WO2019157919A1 - 一种竞争窗管理的方法及发送设备 - Google Patents

一种竞争窗管理的方法及发送设备 Download PDF

Info

Publication number
WO2019157919A1
WO2019157919A1 PCT/CN2019/072869 CN2019072869W WO2019157919A1 WO 2019157919 A1 WO2019157919 A1 WO 2019157919A1 CN 2019072869 W CN2019072869 W CN 2019072869W WO 2019157919 A1 WO2019157919 A1 WO 2019157919A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
data packets
reference time
cbg
nack
Prior art date
Application number
PCT/CN2019/072869
Other languages
English (en)
French (fr)
Inventor
贾琼
朱俊
吴霁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811031772.6A external-priority patent/CN110166182B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19754057.8A priority Critical patent/EP3755059B1/en
Publication of WO2019157919A1 publication Critical patent/WO2019157919A1/zh
Priority to US16/991,227 priority patent/US11553531B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • H04W40/16Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality based on interference

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to a technique for updating a contention window on an unlicensed band.
  • LAA Licensed Assisted Access
  • R-13 Enhanced Authorized Spectrum Assisted Access
  • Release 14 Release-14, R-14
  • LBT Listen before talk
  • the application of the unlicensed band is still a business needs to enhance the technical means to the user experience.
  • the type 4 LBT Cat 4 LBT, also referred to as type 1 LBT in some standards
  • the random backoff number is subjected to a random backoff of the corresponding number to avoid collision.
  • the random backoff number usually selects a random value between 0 and the competition window CW at the time of initialization.
  • the above CW will be dynamically updated with the state of the channel. As the transmission resources in the 5GNR are more and more finely divided, how to determine the CW more accurately becomes an urgent problem to be solved.
  • the embodiment of the present application provides a method and apparatus for contention window management applied to an unlicensed frequency band.
  • an embodiment of the present application provides a method for contention window management, including: a sending device sends one or more data packets to one or more receiving devices in one or more reference time units, the one or more The data packet occupies a first bandwidth; the transmitting device receives a hybrid automatic repeat request HARQ for the one or more data packets from the one or more receiving devices;
  • the transmitting device determines a contention window CW size of the second bandwidth by referring to HARQ of the one or more data packets.
  • the update of the contention window CW can be determined based on the HARQ feedback of the data packet, and the communication efficiency is improved.
  • the transmitting device determines the contention window CW size of the second bandwidth by referring to the HARQ of the one or more data packets, including:
  • a ratio Z of NACKs or ACKs in the HARQ of the one or more data packets is a ratio Z of NACKs or ACKs in the HARQ of the one or more data packets.
  • the hybrid automatic repeat request HARQ for the one or more data packets includes one or a combination of the following:
  • HARQ TB HARQ of the transport block TB corresponding to the one or more first data packets; or HARQ, CBG HARQ of one or more coded block groups CBG corresponding to one or more second data packets.
  • the ratio Z conforms to the following formula:
  • Z' represents the ratio of CBGs in a TB that are fed back as negative acknowledgment NACKs
  • N CBG represents the number of CBGs in one TB
  • NACK CBG represents the number of CBGs that feed back NACKs
  • NACK TB represents the one or more reference time units
  • N TB represents the number of TBs transmitted in the one or more reference time units
  • x is the number of TBs based on CBG transmissions in the one or more reference time units.
  • the ratio Z conforms to the following formula:
  • NACK TB represents the number of TBs with TB as the minimum feedback unit and feedback NACK in one or more reference time units.
  • N TB represents the total number of TBs transmitted in one or more reference time units, and x is the number of TBs with CBG as the minimum feedback unit in one or more reference time units.
  • ⁇ and ⁇ represent weighting factors of CBG-based HARQ feedback and TB-based HARQ feedback, respectively.
  • ⁇ + ⁇ 1, exemplarily, the values of ⁇ and ⁇ may be 0 and 1, respectively.
  • ⁇ and ⁇ represent weighting factors of CBG-based HARQ feedback and TB-level HARQ feedback, respectively.
  • ⁇ + ⁇ 1, exemplarily, the values of ⁇ and ⁇ may be 0 and 1, respectively.
  • the HARQ determining the contention window CW size of the second bandwidth by referring to the one or more data packets includes:
  • the one reference time unit is a start time unit in a recent transmission of the transmitting device.
  • the HARQ determining the contention window CW size of the second bandwidth by referring to the HARQ of the one or more data packets includes:
  • the HARQ of the one or more data packets includes: HARQ of the one or more data packets sent in the most recent each of the multiple reference time units on a non-overlapping frequency domain unit.
  • the hybrid automatic repeat request HARQ of the one or more data packets only includes the TB HARQ of the one or more first data packets.
  • the ratio Z conforms to the following formula:
  • NACK TB represents the number of TBs that feed back NACK in one reference time unit
  • N TB represents the number of TBs transmitted in one reference time unit
  • the hybrid automatic repeat request (HARQ) of the one or more data packets only includes the CBG HARQ of the one or more second data packets, and the ratio Z conforms to the following formula:
  • N CBG represents the number of CBGs transmitted by the one or more reference time units
  • NACK CBG represents the number of CBGs that feed back NACKs.
  • the method for adjusting the contention window provided by the present application can increase the value of the contention window when the channel quality is poor, so that the transmitting device can have a longer time to backoff and avoid collision and cause interference; when the channel quality is good, the system restarts.
  • the competition window or the reduced contention window enables the transmitting device to complete the backoff in a short time and shorten the channel access time.
  • an embodiment of the present application provides a contention window management apparatus for a network device, including means or means for performing the various steps of the above first aspect.
  • an embodiment of the present application provides a contention window management apparatus for a terminal device, including means or means for performing the various steps of the above first aspect.
  • the present application provides a communication device including a processor and a memory, the memory is configured to store a computer execution instruction, and the processor is configured to execute a computer execution instruction stored in the memory to cause the communication device The method described in the first aspect is performed.
  • the present application provides a computer readable storage medium having stored therein instructions that, when executed on a computer, cause the computer to perform the method of the first aspect.
  • the present application provides a chip connected to a memory for reading and executing a software program stored in the memory to implement the method of the first aspect.
  • the application provides a communication system, comprising the network device according to the second aspect and the terminal device of the third aspect.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of determining a reference time unit according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of determining a reference time unit according to another embodiment of the present application.
  • FIG. 9 is a schematic diagram of determining a reference time unit according to another embodiment of the present application.
  • FIG. 10 is a schematic diagram of CW inheritance in a flexible bandwidth scenario according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of CW inheritance in a flexible bandwidth scenario according to another embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of CW update according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of CW update according to another embodiment of the present application.
  • FIG. 14 is a schematic diagram of CW update according to another embodiment of the present application.
  • FIG. 15 is a schematic diagram of CW update according to another embodiment of the present disclosure.
  • 16 is a schematic diagram of CW update provided by another embodiment of the present application.
  • FIG. 17 is a schematic diagram of multiple reference time unit CW updates according to an embodiment of the present application.
  • FIG. 18 is a schematic diagram of CW update according to another embodiment of the present application.
  • FIG. 19 is a schematic diagram of CW update according to another embodiment of the present disclosure.
  • FIG. 20 is a schematic diagram of multiple reference time unit CW updates according to an embodiment of the present application.
  • FIG. 21 is a flowchart of a channel listening method based on multiple antenna panels according to an embodiment of the present disclosure
  • FIG. 22 is a schematic diagram of a multi-antenna panel and a CW according to an embodiment of the present application.
  • FIG. 23 is a schematic diagram of a multi-antenna panel and a CW according to another embodiment of the present application.
  • 24 is a schematic diagram of a multi-antenna panel and a CW according to another embodiment of the present application.
  • 25 is a schematic diagram of a multi-antenna panel and a CW according to another embodiment of the present application.
  • FIG. 26 is a schematic diagram of a multi-antenna panel and a CW according to another embodiment of the present application.
  • FIG. 27 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 28 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • the network architecture may be a network architecture of a wireless communication system, and the wireless communication system may work in an authorized frequency band or in an unlicensed frequency band. It can be understood that the use of unlicensed frequency bands can improve the system capacity of the wireless communication system, improve channel access efficiency, improve spectrum resource utilization, and ultimately improve system performance.
  • the wireless communication system may include a network device and a terminal, and the network device and the terminal are connected by a wireless communication technology. It should be noted that the number and the configuration of the terminal and the network device shown in FIG. 1 do not constitute a limitation on the embodiments of the present application.
  • a wireless communication system can include one or more network devices, and one network device can connect to one or more terminals. The network device can also be connected to a core network device, which is not shown in FIG.
  • the wireless communication system mentioned in the embodiments of the present application includes, but is not limited to, a narrow band-internet of things (NB-IoT), and a global system for mobile communications (GSM).
  • GSM global system for mobile communications
  • EDGE Enhanced data rate for GSM evolution
  • WCDMA wideband code division multiple access
  • CDMA2000 code division multiple access
  • TD-SCDMA Time division-synchronization code division multiple access
  • LTE long term evolution
  • future mobile communication system includes, but is not limited to, a narrow band-internet of things (NB-IoT), and a global system for mobile communications (GSM).
  • EDGE Enhanced data rate for GSM evolution
  • WCDMA wideband code division multiple access
  • CDMA2000 code division multiple access
  • TD-SCDMA Time division-synchronization code division multiple access
  • LTE long term evolution
  • future mobile communication system future mobile communication system.
  • the foregoing network device is a device deployed in a radio access network to provide a wireless communication function for the terminal.
  • the network device may include, but is not limited to, a base station (BS), a station (Station, STA, including an access point (AP) and a non-AP station STA), a network controller, and a transmission and reception point (transmission and reception point) , TRP), a mobile switching center or a wireless access point in wifi, etc.
  • the means for direct communication with the terminal over the wireless channel is typically a base station.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, or Radio Radio Units (RRUs).
  • RRUs Radio Radio Units
  • the wireless communication with the terminal may also be another network device having a wireless communication function, which is not limited in this application.
  • the names of devices with base station functions may be different in different systems, for example, in an LTE network, called an evolved NodeB (eNB or eNodeB), in the third generation (the In the 3rd generation, 3G) network, it is called Node B (Node B), etc.
  • eNB evolved NodeB
  • Node B Node B
  • 5G base station 5G base station
  • gNB 5G base station
  • the terminal which is also referred to as a terminal device, may include, for example, a user equipment (UE), a mobile station (MS), a mobile terminal (MT), etc., and is a voice and/or A device that communicates with data, for example, a handheld device with wireless connectivity, an in-vehicle device, a wearable device, a computing device, or other processing device that is linked to a wireless modem.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • a device that communicates with data
  • a handheld device with wireless connectivity for example, a handheld device with wireless connectivity, an in-vehicle device, a wearable device, a computing device, or other processing device that is linked to a wireless modem.
  • some examples of terminals are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MIDs), wearable devices, virtual reality (VR) devices, augmented reality. (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in
  • system and “network” are used interchangeably herein.
  • “at least one” means one or more, and "a plurality” means two or more.
  • the character “/” generally indicates that the contextual object is an "or” relationship.
  • “At least one of the following” or a similar expression thereof refers to any combination of these items, including any combination of a single item or a plurality of items. For example, at least one of a, b, or c may represent: a, b, c, ab, ac, bc, or abc, where a, b, c may be single or multiple .
  • the method for applying the contention window management on the unlicensed frequency band proposed by the present application is based on a more flexible resource transmission unit in the NR system, and proposes an update mechanism of a contention window (CW) in channel interception. Achieve more accurate competitive window updates.
  • CW contention window
  • the method of the contention window management of the present application will be exemplarily explained from the resource transmission unit and the channel listening competition window, respectively.
  • the receiving device needs to feed back a hybrid automatic repeat request (HARQ) to the sending device, so that the sending device determines whether the transmission is correct, and if necessary Retransmit the packet with the wrong transmission.
  • the sending device and the receiving device may be network devices or terminals.
  • the sending device is a network device
  • the receiving device is a terminal.
  • the network device may send one or more data packets to one or more terminals on one or more reference time units; when the sending device is The terminal, then the receiving device is a network device.
  • the terminal may send one or more data packets to one network device on one or more reference time units.
  • the basic unit when the HARQ feedback of the receiving device or the retransmission of the transmitting device is received and/or HARQ feedback is specified by the communication system is a basic unit.
  • a data packet is in units of a transport block (TB).
  • the receiving device finds that one TB is not successfully received, the receiving device may feed back the NACK of the one TB that was not successfully received to the transmitting device. After receiving the NACK of a TB, the transmitting device will retransmit the TB that was not successfully received in the subsequent transmission.
  • This TB-based feedback HARQ-based mechanism can be referred to as a TB response (TB-ACK).
  • data reception and/or HARQ feedback may be based on smaller units, e.g., the data packet may also include one or more coding blocks.
  • a CB can have an independent check function. For example, each CB performs cyclic redundancy check (CRC) coding, so that the receiving device can determine the CRC by decoding each CB. Whether it is correctly decoded.
  • CRC cyclic redundancy check
  • One TB can be divided into K code block groups (CBGs), where K ⁇ 1, and one CBG includes at least one CB.
  • CBGs K code block groups
  • the receiving device can feed back HARQ based on one CBG.
  • CBG-ACK CBG response
  • both the TB feedback HARQ based mechanism and the CBG feedback HARQ based mechanism can be supported.
  • the subcarrier spacing of the data channel in the LTE system is fixed at 15 kHz.
  • the 5G NR system can support multiple optional subcarrier spacings, including 15 kHz, 30 kHz, 60 kHz, and the like.
  • the larger subcarrier spacing corresponds to a shorter uplink symbol length
  • the corresponding symbol length becomes the symbol length corresponding to the original 15 kHz subcarrier spacing.
  • the length of a transmission time interval (TTI) corresponding to a slot or a data packet also becomes original.
  • TTI transmission time interval
  • carrier aggregation (CA) technology is introduced in the LTE system, and data information is transmitted using multiple carriers.
  • Each carrier referred to as a component carrier (CC)
  • CC component carrier
  • TBs transport blocks
  • the scheduling signaling (DL grant/UL grant) is used for scheduling, where the carrier and the carrier carrying the scheduling signaling may be the same carrier (the current carrier scheduling) or different carriers (cross-carrier scheduling).
  • the 5GNR system in addition to supporting data transmission in carrier aggregation mode, it can also support wideband (WB) transmission technology to expand the bandwidth occupied by one carrier, for example, from the original 20MHz bandwidth of the LTE system to N*20MHz.
  • WB wideband
  • the subcarrier spacing can be increased at the same time. For example, the 15 kHz interval from the original LTE system is increased to N*15 kHz, so that the bandwidth is kept while the sampling rate is kept constant.
  • one carrier of the NR wideband system is extended to 40 MHz, and the carrier includes two sub-bands (SubBanD, SBD), each of which has a bandwidth of 20 MHz, and one physical resource block (PRB) includes 12 subcarriers and subcarriers.
  • the interval is 30 kHz, and one subframe includes 14 time domain symbols, each time domain symbol is 1/2 of LTE (15 kHz subcarrier spacing) time domain symbol length, and one subframe length is 0.5 ms;
  • one transport block can carry On 40MHz carrier *0.5ms time-frequency resources.
  • the LTE Release 13 introduces a licensed-assisted access using long term evolution (LAA-LTE) technology, and the Release 14 enhanced authorization auxiliary connection.
  • LAA-LTE long term evolution
  • the enhanced LAA (eLAA) technology through carrier aggregation technology, can extend the available frequency bands to the unlicensed frequency bands and transmit downlink and uplink information on the unlicensed frequency bands through the assistance of the licensed frequency bands.
  • the Multefire standard further implements the uplink and downlink transmission (including the traffic channel and control channel) of the LTE system completely in the unlicensed band, without relying on the assistance of the licensed band, that is, Standalone transmission.
  • the LAA/eLAA/Multefire system adopts the LBT channel access mechanism.
  • the sending node needs to listen to the channel before sending the information on the unlicensed band, and then send the downlink information after the channel is idle.
  • the sending node detects that the channel is idle before the resource that it wants to occupy, which is called LBT listening success, otherwise it is called LBT listening failure.
  • the channel After the channel is occupied by the transmitting device, the channel can continuously occupy the channel to send information, and the continuously occupied time domain resource is called a burst.
  • the maximum time that the sending device can continuously send information after the channel is occupied is the maximum channel occupancy time (MCOT).
  • MCOT maximum channel occupancy time
  • the transmitting device After the transmitting device continues to occupy the channel and reaches the MCOT, the channel needs to be released, and the LBT can be re-executed before being accessed again.
  • the transmitting device performs channel sensing, there are two channel states: channel idle and channel busy.
  • the criterion for determining the channel state is: the wireless communication device compares the power on the received channel in the listening time slot with a clear channel assessment-energy detection (CCA-ED), if the detection threshold is higher than the detection threshold, the state Busy for the channel; if below the detection threshold, the state is channel idle.
  • CCA-ED clear channel assessment-energy detection
  • a transmitting device operating in an unlicensed frequency band may use a clear channel assessment (CCA) mechanism to access a channel, that is, a network device may use a random backoff CCA access channel to transmit downlink information, and the terminal may use a random backoff CCA mechanism.
  • the incoming channel sends uplink information.
  • the random backoff CCA mechanism may be termed a first access channel type (Type l channel access)
  • T d listener within the channel is idle, the need for random backoff further, in performing a random backoff It is only possible to transfer. Specifically, after the transmitting device listens to the channel for a period of time T d , the random backoff is performed according to the following steps:
  • Step 1 Initialization, uniformly randomly selecting a value between 0 and CW as the initial value N init , and performing step 4;
  • Step 3 Perform channel sounding in a backoff time slot. If the channel is detected to be idle, go to step 4. Otherwise, go to step 5.
  • Step 5 The interception channel until a time period T d encounter the case that a channel is occupied, or until a time period T d listener the channel is idle;
  • Step 6 If all the backoff slots within the channel in said channel additional T d are both idle, step 4, otherwise step 5.
  • the transmitting device may wait for a period of time after the back-off counter is zero, without immediately transmitting the information, and wait for the end, and then listen for an additional time slot before the time when the information needs to be sent, if the additional If the channel is detected to be idle in the time slot, the channel is considered to be successful, and the information can be sent immediately. If the backoff counter is zeroed before the start time of the message, or if the additional listening time slot is busy, the channel listening is said to have failed.
  • the sending device includes a terminal device or an access network device. After the CGE of the access network device succeeds in performing the random backoff, the corresponding MCOT is the DL MCOT. After the terminal device succeeds in performing a random backoff, the corresponding MCOT is a UL MCOT.
  • CW is the competition window
  • CWS contention window size
  • the transmitting device dynamically adjusts the CWS and uses it for the next channel listening. Specifically, before sending the information, the sending device determines a reference time unit that has previously sent the data packet, and according to the HARQ response (HARQ-ACK) of the receiving device for the data packet on the reference time unit (HARQ-ACK) Also known as HARQ acknowledgment, HARQ information, HARQ feedback, HARQ acknowledgment feedback, HARQ reception status, etc., the CWS is dynamically adjusted. The receiving device feeds back the HARQ response to the sending device, so that the sending device retransmits the data packet with the wrong transmission.
  • HARQ-ACK HARQ response
  • HARQ-ACK reference time unit
  • HARQ-ACK also known as HARQ acknowledgment, HARQ information, HARQ feedback, HARQ acknowledgment feedback, HARQ reception status, etc.
  • the transmitting node increases the CWS, the next time LBT uses the increased CW for channel sensing, avoids collision with surrounding competing nodes at the cost of lengthening the listening time, and implements friendly coexistence; when the HARQ response corresponding to the data packet on the reference time unit includes the ACK status, Or when the proportion of the NACK state is small, the transmitting device reduces the CWS, thereby reducing the listening time and improving the efficiency of the access channel.
  • the transmitting device receives one or more ACKs for the reference time unit, the transmitting node decreases the CWS, whereas the transmitting node increases the CWS.
  • the embodiment of the present application proposes a CW management method. Referring to FIG. 2, for the convenience of description, only one receiving device is shown in the figure. It can be understood that the method of the present application can be applied to multiple receiving devices. The method includes the following steps:
  • the transmitting device sends one or more data packets to the one or more receiving devices in one or more reference time units, where the one or more data packets occupy the first bandwidth.
  • First bandwidth refers to a range of frequency domains that may include one or more frequency domain elements.
  • the frequency domain unit in this embodiment and the following may correspond to one carrier (referred to as component carrier (CC)), subband (SBD), or part bandwidth (BWP).
  • CC component carrier
  • SBD subband
  • BWP part bandwidth
  • Different frequency domain units can correspond to the same device or different devices.
  • the above data packet may be based on a CBG for receiving and/or performing HARQ feedback (hereinafter referred to as "CBG granularity based data packet"), or a data packet based on TB for receiving and/or performing HARQ feedback (below) Known as "packet based on terabyte granularity").
  • CBG granularity based data packet a CBG for receiving and/or performing HARQ feedback
  • Packet based on terabyte granularity Known as "packet based on terabyte granularity”
  • One or more data packets may all be CBG granularity based data packets, or one or more data packets may all be TB granularity based data packets, or one or more data packets may be TB granularity based data packets and A packet based on CBG granularity.
  • the reference time unit may be a frame, a transmission time interval (TTI) subframe, a mini-slot, a non-slot or a slot.
  • TTI transmission time interval
  • the reference time unit refers to a start time unit in the most recent transmission of the transmitting device, and receives the HARQ-ACK feedback corresponding to the reference time unit, which will be more specifically described below. .
  • the reference time unit may be a time unit corresponding to the smallest subcarrier spacing.
  • the reference time unit when 15 kHz, 30 kHz, and 60 kHz subcarrier spacing coexist, the reference time unit is a time unit corresponding to a subcarrier spacing of 15 kHz (refer to FIG. 3); when a 30 kHz, 60 kHz subcarrier interval coexists, the reference time unit is a subcarrier spacing. Time unit corresponding to 15 kHz (please refer to Figure 4).
  • the reference time unit may be the longest one in the slot structure (please refer to FIG. 5). ), or the shortest one in the slot structure (please refer to Figure 6).
  • the reference time unit is a time unit in the last transmission of the sending device, and the most recent transmission refers to the transmission of the transmitting device successfully accessing the device and transmitting the data packet. This is because, in the application scenario of the unlicensed band, there is a time when the transmitting device fails to contend to the channel and cannot transmit the data packet. Therefore, there is a certain time interval when the last transmission and the transmitting device are listening.
  • the reference time unit may be the first time unit in the last transmission of the transmitting device, or the reference time unit may be the last time unit in the last transmission of the transmitting device.
  • the transmitting device since the channel is successfully accessed, the transmitting device starts to transmit a data packet at time unit k, at which time the transmission of the time unit k is the last transmission, and the reference time unit is the time unit k.
  • the transmitting device since the channel is not successfully accessed, the transmitting device does not transmit the data packet in the time unit k, but in the time unit kn, the transmitting device transmits the data packet in the time unit kn due to successful access to the channel.
  • the transmission of the time unit kn is the latest transmission, at which time the time unit k cannot be used as the reference time unit, and the time unit kn is used as the reference time unit, where n is the number of time units included in one transmission.
  • the first bandwidth includes a frequency domain unit 1 and a frequency domain unit 2 as an example.
  • the transmitting device transmits the data packet on the frequency domain unit 1 in time unit k, so its reference time unit is time unit k. Since the frequency domain unit 2 fails to contend for the channel, the transmitting device transmits the data packet on the frequency domain unit 2 in the time unit k-n, the most recent transmission occurring in the time unit k-n. At this time, the transmitting device transmits one or more data packets to the one or more receiving devices within the reference time units k and kn, the one or more data packets occupying the first bandwidth including the frequency domain unit 1 and the frequency domain unit 2. .
  • the one or more receiving devices receive one or more data packets from the transmitting device and feed back the HARQ based on the one or more data packets.
  • the receiving device receives the data packet and verifies the received data packet.
  • the receiving device feeds back NACK or ACK based on one CBG.
  • the receiving device feeds back a NACK or ACK based on one TB. Since the receiving device receives one or more data packets sent by the transmitting device in one or more reference time units, the receiving device feeds back HARQ based on the one or more data packets, which may reflect the channel in the one or more reference time units the quality of.
  • the transmitting device receives a hybrid automatic repeat request (HARQ) based on the one or more data packets from the one or more receiving devices.
  • HARQ hybrid automatic repeat request
  • the sending device receives the TB feedback based HARQ, the CBG feedback based HARQ in the one or more reference time units in the HARQ from the receiving device, or both the TB feedback based HARQ and the CBG feedback based HARQ.
  • the hybrid automatic repeat request HARQ for one or more data packets includes one or a combination of: HARQ (TB HARQ) of the transport block TB corresponding to one or more first data packets; or, one or HARQ (CBG HARQ) of one or more coding block groups CBG corresponding to a plurality of second data packets.
  • the sending device determines a contention window CW size of the second bandwidth by referring to HARQ of the one or more data packets.
  • the transmitting device determines a contention window size of the second bandwidth, and performs channel sensing on the second bandwidth according to the determined contention window size.
  • the transmitting device needs to perform subsequent transmissions on the second bandwidth, since the HARQ information reflects the quality of the channel in the previous transmission.
  • the frequency domain occupied by the first bandwidth of the sending device may be the same as the second bandwidth, or the frequency domain occupied by the first bandwidth of the sending device may be different from the second bandwidth.
  • the contention window needs to be extended so that the transmitting device can have a longer time to perform the backoff.
  • the transmitting device may perform channel sensing on the second bandwidth according to the determined contention window size.
  • the value of the contention window CW can be referred to Table 1 below:
  • CW p is used to indicate the corresponding CW.
  • the contention window CW size of the second bandwidth by referring to the HARQ of the one or more data packets, determining a contention window of the second bandwidth, for example, determining to increase CW p and maintaining, and the transmitting device follows the updated CW p
  • the second bandwidth performs channel listening; or otherwise reinitializes to a minimum contention window or a contention window that reduces the second bandwidth.
  • the response of the HARQ includes at least one or more of the following states: acknowledgement (ACK), negative acknowledgement (NACK), non-continuous Discontinuous transmission (DTX).
  • ACK acknowledgement
  • NACK negative acknowledgement
  • DTX non-continuous Discontinuous transmission
  • the DTX may also be processed by the NACK, or the DTX may be ignored.
  • determining a contention window CW size of the second bandwidth with reference to the HARQ of the one or more data packets includes:
  • the contention window CW of the second bandwidth is determined according to the ratio Z.
  • the above reference means that the HARQ of one or more data packets is an input of the contention window CW that determines the second bandwidth.
  • the transmitting device may determine the contention window size of the second bandwidth according to the ratio of the CBG-based NACK or the ACK to the total number of HARQs in one or more data packets; when the HARQ includes both
  • the transmitting device may first convert the NACK or ACK ratio of the CBG-based HARQ into a TB-based NACK ratio or ACK ratio, and then in one or more data packets.
  • the other TB-based NACK ratio or ACK ratio combination determines the size of the contention window of the second bandwidth; or, when the HARQ only includes the HARQ based on the TB feedback, the transmitting device may base the NACK based on the TB feedback in one or more data packets. Or the ratio of ACK to the total number of HARQs determines the contention window size of the second bandwidth.
  • Determining the contention window CW of the second bandwidth according to the ratio Z includes: increasing the contention window of the first bandwidth when the ratio Z of the NACK is greater than or equal to the first preset value; otherwise, reinitializing to the smallest contention window or decreasing the second The competition window for bandwidth.
  • the first preset value may be a specific value, or the first preset value may dynamically select a value from a preset range. The selection of the preset value may be performed by referring to the channel quality.
  • the sending device determines the ratio Z by referring to the number of CBGs in which the HARQ is NACK in one or more CBGs
  • the first preset value is 80%
  • the ratio Z is greater than or equal to 80%
  • the second bandwidth is extended. Competition window, otherwise reinitialized to the smallest contention window or to reduce the contention window of the second bandwidth.
  • the sending device determines the ratio Z by referring to the number of CBGs in which the HARQ is ACK in one or more CBGs
  • the first preset value is 20%
  • the ratio Z is less than or equal to 20%
  • the first bandwidth is extended. Competition window, otherwise reinitialized to the smallest contention window or to reduce the contention window of the second bandwidth.
  • one way to calculate the ratio Z is to have both a data packet with a minimum feedback unit of TB and a data packet with a minimum feedback unit of CBG in a data packet transmitted by one or more reference time units. Then, the HARQ received by the transmitting device includes HARQ based on TB feedback, and also includes HARQ based on CBG feedback.
  • the above ratio Z conforms to the following formula:
  • Z' represents the ratio of CBGs fed back to NACK in one TB
  • N CBG represents the number of CBGs in one TB
  • NACK CBG represents the number of CBGs that feed back NACKs in one TB
  • NACK TB represents TB in one or more reference time units
  • N TB represents the total number of TBs transmitted in one or more reference time units
  • x is the total of TBs with the CBG as the minimum feedback unit in one or more reference time units quantity.
  • Another way of calculating the ratio Z is to use TB as the minimum feedback unit in multiple data packets transmitted by one or more reference time units, or to feed the ACK with the CBG as the minimum feedback unit, or If the rule determines whether the corresponding TB is ACK or NACK, then the above ratio Z conforms to the following formula:
  • NACK TB represents the total number of TBs that feed back NACKs in one or more reference time units
  • N TB represents the total number of TBs transmitted in one or more of the reference time units.
  • the foregoing rule for determining whether the corresponding TB is an ACK or a NACK may be that after the ratio of the NACK in the feedback of the CBG in the TB exceeds a certain threshold, the HARQ of the TB is considered to be a NACK.
  • NACK CBG represents the total number of CBGs that feed back NACKs in one or more reference time units
  • N TB represents the total number of CBGs transmitted in one or more reference time units
  • Another way to calculate the ratio Z is to have a data packet with TB as the minimum feedback unit and a data packet with the CBG as the minimum feedback unit in the data packet transmitted by one or more reference time units.
  • the data packet with the CBG as the minimum feedback unit there are both HARQ feedback based on CBG transmission, that is, HARQ feedback transmitted in units of CBG; and HARQ feedback based on TB transmission, that is, HARQ transmitted in units of TB Feedback.
  • the HARQ received by the transmitting device includes HARQ based on TB feedback, and also includes HARQ based on CBG feedback.
  • the above ratio Z conforms to the following formula:
  • NACK TB represents the number of TBs in which one or more reference time units have TB as the minimum feedback unit and feeds back NACK, that is, the number of TBs that perform HARQ feedback based on TB and feed back NACK.
  • N TB represents the total number of TBs transmitted in the one or more reference time units, and x is the number of TBs based on CBG for HARQ feedback in the one or more reference time units, which can be understood as the minimum feedback with CBG
  • the number of TBs of the unit or in other embodiments, the number of TBs that are transmitted based on the CBG.
  • Z' represents the NACK ratio of one TB, where N CBG represents the number of CBGs in one TB, and NACK CBG represents the number of CBGs that feed back NACKs in the one TB.
  • ⁇ and ⁇ represent weighting factors of CBG-based HARQ feedback and TB-based HARQ feedback, respectively.
  • ⁇ + ⁇ 1.
  • the values of ⁇ and ⁇ may be 0 and 1, respectively, or 0.5 and 0.5, respectively, and may also be other values, which is not limited in the application.
  • TB1 includes both CBG-based HARQ feedback and TB-based HARQ feedback.
  • Z' represents the NACK ratio of one TB, where N CBG represents the number of CBGs in one TB, and NACK CBG represents the number of CBGs that feed back NACKs in the one TB.
  • ⁇ and ⁇ represent weighting factors of CBG-based HARQ feedback and TB-based HARQ feedback, respectively.
  • ⁇ + ⁇ 1.
  • the values of ⁇ and ⁇ may be 0 and 1, respectively, or 0.5 and 0.5, respectively, and may also be other values, which is not limited in the application.
  • TB2 includes both CBG-based HARQ feedback and TB-based HARQ feedback;
  • N NACK 1
  • the receiving device performs HARQ feedback according to the configured maximum number of supported CBGs, and at this time, for those that are not actually scheduled, but are The receiving device defaults to NACK CBG, which is not included in the calculation of Z;
  • the data packet scheduled by the sending device is not actually sent, and the receiving device follows the scheduling data packet according to the scheduling signaling.
  • the default rule feedback is NACK, and these NACKs are not counted in the calculation of Z.
  • the transmitting device transmits on the reference time units kn and k, and when calculating the Z value, only the HARQ feedback of the data packet transmitted by the latest transmission reference time unit k from the LBT process is considered, and for reference The HARQ feedback of the data packet transmitted by the frequency domain unit 1 on the time unit kn is not calculated.
  • the initial value of CW p is 3.
  • the transmitting device receives the ratio of the NACK in the HARQ for the data packet sent by one reference time unit, and determines the CW of the first bandwidth.
  • the value of CW p can be inherited in different frequency domain units. It is assumed that the selection of the frequency domain unit can be flexibly changed when the LBT is performed, and the frequency domain unit of the second bandwidth can inherit the CW value of the frequency domain unit of the first bandwidth.
  • the frequency domain unit in the second bandwidth may inherit the largest or smallest CW value of each frequency domain unit in the first bandwidth.
  • the frequency domain unit within the second bandwidth may inherit the CW value of the frequency domain unit within the first bandwidth.
  • the frequency domain unit in the first bandwidth is 20 MHz
  • the frequency domain unit in the second bandwidth is 40 MHz.
  • the frequency domain unit changes from small to large, and the transmitting device has a 40 MHz basic bandwidth unit in the second bandwidth.
  • the value of CW p can inherit the CW value of the largest 20 MHz basic bandwidth unit in the first bandwidth.
  • the frequency domain unit in the first bandwidth is 40 MHz
  • the frequency domain unit in the second bandwidth is 20 MHz.
  • the value of CW p of the basic bandwidth unit may inherit the CW value of the 40 MHz frequency domain unit in the first bandwidth as a value.
  • the update may be further performed according to the HARQ feedback situation in the reference time unit, such as extending or decreasing.
  • the transmitting device determines the HARQ of the data packet according to at least one HARQ of the one or more CBGs, and determines the contention window CW of the first bandwidth according to at least the HARQ of the determined data packet.
  • the transmitting device determines that the HARQ of the data packet is based on at least one HARQ of the one or more CBGs refers to the HARQ of the HARQ determination data packet of one or more CBGs included in the data packet.
  • the sending device may determine that the HARQ of the data packet is a NACK according to the HARQ of the one CBG sent by the receiving device, and the sending device may send the CBG according to the receiving device.
  • the HARQ is ACK
  • the HARQ of the data packet is determined to be an ACK.
  • the transmitting device may The HARQ of the one data packet is determined to be an ACK. If the number of CBGs in which the HARQ is a NACK is greater than the number of CBGs in which the HARQ is an ACK, the transmitting device may determine that the HARQ of the one data packet is a NACK.
  • the transmitting device increases the contention window; when it is determined that the HARQ of the data packet is ACK, the transmitting device narrows the contention window.
  • the increasing or decreasing the contention window may be performed by adjusting the length of the window. For example, when the contention window needs to be increased, the sending device increases by 1 based on the length of the current contention window; when the contention window needs to be reduced, the transmitting device Shorten by 1 based on the length of the current contention window. It can be understood that the length of the contention window can be adjusted by the sending device in units of one or other time lengths, which is not limited in this application.
  • step 304 determining a contention window CW size of the second bandwidth by using the HARQ of the one or more data packets includes:
  • the contention window CW size of the second bandwidth is determined by reference to the HARQ of the one or more data packets transmitted within one reference time unit, and one reference time unit is a start time unit in the most recent transmission of the transmitting device.
  • the first bandwidth and the second bandwidth both occupy four frequency domain units 1 to 4.
  • the transmitting device transmits one or more data packets to the receiving device through the frequency domain units 1 to 4 in the reference time unit k, and subsequently receives HARQ based on one or more data packets from the receiving device.
  • the transmitting device may determine the contention window CW size of the second bandwidth by referring to the HARQ of the data packets of the frequency domain units 1 to 4 in the time unit. As shown in FIG. 12, the transmitting device randomly selects one frequency domain unit to perform LBT based on CW.
  • the transmitting device performs non-random backoff based transmission on the frequency domain units 1, 2 and 4, and the transmitting device performs random backoff based transmission on the frequency domain unit 3.
  • other frequency domain units other than the frequency domain unit 3 may be randomly selected for random backoff.
  • the transmitting device since the channel is not contending, the transmitting device does not transmit data packets in the frequency domain units 3 and 4 at the reference time unit k, but transmits data packets in the frequency domain units 1 and 2.
  • the reference time unit is a start time unit of the last transmission of the transmitting device. Even if some of the frequency domain units fail to transmit a data packet within the start time unit, the transmitting device still uses it as a reference time unit to determine the contention window CW of the second bandwidth with reference to the HARQ of the data packet transmitted within the reference time unit. size. In other words, the transmitting device receives the HARQ of one or more data packets transmitted by the frequency domain units 1 and 2 to determine the contention window CW size of the second bandwidth.
  • the determining, by the step 304, the contention window CW size of the second bandwidth by referring to the HARQ of the one or more data packets comprises: determining, by reference to the HARQ of the one or more data packets sent in the multiple reference time units a contention window CW size of the bandwidth; wherein the HARQ of the one or more data packets includes: one or more transmitted in each of the plurality of reference time units that are closest to each frequency domain unit on the frequency domain unit that does not overlap HARQ for multiple packets.
  • the size of the CW window is determined with the HARQ information transmitted last time with respect to the frequency domain unit.
  • FIG. 14 differs from FIG. 13 in that the transmitting device does not transmit data packets in the frequency domain units 3 and 4 at the reference time unit k, but transmits data packets in the reference time unit k-n.
  • the transmitting device does not transmit data packets in the frequency domain units 3 and 4 at the reference time unit k, but transmits data packets in the reference time unit k-n.
  • the most recent transmission corresponds to the reference time unit kn, and therefore, the HARQ of the frequency domain units 3 and 4 can be based on the reference time unit kn
  • the transmission is determined. Since the frequency domain unit 1 transmits the data packets on the reference time units k-n and k, the frequency domain elements overlap in the portions of the reference time units k-n and k.
  • the frequency domain unit 1 the most recent transmission corresponds to the reference time unit k. Therefore, as shown in the figure, the portion of the frequency domain unit at the reference time kn will not be used to determine the contention window size (Fig. 14). The part that is not calculated is marked in the middle), and only the part of the reference time unit k is used to determine the contention window size.
  • a CW maintained by the transmitting device can also be applied to a large bandwidth, so that even if the second bandwidth is divided into a plurality of smaller frequency domain units, only LBT needs to be performed in a large bandwidth (ie, a second bandwidth).
  • the transmitting device can access the channel for transmission in multiple frequency domain units. It can be understood that, after the transmission device is successfully based on the large bandwidth LBT, how to divide the frequency domain unit is not specifically limited.
  • the above-mentioned large bandwidth LBT refers to performing CCA detection on the entire second bandwidth.
  • an LBT listening method for a transmitting device having multiple panels is also provided, the transmitting device including one or more antenna panels. Referring to FIG. 21, the method includes:
  • the sending device performs channel sensing on the one or more antenna panels
  • performing, by the sending device, channel sensing on one or more antenna panels includes: the sending device randomly selecting one of the one or more antenna panels to perform random backoff channel sensing.
  • only one contention window is maintained in the set of one or more antenna panels.
  • the one or more antenna panels each maintain an independent contention window.
  • the one or more antenna panels respectively correspond to one or more frequency domain units, and the one or more antenna panels refer to the one or more antenna panels when each of the independent contention windows is maintained Only one common contention window maintained in the set of one or more corresponding frequency domain units.
  • the one or more antenna panels respectively correspond to one or more frequency domain units, and the one or more antenna panels refer to the one or more antenna panels when each of the independent contention windows is maintained An independent contention window maintained by each of the corresponding one or more frequency domain units.
  • performing, by the sending device, channel sensing on one or more antenna panels includes: the transmitting device performing channel sensing separately in one or more antenna panels.
  • the network device can perform LBT on multiple antenna panels.
  • the plurality of antenna panels or multiple nodes may correspond to a scenario of multiple carriers/multi-subbands/multiple BWPs.
  • the LBT mechanism based on type A (including type A1 and type A2) can be applied to a multi-antenna panel or a multi-node scene.
  • each antenna panel independently completes the Cat 4 LBT, and each antenna panel has an independent contention window.
  • the type B type LBT is applied to the antenna panel, only one of the plurality of antenna panels performs the Cat 4 LBT, and the remaining antenna panels perform the Cat 2 LBT.
  • the type B1 type LBT between the plurality of antenna panels Only one contention window is maintained.
  • type B2 type LBT each antenna panel has an independent contention window.
  • the reference time unit for determining the contention window size at this time is the start time unit in the transmission of the HARQ feedback for each antenna panel.
  • the network device determines an update of the contention window size with reference to the foregoing embodiment.
  • multiple antenna panels maintain only one common contention window.
  • multiple antenna panels may have the same reference time unit, where the reference time unit refers to a start time unit in the transmission of the most recent HARQ feedback of the network device, according to the reference time unit
  • the HARQ of the data packets transmitted by each antenna panel determines the contention window size.
  • a part of the antenna panel may not be transmitted in the reference time unit, and the contention window size is determined according to the HARQ of the data packet transmitted by the antenna panel that is transmitted at the reference time unit.
  • the network device when the partial antenna panel fails to transmit, the network device also determines, as the reference time unit of the part of the antenna panel, the start time unit in the transmission of the last HARQ feedback for the part of the antenna panel.
  • the network device determines the contention window size by referring to the HARQ feedback of the data packets transmitted in the plurality of reference time units.
  • the plurality of antenna panels each have a reference time unit, and at this time, the reference time unit of each antenna panel is a start time unit in the transmission of the last HARQ of each antenna panel.
  • Each antenna panel confirms the respective CW size with reference to the HARQ feedback of the data packets transmitted in the respective reference time units.
  • the antenna panel that needs to perform Cat 4 LBT selects the largest CW value or the smallest CW value from the competition window of each antenna panel for LBT.
  • the random backoff number is determined through a common contention window.
  • the antenna panel 1 of the network device corresponds to the frequency domain units 1 and 2
  • the antenna panel 2 corresponds to the frequency domain units 3 and 4
  • the antenna panel 3 corresponds to the frequency.
  • Domain units 5 and 6 antenna panel 4 corresponds to frequency domain units 7 and 8.
  • one or more reference time units of the network device transmit one or more data packets to one or more receiving devices in frequency domain units 1-8, and refer to HARQ based on one or more data packets. Determine the size of the competition window. Wherein, if the reference time unit is a start time unit of the network device having the last HARQ feedback transmission, there is a reference time unit.
  • the reference time unit is the start time unit of the transmission in which the frequency domain units 1 to 8 have the last HARQ feedback, the one or more reference time units exist at this time because the LBT may not pass the relationship.
  • the initial value of the random backoff number can be determined according to the common contention window size of the network device.
  • the reference time unit is the first reference time unit corresponding to the most recent transmission on the current LBT process; or, in another possible implementation, the reference time unit is each frequency The start time unit of the most recent transmission corresponding to each of the domain units 1 to 8.
  • the antenna panel maintains CW1 ⁇ 4, and the common competition window is selected from CW1 ⁇ 4.
  • the largest competition window or the smallest competition window is selected as the initial value of the random backoff number.
  • the antenna panels CW1 to 4 can be obtained according to the frequency domain unit 1 or 2 corresponding to each antenna panel. Taking the antenna panel 1 as an example, it maintains the antenna panel CW1, the antenna panel CW1 is in the frequency domain 1 and 2 to the HARQ of one or more data packets in one or more time units, and determines the contention window size according to the feedback from the receiving device. .
  • the common contention window of the network device is the largest contention window CW of the antenna panels C1 to C4, which is the smallest contention window CW size, and the maximum or minimum of the plurality of frequency domain units corresponding to the competition windows of the antenna panels CW1 to 4 respectively.
  • the competition window is the largest contention window CW of the antenna panels C1 to C4, which is the smallest contention window CW size, and the maximum or minimum of the plurality of frequency domain units corresponding to the competition windows of the antenna panels CW1 to 4 respectively.
  • each antenna panel maintains an independent contention window.
  • For the contention window on each antenna panel it is determined according to the frequency domain unit 1 or 2 corresponding to each antenna panel.
  • the largest or smallest contention window CW of the frequency domain unit 1 or 2 is selected as the contention window CW of the corresponding antenna panel.
  • each antenna panel maintains an independent contention window.
  • For the contention window on each antenna panel there is a common contention window for the corresponding plurality of frequency domain units.
  • the above embodiments exemplarily illustrate various embodiments of the contention window management method in the present application, and embodiments of the network device and terminal in the present application will be exemplarily continued below.
  • the above sending device may be a network device or a terminal.
  • the network device is exemplarily explained.
  • the structure of the network device includes a processor and a transceiver.
  • a communication unit may be included in the structure of the network device for supporting communication between the network device and other network side devices, such as communication with a core network node.
  • a memory device can also be included in the structure of the network device, wherein the memory is coupled to the processor for storing program instructions and data necessary for the network device.
  • the network device may be a base station or other network side device having a base station function.
  • the network device includes a transceiver 1101, a processor 1102, a memory 1103, and a communication unit 1104.
  • the transceiver 1101, the processor 1102, the memory 1103, and the communication unit 1104 are connected by a bus.
  • data to be transmitted eg, PDSCH
  • signaling eg, PDCCH
  • the transceiver 1101 adjusts the signal received from the antenna and provides input samples.
  • the service data and the signaling message are processed, for example, data to be transmitted, SC-FDMA symbol generation, and the like. These units are processed according to the wireless access technologies employed by the radio access network (e.g., access technologies for LTE, 5G, and other evolved systems).
  • the transceiver 1101 is integrated by a transmitter and a receiver. In other embodiments, the transmitter and receiver may also be independent of each other.
  • the processor 1102 is further configured to perform control management on the network device to perform processing performed by the network device in the foregoing method embodiments, for example, to control network devices for downlink transmission and/or perform other processes of the techniques described herein.
  • the processor 1102 is configured to support a network device to perform the processing of the network device involved in FIGS. 2 through 26.
  • the processor 1102 also needs to control the network device for channel sensing for data or signaling transmission.
  • the processor 1102 performs channel sensing through signals received by the transceiver 1101 from the transceiver or antenna, and the control signals are transmitted via the antenna to preempt the channel.
  • the processor 1102 can include one or more processors, for example, including one or more central processing units (CPUs).
  • the processor 1102 can be integrated in the chip, or can be the chip itself. .
  • the memory 1103 is used to store related instructions and data, as well as program codes and data of the network device.
  • the memory 603 includes, but is not limited to, a random access memory (RAM), a read-only memory (ROM), and an erasable programmable read only memory (Erasable Programmable Read). Only Memory, EPROM), or Compact Disc Read-Only Memory (CD-ROM).
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable Read Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • the memory 1103 is independent of the processor 1102. In other embodiments, the memory 1103 can also be integrated into the processor 1102.
  • Figure 27 only shows a simplified design of the network device.
  • the network device can include any number of transmitters, receivers, processors, memories, etc., and all network devices that can implement the present application are within the scope of the present application.
  • the structure of the terminal includes a processor (or controller), a transceiver, and a modem processor.
  • the structure of the terminal may further include a memory coupled to the processor for storing necessary program instructions and data of the terminal.
  • FIG. 28 shows a simplified schematic diagram of one possible design structure of the terminal involved in the above method embodiment.
  • the terminal includes a transceiver 1201, a processor 1202, a memory 1203 and a modem 1204, a transceiver 1201, a processor 1202, a memory 1203 and a modem 1204 connected by a bus.
  • the transceiver 1201 conditions (e.g., analog conversion, filtering, amplifying, upconverting, etc.) output samples and generates an uplink signal that is transmitted via an antenna to the network device in the above embodiments.
  • the antenna receives the downlink signal from the network device in the above embodiment.
  • Transceiver 1201 conditions (eg, filters, amplifies, downconverts, digitizes, etc.) the signals received from the antenna and provides input samples.
  • encoder 12041 receives traffic data and signaling messages to be transmitted on the uplink and processes (eg, formats, codes, and interleaves) the traffic data and signaling messages. .
  • Modulator 12042 further processes (e.g., symbol maps and modulates) the encoded traffic data and signaling messages and provides the output samples described above.
  • Demodulator 12043 processes (e.g., demodulates) the above input samples and provides symbol estimates.
  • the decoder 12044 processes (e.g., deinterleaves and decodes) the symbol estimate and provides decoded data and signaling messages that are sent to the terminal.
  • Encoder 12041, modulator 12042, demodulator 12043, and decoder 12044 may be implemented by a composite modem processor 1204. These units are processed according to the radio access technologies employed by the radio access network (e.g., access technologies for LTE, 5G, and other evolved systems).
  • the transceiver 1201 is integrated by a transmitter and a receiver. In other embodiments, the transmitter and receiver may also be independent of one another.
  • the processor 1202 performs control management on the terminal, and is used to perform processing performed by the terminal in the foregoing method embodiment. For example, other processes for controlling the terminal for uplink transmission and/or the techniques described herein.
  • the processor 1202 is configured to support the terminal to perform the processing procedure in FIG. 2 to FIG. 26 in which the transmitting device is the terminal.
  • the transceiver 1201 is configured to control the antenna to receive signals for downlink transmission.
  • processor 1202 may include one or more processors, including, for example, one or more CPUs, which may be integrated into the chip or may be the chip itself.
  • the memory 1203 is used to store related instructions and data, as well as program codes and data of the terminal.
  • the memory 1203 includes, but is not limited to, a random access memory (RAM), a read-only memory (ROM), and an erasable programmable read only memory (Erasable Programmable Read). Only Memory, EPROM), or Compact Disc Read-Only Memory (CD-ROM).
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable Read Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • the memory 1203 is independent of the processor 1202. In other embodiments, the memory 1203 can also be integrated into the processor 1202.
  • Figure 28 only shows a simplified design of the network device.
  • the network device can include any number of transmitters, receivers, processors, memories, etc., and all network devices that can implement the present application are within the scope of the present application.
  • the present application further provides a wireless communication device applied to a network device, the wireless communication device comprising a processor, the processor is configured to couple with the memory, and read an instruction in the memory according to the instruction.
  • the wireless communication device applied to the network device can be understood as a chip or chip device, and its memory is independent of the chip.
  • the present application further provides another wireless communication device for use in a network device, the wireless communication device comprising at least one processor and a memory, and a memory coupled to the at least one processor, at least A processor is used to perform the operations of the network devices involved in the various embodiments described above.
  • the wireless communication device applied to the network device can be understood as a chip or a chip device, and the memory thereof is integrated into the chip.
  • an embodiment of the present application further provides a wireless communication device applied to a terminal, the wireless communication device includes a processor, the processor is configured to be coupled to the memory, read an instruction in the memory, and according to the The instructions perform the operations of the terminals involved in the various embodiments described above.
  • the wireless communication device applied to the terminal can be understood as a chip or chip device, and its memory is independent of the chip.
  • an embodiment of the present application provides a wireless communication device applied to a terminal, the wireless communication device including at least one processor and a memory coupled to the at least one processor, at least A processor is used to perform the operations related to the terminals in the various embodiments described above.
  • the wireless communication device applied to the terminal can be understood as a chip or a chip device, and the memory thereof is integrated into the chip.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提出了一种应用于非授权频段上的竞争窗口管理的方法,包括:发送设备在一个或多个参考时间单元内向一个或多个接收设备发送一个或多个数据包,所述一个或多个数据包占用第一带宽;所述发送设备接收来自所述一个或多个接收设备的针对所述一个或多个数据包的混合自动重传请求HARQ;所述发送设备参考所述一个或多个数据包的HARQ确定第二带宽的竞争窗CW大小。通过本申请提供的方法,可以基于数据包的HARQ反馈确定竞争窗CW的更新,提高通讯效率。

Description

一种竞争窗管理的方法及发送设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种非授权频段上更新竞争窗的技术。
背景技术
无线通信技术的飞速发展,导致频谱资源日益紧缺,促进了对于非授权频段的探索。3GPP分别在版本13(Release-13,R-13)和版本14(Release-14,R-14)中引入了授权频谱辅助接入(License Assisted Access,LAA)和增强的授权频谱辅助接入(enhanced LAA,eLAA)技术,通过授权频谱的辅助来最大可能的利用非授权频谱资源。
在非授权频段上部署的通信***通常采用竞争的方式来使用或者共享无线资源,为了保证公平性,在非授权频段上进行传输的设备通常需要遵守先听后说(listen before talk,LBT)规则,即在发送信号之前需要先进行侦听信道,在信道空闲且获得信道占用时间时开始传输。
在第五代(5 thgeneration,5G)新空口(New Radio,NR)***中,非授权频段的应用仍然是一个满足业务需求、提升用户体验的技术手段。在现有技术中,以类型4的LBT(Cat 4 LBT,在部分标准中也被称作type 1 LBT)中,发送设备在一个时间段T d内侦听到信道为空闲后,还需要根据随机退避数进行相应次数的随机退避,以避免碰撞。其中,随机退避数在初始化时通常在0到竞争窗CW之间选择一个随机值。上述CW会随着信道的状态进行动态的更新,随着5GNR中传输资源划分越来越精细,如何更为准确地确定CW成为了亟待解决的问题。
发明内容
为了能够更为精确地实现竞争窗CW的更新,本申请实施例提供一种应用于非授权频段上的竞争窗口管理的方法和装置。
第一方面,本申请的实施例提供一种竞争窗管理的方法,包括:发送设备在一个或多个参考时间单元内向一个或多个接收设备发送一个或多个数据包,所述一个或多个数据包占用第一带宽;所述发送设备接收来自所述一个或多个接收设备的针对所述一个或多个数据包的混合自动重传请求HARQ;
所述发送设备参考所述一个或多个数据包的HARQ确定第二带宽的竞争窗CW大小。
通过本申请提供的方法,可以基于数据包的HARQ反馈确定竞争窗CW的更新,提高通讯效率。
在一种可能的设计中,所述发送设备参考所述一个或多个数据包的HARQ确定第二带宽的竞争窗CW大小包括:
根据所述一个或多个数据包的HARQ中的NACK或者ACK的比例Z。
在又一种可能的设计中,针对所述一个或多个数据包的混合自动重传请求HARQ包括下述之一或者组合:
一个或者多个第一数据包对应的传输块TB的HARQ,TB HARQ;或者,一个或者多个第二 数据包对应的一个或多个编码块组CBG的HARQ,CBG HARQ。
在一种可能的设计中,所述比例Z符合以下公式:
Figure PCTCN2019072869-appb-000001
其中,
Figure PCTCN2019072869-appb-000002
Z’表示一个TB中反馈为否定应答NACK的CBG的比率,N CBG表示一个所述TB中CBG的数量,NACK CBG表示反馈NACK的CBG的数量,NACK TB表示所述一个或多个参考时间单元中反馈NACK的TB的数量,N TB表示所述一个或多个参考时间单元中传输的TB的数量,x为所述一个或多个参考时间单元中基于CBG传输的TB的数量。
在一种可能的设计中,所述比例Z符合以下公式:
Figure PCTCN2019072869-appb-000003
其中,NACK TB表示一个或多个参考时间单元中以TB为最小反馈单元且反馈NACK的TB的数量。N TB表示一个或多个参考时间单元中传输的TB的总数量,x为一个或多个参考时间单元中以CBG为最小反馈单元的TB的数量。
Figure PCTCN2019072869-appb-000004
Z’表示一个TB的NACK比率,其中N CBG表示一个TB中CBG的数量,NACK CBG表示一个TB中反馈NACK的CBG的数量,N NACK用于表示该一个TB中基于TB的HARQ反馈,若一个TB的基于TB的HARQ反馈为NACK,则N NACK=1,否则N NACK=0。可选的,α和β分别表示基于CBG的HARQ反馈以及基于TB的HARQ反馈的权重因子。可选的,α+β=1,示例性地,α和β的取值可以分别为0和1。
在另一种可能的设计中,
Figure PCTCN2019072869-appb-000005
Z’表示一个TB的NACK比率,其中N CBG表示一个TB中CBG的数量,NACK CBG表示该一个TB中反馈NACK的CBG的数量,N NACK用于表示该一个TB的基于TB的HARQ反馈,若一个TB的基于TB的HARQ反馈为NACK,则N NACK=1,否则N NACK=0。可选的,α和β分别表示基于CBG的HARQ反馈以及TB级HARQ反馈的权重因子。可选的,α+β=1,示例性地,α和β的取值可以分别为0和1。
在又一种可能的设计中,所述参考所述一个或多个数据包的HARQ确定第二带宽的竞争窗CW大小包括:
参考所述一个参考时间单元内发送的所述一个或多个数据包的HARQ确定第二带宽的竞争窗CW大小;
所述一个参考时间单元为所述发送设备最近的一次传输中的起始时间单元。
在一种可能的设计中,所述参考所述一个多个数据包的HARQ确定第二带宽的竞争窗CW大小包括:
参考所述多个参考时间单元内发送的所述一个或者多个数据包的HARQ确定第二带宽的竞争窗CW大小;
其中,所述一个或者多个数据包的HARQ包括:在不重叠的频域单元上的、在最近的各个所述多个参考时间单元内发送的所述一个或者多个数据包的HARQ。
在一种可能的设计中,所述一个或多个数据包的混合自动重传请求HARQ只包括所述一个或者多个第一数据包的TB HARQ所述比例Z符合以下公式:
Figure PCTCN2019072869-appb-000006
其中,NACK TB表示一个所述参考时间单元中反馈NACK的TB的数量,N TB表示一个所述参考时间单元中传输的TB的数量。
在一种可能的设计中,所述一个或多个数据包的混合自动重传请求HARQ只包括所述一个或者多个第二数据包的CBG HARQ,所述比例Z符合以下公式:
Figure PCTCN2019072869-appb-000007
其中,N CBG表示所述一个或多个参考时间单元传输的CBG的数量,NACK CBG表示反馈NACK的CBG的数量。
本申请提供的竞争窗调整的方法,可以在信道质量较差时,增加竞争窗的值可以使发送设备能有更长的时间进行退避,避免碰撞造成干扰;在信道质量较好时,通过重启竞争窗或者减小竞争窗可以使发送设备能在短时间内完成退避,缩短信道接入的时间。
第二方面,本申请的实施例提供一种竞争窗口管理的装置,用于网络设备,包括用于执行以上第一方面各个步骤的单元或手段(means)。
第三方面,本申请的实施例提供一种竞争窗口管理的装置,用于终端设备,包括用于执行以上第一方面各个步骤的单元或手段(means)。
第四方面,本申请提供一种通信装置,包括处理器和存储器;所述存储器用于存储计算机执行指令;所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行第一方面所述的方法。
第五方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第一方面所述的方法。
第六方面,本申请提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现第一方面所述的方法。
第七方面,本申请提供一种通信***,所述通信***包括上述第二方面所述的网络设备和第三方面的终端设备。
附图说明
图1为本申请实施例提供的通信***的结构示意图;
图2为本申请实施例提供的方法流程;
图3~6分别为本申请不同实施例提供的多种参考时间单元示意图;
图7为本申请一实施例提供的确定参考时间单元示意图;
图8为本申请另一实施例提供的确定参考时间单元示意图;
图9为本申请又一实施例提供的确定参考时间单元示意图;
图10为本申请一实施例提供的灵活带宽场景下CW继承示意图;
图11为本申请另一实施例提供的灵活带宽场景下CW继承示意图;
图12为本申请一实施例提供的CW更新示意图;
图13为本申请另一实施例提供的CW更新示意图;
图14为本申请又一实施例提供的CW更新示意图;
图15为本申请又一实施例提供的CW更新示意图;
图16为本申请又一实施例提供的CW更新示意图;
图17为本申请一实施例提供的多个参考时间单元CW更新示意图;
图18为本申请又一实施例提供的CW更新示意图;
图19为本申请又一实施例提供的CW更新示意图;
图20为本申请一实施例提供的多个参考时间单元CW更新示意图;
图21为本申请一实施例提供的基于多个天线面板的信道侦听方法流程图;
图22为本申请一个实施例提供的多天线面板与CW对应示意图;
图23为本申请又一实施例提供的多天线面板与CW对应示意图;
图24为本申请又一实施例提供的多天线面板与CW对应示意图;
图25为本申请又一实施例提供的多天线面板与CW对应示意图;
图26为本申请又一实施例提供的多天线面板与CW对应示意图;
图27为本申请一实施例提供的网络设备的结构示意图;
图28为本申请一实施例提供的终端的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。方法实施例中的具体操作方法也可以应用于装置实施例或***实施例中。
请参见图1,其为应用本申请实施例的网络架构的简化示意图,该网络架构可以是无线通信***的网络架构,无线通信***可以工作在授权频段,也可以工作在非授权频段。可以理解的是,非授权频段的使用可以提高无线通信***的***容量,提高信道接入效率,提高频谱资源利用率,并最终提升***性能。
如图1所示,无线通信***可以包括网络设备和终端,网络设备与终端之间通过无线通信技术连接。需要说明的是,图1所示的终端和网络设备的数量和形态并不构成对本申请实施例的限定。在不同的实施例中,一个无线通信***可以包括一个或者多个网络设备,一个网络设备可以连接一个或多个终端。网络设备还可以连接到核心网设备,核心网设备未在图1中示出。
需要说明的是,本申请实施例提及的无线通信***包括但不限于:窄带物联网***(narrow band-internet of things,NB-IoT)、全球移动通信***(global system for mobile communications,GSM)、增强型数据速率GSM演进***(enhanced data rate for GSM evolution,EDGE)、宽带码分多址***(wideband code division multiple access,WCDMA)、码分多址2000***(code division multiple access,CDMA2000)、时分同步码分多址***(time division-synchronization code division multiple access,TD-SCDMA),长期演进***(long term evolution,LTE)、第五代移动通信***以及未来移动通信***。
本申请实施例中,上述网络设备是一种部署在无线接入网中,为终端提供无线通信功能的装置。网络设备可以包括但不限于基站(Base Station,BS)、站点(Station,STA,包括接入点(Access Point,AP)和非AP站点STA)、网络控制器、传输接收点(transmission and reception point,TRP)、移动交换中心或者wifi中的无线接入点等,示例性地,通过无线信道与终端进行直接通信的装置通常是基站。所述基站可以包括各种形式的宏基站、微基站、中继站、接入点或射频拉远单元(Remote Radio Unit,RRU)等。当然,与终端进行无线通信的也可以是其他具有无线通信功能的网络设备,本申请对此不做唯一限定。需要说明的是,在不同***中,具备基站功能的设备的名称可能会有所不同,例如在LTE网络中,称为演进的节点B(evolved NodeB,eNB或eNodeB),在第三代(the 3rd Generation,3G)网络中,称为节点B(Node B)等,在5G网络中,称为5G基站(NR NodeB,gNB)。
终端,又称之为终端设备,可以包括例如用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通信的设备,例如,具有无线连接功能的手持式设备、车载设备、可穿戴设备、计算设备或链接到无线调制解调器的其他处理设备。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
本申请中,名词“网络”和“***”可能会交替使用,名词“用户”和“终端”可能会交替使用,但本领域的技术人员可以理解其含义。另外,本文中的部分英文简称是以LTE***为例对本申请实施例进行的描述,其可能随着网络的演进发生变化,具体演进可以参考相应标准中的描述。
本文中术语“***”和“网络”在本文中常被可互换使用。本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请所提出的应用于非授权频段上的竞争窗口管理的方法,其基于NR***中更为灵活的资源传输单元,提出了信道侦听中竞争窗(contention window,CW)的更新机制,以实现更为精确的竞争窗更新。以下,将分别从资源传输单元,以及信道侦听竞争窗对本申请的竞争窗口管理的方法进行示例性地说明。
在通讯***中,发送设备向接收设备发送数据包之后,接收设备需要向发送设备反馈混合自动重传请求(hybrid automatic repeat request,HARQ),以便于发送设备确定传输是否正确,并在必要的情况下对传输错误的数据包进行重传。其中,上述发送设备、接收设备可以是网络设备或者终端。当发送设备为网络设备时,则接收设备为终端,例如在下行传输中,网络设备可以在一个或多个参考时间单元上向一个或多个终端发送一个或多个数据包;当发送设备为终端,则接收设备为网络设备,例如在上行传输中,终端可以在一个或多个参考时间单元上向一个网络设备发送一个或多个数据包。
上述接收设备的HARQ反馈或者发送设备的重传以通讯***所规定的进行接收和/或进行HARQ反馈时的基本单元为基本单元。例如,在LTE***中,数据包以传输块(transport block,TB)为单位。当接收设备发现一个TB未被成功接收时,接收设备可以向发送设备反馈未被成功接收的这一个TB的NACK。发送设备在接收到一个TB的NACK后,会在后续的传输中将重传上述未被成功接收的一个TB。这种基于TB反馈HARQ的机制可以被称为TB响应(TB-ACK)。
在NR***中,进行数据接收和/或HARQ反馈时可以基于更小的单元,例如:数据包 还可以包括一个或多个编码块。一个CB可以具有独立的校验功能,例如,每个CB都会进行循环冗余校验(cyclic redundancy check,CRC)编码,从而接收设备在对每个CB译码后,通过CRC校验就可以确定其是否被正确译码。可以将一个TB划分为K个编码块组(CB group,CBG),其中,K≥1,一个CBG包括至少一个CB。在进行HARQ反馈时,以CBG为单位进行反馈,换句话说,接收设备可以基于一个CBG反馈HARQ。当一个TB中的一个或多个CBG对应的HARQ为NACK或者DTX时,则说明这一个TB未被正确接收。发送设备在执行重传时,可以仅传输该一个TB中未被正确接收的一个或多个CBG,而已被正确接收的CBG则不会被重传。这种基于CBG反馈HARQ的机制可以被称为CBG响应(CBG-ACK)。
需要说明的是,在NR***中,既可以支持基于TB反馈HARQ的机制,也可以支持基于CBG反馈HARQ的机制。
LTE***中数据信道的子载波间隔固定为15kHz。5G NR***中为了支持更灵活的资源使用和支持更多样化的通信环境,可以支持多种可选的子载波间隔,包括15kHz、30kHz、60kHz等。其中,较大的子载波间隔对应较短的上行符号长度,对于15kHz*2n(n为正整数)子载波间隔,其对应的符号长度变为原来15kHz子载波间隔所对应的符号长度的
Figure PCTCN2019072869-appb-000008
并且对应地,一个时隙(slot)或者说一个数据包所对应的一个传输时间间隔(transmission time interval,TTI)的长度也变为原来的
Figure PCTCN2019072869-appb-000009
为了扩展可使用频段,LTE***中引入了载波聚合(carrier aggregation,CA)技术,使用多个载波传输数据信息。每个载波(称之为成员载波(component carrier,CC))上承载一个或多个传输块(transport block,TB),每个载波上的下行/上行数据传输通过接入网设备发送的一个对应的调度信令(DL grant/UL grant)来进行调度,其中该载波和承载该调度信令的载波可以是同一个载波(本载波调度),也可以是不同的载波(跨载波调度)。
在5GNR***中,除了支持以载波聚合的方式传输数据,还可以支持宽带(wideband,WB)传输技术,将一个载波所占的带宽进行扩展,例如从原来LTE***的20MHz带宽扩展为N*20MHz,同时为了降低快速傅里叶变换或快速傅里叶反变换(FFT或IFFT)的复杂度,可以同时将子载波间隔加大。例如从原来LTE***的15kHz间隔加大到N*15kHz,从而在增加带宽的同时保持采样速率不变。例如,NR宽带***的一个载波扩展为40MHz,该载波包含两个子带(SubBanD,SBD),每个子带带宽为20MHz,其一个物理资源块(physical resource block,PRB)包括12个子载波,子载波间隔为30kHz,其一个子帧包括14个时域符号,每个时域符号为LTE(15kHz子载波间隔)时域符号长度的1/2,一个子帧长度为0.5ms;一个传输块可以承载在40MHz载波*0.5ms时频资源上。
为了解决许可频段可用频域资源较少的问题,LTE的Release 13中引入授权辅助接入的长期演进(licensed-assisted access using long term evolution,LAA-LTE)技术,以及在Release 14增强授权辅助接入(enhanced LAA,eLAA)技术,通过载波聚合技术,可以将可用的频段扩展到免许可频段,通过许可频段的辅助,在免许可频段上传输下行和上行信息。Multefire标准在LAA和eLAA的基础上,进一步地将LTE***的上下行传输(包括业务信道和控制信道)完全在免许可频段实现,而不依赖于许可频段的辅助,即Standalone传输。
为了实现在免许可频段上满足和不同运营商的接入网设备、终端设备,以及Wi-Fi等异***无线节点的友好共存,LAA/eLAA/Multefire***采用LBT信道接入机制。发送节点在 免许可频段上发送信息之前需要对信道进行侦听,侦听到信道空闲后再发送下行信息。发送节点在想要占用的资源之前侦听到信道空闲称之为LBT侦听成功,反之称之为LBT侦听失败。
发送设备在占用信道后,可以持续占用信道发送信息,该持续占用的时域资源称之为突发(burst)。发送设备在占用信道后,可以连续发送信息的最大时间长度为最大信道占用时间(maximum channel occupancytime,MCOT),发送设备持续占用信道达到该MCOT后需要释放信道,重新执行LBT后才能再次接入。发送设备执行信道侦听时,信道状态包括两种:信道空闲和信道忙碌。信道状态的判断准则为:无线通信设备将侦听时隙内的接收到信道上的功率与能量检测门限(clear channel assessment-energy detection,CCA-ED)比较,如果高于该检测门限,则状态为信道忙碌;如果低于该检测门限,则状态为信道空闲。
工作在非授权频段的发送设备可以使用随机退避CCA(clear channel assessment,CCA)机制来接入信道,即网络设备可以使用随机退避CCA机制接入信道发送下行信息,终端可以使用随机退避CCA机制接入信道发送上行信息。其中,上述随机退避CCA机制可被称为第一类信道接入(Type l channel access),发送设备在一个时间段T d内侦听信道为空闲后,还需要进行随机退避,在完成随机退避时才可以进行传输。具体而言,发送设备在一个时间段T d内侦听信道为空闲后,按照以下步骤执行随机退避:
步骤1:初始化,在0到CW之间均匀随机选择一个值作为初始值N init,执行步骤4;
步骤2:判断N是否大于0,如果是则令N=N-1;
步骤3:在一个退避时隙内进行信道侦听,如果侦听到信道空闲,则执行步骤4,否则执行步骤5;
步骤4:如果N=0,则结束。否则,执行步骤2;
步骤5:侦听信道直到在一个时间段T d内遇到信道被占用的情况,或者直到在一个时间段T d内侦听信道为空闲;
步骤6:如果在上述额外的T d内的所有退避时隙内信道均是空闲的,执行步骤4,否则执行步骤5。
另外,发送设备也可以在回退计数器归零后,不立即发送信息而自行等待一段时间,等待结束后,在需要发送信息的时刻之前再在一个额外的时隙侦听一次,若该额外的时隙内侦听到信道空闲则认为信道侦听成功,可以立即发送信息。若在该信息的起始时刻之前未完成回退计数器归零,或者该额外的侦听时隙为忙碌,则称信道侦听失败。其中,发送设备包括终端设备或接入网设备。接入网设备通过执行随机回退的CCA成功后对应的MCOT为DL MCOT。终端设备通过执行随机回退的CCA成功后对应的MCOT为UL MCOT。
在随机退避过程中,CW即为竞争窗,竞争窗的长度也称之为竞争窗大小(contention window size,CWS)。
为了在确保与免许可频段上的相邻节点的友好共存和提高信道接入效率之间取得平衡,发送设备会动态地调整CWS并用于下一次的信道侦听。具体的,发送设备在发送信息之前,确定之前发送过数据包的参考时间单元,并根据接收设备针对参考时间单元上的数据包反馈的HARQ响应(hybrid automatic repeat request-acknowledge,HARQ-ACK)(也称为HARQ确认、HARQ信息、HARQ反馈、HARQ确认反馈、HARQ接收状态等)动态调整CWS。其中,接收设备向发送设备反馈HARQ响应,以便于发送设备对传输错误的数据包进行重传。 例如,当参考时间单元上的数据包所对应的HARQ响应中,不包括正确应答(acknowledgement,ACK)状态,或者错误应答(negative acknowledgement,NACK)的比例较大时,发送节点增加CWS,在下一次LBT时利用增加的CW进行信道侦听,以拉长侦听时间为代价避免与周围竞争节点的碰撞,实现友好共存;当参考时间单元上的数据包所对应的HARQ响应中,包括ACK状态,或者NACK状态的比例较小时,发送设备减小CWS,从而降低侦听时间,提高接入信道的效率。再例如,当发送设备接收到一个或多个针对参考时间单元的ACK时,发送节点减小CWS,反之发送节点增加CWS。
从以上的内容可以得知,CWS的值影响了发送设备进行侦听的时长。鉴于在NR***中资源传输单元的粒度可以更小,为了能够更为精确地实现竞争窗CW的更新,以达到灵活地调度,提高通讯效率,本申请的实施例提出了一种CW管理的方法,请参照图2,为了便于描述,图中仅示出了一个接收设备,可以理解地是,本申请的方法可以适用于多个接收设备。该方法包括以下步骤:
301,发送设备在一个或多个参考时间单元内向一个或多个接收设备发送一个或多个数据包,所述一个或多个数据包占用第一带宽。
“第一带宽”是指一段频域范围,其可以包括一个或多个频域单元。在本实施例以及下文所指的频域单元可以对应一个载波(称之为成员载波(component carrier,CC))、子带(subband,SBD)或者部分带宽(bandwidth part,BWP)。不同的频域单元可以对应同一个设备,也可以对应不同的设备。
上述数据包可以基于CBG进行接收和/或进行HARQ反馈的数据包(在下文被称为“基于CBG粒度的数据包”),或者基于TB进行接收和/或进行HARQ反馈的数据包(在下文被称为“基于TB粒度的数据包”)。一个或多个数据包中可以全部为基于CBG粒度的数据包,或者一个或多个数据包可以全部为基于TB粒度的数据包,或者一个或多个数据包可以为基于TB粒度的数据包和基于CBG粒度的数据包。
上述参考时间单元可以为帧(frame),传输时间间隔(transmission time interval,TTI)子帧(subframe),微时隙(mini-slot),非时隙(non-slot)或者时隙(slot)。在本申请的一些实施例中,参考时间单元指的是发送设备最近的一次传输中的起始时间单元,且收到了参考时间单元对应的HARQ-ACK反馈,在下文将进行更为具体地说明。
在一个实施例中,例如支持多种参数配置(numerology)传输的场景下,参考时间单元可以是最小子载波间隔对应的时间单元。例如,当15kHz,30kHz,60kHz子载波间隔共存时,参考时间单元为子载波间隔15kHz对应的时间单元(请参照图3);当30kHz,60kHz子载波间隔共存时,参考时间单元为子载波间隔15kHz对应的时间单元(请参照图4)。
在另一个实施例中,例如支持基于slot和non-slot/微时隙(mini-slot)的时隙结构的场景下,参考时间单元可以是时隙结构中最长的一个(请参照图5),或者是时隙结构中最短的一个(请参照图6)。
需要说明的是,参考时间单元是发送设备最近的一次传输中的一个时间单元,该最近的一次传输是指发送设备成功接入设备并发送数据包的传输。这是,由于在非授权频段的应用场景下,会存在某个时间单元发送设备未能竞争到信道而无法传输数据包,因此最近一次传输与发送设备进行侦听时会存在一定的时间间隔。例如,参考时间单元可以是发送设备最近一次传输中的第一个时间单元,或者参考时间单元可以是发送设备最近一次传输 中的最后一个时间单元。
示例性地,请参照图7,由于成功接入信道,发送设备在时间单元k开始发送数据包,此时时间单元k所在的传输为最近一次传输,参考时间单元为时间单元k。又比如,请参照图8,由于未能成功接入信道,发送设备在时间单元k没有发送数据包,而在时间单元k-n,由于成功接入信道,发送设备在时间单元k-n发送了数据包,可见时间单元k-n所在的传输为最近一次传输,此时时间单元k不能作为参考时间单元,时间单元k-n作为参考时间单元,其中n为一次传输中所包含的时间单元的个数。
以下,对涉及到多个参考时间单元的场景进行说明。请参照图9,以第一带宽包括频域单元1和频域单元2为例。发送设备在时间单元k在频域单元1上发送数据包,因此其参考时间单元为时间单元k。由于在频域单元2未能竞争到信道,发送设备在时间单元k-n在频域单元2上发送数据包,其最近的一次传输发生在时间单元k-n。此时,发送设备在参考时间单元k和k-n内向一个或多个接收设备发送一个或多个数据包,所述一个或多个数据包占用包含频域单元1和频域单元2的第一带宽。
302,一个或多个接收设备接收来自发送设备的一个或多个数据包,并基于一个或多个数据包反馈HARQ。
接收设备接收数据包,并对接收到的数据包进行校验。当数据包基于CBG粒度时,接收设备基于一个CBG反馈NACK或ACK。当数据包基于TB粒度时,接收设备基于一个TB反馈NACK或ACK。由于接收设备接收发送设备一个或多个参考时间单元内所发送的一个或多个数据包,接收设备基于该一个或多个数据包反馈HARQ,其可以反映该一个或多个参考时间单元内信道的质量。
303,发送设备接收来自所述一个或多个接收设备的基于所述一个或多个数据包的混合自动重传请求HARQ。
可选地,发送设备接收来自接收设备的HARQ中为一个或多个参考时间单元内的基于TB反馈的HARQ、基于CBG反馈的HARQ,或者同时存在基于TB反馈的HARQ和基于CBG反馈的HARQ。换句话说,针对一个或多个数据包的混合自动重传请求HARQ包括下述之一或者组合:一个或者多个第一数据包对应的传输块TB的HARQ(TB HARQ);或者,一个或者多个第二数据包对应的一个或多个编码块组CBG的HARQ(CBG HARQ)。
304,所述发送设备参考所述一个或多个数据包的HARQ确定第二带宽的竞争窗CW大小。
发送设备确定第二带宽的竞争窗大小,并根据确定的竞争窗大小在第二带宽上进行信道侦听。发送设备需要在第二带宽上进行后续的传输,由于HARQ信息反映了先前传输中信道的质量。在不同的实施例中,发送设备的第一带宽所占用的频域范围可以与第二带宽相同,或者发送设备的第一带宽所占用的频域范围可以与第二带宽不同。当信道质量不好时,需要延长竞争窗,以便于发送设备可以有更长的时间来进行退避。在本步骤中,参考一个或多个CBG的HARQ确定第二带宽的竞争窗大小,发送设备可以根据确定的竞争窗大小在第二带宽上进行信道侦听。
在一个实施例中,竞争窗CW的取值可以参照参照以下表1:
表1信道接入优先级(Channel Access Priority Class)
Figure PCTCN2019072869-appb-000010
其中channel access priority class(p)表示不同的信道接入优先级,m p表示用于确定流程中的Td,即对应于不同的优先级,Td=Tf+mp*Tsl;Tf=16us,Tsl=9us,,CW min,p表示对应优先级的CW的最小值,CW max,p表示对应优先级的CW的最大值,T mcot,p表示表示最大信道占用时间,allowed CW psizes表示对应优先级的CW允许的取值。例如,以优先级p=1为例,其CW的最小值为3,最大值为7,允许的CW取值为{3,7}。
针对不同的信道接入优先级p,采用CW p表示对应的CW,
1)对于各个接入优先级而言p∈{1,2,3,4},令CW p=CW min,p,即选择该优先级对应CW的最小值;
2)参考所述一个或多个数据包的HARQ确定第二带宽的竞争窗CW大小,确定第二带宽的竞争窗,例如确定增大CW p并保持,发送设备按照更新后的CW p在第二带宽进行信道侦听;或者否则重新初始化为最小的竞争窗或减小第二带宽的竞争窗。
在下文中,根据HARQ确定第二带宽的竞争窗CW时,HARQ的响应至少包括以下几种的状态中的一种或多种:应答(acknowledgement,ACK),否定应答(negative acknowledgement NACK),非连续性传输(discontinuous transmission,DTX)。在参考所述一个或多个数据包的HARQ确定第二带宽的竞争窗CW大小时,可选地,DTX也可以等同于NACK来处理,或者DTX也可以忽略不计,具体的方式可以参考36.213中的描述,本申请对此不作限制。在一个实施例中,参考所述一个或多个数据包的HARQ确定第二带宽的竞争窗CW大小包括:
根据所述一个或多个数据包的HARQ中的NACK或者ACK的比例Z,示例性地,确定一个或多个参考时间单元的基于一个或多个数据包的HARQ中NACK的比例Z,或者ACK的比例Z,或者NACK与ACK的比例Z;
根据比例Z确定第二带宽的竞争窗CW。
其中,上述参考是指一个或多个数据包的HARQ是作为确定第二带宽的竞争窗CW的一个输入。例如,当HARQ仅包含基于CBG反馈的HARQ时,发送设备可以根据一个或多个数据包中基于CBG反馈的NACK或者ACK占HARQ总数的比值确定第二带宽的竞争窗大小;当HARQ既包含基于CBG反馈的HARQ又包含基于TB反馈的HARQ时,发送设备可以先将基于CBG的HARQ的NACK或ACK占比折算成基于TB的NACK占比或ACK占比,再与一个或多个数据包中其他基于TB的NACK占比或者ACK占比组合确定第二带宽的竞争窗的大小;或者,当HARQ仅包含基于TB反馈的HARQ时,发送设备可以基于一个或多个数据包中基于TB反馈NACK或ACK占HARQ总数的比值确定第二带宽的竞争窗大小。
根据比例Z确定第二带宽的竞争窗CW包括:当NACK的比例Z大于或者等于第一预设值时,增加第一带宽的竞争窗;否则,重新初始化为最小的竞争窗或者减小第二带宽的竞争窗。在一些实施方式中,该第一预设值可以为特定值,或者该第一预设值可以从预设的范 围中动态选取一个值。该预设值的选取可以参考信道质量来进行,这是由于在信道质量较差时,增加竞争窗的值可以使发送设备能有更长的时间进行退避,避免碰撞造成干扰;而在信道质量较好时,减小竞争窗可以使发送设备能在短时间内完成退避,缩短信道接入的时间。
例如,当发送设备参考一个或多个CBG中反馈HARQ为NACK的CBG的数量确定比例Z时,第一预设值为80%,则当比例Z大于或者等于80%时,延长第二带宽的竞争窗,否则重新初始化为最小的竞争窗或减小第二带宽的竞争窗。
又例如,当发送设备参考一个或多个CBG中反馈HARQ为ACK的CBG的数量确定比例Z时,第一预设值为20%,则当比例Z小于等于20%时,延长第一带宽的竞争窗,否则重新初始化为最小的竞争窗或减小第二带宽的竞争窗。
示例性地,一种计算比例Z的方式为,在一个或多个参考时间单元传输的数据包中既有以TB为最小反馈单元的数据包,也有以CBG为最小反馈单元的数据包。则发送设备接收的HARQ中包括基于TB反馈的HARQ,也包括基于CBG反馈的HARQ。上述比例Z符合以下公式:
Figure PCTCN2019072869-appb-000011
其中,
Figure PCTCN2019072869-appb-000012
Z’表示一个TB中反馈为NACK的CBG的比值,N CBG表示一个TB中CBG的数量,NACK CBG表示一个TB中反馈NACK的CBG的数量,NACK TB表示一个或多个参考时间单元中以TB为最小反馈单元且反馈NACK的TB的数量,N TB表示一个或多个参考时间单元中传输的TB总的数量,x为一个或多个参考时间单元中以CBG为最小反馈单元的TB的总的数量。
另一种计算比例Z的方式,在一个或多个参考时间单元传输的多个数据包中均以TB为最小反馈单元,或者以CBG为最小反馈单元的数据包均反馈ACK,或者还可以根据规则确定对应的TB是ACK还是NACK,则上述比例Z符合以下公式:
Figure PCTCN2019072869-appb-000013
其中,NACK TB表示一个或多个参考时间单元中反馈NACK的TB的总的数量,N TB表示一个或多个所述参考时间单元中传输的TB的总的数量。示例性地,上述确定对应的TB是ACK还是NACK的规则可以是当TB内CBG的反馈中NACK的比例超过一定阈值以后,则认为该TB的HARQ为NACK。
又一种计算比值的方式为,在一个或多个参考时间单元传输的多个数据包中均以CBG为最小反馈单元,或者以TB为最小反馈单元的数据包均反馈ACK,则上述比例Z符合以下公式:
Figure PCTCN2019072869-appb-000014
其中,NACK CBG表示一个一个或多个参考时间单元中反馈NACK的CBG的总的数量,N TB表示一个或多个参考时间单元中传输的CBG的总的的数量。
再一种计算比例Z的方式为,在一个或多个参考时间单元传输的数据包中既有以TB为最小反馈单元的数据包,也有以CBG为最小反馈单元的数据包。对于以CBG为最小反馈单元 的数据包而言,既有基于CBG发送的HARQ反馈,即以CBG为单位发送的HARQ反馈;同时还有基于TB发送的HARQ反馈,即以TB为单位发送的HARQ反馈。则发送设备接收的HARQ中包括基于TB反馈的HARQ,也包括基于CBG反馈的HARQ。上述比例Z符合以下公式:
Figure PCTCN2019072869-appb-000015
其中,NACK TB表示一个或多个参考时间单元中以TB为最小反馈单元且反馈NACK的TB的数量,即,基于TB进行HARQ反馈且反馈NACK的TB的数量。N TB表示所述一个或多个参考时间单元中传输的TB的总数量,x为所述一个或多个参考时间单元中基于CBG进行HARQ反馈的TB的数量,可以理解为以CBG为最小反馈单元的TB的数量;或者在另一些实施方式中,还可以为基于CBG进行传输的TB的数量。在一些实施方式中,
Figure PCTCN2019072869-appb-000016
Z’表示一个TB的NACK比率,其中N CBG表示一个TB中CBG的数量,NACK CBG表示该一个TB中反馈NACK的CBG的数量。在本实施方式中,该一个TB基于CBG发送HARQ反馈的同时,还基于TB发送HARQ反馈,N NACK用于表示该一个TB中基于TB的HARQ反馈,若一个TB的基于TB的HARQ反馈为NACK,则N NACK=1,否则N NACK=0。在其它实施方式中,该一个TB仅基于CBG发送HARQ反馈,而没有基于TB发送HARQ反馈,则N NACK=0。可选的,α和β分别表示基于CBG的HARQ反馈以及基于TB的HARQ反馈的权重因子。可选的,α+β=1,示例性地,α和β的取值可以分别为0和1,或者分别为0.5和0.5,也可为其他取值,本申请不做限定。
示例性地,对于某个TB(以下以“TB1”表示)而言,TB1既包括基于CBG的HARQ反馈,也包括基于TB的HARQ反馈。TB1包括4个CBG,若该4个CBG均反馈为ACK,即TB1中反馈NACK的CBG的数量为0,则按照前述规则,NACK CBG=0;若TB1中基于TB的HARQ反馈为NACK,则按照前述规则,N NACK=1,以对应的α和β的取值分别为0.5和0.5为例,则可以得到TB1的NACK比率Z’=0.2。
在另一些实施方式中,
Figure PCTCN2019072869-appb-000017
Z’表示一个TB的NACK比率,其中N CBG表示一个TB中CBG的数量,NACK CBG表示该一个TB中反馈NACK的CBG的数量。在本实施方式中,该一个TB基于CBG发送HARQ反馈的同时,还基于TB发送HARQ反馈,N NACK用于表示该一个TB的基于TB的HARQ反馈,若一个TB的基于TB的HARQ反馈为NACK,则N NACK=1,否则N NACK=0。在其它实施方式中,该一个TB仅基于CBG发送HARQ反馈,而没有基于TB发送HARQ反馈,则N NACK=0。可选的,α和β分别表示基于CBG的HARQ反馈以及基于TB的HARQ反馈的权重因子。可选的,α+β=1,示例性地,α和β的取值可以分别为0和1,或者分别为0.5和0.5,也可为其他取值,本申请不做限定。
示例性地,对于某个TB(以下以“TB2”表示)而言,TB2既包括基于CBG的HARQ反馈,也包括基于TB的HARQ反馈;TB2总共包括4个CBG,若该4个CBG均发送ACK,即TB2中发送NACK的CBG的数量为0,则按照前述规则,NACK CBG=0;若TB2中基于TB的HARQ反馈为NACK,则按照前述规则,N NACK=1,以对应的α和β的取值分别为0.5和0.5为例,则此时TB2的NACK比率Z’=0.5。
结合上述任意一种实施方式,对于基于CBG反馈的数据包而言,一种可能的方式,接收设备按照配置的所支持的最大CBG个数进行HARQ反馈,此时对于那些实际未调度,但是被接收设备默认反馈为NACK的CBG,不计入Z的计算中;
可选的,对于基于TB反馈的数据包而言,一种可能的方式,由于LBT的原因,发送设备调度了的数据包没能实际发送,而接收设备按照调度信令对该部分数据包按照默认规则反馈为NACK,这些NACK也不计入Z的计算中。
需要说明的是,在上述计算方式中,若第一带宽中的部分频域单元在多个参考时间单元均有传输,那么该频域单元不重复计算。可以参考图14,发送设备在参考时间单元k-n和k上均有传输,则在计算Z值时,仅考虑距离LBT流程最近一次传输参考时间单元k所传输的数据包的HARQ反馈,而对于参考时间单元k-n上频域单元1所传输的数据包的HARQ反馈不计算。
示例性地,以优先级p=1为例,CW p的初始值为3。发送设备接收到针对一个参考时间单元所发送数据包的HARQ中NACK的比例,确定第一带宽的CW。当发送设备接收到数据包中反馈NACK比例大于预设值时,或者可选的NACK的数量大于ACK数量时时,增加CW p为7,并在第一带宽按照CW=7进行信道侦听;否则,不更新CW p,发送设备按照CW=3在第一带宽进行信道侦听。
在灵活带宽的场景下,CW p的取值可以在不同的频域单元下进行继承。假设在进行LBT时,频域单元的选择可以灵活变化,第二带宽的频域单元可以继承第一带宽的频域单元的CW值。当频域单元由小到大变化时,第二带宽内的频域单元可以继承第一带宽内各个频域单元最大的或者最小的CW值。当频域单元由大到小变化时,第二带宽内的频域单元可以继承第一带宽内的频域单元的CW值。
请参照图10,第一带宽内的频域单元为20MHz,第二带宽内的频域单元为40MHz,此时频域单元由小到大变化,发送设备在第二带宽内40MHz的基本带宽单元的CW p的取值可以继承第一带宽内最大的20MHz的基本带宽单元的CW值。请参照图11,第一带宽内的频域单元为40MHz,第二带宽内的频域单元为20MHz,此时频域单元由大到小变化,发送设备在第二带宽内的任意一个20MHz的基本带宽单元的CW p的取值可以继承第一带宽内40MHz频域单元的CW值作为取值。在继承了CW的基础上,可选的,可以进一步根据参考时间单元内的HARQ反馈情况,进行更新,例如延长或者减小。
在其它的实施例中,发送设备至少根据一个或多个CBG的HARQ确定数据包的HARQ,并至少根据所确定的数据包的HARQ确定第一带宽的竞争窗CW。
例如,发送设备至少根据一个或多个CBG的HARQ确定数据包的HARQ是指参考该数据包中所包含的一个或多个CBG的HARQ确定数据包的HARQ。例如,当一个数据包中包含有一个CBG时,则发送设备可以根据接收设备发送的该一个CBG的HARQ为NACK,确定该数据包的HARQ为NACK,发送设备可以根据接收设备发送的该一个CBG的HARQ为ACK,确定该数据包的HARQ为ACK;当一个数据包中包含多个CBG时,则若接收设备发送的HARQ为ACK的CBG的数量大于HARQ为NACK的CBG的数量,发送设备可以确定该一个数据包的HARQ为ACK,若接收设备发送的HARQ为NACK的CBG的数量大于HARQ为ACK的CBG的数量,发送设备可以确定该一个数据包的HARQ为NACK。
当确定数据包的HARQ为NACK时,则发送设备增加竞争窗;当确定数据包的HARQ为ACK时,则发送设备缩小竞争窗。其中,增加或者缩小竞争窗可以采用调整窗口长度的方式来进行,例如,当需要增加竞争窗时,则发送设备以当前竞争窗的长度为基础增加1;当需要缩小竞争窗时,则发送设备以当前竞争窗的长度为基础缩短1。可以理解的是,发送设备调整竞争窗长度可以以1为单位,也可以以其他的时间长度为单位,本申请对此不作限制。
在一个实施例中,步骤304,参考所述一个或多个数据包的HARQ确定第二带宽的竞争窗CW大小包括:
参考一个参考时间单元内发送的所述一个或多个数据包的HARQ确定第二带宽的竞争窗CW大小,一个参考时间单元为所述发送设备最近的一次传输中的起始时间单元。
请参照图12,第一带宽和第二带宽均占据四个频域单元1~4。发送设备在参考时间单元k内通过频域单元1~4向接收设备发送一个或多个数据包,并在后续接收来自接收设备的基于一个或多个数据包的HARQ。发送设备可以参考时间单元内频域单元1~4的数据包的HARQ确定第二带宽的竞争窗CW大小。如图12所示,发送设备随机选择一个频域单元基于CW进行LBT。如此,发送设备在频域单元1、2和4上进行非基于随机退避的传输,发送设备在频域单元3上进行基于随机退避的传输。在其它的实施方式中,还可以随机选取除频域单元3以外的其它频域单元进行随机退避。
请参照图13,其与图12的区别在于:由于未竞争到信道,发送设备在参考时间单元k未在频域单元3和4传输数据包,而在频域单元1和2传输数据包。在本实施方式中,参考时间单元为发送设备最近一次传输的起始时间单元。即使在该起始时间单元内有部分频域单元未能传输数据包,发送设备仍然将其作为参考时间单元,以参考在参考时间单元内发送的数据包的HARQ确定第二带宽的竞争窗CW大小。换句话说,发送设备接收到频域单元1和2传输的一个或多个数据包的HARQ,以确定第二带宽的竞争窗CW大小。
在一些实施方式中,步骤304参考所述一个或多个数据包的HARQ确定第二带宽的竞争窗CW大小包括:参考多个参考时间单元内发送的一个或多个数据包的HARQ确定第二带宽的竞争窗CW大小;其中,一个或多个数据包的HARQ包括:在不重叠的频域单元上,在相对于各频域单元而言最近的各个多个参考时间单元内发送的一个或多个数据包的HARQ。换句话说,对于多个重叠的频域单元,即在多个参考时间单元中存在频域重叠的区域,以相对于该频域单元而言最近一次传输的HARQ信息进行确定CW窗的大小。
请参照图14,其与图13的区别在于,发送设备在参考时间单元k未在频域单元3和4传输数据包,而在参考时间单元k-n传输数据包。其中,根据图8所提及的方法,对于频域单元3和4而言,其最近一次传输对应的是参考时间单元k-n,因此,频域单元3和4的HARQ可以根据在参考时间单元k-n的传输确定。而由于在参考时间单元k-n和k上,频域单元1均传输了数据包,频域单元在参考时间单元k-n和k的部分存在重叠。此时对于频域单元1而言,最近的一次传输对应的是参考时间单元k,因此,如图中所示,频域单元在参考时间k-n的部分将不用于确定竞争窗大小(如图14中标记不计算的部分),而仅采用参考时间单元k的部分来确定竞争窗大小。
请参照图15~17,发送设备维护的一个CW还可以应用于大带宽,从而即使第二带宽被划分为多个更小的频域单元,只需要在大带宽(即第二带宽)进行LBT,则发送设备在多个频域单元均可接入信道进行传输。可以理解的是,对于发送设备基于大带宽LBT成功后,频域单元如何划分本申请不作具体的限制。可选地,上述大带宽LBT是指在整个第二带宽上进行CCA检测。
请参照图18~20,上述一个应用于频域单元3的CW还可以用于其它的频域单元1,2,4。本申请的另一个实施例中,还提出一种具有多面板的发送设备的LBT侦听方法,该发送设备包括一个或多个天线面板。请参照图21,方法包括:
1201:所述发送设备在所述一个或多个天线面板进行信道侦听;
1202:当侦听结果为空闲时时,所述侦听为空闲的一个或多个天线面板进行传输。
可选地,所述发送设备在一个或多个天线面板进行信道侦听包括:所述发送设备在一个或多个天线面板中随机选择一个进行基于随机退避信道侦听。
可选地,所述一个或多个天线面板所构成的集合中,只维护一个竞争窗。
可选地,所述一个或多个天线面板,各自维护独立的竞争窗。
可选地,所述一个或多个天线面板分别对应一个或多个频域单元,所述一个或多个天线面板在各自维护所述独立的竞争窗时,参考所述一个或多个天线面板各自对应的一个或多个频域单元构成的集合中只维护的一个公共的竞争窗。
可选地,所述一个或多个天线面板分别对应一个或多个频域单元,所述一个或多个天线面板在各自维护所述独立的竞争窗时,参考所述一个或多个天线面板各自对应的一个或多个频域单元各自维护的独立的竞争窗。
可选地,所述发送设备在一个或多个天线面板进行信道侦听包括:所述发送设备在一个或多个天线面板中分别进行信道侦听。
以下将结合附图对上述方法做示例性地说明。
以网络设备为例,在多天线面板的场景下,网络设备可以在多个天线面板上进行LBT。其中,上述多个天线面板或者多节点,可以对应多载波/多子带/多BWP的场景。基于类型A(包括type A1和type A2)的LBT机制,可以应用于多天线面板或者多节点的场景。
以多个天线面板为例,基于typeA类型的LBT应用于多天线面板时,每个天线面板独立完成Cat 4 LBT,且每个天线面板具有独立的竞争窗。而基于type B类型的LBT应用于天线面板时,多个天线面板中只有一个天线面板执行Cat 4 LBT,其余天线面板则执行Cat 2 LBT,对于type B1类型LBT而言,多个天线面板之间仅维护一个竞争窗,对于type B2类型LBT而言,各个天线面板具有独立的竞争窗。
对于type A LBT和typeB2 LBT,由于各个天线面板上独立维护各自的竞争窗,此时用于确定竞争窗大小的参考时间单元为各个天线面板最近一次存在HARQ反馈的传输中的起始时间单元,网络设备参照前述实施例确定竞争窗大小的更新。
对于type B1 LBT而言,多个天线面板只维护一个公共的竞争窗。在一种可能的实施方式中,多个天线面板可以具有相同的参考时间单元,该参考时间单元是指网络设备的最近的一次存在HARQ反馈的传输中的起始时间单元,根据该参考时间单元中各个天线面板所传输的数据包的HARQ确定竞争窗大小。可选地,由于LBT的原因,在参考时间单元内可能存在部分天线面板未能进行传输,此时依据在该参考时间单元进行了传输的天线面板所传输的数据包的HARQ确定竞争窗大小。可选地,在部分天线面板未能进行传输时,网络设备同时还确定对于该部分天线面板而言最近一次存在HARQ反馈的传输中的起始时间单元作为该部分天线面板的参考时间单元,此时网络设备参考多个参考时间单元中所传输的数据包的HARQ反馈确定竞争窗大小。
在另一个可能的实施方式中,多个天线面板各自具有参考时间单元,此时各个天线面板的参考时间单元是各个天线面板最近一次存在HARQ的传输中的起始时间单元。各个天线面板参考各自的参考时间单元内传输的数据包的HARQ反馈确认各自的CW大小。在需要进行LBT时,需要执行Cat 4 LBT的天线面板从各个天线面板的竞争窗中选择最大的CW值或者最小的CW值进行LBT。
以进行LBT时通过一个公共的竞争窗确定随机退避数,请参照图22,网络设备的天线面板1对应频域单元1和2,天线面板2对应频域单元3和4,天线面板3对应频域单元5和6,天线面板4对应频域单元7和8。参照图3所示的方法,网络设备一个或多个参考时间单元在频域单元1~8向一个或多个接收设备发送一个或多个数据包,并参考基于一个或 多个数据包的HARQ确定竞争窗大小。其中,若参考时间单元为网络设备在最近一次存在HARQ反馈的传输的起始时间单元,此时存在一个参考时间单元。若参考时间单元为频域单元1~8各自最近一次存在HARQ反馈的传输的起始时间单元,由于LBT可能不通过的关系,此时存在一个或者多个参考时间单元。当一个天线面板需要进行Cat4LBT时,可以根据网络设备上述公共的竞争窗大小确定随机退避数的初始值。换句话说,一种可能的方式中,参考时间单元为对应当前LBT流程上最近的一次传输中的第一个参考时间单元;或者,另一种可能的实施方式中,参考时间单元为各个频域单元1~8各自对应的最近一次传输的起始时间单元。
以进行LBT时通过一个公共的竞争窗确定随机退避数,且各个天线面板具有独立维护的竞争窗为例,请参照图23,天线面板分别维护CW1~4,公共的竞争窗从CW1~4选择最大的竞争窗或者选择最小的竞争窗作为随机退避数的初始值。其中天线面板CW1~4可以根据各个天线面板对应的频域单元1或2得到。以天线面板1为例,其维护天线面板CW1,天线面板CW1在一个或多个时间单元在频域1和2向一个或多个数据包的HARQ,并根据来自接收设备的反馈确定竞争窗大小。
进一步地,请参照图24,以进行LBT时通过一个公共的竞争窗确定随机退避数,各个天线面板具有独立的竞争窗,且各个频域单元具有独立的竞争窗。此时,网络设备的公共的竞争窗为天线面板C1~C4最大的竞争窗CW,为最小的竞争窗CW大小,天线面板CW1~4的竞争窗分别对应的多个频域单元中最大或最小的竞争窗。
请参照图25,各个天线面板维护独立的竞争窗,对于各个天线面板上的竞争窗而言,根据各个天线面板对应的频域单元1或2确定。可选地,选择频域单元1或2中最大或最小的竞争窗CW作为对应天线面板的竞争窗CW。
请参照图26,各个天线面板维护独立的竞争窗,对于各个天线面板上的竞争窗而言,对应的多个频域单元存在一个公共的竞争窗。
上面示例性地阐述了本申请中竞争窗管理方法的多个实施例,下面将继续示例性地阐述本申请中网络设备及终端的实施例。上述发送设备可以是网络设备,也可以是终端。
先对网络设备进行示例性地说明,在一个具体的示例中,网络设备的结构中包括处理器和收发器。在一个可能的示例中,网络设备的结构中还可以包括通信单元,该通信单元用于支持网络设备与其他网络侧设备的通信,例如与核心网节点之间的通信。在另一个可能的示例中,网络设备的结构中还可以包括存储器,其中所述存储器与处理器耦合,用于保存网络设备必要的程序指令和数据。
请参照图27,其示出了上述方法实施例中所涉及的网络设备的一种可能的结构示意图,上述网络设备可以是基站或者其他具备基站功能的网络侧设备。在图27所示的结构中,网络设备包括收发器1101、处理器1102、存储器1103和通信单元1104,收发器1101、处理器1102、存储器1103和通信单元1104通过总线连接。
在下行链路上,待发送的数据(例如,PDSCH)或者信令(例如,PDCCH)经过收发器1101调节输出采样并生成下行链路信号,该下行链路信号经由天线发射给上述实施例中的终端。在上行链路上,天线接收上述实施例中终端发射的上行链路信号,收发器1101调节从天线接收的信号并提供输入采样。在处理器1102中,对业务数据和信令消息进行处理,例如对待发送的数据进行调制、SC-FDMA符号生成等。这些单元根据无线接入网采用的无 线接入技术(例如,LTE、5G及其他演进***的接入技术)来进行处理。在本实施例中,收发器1101由发射器和接收器集成。在其他的实施例中,发射器和接收器也可以相互独立。
处理器1102还用于对网络设备进行控制管理,以执行上述方法实施例中由网络设备进行的处理,例如,用于控制网络设备进行下行传输和/或进行本申请所描述的技术的其他过程。作为示例,处理器1102用于支持网络设备执行图2至图26所涉及网络设备的处理过程。应用于非授权场景下,处理器1102还需要控制网络设备进行信道侦听,以进行数据或者信令的传输。示例性地,处理器1102通过收发器1101从收发装置或者天线接收到的信号来进行信道侦听,并控制信号经由天线发射以抢占信道。在不同的实施例中,处理器1102可以包括一个或多个处理器,例如包括一个或多个中央处理器(Central Processing Unit,CPU),处理器1102可以集成于芯片中,或者可以为芯片本身。
存储器1103用于存储相关指令及数据,以及网络设备的程序代码和数据。在不同的实施例中,存储器603包括但不限于是随机存储记忆体(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)。在本实施例中,存储器1103独立于处理器1102。在其它的实施例中,存储器1103还可以集成于处理器1102中。
可以理解的是,图27仅仅示出了网络设备的简化设计。在不同的实施例中,网络设备可以包含任意数量的发射器,接收器,处理器,存储器等,而所有可以实现本申请的网络设备都在本申请的保护范围之内。
接下来,对终端进行示例性地说明,在一个具体的实施例中,终端的结构包括处理器(或称:控制器)、收发器、和调制解调处理器。在一个可能的示例中,终端的结构中还可以包括存储器,该存储器与处理器耦合,用于保存终端必要的程序指令和数据。
请参照图28,其示出了上述方法实施例中所涉及的终端的一种可能的设计结构的简化示意图。终端包括收发器1201,处理器1202,存储器1203和调制解调器1204,收发器1201,处理器1202,存储器1203和调制解调器1204通过总线连接。
收发器1201调节(例如,模拟转换、滤波、放大和上变频等)输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中的网络设备。在下行链路中,天线接收上述实施例中来自网络设备的下行链路信号。收发器1201调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。示例性地,在调制处理器1204中,编码器12041接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器12042进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供上述输出采样。解调器12043处理(例如,解调)上述输入采样并提供符号估计。解码器12044处理(例如,解交织和解码)该符号估计并提供发送给终端的已解码的数据和信令消息。编码器12041、调制器12042、解调器12043和解码器12044可以由合成的调制解调处理器1204来实现。这些单元根据无线接入网采用的无线接入技术(例如,LTE、5G及其他演进***的接入技术)来进行处理。图28所示的实施例中,收发器1201由发射器和接收器集成,在其它的实施例中,发射器和接收器也可以相互独立。
处理器1202对终端进行控制管理,用于执行上述方法实施例中由终端进行的处理。例 如,用于控制终端进行上行传输和/或本申请所描述的技术的其他过程。作为示例,处理器1202用于支持终端执行图2至图26中涉及发送设备为终端的处理过程。例如,收发器1201用于控制天线接收下行传输的信号。在不同的实施例中,处理器1202可以包括一个或多个处理器,例如包括一个或多个CPU,处理器1202可以集成于芯片中,或者可以为芯片本身。
存储器1203用于存储相关指令及数据,以及终端的程序代码和数据。在不同的实施例中,存储器1203包括但不限于是随机存储记忆体(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)。在本实施例中,存储器1203独立于处理器1202。在其它的实施例中,存储器1203还可以集成于处理器1202中。
可以理解的是,图28仅仅示出了网络设备的简化设计。在不同的实施例中,网络设备可以包含任意数量的发射器,接收器,处理器,存储器等,而所有可以实现本申请的网络设备都在本申请的保护范围之内。
在一种可能的实施例中,本申请还提出一种应用于网络设备中无线通信装置,无线通信装置包括处理器,处理器用于与存储器耦合,以及读取存储器中的指令并根据所述指令执行上述各个实施例中涉及网络设备的操作。在本实施例中,该应用于网络设备的无线通信装置可以理解为一种芯片或者说芯片装置,且其存储器是独立于芯片以外的。
在另一种可能的实施例中,本申请还提供另一种应用于网络设备中的无线通信装置,该无线通信装置包括至少一个处理器和一个存储器,一个存储器与至少一个处理器耦合,至少一个处理器用于执行上述各个实施例中涉及网络设备的操作。在本实施例中,该应用于网络设备的无线通信装置可以理解为一种芯片或者说芯片装置,其存储器是集成于芯片以内的。
在一种可能的实施例中,本申请的实施例还提供一种应用于终端的无线通信装置,该无线通信装置包括处理器,处理器用于与存储器耦合,读取存储器中的指令并根据所述指令执行上述各个实施例中涉及终端的操作。在本实施例中,该应用于终端的无线通信装置可以理解为一种芯片或者说芯片装置,且其存储器是独立于芯片以外的。
在另一种可能的实施例中,本申请的实施例提供一种应用于终端的无线通信装置,该无线通信装置包括至少一个处理器和一个存储器,该一个存储器与至少一个处理器耦合,至少一个处理器用于执行上述各个实施例中涉及终端的操作。在本实施例中,该应用于终端的无线通信装置可以理解为一种芯片或者说芯片装置,其存储器是集成于芯片以内的。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用 介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。

Claims (22)

  1. 一种应用于非授权频段上的竞争窗口管理的方法,其特征在于,包括:
    发送设备在一个或多个参考时间单元内向一个或多个接收设备发送一个或多个数据包,所述一个或多个数据包占用第一带宽;
    所述发送设备接收来自所述一个或多个接收设备的针对所述一个或多个数据包的混合自动重传请求HARQ;
    所述发送设备参考所述一个或多个数据包的HARQ确定第二带宽的竞争窗CW大小。
  2. 根据权利要求1所述的方法,其特征在于,所述发送设备参考所述一个或多个数据包的HARQ确定第二带宽的竞争窗CW大小包括:
    根据所述一个或多个数据包的HARQ中的NACK或者ACK的比例Z确定第二带宽的竞争窗CW大小。
  3. 根据权利要求1或2所述的方法,其特征在于,针对所述一个或多个数据包的混合自动重传请求HARQ包括下述之一或者组合:
    一个或者多个第一数据包对应的传输块TB的HARQ,TB HARQ;或者,一个或者多个第二数据包对应的一个或多个编码块组CBG的HARQ,CBG HARQ。
  4. 根据权利要求3所述的方法,其特征在于,所述比例Z符合以下公式:
    Figure PCTCN2019072869-appb-100001
    其中,
    Figure PCTCN2019072869-appb-100002
    Z’表示一个TB中反馈为否定应答NACK的CBG的比率,N CBG表示一个所述TB中CBG的数量,NACK CBG表示一个所述TB中反馈NACK的CBG的数量,NACK TB表示所述一个或多个参考时间单元中反馈NACK的TB的数量,N TB表示所述一个或多个参考时间单元中传输的TB的数量,x为所述一个或多个参考时间单元中以CBG为最小反馈单元的TB的总的数量。
  5. 根据权利要求1所述的方法,其特征在于,所述参考所述一个或多个数据包的HARQ确定第二带宽的竞争窗CW大小包括:
    参考所述一个参考时间单元内发送的所述一个或多个数据包的HARQ确定第二带宽的竞争窗CW大小;
    所述一个参考时间单元为所述发送设备最近的一次传输中的起始时间单元。
  6. 根据权利要求1所述的方法,其特征在于,所述参考所述一个多个数据包的HARQ确定第二带宽的竞争窗CW大小包括:
    参考所述多个参考时间单元内发送的所述一个或者多个数据包的HARQ确定第二带宽的竞争窗CW大小;
    其中,所述一个或者多个数据包的HARQ包括:在不重叠的频域单元上的,在最近的各个所述多个参考时间单元内发送的所述一个或者多个数据包的HARQ。
  7. 根据权利要求3所述的方法,其特征在于,所述一个或多个数据包的混合自动重传请求HARQ包括以下HARQ中的一种或者组合:所述一个或者多个第一数据包的TB HARQ,根据所述一个或多个第二数据包的CBG HARQ折算的TB HARQ,所述比例Z符合以下公式:
    Figure PCTCN2019072869-appb-100003
    其中,NACK TB表示一个所述参考时间单元中反馈NACK的TB的数量,N TB表示一个所述参考时间单元中传输的TB的数量。
  8. 根据权利要求3所述的方法,其特征在于,所述一个或多个数据包的混合自动重传请求HARQ只包括所述一个或者多个第二数据包的CBG HARQ,所述比例Z符合以下公式:
    Figure PCTCN2019072869-appb-100004
    其中,N CBG表示所述一个或多个参考时间单元传输的CBG的数量,NACK CBG表示反馈NACK的CBG的数量。
  9. 根据权利要求2所述的方法,其特征在于,所述比例Z符合以下公式:
    Figure PCTCN2019072869-appb-100005
    其中,NACK TB表示所述一个或多个参考时间单元中以TB为最小反馈单位且反馈NACK的TB的数量,N TB表示所述一个或多个参考时间单元中传输的TB的数量,x为所述一个或多个参考时间单元中以CBG为最小反馈单元的TB的数量,
    Figure PCTCN2019072869-appb-100006
    其中,NACK CBG表示所述一个TB中发送NACK的CBG的数量,N NACK表示所述一个TB中基于TB的HARQ反馈,N CBG表示所述一个TB中CBG的数量,α表示基于CBG的HARQ反馈的权重因子,β表示基于TB的HARQ反馈的权重因子。
  10. 根据权利要求2所述的方法,其特征在于,所述比例Z符合以下公式:
    Figure PCTCN2019072869-appb-100007
    其中,NACK TB表示所述一个或多个参考时间单元中以TB为最小反馈单位且反馈NACK的TB的数量,N TB表示所述一个或多个参考时间单元中传输的TB的数量,x为所述一个或多个参考时间单元中以CBG为最小反馈单元的TB的数量,
    Figure PCTCN2019072869-appb-100008
    其中,NACK CBG表示所述一个TB中发送NACK的CBG的数量,N NACK表示所述一个TB中基于TB的HARQ反馈,N CBG表示所述一个TB中的CBG的数 量,α表示基于CBG的HARQ反馈的权重因子,β表示基于TB的HARQ反馈的权重因子。
  11. 一种发送设备,包括处理器和与所述处理器连接的收发器,其特征在于:
    所述收发器,用于在一个或多个参考时间单元内向一个或多个接收设备发送一个或多个数据包,所述一个或多个数据包占用第一带宽;
    所述收发器,还用于接收来自所述一个或多个接收设备的针对所述一个或多个数据包的混合自动重传请求HARQ;
    所述处理器,用于参考所述一个或多个数据包的HARQ确定第二带宽的竞争窗CW大小。
  12. 根据权利要求11所述的发送设备,其特征在于,所述处理器用于:根据所述一个或多个数据包的HARQ中的NACK或者ACK的比例Z确定第二带宽的竞争窗CW大小。
  13. 根据权利要求11或12所述的发送设备,其特征在于,针对所述一个或多个数据包的混合自动重传请求HARQ包括下述之一或者组合:
    一个或者多个第一数据包对应的传输块TB的HARQ,TB HARQ;或者,一个或者多个第二数据包对应的一个或多个编码块组CBG的HARQ,CBG HARQ。
  14. 根据权利要求13所述的发送设备,其特征在于,所述比例Z符合以下公式:
    Figure PCTCN2019072869-appb-100009
    其中,
    Figure PCTCN2019072869-appb-100010
    Z’表示一个TB中反馈为否定应答NACK的CBG的比率,N CBG表示一个所述TB中CBG的数量,NACK CBG表示一个所述TB中反馈NACK的CBG的数量,NACK TB表示所述一个或多个参考时间单元中反馈NACK的TB的数量,N TB表示所述一个或多个参考时间单元中传输的TB的数量,x为所述一个或多个参考时间单元中以CBG为最小反馈单元的TB的总的数量。
  15. 根据权利要求11所述的发送设备,其特征在于,所述处理器用于:
    参考所述一个参考时间单元内发送的所述一个或多个数据包的HARQ确定第二带宽的竞争窗CW大小;
    所述一个参考时间单元为所述发送设备最近的一次传输中的起始时间单元。
  16. 根据权利要求11所述的发送设备,其特征在于,所述处理器用于:
    参考所述多个参考时间单元内发送的所述一个或者多个数据包的HARQ确定第二带宽的竞争窗CW大小;
    其中,所述一个或者多个数据包的HARQ包括:在不重叠的频域单元上的,在最近的各个所述多个参考时间单元内发送的所述一个或者多个数据包的HARQ。
  17. 根据权利要求13所述的发送设备,其特征在于,所述一个或多个数据包的混合自动重传请求HARQ包括以下HARQ中的一种或者组合:所述一个或者多个第一数据包的TB HARQ,根据所述一个或多个第二数据包的CBG HARQ折算的TB HARQ,所述比例Z符合以下公式:
    Figure PCTCN2019072869-appb-100011
    其中,NACK TB表示一个所述参考时间单元中反馈NACK的TB的数量,N TB表示一个所述参考时间单元中传输的TB的数量。
  18. 根据权利要求13所述的发送设备,其特征在于,所述一个或多个数据包的混合自动重传请求HARQ只包括所述一个或者多个第二数据包的CBG HARQ,所述比例Z符合以下公式:
    Figure PCTCN2019072869-appb-100012
    其中,N CBG表示所述一个或多个参考时间单元传输的CBG的数量,NACK CBG表示反馈NACK的CBG的数量。
  19. 根据权利要求12所述的发送设备,其特征在于,所述比例Z符合以下公式:
    Figure PCTCN2019072869-appb-100013
    其中,NACK TB表示所述一个或多个参考时间单元中以TB为最小反馈单位且反馈NACK的TB的数量,N TB表示所述一个或多个参考时间单元中传输的TB的数量,x为所述一个或多个参考时间单元中以CBG为最小反馈单元的TB的数量,
    Figure PCTCN2019072869-appb-100014
    其中,NACK CBG表示所述一个TB中发送NACK的CBG的数量,N NACK表示所述一个TB中基于TB的HARQ反馈,N CBG表示所述一个TB中CBG的数量,α表示基于CBG的HARQ反馈的权重因子,β表示基于TB的HARQ反馈的权重因子。
  20. 根据权利要求12所述的发送设备,其特征在于,所述比例Z符合以下公式:
    Figure PCTCN2019072869-appb-100015
    其中,NACK TB表示所述一个或多个参考时间单元中以TB为最小反馈单位且反馈NACK的TB的数量,N TB表示所述一个或多个参考时间单元中传输的TB的数量,x为所述一个或多个参考时间单元中以CBG为最小反馈单元的TB的数量,
    Figure PCTCN2019072869-appb-100016
    其中,NACK CBG表示所述一个TB中发送NACK的CBG的数量,N NACK表示所述一个TB中基于TB的HARQ反馈,N CBG表示所述一个TB中的CBG的数量,α表示基于CBG的HARQ反馈的权重因子,β表示基于TB的HARQ反馈的权重因子。
  21. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储计算机执行指令;
    所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如权利要求1至10任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行权利要求1至10任一项所述的方法。
PCT/CN2019/072869 2018-02-14 2019-01-23 一种竞争窗管理的方法及发送设备 WO2019157919A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19754057.8A EP3755059B1 (en) 2018-02-14 2019-01-23 Contention window management method and sending device
US16/991,227 US11553531B2 (en) 2018-02-14 2020-08-12 Contention window management method and sending device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810152389 2018-02-14
CN201810152389.X 2018-02-14
CN201811031772.6A CN110166182B (zh) 2018-02-14 2018-09-05 一种竞争窗管理的方法及发送设备
CN201811031772.6 2018-09-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/991,227 Continuation US11553531B2 (en) 2018-02-14 2020-08-12 Contention window management method and sending device

Publications (1)

Publication Number Publication Date
WO2019157919A1 true WO2019157919A1 (zh) 2019-08-22

Family

ID=67619131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072869 WO2019157919A1 (zh) 2018-02-14 2019-01-23 一种竞争窗管理的方法及发送设备

Country Status (1)

Country Link
WO (1) WO2019157919A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113473598A (zh) * 2020-03-30 2021-10-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2021214709A1 (en) * 2020-04-22 2021-10-28 Lenovo (Singapore) Pte. Ltd. Updating a contention window size
EP4089944A4 (en) * 2020-02-14 2023-01-18 Samsung Electronics Co., Ltd. METHOD AND DEVICE FOR FEEDBACK HARQ-ACK IN A WIRELESS COMMUNICATION SYSTEM

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102802171A (zh) * 2011-05-25 2012-11-28 华为技术有限公司 用于无线通信***的退避方法和退避设备
CN104254137A (zh) * 2013-06-27 2014-12-31 华为技术有限公司 一种竞争窗口调整的方法及设备
CN106304386A (zh) * 2015-05-18 2017-01-04 上海贝尔股份有限公司 在lte laa中用于触发lbt的随机退避机制的方法
WO2017045105A1 (en) * 2015-09-14 2017-03-23 Lenovo Innovations Limited (Hong Kong) Contention window size adjustment in a wireless communication system
CN107580801A (zh) * 2015-05-12 2018-01-12 Lg 电子株式会社 在支持未授权带的无线接入***中基于harq‑ack信息调整竞争窗口大小的方法和支持该方法的设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102802171A (zh) * 2011-05-25 2012-11-28 华为技术有限公司 用于无线通信***的退避方法和退避设备
CN104254137A (zh) * 2013-06-27 2014-12-31 华为技术有限公司 一种竞争窗口调整的方法及设备
CN107580801A (zh) * 2015-05-12 2018-01-12 Lg 电子株式会社 在支持未授权带的无线接入***中基于harq‑ack信息调整竞争窗口大小的方法和支持该方法的设备
CN106304386A (zh) * 2015-05-18 2017-01-04 上海贝尔股份有限公司 在lte laa中用于触发lbt的随机退避机制的方法
WO2017045105A1 (en) * 2015-09-14 2017-03-23 Lenovo Innovations Limited (Hong Kong) Contention window size adjustment in a wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3755059A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4089944A4 (en) * 2020-02-14 2023-01-18 Samsung Electronics Co., Ltd. METHOD AND DEVICE FOR FEEDBACK HARQ-ACK IN A WIRELESS COMMUNICATION SYSTEM
EP4236168A3 (en) * 2020-02-14 2023-09-20 Samsung Electronics Co., Ltd. Method and apparatus for feeding back harq-ack in wireless communication system
CN113473598A (zh) * 2020-03-30 2021-10-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113473598B (zh) * 2020-03-30 2022-12-06 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2021214709A1 (en) * 2020-04-22 2021-10-28 Lenovo (Singapore) Pte. Ltd. Updating a contention window size

Similar Documents

Publication Publication Date Title
CN110166182B (zh) 一种竞争窗管理的方法及发送设备
EP3764733A1 (en) Communication method and apparatus for discontinuous reception, and communication device and communication system
JP6423087B2 (ja) アンライセンス共有媒体のチャネルを用いるハイブリッド自動再送要求送信を送信するための方法、装置及びシステム
WO2017157181A1 (zh) 一种资源调度和分配的方法和装置
US20190335496A1 (en) Channel listening method and apparatus
US11343030B2 (en) Method for repeated transmission, and terminal device
JP2018528638A (ja) ライセンス補助アクセスのバックオフ手順のためのシステム及び方法
WO2020094025A1 (zh) 一种上行控制信息的传输方法及装置
CN111133828B (zh) 上行信道侦听的方法和装置
US11316646B2 (en) Method and system for autonomous transmission in a wireless network
US20210176017A1 (en) HARQ Feedback Method And Apparatus
WO2020164590A1 (zh) 传输资源检测方法、传输资源确定方法和通信设备
EP2870815A1 (en) Methods and apparatus for contention based transmission
WO2019157919A1 (zh) 一种竞争窗管理的方法及发送设备
WO2017161502A1 (zh) 用于发送上行控制信息的方法、终端和基站
EP3751763A1 (en) Indication method, network device and user equipment
WO2023011454A1 (zh) 旁链路资源确定方法、装置、终端及存储介质
WO2020156180A1 (zh) 通信方法及终端设备、接入网设备
WO2019191966A1 (zh) 可靠性传输方法及相关产品
WO2018141281A1 (zh) 数据传输的方法和装置
WO2020177680A1 (zh) 通信方法和通信装置
CN110890953A (zh) 使用免授权频段的通信方法和通信装置
WO2022155772A1 (zh) 资源抢占处理方法、通信设备及可读存储介质
WO2022155774A1 (zh) 资源抢占处理方法、通信设备及可读存储介质
CN113285789B (zh) 辅链路控制信息的资源指示方法与装置、终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019754057

Country of ref document: EP

Effective date: 20200914