WO2019159513A1 - Power storage control device, power storage control method, and computer program - Google Patents

Power storage control device, power storage control method, and computer program Download PDF

Info

Publication number
WO2019159513A1
WO2019159513A1 PCT/JP2018/045342 JP2018045342W WO2019159513A1 WO 2019159513 A1 WO2019159513 A1 WO 2019159513A1 JP 2018045342 W JP2018045342 W JP 2018045342W WO 2019159513 A1 WO2019159513 A1 WO 2019159513A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage battery
storage
distance
control device
Prior art date
Application number
PCT/JP2018/045342
Other languages
French (fr)
Japanese (ja)
Inventor
直 森田
大樹 柳平
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2019159513A1 publication Critical patent/WO2019159513A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a power storage control device, a power storage control method, and a computer program.
  • the device connected to the power lead-in line may be destroyed by the high voltage or high current accompanying the lightning strike.
  • the storage battery is suddenly disconnected from the lead-in line with a breaker or the like after the thundercloud has approached considerably, if the capacity of the storage battery is small, power will be insufficient before the thundercloud moves away, causing a power failure.
  • the lead-in wire is simply disconnected, the insulation between the relay contacts may be damaged by the induced voltage caused by electromagnetic waves when a lightning strikes nearby, causing damage to household equipment. If is used, the apparatus becomes large.
  • a new and improved power storage control device and power storage control method capable of flexibly switching the power source of power supplied to the storage battery according to the approaching state of the thundercloud while avoiding the enlargement of the device And propose a computer program.
  • the distance information acquisition unit that acquires the distance information to the thundercloud, the distance information acquisition unit, and the storage information acquisition unit.
  • a charge source switching unit that switches the charge source to the storage battery.
  • the storage battery is acquired based on the storage amount of the storage battery, the distance information to the thundercloud, the storage amount of the storage battery and the distance information to the thundercloud. And a power storage control method is provided.
  • the computer acquires the storage amount of the storage battery, acquires the distance information to the thundercloud, and the storage battery based on the storage amount of the storage battery and the distance information to the thundercloud.
  • a computer program for switching between charging sources is provided.
  • new and improved power storage control capable of flexibly switching the power source of power supplied to the storage battery according to the approaching situation of thunderclouds while avoiding an increase in the size of the device.
  • Embodiment of the present disclosure > [1.1. History] Before describing the embodiment of the present disclosure in detail, the background to the embodiment of the present disclosure will be described.
  • an uninterruptible power supply that can continue to supply power from a storage battery for a predetermined time without power failure to connected devices even if the power from the input power supply is interrupted by providing the storage battery
  • the existence of the device is known.
  • a power system that expands such a power supply device for each customer and supplies power to the customer when a power supply abnormality such as a power failure occurs.
  • the device connected to the power lead-in line may be destroyed by the high voltage or high current accompanying the lightning strike.
  • the storage battery is suddenly disconnected from the lead-in line with a breaker or the like after the thundercloud has approached considerably, if the capacity of the storage battery is small, power will be insufficient before the thundercloud moves away, causing a power failure.
  • the lead-in wire is simply disconnected, the insulation between the relay contacts may be damaged by the induced voltage caused by electromagnetic waves when a lightning strikes nearby, causing damage to household equipment. If is used, the apparatus becomes large.
  • the present disclosure has intensively studied a technology that can flexibly switch the power source of the power supplied to the storage battery according to the approach situation of thunderclouds while avoiding the enlargement of the device. .
  • the present disclosure devised a technology that can flexibly switch the power source of the power supplied to the storage battery according to the approaching situation of thunderclouds while avoiding the enlargement of the device. It came to.
  • FIG. 1 is an explanatory diagram illustrating a configuration example of a power system according to an embodiment of the present disclosure.
  • FIG. 1 a configuration example of the power system according to the embodiment of the present disclosure will be described using FIG. 1.
  • the power system includes a power storage device 100, an inverter 200, a lightning detection antenna 300, a lightning detector 310, and a solar panel 400. Composed.
  • the power storage device 100 is a device that has a storage battery inside and performs charging of the storage battery, and also supplies power stored in the storage battery to household appliances.
  • the power storage device 100 includes a power storage control device 110, a storage battery 120, a power conditioner (PWC) 130, and relays 140 and 150.
  • PWC power conditioner
  • the power storage control device 110 performs control for storing the power generated by the solar panel 400 or an external power source such as a commercial power source in the storage battery 120.
  • the power storage control device 110 can charge the storage battery 120 using the power from the external power source when the storage amount of the storage battery 120 falls below a certain level.
  • the external power source may be an AC power supply or a DC power supply.
  • the power storage control device 110 is a device that switches the power used for charging the storage battery 120 according to the approach of thunderclouds.
  • the power storage control device 110 acquires information on a storage amount (SoC) from the storage battery 120, distance to the lightning acquired from the lightning detector 310, and energy information, and based on the acquired information, the relay 140, 150 operations are controlled.
  • SoC storage amount
  • the power storage control device 110 can sufficiently store power in the storage battery 120 before lightning strikes a nearby steel tower and a power failure occurs, and a thundercloud approaches.
  • the external power source or the power lead-in line from the solar panel 400 can be disconnected by the relays 140 and 150.
  • the power storage control device 110 disconnects the power supply line from the external power source or the solar panel 400 with the relays 140 and 150 in advance, thereby preventing the current surge caused by the lightning from occurring in the power conditioner 130 or the home. It can be prevented from flowing into the appliances. Therefore, the power storage control device 110 can supply the power stored in the storage battery 120 to the home appliance while the thundercloud passes while protecting the home appliance from a lightning surge failure. Is possible.
  • the storage battery 120 is a secondary battery that can be charged and discharged, and has a capacity that can supply power to a home appliance such as a television or a refrigerator for a predetermined time even when power supply from a commercial power supply is interrupted, for example. .
  • the storage battery 120 has a function of providing information on the storage amount (SoC) to the storage control device 110.
  • the power conditioner 130 has a function of converting the power generated by the solar panel 400 or the power supplied from the external power source 10 into power suitable for power storage in the storage battery 120.
  • the relay 140 is provided between the solar panel 400 and the power conditioner 130, and switches between supplying and shutting off the electric power generated by the solar panel 400 to the storage battery 120.
  • the relay 150 is provided between the external power source 10 and the power conditioner 130, and switches between supply and interruption of the power supplied from the external power source 10 to the storage battery 120.
  • FIG. 2 is an explanatory diagram showing a configuration example of the relay 140.
  • the relay 140 has three terminals of normally closed (NC), normally open (NO), and common (C).
  • the normally closed terminal is connected to the solar panel 400, and the normally open terminal is grounded.
  • the relay 150 also has a configuration equivalent to that of the relay 140.
  • the relays 140 and 150 are grounded on one side, so that even if a lightning strikes in the vicinity and the contact breaks down due to a voltage induced by electromagnetic waves accompanying the lightning strike, the power connected to the relays 140 and 150 It is possible to prevent the conditioner 130 from being destroyed.
  • the inverter 200 is a device that converts electric power suitable for an electric appliance when supplying electric power from the power storage device 100 to the electric appliance in the home. If the electrical appliance operates with alternating current, inverter 200 converts power from direct current to alternating current. In addition, if the electric appliance operates on DC, the inverter adjusts the voltage.
  • the lightning detection antenna 300 is an antenna that detects the occurrence of a lightning strike. When the lightning detection antenna 300 receives a radio wave due to a lightning strike, the lightning detection antenna 300 outputs the radio wave to the lightning detector 310. The lightning detector 310 calculates the distance to the lightning and the energy of the lightning from the radio wave transmitted from the lightning detection antenna 300. The lightning detector 310 provides information on the calculated distance to the lightning and energy of the lightning to the power storage device 100.
  • FIG. 3 is an explanatory diagram illustrating a functional configuration example of the power storage control device 110 according to the embodiment of the present disclosure.
  • the power storage control device 110 includes a distance information acquisition unit 111, a power storage information acquisition unit 112, and a charging source switching unit 113.
  • the distance information acquisition unit 111 acquires information about the distance to the lightning and the energy of the lightning from the lightning detector 310 when a lightning occurs.
  • the storage information acquisition unit 112 acquires information on the storage amount (SoC) of the storage battery 120 from the storage battery 120.
  • the charging source switching unit 113 controls the operation of the relays 140 and 150 based on the information acquired by the distance information acquisition unit 111 and the power storage information acquisition unit 112.
  • the charging source switching unit 113 switches the power supplied to the storage battery 120 by controlling the operations of the relays 140 and 150.
  • An example of controlling the operation of the relays 140 and 150 by the charging source switching unit 113 will be described in detail later.
  • FIG. 4 is a flowchart illustrating an operation example of the power storage device 100 according to the embodiment of the present disclosure.
  • an operation example of the power storage device 100 according to the embodiment of the present disclosure will be described with reference to FIG.
  • the power storage control device 110 obtains the distance to the lightning and the energy information by the lightning from the lightning detector 310 (step S101).
  • the distance information acquisition unit 111 acquires the distance to lightning and the energy information by the lightning.
  • the power storage control device 110 acquires information on the storage amount (SoC) of the storage battery 120 (step S102).
  • the information on the amount of power stored in the storage battery 120 is acquired by, for example, the power storage information acquisition unit 112.
  • the electrical storage control apparatus 110 switches the electric power used for charge to the storage battery 120 based on the information acquired by said step S101, S102 (step S103). Switching of the electric power used for charging the storage battery 120 is executed by, for example, the charging source switching unit 113.
  • FIG. 5 is an explanatory diagram for explaining a switching operation of power used for charging the storage battery 120 by the power storage control device 110.
  • the power storage control device 110 Since the distance from the lightning detection antenna 300 to the thundercloud is sufficiently far before the time t1, the power storage control device 110 turns on both the relays 140 and 150 (connected to the NC). At this time, the power storage control device 110 is charging the storage battery 120 in a mode (PV priority charging mode) in which the power generated by the solar panel 400 is preferentially used for charging the storage battery 120.
  • a mode PV priority charging mode
  • the power storage control device 110 uses the power generated by the external power source 10
  • the mode is switched to a mode (external power priority charging mode) used for charging the storage battery 120 with priority.
  • This external power priority charging mode is a mode that aims at positively charging the storage battery 120 using the power from the external power source 10 until the SoC of the storage battery 120 is close to 100%.
  • the power storage control device 110 150 is turned off (connected to NO). Thereby, power storage device 100 is disconnected from external power source 10.
  • the power storage control device 110 140 is also turned off (connected to NO). Thereby, power storage device 100 is disconnected not only from external power source 10 but also from solar panel 400. Therefore, at time t3, the household appliances operate only with the electric power from the storage battery 120.
  • the power storage control device 110 turns on the relay 140. Put it in a state. Further, at time t5, when it is detected that the distance from the lightning detection antenna 300 to the thundercloud is longer than the second distance D2, the power storage control device 110 turns on the relay 150.
  • the power storage control device 110 When it is detected at time t6 that the distance from the lightning detection antenna 300 to the thundercloud is longer than the first distance D1, the power storage control device 110 changes from the external power priority charging mode to the PV priority charging mode. Switch to.
  • the power storage control device 110 may switch from the external power priority charging mode to the PV priority charging mode at this time.
  • the power storage device 100 performs such an operation, so that the storage battery 120 can be safely disconnected from the power lead-in line or connected to the power lead-in line according to the proximity of thunderclouds. I can do it.
  • the configuration for disconnecting the storage battery 120 from the power line is the relays 140 and 150, and there is no need to use a large relay. Therefore, the power storage device 100 according to the embodiment of the present disclosure can safely disconnect the storage battery 120 from the power lead-in line or connect to the power lead-in line according to the proximity of thunderclouds while avoiding an increase in the size of the device. Can be.
  • FIG. 6 is an explanatory diagram illustrating a configuration example of the power system according to the embodiment of the present disclosure.
  • the power system shown in FIG. 6 is a system that assumes the case where the power stored in the storage battery 120 is used not only by household appliances but also sold to other households.
  • a circuit breaker 210 is provided in the home as compared with the configuration shown in FIG. 1.
  • connection state of the relays 140 and 150 is switched according to the proximity situation of the thundercloud, and the storage battery 120 is safely disconnected from the power lead-in line when the thundercloud approaches. I can do it.
  • the storage battery 120 can be safely disconnected from the power lead-in line or connected to the power lead-in line according to the proximity of thunderclouds while avoiding an increase in the size of the device.
  • a power storage device 100 that can be used is provided.
  • each step in the processing executed by each device in this specification does not necessarily have to be processed in chronological order in the order described as a sequence diagram or flowchart.
  • each step in the processing executed by each device may be processed in an order different from the order described as the flowchart, or may be processed in parallel.
  • a storage information acquisition unit for acquiring a storage amount of the storage battery;
  • a distance information acquisition unit for acquiring distance information to thunderclouds;
  • a charging source switching unit that switches a charging source to the storage battery,
  • a power storage control device comprising: (2) The power storage control device according to (1), wherein the charging source switching unit controls an operation of a relay that electrically disconnects a first power lead-in line that supplies power from an external power source to the storage battery.
  • the charging source switching unit electrically disconnects the first power lead-in line by controlling an operation of a relay when the distance information becomes shorter than the first distance. Control device.
  • the charging source switching unit uses the power generated by natural energy to the storage battery if the storage amount of the storage battery is below a predetermined threshold.
  • the storage control device according to (3) wherein the mode for storing power is switched to a mode for storing power in the storage battery using power from an external power source.
  • the charging source switching unit electrically reconnects the first power lead-in wire that has been electrically disconnected by controlling the operation of the relay.
  • the charging source switching unit controls an operation of a relay that electrically disconnects a second power lead-in line for drawing power generated by natural energy into the storage battery. Any one of (2) to (5) The power storage control device described.
  • the charging source switching unit electrically disconnects the first power lead-in line by controlling the operation of the relay, and the distance information is the first distance.
  • the power storage control device according to (6) wherein when the distance is shorter than the shorter second distance, the second power lead-in line is electrically disconnected by controlling the operation of the relay.
  • the charging source switching unit electrically reconnects the second power lead-in wire that has been electrically disconnected by controlling the operation of the relay.
  • the power storage control device according to (7).
  • the charging source switching unit uses the power from an external power source to the storage battery if the storage amount of the storage battery exceeds a predetermined threshold.
  • the power storage control device according to (8), wherein the power storage mode is switched to a mode for storing power in the storage battery using power generated by natural energy.
  • the power storage control device according to any one of (6) to (9), wherein the relay is grounded when the first power lead-in line or the second power lead-in line is electrically disconnected.
  • a power storage control method including: (12) On the computer, Obtaining the amount of electricity stored in the storage battery; Getting distance information to thunderclouds, Based on the storage amount of the storage battery and the distance information to the thundercloud, switching the charging source to the storage battery;
  • a computer program that executes
  • External power source 100 Power storage device 110: Power storage control device 120: Storage battery 130: Power conditioner 140: Relay 150: Relay 200: Inverter 210: Circuit breaker 300: Lightning detection antenna 310: Lightning detector 400: Solar panel

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

[Problem] The present invention provides a power storage control device which, while avoiding an increase in device size, can flexibly switch a power source of power supplied to a battery according to the approach of a thundercloud. [Solution] The present invention provides a power storage control device provided with: a power storage information acquisition unit which acquires an amount of power stored in a battery; a distance information acquisition unit which acquires distance information on the distance to a thundercloud; and a charging source switching unit which switches a charging source for the battery, on the basis of the information acquired by the distance information acquisition unit and the power storage information acquisition unit.

Description

蓄電制御装置、蓄電制御方法およびコンピュータプログラムPower storage control device, power storage control method, and computer program
 本開示は、蓄電制御装置、蓄電制御方法およびコンピュータプログラムに関する。 The present disclosure relates to a power storage control device, a power storage control method, and a computer program.
 蓄電池を備えることで、入力電源からの電力が途絶えても、接続されている機器に対して、停電することなく所定の時間電力を蓄電池から供給し続けることができる無停電電源装置の存在が知られている。このような電源装置を需要家単位に拡大して、停電等の電力供給の異常発生時に電力を需要家に供給する電力システムが提案されている(特許文献1、2等参照)。 By providing a storage battery, there is an uninterruptible power supply that can continue to supply power from a storage battery to a connected device for a predetermined time without power failure even if the power from the input power supply is interrupted. It has been. There has been proposed a power system that expands such a power supply device for each customer and supplies power to the customer when a power supply abnormality such as a power failure occurs (see Patent Documents 1 and 2).
特開2011-205871号公報JP 2011-208771 A 特開2013-90560号公報JP 2013-90560 A
 しかし、このような電力システムは、電力連携線に落雷があると、その電力引き込み線に接続された装置が、落雷に伴う高電圧や高電流により破壊されるおそれがある。また、雷雲がかなり近付いてから突然ブレーカーなどで蓄電池を引込み線から切り離すと、蓄電池の容量が少ない場合は、雷雲が遠ざかる前に電力不足となり、停電してしまう。また、単に引き込み線を切り離しただけでは、近傍に落雷した場合の電磁波による誘起電圧でリレー接点間の絶縁を破壊し、家庭内機器に被害を及ぼしてしまうこともあり、接点開閉距離が大きいリレーを用いると、装置が大型化してしまう。 However, in such a power system, if there is a lightning strike on the power connection line, the device connected to the power lead-in line may be destroyed by the high voltage or high current accompanying the lightning strike. Also, if the storage battery is suddenly disconnected from the lead-in line with a breaker or the like after the thundercloud has approached considerably, if the capacity of the storage battery is small, power will be insufficient before the thundercloud moves away, causing a power failure. In addition, if the lead-in wire is simply disconnected, the insulation between the relay contacts may be damaged by the induced voltage caused by electromagnetic waves when a lightning strikes nearby, causing damage to household equipment. If is used, the apparatus becomes large.
 そこで、本開示では、装置の大型化を避けつつ、雷雲の接近状況に応じて蓄電池へ供給する電力の電力源を柔軟に切り替えることが可能な、新規かつ改良された蓄電制御装置、蓄電制御方法およびコンピュータプログラムを提案する。 Therefore, in the present disclosure, a new and improved power storage control device and power storage control method capable of flexibly switching the power source of power supplied to the storage battery according to the approaching state of the thundercloud while avoiding the enlargement of the device And propose a computer program.
 本開示によれば、蓄電池の蓄電量を取得する蓄電情報取得部と、雷雲までの距離情報を取得する距離情報取得部と、前記距離情報取得部及び前記蓄電情報取得部が取得した情報に基づいて、前記蓄電池への充電元を切り替える充電元切替部と、を備える、蓄電制御装置が提供される。 According to the present disclosure, based on the information acquired by the storage information acquisition unit that acquires the storage amount of the storage battery, the distance information acquisition unit that acquires the distance information to the thundercloud, the distance information acquisition unit, and the storage information acquisition unit. And a charge source switching unit that switches the charge source to the storage battery.
 また本開示によれば、蓄電池の蓄電量を取得することと、雷雲までの距離情報を取得することと、前記蓄電池の蓄電量及び前記雷雲までの距離情報に基づいて、前記蓄電池への充電元を切り替えることと、を含む、蓄電制御方法が提供される。 According to the present disclosure, the storage battery is acquired based on the storage amount of the storage battery, the distance information to the thundercloud, the storage amount of the storage battery and the distance information to the thundercloud. And a power storage control method is provided.
 また本開示によれば、コンピュータに、蓄電池の蓄電量を取得することと、雷雲までの距離情報を取得することと、前記蓄電池の蓄電量及び前記雷雲までの距離情報に基づいて、前記蓄電池への充電元を切り替えることと、を実行させる、コンピュータプログラムが提供される。 According to the present disclosure, the computer acquires the storage amount of the storage battery, acquires the distance information to the thundercloud, and the storage battery based on the storage amount of the storage battery and the distance information to the thundercloud. A computer program for switching between charging sources is provided.
 以上説明したように本開示によれば、装置の大型化を避けつつ、雷雲の接近状況に応じて蓄電池へ供給する電力の電力源を柔軟に切り替えることが可能な、新規かつ改良された蓄電制御装置、蓄電制御方法およびコンピュータプログラムが提供される。 As described above, according to the present disclosure, new and improved power storage control capable of flexibly switching the power source of power supplied to the storage battery according to the approaching situation of thunderclouds while avoiding an increase in the size of the device. An apparatus, a power storage control method, and a computer program are provided.
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。 Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
本開示の実施の形態に係る電力システムの構成例を示す説明図である。It is explanatory drawing which shows the structural example of the electric power system which concerns on embodiment of this indication. リレーの構成例を示す説明図である。It is explanatory drawing which shows the structural example of a relay. 同実施の形態に係る蓄電制御装置の機能構成例を示す説明図である。It is explanatory drawing which shows the function structural example of the electrical storage control apparatus which concerns on the same embodiment. 同実施の形態に係る蓄電装置の動作例を示す流れ図である。4 is a flowchart showing an operation example of the power storage device according to the embodiment. 同実施の形態に係る蓄電制御装置の動作を説明する説明図である。It is explanatory drawing explaining operation | movement of the electrical storage control apparatus which concerns on the same embodiment. 本開示の実施の形態に係る電力システムの構成例を示す説明図である。It is explanatory drawing which shows the structural example of the electric power system which concerns on embodiment of this indication.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, the duplicate description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 なお、説明は以下の順序で行うものとする。
 1.本開示の実施の形態
  1.1.経緯
  1.2.構成例
  1.3.動作例
  1.4.変形例
 2.まとめ
The description will be made in the following order.
1. Embodiment of the present disclosure 1.1. Background 1.2. Configuration example 1.3. Example of operation 1.4. Modification 2 Summary
 <1.本開示の実施の形態>
 [1.1.経緯]
 本開示の実施の形態について詳細に説明する前に、本開示の実施の形態に至った経緯を説明する。
<1. Embodiment of the present disclosure>
[1.1. History]
Before describing the embodiment of the present disclosure in detail, the background to the embodiment of the present disclosure will be described.
 上述したように、蓄電池を備えることで、入力電源からの電力が途絶えても、接続されている機器に対して、停電することなく所定の時間電力を蓄電池から供給し続けることができる無停電電源装置の存在が知られている。このような電源装置を需要家単位に拡大して、停電等の電力供給の異常発生時に電力を需要家に供給する電力システムが提案されている。 As described above, an uninterruptible power supply that can continue to supply power from a storage battery for a predetermined time without power failure to connected devices even if the power from the input power supply is interrupted by providing the storage battery The existence of the device is known. There has been proposed a power system that expands such a power supply device for each customer and supplies power to the customer when a power supply abnormality such as a power failure occurs.
 しかし、このような電力システムは、電力連携線に落雷があると、その電力引き込み線に接続された装置が、落雷に伴う高電圧や高電流により破壊されるおそれがある。また、雷雲がかなり近付いてから突然ブレーカーなどで蓄電池を引込み線から切り離すと、蓄電池の容量が少ない場合は、雷雲が遠ざかる前に電力不足となり、停電してしまう。また、単に引き込み線を切り離しただけでは、近傍に落雷した場合の電磁波による誘起電圧でリレー接点間の絶縁を破壊し、家庭内機器に被害を及ぼしてしまうこともあり、接点開閉距離が大きいリレーを用いると、装置が大型化してしまう。 However, in such a power system, if there is a lightning strike on the power connection line, the device connected to the power lead-in line may be destroyed by the high voltage or high current accompanying the lightning strike. Also, if the storage battery is suddenly disconnected from the lead-in line with a breaker or the like after the thundercloud has approached considerably, if the capacity of the storage battery is small, power will be insufficient before the thundercloud moves away, causing a power failure. In addition, if the lead-in wire is simply disconnected, the insulation between the relay contacts may be damaged by the induced voltage caused by electromagnetic waves when a lightning strikes nearby, causing damage to household equipment. If is used, the apparatus becomes large.
 そこで本件開示者は、上述した点に鑑み、装置の大型化を避けつつ、雷雲の接近状況に応じて蓄電池へ供給する電力の電力源を柔軟に切り替えることが可能な技術について鋭意検討を行った。その結果、本件開示者は、以下で説明するように、装置の大型化を避けつつ、雷雲の接近状況に応じて蓄電池へ供給する電力の電力源を柔軟に切り替えることが可能な技術を考案するに至った。 Therefore, in view of the above-described points, the present disclosure has intensively studied a technology that can flexibly switch the power source of the power supplied to the storage battery according to the approach situation of thunderclouds while avoiding the enlargement of the device. . As a result, as will be described below, the present disclosure devised a technology that can flexibly switch the power source of the power supplied to the storage battery according to the approaching situation of thunderclouds while avoiding the enlargement of the device. It came to.
 [1.2.構成例]
 続いて、本開示の実施の形態に係る電力システムの構成例を説明する。図1は、本開示の実施の形態に係る電力システムの構成例を示す説明図である。以下、図1を用いて本開示の実施の形態に係る電力システムの構成例について説明する。
[1.2. Configuration example]
Subsequently, a configuration example of the power system according to the embodiment of the present disclosure will be described. FIG. 1 is an explanatory diagram illustrating a configuration example of a power system according to an embodiment of the present disclosure. Hereinafter, a configuration example of the power system according to the embodiment of the present disclosure will be described using FIG. 1.
 図1に示したように、本開示の実施の形態に係る電力システムは、蓄電装置100と、インバータ200と、雷検出アンテナ300と、雷検出器310と、太陽光パネル400と、を含んで構成される。 As shown in FIG. 1, the power system according to the embodiment of the present disclosure includes a power storage device 100, an inverter 200, a lightning detection antenna 300, a lightning detector 310, and a solar panel 400. Composed.
 蓄電装置100は、内部に蓄電池を有し、蓄電池への充電を実行するとともに、蓄電池に蓄えた電力を家庭内の電化製品に供給することを目的とした装置である。蓄電装置100は、蓄電制御装置110と、蓄電池120と、パワーコンディショナ(PWC)130と、リレー140、150と、を含んで構成される。 The power storage device 100 is a device that has a storage battery inside and performs charging of the storage battery, and also supplies power stored in the storage battery to household appliances. The power storage device 100 includes a power storage control device 110, a storage battery 120, a power conditioner (PWC) 130, and relays 140 and 150.
 蓄電制御装置110は、太陽光パネル400や、商用電源等の外部電力源で発電された電力を蓄電池120へ蓄電するための制御を行う。蓄電制御装置110は、蓄電池120の蓄電量が一定以下になると、外部電力源からの電力も用いて蓄電池120へ充電することができる。なお、外部電力源は交流電源であっても良く、直流電源であっても良い。 The power storage control device 110 performs control for storing the power generated by the solar panel 400 or an external power source such as a commercial power source in the storage battery 120. The power storage control device 110 can charge the storage battery 120 using the power from the external power source when the storage amount of the storage battery 120 falls below a certain level. The external power source may be an AC power supply or a DC power supply.
 また蓄電制御装置110は、雷雲の接近に応じて蓄電池120への充電に用いる電力を切り替える装置である。蓄電制御装置110は、蓄電池120から蓄電量(SoC;State of Charge)の情報や、雷検出器310から取得した雷までの距離及びエネルギー情報を取得し、その取得した情報に基づき、リレー140、150の動作を制御する。 Further, the power storage control device 110 is a device that switches the power used for charging the storage battery 120 according to the approach of thunderclouds. The power storage control device 110 acquires information on a storage amount (SoC) from the storage battery 120, distance to the lightning acquired from the lightning detector 310, and energy information, and based on the acquired information, the relay 140, 150 operations are controlled.
 蓄電制御装置110は、雷検出器310から取得した情報を用いることで、雷が近隣の鉄塔などに直撃して停電が発生する前に、蓄電池120に十分蓄電することができ、雷雲が近づいたときは外部電力源や太陽光パネル400からの電力引き込み線をリレー140、150で切り離すことができる。 By using the information acquired from the lightning detector 310, the power storage control device 110 can sufficiently store power in the storage battery 120 before lightning strikes a nearby steel tower and a power failure occurs, and a thundercloud approaches. Sometimes, the external power source or the power lead-in line from the solar panel 400 can be disconnected by the relays 140 and 150.
 蓄電制御装置110は、雷が近付いている際にはあらかじめ外部電力源や太陽光パネル400からの電力引き込み線をリレー140、150で切り離すことで、雷による電流サージをパワーコンディショナ130や家庭内の電化製品に流さないようにすることができる。従って、蓄電制御装置110は、電化製品を雷サージによる故障から守りながら、雷雲の通過中は蓄電池120に蓄電された電力を家庭内の電化製品に供給することができ、家庭における平常通りの生活を可能としている。 When lightning is approaching, the power storage control device 110 disconnects the power supply line from the external power source or the solar panel 400 with the relays 140 and 150 in advance, thereby preventing the current surge caused by the lightning from occurring in the power conditioner 130 or the home. It can be prevented from flowing into the appliances. Therefore, the power storage control device 110 can supply the power stored in the storage battery 120 to the home appliance while the thundercloud passes while protecting the home appliance from a lightning surge failure. Is possible.
 蓄電池120は、充放電が可能な二次電池であり、例えば商用電源からの電力供給が途絶しても、テレビや冷蔵庫などの家庭内の電化製品へ所定の時間電力を供給できるだけの容量を有する。蓄電池120は、蓄電量(SoC)の情報を蓄電制御装置110へ提供することが出来る機能を有する。 The storage battery 120 is a secondary battery that can be charged and discharged, and has a capacity that can supply power to a home appliance such as a television or a refrigerator for a predetermined time even when power supply from a commercial power supply is interrupted, for example. . The storage battery 120 has a function of providing information on the storage amount (SoC) to the storage control device 110.
 パワーコンディショナ130は、太陽光パネル400により発電された電力、または外部電力源10から供給される電力を、蓄電池120への蓄電に適した電力に変換する機能を有する。 The power conditioner 130 has a function of converting the power generated by the solar panel 400 or the power supplied from the external power source 10 into power suitable for power storage in the storage battery 120.
 リレー140は、太陽光パネル400とパワーコンディショナ130との間に設けられ、太陽光パネル400で発電される電力の蓄電池120への供給と遮断とを切り替える。リレー150は、外部電力源10とパワーコンディショナ130との間に設けられ、外部電力源10から供給される電力の蓄電池120への供給と遮断とを切り替える。 The relay 140 is provided between the solar panel 400 and the power conditioner 130, and switches between supplying and shutting off the electric power generated by the solar panel 400 to the storage battery 120. The relay 150 is provided between the external power source 10 and the power conditioner 130, and switches between supply and interruption of the power supplied from the external power source 10 to the storage battery 120.
 図2は、リレー140の構成例を示す説明図である。リレー140は、図2に示したように、ノーマリークローズ(NC)、ノーマリーオープン(NO)、コモン(C)の3端子を有する。ノーマリークローズの端子は太陽光パネル400と接続されており、ノーマリーオープンの端子は接地されている。リレー150についても、リレー140と同等の構成を有する。 FIG. 2 is an explanatory diagram showing a configuration example of the relay 140. As shown in FIG. 2, the relay 140 has three terminals of normally closed (NC), normally open (NO), and common (C). The normally closed terminal is connected to the solar panel 400, and the normally open terminal is grounded. The relay 150 also has a configuration equivalent to that of the relay 140.
 このように、リレー140、150は片側が接地されていることで、仮に近傍に落雷し、落雷に伴う電磁波で誘起する電圧により接点が絶縁破壊した場合でも、リレー140、150に接続されたパワーコンディショナ130の破壊を防ぐことができる。 As described above, the relays 140 and 150 are grounded on one side, so that even if a lightning strikes in the vicinity and the contact breaks down due to a voltage induced by electromagnetic waves accompanying the lightning strike, the power connected to the relays 140 and 150 It is possible to prevent the conditioner 130 from being destroyed.
 インバータ200は、蓄電装置100から家庭内の電化製品へ電力を供給する際に、電化製品に適した電力に変換する装置である。電化製品が交流で動作するものであれば、インバータ200は、電力を直流から交流に変換する。また電化製品が直流で動作するものであれば、インバータは電圧の調整を行う。 The inverter 200 is a device that converts electric power suitable for an electric appliance when supplying electric power from the power storage device 100 to the electric appliance in the home. If the electrical appliance operates with alternating current, inverter 200 converts power from direct current to alternating current. In addition, if the electric appliance operates on DC, the inverter adjusts the voltage.
 雷検出アンテナ300は、落雷の発生を検出するアンテナである。雷検出アンテナ300は、落雷の発生により電波を受信すると、その電波を雷検出器310に出力する。雷検出器310は、雷検出アンテナ300から送られる電波から、雷までの距離と、雷によるエネルギーと、を算出する。雷検出器310は、算出した雷までの距離及び雷によるエネルギーの情報を蓄電装置100へ提供する。 The lightning detection antenna 300 is an antenna that detects the occurrence of a lightning strike. When the lightning detection antenna 300 receives a radio wave due to a lightning strike, the lightning detection antenna 300 outputs the radio wave to the lightning detector 310. The lightning detector 310 calculates the distance to the lightning and the energy of the lightning from the radio wave transmitted from the lightning detection antenna 300. The lightning detector 310 provides information on the calculated distance to the lightning and energy of the lightning to the power storage device 100.
 続いて蓄電装置100に含まれる蓄電制御装置110の機能構成例について説明する。図3は、本開示の実施の形態に係る蓄電制御装置110の機能構成例を示す説明図である。 Subsequently, a functional configuration example of the power storage control device 110 included in the power storage device 100 will be described. FIG. 3 is an explanatory diagram illustrating a functional configuration example of the power storage control device 110 according to the embodiment of the present disclosure.
 図3に示したように、本開示の実施の形態に係る蓄電制御装置110は、距離情報取得部111と、蓄電情報取得部112と、充電元切替部113と、を含んで構成される。 As shown in FIG. 3, the power storage control device 110 according to the embodiment of the present disclosure includes a distance information acquisition unit 111, a power storage information acquisition unit 112, and a charging source switching unit 113.
 距離情報取得部111は、雷発生時に、雷までの距離及び雷によるエネルギーの情報を雷検出器310から取得する。蓄電情報取得部112は、蓄電池120の蓄電量(SoC)の情報を蓄電池120から取得する。 The distance information acquisition unit 111 acquires information about the distance to the lightning and the energy of the lightning from the lightning detector 310 when a lightning occurs. The storage information acquisition unit 112 acquires information on the storage amount (SoC) of the storage battery 120 from the storage battery 120.
 充電元切替部113は、距離情報取得部111及び蓄電情報取得部112が取得した情報に基づいて、リレー140、150の動作を制御する。充電元切替部113は、リレー140、150の動作を制御することで、蓄電池120へ供給する電力を切り替える。充電元切替部113によるリレー140、150の動作の制御例については後に詳述する。 The charging source switching unit 113 controls the operation of the relays 140 and 150 based on the information acquired by the distance information acquisition unit 111 and the power storage information acquisition unit 112. The charging source switching unit 113 switches the power supplied to the storage battery 120 by controlling the operations of the relays 140 and 150. An example of controlling the operation of the relays 140 and 150 by the charging source switching unit 113 will be described in detail later.
 以上、図3を用いて本開示の実施の形態に係る電力システムの構成例について説明した。続いて、本開示の実施の形態に係る蓄電装置100の動作例について説明する。 The configuration example of the power system according to the embodiment of the present disclosure has been described above with reference to FIG. Subsequently, an operation example of the power storage device 100 according to the embodiment of the present disclosure will be described.
 [1.3.動作例]
 図4は、本開示の実施の形態に係る蓄電装置100の動作例を示す流れ図である。以下、図4を用いて本開示の実施の形態に係る蓄電装置100の動作例について説明する。
[1.3. Example of operation]
FIG. 4 is a flowchart illustrating an operation example of the power storage device 100 according to the embodiment of the present disclosure. Hereinafter, an operation example of the power storage device 100 according to the embodiment of the present disclosure will be described with reference to FIG.
 雷が発生したことが雷検出アンテナ300により検出されると、蓄電制御装置110が、雷検出器310から、雷までの距離および雷によるエネルギー情報を取得する(ステップS101)。雷までの距離および雷によるエネルギー情報は、例えば距離情報取得部111が取得する。また蓄電制御装置110は、蓄電池120の蓄電量(SoC)の情報を取得する(ステップS102)。蓄電池120の蓄電量の情報は、例えば蓄電情報取得部112が取得する。 When the occurrence of lightning is detected by the lightning detection antenna 300, the power storage control device 110 obtains the distance to the lightning and the energy information by the lightning from the lightning detector 310 (step S101). For example, the distance information acquisition unit 111 acquires the distance to lightning and the energy information by the lightning. In addition, the power storage control device 110 acquires information on the storage amount (SoC) of the storage battery 120 (step S102). The information on the amount of power stored in the storage battery 120 is acquired by, for example, the power storage information acquisition unit 112.
 そして蓄電制御装置110は、上記ステップS101、S102で取得した情報に基づいて、蓄電池120への充電に用いる電力を切り替える(ステップS103)。蓄電池120への充電に用いる電力の切り替えは、例えば充電元切替部113が実行する。 And the electrical storage control apparatus 110 switches the electric power used for charge to the storage battery 120 based on the information acquired by said step S101, S102 (step S103). Switching of the electric power used for charging the storage battery 120 is executed by, for example, the charging source switching unit 113.
 具体例を挙げて蓄電制御装置110による蓄電池120への充電に用いる電力の切り替え動作を説明する。図5は、蓄電制御装置110による蓄電池120への充電に用いる電力の切り替え動作を説明する説明図である。 A switching operation of power used for charging the storage battery 120 by the power storage control device 110 will be described with a specific example. FIG. 5 is an explanatory diagram for explaining a switching operation of power used for charging the storage battery 120 by the power storage control device 110.
 時刻t1より前の時点では、雷検出アンテナ300から雷雲までの距離が充分離れているため、蓄電制御装置110は、リレー140、150のいずれもオン(NCに接続されている)状態にする。この時点では、蓄電制御装置110は、太陽光パネル400で発電された電力を優先的に蓄電池120への充電に用いるモード(PV優先充電モード)で蓄電池120への充電を行っている。 Since the distance from the lightning detection antenna 300 to the thundercloud is sufficiently far before the time t1, the power storage control device 110 turns on both the relays 140 and 150 (connected to the NC). At this time, the power storage control device 110 is charging the storage battery 120 in a mode (PV priority charging mode) in which the power generated by the solar panel 400 is preferentially used for charging the storage battery 120.
 時刻t1の時点で、雷検出アンテナ300から雷雲までの距離が所定の第1の距離D1以下になったことが検出されると、蓄電制御装置110は、外部電力源10で発電された電力を優先的に蓄電池120への充電に用いるモード(外部電力優先充電モード)に切り替える。この外部電力優先充電モードは、蓄電池120のSoCが100%に近い状態になるまで、外部電力源10からの電力を用いて積極的に蓄電池120へ充電することを目的としたらモードである。 When it is detected that the distance from the lightning detection antenna 300 to the thundercloud is equal to or less than the predetermined first distance D1 at time t1, the power storage control device 110 uses the power generated by the external power source 10 The mode is switched to a mode (external power priority charging mode) used for charging the storage battery 120 with priority. This external power priority charging mode is a mode that aims at positively charging the storage battery 120 using the power from the external power source 10 until the SoC of the storage battery 120 is close to 100%.
 さらに、時刻t2の時点で、雷検出アンテナ300から雷雲までの距離が所定の第1の距離D1より短い第2の距離D2以下になったことが検出されると、蓄電制御装置110は、リレー150をオフ(NOに接続されている)状態にする。これにより、蓄電装置100は外部電力源10から切り離される。 Furthermore, at time t2, when it is detected that the distance from the lightning detection antenna 300 to the thundercloud is equal to or less than the second distance D2 shorter than the predetermined first distance D1, the power storage control device 110 150 is turned off (connected to NO). Thereby, power storage device 100 is disconnected from external power source 10.
 さらに、時刻t3の時点で、雷検出アンテナ300から雷雲までの距離が所定の第2の距離D2より短い第3の距離D3以下になったことが検出されると、蓄電制御装置110は、リレー140もオフ(NOに接続されている)状態にする。これにより、蓄電装置100は外部電力源10だけでなく太陽光パネル400からも切り離される。従って、時刻t3の時点になると、家庭内の電化製品は蓄電池120からの電力のみによって動作する。 Further, at time t3, when it is detected that the distance from the lightning detection antenna 300 to the thundercloud is equal to or less than the third distance D3 shorter than the predetermined second distance D2, the power storage control device 110 140 is also turned off (connected to NO). Thereby, power storage device 100 is disconnected not only from external power source 10 but also from solar panel 400. Therefore, at time t3, the household appliances operate only with the electric power from the storage battery 120.
 その後、雷雲が遠ざかっていき、時刻t4の時点で、雷検出アンテナ300から雷雲までの距離が第3の距離D3より長くなったことが検出されると、蓄電制御装置110は、リレー140をオン状態にする。また時刻t5の時点で、雷検出アンテナ300から雷雲までの距離が第2の距離D2より長くなったことが検出されると、蓄電制御装置110は、リレー150をオン状態にする。 After that, when the thundercloud moves away and at time t4, it is detected that the distance from the thunder detection antenna 300 to the thundercloud is longer than the third distance D3, the power storage control device 110 turns on the relay 140. Put it in a state. Further, at time t5, when it is detected that the distance from the lightning detection antenna 300 to the thundercloud is longer than the second distance D2, the power storage control device 110 turns on the relay 150.
 そして、時刻t6の時点で、雷検出アンテナ300から雷雲までの距離が第1の距離D1より長くなったことが検出されると、蓄電制御装置110は、外部電力優先充電モードからPV優先充電モードに切り替える。 When it is detected at time t6 that the distance from the lightning detection antenna 300 to the thundercloud is longer than the first distance D1, the power storage control device 110 changes from the external power priority charging mode to the PV priority charging mode. Switch to.
 なお、時刻t5の時点で、蓄電池120のSoCが所定値以上であれば、蓄電制御装置110は、この時点で外部電力優先充電モードからPV優先充電モードに切り替えてもよい。 If the SoC of the storage battery 120 is greater than or equal to a predetermined value at the time t5, the power storage control device 110 may switch from the external power priority charging mode to the PV priority charging mode at this time.
 本開示の実施の形態に係る蓄電装置100は、このような動作を実行することで、雷雲の近接状況に応じて蓄電池120を安全に電力引き込み線から切り離したり、電力引き込み線に接続したりすることが出来る。蓄電池120を電力線から切り離すための構成はリレー140、150であり、大型のリレーを用いる必要が無い。従って、本開示の実施の形態に係る蓄電装置100は、装置の大型化を回避しながらも、雷雲の近接状況に応じて蓄電池120を安全に電力引き込み線から切り離したり、電力引き込み線に接続したりすることが出来る。 The power storage device 100 according to the embodiment of the present disclosure performs such an operation, so that the storage battery 120 can be safely disconnected from the power lead-in line or connected to the power lead-in line according to the proximity of thunderclouds. I can do it. The configuration for disconnecting the storage battery 120 from the power line is the relays 140 and 150, and there is no need to use a large relay. Therefore, the power storage device 100 according to the embodiment of the present disclosure can safely disconnect the storage battery 120 from the power lead-in line or connect to the power lead-in line according to the proximity of thunderclouds while avoiding an increase in the size of the device. Can be.
 [1.4.変形例]
 続いて、変形例として、蓄電池に蓄えた電力を売電する場合に上述の技術を適用した例を示す。図6は、本開示の実施の形態に係る電力システムの構成例を示す説明図である。図6に示した電力システムは、蓄電池120に蓄えた電力を家庭内の電化製品で使用するだけでなく、他の家庭などへ売電する場合を想定したシステムである。図6に示した構成は、図1に示した構成と比較して、サーキットブレーカ210が家庭内に設けられている。
[1.4. Modified example]
Subsequently, as a modification, an example in which the above-described technology is applied when selling power stored in a storage battery will be described. FIG. 6 is an explanatory diagram illustrating a configuration example of the power system according to the embodiment of the present disclosure. The power system shown in FIG. 6 is a system that assumes the case where the power stored in the storage battery 120 is used not only by household appliances but also sold to other households. In the configuration shown in FIG. 6, a circuit breaker 210 is provided in the home as compared with the configuration shown in FIG. 1.
 このような電力システムの場合でも、上述の説明と同様に、雷雲の近接状況に応じてリレー140、150の接続状態を切り替えて、雷雲が近接した場合に蓄電池120を安全に電力引き込み線から切り離すことが出来る。 Even in the case of such a power system, similarly to the above description, the connection state of the relays 140 and 150 is switched according to the proximity situation of the thundercloud, and the storage battery 120 is safely disconnected from the power lead-in line when the thundercloud approaches. I can do it.
 <2,まとめ>
 以上説明したように本開示の実施の形態によれば、装置の大型化を回避しながらも、雷雲の近接状況に応じて蓄電池120を安全に電力引き込み線から切り離したり、電力引き込み線に接続したりすることが可能な蓄電装置100が提供される。
<2, Summary>
As described above, according to the embodiment of the present disclosure, the storage battery 120 can be safely disconnected from the power lead-in line or connected to the power lead-in line according to the proximity of thunderclouds while avoiding an increase in the size of the device. A power storage device 100 that can be used is provided.
 本明細書の各装置が実行する処理における各ステップは、必ずしもシーケンス図またはフローチャートとして記載された順序に沿って時系列に処理する必要はない。例えば、各装置が実行する処理における各ステップは、フローチャートとして記載した順序と異なる順序で処理されても、並列的に処理されてもよい。 Each step in the processing executed by each device in this specification does not necessarily have to be processed in chronological order in the order described as a sequence diagram or flowchart. For example, each step in the processing executed by each device may be processed in an order different from the order described as the flowchart, or may be processed in parallel.
 また、各装置に内蔵されるCPU、ROMおよびRAMなどのハードウェアを、上述した各装置の構成と同等の機能を発揮させるためのコンピュータプログラムも作成可能である。また、該コンピュータプログラムを記憶させた記憶媒体も提供されることが可能である。また、機能ブロック図で示したそれぞれの機能ブロックをハードウェアで構成することで、一連の処理をハードウェアで実現することもできる。 In addition, it is possible to create a computer program for causing hardware such as CPU, ROM, and RAM incorporated in each device to exhibit functions equivalent to the configuration of each device described above. A storage medium storing the computer program can also be provided. Moreover, a series of processes can also be realized by hardware by configuring each functional block shown in the functional block diagram with hardware.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in this specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 蓄電池の蓄電量を取得する蓄電情報取得部と、
 雷雲までの距離情報を取得する距離情報取得部と、
 前記距離情報取得部及び前記蓄電情報取得部が取得した情報に基づいて、前記蓄電池への充電元を切り替える充電元切替部と、
を備える、蓄電制御装置。
(2)
 前記充電元切替部は、外部電力源から前記蓄電池へ電力を供給する第1電力引き込み線を電気的に切り離すリレーの動作を制御する、前記(1)に記載の蓄電制御装置。
(3)
 前記充電元切替部は、前記距離情報が第1の距離より短くなった場合に、リレーの動作を制御することで前記第1電力引き込み線を電気的に切り離す、前記(2)に記載の蓄電制御装置。
(4)
 前記充電元切替部は、前記距離情報が第1の距離より短くなった場合に、前記蓄電池の蓄電量が所定の閾値を下回っていれば、自然エネルギーにより発電される電力を用いて前記蓄電池へ蓄電するモードから、外部電力源からの電力を用いて前記蓄電池へ蓄電するモードへ切り替える、前記(3)に記載の蓄電制御装置。
(5)
 前記充電元切替部は、前記距離情報が前記第1の距離より長くなった場合に、リレーの動作を制御することで電気的に切り離していた前記第1電力引込み線を電気的に再接続する、前記(3)または(4)に記載の蓄電制御装置。
(6)
 前記充電元切替部は、自然エネルギーにより発電される電力を前記蓄電池へ引き込むための第2電力引き込み線を電気的に切り離すリレーの動作を制御する、前記(2)~(5)のいずれかに記載の蓄電制御装置。
(7)
 前記充電元切替部は、前記距離情報が第1の距離より短くなったとき、リレーの動作を制御することで前記第1電力引き込み線を電気的に切り離し、前記距離情報が前記第1の距離より短い第2の距離より短くなった場合にリレーの動作を制御することで前記第2電力引き込み線を電気的に切り離す、前記(6)に記載の蓄電制御装置。
(8)
 前記充電元切替部は、前記距離情報が前記第2の距離より長くなった場合に、リレーの動作を制御することで電気的に切り離していた前記第2電力引込み線を電気的に再接続する、前記(7)に記載の蓄電制御装置。
(9)
 前記充電元切替部は、前記距離情報が前記第2の距離より長くなった場合に、前記蓄電池の蓄電量が所定の閾値を超えていれば、外部電力源からの電力を用いて前記蓄電池へ蓄電するモードから、自然エネルギーにより発電される電力を用いて前記蓄電池へ蓄電するモードに切り替える、前記(8)に記載の蓄電制御装置。
(10)
 前記第1電力引き込み線または前記第2電力引き込み線が電気的に切り離されている際には前記リレーは接地されている、前記(6)~(9)のいずれかに記載の蓄電制御装置。
(11)
 蓄電池の蓄電量を取得することと、
 雷雲までの距離情報を取得することと、
 前記蓄電池の蓄電量及び前記雷雲までの距離情報に基づいて、前記蓄電池への充電元を切り替えることと、
を含む、蓄電制御方法。
(12)
 コンピュータに、
 蓄電池の蓄電量を取得することと、
 雷雲までの距離情報を取得することと、
 前記蓄電池の蓄電量及び前記雷雲までの距離情報に基づいて、前記蓄電池への充電元を切り替えることと、
を実行させる、コンピュータプログラム。
The following configurations also belong to the technical scope of the present disclosure.
(1)
A storage information acquisition unit for acquiring a storage amount of the storage battery;
A distance information acquisition unit for acquiring distance information to thunderclouds;
Based on the information acquired by the distance information acquisition unit and the storage information acquisition unit, a charging source switching unit that switches a charging source to the storage battery,
A power storage control device comprising:
(2)
The power storage control device according to (1), wherein the charging source switching unit controls an operation of a relay that electrically disconnects a first power lead-in line that supplies power from an external power source to the storage battery.
(3)
The power storage switching unit according to (2), wherein the charging source switching unit electrically disconnects the first power lead-in line by controlling an operation of a relay when the distance information becomes shorter than the first distance. Control device.
(4)
When the distance information is shorter than the first distance, the charging source switching unit uses the power generated by natural energy to the storage battery if the storage amount of the storage battery is below a predetermined threshold. The storage control device according to (3), wherein the mode for storing power is switched to a mode for storing power in the storage battery using power from an external power source.
(5)
When the distance information is longer than the first distance, the charging source switching unit electrically reconnects the first power lead-in wire that has been electrically disconnected by controlling the operation of the relay. The power storage control device according to (3) or (4).
(6)
The charging source switching unit controls an operation of a relay that electrically disconnects a second power lead-in line for drawing power generated by natural energy into the storage battery. Any one of (2) to (5) The power storage control device described.
(7)
When the distance information becomes shorter than the first distance, the charging source switching unit electrically disconnects the first power lead-in line by controlling the operation of the relay, and the distance information is the first distance. The power storage control device according to (6), wherein when the distance is shorter than the shorter second distance, the second power lead-in line is electrically disconnected by controlling the operation of the relay.
(8)
When the distance information becomes longer than the second distance, the charging source switching unit electrically reconnects the second power lead-in wire that has been electrically disconnected by controlling the operation of the relay. The power storage control device according to (7).
(9)
When the distance information is longer than the second distance, the charging source switching unit uses the power from an external power source to the storage battery if the storage amount of the storage battery exceeds a predetermined threshold. The power storage control device according to (8), wherein the power storage mode is switched to a mode for storing power in the storage battery using power generated by natural energy.
(10)
The power storage control device according to any one of (6) to (9), wherein the relay is grounded when the first power lead-in line or the second power lead-in line is electrically disconnected.
(11)
Obtaining the amount of electricity stored in the storage battery;
Getting distance information to thunderclouds,
Based on the storage amount of the storage battery and the distance information to the thundercloud, switching the charging source to the storage battery;
A power storage control method including:
(12)
On the computer,
Obtaining the amount of electricity stored in the storage battery;
Getting distance information to thunderclouds,
Based on the storage amount of the storage battery and the distance information to the thundercloud, switching the charging source to the storage battery;
A computer program that executes
10   :外部電力源
100  :蓄電装置
110  :蓄電制御装置
120  :蓄電池
130  :パワーコンディショナ
140  :リレー
150  :リレー
200  :インバータ
210  :サーキットブレーカ
300  :雷検出アンテナ
310  :雷検出器
400  :太陽光パネル
10: External power source 100: Power storage device 110: Power storage control device 120: Storage battery 130: Power conditioner 140: Relay 150: Relay 200: Inverter 210: Circuit breaker 300: Lightning detection antenna 310: Lightning detector 400: Solar panel

Claims (12)

  1.  蓄電池の蓄電量を取得する蓄電情報取得部と、
     雷雲までの距離情報を取得する距離情報取得部と、
     前記距離情報取得部及び前記蓄電情報取得部が取得した情報に基づいて、前記蓄電池への充電元を切り替える充電元切替部と、
    を備える、蓄電制御装置。
    A storage information acquisition unit for acquiring a storage amount of the storage battery;
    A distance information acquisition unit for acquiring distance information to thunderclouds;
    Based on the information acquired by the distance information acquisition unit and the storage information acquisition unit, a charging source switching unit that switches a charging source to the storage battery,
    A power storage control device comprising:
  2.  前記充電元切替部は、外部電力源から前記蓄電池へ電力を供給する第1電力引き込み線を電気的に切り離すリレーの動作を制御する、請求項1に記載の蓄電制御装置。 The power storage control device according to claim 1, wherein the charging source switching unit controls an operation of a relay that electrically disconnects a first power lead-in line that supplies power from an external power source to the storage battery.
  3.  前記充電元切替部は、前記距離情報が第1の距離より短くなった場合に、リレーの動作を制御することで前記第1電力引き込み線を電気的に切り離す、請求項2に記載の蓄電制御装置。 The power storage control according to claim 2, wherein the charging source switching unit electrically disconnects the first power lead-in line by controlling an operation of a relay when the distance information is shorter than a first distance. apparatus.
  4.  前記充電元切替部は、前記距離情報が第1の距離より短くなった場合に、前記蓄電池の蓄電量が所定の閾値を下回っていれば、自然エネルギーにより発電される電力を用いて前記蓄電池へ蓄電するモードから、外部電力源からの電力を用いて前記蓄電池へ蓄電するモードへ切り替える、請求項3に記載の蓄電制御装置。 When the distance information is shorter than the first distance, the charging source switching unit uses the power generated by natural energy to the storage battery if the storage amount of the storage battery is below a predetermined threshold. The power storage control device according to claim 3, wherein the power storage control device is switched from a mode for storing power to a mode for storing power in the storage battery using power from an external power source.
  5.  前記充電元切替部は、前記距離情報が前記第1の距離より長くなった場合に、リレーの動作を制御することで電気的に切り離していた前記第1電力引込み線を電気的に再接続する、請求項3に記載の蓄電制御装置。 When the distance information is longer than the first distance, the charging source switching unit electrically reconnects the first power lead-in wire that has been electrically disconnected by controlling the operation of the relay. The power storage control device according to claim 3.
  6.  前記充電元切替部は、自然エネルギーにより発電される電力を前記蓄電池へ引き込むための第2電力引き込み線を電気的に切り離すリレーの動作を制御する、請求項2に記載の蓄電制御装置。 The power storage control device according to claim 2, wherein the charging source switching unit controls an operation of a relay that electrically disconnects a second power lead-in line for drawing power generated by natural energy into the storage battery.
  7.  前記充電元切替部は、前記距離情報が第1の距離より短くなったとき、リレーの動作を制御することで前記第1電力引き込み線を電気的に切り離し、前記距離情報が前記第1の距離より短い第2の距離より短くなった場合にリレーの動作を制御することで前記第2電力引き込み線を電気的に切り離す、請求項6に記載の蓄電制御装置。 When the distance information becomes shorter than the first distance, the charging source switching unit electrically disconnects the first power lead-in line by controlling the operation of the relay, and the distance information is the first distance. The power storage control device according to claim 6, wherein when the distance is shorter than the shorter second distance, the second power lead-in line is electrically disconnected by controlling the operation of the relay.
  8.  前記充電元切替部は、前記距離情報が前記第2の距離より長くなった場合に、リレーの動作を制御することで電気的に切り離していた前記第2電力引き込み線を電気的に再接続する、請求項7に記載の蓄電制御装置。 When the distance information becomes longer than the second distance, the charging source switching unit electrically reconnects the second power lead-in wire that has been electrically disconnected by controlling the operation of the relay. The power storage control device according to claim 7.
  9.  前記充電元切替部は、前記距離情報が前記第2の距離より長くなった場合に、前記蓄電池の蓄電量が所定の閾値を超えていれば、外部電力源からの電力を用いて前記蓄電池へ蓄電するモードから、自然エネルギーにより発電される電力を用いて前記蓄電池へ蓄電するモードに切り替える、請求項8に記載の蓄電制御装置。 When the distance information is longer than the second distance, the charging source switching unit uses the power from an external power source to the storage battery if the storage amount of the storage battery exceeds a predetermined threshold. The storage control device according to claim 8, wherein the storage mode is switched from a mode for storing power to a mode for storing power in the storage battery using electric power generated by natural energy.
  10.  前記第1電力引き込み線または前記第2電力引き込み線が電気的に切り離されている際には前記リレーは接地されている、請求項6に記載の蓄電制御装置。 The power storage control device according to claim 6, wherein the relay is grounded when the first power lead-in line or the second power lead-in line is electrically disconnected.
  11.  蓄電池の蓄電量を取得することと、
     雷雲までの距離情報を取得することと、
     前記蓄電池の蓄電量及び前記雷雲までの距離情報に基づいて、前記蓄電池への充電元を切り替えることと、
    を含む、蓄電制御方法。
    Obtaining the amount of electricity stored in the storage battery;
    Getting distance information to thunderclouds,
    Based on the storage amount of the storage battery and the distance information to the thundercloud, switching the charging source to the storage battery;
    A power storage control method including:
  12.  コンピュータに、
     蓄電池の蓄電量を取得することと、
     雷雲までの距離情報を取得することと、
     前記蓄電池の蓄電量及び前記雷雲までの距離情報に基づいて、前記蓄電池への充電元を切り替えることと、
    を実行させる、コンピュータプログラム。
    On the computer,
    Obtaining the amount of electricity stored in the storage battery;
    Getting distance information to thunderclouds,
    Based on the storage amount of the storage battery and the distance information to the thundercloud, switching the charging source to the storage battery;
    A computer program that executes
PCT/JP2018/045342 2018-02-14 2018-12-10 Power storage control device, power storage control method, and computer program WO2019159513A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018023858 2018-02-14
JP2018-023858 2018-02-14

Publications (1)

Publication Number Publication Date
WO2019159513A1 true WO2019159513A1 (en) 2019-08-22

Family

ID=67619191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045342 WO2019159513A1 (en) 2018-02-14 2018-12-10 Power storage control device, power storage control method, and computer program

Country Status (1)

Country Link
WO (1) WO2019159513A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113555937A (en) * 2021-07-27 2021-10-26 石家庄通合电子科技股份有限公司 Automatic switching method for three-charging and two-charging

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005245190A (en) * 2004-01-28 2005-09-08 Densei Lambda Kk Power supply system equipped with thunder detecting means
JP2015195696A (en) * 2014-03-24 2015-11-05 株式会社Nttファシリティーズ Power management system, power management method and server

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005245190A (en) * 2004-01-28 2005-09-08 Densei Lambda Kk Power supply system equipped with thunder detecting means
JP2015195696A (en) * 2014-03-24 2015-11-05 株式会社Nttファシリティーズ Power management system, power management method and server

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113555937A (en) * 2021-07-27 2021-10-26 石家庄通合电子科技股份有限公司 Automatic switching method for three-charging and two-charging
CN113555937B (en) * 2021-07-27 2022-05-20 石家庄通合电子科技股份有限公司 Automatic switching method for three-charging and two-charging

Similar Documents

Publication Publication Date Title
KR101741386B1 (en) Power supply switching device, switch board, monitoring device, power supply switching method and recording medium
US7372177B2 (en) Control system, method and product for uninterruptible power supply
US11073807B2 (en) Method and apparatus for activation and de-activation of power conditioners in distributed resource island systems using low voltage AC
JP2023022064A (en) power grid system
CN108028547B (en) Power supply device and switch control method thereof
JP6406146B2 (en) Power supply
US10951057B1 (en) Reliable power module for improved substation device availability
CN105576688A (en) Control protection method for flexible direct current power transmission system
CN104748288A (en) Soft start charging circuit and control method thereof
JP2020127357A (en) Charge/discharge device and power supply switching system
WO2019159513A1 (en) Power storage control device, power storage control method, and computer program
CN106602598B (en) A kind of intelligent power supply system of the accessory power supply of grid-connection device
CN103715762A (en) Bidirectional switching circuit of hybrid power supply system and control method of bidirectional switching circuit
CN107919655B (en) Control circuit, control method and air conditioner
CN217406243U (en) Middle-high voltage direct-hanging device and power supply switching circuit thereof
CN114814490A (en) Insulation monitoring method and device and new energy power generation system
So et al. Design of a 1-kVA parallel-type AC voltage sag compensator
TW201806289A (en) Smart switch system and controlling method for switch box
CN208078643U (en) A kind of device with master-slave back-up lightning protection device
JP5458912B2 (en) AC / DC converter
CN102570592B (en) Uninterrupted direct current power supply method and device
JP5707184B2 (en) Power distribution system
EP4279324A1 (en) Charging station for electric vehicles
JP6566942B2 (en) System and method for efficient power supply and backup
CN217769593U (en) Spare power automatic switching device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP