剥離ロールとフィルムとの離間距離は0.3mmであった。剥離したフィルムをニップロール62で0.6MPaで加圧後、下流側の巻き取りユニット61側に送り出し、巻き取った。
(3) Molding apparatus and conditions As the apparatus, a molding apparatus 50 as shown in FIG. 5 was applied. The press unit 54 is a mechanism that is pressurized by a hydraulic pump. Two pressurizing plates 57 and 58 are attached inside the press unit 54 and are connected to a heating device and a cooling device, respectively. The mold 53 is installed on the upper surface of the lower pressure plate 57. Further, a peeling means 55 for peeling the film 10 ″ attached to the mold 53 is installed in the press unit 54.
The mold temperature at the time of molding was set to 160 ° C., and a pressure of 10 MPa was applied over the entire surface. The pressurizing time was 60 seconds. The mold temperature at the time of peeling was 50 ° C. The separation distance between the peeling roll and the film was 0.3 mm. The peeled film was pressed with a nip roll 62 at 0.6 MPa, then sent to the downstream winding unit 61 side and wound up.
 (4)成形結果
 図9は、実施例1で成形されたフィルム10の繊維形成面の走査型電子顕微鏡((株)キーエンス VE-7800)による表面写真であり、図10は、実施例1で成形されたフィルム10の走査型電子顕微鏡((株)キーエンス VE-7800)による断面写真である。成形されたフィルム10は、基層11と、多数の繊維13が形成された繊維層14とで構成されていた。繊維層14は、基層11に近い側で基層11の表面12に対して略垂直となった繊維13からなる略垂直部15と、基層11から離れた側で基層11の表面12に対して略平行となった繊維13からなり、繊維同士が絡まった状態で延在している略平行部16とで構成されていた。略垂直部15では、繊維13が相対的に疎となり、略平行部16では繊維13が相対的に密となっていた。繊維径は0.3μm、繊維層14の厚みは10.0μmであった。10000μmに形成されている繊維13の本数は16700本であった。基層11の表面12における繊維13が結合している部分の面積は、方法(ii)により測定した。得られた繊維13の計測値を表1に示す。
(4) Molding Results FIG. 9 is a surface photograph of the fiber-formed surface of the film 10 molded in Example 1 using a scanning electron microscope (Keyence VE-7800). FIG. 2 is a cross-sectional photograph of the molded film 10 taken with a scanning electron microscope (Keyence VE-7800). The formed film 10 was composed of a base layer 11 and a fiber layer 14 in which a large number of fibers 13 were formed. The fiber layer 14 includes a substantially vertical portion 15 made of fibers 13 that are substantially perpendicular to the surface 12 of the base layer 11 on the side close to the base layer 11, and a surface that is substantially away from the surface 12 of the base layer 11 on the side away from the base layer 11. It consisted of parallel fibers 13 and was composed of substantially parallel portions 16 extending in a state where the fibers were entangled with each other. In the substantially vertical portion 15, the fibers 13 are relatively sparse, and in the approximately parallel portion 16, the fibers 13 are relatively dense. The fiber diameter was 0.3 μm, and the thickness of the fiber layer 14 was 10.0 μm. The number of fibers 13 formed at 10,000 μm 2 was 16,700. The area of the part where the fibers 13 are bonded on the surface 12 of the base layer 11 was measured by the method (ii). The measured values of the obtained fiber 13 are shown in Table 1.
 (5)撥液性・液滴移動性効果
 成形したフィルム10の繊維層14の表面に1.41μLの水を滴下し、接触角計(協和界面科学(株)製、CA-D型)を用いて、水滴の接触角を測定した。水滴を滴下すると、水滴はフィルム10の表面を転がり、一箇所に留めることができないため、接触角の測定は不可能であった。また、45°に傾斜させたフィルム10の表面にヨーグルトを0.3ml滴下し、液滴が滴下後から20mm移動するまでの時間は0.2sであり、付着残りはなかった。
(5) Liquid repellency / droplet transfer effect 1.41 μL of water is dropped on the surface of the fiber layer 14 of the molded film 10 and a contact angle meter (Kyowa Interface Science Co., Ltd., CA-D type) is used. Used to measure the contact angle of water droplets. When a water droplet is dropped, the water droplet rolls on the surface of the film 10 and cannot be kept in one place, so that the contact angle cannot be measured. In addition, 0.3 ml of yogurt was dropped on the surface of the film 10 inclined at 45 °, and the time from the dropping to the movement of 20 mm was 0.2 s, and there was no adhesion residue.
 (6)耐久性試験
 成形したフィルム10を24時間純水で浸漬し、乾燥後に繊維層14の表面に1.41μLの水を滴下し、接触角計(協和界面科学社製、CA-D型)を用いて、水滴の接触角を測定した。水滴を滴下すると耐久試験後も水滴はフィルム10の表面を転がり、一箇所に留めることができないため、接触角の測定は不可能であった。
(6) Durability test The molded film 10 was immersed in pure water for 24 hours, dried and then dropped with 1.41 μL of water on the surface of the fiber layer 14, and contact angle meter (CA-D type, manufactured by Kyowa Interface Science Co., Ltd.) ) Was used to measure the contact angle of the water droplets. When a water drop is dropped, the contact angle cannot be measured because the water drop rolls on the surface of the film 10 even after the durability test and cannot be kept in one place.
 (実施例2)
 (1)フィルム
 実施例1と同じフィルムを用いた。
 (2)金型
 実施例1と同じ金型を用いた。
 (3)成形装置および条件
 実施例1と同じ成形装置50を使用し、成形時の金型温度を150℃とした以外は、実施例1と同じ条件でフィルムを成形した。 
(Example 2)
(1) Film The same film as in Example 1 was used.
(2) Mold The same mold as in Example 1 was used.
(3) Molding apparatus and conditions The same molding apparatus 50 as in Example 1 was used, and a film was molded under the same conditions as in Example 1 except that the mold temperature at the time of molding was 150 ° C.
 (4)成形結果
 図11は、実施例2で成形されたフィルム10の繊維形成面の走査型電子顕微鏡((株)キーエンス VE-7800)による表面写真であり、図12は、実施例2で成形されたフィルム10の走査型電子顕微鏡((株)キーエンス VE-7800)による断面写真である。成形されたフィルム10は、基層11と、多数の繊維13が形成された繊維層14とで構成されていた。繊維層14は、基層11に近い側で基層11の表面12に対して略垂直となった繊維13からなる略垂直部15と、基層11から離れた側で基層11の表面12に対して略平行となった繊維13からなり、繊維同士が絡まった状態で延在している略水平部16とで構成されていた。略垂直部15では、繊維13が相対的に疎となり、略平行部16では繊維13が相対的に密となっていた。繊維径は0.6μm、繊維層厚みは5.0μmであった。10000μmに形成されている繊維13の本数は10300本であった。基層11の表面12における繊維13が結合している部分の面積は、方法(i)により測定した。得られた繊維13の計測値を表1に示す。
(4) Molding result FIG. 11 is a surface photograph of the fiber-formed surface of the film 10 molded in Example 2 by a scanning electron microscope (Keyence VE-7800). FIG. 2 is a cross-sectional photograph of the molded film 10 taken with a scanning electron microscope (Keyence VE-7800). The formed film 10 was composed of a base layer 11 and a fiber layer 14 in which a large number of fibers 13 were formed. The fiber layer 14 includes a substantially vertical portion 15 made of fibers 13 that are substantially perpendicular to the surface 12 of the base layer 11 on the side close to the base layer 11, and a surface that is substantially away from the surface 12 of the base layer 11 on the side away from the base layer 11. It consisted of the fibers 13 which became parallel, and was comprised with the substantially horizontal part 16 extended in the state in which the fibers were entangled. In the substantially vertical portion 15, the fibers 13 are relatively sparse, and in the approximately parallel portion 16, the fibers 13 are relatively dense. The fiber diameter was 0.6 μm, and the fiber layer thickness was 5.0 μm. The number of fibers 13 formed at 10,000 μm 2 was 10300. The area of the part where the fibers 13 are bonded on the surface 12 of the base layer 11 was measured by the method (i). The measured values of the obtained fiber 13 are shown in Table 1.
 (5)撥液性・液滴移動性効果
 実施例1と同じ条件で水滴の接触角を測定した。水滴を滴下すると、水滴はフィルム10の表面を転がり、一箇所に留めることができないため、接触角の測定は不可能であった。また、45°に傾斜したフィルム10の表面にヨーグルトを0.3ml滴下し、液滴が滴下後から20mm移動するまでの時間は0.4sであり、付着残りはなかった。
 (6)耐久性試験
 実施例1と同じ条件で水滴の接触角を測定した。水滴を滴下すると耐久試験後も水滴はフィルム10の表面を転がり、一箇所に留めることができないため、接触角の測定は不可能であった。
(5) Effect of liquid repellency / droplet mobility The contact angle of water droplets was measured under the same conditions as in Example 1. When a water droplet is dropped, the water droplet rolls on the surface of the film 10 and cannot be kept in one place, so that the contact angle cannot be measured. In addition, 0.3 ml of yogurt was dropped on the surface of the film 10 inclined at 45 °, and the time until the droplet moved 20 mm after dropping was 0.4 s, and there was no adhesion residue.
(6) Durability test The contact angle of water droplets was measured under the same conditions as in Example 1. When a water drop is dropped, the contact angle cannot be measured because the water drop rolls on the surface of the film 10 even after the durability test and cannot be kept in one place.
 (実施例3)
 (1)フィルム
 実施例1と同じフィルムを用いた。
 (2)金型
 実施例1と同じ金型を用いた。
 (3)成形装置および条件
 実施例1と同じ成形装置50を使用し、剥離時の金型温度を80℃とした以外は、実施例1と同じ条件でフィルムを成形した。
(Example 3)
(1) Film The same film as in Example 1 was used.
(2) Mold The same mold as in Example 1 was used.
(3) Molding apparatus and conditions The same molding apparatus 50 as in Example 1 was used, and a film was molded under the same conditions as in Example 1 except that the mold temperature at the time of peeling was 80 ° C.
 (4)成形結果
 図13は、実施例3で成形されたフィルム10の繊維形成面の走査型電子顕微鏡((株)キーエンス VE-7800)による表面写真であり、図14は、実施例3で成形されたフィルム10の走査型電子顕微鏡((株)キーエンス VE-7800)による断面写真である。成形されたフィルム10は、基層11と、多数の繊維13が形成された繊維層14とで構成されていた。繊維層14は、基層11に近い側で基層表面に対して略垂直となった繊維13からなる略垂直部15と、基層11から離れた側で基層表面に対して略平行となった繊維13からなり、繊維同士が絡まった状態で延在している略平行部16とで構成されていた。略垂直部15では、繊維13が相対的に疎となり、略平行部16では繊維13が相対的に密となっていた。繊維径は0.45μm、繊維層14の厚みは6.0μmであった。10000μmに形成されている繊維13の本数は12700本であった。基層11の表面12における繊維13が結合している部分の面積は、方法(ii)により測定した。得られた繊維13の計測値を表1に示す。
(4) Molding Result FIG. 13 is a surface photograph of the fiber-formed surface of the film 10 molded in Example 3 by a scanning electron microscope (Keyence VE-7800), and FIG. 2 is a cross-sectional photograph of the molded film 10 taken with a scanning electron microscope (Keyence VE-7800). The formed film 10 was composed of a base layer 11 and a fiber layer 14 in which a large number of fibers 13 were formed. The fiber layer 14 includes a substantially vertical portion 15 made of fibers 13 that are substantially perpendicular to the surface of the base layer on the side close to the base layer 11, and a fiber 13 that is substantially parallel to the surface of the base layer on the side away from the base layer 11. It was comprised with the substantially parallel part 16 extended in the state which consists of fibers and was entangled. In the substantially vertical portion 15, the fibers 13 are relatively sparse, and in the approximately parallel portion 16, the fibers 13 are relatively dense. The fiber diameter was 0.45 μm, and the thickness of the fiber layer 14 was 6.0 μm. The number of fibers 13 formed at 10,000 μm 2 was 12700. The area of the part where the fibers 13 are bonded on the surface 12 of the base layer 11 was measured by the method (ii). The measured values of the obtained fiber 13 are shown in Table 1.
 (5)撥液性・液滴移動性効果
 実施例1と同じ条件で水滴の接触角を測定した。水滴を滴下すると、水滴はフィルム10の表面を転がり、一箇所に留めることができないため、接触角の測定は不可能であった。また、45°に傾斜したフィルム10の表面にヨーグルトを0.3ml滴下し、液滴が滴下後から20mm移動するまでの時間は0.3sであり、付着残りはなかった。
 (6)耐久性試験
 実施例1と同じ条件で水滴の接触角を測定した。水滴を滴下すると耐久試験後も水滴はフィルム10の表面を転がり、一箇所に留めることができないため、接触角の測定は不可能であった。
(5) Effect of liquid repellency / droplet mobility The contact angle of water droplets was measured under the same conditions as in Example 1. When a water droplet is dropped, the water droplet rolls on the surface of the film 10 and cannot be kept in one place, so that the contact angle cannot be measured. Further, 0.3 ml of yogurt was dropped on the surface of the film 10 inclined at 45 °, and the time until the droplet moved 20 mm after dropping was 0.3 s, and there was no adhesion residue.
(6) Durability test The contact angle of water droplets was measured under the same conditions as in Example 1. When a water drop is dropped, the contact angle cannot be measured because the water drop rolls on the surface of the film 10 even after the durability test and cannot be kept in one place.
 (比較例1)
 (1)フィルム
 シクロオレフィンを主体としたポリマー(ガラス転移温度が138℃)を含む厚み100μmのフィルムを用いた。
 (2)金型
 ステンレス板の表面に、Niを主体とした材料を厚さ100μm程度被覆した。その後、金型表面に対し、レーザー加工で直径が0.5μmから1.0μm、深さ3μmから5μm程度の微細孔構造が全面に形成された金型を作製した。微細孔が形成された領域は表面に対して、21%であった。
(Comparative Example 1)
(1) Film A film having a thickness of 100 μm containing a polymer mainly composed of cycloolefin (glass transition temperature: 138 ° C.) was used.
(2) Mold On the surface of the stainless steel plate, a material mainly composed of Ni was coated with a thickness of about 100 μm. Thereafter, a mold was produced in which a fine pore structure having a diameter of 0.5 μm to 1.0 μm and a depth of 3 μm to 5 μm was formed on the entire surface of the mold surface by laser processing. The area where the fine holes were formed was 21% with respect to the surface.
 (3)成形装置および条件
 装置は図5に示すような成形装置50を適用した。プレスユニット54は油圧ポンプで加圧される機構で、内部に加圧プレート57、58が上下に2枚取り付けられ、それぞれ、加熱装置、冷却装置に連結されている。金型53は下側の加圧プレート57の上面に設置される。また、金型53に貼り付いたフィルム10’’を剥離するための剥離手段55がプレスユニット54内に設置されている。成形時の金型温度は165℃とし、加圧力としては全面で5MPaの圧力がかかるようにした。加圧時間としては30秒であった。また、剥離時の金型温度は80℃であった。剥離ロール55Aと金型53との離間距離は0.3mmであった。剥離したフィルム10を下流側の巻き取りユニット61側に送り出し、巻き取った。
(3) Molding apparatus and conditions As the apparatus, a molding apparatus 50 as shown in FIG. 5 was applied. The press unit 54 is a mechanism that is pressurized by a hydraulic pump. Two pressurizing plates 57 and 58 are attached inside the press unit 54 and are connected to a heating device and a cooling device, respectively. The mold 53 is installed on the upper surface of the lower pressure plate 57. Further, a peeling means 55 for peeling the film 10 ″ attached to the mold 53 is installed in the press unit 54. The mold temperature at the time of molding was set to 165 ° C., and the pressure was 5 MPa over the entire surface. The pressurization time was 30 seconds. The mold temperature at the time of peeling was 80 ° C. The separation distance between the peeling roll 55A and the mold 53 was 0.3 mm. The peeled film 10 was sent out to the downstream winding unit 61 side and wound up.
 (4)成形結果
 図15は、比較例1で成形されたフィルムの成形面の走査型電子顕微鏡((株)キーエンス VE-7800)による表面写真であり、図16は、比較例1で成形されたフィルムの走査型電子顕微鏡((株)キーエンス VE-7800)による断面写真である。成形されたフィルムは、基層と、基層の表面の全面に形成された多数の繊維とで構成されていた。繊維の平均直径は0.35μm、平均高さは1.2μmであり、繊維は引き伸ばされてはいなかった。10000μmに形成されている繊維の個数は14300個であった。また、基層の表面に対して垂直な方向でフィルムを切断した断面における繊維の傾斜角度の範囲は、断面における突起の70%以上が基層の表面に対して垂直な方向に対して、20°~45°の範囲であった。繊維の延伸方向は、一定であり、粗密部分がなく、繊維は略平行部と略垂直部で構成されていなかった。基層の表面における繊維が結合している部分の面積は、方法(ii)により測定した。得られた繊維の計測値を表1に示す。
(4) Molding Result FIG. 15 is a surface photograph of the molding surface of the film molded in Comparative Example 1 using a scanning electron microscope (Keyence VE-7800), and FIG. 16 is molded in Comparative Example 1. 2 is a cross-sectional photograph of the film taken with a scanning electron microscope (Keyence VE-7800). The formed film was composed of a base layer and a large number of fibers formed on the entire surface of the base layer. The average diameter of the fiber was 0.35 μm, the average height was 1.2 μm, and the fiber was not stretched. The number of fibers formed at 10,000 μm 2 was 14300. The range of the fiber inclination angle in the cross section obtained by cutting the film in a direction perpendicular to the surface of the base layer is 20 ° to more than 70% of the protrusions in the cross section perpendicular to the surface of the base layer. The range was 45 °. The drawing direction of the fiber was constant, there was no rough portion, and the fiber was not composed of a substantially parallel part and a substantially vertical part. The area of the part where the fibers are bonded on the surface of the base layer was measured by the method (ii). The measured values of the obtained fibers are shown in Table 1.
 (5)撥液性・液滴移動性効果
 実施例1と同じ条件で水滴の接触角を測定した。水滴を滴下すると、水滴はフィルム10の表面を転がり、一箇所に留めることができないため、接触角の測定は不可能であった。また、45°に傾斜したフィルム10の表面にヨーグルトを0.3ml滴下したところ、液滴は移動せず停止し、表面に付着していた。
 (6)耐久性試験
 実施例1と同じ条件で水滴の接触角を測定した。水滴を滴下すると耐久試験後の接触角は125°であり、耐久試験前と比較して接触角が低下していた。
(5) Effect of liquid repellency / droplet mobility The contact angle of water droplets was measured under the same conditions as in Example 1. When a water droplet is dropped, the water droplet rolls on the surface of the film 10 and cannot be kept in one place, so that the contact angle cannot be measured. Further, when 0.3 ml of yogurt was dropped on the surface of the film 10 inclined at 45 °, the droplet stopped without moving and adhered to the surface.
(6) Durability test The contact angle of water droplets was measured under the same conditions as in Example 1. When a water drop was dropped, the contact angle after the durability test was 125 °, and the contact angle was lower than that before the durability test.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の樹脂構造体は、マイクロ流路、細胞培養シート、包装材、防汚または防水シート、記録材料、スクリーン、セパレータ、イオン交換膜、電池隔膜材料、ディスプレイ、光学材料等の表面で撥液性を要する製品や部材に好適に使用される。 The resin structure of the present invention is liquid repellent on the surface of microchannels, cell culture sheets, packaging materials, antifouling or waterproof sheets, recording materials, screens, separators, ion exchange membranes, battery membrane materials, displays, optical materials, etc. It is suitably used for products and parts that require high performance.
10:樹脂構造体
11:基層
12:基層の表面
13:繊維
14:繊維層
15:略垂直部
16:略平行部
50:製造装置
51:巻出ロール
52:巻出ユニット
53:金型
54:プレスユニット
55:剥離手段
55A:剥離ロール
55B:剥離補助ロール
55H:剥離ロール55Aと金型53との離間距離
56:巻取ロール
57、58:加圧プレート
59、60:バッファ手段
61:巻取ユニット
62:ニップロール
70:製造装置
71:繊維形成面
72:フィルム
73:巻出ロール
74:ラミネート装置
75:加熱ロール
76:金型
77:ニップロール
78:冷却ロール
79:剥離ロール
79H:剥離ロール79と金型76との離間距離
80:搬送ロール
81:ニップロール
82:巻取ロール
10: resin structure 11: base layer 12: surface of base layer 13: fiber 14: fiber layer 15: substantially vertical part 16: substantially parallel part 50: manufacturing device 51: unwinding roll 52: unwinding unit 53: mold 54: Press unit 55: Peeling means 55A: Peeling roll 55B: Peeling auxiliary roll 55H: Separation distance between the peeling roll 55A and the die 53 56: Winding roll 57, 58: Pressure plate 59, 60: Buffer means 61: Winding Unit 62: Nip roll 70: Manufacturing apparatus 71: Fiber forming surface 72: Film 73: Unwinding roll 74: Laminating apparatus 75: Heating roll 76: Mold 77: Nip roll 78: Cooling roll 79: Peeling roll 79H: Peeling roll 79 Separation distance 80 from the mold 76: conveying roll 81: nip roll 82: take-up roll

Claims (6)

  1.  基層と、多数の繊維で構成された繊維層と、を含む樹脂構造体であって、
     前記繊維層が、前記基層に近い側にあり、前記繊維が前記基層の表面に対して略垂直の状態で延在している略垂直部と、前記基層から離れた側にあり、前記繊維が前記基層の表面に対して略平行の状態で延在している略平行部と、で構成されており、
     前記繊維層を構成する前記繊維の全てが、前記基層の表面に結合されて基層の表面から延在している、樹脂構造体。
    A resin structure including a base layer and a fiber layer composed of a large number of fibers,
    The fiber layer is on the side close to the base layer, the fiber is on a side away from the base layer, and a substantially vertical portion where the fiber extends in a substantially vertical state with respect to the surface of the base layer. A substantially parallel portion extending in a substantially parallel state to the surface of the base layer,
    A resin structure in which all of the fibers constituting the fiber layer are bonded to the surface of the base layer and extend from the surface of the base layer.
  2.  基層と、多数の繊維で構成された繊維層と、を含む樹脂構造体であって、
     前記繊維層を構成する繊維が、前記基層の表面と結合して基層の表面から延在しており、前記基層の表面における前記繊維が結合している部分の面積が、前記基層の前記繊維層が形成されている面の表面積の5~40%であって、
     前記樹脂構造体を前記繊維側の表面から見たときに前記繊維が占める面積の割合が、前記基層の表面積の80%以上である、樹脂構造体。
    A resin structure including a base layer and a fiber layer composed of a large number of fibers,
    The fibers constituting the fiber layer are bonded to the surface of the base layer and extend from the surface of the base layer, and the area of the portion where the fibers are bonded on the surface of the base layer is the fiber layer of the base layer 5 to 40% of the surface area of the surface on which is formed,
    The resin structure in which the proportion of the area occupied by the fibers when the resin structure is viewed from the surface on the fiber side is 80% or more of the surface area of the base layer.
  3.  前記樹脂構造体が撥液性を有する、請求項1または2に記載の樹脂構造体。 The resin structure according to claim 1 or 2, wherein the resin structure has liquid repellency.
  4.  樹脂構造体を製造する方法であって、
     表面に微小な孔が複数形成された金型の、その微小な孔が形成された面に、樹脂組成物を配置する工程、
     前記金型と前記樹脂組成物とを加熱しながら押圧して、前記樹脂組成物の一部を前記孔の中に圧入する工程、
     前記樹脂組成物の一部が前記孔の中にある状態で、前記樹脂組成物を冷却する工程、
     前記孔の中にある前記樹脂組成物を引き伸ばしながら、前記樹脂組成物を前記金型から引き剥がし、前記樹脂組成物が引き伸ばされた多数の繊維を形成することで、前記繊維で構成された繊維層と前記繊維を含まない基層とで構成された樹脂構造体を形成する工程、
     を含み、前記各工程をこの順に行うことで、前記繊維層が、前記基層に近い側にあり、前記繊維が前記基層の表面に対して略垂直の状態で延在している略垂直部と、前記基層から離れた側にあり、前記繊維が前記基層の表面に対して略平行の状態で延在している略平行部と、で構成された樹脂構造体を形成する、樹脂構造体の製造方法。
    A method for producing a resin structure,
    A step of disposing a resin composition on the surface of the mold having a plurality of minute holes formed on the surface thereof;
    Pressing the mold and the resin composition while heating, and press-fitting a portion of the resin composition into the hole;
    A step of cooling the resin composition in a state where a part of the resin composition is in the hole;
    While stretching the resin composition in the hole, the resin composition is peeled off from the mold to form a large number of fibers stretched by the resin composition. Forming a resin structure composed of a layer and a base layer not containing the fiber,
    And by performing the steps in this order, the fiber layer is on the side close to the base layer, and the fiber extends in a state substantially perpendicular to the surface of the base layer; and A resin structure that is formed on the side away from the base layer, and that is configured by a substantially parallel portion in which the fibers extend in a substantially parallel state with respect to the surface of the base layer. Production method.
  5.  樹脂構造体を製造する方法であって、
     表面に微小な孔が複数形成された金型の、その微小な孔が形成された面に、樹脂組成物を配置する工程、
     前記金型と前記樹脂組成物とを加熱しながら押圧して、前記樹脂組成物の一部を前記孔の中に圧入する工程、
     前記樹脂組成物の一部が前記孔の中にある状態で、前記樹脂組成物を冷却する工程、
     前記孔の中にある前記樹脂組成物を引き伸ばしながら、前記樹脂組成物を前記金型から引き剥がし、前記樹脂組成物が引き伸ばされた多数の繊維を形成することで、前記繊維で構成された繊維層と前記繊維を含まない基層とで構成された樹脂構造体を形成する工程、
     前記繊維層に対して略垂直な方向から前記樹脂構造体に圧力を加えて、前記繊維層を、前記基層に近い側にあり、前記繊維が前記基層の表面に対して略垂直の状態で延在している略垂直部と、前記基層から離れた側にあり、前記繊維が前記基層の表面に対して略平行の状態で延在している略平行部と、で構成されるようにする工程、
    を含み、前記各工程をこの順に行う、樹脂構造体の製造方法。
    A method for producing a resin structure,
    A step of disposing a resin composition on the surface of the mold having a plurality of minute holes formed on the surface thereof;
    Pressing the mold and the resin composition while heating, and press-fitting a portion of the resin composition into the hole;
    A step of cooling the resin composition in a state where a part of the resin composition is in the hole;
    While stretching the resin composition in the hole, the resin composition is peeled off from the mold to form a large number of fibers stretched by the resin composition. Forming a resin structure composed of a layer and a base layer not containing the fiber,
    Pressure is applied to the resin structure from a direction substantially perpendicular to the fiber layer, the fiber layer is on the side close to the base layer, and the fiber extends in a state substantially perpendicular to the surface of the base layer. A substantially vertical portion that is present, and a substantially parallel portion that is on the side away from the base layer and in which the fibers extend in a substantially parallel state with respect to the surface of the base layer. Process,
    A method for manufacturing a resin structure in which the steps are performed in this order.
  6.  前記金型の微小な孔が、孔径に対する孔の深さが2.5倍以上であり、 前記樹脂組成物を前記金型から引き剥がす際の前記金型の温度を、前記樹脂組成物のガラス転移温度以上にする、
    請求項4または5の樹脂構造体の製造方法。
    The minute hole of the mold has a hole depth of 2.5 times or more with respect to the hole diameter, and the temperature of the mold when the resin composition is peeled off from the mold is set to the glass of the resin composition. Above the transition temperature,
    The manufacturing method of the resin structure of Claim 4 or 5.
PCT/JP2019/004271 2018-02-16 2019-02-06 Resin structure and method for manufacturing resin structure WO2019159792A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980012833.0A CN111712380B (en) 2018-02-16 2019-02-06 Resin structure and method for producing resin structure
KR1020207018845A KR20200123087A (en) 2018-02-16 2019-02-06 Resin structure and manufacturing method of resin structure
JP2019508269A JP7234917B2 (en) 2018-02-16 2019-02-06 RESIN STRUCTURE AND METHOD FOR MANUFACTURING RESIN STRUCTURE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018025650 2018-02-16
JP2018-025650 2018-02-16

Publications (1)

Publication Number Publication Date
WO2019159792A1 true WO2019159792A1 (en) 2019-08-22

Family

ID=67618586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004271 WO2019159792A1 (en) 2018-02-16 2019-02-06 Resin structure and method for manufacturing resin structure

Country Status (5)

Country Link
JP (1) JP7234917B2 (en)
KR (1) KR20200123087A (en)
CN (1) CN111712380B (en)
TW (1) TW201945170A (en)
WO (1) WO2019159792A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053458A1 (en) * 2022-09-09 2024-03-14 ポリプラスチックス株式会社 Method for analyzing orientation state of filler in resin molded article

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052331A (en) * 1983-09-02 1985-03-25 東レ株式会社 Implanted sheet and manufacture thereof
JPH09155972A (en) * 1995-12-12 1997-06-17 Ykk Corp Water repellant film and its manufacture
JP2007062372A (en) * 2005-08-29 2007-03-15 Seoul National Univ Industry Foundation Method of forming high aspect ratio nano structure and method of forming micro pattern
JP2007512211A (en) * 2003-04-28 2007-05-17 ナノシス・インク. Super lyophobic surface, its preparation and use
JP2009501811A (en) * 2005-07-14 2009-01-22 スリーエム イノベイティブ プロパティズ カンパニー Nanostructured article and method of manufacturing the same
JP2009528455A (en) * 2006-03-01 2009-08-06 ライニッシェ フリードリッヒ ヴィルヘルムス ウニヴェルジテート ボン Wet surface
WO2015159825A1 (en) * 2014-04-15 2015-10-22 東レ株式会社 Structure having protrusion formed on surface thereof
WO2018016562A1 (en) * 2016-07-20 2018-01-25 デンカ株式会社 Thermoplastic resin sheet having hairlike body and molded product thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4897192B2 (en) 2002-10-30 2012-03-14 株式会社日立製作所 Functional substrate having columnar microprojections and method for manufacturing the same
JP6444631B2 (en) 2014-06-30 2018-12-26 大和製罐株式会社 Water-sliding / oil-sliding membrane, method for producing the same, and article having a surface covered thereby
JP2016155258A (en) 2015-02-23 2016-09-01 共同印刷株式会社 Non-adhesive material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052331A (en) * 1983-09-02 1985-03-25 東レ株式会社 Implanted sheet and manufacture thereof
JPH09155972A (en) * 1995-12-12 1997-06-17 Ykk Corp Water repellant film and its manufacture
JP2007512211A (en) * 2003-04-28 2007-05-17 ナノシス・インク. Super lyophobic surface, its preparation and use
JP2009501811A (en) * 2005-07-14 2009-01-22 スリーエム イノベイティブ プロパティズ カンパニー Nanostructured article and method of manufacturing the same
JP2007062372A (en) * 2005-08-29 2007-03-15 Seoul National Univ Industry Foundation Method of forming high aspect ratio nano structure and method of forming micro pattern
JP2009528455A (en) * 2006-03-01 2009-08-06 ライニッシェ フリードリッヒ ヴィルヘルムス ウニヴェルジテート ボン Wet surface
WO2015159825A1 (en) * 2014-04-15 2015-10-22 東レ株式会社 Structure having protrusion formed on surface thereof
WO2018016562A1 (en) * 2016-07-20 2018-01-25 デンカ株式会社 Thermoplastic resin sheet having hairlike body and molded product thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053458A1 (en) * 2022-09-09 2024-03-14 ポリプラスチックス株式会社 Method for analyzing orientation state of filler in resin molded article

Also Published As

Publication number Publication date
TW201945170A (en) 2019-12-01
CN111712380B (en) 2022-08-30
JP7234917B2 (en) 2023-03-08
JPWO2019159792A1 (en) 2020-12-10
KR20200123087A (en) 2020-10-28
CN111712380A (en) 2020-09-25

Similar Documents

Publication Publication Date Title
JP6493206B2 (en) Structure having protrusions on the surface
RU2481949C1 (en) Mould and method of its production
JP6380102B2 (en) Method for producing thermoplastic film
TWI604074B (en) Vapor deposition mask, method for manufacturing vapor deposition mask, and metal plate
US9256006B2 (en) Method for printing product features on a substrate sheet
US20220078908A1 (en) Scalable, Printable, Patterned Sheet Of High Mobility Graphene On Flexible Substrates
US8961855B2 (en) High aspect ratio adhesive structure and a method of forming the same
TWI776986B (en) Film, forming transfer foil using the same, film roll, and method for producing the film
US20150291418A1 (en) Method for forming carbon nanotube film
WO2019159792A1 (en) Resin structure and method for manufacturing resin structure
US20150291426A1 (en) Method for forming carbon nanotube film
US10814598B2 (en) Method for transferring two-dimensional nanomaterials
TWI661017B (en) Resin temporarily, resin layer temporarily, rigid substrate with temporary resin layer, film substrate laminate, and film substrate processing process
JP4305656B2 (en) Adsorption fixing sheet and manufacturing method thereof
TWI616686B (en) Light diffusion sheet
JP2020019856A (en) Adhesive sheet
KR102455004B1 (en) Method for manufacturing wrinkled graphene substrate
JP2010214750A (en) Film for fine shape transfer, fine shape transfer film, and method for manufacturing the same
JP2017164906A (en) Laminate having projection and method for producing the same
KR20170083220A (en) Fabrication method of freestanding nanofilm without polymer residue
JP2019084744A (en) Mold, method of producing thermoplastic resin film using the same, and thermoplastic film
US20190080932A1 (en) Lift-off embedded micro and nanostructures
JP2023121448A (en) Stretchable conductive member and method for producing the same
JP2006142508A (en) Fluoropolymer finely processed molded product and its manufacturing method
JP2014210350A (en) Base material having functional powder

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019508269

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19755255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19755255

Country of ref document: EP

Kind code of ref document: A1