WO2019159276A1 - Metal-supported cell - Google Patents

Metal-supported cell Download PDF

Info

Publication number
WO2019159276A1
WO2019159276A1 PCT/JP2018/005222 JP2018005222W WO2019159276A1 WO 2019159276 A1 WO2019159276 A1 WO 2019159276A1 JP 2018005222 W JP2018005222 W JP 2018005222W WO 2019159276 A1 WO2019159276 A1 WO 2019159276A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal support
metal
anode layer
anode
Prior art date
Application number
PCT/JP2018/005222
Other languages
French (fr)
Japanese (ja)
Inventor
柴田 雅史
宋 東
佐藤 和之
大剛 岩▲崎▼
寛晃 吉富
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2018/005222 priority Critical patent/WO2019159276A1/en
Publication of WO2019159276A1 publication Critical patent/WO2019159276A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a metal support cell.
  • a metal support cell (MSC: Metal-Supported Cell) excellent in mechanical strength, rapid startability, and the like has been applied to a solid oxide fuel cell (SOFC).
  • the metal support cell is configured by sequentially laminating a cathode layer, an electrolyte layer formed of ceramic, an anode layer formed of ceramic containing a catalyst, and a metal metal support layer supporting the anode layer.
  • the coefficient of thermal expansion is different between metal and ceramic. Also, the metal expands due to oxidation. For this reason, there is a problem that peeling is likely to occur at the interface between the anode layer and the metal support layer due to a difference in thermal expansion coefficient between the anode layer and the metal support layer and expansion due to metal oxidation of the metal support layer. It was.
  • Patent Document 1 discloses a metal support cell in which the anode layer is mixed with the same metal as the metal support layer forming material. Thereby, the difference in thermal expansion coefficient between the anode layer and the metal support layer can be reduced.
  • An object of the present invention is to provide a metal support cell capable of maintaining ion conductivity while suppressing peeling at the interface between the anode layer and the metal support layer.
  • the metal support cell of the present invention includes ceramic particles and metal particles, and has an anode layer having a catalytic function, an electrolyte layer disposed on one side of the anode layer and formed of ceramic, And a metal support layer formed on the other side of the anode layer and made of metal.
  • the ratio of the metal particle content to the ceramic particle content in the anode layer is formed such that the metal support layer side is larger than the electrolyte layer side.
  • FIG. 1 is an exploded perspective view showing a fuel cell stack according to an embodiment of the present invention. It is a disassembled perspective view of the cell unit shown in FIG.
  • FIG. 3 is an exploded perspective view of the metal support cell assembly shown in FIG. 2.
  • FIG. 3 is a partial cross-sectional view of the metal support cell assembly taken along line AA in FIG. 2. It is sectional drawing of the metal support cell which concerns on embodiment of this invention. It is a schematic sectional drawing for demonstrating the magnitude
  • 2 is a cross-sectional view of a metal support cell according to Comparative Example 1.
  • FIG. 10 is an enlarged cross-sectional view of a portion surrounded by a broken line part B in FIG. 9. 6 is a cross-sectional view of a metal support cell according to Comparative Example 3.
  • FIG. 10 is a cross-sectional view of a metal support cell according to Modification 1.
  • FIG. It is sectional drawing of the metal support cell which concerns on the modification 2.
  • FIG. It is sectional drawing of the metal support cell which concerns on the modification 3.
  • a metal support cell (MSC) 10 according to an embodiment of the present invention will be described with reference to FIGS.
  • the metal support cell 10 of this embodiment is used for a solid oxide fuel cell (SOFC).
  • SOFC solid oxide fuel cell
  • an XYZ rectangular coordinate system is shown in the figure.
  • the X-axis and Y-axis are horizontal directions, and the Z-axis is an axis parallel to the vertical direction.
  • FIG. 1 is an exploded perspective view showing a fuel cell stack 1 configured by stacking a plurality of cell units 1U according to the first embodiment in the vertical direction.
  • the vertical direction of the fuel cell stack 1 indicated by the Z axis in the drawing is also referred to as “stacking direction”.
  • FIG. 2 is an exploded perspective view of the cell unit 1U.
  • the cell unit 1U is configured by laminating a metal support cell assembly 1A, a separator 120 including a flow channel 121 that forms a gas flow channel, and a current collecting auxiliary layer 130.
  • a contact material may be disposed between the metal support cell assembly 1 ⁇ / b> A and the current collection auxiliary layer 130 so that they are in conductive contact with each other.
  • FIG. 3 is an exploded perspective view of the metal support cell assembly 1A
  • FIG. 4 is a partial cross-sectional view thereof.
  • the metal support cell assembly 1 ⁇ / b> A includes a metal support cell 10 and a cell frame 113 that holds the outer periphery of the metal support cell 10.
  • FIG. 5 is a cross-sectional view of the metal support cell 10.
  • the metal support cell 10 includes a power generation cell 20 and a metal support layer 60 made of metal that supports the power generation cell 20.
  • the metal support cell 10 is superior in mechanical strength, quick startability, and the like as compared with the electrolyte support cell and the electrode support cell.
  • the power generation cell 20 is configured by laminating a cathode layer 30 and an anode layer 50, which are a pair of electrodes, on both sides of the electrolyte layer 40.
  • the anode layer 50 is disposed between the electrolyte layer 40 and the metal support layer 60.
  • the electrolyte layer 40 is disposed on one side of the anode layer 50
  • the metal support layer 60 is disposed on the other side of the anode layer 50.
  • the cathode layer 30 is an oxidizer electrode, and reacts cathode gas (for example, oxygen contained in air) with electrons to convert oxygen molecules into oxide ions.
  • cathode gas for example, oxygen contained in air
  • the cathode layer 30 is resistant to an oxidizing atmosphere, and has high gas permeability and electrical conductivity for allowing the cathode gas to permeate. Further, the cathode layer 30 has a catalytic function for converting oxygen molecules into oxygen ions.
  • Examples of the material for forming the cathode layer 30 include oxides such as lanthanum, strontium, manganese, and cobalt.
  • the electrolyte layer 40 has the property of not allowing gas and electrons to pass while conducting oxide ions from the cathode layer 30 toward the anode layer 50.
  • oxygen ions are a power generation conductor
  • the electrolyte layer 40 is preferably formed from a material having high oxygen ion conductivity.
  • the electrolyte layer 40 is formed from ceramic.
  • the ceramic forming the electrolyte layer 40 is, for example, a rare earth oxide (for example, Y 2 O 3 , Sc 2 O 3 , Gd 2 O 3 , Sm 2 O 3 , Yb 2 O 3 , Nd 2 O 3, etc.).
  • Solid oxide ceramics such as stabilized zirconia, ceria-based solid solution, perovskite oxide (for example, SrCeO 3 , BaCeO 3 , CaZrO 3 , SrZrO 3, etc.) in which the selected one or two or more are dissolved.
  • ceramic broadly means an inorganic sintered body, and is not limited to a non-metallic oxide but also includes a metal oxide.
  • the anode layer 50 is a fuel electrode, and reacts an anode gas (for example, hydrogen) with oxide ions to generate an oxide of the anode gas and take out electrons.
  • the anode layer 50 is resistant to a reducing atmosphere, and has high gas permeability and electrical conductivity that allow the anode gas to pass therethrough. Furthermore, the anode layer 50 has a catalytic function for reacting the anode gas with oxide ions.
  • the anode layer 50 includes ceramic particles 210 and metal particles 220.
  • the anode layer 50 according to this embodiment includes a first anode layer 51 disposed adjacent to the electrolyte layer 40 and a second anode layer 52 disposed adjacent to the metal support layer 60.
  • the first anode layer 51 is formed from ceramic particles 210.
  • the second anode layer 52 is formed from ceramic particles 210 and metal particles 220.
  • metal / ceramic ratio the ratio of the content of the metal particles 220 to the content of the ceramic particles 210 in the anode layer 50 (hereinafter referred to as “metal / ceramic ratio”) is larger on the metal support layer 60 side than on the electrolyte layer 40 side. It is formed as follows.
  • the first anode layer 51 disposed on the electrolyte layer 40 side has a high ceramic content. For this reason, ionic conductivity at the interface between the anode layer 50 and the electrolyte layer can be maintained.
  • metal and ceramic have different coefficients of thermal expansion. Also, the metal expands due to oxidation. As described above, the second anode layer 52 disposed on the metal support layer 60 side has a relatively high metal / ceramic ratio. For this reason, the difference in the coefficient of thermal expansion between the metal and the ceramic and the difference in volume change between the anode layer 50 and the metal support layer 60 due to the oxidation of the metal are reduced at the interface. Thereby, peeling of the interface between the anode layer 50 and the metal support layer 60 can be suppressed.
  • the metal / ceramic ratio in the second anode layer 52 is not particularly limited, but can be set to about 70% / 30%, for example.
  • the ceramic particles 210 preferably have the same lattice constant and the same thermal expansion coefficient as the ceramic forming the electrolyte layer 40. Thereby, the bondability at the interface between the anode layer 50 and the electrolyte layer 40 can be improved.
  • the “similar lattice constant” means that at least the crystal structure at the interface has consistency so that the bonding strength at the interface between the electrolyte layer 40 and the anode layer 50 can be secured.
  • the lattice constant includes an interstitial distance, an interstitial angle, and the like.
  • the “same thermal expansion coefficient” is not limited to the case where the thermal expansion coefficient of the ceramic particles 210 and the ceramic forming the electrolyte layer 40 is the same, and the interface peeling between the anode layer 50 and the electrolyte layer 40 is performed. Is included to the extent that is suppressed.
  • the tolerance of the coefficient of thermal expansion is preferably 5% or less, and more preferably 1% or less.
  • the same material as the ceramic forming the electrolyte layer 40 can be used.
  • the metal particles 220 preferably have a thermal expansion coefficient comparable to that of the metal forming the metal support layer 60. Thereby, peeling due to the difference in coefficient of thermal expansion at the interface between the anode layer 50 and the metal support layer 60 is suppressed.
  • “the same degree of thermal expansion coefficient” is not limited to the case where the thermal expansion coefficient of the metal particles 220 and the metal forming the metal support layer 60 is the same, and is between the anode layer 50 and the metal support layer 60. It means that a tolerance is included to such an extent that interfacial peeling is suppressed.
  • the tolerance of the coefficient of thermal expansion is preferably 5% or less, and more preferably 1% or less.
  • the constituent material of the metal particles 220 the same material as the metal forming the metal support layer 60 can be used.
  • the “metal particles 220” means a main component constituting the anode layer 50, and does not include the metal catalyst of the anode layer 50. Further, “metal forming the metal particles 220” and “metal forming the metal support layer 60” do not include ceramics such as metal oxides.
  • the anode layer 50 is a porous body in which a plurality of holes H are formed.
  • FIG. 6 is a schematic cross-sectional view for explaining the size of the holes H of the anode layer 50.
  • the average diameter of the holes H included in the unit volume in the anode layer 50 is such that the metal support layer 60 side (lower side in FIG. 6) is on the electrolyte layer 40 side (upper side in FIG. 6). It is formed so as to be larger.
  • the anode layer 50 has large holes H on the metal support layer 60 side, so that the gas diffusibility is improved, and the anode gas is efficiently supplied to the vicinity of the electrolyte layer 40 as indicated by the arrows in FIG. be able to.
  • the anode layer 50 has small holes H on the electrolyte layer 40 side, the contact area between the electrolyte layer 40 and the anode layer 50 increases. Thereby, the ion conductivity can be improved at the interface between the electrolyte layer 40 and the anode layer 50, and the supply amount of ions can be increased.
  • the “average diameter of the holes H” is, for example, on the outline of the hole wall surface that forms the holes H observed using a scanning electron microscope (SEM), a transmission electron microscope (TEM), or the like. It means the maximum distance among any two points.
  • the pores H in the anode layer 50 are impregnated with a catalyst.
  • the catalyst is impregnated into the anode layer 50 from the metal support layer 60 side after the holes H are formed.
  • the catalyst can be impregnated to the vicinity of the electrolyte layer 40 by impregnating the catalyst from the metal support layer 60 side where the average diameter of the holes H is larger than that of the electrolyte layer 40 side.
  • a metal catalyst such as nickel (Ni) can be used.
  • Metal support layer 60 As shown in FIGS. 3 and 4, the metal support layer 60 supports the power generation cell 20 from the anode layer 50 side. By supporting the power generation cell 20 with the metal support layer 60, the mechanical strength of the power generation cell 20 can be improved and damage can be suppressed.
  • the metal support layer 60 is formed from a porous metal having gas permeability and electrical conductivity.
  • metal that forms the metal support layer 60 for example, a corrosion-resistant alloy, corrosion-resistant steel, stainless steel, or the like containing nickel (Ni) or chromium (Cr) can be used.
  • the cell frame 113 holds the metal support cell 10 from the periphery. As shown in FIG. 3, the cell frame 113 has an opening 113H. The metal support cell 10 is disposed in the opening 113H of the cell frame 113. The outer periphery of the metal support cell 10 is joined to the inner edge of the opening 113H of the cell frame 113.
  • the cell frame 113 has an anode gas inlet 113a and an anode gas outlet 113b through which the anode gas flows, and a cathode gas inlet 113c and a cathode gas outlet 113d through which the cathode gas flows.
  • the flow path portion 121 of the separator 120 is formed in a substantially linear shape so that the concavo-convex shape extends in the longitudinal direction Y. Thereby, the flow direction of the gas flowing along the flow path part 121 is the longitudinal direction Y.
  • the separator 120 has an anode gas inlet 125a and an anode gas outlet 125b through which anode gas flows, and a cathode gas inlet 125c and cathode gas outlet 125d through which cathode gas flows. ing.
  • the current collecting auxiliary layer 130 forms a space through which gas passes and makes the surface pressure uniform to assist the electrical contact between the metal support cell 10 and the separator 120.
  • the current collection auxiliary layer 130 can be formed of, for example, a wire mesh expanded metal.
  • FIG. 7 is a schematic view for explaining a method for manufacturing the metal support cell 10.
  • the manufacturing method of the half cell comprised from the electrolyte layer 40 which is a precursor of the metal support cell 10, the anode layer 50, and the metal support layer 60 is demonstrated, and the manufacturing method of the cathode layer 30 is abbreviate
  • the manufacturing method of the metal support cell 10 has a slurry preparation process, a coating process, a lamination process, and a sintering process.
  • the slurry raw materials are mixed to prepare an electrolyte slurry, a first anode electrode slurry, a second anode electrode slurry, and a metal support slurry.
  • a known stirring device can be appropriately selected and used.
  • the electrolyte slurry is formed by mixing a slurry raw material containing ceramic powder as a main component and containing a solvent and a binder.
  • the first anode electrode slurry is formed by mixing a slurry raw material containing ceramic particles 210 as a main component and containing a solvent and a binder.
  • the second anode electrode slurry is formed by mixing slurry raw materials containing ceramic particles 210 and metal particles 220 as main components and containing a solvent and a binder.
  • the metal support slurry is formed by mixing a slurry raw material containing a metal powder as a main component and containing a solvent and a binder.
  • the solvent for the slurry, for example, is not particularly limited, but water and / or alcohol solvents such as methanol, ethanol, 1-propanol (NPA), 2-propanol, ethylene glycol, propylene glycol, An organic solvent such as N-methyl-2-pyrrolidone (NMP) can be mentioned. These solvents may be used alone or in combination of two or more. The amount of the solvent used is preferably adjusted so that the viscosity is suitable for molding when the slurry is molded into a sheet.
  • a known organic binder can be appropriately selected and used.
  • the organic binder include an ethylene copolymer, a styrene copolymer, an acrylate copolymer, a methacrylate copolymer, a vinyl butyral resin, a vinyl acetal resin, a vinyl formal resin, and a vinyl alcohol resin.
  • celluloses such as ethyl cellulose.
  • each slurry prepared in the slurry preparation step is formed into a sheet using a sheet forming method such as a tape casting method using a coating device such as a knife coater or a doctor blade.
  • the obtained sheet is dried and then heat-treated as necessary to obtain an electrolyte sheet, a first anode electrode sheet, a second anode electrode sheet, and a metal support sheet.
  • an electrolyte sheet, a first anode electrode sheet, a second anode electrode sheet, and a metal support sheet are sequentially laminated and bonded to form a laminated body.
  • the laminate in the sintering step, can be degreased and sintered to obtain a half cell that is a precursor of the metal support cell 10.
  • the firing conditions are not particularly limited and can be set to known conditions.
  • anode layer 50 has a two-layer structure
  • a multilayer structure of three or more layers see Modification 2 described later
  • a single-layer structure see Modification 3 described later
  • the kind of slurry to be prepared can be changed according to the number.
  • FIG. 8 is a cross-sectional view of the metal support cell according to the comparative example 1.
  • FIG. 9 is a cross-sectional view of the metal support cell according to the comparative 2.
  • 10 is an enlarged cross-sectional view of a portion surrounded by a broken line portion B in FIG. Note that the arrows in FIG. 10 indicate the flow of ions.
  • FIG. 11 is a cross-sectional view of a metal support cell according to Comparative Example 3.
  • the metal support cell according to the comparative example 1 shown in FIG. Therefore, the volume change between the anode layer 50a and the metal support layer 60 due to the difference in thermal expansion coefficient between the anode layer 50a and the metal support layer 60 or the expansion of the metal of the metal support layer 60 due to oxidation. The difference will occur.
  • the operating temperature of the solid oxide fuel cell is as high as about 700 to 1000 ° C.
  • a difference in volume change is more likely to occur between the anode layer 50a and the metal support layer 60.
  • peeling tends to occur at the interface between the anode layer 50a and the metal support layer 60.
  • the metal support cell according to Comparative Example 3 shown in FIG. 11 includes an anode layer 50c formed from the ceramic particles 210, and a surface layer 61c in which the ceramic particles 210 are embedded in a part of the holes adjacent to the anode layer 50c.
  • a metal support layer 60c is provided.
  • the difference of the volume change of the interface between the anode layer 50c and the surface layer 61c of the metal support layer 60c can be reduced.
  • the anode layer 50c can be formed from the ceramic particles 210, ion conductivity can be maintained.
  • the reaction area is reduced, so that the battery performance is deteriorated. Therefore, a configuration in which the ceramic particles 210 are embedded in a part of the metal support layer 60c as in the comparative example 3 is not preferable.
  • the metal support cell 10 includes the ceramic particles 210 and the metal particles 220, is disposed on one side of the anode layer 50 having a catalytic function, and is formed of ceramic. And an electrolyte layer 40 and a metal support layer 60 disposed on the other side of the anode layer 50 and made of metal.
  • the ratio of the content of the metal particles 220 to the content of the ceramic particles 210 in the anode layer 50 is formed so that the metal support layer 60 side is larger than the electrolyte layer 40 side.
  • the metal / ceramic ratio is relatively high on the metal support layer 60 side in the anode layer 50. For this reason, the difference in the coefficient of thermal expansion between the metal and the ceramic and the difference in volume change between the anode layer 50 and the metal support layer 60 due to the oxidation of the metal are reduced at the interface. Thereby, peeling of the interface between the anode layer 50 and the metal support layer 60 can be suppressed. Further, the metal / ceramic ratio is relatively low on the electrolyte layer 40 side in the anode layer 50, that is, the content of the ceramic particles 210 is relatively high. For this reason, the ionic conductivity at the interface between the anode layer 50 and the electrolyte layer 40 can be maintained.
  • the anode layer 50 is a porous body having a plurality of pores H, and the average diameter of the pores H included in the unit volume in the anode layer 50 is larger on the metal support layer 60 side than on the electrolyte layer 40 side. Is formed. Thereby, since the anode layer 50 has large holes H on the metal support layer 60 side, the gas diffusibility is improved, and the anode gas can be efficiently supplied to the vicinity of the electrolyte layer 40. In addition, since the anode layer 50 has small holes H on the electrolyte layer 40 side, the contact area between the electrolyte layer 40 and the anode layer 50 increases. Thereby, since the supply amount of ions increases at the interface between the electrolyte layer 40 and the anode layer 50, the ion conductivity can be improved.
  • the anode layer 50 further has a catalyst impregnated in the holes H.
  • the catalyst is impregnated into the anode layer 50 from the metal support layer 60 side after the holes H are formed.
  • the catalyst can be impregnated to the vicinity of the electrolyte layer 40 by impregnating the catalyst from the metal support layer 60 side where the average diameter of the holes H is larger than that of the electrolyte layer 40 side.
  • the metal particles 220 in the anode layer 50 have a thermal expansion coefficient similar to that of the metal forming the metal support layer 60. Thereby, peeling due to the difference in coefficient of thermal expansion at the interface between the anode layer 50 and the metal support layer 60 is suppressed.
  • the ceramic particles 210 in the anode layer 50 have the same lattice constant and the same thermal expansion coefficient as the ceramic forming the electrolyte layer 40. Thereby, the bondability at the interface between the anode layer 50 and the electrolyte layer 40 can be improved.
  • the anode layer 50 has a multilayer structure composed of two or more layers including the first anode layer 51 and the second anode layer 52. This makes it easy to control the metal / ceramic ratio, the particle diameter of the metal particles 220, the particle diameter of the ceramic particles 210, the pore diameter, and the like for each layer.
  • FIG. 12 is a cross-sectional view of a metal support cell according to the first modification.
  • the anode layer 150 of the metal support cell according to the first modification has an average particle size of the ceramic particles 210 included in the unit volume and an average particle size of the metal particles 220 included in the unit volume. This is different from the above-described embodiment in that the layer 60 side (the lower side in FIG. 12) is configured to be larger than the electrolyte layer 40 side.
  • the anode layer 150 may have a multilayer structure as in the above-described embodiment, or may be configured by a single layer.
  • the “particle diameter” is, for example, the maximum of the distance between any two points on the contour line of a particle observed using a scanning electron microscope (SEM), a transmission electron microscope (TEM), or the like. Means distance.
  • the metal support cell according to Modification 1 is formed such that the average particle diameter of the metal particles 220 included in the unit volume in the anode layer 150 is larger on the metal support layer 60 side than on the electrolyte layer 40 side. Has been.
  • the average particle diameter of the metal particles 220 By increasing the average particle diameter of the metal particles 220, the total surface area of the metal particles 220 included in the unit volume can be reduced. For this reason, the anode layer 150 can suppress expansion due to metal oxidation on the metal support layer 60 side.
  • the average particle diameter of the ceramic particles 210 contained in the unit volume in the anode layer 150 is formed so that the metal support layer 60 side is larger than the electrolyte layer 40 side.
  • the average particle diameter of the ceramic particles 210 contained in the unit volume in the anode layer 150 is formed so that the electrolyte layer 40 side is smaller than the metal support layer 60 side.
  • FIG. 13 is a cross-sectional view of a metal support cell according to Modification 2.
  • the anode layer 250 of the metal support cell according to the modification 2 is different from the above-described embodiment in that it has a multilayer structure composed of three or more layers as shown in FIG.
  • the layer closer to the metal support layer 60 is formed so that the metal / ceramic ratio and the pore diameter are larger than the layer closer to the electrolyte layer 40.
  • the particle diameters of the ceramic particles 210 are the same, but the layer closer to the electrolyte layer 40 has a particle diameter of the ceramic particles 210 than the layer closer to the metal support layer 60. You may form so that it may become small.
  • the particle diameter of the metal particles 220 is illustrated with the same size, but the particle diameter of the metal particles 220 is larger in the layer closer to the metal support layer 60 than in the layer closer to the electrolyte layer 40. You may form in.
  • the anode layer 250 of the metal support cell according to the modified example 2 has a multilayer structure including three or more layers. As the number of layers in the multilayer structure increases, the distribution of the metal / ceramic ratio in the anode layer 250, the particle diameter of the ceramic particles 210, the particle diameter of the metal particles 220, the pore diameter, and the like becomes easier to control with higher accuracy.
  • the effects obtained by forming the metal / ceramic ratio, the particle diameter of the ceramic particles 210, the particle diameter of the metal particles 220, and the pore diameter so that the metal support layer 60 side is larger than the electrolyte layer 40 side are the same as in the above embodiment and As described in the first modification.
  • FIG. 14 is a cross-sectional view of a metal support cell according to Modification 3.
  • the anode layer 350 of the metal support cell according to the modification 3 is different from the above-described embodiment in that it is composed of one layer (single layer) as shown in FIG.
  • the anode layer 350 is formed so that the metal support layer 60 side has a larger metal / ceramic ratio and pore diameter than the electrolyte layer 40 side.
  • the particle diameter of the ceramic particles 210 is shown as the same size, but the ceramic particles 210 may be formed so that the particle diameter of the ceramic particles 210 is smaller on the electrolyte layer 40 side than on the metal support layer 60 side. .
  • the particle diameter of the metal particle 220 is illustrated with the same size, the metal particle 220 may be formed so that the metal particle 220 has a larger particle diameter than the electrolyte layer 40 side.
  • the anode layer 350 of the metal support cell according to the modified example 2 has a single layer structure.
  • the distribution of the metal / ceramic ratio, the particle diameter of the ceramic particles 210, the particle diameter of the metal particles 220, and the pore diameter can be changed in one layer. For this reason, since the kind of slurry to prepare decreases, manufacturing cost can be reduced.
  • FIG. 15 is a cross-sectional view of a metal support cell according to Modification 4.
  • the anode layer 450 of the metal support cell according to the modification 4 is different from the above-described embodiment in that the anode layer 450 includes a plurality of plate-like members 451 as shown in FIG.
  • a gas flow path can be formed using gaps between the plurality of plate-like members 451.
  • the plate-like member 451 is not porous.
  • each plate-like member 451 is formed so that the metal support layer 60 side is larger than the electrolyte layer 40 side. Thereby, the metal support cell which concerns on the modification 4 has an effect similar to embodiment mentioned above.
  • the metal support cell according to the present invention has been described through the embodiment and the modification.
  • the present invention is not limited only to the content described in the embodiment, and may be appropriately changed based on the description of the claims. It is possible.
  • the metal support cell may be configured by appropriately combining the specifications of the embodiment and the modification described above.
  • the distribution of metal / ceramic ratio, ceramic particle particle size, metal particle particle size and pore size in the anode layer is limited to the case where the distribution increases from the electrolyte layer side to the metal support layer side in a linear or curved shape. Not including the case of increasing stepwise.
  • the metal / ceramic ratio, the particle diameter of the ceramic particles, the particle diameter of the metal particles, and the pore diameter are increased stepwise for each layer. Can do.
  • the average particle diameter of the ceramic particles contained in the unit volume in the anode layer and the average particle diameter of the metal particles contained in the unit volume are set so that the metal support layer side is larger than the electrolyte layer side.
  • the example to form was demonstrated.
  • the present invention is not limited to this, and only one of the average particle diameter of the ceramic particles contained in the unit volume or the average particle diameter of the metal particles contained in the unit volume is formed so that the metal support layer side is larger than the electrolyte layer side. May be.
  • Fuel cell stack 1U cell unit, 1A Metal support cell assembly, 10 Metal support cell, 20 power generation cells, 30 cathode layer, 40 electrolyte layer, 50, 150, 250, 350, 450 anode layer, 51 a first anode layer, 52 second anode layer, 60, 60c metal support layer, 113 cell frames, 120 separator, 130 Current collection auxiliary layer, 210 ceramic particles, 220 metal particles, H Hole X (Fuel cell stack) short direction, Y longitudinal direction (of the fuel cell stack), Z (Fuel cell stack) stacking direction.

Abstract

[Problem] To provide a metal-supported cell with which it is possible to maintain ion conductivity while suppressing peeling at the boundary between an anode layer and a metal support layer. [Solution] A metal-supported cell 10 includes ceramic particles 210 and metal particles 220, and has an anode layer 50 provided with a catalyst function, an electrolyte layer 40 disposed on one side of the anode layer and formed from a ceramic, and a metal support layer 60 disposed on the other side of the anode layer and formed from a metal. The present invention is formed so that the ratio of the amount of metal particles to the amount of ceramic particles contained in the anode layer is greater on the metal support layer side than on the electrolyte layer side.

Description

メタルサポートセルMetal support cell
 本発明は、メタルサポートセルに関する。 The present invention relates to a metal support cell.
 従来から、機械的強度、急速起動性等に優れるメタルサポートセル(MSC:Metal-Supported Cell)が固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)に適用されている。メタルサポートセルは、カソード層と、セラミックから形成された電解質層と、触媒を含むセラミックから形成されたアノード層と、アノード層を支持する金属製のメタルサポート層と、を順に積層して構成される。 Conventionally, a metal support cell (MSC: Metal-Supported Cell) excellent in mechanical strength, rapid startability, and the like has been applied to a solid oxide fuel cell (SOFC). The metal support cell is configured by sequentially laminating a cathode layer, an electrolyte layer formed of ceramic, an anode layer formed of ceramic containing a catalyst, and a metal metal support layer supporting the anode layer. The
 一般的に、金属とセラミックとは、熱膨張率が異なる。また、金属は、酸化によって膨張する。このため、アノード層とメタルサポート層との間の熱膨張率の差やメタルサポート層の金属の酸化による膨張によって、アノード層とメタルサポート層との間の界面に剥離が生じやすいという問題があった。 Generally, the coefficient of thermal expansion is different between metal and ceramic. Also, the metal expands due to oxidation. For this reason, there is a problem that peeling is likely to occur at the interface between the anode layer and the metal support layer due to a difference in thermal expansion coefficient between the anode layer and the metal support layer and expansion due to metal oxidation of the metal support layer. It was.
 上記課題に対して、例えば、下記特許文献1には、アノード層にメタルサポート層の形成材料と同じ金属を混合したメタルサポートセルが開示されている。これにより、アノード層とメタルサポート層との間の熱膨張率の差を低減することができる。 In response to the above problem, for example, Patent Document 1 below discloses a metal support cell in which the anode layer is mixed with the same metal as the metal support layer forming material. Thereby, the difference in thermal expansion coefficient between the anode layer and the metal support layer can be reduced.
欧州特許第2031675号公報European Patent No. 20316675
 しかしながら、上記特許文献1のメタルサポートセルでは、電解質層とアノード層との間の界面にセラミックに比べてイオン伝導性の低い金属粒子が多く存在する。このため、メタルサポートセルのイオン伝導性が低下し、発電性能が低下してしまう。 However, in the metal support cell of Patent Document 1 described above, there are many metal particles having lower ion conductivity than the ceramic at the interface between the electrolyte layer and the anode layer. For this reason, the ion conductivity of a metal support cell falls and power generation performance will fall.
 本発明の目的は、アノード層とメタルサポート層との間の界面での剥離を抑制しつつ、イオン伝導性を維持することのできるメタルサポートセルを提供することである。 An object of the present invention is to provide a metal support cell capable of maintaining ion conductivity while suppressing peeling at the interface between the anode layer and the metal support layer.
 上記目的を達成するための本発明のメタルサポートセルは、セラミック粒子と金属粒子とを含み、触媒機能を備えるアノード層と、アノード層の一方側に配置され、セラミックから形成された電解質層と、アノード層の他方側に配置され、金属から形成されたメタルサポート層と、を有する。アノード層中のセラミック粒子の含有量に対する金属粒子の含有量の比率は、メタルサポート層側が電解質層側よりも大きくなるように形成される。 To achieve the above object, the metal support cell of the present invention includes ceramic particles and metal particles, and has an anode layer having a catalytic function, an electrolyte layer disposed on one side of the anode layer and formed of ceramic, And a metal support layer formed on the other side of the anode layer and made of metal. The ratio of the metal particle content to the ceramic particle content in the anode layer is formed such that the metal support layer side is larger than the electrolyte layer side.
本発明の実施形態に係る燃料電池スタックを示す分解斜視図である。1 is an exploded perspective view showing a fuel cell stack according to an embodiment of the present invention. 図1に示すセルユニットの分解斜視図である。It is a disassembled perspective view of the cell unit shown in FIG. 図2に示すメタルサポートセルアッセンブリーの分解斜視図である。FIG. 3 is an exploded perspective view of the metal support cell assembly shown in FIG. 2. 図2のA-A線に沿うメタルサポートセルアッセンブリーの部分断面図である。FIG. 3 is a partial cross-sectional view of the metal support cell assembly taken along line AA in FIG. 2. 本発明の実施形態に係るメタルサポートセルの断面図である。It is sectional drawing of the metal support cell which concerns on embodiment of this invention. 本発明の実施形態に係るアノード層の空孔の大きさを説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the magnitude | size of the void | hole of the anode layer which concerns on embodiment of this invention. 本発明の実施形態に係るメタルサポートセルの製造方法を説明するための概略図である。It is the schematic for demonstrating the manufacturing method of the metal support cell which concerns on embodiment of this invention. 対比例1に係るメタルサポートセルの断面図である。2 is a cross-sectional view of a metal support cell according to Comparative Example 1. FIG. 対比例2に係るメタルサポートセルの断面図である。It is sectional drawing of the metal support cell which concerns on the contrast 2. 図9の破線部Bによって囲まれる部分の拡大断面図である。FIG. 10 is an enlarged cross-sectional view of a portion surrounded by a broken line part B in FIG. 9. 対比例3に係るメタルサポートセルの断面図である。6 is a cross-sectional view of a metal support cell according to Comparative Example 3. FIG. 変形例1に係るメタルサポートセルの断面図である。10 is a cross-sectional view of a metal support cell according to Modification 1. FIG. 変形例2に係るメタルサポートセルの断面図である。It is sectional drawing of the metal support cell which concerns on the modification 2. FIG. 変形例3に係るメタルサポートセルの断面図である。It is sectional drawing of the metal support cell which concerns on the modification 3. 変形例4に係るメタルサポートセルの断面図である。It is sectional drawing of the metal support cell which concerns on the modification 4.
 以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、以下の説明は特許請求の範囲に記載される技術的範囲や用語の意義を限定するものではない。また、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。例えば、図中に示す各層の構成粒子(セラミック粒子や金属粒子)の寸法比率や形状は、特に言及しない限り、実際のものとは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, the following description does not limit the meaning of the technical scope and terms described in the claims. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may differ from actual ratios. For example, the dimensional ratio and shape of the constituent particles (ceramic particles and metal particles) of each layer shown in the figure may be different from actual ones unless otherwise specified.
 図1~図6を参照して、本発明の実施形態に係るメタルサポートセル(MSC)10について説明する。本実施形態のメタルサポートセル10は、固体酸化物形燃料電池(SOFC)に用いられる。 A metal support cell (MSC) 10 according to an embodiment of the present invention will be described with reference to FIGS. The metal support cell 10 of this embodiment is used for a solid oxide fuel cell (SOFC).
 以下の説明の便宜のため、XYZ直交座標系を図中に示す。X軸およびY軸は水平方向、Z軸は上下方向にそれぞれ平行な軸を示す。 For convenience of the following explanation, an XYZ rectangular coordinate system is shown in the figure. The X-axis and Y-axis are horizontal directions, and the Z-axis is an axis parallel to the vertical direction.
 図1は、第1実施形態に係る複数のセルユニット1Uを上下方向に積層して構成した燃料電池スタック1を示す分解斜視図である。以下、図中にZ軸で示す燃料電池スタック1の上下方向を「積層方向」とも称する。 FIG. 1 is an exploded perspective view showing a fuel cell stack 1 configured by stacking a plurality of cell units 1U according to the first embodiment in the vertical direction. Hereinafter, the vertical direction of the fuel cell stack 1 indicated by the Z axis in the drawing is also referred to as “stacking direction”.
 (セルユニット1U)
 図2は、セルユニット1Uの分解斜視図である。図2に示すように、セルユニット1Uは、メタルサポートセルアッセンブリー1Aと、ガスの流路を区画形成する流路部121を備えるセパレータ120と、集電補助層130と、を積層して構成される。なお、メタルサポートセルアッセンブリー1Aと集電補助層130との間に両者を導通接触させる接点材を配置してもよい。
(Cell unit 1U)
FIG. 2 is an exploded perspective view of the cell unit 1U. As shown in FIG. 2, the cell unit 1U is configured by laminating a metal support cell assembly 1A, a separator 120 including a flow channel 121 that forms a gas flow channel, and a current collecting auxiliary layer 130. The Note that a contact material may be disposed between the metal support cell assembly 1 </ b> A and the current collection auxiliary layer 130 so that they are in conductive contact with each other.
 図3は、メタルサポートセルアッセンブリー1Aの分解斜視図であり、図4は、その部分断面図である。図3および図4に示すように、メタルサポートセルアッセンブリー1Aは、メタルサポートセル10と、メタルサポートセル10の外周を保持するセルフレーム113と、を有する。 FIG. 3 is an exploded perspective view of the metal support cell assembly 1A, and FIG. 4 is a partial cross-sectional view thereof. As shown in FIGS. 3 and 4, the metal support cell assembly 1 </ b> A includes a metal support cell 10 and a cell frame 113 that holds the outer periphery of the metal support cell 10.
 (メタルサポートセル10)
 図5は、メタルサポートセル10の断面図である。図3~図5に示すように、メタルサポートセル10は、発電セル20と、発電セル20を支持する金属製のメタルサポート層60と、を有する。メタルサポートセル10は、電解質支持型セルや電極支持型セルに比べて機械的強度、急速起動性等に優れる。
(Metal support cell 10)
FIG. 5 is a cross-sectional view of the metal support cell 10. As shown in FIGS. 3 to 5, the metal support cell 10 includes a power generation cell 20 and a metal support layer 60 made of metal that supports the power generation cell 20. The metal support cell 10 is superior in mechanical strength, quick startability, and the like as compared with the electrolyte support cell and the electrode support cell.
 (発電セル20)
 図3~図5に示すように、発電セル20は、電解質層40の両側に一対の電極であるカソード層30およびアノード層50を積層して構成される。アノード層50は、電解質層40とメタルサポート層60との間に配置される。換言すると、アノード層50の一方側には、電解質層40が配置され、アノード層50の他方側には、メタルサポート層60が配置される。
(Power generation cell 20)
As shown in FIGS. 3 to 5, the power generation cell 20 is configured by laminating a cathode layer 30 and an anode layer 50, which are a pair of electrodes, on both sides of the electrolyte layer 40. The anode layer 50 is disposed between the electrolyte layer 40 and the metal support layer 60. In other words, the electrolyte layer 40 is disposed on one side of the anode layer 50, and the metal support layer 60 is disposed on the other side of the anode layer 50.
 (カソード層30)
 カソード層30は、酸化剤極であって、カソードガス(例えば空気に含まれる酸素)と電子を反応させて、酸素分子を酸化物イオンに変換する。カソード層30は、酸化雰囲気に耐性を有し、カソードガスを透過させるガス透過性および電気伝導度が高い。さらに、カソード層30は、酸素分子を酸素イオンに変換する触媒機能を有する。
(Cathode layer 30)
The cathode layer 30 is an oxidizer electrode, and reacts cathode gas (for example, oxygen contained in air) with electrons to convert oxygen molecules into oxide ions. The cathode layer 30 is resistant to an oxidizing atmosphere, and has high gas permeability and electrical conductivity for allowing the cathode gas to permeate. Further, the cathode layer 30 has a catalytic function for converting oxygen molecules into oxygen ions.
 カソード層30の形成材料は、例えば、ランタン、ストロンチウム、マンガン、コバルト等の酸化物が挙げられる。 Examples of the material for forming the cathode layer 30 include oxides such as lanthanum, strontium, manganese, and cobalt.
 (電解質層40)
 電解質層40は、カソード層30からアノード層50に向かって酸化物イオンを伝導させつつ、ガスと電子を通過させない性質を有する。酸素イオンが発電の伝導体である場合には、電解質層40は、酸素イオンの伝導性が高い材料から形成されることが好ましい。
(Electrolyte layer 40)
The electrolyte layer 40 has the property of not allowing gas and electrons to pass while conducting oxide ions from the cathode layer 30 toward the anode layer 50. When oxygen ions are a power generation conductor, the electrolyte layer 40 is preferably formed from a material having high oxygen ion conductivity.
 電解質層40は、セラミックから形成される。電解質層40を形成するセラミックは、例えば、例えば、希土類酸化物(例えば、Y、Sc、Gd、Sm、Yb、Nd等から選択される1種または2種以上)を固溶した安定化ジルコニア、セリア系固溶体、ペロブスカイト型酸化物(例えば、SrCeO、BaCeO、CaZrO、SrZrO等)等の固体酸化物セラミックなどが挙げられる。なお、本明細書中において、「セラミック」とは、無機物の焼結体を広く意味し、非金属の酸化物に限られず金属の酸化物も含まれるものとする。 The electrolyte layer 40 is formed from ceramic. The ceramic forming the electrolyte layer 40 is, for example, a rare earth oxide (for example, Y 2 O 3 , Sc 2 O 3 , Gd 2 O 3 , Sm 2 O 3 , Yb 2 O 3 , Nd 2 O 3, etc.). Solid oxide ceramics such as stabilized zirconia, ceria-based solid solution, perovskite oxide (for example, SrCeO 3 , BaCeO 3 , CaZrO 3 , SrZrO 3, etc.) in which the selected one or two or more are dissolved. Can be mentioned. Note that in this specification, “ceramic” broadly means an inorganic sintered body, and is not limited to a non-metallic oxide but also includes a metal oxide.
 (アノード層50)
 アノード層50は、燃料極であって、アノードガス(例えば水素)と酸化物イオンを反応させて、アノードガスの酸化物を生成するとともに電子を取り出す。アノード層50は、還元雰囲気に耐性を有し、アノードガスを透過させるガス透過性および電気伝導度が高い。さらに、アノード層50は、アノードガスを酸化物イオンと反応させる触媒機能を有する。
(Anode layer 50)
The anode layer 50 is a fuel electrode, and reacts an anode gas (for example, hydrogen) with oxide ions to generate an oxide of the anode gas and take out electrons. The anode layer 50 is resistant to a reducing atmosphere, and has high gas permeability and electrical conductivity that allow the anode gas to pass therethrough. Furthermore, the anode layer 50 has a catalytic function for reacting the anode gas with oxide ions.
 図5に示すように、アノード層50は、セラミック粒子210と金属粒子220とを含む。本実施形態に係るアノード層50は、電解質層40に隣接して配置される第1アノード層51と、メタルサポート層60に隣接して配置される第2アノード層52と、を有する。 As shown in FIG. 5, the anode layer 50 includes ceramic particles 210 and metal particles 220. The anode layer 50 according to this embodiment includes a first anode layer 51 disposed adjacent to the electrolyte layer 40 and a second anode layer 52 disposed adjacent to the metal support layer 60.
 第1アノード層51は、セラミック粒子210から形成される。第2アノード層52は、セラミック粒子210および金属粒子220から形成される。これにより、アノード層50中のセラミック粒子210の含有量に対する金属粒子220の含有量の比率(以下、「金属/セラミック比」と称する)は、メタルサポート層60側が電解質層40側よりも大きくなるように形成されている。 The first anode layer 51 is formed from ceramic particles 210. The second anode layer 52 is formed from ceramic particles 210 and metal particles 220. Thereby, the ratio of the content of the metal particles 220 to the content of the ceramic particles 210 in the anode layer 50 (hereinafter referred to as “metal / ceramic ratio”) is larger on the metal support layer 60 side than on the electrolyte layer 40 side. It is formed as follows.
 上記のように、電解質層40側に配置される第1アノード層51では、セラミックの含有量が高い。このため、アノード層50と電解質層との間の界面でのイオン伝導性を維持することができる。 As described above, the first anode layer 51 disposed on the electrolyte layer 40 side has a high ceramic content. For this reason, ionic conductivity at the interface between the anode layer 50 and the electrolyte layer can be maintained.
 また、一般的に、金属とセラミックとは、熱膨張率が異なる。また、金属は、酸化によって膨張する。上記のように、メタルサポート層60側に配置される第2アノード層52では、金属/セラミック比が比較的高い。このため、金属とセラミックとの間の熱膨張率の差や金属の酸化によるアノード層50とメタルサポート層60との間の体積変化の差が界面で小さくなる。これにより、アノード層50とメタルサポート層60との間の界面の剥離を抑制することができる。 In general, metal and ceramic have different coefficients of thermal expansion. Also, the metal expands due to oxidation. As described above, the second anode layer 52 disposed on the metal support layer 60 side has a relatively high metal / ceramic ratio. For this reason, the difference in the coefficient of thermal expansion between the metal and the ceramic and the difference in volume change between the anode layer 50 and the metal support layer 60 due to the oxidation of the metal are reduced at the interface. Thereby, peeling of the interface between the anode layer 50 and the metal support layer 60 can be suppressed.
 第2アノード層52内の金属/セラミック比は、特に限定されないが、例えば、70%/30%程度に設定することができる。 The metal / ceramic ratio in the second anode layer 52 is not particularly limited, but can be set to about 70% / 30%, for example.
 セラミック粒子210は、電解質層40を形成するセラミックと同程度の格子定数および同程度の熱膨張率を有することが好ましい。これにより、アノード層50と電解質層40との間の界面での接合性を向上させることができる。ここで、「同程度の格子定数」とは、電解質層40とアノード層50との間の界面での接合強度を確保することができる程度に、少なくとも界面における結晶構造が整合性を有していることを意味する。なお、格子定数には、格子間距離および格子間角度などを含むものとする。 The ceramic particles 210 preferably have the same lattice constant and the same thermal expansion coefficient as the ceramic forming the electrolyte layer 40. Thereby, the bondability at the interface between the anode layer 50 and the electrolyte layer 40 can be improved. Here, the “similar lattice constant” means that at least the crystal structure at the interface has consistency so that the bonding strength at the interface between the electrolyte layer 40 and the anode layer 50 can be secured. Means that The lattice constant includes an interstitial distance, an interstitial angle, and the like.
 また、「同程度の熱膨張率」とは、セラミック粒子210と電解質層40を形成するセラミックとの熱膨張率が同じ場合に限定されず、アノード層50と電解質層40との間の界面剥離が抑制される程度の許容差を含むことを意味する。熱膨張率の許容差は、例えば、5%以下が好ましく、1%以下がより好ましい。 Further, the “same thermal expansion coefficient” is not limited to the case where the thermal expansion coefficient of the ceramic particles 210 and the ceramic forming the electrolyte layer 40 is the same, and the interface peeling between the anode layer 50 and the electrolyte layer 40 is performed. Is included to the extent that is suppressed. For example, the tolerance of the coefficient of thermal expansion is preferably 5% or less, and more preferably 1% or less.
 セラミック粒子210の構成材料としては、電解質層40を形成するセラミックと同様の材料を用いることができる。 As the constituent material of the ceramic particles 210, the same material as the ceramic forming the electrolyte layer 40 can be used.
 金属粒子220は、メタルサポート層60を形成する金属と同程度の熱膨張率を有することが好ましい。これにより、アノード層50とメタルサポート層60との間の界面での熱膨張率の差による剥離が抑制される。ここで、「同程度の熱膨張率」とは、金属粒子220とメタルサポート層60を形成する金属との熱膨張率が同じ場合に限定されず、アノード層50とメタルサポート層60との間の界面剥離が抑制される程度の許容差を含むことを意味する。熱膨張率の許容差は、例えば、5%以下が好ましく、1%以下がより好ましい。 The metal particles 220 preferably have a thermal expansion coefficient comparable to that of the metal forming the metal support layer 60. Thereby, peeling due to the difference in coefficient of thermal expansion at the interface between the anode layer 50 and the metal support layer 60 is suppressed. Here, “the same degree of thermal expansion coefficient” is not limited to the case where the thermal expansion coefficient of the metal particles 220 and the metal forming the metal support layer 60 is the same, and is between the anode layer 50 and the metal support layer 60. It means that a tolerance is included to such an extent that interfacial peeling is suppressed. For example, the tolerance of the coefficient of thermal expansion is preferably 5% or less, and more preferably 1% or less.
 金属粒子220の構成材料としては、メタルサポート層60を形成する金属と同様の材料を用いることができる。なお、本明細書中において、「金属粒子220」は、アノード層50を構成する主成分を意味し、アノード層50の金属触媒は含まないものとする。また、「金属粒子220を形成する金属」および「メタルサポート層60を形成する金属」には、金属の酸化物などのセラミックは含まれないものとする。 As the constituent material of the metal particles 220, the same material as the metal forming the metal support layer 60 can be used. In the present specification, the “metal particles 220” means a main component constituting the anode layer 50, and does not include the metal catalyst of the anode layer 50. Further, “metal forming the metal particles 220” and “metal forming the metal support layer 60” do not include ceramics such as metal oxides.
 アノード層50は、複数の空孔Hが形成された多孔体である。図6は、アノード層50の空孔Hの大きさを説明するための概略断面図である。図6に示すように、アノード層50内の単位体積に含まれる空孔Hの平均径は、メタルサポート層60側(図6中の下側)が電解質層40側(図6中の上側)よりも大きくなるように形成されている。これにより、アノード層50は、メタルサポート層60側で空孔Hが大きいため、ガス拡散性が向上し、図6中の矢印で示すように効率的に電解質層40付近までアノードガスを供給することができる。また、アノード層50は、電解質層40側で空孔Hが小さいため、電解質層40とアノード層50と接触面積が増加する。これにより、電解質層40とアノード層50との間の界面でイオン伝導性を向上させてイオンの供給量を増加させることができる。 The anode layer 50 is a porous body in which a plurality of holes H are formed. FIG. 6 is a schematic cross-sectional view for explaining the size of the holes H of the anode layer 50. As shown in FIG. 6, the average diameter of the holes H included in the unit volume in the anode layer 50 is such that the metal support layer 60 side (lower side in FIG. 6) is on the electrolyte layer 40 side (upper side in FIG. 6). It is formed so as to be larger. As a result, the anode layer 50 has large holes H on the metal support layer 60 side, so that the gas diffusibility is improved, and the anode gas is efficiently supplied to the vicinity of the electrolyte layer 40 as indicated by the arrows in FIG. be able to. Further, since the anode layer 50 has small holes H on the electrolyte layer 40 side, the contact area between the electrolyte layer 40 and the anode layer 50 increases. Thereby, the ion conductivity can be improved at the interface between the electrolyte layer 40 and the anode layer 50, and the supply amount of ions can be increased.
 ここで、「空孔Hの平均径」とは、例えば、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などを用いて観察される空孔Hを形成する孔壁面の輪郭線上の任意の2点間の距離のうち、最大の距離を意味する。 Here, the “average diameter of the holes H” is, for example, on the outline of the hole wall surface that forms the holes H observed using a scanning electron microscope (SEM), a transmission electron microscope (TEM), or the like. It means the maximum distance among any two points.
 アノード層50内の空孔Hには、触媒が含浸される。メタルサポートセル10の製造においては、触媒は、空孔Hが形成された後に、メタルサポート層60側からアノード層50内に含浸される。この際、空孔Hの平均径が電解質層40側よりも大きいメタルサポート層60側から触媒を含浸させることによって、触媒を電解質層40付近まで含浸させることができる。 The pores H in the anode layer 50 are impregnated with a catalyst. In the manufacture of the metal support cell 10, the catalyst is impregnated into the anode layer 50 from the metal support layer 60 side after the holes H are formed. At this time, the catalyst can be impregnated to the vicinity of the electrolyte layer 40 by impregnating the catalyst from the metal support layer 60 side where the average diameter of the holes H is larger than that of the electrolyte layer 40 side.
 アノード層50の触媒としては、例えば、ニッケル(Ni)等の金属触媒を用いることができる。 As the catalyst for the anode layer 50, for example, a metal catalyst such as nickel (Ni) can be used.
 (メタルサポート層60)
 メタルサポート層60は、図3および図4に示すように、発電セル20をアノード層50の側から支持するものである。メタルサポート層60によって発電セル20を支持することにより、発電セル20の機械的強度を向上させて破損を抑制することができる。メタルサポート層60は、ガス透過性および電気伝導性を有する多孔質の金属から形成される。
(Metal support layer 60)
As shown in FIGS. 3 and 4, the metal support layer 60 supports the power generation cell 20 from the anode layer 50 side. By supporting the power generation cell 20 with the metal support layer 60, the mechanical strength of the power generation cell 20 can be improved and damage can be suppressed. The metal support layer 60 is formed from a porous metal having gas permeability and electrical conductivity.
 メタルサポート層60を形成する金属としては、例えば、ニッケル(Ni)やクロム(Cr)を含有する耐食合金や耐食鋼、ステンレス鋼などを用いることができる。 As the metal that forms the metal support layer 60, for example, a corrosion-resistant alloy, corrosion-resistant steel, stainless steel, or the like containing nickel (Ni) or chromium (Cr) can be used.
 (セルフレーム113)
 セルフレーム113は、図3および図4に示すように、メタルサポートセル10を周囲から保持するものである。図3に示すように、セルフレーム113は、開口部113Hを有する。セルフレーム113の開口部113Hには、メタルサポートセル10が配置される。メタルサポートセル10の外周は、セルフレーム113の開口部113Hの内縁に接合される。
(Cell frame 113)
As shown in FIGS. 3 and 4, the cell frame 113 holds the metal support cell 10 from the periphery. As shown in FIG. 3, the cell frame 113 has an opening 113H. The metal support cell 10 is disposed in the opening 113H of the cell frame 113. The outer periphery of the metal support cell 10 is joined to the inner edge of the opening 113H of the cell frame 113.
 セルフレーム113は、図3に示すように、アノードガスが流通するアノードガス流入口113aおよびアノードガス流出口113bと、カソードガスが流通するカソードガス流入口113cおよびカソードガス流出口113dと、を有している。 As shown in FIG. 3, the cell frame 113 has an anode gas inlet 113a and an anode gas outlet 113b through which the anode gas flows, and a cathode gas inlet 113c and a cathode gas outlet 113d through which the cathode gas flows. doing.
 (セパレータ120)
 図2に示すように、セパレータ120の流路部121は、凹凸形状が長手方向Yに延在するように略直線状に形成されている。これにより、流路部121に沿って流れるガスの流れ方向は、長手方向Yである。
(Separator 120)
As shown in FIG. 2, the flow path portion 121 of the separator 120 is formed in a substantially linear shape so that the concavo-convex shape extends in the longitudinal direction Y. Thereby, the flow direction of the gas flowing along the flow path part 121 is the longitudinal direction Y.
 図2に示すように、セパレータ120は、アノードガスが流通するアノードガス流入口125aおよびアノードガス流出口125bと、カソードガスが流通するカソードガス流入口125cおよびカソードガス流出口125dと、を有している。 As shown in FIG. 2, the separator 120 has an anode gas inlet 125a and an anode gas outlet 125b through which anode gas flows, and a cathode gas inlet 125c and cathode gas outlet 125d through which cathode gas flows. ing.
 (集電補助層130)
 集電補助層130は、ガスを通す空間を形成しつつ面圧を均等にして、メタルサポートセル10とセパレータ120との電気的な接触を補助する。集電補助層130は、例えば、金網状のエキスパンドメタルによって形成することができる。
(Current collection auxiliary layer 130)
The current collecting auxiliary layer 130 forms a space through which gas passes and makes the surface pressure uniform to assist the electrical contact between the metal support cell 10 and the separator 120. The current collection auxiliary layer 130 can be formed of, for example, a wire mesh expanded metal.
 [メタルサポートセル10の製造方法]
 次に、図7を参照して、メタルサポートセル10の製造方法について説明する。図7は、メタルサポートセル10の製造方法を説明するための概略図である。なお、メタルサポートセル10の前駆体である電解質層40、アノード層50およびメタルサポート層60から構成されるハーフセルの製造方法について説明し、カソード層30の製造方法については省略する。
[Method for Manufacturing Metal Support Cell 10]
Next, with reference to FIG. 7, the manufacturing method of the metal support cell 10 is demonstrated. FIG. 7 is a schematic view for explaining a method for manufacturing the metal support cell 10. In addition, the manufacturing method of the half cell comprised from the electrolyte layer 40 which is a precursor of the metal support cell 10, the anode layer 50, and the metal support layer 60 is demonstrated, and the manufacturing method of the cathode layer 30 is abbreviate | omitted.
 メタルサポートセル10の製造方法は、スラリー調製工程と、塗工工程と、積層工程と、焼結工程と、と有する。 The manufacturing method of the metal support cell 10 has a slurry preparation process, a coating process, a lamination process, and a sintering process.
 まず、スラリー調製工程では、スラリー原料を混合して電解質スラリー、第1アノード電極スラリー、第2アノード電極スラリー、およびメタルサポートスラリーを調製する。スラリー原料の混合には、公知の攪拌装置を適宜選択して使用することができる。 First, in the slurry preparation step, the slurry raw materials are mixed to prepare an electrolyte slurry, a first anode electrode slurry, a second anode electrode slurry, and a metal support slurry. For mixing the slurry raw materials, a known stirring device can be appropriately selected and used.
 電解質スラリーは、セラミック粉末を主成分とし、溶媒およびバインダーを含むスラリー原料を混合して形成される。 The electrolyte slurry is formed by mixing a slurry raw material containing ceramic powder as a main component and containing a solvent and a binder.
 第1アノード電極スラリーは、セラミック粒子210を主成分とし、溶媒およびバインダーを含むスラリー原料を混合して形成される。第2アノード電極スラリーは、セラミック粒子210および金属粒子220を主成分とし、溶媒およびバインダーを含むスラリー原料を混合して形成される。 The first anode electrode slurry is formed by mixing a slurry raw material containing ceramic particles 210 as a main component and containing a solvent and a binder. The second anode electrode slurry is formed by mixing slurry raw materials containing ceramic particles 210 and metal particles 220 as main components and containing a solvent and a binder.
 メタルサポートスラリーは、金属粉末を主成分とし、溶媒およびバインダーを含むスラリー原料を混合して形成される。 The metal support slurry is formed by mixing a slurry raw material containing a metal powder as a main component and containing a solvent and a binder.
 スラリー用の溶媒としては、例えば、溶媒としては、特に制限されないが、水、および/または、メタノール、エタノール、1-プロパノール(NPA)、2-プロパノール、エチレングリコール、プロピレングリコールなどのアルコール系溶媒、Nメチル-2ピロリドン(NMP)など有機溶媒が挙げられる。これら溶媒は、一種のみを用いてもよいし、二種以上を混合して用いてもよい。溶媒の使用量は、スラリーをシート状に成形する際において、その粘度が成形に適したものとなるように調整することが好ましい。 As the solvent for the slurry, for example, the solvent is not particularly limited, but water and / or alcohol solvents such as methanol, ethanol, 1-propanol (NPA), 2-propanol, ethylene glycol, propylene glycol, An organic solvent such as N-methyl-2-pyrrolidone (NMP) can be mentioned. These solvents may be used alone or in combination of two or more. The amount of the solvent used is preferably adjusted so that the viscosity is suitable for molding when the slurry is molded into a sheet.
 スラリーに添加するバインダーは、公知の有機バインダーを適宜選択して使用することができる。有機バインダーとしては、例えば、エチレン系共重合体、スチレン系共重合体、アクリレート系共重合体、メタクリレート系共重合体、ビニルブチラール系樹脂、ビニルアセタール系樹脂、ビニルホルマール系樹脂、ビニルアルコール系樹脂、エチルセルロースなどのセルロース類が挙げられる。 As the binder to be added to the slurry, a known organic binder can be appropriately selected and used. Examples of the organic binder include an ethylene copolymer, a styrene copolymer, an acrylate copolymer, a methacrylate copolymer, a vinyl butyral resin, a vinyl acetal resin, a vinyl formal resin, and a vinyl alcohol resin. And celluloses such as ethyl cellulose.
 なお、各スラリーには、必要に応じて可塑剤や分散剤などを添加してもよい。 In addition, you may add a plasticizer, a dispersing agent, etc. to each slurry as needed.
 次に、塗工工程では、ナイフコート、ドクターブレードなどの塗工装置を用いたテープキャスト法などのシート成形法を用いて上記スラリー調製工程で調製した各スラリーをシート状に成形する。得られたシートを、乾燥後、必要に応じて加熱処理することによって電解質シート、第1アノード電極シート、第2アノード電極シートおよびメタルサポートシートを得ることができる。 Next, in the coating step, each slurry prepared in the slurry preparation step is formed into a sheet using a sheet forming method such as a tape casting method using a coating device such as a knife coater or a doctor blade. The obtained sheet is dried and then heat-treated as necessary to obtain an electrolyte sheet, a first anode electrode sheet, a second anode electrode sheet, and a metal support sheet.
 次に、積層工程では、電解質シート、第1アノード電極シート、第2アノード電極シートおよびメタルサポートシートを順に積層して貼り合わせて積層体を形成する。 Next, in the laminating step, an electrolyte sheet, a first anode electrode sheet, a second anode electrode sheet, and a metal support sheet are sequentially laminated and bonded to form a laminated body.
 最後に、焼結工程では、上記積層体を脱脂および焼結して、メタルサポートセル10の前駆体であるハーフセルを得ることができる。なお、焼成条件は特に制限されず、公知の条件に設定することができる。 Finally, in the sintering step, the laminate can be degreased and sintered to obtain a half cell that is a precursor of the metal support cell 10. The firing conditions are not particularly limited and can be set to known conditions.
 なお、アノード層50が2層構造の場合を説明したが、3層以上の多層構造(後述する変形例2を参照)または単層構造(後述する変形例3を参照)の場合は、層の数に応じて調製するスラリーの種類を変更することができる。 In addition, although the case where the anode layer 50 has a two-layer structure has been described, in the case of a multilayer structure of three or more layers (see Modification 2 described later) or a single-layer structure (see Modification 3 described later), The kind of slurry to be prepared can be changed according to the number.
 以下、図8~図11を参照して、本実施形態に係るメタルサポートセル10の作用効果について対比例に係るメタルサポートセルと比較して説明する。図8は、対比例1に係るメタルサポートセルの断面図である。図9は、対比例2に係るメタルサポートセルの断面図である。図10は、図9の破線部Bによって囲まれる部分の拡大断面図である。なお、図10中の矢印は、イオンの流れを示す。図11は、対比例3に係るメタルサポートセルの断面図である。 Hereinafter, the operation and effect of the metal support cell 10 according to this embodiment will be described with reference to FIGS. FIG. 8 is a cross-sectional view of the metal support cell according to the comparative example 1. FIG. 9 is a cross-sectional view of the metal support cell according to the comparative 2. 10 is an enlarged cross-sectional view of a portion surrounded by a broken line portion B in FIG. Note that the arrows in FIG. 10 indicate the flow of ions. FIG. 11 is a cross-sectional view of a metal support cell according to Comparative Example 3.
 図8に示す対比例1に係るメタルサポートセルは、セラミック粒子210から形成されたアノード層50aを有する。このため、アノード層50aとメタルサポート層60との間の熱膨張率の差やメタルサポート層60の金属が酸化して膨張することによって、アノード層50aとメタルサポート層60との間に体積変化の差が生じてしまう。特に、固体酸化物形燃料電池の作動温度は、約700~1000°Cと高温であるため、アノード層50aとメタルサポート層60との間に体積変化の差がより一層生じやすい。これにより、アノード層50aとメタルサポート層60との間の界面に剥離が生じやすくなってしまう。 8 has a anode layer 50a formed from ceramic particles 210. The metal support cell according to the comparative example 1 shown in FIG. Therefore, the volume change between the anode layer 50a and the metal support layer 60 due to the difference in thermal expansion coefficient between the anode layer 50a and the metal support layer 60 or the expansion of the metal of the metal support layer 60 due to oxidation. The difference will occur. In particular, since the operating temperature of the solid oxide fuel cell is as high as about 700 to 1000 ° C., a difference in volume change is more likely to occur between the anode layer 50a and the metal support layer 60. Thereby, peeling tends to occur at the interface between the anode layer 50a and the metal support layer 60.
 図9に示す対比例2に係るメタルサポートセルは、セラミック粒子210および金属粒子220を含むアノード層50bを有する。これにより、アノード層50bとメタルサポート層60との間の体積変化の差を低減することができる。しかしながら、図10に示すように、電解質層40とアノード層50bとの間の界面にイオン伝導性の低い金属粒子220が存在するため、イオンの伝導パスが減少してしまう。これにより、メタルサポートセルの発電性能が低下してしまう。 9 has an anode layer 50b including ceramic particles 210 and metal particles 220. The metal support cell according to Comparative Example 2 shown in FIG. Thereby, the difference in volume change between the anode layer 50b and the metal support layer 60 can be reduced. However, as shown in FIG. 10, since the metal particles 220 having low ion conductivity exist at the interface between the electrolyte layer 40 and the anode layer 50b, the ion conduction path decreases. Thereby, the power generation performance of a metal support cell will fall.
 図11に示す対比例3に係るメタルサポートセルは、セラミック粒子210から形成されたアノード層50cと、アノード層50cと隣接する側の空孔の一部にセラミック粒子210を埋め込んだ表面層61cを備えるメタルサポート層60cと、を有する。これにより、アノード層50cとメタルサポート層60cの表面層61cとの間の界面の体積変化の差を低減することができる。さらに、アノード層50cをセラミック粒子210から形成することができるため、イオン伝導性を維持することができる。しかしながら、メタルサポート層60cの強度を維持するためには、メタルサポート層60cの厚みを増加させる必要があるため、メタルサポートセルの厚みが増加してしまう。一方で、メタルサポートセルの厚みを低減するためにアノード層50cの厚みを低減すると、反応面積が減るため、電池性能が低下してしまう。したがって、対比例3のようにメタルサポート層60cの一部にセラミック粒子210を埋め込んだ形態は好ましくない。 The metal support cell according to Comparative Example 3 shown in FIG. 11 includes an anode layer 50c formed from the ceramic particles 210, and a surface layer 61c in which the ceramic particles 210 are embedded in a part of the holes adjacent to the anode layer 50c. A metal support layer 60c. Thereby, the difference of the volume change of the interface between the anode layer 50c and the surface layer 61c of the metal support layer 60c can be reduced. Furthermore, since the anode layer 50c can be formed from the ceramic particles 210, ion conductivity can be maintained. However, in order to maintain the strength of the metal support layer 60c, it is necessary to increase the thickness of the metal support layer 60c, which increases the thickness of the metal support cell. On the other hand, when the thickness of the anode layer 50c is reduced in order to reduce the thickness of the metal support cell, the reaction area is reduced, so that the battery performance is deteriorated. Therefore, a configuration in which the ceramic particles 210 are embedded in a part of the metal support layer 60c as in the comparative example 3 is not preferable.
 これに対して、本実施形態に係るメタルサポートセル10は、セラミック粒子210と金属粒子220とを含み、触媒機能を備えるアノード層50と、アノード層50の一方側に配置され、セラミックから形成された電解質層40と、アノード層50の他方側に配置され、金属から形成されたメタルサポート層60と、を有する。アノード層50中のセラミック粒子210の含有量に対する金属粒子220の含有量の比率(金属/セラミック比)は、メタルサポート層60側が電解質層40側よりも大きくなるように形成されている。 On the other hand, the metal support cell 10 according to the present embodiment includes the ceramic particles 210 and the metal particles 220, is disposed on one side of the anode layer 50 having a catalytic function, and is formed of ceramic. And an electrolyte layer 40 and a metal support layer 60 disposed on the other side of the anode layer 50 and made of metal. The ratio of the content of the metal particles 220 to the content of the ceramic particles 210 in the anode layer 50 (metal / ceramic ratio) is formed so that the metal support layer 60 side is larger than the electrolyte layer 40 side.
 上記メタルサポートセル10によれば、アノード層50中のメタルサポート層60側において金属/セラミック比が比較的高い。このため、金属とセラミックとの間の熱膨張率の差や金属の酸化によるアノード層50とメタルサポート層60との間の体積変化の差が界面で小さくなる。これにより、アノード層50とメタルサポート層60との間の界面の剥離を抑制することができる。また、アノード層50中の電解質層40側において金属/セラミック比が比較的低い、すなわち、セラミック粒子210の含有量が比較的高い。このため、アノード層50と電解質層40との間の界面でのイオン伝導性を維持することができる。 According to the metal support cell 10, the metal / ceramic ratio is relatively high on the metal support layer 60 side in the anode layer 50. For this reason, the difference in the coefficient of thermal expansion between the metal and the ceramic and the difference in volume change between the anode layer 50 and the metal support layer 60 due to the oxidation of the metal are reduced at the interface. Thereby, peeling of the interface between the anode layer 50 and the metal support layer 60 can be suppressed. Further, the metal / ceramic ratio is relatively low on the electrolyte layer 40 side in the anode layer 50, that is, the content of the ceramic particles 210 is relatively high. For this reason, the ionic conductivity at the interface between the anode layer 50 and the electrolyte layer 40 can be maintained.
 また、アノード層50は複数の空孔Hを有する多孔体であり、アノード層50内の単位体積に含まれる空孔Hの平均径は、メタルサポート層60側が電解質層40側よりも大きくなるように形成されている。これにより、アノード層50は、メタルサポート層60側で空孔Hが大きいため、ガス拡散性が向上し、効率的に電解質層40付近までアノードガスを供給することができる。また、アノード層50は、電解質層40側で空孔Hが小さいため、電解質層40とアノード層50との接触面積が増加する。これにより、電解質層40とアノード層50との間の界面でイオンの供給量が増えるため、イオン伝導性を向上させることができる。 The anode layer 50 is a porous body having a plurality of pores H, and the average diameter of the pores H included in the unit volume in the anode layer 50 is larger on the metal support layer 60 side than on the electrolyte layer 40 side. Is formed. Thereby, since the anode layer 50 has large holes H on the metal support layer 60 side, the gas diffusibility is improved, and the anode gas can be efficiently supplied to the vicinity of the electrolyte layer 40. In addition, since the anode layer 50 has small holes H on the electrolyte layer 40 side, the contact area between the electrolyte layer 40 and the anode layer 50 increases. Thereby, since the supply amount of ions increases at the interface between the electrolyte layer 40 and the anode layer 50, the ion conductivity can be improved.
 また、アノード層50は、空孔Hに含浸した触媒をさらに有する。メタルサポートセル10の製造においては、触媒は、空孔Hが形成された後に、メタルサポート層60側からアノード層50内に含浸される。この際、空孔Hの平均径が電解質層40側よりも大きいメタルサポート層60側から触媒を含浸させることによって、触媒を電解質層40付近まで含浸させることができる。 The anode layer 50 further has a catalyst impregnated in the holes H. In the manufacture of the metal support cell 10, the catalyst is impregnated into the anode layer 50 from the metal support layer 60 side after the holes H are formed. At this time, the catalyst can be impregnated to the vicinity of the electrolyte layer 40 by impregnating the catalyst from the metal support layer 60 side where the average diameter of the holes H is larger than that of the electrolyte layer 40 side.
 また、アノード層50内の金属粒子220は、メタルサポート層60を形成する金属と同程度の熱膨張率を有する。これにより、アノード層50とメタルサポート層60との間の界面での熱膨張率の差による剥離が抑制される。 Further, the metal particles 220 in the anode layer 50 have a thermal expansion coefficient similar to that of the metal forming the metal support layer 60. Thereby, peeling due to the difference in coefficient of thermal expansion at the interface between the anode layer 50 and the metal support layer 60 is suppressed.
 また、アノード層50内のセラミック粒子210は、電解質層40を形成するセラミックと同程度の格子定数および同程度の熱膨張率を有する。これにより、アノード層50と電解質層40との間の界面での接合性を向上させることができる。 Moreover, the ceramic particles 210 in the anode layer 50 have the same lattice constant and the same thermal expansion coefficient as the ceramic forming the electrolyte layer 40. Thereby, the bondability at the interface between the anode layer 50 and the electrolyte layer 40 can be improved.
 また、アノード層50は、第1アノード層51と第2アノード層52を含む2層以上の層から構成される多層構造を有する。これにより、各層ごとに、金属/セラミック比、金属粒子220の粒子径、セラミック粒子210の粒子径および空孔径などを制御しやすくなる。 The anode layer 50 has a multilayer structure composed of two or more layers including the first anode layer 51 and the second anode layer 52. This makes it easy to control the metal / ceramic ratio, the particle diameter of the metal particles 220, the particle diameter of the ceramic particles 210, the pore diameter, and the like for each layer.
 以下、本実施形態の変形例について説明する。なお、前述した実施形態と同様の構成については、同一の符号を付してその説明を省略する。 Hereinafter, modifications of the present embodiment will be described. In addition, about the structure similar to embodiment mentioned above, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 <変形例1>
 図12は、変形例1に係るメタルサポートセルの断面図である。変形例1に係るメタルサポートセルのアノード層150は、図12に示すように、単位体積に含まれるセラミック粒子210の平均粒子径および単位体積に含まれる金属粒子220の平均粒子径が、メタルサポート層60側(図12の下側)が電解質層40側よりも大きくなるように構成されている点で前述した実施形態と異なる。なお、アノード層150は、前述した実施形態のように多層構造としてもよいし、単層により構成してもよい。
<Modification 1>
FIG. 12 is a cross-sectional view of a metal support cell according to the first modification. As shown in FIG. 12, the anode layer 150 of the metal support cell according to the first modification has an average particle size of the ceramic particles 210 included in the unit volume and an average particle size of the metal particles 220 included in the unit volume. This is different from the above-described embodiment in that the layer 60 side (the lower side in FIG. 12) is configured to be larger than the electrolyte layer 40 side. The anode layer 150 may have a multilayer structure as in the above-described embodiment, or may be configured by a single layer.
 ここで、「粒子径」とは、例えば、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などを用いて観察される粒子の輪郭線上の任意の2点間の距離のうち、最大の距離を意味する。 Here, the “particle diameter” is, for example, the maximum of the distance between any two points on the contour line of a particle observed using a scanning electron microscope (SEM), a transmission electron microscope (TEM), or the like. Means distance.
 上述したように、変形例1に係るメタルサポートセルは、アノード層150内の単位体積に含まれる金属粒子220の平均粒子径は、メタルサポート層60側が電解質層40側よりも大きくなるように形成されている。金属粒子220の平均粒子径を大きくすることによって、単位体積に含まれる金属粒子220の合計の表面積を小さくすることができる。このため、アノード層150は、メタルサポート層60側において金属の酸化による膨張を抑えることができる。 As described above, the metal support cell according to Modification 1 is formed such that the average particle diameter of the metal particles 220 included in the unit volume in the anode layer 150 is larger on the metal support layer 60 side than on the electrolyte layer 40 side. Has been. By increasing the average particle diameter of the metal particles 220, the total surface area of the metal particles 220 included in the unit volume can be reduced. For this reason, the anode layer 150 can suppress expansion due to metal oxidation on the metal support layer 60 side.
 また、アノード層150内の単位体積に含まれるセラミック粒子210の平均粒子径は、メタルサポート層60側が電解質層40側よりも大きくなるように形成されている。換言すると、アノード層150内の単位体積に含まれるセラミック粒子210の平均粒子径は、電解質層40側がメタルサポート層60側よりも小さくなるように形成されている。これにより、電解質層40とアノード層50との間の界面の接触面積が増加するため、イオン伝導性を向上させることができる。 Also, the average particle diameter of the ceramic particles 210 contained in the unit volume in the anode layer 150 is formed so that the metal support layer 60 side is larger than the electrolyte layer 40 side. In other words, the average particle diameter of the ceramic particles 210 contained in the unit volume in the anode layer 150 is formed so that the electrolyte layer 40 side is smaller than the metal support layer 60 side. Thereby, since the contact area of the interface between the electrolyte layer 40 and the anode layer 50 increases, ion conductivity can be improved.
 <変形例2>
 図13は、変形例2に係るメタルサポートセルの断面図である。変形例2に係るメタルサポートセルのアノード層250は、図13に示すように、3層以上の層から構成される多層構造を有する点で前述した実施形態と異なる。
<Modification 2>
FIG. 13 is a cross-sectional view of a metal support cell according to Modification 2. The anode layer 250 of the metal support cell according to the modification 2 is different from the above-described embodiment in that it has a multilayer structure composed of three or more layers as shown in FIG.
 アノード層250のうち、メタルサポート層60に近い側の層は、電解質層40に近い側の層よりも金属/セラミック比および空孔径が大きくなるように形成されている。なお、図13では、セラミック粒子210の粒子径は同じ大きさで図示しているが、電解質層40に近い側の層がメタルサポート層60に近い側の層よりもセラミック粒子210の粒子径が小さくなるように形成してもよい。同様に、金属粒子220の粒子径は同じ大きさで図示しているが、メタルサポート層60に近い側の層が電解質層40に近い側の層よりも金属粒子220の粒子径が大きくなるように形成してもよい。 Of the anode layer 250, the layer closer to the metal support layer 60 is formed so that the metal / ceramic ratio and the pore diameter are larger than the layer closer to the electrolyte layer 40. In FIG. 13, the particle diameters of the ceramic particles 210 are the same, but the layer closer to the electrolyte layer 40 has a particle diameter of the ceramic particles 210 than the layer closer to the metal support layer 60. You may form so that it may become small. Similarly, the particle diameter of the metal particles 220 is illustrated with the same size, but the particle diameter of the metal particles 220 is larger in the layer closer to the metal support layer 60 than in the layer closer to the electrolyte layer 40. You may form in.
 上述したように、変形例2に係るメタルサポートセルのアノード層250は、3層以上の層から構成される多層構造を有する。多層構造の層の数が増加する程、アノード層250内の金属/セラミック比、セラミック粒子210の粒子径、金属粒子220の粒子径、空孔径などの分布をより高い精度で制御しやすくなる。金属/セラミック比、セラミック粒子210の粒子径、金属粒子220の粒子径および空孔径を、それぞれメタルサポート層60側が電解質層40側よりも大きくなるように形成することによる効果は、上記実施形態および変形例1において述べた通りである。 As described above, the anode layer 250 of the metal support cell according to the modified example 2 has a multilayer structure including three or more layers. As the number of layers in the multilayer structure increases, the distribution of the metal / ceramic ratio in the anode layer 250, the particle diameter of the ceramic particles 210, the particle diameter of the metal particles 220, the pore diameter, and the like becomes easier to control with higher accuracy. The effects obtained by forming the metal / ceramic ratio, the particle diameter of the ceramic particles 210, the particle diameter of the metal particles 220, and the pore diameter so that the metal support layer 60 side is larger than the electrolyte layer 40 side are the same as in the above embodiment and As described in the first modification.
 <変形例3>
 図14は、変形例3に係るメタルサポートセルの断面図である。変形例3に係るメタルサポートセルのアノード層350は、図14に示すように、1層(単層)から構成される点で前述した実施形態と異なる。
<Modification 3>
FIG. 14 is a cross-sectional view of a metal support cell according to Modification 3. The anode layer 350 of the metal support cell according to the modification 3 is different from the above-described embodiment in that it is composed of one layer (single layer) as shown in FIG.
 アノード層350は、メタルサポート層60側が電解質層40側よりも金属/セラミック比および空孔径が大きくなるように形成されている。なお、図14では、セラミック粒子210の粒子径は同じ大きさで図示しているが、電解質層40側がメタルサポート層60側よりもセラミック粒子210の粒子径が小さくなるように形成してもよい。同様に、金属粒子220の粒子径は同じ大きさで図示しているが、メタルサポート層60側が電解質層40側よりも金属粒子220の粒子径が大きくなるように形成してもよい。 The anode layer 350 is formed so that the metal support layer 60 side has a larger metal / ceramic ratio and pore diameter than the electrolyte layer 40 side. In FIG. 14, the particle diameter of the ceramic particles 210 is shown as the same size, but the ceramic particles 210 may be formed so that the particle diameter of the ceramic particles 210 is smaller on the electrolyte layer 40 side than on the metal support layer 60 side. . Similarly, although the particle diameter of the metal particle 220 is illustrated with the same size, the metal particle 220 may be formed so that the metal particle 220 has a larger particle diameter than the electrolyte layer 40 side.
 上述したように、変形例2に係るメタルサポートセルのアノード層350は、単層構造を有する。1層の中で金属/セラミック比、セラミック粒子210の粒子径、金属粒子220の粒子径および空孔径の分布を変化させることができる。このため、調製するスラリーの種類が減るため、製造コストを削減することができる。 As described above, the anode layer 350 of the metal support cell according to the modified example 2 has a single layer structure. The distribution of the metal / ceramic ratio, the particle diameter of the ceramic particles 210, the particle diameter of the metal particles 220, and the pore diameter can be changed in one layer. For this reason, since the kind of slurry to prepare decreases, manufacturing cost can be reduced.
 <変形例4>
 図15は、変形例4に係るメタルサポートセルの断面図である。変形例4に係るメタルサポートセルのアノード層450は、図15に示すように、複数の板状部材451から構成される点で前述した実施形態と異なる。複数の板状部材451間の隙間を利用してガスの流路を形成することができる。板状部材451は、多孔質ではない。
<Modification 4>
FIG. 15 is a cross-sectional view of a metal support cell according to Modification 4. The anode layer 450 of the metal support cell according to the modification 4 is different from the above-described embodiment in that the anode layer 450 includes a plurality of plate-like members 451 as shown in FIG. A gas flow path can be formed using gaps between the plurality of plate-like members 451. The plate-like member 451 is not porous.
 各々の板状部材451中の金属/セラミック比は、メタルサポート層60側が電解質層40側よりも大きくなるように形成されている。これにより、変形例4に係るメタルサポートセルは、前述した実施形態と同様の効果を奏する。 The metal / ceramic ratio in each plate-like member 451 is formed so that the metal support layer 60 side is larger than the electrolyte layer 40 side. Thereby, the metal support cell which concerns on the modification 4 has an effect similar to embodiment mentioned above.
 以上、実施形態および変形例を通じて本発明に係るメタルサポートセルを説明したが、本発明は実施形態において説明した内容のみに限定されることはなく、特許請求の範囲の記載に基づいて適宜変更することが可能である。 As described above, the metal support cell according to the present invention has been described through the embodiment and the modification. However, the present invention is not limited only to the content described in the embodiment, and may be appropriately changed based on the description of the claims. It is possible.
 例えば、メタルサポートセルは、前述した実施形態および変形例の仕様を適宜組み合わせて構成してもよい。 For example, the metal support cell may be configured by appropriately combining the specifications of the embodiment and the modification described above.
 また、アノード層内の金属/セラミック比、セラミック粒子の粒子径、金属粒子の粒子径および空孔径の分布は、電解質層側からメタルサポート層側に向かって線型または曲線型に増加する場合に限定されず、階段状に増加する場合も含むものとする。例えば、実施形態や変形例2のように多層構造の場合は、層ごとに金属/セラミック比、セラミック粒子の粒子径、金属粒子の粒子径および空孔径を変化させることによって階段状に増加させることができる。 Also, the distribution of metal / ceramic ratio, ceramic particle particle size, metal particle particle size and pore size in the anode layer is limited to the case where the distribution increases from the electrolyte layer side to the metal support layer side in a linear or curved shape. Not including the case of increasing stepwise. For example, in the case of a multi-layer structure as in the embodiment or the modification 2, the metal / ceramic ratio, the particle diameter of the ceramic particles, the particle diameter of the metal particles, and the pore diameter are increased stepwise for each layer. Can do.
 また、前述した変形例1では、アノード層内の単位体積に含まれるセラミック粒子の平均粒子径および単位体積に含まれる金属粒子の平均粒子径を、メタルサポート層側が電解質層側より大きくなるように形成する例について説明した。しかしながら、これに限定されず、単位体積に含まれるセラミック粒子の平均粒子径または単位体積に含まれる金属粒子の平均粒子径のいずれか一方のみをメタルサポート層側が電解質層側より大きくなるように形成してもよい。 Further, in the above-described modification 1, the average particle diameter of the ceramic particles contained in the unit volume in the anode layer and the average particle diameter of the metal particles contained in the unit volume are set so that the metal support layer side is larger than the electrolyte layer side. The example to form was demonstrated. However, the present invention is not limited to this, and only one of the average particle diameter of the ceramic particles contained in the unit volume or the average particle diameter of the metal particles contained in the unit volume is formed so that the metal support layer side is larger than the electrolyte layer side. May be.
1   燃料電池スタック、
1U  セルユニット、
1A  メタルサポートセルアッセンブリー、
10  メタルサポートセル、
20   発電セル、
30   カソード層、
40   電解質層、
50、150、250、350、450 アノード層、
51   第1アノード層、
52   第2アノード層、
60、60c メタルサポート層、
113  セルフレーム、
120  セパレータ、
130  集電補助層、
210  セラミック粒子、
220  金属粒子、
H    空孔
X    (燃料電池スタックの)短手方向、
Y    (燃料電池スタックの)長手方向、
Z    (燃料電池スタックの)積層方向。
1 Fuel cell stack,
1U cell unit,
1A Metal support cell assembly,
10 Metal support cell,
20 power generation cells,
30 cathode layer,
40 electrolyte layer,
50, 150, 250, 350, 450 anode layer,
51 a first anode layer,
52 second anode layer,
60, 60c metal support layer,
113 cell frames,
120 separator,
130 Current collection auxiliary layer,
210 ceramic particles,
220 metal particles,
H Hole X (Fuel cell stack) short direction,
Y longitudinal direction (of the fuel cell stack),
Z (Fuel cell stack) stacking direction.

Claims (8)

  1.  セラミック粒子と金属粒子とを含み、触媒機能を備えるアノード層と、
     前記アノード層の一方側に配置され、セラミックから形成された電解質層と、
     前記アノード層の他方側に配置され、金属から形成されたメタルサポート層と、を有し、
     前記アノード層中の前記セラミック粒子の含有量に対する前記金属粒子の含有量の比率は、前記メタルサポート層側が前記電解質層側よりも大きい、メタルサポートセル。
    An anode layer comprising ceramic particles and metal particles and having a catalytic function;
    An electrolyte layer disposed on one side of the anode layer and formed from ceramic;
    A metal support layer disposed on the other side of the anode layer and made of metal,
    The ratio of the content of the metal particles to the content of the ceramic particles in the anode layer is a metal support cell in which the metal support layer side is larger than the electrolyte layer side.
  2.  前記アノード層内の単位体積に含まれる前記金属粒子の平均粒子径は、前記メタルサポート層側が前記電解質層側よりも大きい、請求項1に記載のメタルサポートセル。 The metal support cell according to claim 1, wherein an average particle diameter of the metal particles contained in a unit volume in the anode layer is larger on the metal support layer side than on the electrolyte layer side.
  3.  前記アノード層内の単位体積に含まれる前記セラミック粒子の平均粒子径は、前記電解質層側が前記メタルサポート層側よりも小さい、請求項1または請求項2に記載のメタルサポートセル。 The metal support cell according to claim 1 or 2, wherein an average particle diameter of the ceramic particles contained in a unit volume in the anode layer is smaller on the electrolyte layer side than on the metal support layer side.
  4.  前記アノード層は複数の空孔が形成された多孔体であり、
     前記アノード層内の単位体積に含まれる前記空孔の平均径は、前記メタルサポート層側が前記電解質層側よりも大きい、請求項1~3のいずれか1項に記載のメタルサポートセル。
    The anode layer is a porous body in which a plurality of pores are formed,
    The metal support cell according to any one of claims 1 to 3, wherein an average diameter of the pores contained in a unit volume in the anode layer is larger on the metal support layer side than on the electrolyte layer side.
  5.  前記アノード層は、前記空孔に含浸した触媒をさらに有する、請求項4に記載のメタルサポートセル。 The metal support cell according to claim 4, wherein the anode layer further includes a catalyst impregnated in the pores.
  6.  前記アノード層内の前記金属粒子は、前記メタルサポート層を形成する金属と同程度の熱膨張率を有する、請求項1~5のいずれか1項に記載のメタルサポートセル。 The metal support cell according to any one of claims 1 to 5, wherein the metal particles in the anode layer have a thermal expansion coefficient comparable to a metal forming the metal support layer.
  7.  前記アノード層内の前記セラミック粒子は、前記電解質層を形成するセラミックと同程度の格子定数および同程度の熱膨張率を有する、請求項1~6のいずれか1項に記載のメタルサポートセル。 The metal support cell according to any one of claims 1 to 6, wherein the ceramic particles in the anode layer have the same lattice constant and the same thermal expansion coefficient as the ceramic forming the electrolyte layer.
  8.  前記アノード層は、2層以上の層から構成される多層構造を有する、請求項1~7のいずれか1項に記載のメタルサポートセル。 The metal support cell according to any one of claims 1 to 7, wherein the anode layer has a multilayer structure including two or more layers.
PCT/JP2018/005222 2018-02-15 2018-02-15 Metal-supported cell WO2019159276A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/005222 WO2019159276A1 (en) 2018-02-15 2018-02-15 Metal-supported cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/005222 WO2019159276A1 (en) 2018-02-15 2018-02-15 Metal-supported cell

Publications (1)

Publication Number Publication Date
WO2019159276A1 true WO2019159276A1 (en) 2019-08-22

Family

ID=67619796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005222 WO2019159276A1 (en) 2018-02-15 2018-02-15 Metal-supported cell

Country Status (1)

Country Link
WO (1) WO2019159276A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138690A (en) * 1994-11-07 1996-05-31 Tonen Corp Solid electrolyte fuel cell
JP2004055194A (en) * 2002-07-17 2004-02-19 Mitsubishi Materials Corp Electrode of solid oxide type fuel cell
JP2008502113A (en) * 2004-06-10 2008-01-24 テクニカル ユニバーシティ オブ デンマーク Solid oxide fuel cell
JP2009302010A (en) * 2008-06-17 2009-12-24 Showa Shell Sekiyu Kk Fuel cell cogeneration system
JP2013511795A (en) * 2009-11-18 2013-04-04 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Anode for high temperature fuel cell and its manufacture
JP2013145671A (en) * 2012-01-13 2013-07-25 Kikusui Chemical Industries Co Ltd Single cell for direct flame fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138690A (en) * 1994-11-07 1996-05-31 Tonen Corp Solid electrolyte fuel cell
JP2004055194A (en) * 2002-07-17 2004-02-19 Mitsubishi Materials Corp Electrode of solid oxide type fuel cell
JP2008502113A (en) * 2004-06-10 2008-01-24 テクニカル ユニバーシティ オブ デンマーク Solid oxide fuel cell
JP2009302010A (en) * 2008-06-17 2009-12-24 Showa Shell Sekiyu Kk Fuel cell cogeneration system
JP2013511795A (en) * 2009-11-18 2013-04-04 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Anode for high temperature fuel cell and its manufacture
JP2013145671A (en) * 2012-01-13 2013-07-25 Kikusui Chemical Industries Co Ltd Single cell for direct flame fuel cell

Similar Documents

Publication Publication Date Title
CN107078328B (en) Method for manufacturing solid oxide fuel cell
JP6658754B2 (en) Solid oxide fuel cell and method for producing electrolyte layer-anode assembly
CN113089010B (en) Hydrogen production apparatus
WO2017014069A1 (en) Electrolyte layer-anode composite member for fuel cell and method for manufacturing said member
JP6642446B2 (en) Cell structure, method for manufacturing the same, and fuel cell
JPWO2016157566A1 (en) Proton conductor, solid electrolyte layer for fuel cell, cell structure and fuel cell comprising the same
CN107851814B (en) Fuel cell
JP6370696B2 (en) Cell structure, electrolyte membrane-electrode assembly, and fuel cell
WO2019198372A1 (en) Metal-supported cell and method for manufacturing metal-supported cell
JP4923407B2 (en) Method for producing solid oxide fuel cell
WO2017130904A1 (en) Fuel cell
JP7170559B2 (en) Fuel cell and manufacturing method thereof
WO2018017698A2 (en) Intermediate-temperature fuel cell tailored for efficient utilization of methane
JP6153666B2 (en) Method for producing anode support for solid oxide fuel cell and anode support for solid oxide fuel cell
JP2017142949A (en) Fuel battery single cell
WO2019159276A1 (en) Metal-supported cell
JP7107875B2 (en) Manufacturing method of fuel electrode-solid electrolyte layer composite
JP7077851B2 (en) Support structure of metal support cell
JP7124860B2 (en) Metal porous body, manufacturing method thereof, and fuel cell
JP7484048B2 (en) Solid oxide fuel cell and method for producing same
JP7349846B2 (en) Electrochemical cell, electrochemical reaction cell stack
JP7349847B2 (en) Electrochemical cell, electrochemical reaction cell stack
JP7243709B2 (en) Electrolyte layer-anode composite member for fuel cell, cell structure and fuel cell, and method for manufacturing composite member
WO2020261935A1 (en) Fuel electrode-solid electrolyte layer composite body, fuel electrode-solid electrolyte layer composite member, fuel cell and method for producing fuel cell
JP2019003883A (en) Metal support for battery structure, method for manufacturing the metal support, and furl battery single cell including metal support

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP