WO2019157904A1 - 同步信号块的发送、接收方法及装置 - Google Patents

同步信号块的发送、接收方法及装置 Download PDF

Info

Publication number
WO2019157904A1
WO2019157904A1 PCT/CN2019/072470 CN2019072470W WO2019157904A1 WO 2019157904 A1 WO2019157904 A1 WO 2019157904A1 CN 2019072470 W CN2019072470 W CN 2019072470W WO 2019157904 A1 WO2019157904 A1 WO 2019157904A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
signal block
transmitting
occupies
block according
Prior art date
Application number
PCT/CN2019/072470
Other languages
English (en)
French (fr)
Inventor
周化雨
汪绍飞
陶雨婷
李兰兰
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Priority to US16/321,633 priority Critical patent/US20210044471A1/en
Publication of WO2019157904A1 publication Critical patent/WO2019157904A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0086Search parameters, e.g. search strategy, accumulation length, range of search, thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a method, a receiving method and a device for transmitting a synchronization signal block.
  • Each sync block can be thought of as a resource of one beam (analog domain) in the beam sweeping process.
  • a plurality of sync signal blocks form a sync signal burst (SS-burst).
  • a sync signal burst can be thought of as a relatively concentrated piece of resources that contains multiple beams.
  • a plurality of sync signal bursts form a sync signal burst set (SS-burst-set).
  • the synchronization signal block is repeatedly transmitted on different beams, which is a process of sweeping the beam. Through the training of the sweep beam, the user equipment can perceive which beam receives the strongest signal.
  • Licensed Assisted Access A mechanism called Licensed Assisted Access is introduced.
  • the transmission of mobile communication can be carried on the unlicensed spectrum, such as the 5 GHz band.
  • the main unlicensed spectrum is mainly Wi-Fi, Bluetooth, radar, medical and other systems are in use.
  • the Discovery Reference Signal (DRS) or the reference signal set in the measurement window or measurement window for the user equipment to synchronize the cells on the unlicensed spectrum. Time-frequency tracking) and measurement.
  • the discovery reference signal on the unlicensed spectrum of the 5G new air interface needs to include a synchronization signal block, so that the user equipment can detect the new air interface unlicensed spectrum cell in the cell search.
  • the synchronization signal block in the prior art standard has been unsuitable for the new air interface unlicensed spectrum for some reasons, such as the transmission duration is too long.
  • the problem solved by the present invention is that a new method of configuring a sync signal block is needed.
  • an embodiment of the present invention provides a method for transmitting a synchronization signal block, including: configuring the synchronization signal block in a new air interface unlicensed spectrum, where the synchronization signal block occupies x OFDM symbols, where x is A positive integer not greater than 4; the synchronization signal block is transmitted to the user equipment at a preset or configured subcarrier spacing.
  • the synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel.
  • the primary synchronization signal, the secondary synchronization signal, and the physical broadcast channel frequency division multiplexing occupy the symbol.
  • the primary synchronization signal and the secondary synchronization signal frequency division multiplexing occupy 1 OFDM symbol
  • the physical broadcast channel occupies 1 OFDM symbol
  • the primary synchronization signal and the secondary synchronization signal each occupy 1 OFDM symbol
  • the primary synchronization signal, the secondary synchronization signal, and the physical broadcast channel each occupy 1 OFDM symbol.
  • the physical broadcast channel uses frequency domain resources on OFDM symbols occupied by the primary synchronization signal and the secondary synchronization signal.
  • the primary synchronization signal and the secondary synchronization signal are frequency division multiplexed occupying 1 OFDM symbol, and the physical broadcast channel occupies 2 OFDM symbols.
  • the primary synchronization signal occupies 1 OFDM symbol
  • the secondary synchronization signal occupies 1 OFDM symbol
  • the physical broadcast channel occupies 2 OFDM symbols.
  • the physical broadcast channel uses frequency domain resources on OFDM symbols occupied by the secondary synchronization signal.
  • the physical broadcast channel occupies consecutive P physical resource blocks, where P is the number of physical resource blocks occupied by the physical broadcast channel within one synchronization signal block.
  • the synchronization signal block includes a primary synchronization signal and a secondary synchronization signal.
  • the primary synchronization signal and the secondary synchronization signal frequency division multiplexing occupy the symbol.
  • the primary synchronization signal occupies 1 OFDM symbol
  • the secondary synchronization signal occupies 1 OFDM symbol
  • the OFDM symbol occupied by the synchronization signal block has y OFDM symbols before or after, and the base station sends a physical downlink control channel or a control resource set or channel state information reference signal or demodulation on the y OFDM symbols.
  • Reference signal where y is zero or a positive integer.
  • the y OFDM symbols form an overall resource unit with one of the synchronization signal blocks before or after.
  • one or more of the total resource units are continuously transmitted during the duration of the discovery of the reference signal, or within the measurement window, or the duration of the measurement window corresponding to the reference signal.
  • a plurality of the entire resource units are frequency division multiplexed.
  • the predetermined transmission timing of the overall resource unit is set on a preset OFDM symbol.
  • the method before the sending the total resource unit to the user equipment, the method further includes: performing pre-transmission monitoring; and if the channel is idle, transmitting the overall resource unit to the user equipment at a predetermined transmission timing; If the channel is busy, the entire resource unit is deferred and the delay time is indicated to the user equipment.
  • the method before the sending the total resource unit to the user equipment, the method further includes: performing pre-transmission monitoring; and if the channel is idle, transmitting the overall resource unit to the user equipment at a predetermined transmission timing; If the channel is busy, the entire resource unit is not sent.
  • the delay time indicated by the base station is carried by a demodulation reference signal in a physical broadcast channel or a primary information block in a physical broadcast channel or a demodulation reference signal in a physical downlink control channel associated with the synchronization signal block.
  • the preset or configured subcarrier spacing is 30 kHz.
  • the preset or configured subcarrier spacing is 60 kHz.
  • the base station transmits 4 sync signal blocks in one time slot.
  • the base station transmits 8 sync signal blocks in one time slot.
  • the present invention also provides a method for receiving a synchronization signal block, comprising: receiving a synchronization signal block configured in a new air interface unlicensed spectrum, the synchronization signal block occupying x OFDM symbols, wherein x is a positive value not greater than 4 Integer.
  • the method further includes: if the synchronization signal block is deferred, receiving the delay time, so that the user equipment can obtain the time of the searched cell according to the delay time and the time index of the synchronization signal block when performing cell search by the user equipment. information.
  • the OFDM symbol occupied by the synchronization signal block has y OFDM symbols before or after, and the base station sends a physical downlink control channel or a control resource set or channel state information reference signal or demodulation on the y OFDM symbols.
  • Reference signal where y is zero or a positive integer.
  • the present invention also provides a transmitting device for a synchronization signal block, comprising a memory and a processor, wherein the memory stores a computer program executable on the processor, wherein the processor implements the following steps when executing the program Configuring the synchronization signal block in a new air interface unlicensed spectrum, the synchronization signal block occupying x OFDM symbols, where x is a positive integer not greater than 4; at a preset or configured subcarrier spacing, The synchronization signal block is sent to the user equipment.
  • the synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel.
  • the primary synchronization signal, the secondary synchronization signal, and the physical broadcast channel frequency division multiplexing occupy the symbol.
  • the primary synchronization signal and the secondary synchronization signal frequency division multiplexing occupy 1 OFDM symbol
  • the physical broadcast channel occupies 1 OFDM symbol
  • the primary synchronization signal and the secondary synchronization signal each occupy 1 OFDM symbol
  • the sync signal block occupies 3 OFDM symbols
  • the primary synchronization signal, the secondary synchronization signal, and the physical broadcast channel each occupy 1 OFDM symbol.
  • the physical broadcast channel uses frequency domain resources on OFDM symbols occupied by the primary synchronization signal and the secondary synchronization signal.
  • the primary synchronization signal and the secondary synchronization signal are frequency division multiplexed occupying 1 OFDM symbol, and the physical broadcast channel occupies 2 OFDM symbols.
  • the primary synchronization signal occupies 1 OFDM symbol
  • the secondary synchronization signal occupies 1 OFDM symbol
  • the physical broadcast channel occupies 2 OFDM symbols.
  • the physical broadcast channel uses frequency domain resources on OFDM symbols occupied by the secondary synchronization signal.
  • the physical broadcast channel occupies consecutive P physical resource blocks, where P is the number of physical resource blocks occupied by the physical broadcast channel within one synchronization signal block.
  • the synchronization signal block includes a primary synchronization signal and a secondary synchronization signal.
  • the primary synchronization signal and the secondary synchronization signal frequency division multiplexing occupy the symbol.
  • the primary synchronization signal occupies 1 OFDM symbol
  • the secondary synchronization signal occupies 1 OFDM symbol
  • the OFDM symbol occupied by the synchronization signal block has y OFDM symbols before or after, and the base station sends a physical downlink control channel or a control resource set or channel state information reference signal or demodulation on the y OFDM symbols.
  • Reference signal where y is zero or a positive integer.
  • the y OFDM symbols form an overall resource unit with one of the synchronization signal blocks before or after.
  • one or more of the total resource units are continuously transmitted during the duration of the discovery of the reference signal, or within the measurement window, or the duration of the measurement window corresponding to the reference signal.
  • a plurality of the entire resource units are frequency division multiplexed.
  • the predetermined transmission timing of the overall resource unit is set on a preset OFDM symbol.
  • the method before the sending the total resource unit to the user equipment, the method further includes: performing pre-transmission monitoring; and if the channel is idle, transmitting the overall resource unit to the user equipment at a predetermined transmission timing; If the channel is busy, the entire resource unit is deferred and the delay time is indicated to the user equipment.
  • the method before the sending the total resource unit to the user equipment, the method further includes: performing pre-transmission monitoring; and if the channel is idle, transmitting the overall resource unit to the user equipment at a predetermined transmission timing; If the channel is busy, the entire resource unit is not sent.
  • the delay time indicated by the base station is carried by a demodulation reference signal in a physical broadcast channel or a primary information block in a physical broadcast channel or a demodulation reference signal in a physical downlink control channel associated with the synchronization signal block.
  • the preset or configured subcarrier spacing is 30 kHz.
  • the preset or configured subcarrier spacing is 60 kHz.
  • the base station transmits 4 sync signal blocks in one time slot.
  • the base station when x is 1, the base station sends 8 synchronization signal blocks in one time slot.
  • the present invention also provides a receiving device for a synchronization signal block, comprising a memory and a processor, wherein the memory stores a computer program executable on the processor, wherein the processor implements the following steps when executing the program : receiving a synchronization signal block configured in a new air interface unlicensed spectrum, the synchronization signal block occupying x OFDM symbols, where x is a positive integer not greater than 4.
  • the method further includes: if the synchronization signal block is deferred, receiving the delay time, so that the user equipment can obtain the time of the searched cell according to the delay time and the time index of the synchronization signal block when performing cell search by the user equipment. information.
  • the OFDM symbol occupied by the synchronization signal block has y OFDM symbols before or after, and the base station sends a physical downlink control channel or a control resource set or channel state information reference signal or demodulation on the y OFDM symbols.
  • Reference signal where y is zero or a positive integer.
  • the synchronization signal block occupies x orthogonal frequency division multiplexing (OFDM) symbols, and if the synchronization signal block occupies fewer symbols, the duty ratio of the discovery time signal can be reduced, that is, The transmission duration of the sync block can be reduced, thereby reducing the time that the sync block occupies the channel in the unlicensed spectrum.
  • OFDM orthogonal frequency division multiplexing
  • the synchronization signal block is continuously transmitted during the discovery reference signal duration; and the synchronization signal block is integrated with the previous y OFDM symbols, and is continuously transmitted during the discovery of the reference signal duration, and the discovery time signal can be reduced. Duty cycle.
  • FIG. 1 is a flowchart of a method of transmitting a synchronization signal block according to an embodiment of the present invention
  • FIGS. 2 to 18 are schematic diagrams showing the configuration of a synchronization signal block according to an embodiment of the present invention.
  • Figure 20 is a partial flow chart showing a specific implementation of S12 of Figure 1;
  • 21 is a flowchart of a method of receiving a synchronization signal block according to an embodiment of the present invention.
  • Figure 22 is a block diagram showing the structure of a transmitting device for a sync signal block according to an embodiment of the present invention.
  • Figure 23 is a block diagram showing the structure of a receiving device for a sync signal block according to an embodiment of the present invention.
  • the 3 rd Generation Partnership Project Protocol LTE (Long Term Evolution) in 3GPP Release 12 define a series of reference signals found for (when the track frequency) and a user equipment for measuring synchronous secondary cell, the secondary cell can be a "find "Features.
  • the advantage of using the discovery reference signal is that it is a long-period signal, and the long-period signal has less interference to the entire network.
  • the reference signal is found to be a primary synchronization signal, a secondary synchronization signal, and a cell-specific reference signal (CRS).
  • CRS cell-specific reference signal
  • the duration of the reference signal is found to be 1 to 5 consecutive subframes; for a time division duplex system, the duration of the reference signal is found to be 2 to 5 consecutive subframes.
  • the discovery reference signal also needs to be defined on the unlicensed spectrum of the new air interface, so that the cell of the unlicensed spectrum has a discovery function, and the discovery reference signal needs to include a synchronization signal block, so that the user equipment can detect the new air interface in the cell search. Authorize the spectrum cell and select the appropriate time to send the sync signal block.
  • FIG. 1 is a flowchart of a method for transmitting a synchronization signal block according to an embodiment of the present invention.
  • the sending method may specifically include the following steps:
  • the synchronization signal block is configured in a new air interface unlicensed spectrum, and the synchronization signal block is located in a discovery reference signal of a new air interface unlicensed spectrum.
  • the synchronization signal block may include a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel.
  • the duration of the reference signal is found to be 12 OFDM symbols within a non-empty time slot, and the synchronization signal block can occupy 1 or 2 or 3 or 4 OFDM symbols in the discovery reference signal.
  • the duty ratio of the discovery reference signal can be reduced, and the time during which the sync signal block occupies the channel in the unlicensed spectrum can be reduced.
  • the physical resource blocks occupied by the primary synchronization signal, the secondary synchronization signal, and the physical broadcast channel are nominally occupied physical resource blocks, and some of the physical resource blocks may be zero-power transmission, but still count as belonging to the primary synchronization signal. Synchronization signal or physical broadcast channel. In addition, the occupation does not necessarily mean that all resources are completely occupied.
  • the sync signal block may occupy 1 OFDM symbol, and the primary sync signal, the secondary sync signal, and the physical broadcast channel in the sync block are frequency-multiplexed on the symbol.
  • the physical broadcast channel occupies consecutive P physical resource blocks in the frequency domain such that the reception of the physical broadcast channel is within a continuous bandwidth, wherein P is the physical broadcast channel occupying within one sync signal block
  • the number of physical resource blocks can be 72.
  • the sync signal block occupies 1 OFDM symbol
  • the primary synchronization signal 21 and the secondary synchronization signal 22 occupy 12 physical resource blocks, respectively
  • the physical broadcast channel 21 occupies 48
  • the physical resource blocks the total bandwidth of the synchronization signal block is 72 physical resource blocks.
  • the sync signal block occupies 1 OFDM symbol
  • the primary synchronization signal 31 occupies 20 physical resource blocks
  • the secondary synchronization signal 32 occupies 12 physical resource blocks.
  • the physical broadcast channel 33 occupies 48 physical resource blocks, and the total bandwidth of the sync signal block is 80 physical resource blocks.
  • the sync signal block can occupy 2 OFDM symbols and occupy 40 physical resource blocks per symbol. Because the synchronization signal block in Release 15 NR occupies 4 OFDM symbols and occupies 20 physical resource blocks on each symbol, one design method is to directly combine any two physical resource block groups on one symbol, where each group of physics The resource block group is 20 physical resource blocks on one symbol in Release 15 NR.
  • the synchronization signal block may occupy 2 OFDM symbols, wherein the primary synchronization signal and the secondary synchronization signal are frequency division multiplexed occupying 1 symbol, and the physical broadcast channel occupies 1 symbol,
  • the physical resource blocks occupied by the physical broadcast channel are contiguous in the frequency domain such that the reception of the physical broadcast channel is within a continuous bandwidth.
  • the sync signal block occupies 2 OFDM symbols
  • the primary sync signal 41 and the secondary sync signal 42 occupy 12 physical resource blocks, respectively
  • the physical broadcast channel 43 occupies 48 physics.
  • the resource block, the total bandwidth of the synchronization signal block is 48 physical resource blocks.
  • the sync signal block occupies 2 OFDM symbols
  • the primary synchronization signal 51 occupies 20 physical resource blocks
  • the secondary synchronization signal 52 occupies 12 physical resource blocks
  • the physical broadcast channel 53 occupies 48 physical resource blocks
  • the total bandwidth of the synchronization signal block is 48 physical resource blocks.
  • the physical broadcast channel may use frequency domain resources on OFDM symbols occupied by the primary synchronization signal and the secondary synchronization signal to reduce the bandwidth of the synchronization signal block population as a whole.
  • the primary synchronization signal 61 and the secondary synchronization signal 62 occupy 12 physical resource blocks, respectively, occupying a physical broadcast of one OFDM symbol independently.
  • the channel 63 occupies 36 physical resource blocks, and the physical broadcast channel 63 on the OFDM symbol occupied by the primary synchronization signal 61 and the secondary synchronization signal 62 occupies 12 physical resource blocks, and the total bandwidth of the synchronization signal block is 36 physical resources. Piece.
  • the primary synchronization signal 71 occupies 20 physical resource blocks
  • the secondary synchronization signal 72 occupies 12 physical resource blocks, independent.
  • the physical broadcast channel 73 occupying one OFDM symbol occupies 40 physical resource blocks
  • the physical broadcast channel 73 extended to the OFDM symbol occupied by the primary synchronization signal 71 and the secondary synchronization signal 72 occupies 8 physical resource blocks
  • the synchronization signal block The total bandwidth is 40 physical resource blocks.
  • the synchronization signal block occupies 2 OFDM symbols, wherein the primary synchronization signal and the secondary synchronization signal each occupy 1 OFDM symbol, and the physical broadcast channel frequency division multiplexes the primary synchronization signal and The OFDM symbol occupied by the secondary synchronization signal.
  • the primary synchronization signal 81 and the secondary synchronization signal 82 occupy 12 physical resource blocks, respectively, and the physical broadcast channel 83 frequency
  • the OFDM symbols occupied by the primary synchronization signal 81 and the secondary synchronization signal 82 are multiplexed, occupying 24 physical resource blocks on two OFDM symbols, respectively, and the total bandwidth of the synchronization signal block is 36 physical resource blocks.
  • the sync signal block occupies 2 OFDM symbols
  • the primary synchronization signal 91 occupies 20 physical resource blocks
  • the secondary synchronization signal 92 occupies 12 physical resource blocks
  • the physical broadcast channel 93 frequency-division multiplexes the OFDM symbols occupied by the primary synchronization signal 91 and the secondary synchronization signal 92, occupying 24 physical resource blocks on two OFDM symbols, respectively, and the total bandwidth of the synchronization signal block is 44 physical Resource block.
  • the sync signal block occupies 2 OFDM symbols
  • the primary synchronization signal 101 occupies 20 physical resource blocks
  • the secondary synchronization signal 102 occupies 12 physical resource blocks
  • the broadcast channel 103 frequency-division multiplexes the OFDM symbols occupied by the primary synchronization signal 101 and the secondary synchronization signal 102, and occupies 20 and 28 physical resource blocks respectively on two OFDM symbols, and the total bandwidth of the synchronization signal block is 40 Physical resource block.
  • the synchronization signal block may occupy 3 OFDM symbols, wherein the primary synchronization signal, the secondary synchronization signal, and the physical broadcast channel each occupy 1 OFDM symbol, the physical broadcast channel occupies
  • the physical resource blocks are contiguous in the frequency domain such that the reception of the physical broadcast channel is within a continuous bandwidth.
  • the user equipment only needs to turn on the primary synchronization signal or the secondary synchronization signal bandwidth before receiving the secondary synchronization signal.
  • the sync signal block occupies 3 OFDM symbols
  • the primary sync signal 111 and the secondary sync signal 112 occupy 12 physical resource blocks, respectively
  • the physical broadcast channel 113 occupies 48 physical units.
  • the resource block, the total bandwidth of the synchronization signal block is 48 physical resource blocks.
  • the primary synchronization signal 121 occupies 20 physical resource blocks
  • the secondary synchronization signal 122 occupies 12 physical resource blocks.
  • the physical broadcast channel 123 occupies 48 physical resource blocks, and the total bandwidth of the sync signal block is 48 physical resource blocks.
  • the physical broadcast channel may use frequency domain resources on OFDM symbols occupied by the primary synchronization signal and the secondary synchronization signal to reduce the bandwidth of the synchronization signal block population as a whole.
  • the primary synchronization signal 131 and the secondary synchronization signal 132 respectively occupy 12 physical resource blocks, occupying a physical broadcast channel of one OFDM symbol independently.
  • 133 occupies 24 physical resource blocks, and the physical broadcast channel 133 extended to the OFDM symbol occupied by the primary synchronization signal 131 and the secondary synchronization signal 132 respectively occupies 12 physical resource blocks, and the total bandwidth of the synchronization signal block is 24 physical resources.
  • the primary synchronization signal 141 occupies 20 physical resource blocks
  • the secondary synchronization signal 142 occupies 12 physical resource blocks, independent.
  • the physical broadcast channel 143 occupying one OFDM symbol occupies 28 physical resource blocks
  • the physical broadcast channel 143 extended to the OFDM symbol occupied by the primary synchronization signal 141 and the secondary synchronization signal 142 occupies 4 and 16 physical resource blocks, respectively.
  • the total bandwidth of the sync block is 40 physical resource blocks.
  • the synchronization signal block may occupy 3 OFDM symbols, wherein the primary synchronization signal and the secondary synchronization signal are frequency division multiplexed occupying 1 OFDM symbol, and the physical broadcast channel occupies 2 OFDM symbols,
  • the physical resource blocks occupied by the physical broadcast channel are contiguous in the frequency domain such that reception of the physical broadcast channel is within a continuous bandwidth.
  • the primary synchronization signal 151 and the secondary synchronization signal 152 occupy 12 physical resource blocks, respectively, and the physical broadcast channel 153 is in two Each of the OFDM symbols occupies 24 physical resource blocks, and the total bandwidth of the synchronization signal block is 24 physical resource blocks.
  • the primary synchronization signal 161 occupies 20 physical resource blocks
  • the secondary synchronization signal 162 occupies 12 physical resource blocks.
  • the physical broadcast channel 163 occupies 24 physical resource blocks on two OFDM symbols, respectively, and the total bandwidth of the synchronization signal block is 24 physical resource blocks.
  • the synchronization signal block may occupy 4 OFDM symbols, wherein the primary synchronization signal, the secondary synchronization signal occupies 1 OFDM symbol, and the physical broadcast channel occupies 2 OFDM symbols,
  • the physical resource blocks occupied by the physical broadcast channel are contiguous in the frequency domain such that the reception of the physical broadcast channel is within a continuous bandwidth.
  • the user equipment only needs to turn on the primary synchronization signal or the secondary synchronization signal bandwidth before receiving the secondary synchronization signal.
  • the physical broadcast channel may use frequency domain resources on OFDM symbols occupied by the secondary synchronization signal to reduce the bandwidth of the sync signal block population as a whole.
  • the sync signal block occupies 4 OFDM symbols
  • the primary sync signal 171 and the secondary sync signal 172 occupy 12 physical resource blocks, respectively
  • the physical broadcast channel 173 is in two
  • Each of the OFDM symbols occupies 20 physical resource blocks
  • the physical broadcast channel 173 extended to the OFDM symbol occupied by the secondary synchronization signal 172 occupies 8 physical resource blocks
  • the total bandwidth of the synchronization signal block is 20 physical resource blocks.
  • the sync signal block occupies 4 OFDM symbols
  • the primary synchronization signal 181 occupies 20 physical resource blocks
  • the secondary synchronization signal 182 occupies 12 physical resource blocks.
  • the physical broadcast channel 183 occupies 20 physical resource blocks respectively on two OFDM symbols
  • the physical broadcast channel 183 extended to the OFDM symbol occupied by the secondary synchronization signal 182 occupies 8 physical resource blocks, and the total bandwidth of the synchronization signal block It is 20 physical resource blocks.
  • the synchronization signal block includes a primary synchronization signal and a secondary synchronization signal.
  • the sync signal block can occupy 1 or 2 OFDM symbols. When the number of OFDM symbols occupied by the sync signal block is small, the duty ratio of the discovery reference signal can be reduced, and the time during which the sync signal block occupies the channel in the unlicensed spectrum can be reduced.
  • the synchronization signal block may occupy 1 OFDM symbol, and the primary synchronization signal and the secondary synchronization signal in the synchronization signal block are multiplexed on the symbol.
  • the primary synchronization signal and the secondary synchronization signal respectively occupy 12 physical resource blocks, and the total bandwidth of the synchronization signal block is 24 physical resource blocks. Its configuration structure is similar to Figure 2.
  • the primary synchronization signal occupies 20 physical resource blocks
  • the secondary synchronization signal occupies 12 physical resource blocks
  • the total of the synchronization signal blocks The bandwidth is 32 physical resource blocks, and its configuration structure is similar to that of Figure 3.
  • the synchronization signal block may occupy 2 OFDM symbols, and the primary synchronization signal and the secondary synchronization signal in the synchronization signal block respectively occupy 1 OFDM symbol.
  • the primary synchronization signal and the secondary synchronization signal respectively occupy 12 physical resource blocks, and the total bandwidth of the synchronization signal block is 12 physical resource blocks. Its configuration structure is similar to Figure 8.
  • the primary synchronization signal occupies 20 physical resource blocks
  • the secondary synchronization signal occupies 12 physical resource blocks
  • the total of the synchronization signal blocks The bandwidth is 20 physical resource blocks, and its configuration structure is similar to that of Figure 9.
  • the base station when x is 1 or 2 or 3, the base station transmits 4 sync signal blocks in one time slot, which can reduce channel occupation time.
  • the base station when x is 1, the base station transmits 8 sync signal blocks in one time slot, which can reduce channel occupation time.
  • the preset or configured subcarrier spacing may be 30 kHz.
  • the structure of the synchronization signal block when x is 1 or 2 or 3 may be adopted, and the channel may be reduced relative to the subcarrier spacing of 15 kHz. Take up time.
  • the preset or configured subcarrier spacing may be 60 kHz.
  • the structure of the synchronization signal block when x is 4 may be adopted, the channel occupation time may be further reduced, and the transmission time can be transmitted within 1 millisecond. Sync block.
  • the OFDM symbols occupied by the sync signal block are contiguous, and the discovery reference signal may comprise a plurality of sync signal blocks. This reduces the duty cycle of the discovery reference signal.
  • the OFDM symbol occupied by the synchronization signal block has y OFDM symbols before or after, and the base station transmits a physical downlink control channel or a control resource set or channel state information reference signal on the y OFDM symbols or The reference signal is demodulated, where y is zero or a positive integer.
  • the base station may simultaneously transmit a physical downlink control channel when transmitting the synchronization signal block, where the physical downlink control channel is used to transmit a common control message (eg, minimum remaining) System information, paging messages, etc.), slot format indication, scheduling information, and the like.
  • the physical downlink control channel or set of control resources is associated with a synchronization signal block.
  • the base station may simultaneously transmit the channel state information reference signal when the synchronization signal block is transmitted, to assist the user equipment to perform beam training, channel state information calculation, and the like.
  • the y symbols and one sync signal block form an overall resource unit, and the OFDM symbols occupied by the overall resource unit are contiguous. This reduces the duty cycle of the discovery reference signal.
  • a plurality of the resource units are frequency division multiplexed such that a duty cycle transmitted by a plurality of the overall resource units can be reduced.
  • the discovery reference signal appears in any one or more of the Discovery Measurement Timing Configuration (DMTC) or the Synchronization Measurement Timing Configuration (SMTC).
  • DMTC Discovery Measurement Timing Configuration
  • SMTC Synchronization Measurement Timing Configuration
  • one or more of the synchronization signal blocks are continuously transmitted for the duration of the discovery reference signal, or within the measurement window, or for the duration of the measurement window corresponding to the reference signal. This reduces the duty cycle of the discovery reference signal.
  • one or more of the overall resource units are continuously transmitted for the duration of the discovery reference signal, or within the measurement window, or for the duration of the measurement window corresponding to the reference signal. This reduces the duty cycle of the discovery reference signal.
  • Figure 19 is a partial flow diagram of a particular implementation of S12 of Figure 1. Before the sending the total resource unit to the user equipment, the method further includes:
  • the channel is idle, the overall resource unit is sent to the user equipment at a predetermined transmission timing.
  • the overall resource unit includes a sync signal block and y symbols preceding or following it, where y is zero or a positive integer.
  • the whole resource unit is a synchronization signal block, that is, for step S12: the synchronization signal block is sent to the user equipment at a preset carrier interval, before step 12, Pre-discovery monitoring and the remaining steps shown in Figure 19 are performed.
  • Figure 20 is a partial flow diagram of another embodiment of S12 of Figure 1. Before the sending the total resource unit to the user equipment, the method further includes:
  • the channel is idle, the overall resource unit is sent to the user equipment at a predetermined transmission timing.
  • the transmitting method is different from the transmitting method shown in FIG. 19 in that, in S33, if the channel is busy, the base station does not transmit the overall resource unit. Therefore, the base station does not need to postpone the transmission of the overall resource unit, thereby reducing system complexity.
  • the delay time indicated by the base station is carried in a demodulation reference signal in a physical broadcast channel or a primary information block in a physical broadcast channel or a demodulation reference in a physical downlink control channel associated with a synchronization signal block. signal.
  • the demodulation reference signal in the physical broadcast channel carries a delay time indicated by the base station. In this way, the user equipment only needs to detect the demodulation reference signal in the physical broadcast channel to obtain the delay time indicated by the base station.
  • the primary information block in the physical broadcast channel carries a delay time indicated by the base station.
  • the delay time indicated by the base station is encoded in the main information block, which reduces the false detection and false alarm probability.
  • the demodulation reference signal in the physical downlink control channel associated with the synchronization signal block carries the delay time indicated by the base station. In this way, the user equipment only needs to detect the demodulation reference signal in the physical downlink control channel to obtain the delay time indicated by the base station.
  • FIG. 21 is a flowchart of a method of receiving a sync signal block according to an embodiment of the present invention.
  • the receiving method may include the following steps.
  • S41 Receive a synchronization signal block configured in a new air interface unlicensed spectrum, where the synchronization signal block occupies x OFDM symbols, where x is a positive integer not greater than 4.
  • the delay time is received, so that when the user equipment performs the cell search, the timing information of the searched cell can be obtained according to the delay time and the time index of the synchronization signal block.
  • the OFDM symbol occupied by the synchronization signal block is preceded by y OFDM symbols, and the y OFDM symbols are occupied by a physical downlink control channel or a control resource set or a channel state information reference signal or a demodulation reference signal.
  • y is zero or a positive integer.
  • Figure 21 is a diagram showing a transmitting device for a sync signal block according to an embodiment of the present invention, comprising a memory 211, a processor 212, and a memory program 211 storing a computer program executable on the processor 212, the memory being stored on the memory 211.
  • the computer program is the program that implements the steps of the above method, and the processor 212 implements the steps described above when the program is executed.
  • the memory 211 may include a ROM, a RAM, a magnetic disk, or an optical disk.
  • the steps please refer to the steps above, and details are not described here.
  • FIG. 22 provides a receiving device for a sync signal block according to an embodiment of the present invention, including a memory 221 and a processor 222.
  • the memory 221 stores a computer program executable on the processor 222, and the memory program is stored on the memory 221.
  • the computer program is the program that implements the steps of the above method, and the processor 222 implements the steps described above when the program is executed.
  • the memory 221 may include a ROM, a RAM, a magnetic disk, or an optical disk. For the steps, please refer to the steps above, and details are not described here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种发送、接收方法及装置,所述发送方法包括:在新空口非授权频谱中配置所述同步信号块,所述同步信号块占据x个OFDM符号,其中,x为不大于4的正整数;在预设或配置的子载波间隔下,将所述同步信号块发送至用户设备。采用上述方法,在配置同步信号块时,所述同步信号块占据x个正交频分复用符号,若同步信号块占据符号数较少,可以减少发现时间信号的占空比,也就是说,可以减少同步信号块的发送持续时间,从而降低同步信号块在非授权频谱中占据信道的时间。

Description

同步信号块的发送、接收方法及装置 技术领域
本发明涉及移动通信领域,尤其涉及一种同步信号块的发送方法、接收方法及装置。
背景技术
在第五代移动通信技术(5th-Generation,5G)***中,主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)和物理广播信道(Physical Broadcast Channel,PBCH)在同一同步信号块(Synchronization Signal block,SS-block)中。每个同步信号块可以看作是扫波束(beam sweeping)过程中的一个波束(模拟域)的资源。多个同步信号块组成一个同步信号突发(SS-burst)。同步信号突发可以看作是包含了多个波束的相对集中的一块资源。多个同步信号突发组成一个同步信号突发集合(SS-burst-set)。同步信号块在不同波束上重复发送,是一个扫波束的过程,通过扫波束的训练,用户设备可以感知在哪个波束上收到的信号最强。
目前,随着移动业务的快速发展,现有的分配给移动通信业务的无线频谱容量已经无法满足日益增长的需求了。一种被称作授权辅助接入(Licensed Assisted Access)的机制被引入,在LLA机制中,移动通信的传输可以在非授权频谱上承载,如5GHz的频段,而目前这些非授权频谱的主要是Wi-Fi、蓝牙、雷达、医疗等***在使用。
在5G新空口(New Radio,NR)中,需要配置发现参考信号(Discovery Reference Signal,DRS)或测量窗口或测量窗口内的参考信号集合,用于用户设备对非授权频谱上的小区进行同步(时频跟踪)和测量。5G新空口的非授权频谱上的发现参考信号需要包括同步信号块,以便用户设备能够在小区搜索中检测到新空口非授权频谱小区。但是现有技术标准中的同步信号块由于一些原因,比如发送持续时间过长,已经不适用于新空口非授权频谱。
因此,需要一种新的同步信号块的配置方法。
发明内容
本发明解决的问题是需要一种新的同步信号块的配置方法。
为解决上述问题,本发明实施例提供一种同步信号块的发送方法,包括:在新空口非授权频谱中配置所述同步信号块,所述同步信号块占据x个OFDM符号,其中,x为不大于4的正整数;在预设或配置的子载波间隔下,将所述同步信号块发送至用户设备。
可选地,所述同步信号块包括主同步信号、辅同步信号和物理广播信道。
可选地,当所述同步信号块占据1个OFDM符号时,所述主同步信号、辅同步信号和物理广播信道频分复用占据该符号。
可选地,当所述同步信号块占据2个OFDM符号时,所述主同步信号和辅同步信号频分复用占据1个OFDM符号,所述物理广播信道占据1个OFDM符号。
可选地,当所述同步信号块占据2个OFDM符号时,所述主同步信号和辅同步信号各占据1个OFDM符号,所述物理广播信道频分复用所述主同步信号和辅同步信号占据的OFDM符号。
可选地,当所述同步信号块占据3个OFDM符号时,所述主同步信号、所述辅同步信号和所述物理广播信道各占据1个OFDM符号。
可选地,所述物理广播信道使用主同步信号和辅同步信号占据的OFDM符号上的频域资源。
可选地,当所述同步信号块占据3个OFDM符号时,所述主同步信号和辅同步信号频分复用占据1个OFDM符号,所述物理广播信道占据2个OFDM符号。
可选地,当所述同步信号块占据4个OFDM符号时,所述主同步信号占据1个OFDM符号,所述辅同步信号占据1个OFDM符号,所述物理广播信道占据2个OFDM符号。
可选地,所述物理广播信道使用辅同步信号占据的OFDM符号上的频域资源。
可选地,所述物理广播信道占据连续P个物理资源块,其中,P为所述物理广播信道在1个同步信号块内占据的物理资源块的个数。
可选地,所述同步信号块包括主同步信号、辅同步信号。
可选地,当所述同步信号块占据1个OFDM符号时,所述主同步信号、辅同步信号频分复用占据该符号。
可选地,当所述同步信号块占据2个OFDM符号时,所述主同步信号占据1个OFDM符号,所述辅同步信号占据1个OFDM符号。
可选地,所述同步信号块所占据的OFDM符号前面或后面有y个OFDM符号,基站在所述y个OFDM符号上发送物理下行控制信道或控制资源集合或信道状态信息参考信号或解调参考信号,其中,y为零或正整数。
可选地,所述y个OFDM符号与其前或后的1个同步信号块组成一个整体资源单位。
可选地,一个或多个所述整体资源单位在发现参考信号的持续时间内,或测量窗口内,或测量窗口对应参考信号的持续时间内连续发送。
可选地,多个所述整体资源单位频分复用。
可选地,所述整体资源单位的预定发送时机设定在预设的OFDM符号上。
可选地,在将所述整体资源单位发送至用户设备之前,所述方法还包括:进行发射前监听;若监听到信道空闲,将所述整体资源单位在预定发送时机发送至用户设备;若监听到信道忙,则推迟发送所述 整体资源单位,并将指示推迟时间给用户设备。
可选地,在将所述整体资源单位发送至用户设备之前,所述方法还包括:进行发射前监听;若监听到信道空闲,将所述整体资源单位在预定发送时机发送至用户设备;若监听到信道忙,则不发送所述整体资源单位。
可选地,基站指示的所述推迟时间被承载于物理广播信道中的解调参考信号或物理广播信道中的主信息块或与同步信号块关联的物理下行控制信道中的解调参考信号。
可选地,所述预设或配置的子载波间隔为30kHz。
可选地,所述预设或配置的子载波间隔为60kHz。
可选地,当x为1或2或3时,基站在一个时隙内发送4个同步信号块。
可选地,当x为1时,基站在一个时隙内发送8个同步信号块。
本发明还提供了一种同步信号块的接收方法,包括:接收在新空口非授权频谱中配置的同步信号块,所述同步信号块占据x个OFDM符号,其中,x为不大于4的正整数。
可选地,所述方法还包括:若同步信号块被推迟发送,则接收推迟时间,以使用户设备进行小区搜索时能根据推迟时间和同步信号块的时间索引,获得搜索到的小区的定时信息。
可选地,所述同步信号块所占据的OFDM符号前面或后面有y个OFDM符号,基站在所述y个OFDM符号上发送物理下行控制信道或控制资源集合或信道状态信息参考信号或解调参考信号,其中,y为零或正整数。
本发明还提供了一种同步信号块的发送装置,包括存储器、处理器,存储器上存储有可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现以下步骤:在新空口非授权频谱中配置所述同步信号块,所述同步信号块占据x个OFDM符号,其中,x为不大于4的正整数;在预设或配置的子载波间隔下,将所述同步信号块发送至用户设备。
可选地,所述同步信号块包括主同步信号、辅同步信号和物理广播信道。
可选地,当所述同步信号块占据1个OFDM符号时,所述主同步信号、辅同步信号和物理广播信道频分复用占据该符号。
可选地,当所述同步信号块占据2个OFDM符号时,所述主同步信号和辅同步信号频分复用占据1个OFDM符号,所述物理广播信道占据1个OFDM符号。
可选地,当所述同步信号块占据2个OFDM符号时,所述主同步信号和辅同步信号各占据1个OFDM符号,所述物理广播信道频分复用所述主同步信号和辅同步信号占据的OFDM符号。
可选地,当所述同步信号块占据3个OFDM符号时,所述主同步信号、所述辅同步信号和所述物 理广播信道各占据1个OFDM符号。
可选地,所述物理广播信道使用主同步信号和辅同步信号占据的OFDM符号上的频域资源。
可选地,当所述同步信号块占据3个OFDM符号时,所述主同步信号和辅同步信号频分复用占据1个OFDM符号,所述物理广播信道占据2个OFDM符号。
可选地,当所述同步信号块占据4个OFDM符号时,所述主同步信号占据1个OFDM符号,所述辅同步信号占据1个OFDM符号,所述物理广播信道占据2个OFDM符号。
可选地,所述物理广播信道使用辅同步信号占据的OFDM符号上的频域资源。
可选地,所述物理广播信道占据连续P个物理资源块,其中,P为所述物理广播信道在1个同步信号块内占据的物理资源块的个数。
可选地,所述同步信号块包括主同步信号、辅同步信号。
可选地,当所述同步信号块占据1个OFDM符号时,所述主同步信号、辅同步信号频分复用占据该符号。
可选地,当所述同步信号块占据2个OFDM符号时,所述主同步信号占据1个OFDM符号,所述辅同步信号占据1个OFDM符号。
可选地,所述同步信号块所占据的OFDM符号前面或后面有y个OFDM符号,基站在所述y个OFDM符号上发送物理下行控制信道或控制资源集合或信道状态信息参考信号或解调参考信号,其中,y为零或正整数。
可选地,所述y个OFDM符号与其前或后的1个同步信号块组成一个整体资源单位。
可选地,一个或多个所述整体资源单位在发现参考信号的持续时间内,或测量窗口内,或测量窗口对应参考信号的持续时间内连续发送。
可选地,多个所述整体资源单位频分复用。
可选地,所述整体资源单位的预定发送时机设定在预设的OFDM符号上。
可选地,在将所述整体资源单位发送至用户设备之前,所述方法还包括:进行发射前监听;若监听到信道空闲,将所述整体资源单位在预定发送时机发送至用户设备;若监听到信道忙,则推迟发送所述整体资源单位,并将指示推迟时间给用户设备。
可选地,在将所述整体资源单位发送至用户设备之前,所述方法还包括:进行发射前监听;若监听到信道空闲,将所述整体资源单位在预定发送时机发送至用户设备;若监听到信道忙,则不发送所述整体资源单位。
可选地,基站指示的所述推迟时间被承载于物理广播信道中的解调参考信号或物理广播信道中的主 信息块或与同步信号块关联的物理下行控制信道中的解调参考信号。
可选地,所述预设或配置的子载波间隔为30kHz。
可选地,所述预设或配置的子载波间隔为60kHz。
可选地,当x为1或2或3时,基站在一个时隙内发送4个同步信号块。
可选地,当x为1时,基站在一个时隙内发送8个同步信号块
本发明还提供了一种同步信号块的接收装置,包括存储器、处理器,存储器上存储有可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现以下步骤:接收在新空口非授权频谱中配置的同步信号块,所述同步信号块占据x个OFDM符号,其中,x为不大于4的正整数。
可选地,所述方法还包括:若同步信号块被推迟发送,则接收推迟时间,以使用户设备进行小区搜索时能根据推迟时间和同步信号块的时间索引,获得搜索到的小区的定时信息。
可选地,所述同步信号块所占据的OFDM符号前面或后面有y个OFDM符号,基站在所述y个OFDM符号上发送物理下行控制信道或控制资源集合或信道状态信息参考信号或解调参考信号,其中,y为零或正整数。
与现有技术相比,本发明实施例的技术方案具有以下优点:
在配置同步信号块时,所述同步信号块占据x个正交频分复用(OFDM)符号,若同步信号块占据符号数较少,可以减少发现时间信号的占空比,也就是说,可以减少同步信号块的发送持续时间,从而降低同步信号块在非授权频谱中占据信道的时间。
进一步,所述同步信号块在发现参考信号持续时间内被连续发送;以及同步信号块与其之前的y个OFDM符号组成一个整体,在发现参考信号持续时间内被连续发送,均可以减少发现时间信号的占空比。
附图说明
图1是本发明的一个实施例的同步信号块的发送方法的流程图;
图2至图18分别是本发明的一个实施例的同步信号块的配置示意图;
图19是图1中S12的一种具体实现的部分流程图;
图20是图1中S12的一种具体实现的部分流程图;
图21是本发明的一个实施例的同步信号块的接收方法的流程图;
图22是本发明的一个实施例的同步信号块的发送装置的结构示意图;以及
图23是本发明的一个实施例的同步信号块的接收装置的结构示意图。
具体实施方式
在3GPP(3 rd Generation Partnership Project)协议LTE(Long Term Evolution)Release 12系列中定义了发现参考信号,用于用户设备对辅小区的同步(时频跟踪)和测量,可以成为辅小区的“发现”功能。采用发现参考信号的好处在于其是长周期信号,长周期信号对整个网络的干扰较小。发现参考信号由主同步信号、辅同步信号、小区指定参考信号(Cell-specific Reference Signal,CRS)。对于频分双工***,发现参考信号的持续时间为1到5个连续子帧(subframe);对于时分双工***,发现参考信号的持续时间为2到5个连续子帧。
在新空口非授权频谱上也需要定义发现参考信号,以使非授权频谱的小区具有发现功能,所述发现参考信号需要包含同步信号块,从而使用户设备能够在小区搜索中检测到新空口非授权频谱小区,并选择合适的时机发送同步信号块。
图1是本发明的一个实施例中一种同步信号块的发送方法的流程图,所述发送方法具体可以包括以下步骤:
S11,在新空口非授权频谱中配置所述同步信号块,所述同步信号块占据x个OFDM符号,其中,x为不大于4的正整数。
在新空口非授权频谱中配置所述同步信号块,所述同步信号块位于新空口非授权频谱的发现参考信号内。在具体实施中,所述同步信号块可以包括主同步信号、辅同步信号和物理广播信道。
在一些实施例中,发现参考信号的持续时间为一个非空时隙内的12个OFDM符号,同步信号块在所述发现参考信号中可以占据1个或2个或3个或4个OFDM符号。当同步信号块占据的OFDM符号数量较少时,可以减少发现参考信号的占空比,降低同步信号块在非授权频谱中占据信道的时间。
下述的主同步信号、辅同步信号和物理广播信道占据的物理资源块是名义上占据的物理资源块,其中某些物理资源块可能是零功率发送,但仍然算作属于主同步信号、辅同步信号或物理广播信道。另外,所述的占据并不一定指完全占据所有资源。
在一些实施例中,所述同步信号块可以占据1个OFDM符号,同步信号块中的主同步信号、辅同步信号和物理广播信道频分复用在该符号上。其中物理广播信道占据频域上的连续P个物理资源块(Physical Resource Block),以使物理广播信道的接收在连续带宽内,其中,P为所述物理广播信道在1个同步信号块内占据的物理资源块的个数。例如,在一个实施例中,P可以为72。
在一个实施例中,参考图2,当所述同步信号块占据1个OFDM符号时,所述主同步信号21和辅同步信号22分别占12个物理资源块,所述物理广播信道21占据48个物理资源块,所述同步信号块的总带宽为72个物理资源块。
在一个变型例中,参考图3,当所述同步信号块占据1个OFDM符号时,所述主同步信号31占据20个物理资源块,所述辅同步信号32占据12个物理资源块,所述物理广播信道33占据48个物理资 源块,所述同步信号块的总带宽为80个物理资源块。
所述同步信号块可以占据2个OFDM符号,而且每个符号上占据40个物理资源块。因为Release 15 NR中同步信号块占据4个OFDM符号,每个符号上占据20个物理资源块,所以一种设计方法是直接把任意两两物理资源块组组合在一个符号上,其中每组物理资源块组为Release 15 NR中的一个符号上的20个物理资源块。
在一些实施例中,所述同步信号块可以占据2个OFDM符号,其中,所述主同步信号和辅同步信号频分复用占据1个符号,所述物理广播信道占据1个符号,所述物理广播信道占据的物理资源块在频域上是连续的,以使得所述物理广播信道的接收在连续带宽内。
在一个实施例中,参考图4,当所述同步信号块占据2个OFDM符号时,所述主同步信号41和辅同步信号42分别占据12个物理资源块,物理广播信道43占据48个物理资源块,所述同步信号块的总带宽为48个物理资源块。
在一个变型例中,当所述同步信号块占据2个OFDM符号时,所述主同步信号51占据20个物理资源块,所述辅同步信号52占据12个物理资源块,所述物理广播信道53占据48个物理资源块,所述同步信号块的总带宽为48个物理资源块。
在一些实施例中,所述物理广播信道可以使用主同步信号和辅同步信号占据的OFDM符号上的频域资源,以使同步信号块总体的带宽减小。
在一个实施例中,参考图6,当所述同步信号块占据2个OFDM符号时,所述主同步信号61和辅同步信号62分别占据12个物理资源块,独立占据一个OFDM符号的物理广播信道63占据36个物理资源块,扩展到主同步信号61和辅同步信号62占据的OFDM符号上的物理广播信道63占据12个物理资源块,所述同步信号块的总带宽为36个物理资源块。
在一个变型例中,参考图7,当所述同步信号块占据2个OFDM符号时,所述主同步信号71占据20个物理资源块,所述辅同步信号72占据12个物理资源块,独立占据一个OFDM符号的物理广播信道73占据40个物理资源块,扩展到主同步信号71和辅同步信号72占据的OFDM符号上的物理广播信道73占据8个物理资源块,所述同步信号块的总带宽为40个物理资源块。
在一些实施例中,所述同步信号块占据2个OFDM符号,其中,所述主同步信号和辅同步信号各占据1个OFDM符号,所述物理广播信道频分复用所述主同步信号和辅同步信号占据的OFDM符号。
在一个实施例中,参考图8,当所述同步信号块占据2个OFDM符号时,所述主同步信,81和辅同步信号82分别占据12个物理资源块,所述物理广播信道83频分复用所述主同步信号81和辅同步信号82占据的OFDM符号,在两个OFDM符号上分别占据24个物理资源块,所述同步信号块的总带宽为36个物理资源块。
在一个变型例中,参考图9,当所述同步信号块占据2个OFDM符号时,所述主同步信,91占据20 个物理资源块,辅同步信号92占据12个物理资源块,所述物理广播信道93频分复用所述主同步信号91和辅同步信号92占据的OFDM符号,在两个OFDM符号上分别占据24个物理资源块,所述同步信号块的总带宽为44个物理资源块。
在一个变形例中,参考图10,当所述同步信号块占据2个OFDM符号时,所述主同步信号101占据20个物理资源块,辅同步信号102占据12个物理资源块,所述物理广播信道103频分复用所述主同步信号101和辅同步信号102占据的OFDM符号,在两个OFDM符号上分别占据20和28个物理资源块,所述同步信号块的总带宽为40个物理资源块。
在一些实施例中,所述同步信号块可以占据3个OFDM符号,其中,所述主同步信号、所述辅同步信号和所述物理广播信道各占据1个OFDM符号,所述物理广播信道占据的物理资源块在频域上是连续的,以使得所述物理广播信道的接收在连续带宽内。同时,在接收完辅同步信号前,用户设备都只需打开主同步信号或辅同步信号带宽。
在一个实施例中,参考图11,当所述同步信号块占据3个OFDM符号时,所述主同步信号111和辅同步信号112分别占据12个物理资源块,物理广播信道113占据48个物理资源块,所述同步信号块的总带宽为48个物理资源块。
在一个变型例中,参考图12,当所述同步信号块占据3个OFDM符号时,所述主同步信号121占据20个物理资源块,所述辅同步信号122占据12个物理资源块,所述物理广播信道123占据48个物理资源块,所述同步信号块的总带宽为48个物理资源块。
在一些实施例中,所述物理广播信道可以使用主同步信号和辅同步信号占据的OFDM符号上的频域资源,以使同步信号块总体的带宽减小。
在一个实施例中,参考图13,所述同步信号块占据3个OFDM符号时,所述主同步信号131和辅同步信号132分别占据12个物理资源块,独立占据一个OFDM符号的物理广播信道133占据24个物理资源块,扩展到主同步信号131和辅同步信号132占据的OFDM符号上的物理广播信道133分别占据12个物理资源块,所述同步信号块的总带宽为24个物理资源块。
在一个变型例中,参考图14,当所述同步信号块占据3个OFDM符号时,所述主同步信号141占据20个物理资源块,所述辅同步信号142占据12个物理资源块,独立占据一个OFDM符号的物理广播信道143占据28个物理资源块,扩展到主同步信号141和辅同步信号142占据的OFDM符号上的物理广播信道143分别占据4个和16个物理资源块,所述同步信号块的总带宽为40个物理资源块。
在一些实施例中,所述同步信号块可以占据3个OFDM符号,其中,所述主同步信号和辅同步信号频分复用占据1个OFDM符号,所述物理广播信道占据2个OFDM符号,所述物理广播信道占据的物理资源块在频域上是连续的,以使得所述物理广播信道的接收在连续带宽内。
在一个实施例中,参考图15,当所述同步信号块占据3个OFDM符号时,所述主同步信号151和 辅同步信号152分别占据12个物理资源块,所述物理广播信道153在两个OFDM符号上分别占据24个物理资源块,所述同步信号块的总带宽为24个物理资源块。
在一个变型例中,参考图16,当所述同步信号块占据3个OFDM符号时,所述主同步信号161占据20个物理资源块,所述辅同步信号162占据12个物理资源块,所述物理广播信道163在两个OFDM符号上分别占据24个物理资源块,所述同步信号块的总带宽为24个物理资源块。
在一些实施例中,所述同步信号块可以占据4个OFDM符号,其中,所述主同步信号、所述辅同步信号占据1个OFDM符号,所述物理广播信道占据2个OFDM符号,所述物理广播信道占据的物理资源块在频域上是连续的,以使得所述物理广播信道的接收在连续带宽内。同时,在接收完辅同步信号前,用户设备都只需打开主同步信号或辅同步信号带宽。
在一些实施例中,所述物理广播信道可以使用辅同步信号占据的OFDM符号上的频域资源,以使同步信号块总体的带宽减小。
在一个实施例中,参考图17,当所述同步信号块占据4个OFDM符号时,所述主同步信号171和辅同步信号172分别占据12个物理资源块,所述物理广播信道173在两个OFDM符号上分别占据20个物理资源块,扩展到辅同步信号172占据的OFDM符号上的物理广播信道173占据8个物理资源块,所述同步信号块的总带宽为20个物理资源块。
在一个变型例中,参考图18,当所述同步信号块占据4个OFDM符号时,所述主同步信号181占据20个物理资源块,所述辅同步信号182占据12个物理资源块,所述物理广播信道183在两个OFDM符号上分别占据20个物理资源块,扩展到辅同步信号182占据的OFDM符号上的物理广播信道183占据8个物理资源块,所述同步信号块的总带宽为20个物理资源块。
在具体实施中,所述同步信号块包括主同步信号和辅同步信号。所述同步信号块可以占据1个或2个OFDM符号。当同步信号块占据的OFDM符号数量较少时,可以减少发现参考信号的占空比,降低同步信号块在非授权频谱中占据信道的时间。
在一些实施例中,所述同步信号块可以占据1个OFDM符号,同步信号块中的主同步信号、辅同步信号分复用在该符号上。
在一个实施例中,当所述同步信号块占据1个OFDM符号时,所述主同步信号和辅同步信号分别占12个物理资源块,所述同步信号块的总带宽为24个物理资源块,其配置结构类似图2。
在一个变型例中,当所述同步信号块占据1个OFDM符号时,所述主同步信号占据20个物理资源块,所述辅同步信号占据12个物理资源块,所述同步信号块的总带宽为32个物理资源块,其配置结构类似图3。
在一些实施例中,所述同步信号块可以占据2个OFDM符号,同步信号块中的主同步信号、辅同步信号分别占据1个OFDM符号。
在一个实施例中,当所述同步信号块占据2个OFDM符号时,所述主同步信号和辅同步信号分别占据12个物理资源块,所述同步信号块的总带宽为12个物理资源块,其配置结构类似图8。
在一个变型例中,当所述同步信号块占据2个OFDM符号时,所述主同步信号占据20个物理资源块,所述辅同步信号占据12个物理资源块,所述同步信号块的总带宽为20个物理资源块,其配置结构类似图9。
S12,在预设的载波间隔下,将所述同步信号块发送至用户设备。
在一些实施例中,当x为1或2或3时,基站在一个时隙内发送4个同步信号块,可减少信道占用时间。
在一些实施例中,当x为1时,基站在一个时隙内发送8个同步信号块,可减少信道占用时间。
在一些实施例中,所述预设或配置的子载波间隔可以为30kHz,此时可以采用x为1或2或3时的同步信号块的结构,相对于15kHz的子载波间隔,可以减少信道占用时间。
在一些实施例中,所述预设或配置的子载波间隔可以为60kHz,此时可以采用x为4时的同步信号块的结构,可以进一步减少信道占用时间,并能够在1毫秒内发送8个同步信号块。
在一些实施例中,所述同步信号块占据的OFDM符号是连续的,所述发现参考信号可以包括多个同步信号块。这样可以减少发现参考信号的占空比。
在一些实施例中,所述同步信号块所占据的OFDM符号前面或后面有y个OFDM符号,基站在所述y个OFDM符号上发送物理下行控制信道或控制资源集合或信道状态信息参考信号或解调参考信号,其中,y为零或正整数。
当这y个符号被物理下行控制信道或控制资源集合所占据时,基站可以在传输同步信号块的时候同时传输物理下行控制信道,所述物理下行控制信道用于传输公共控制消息(如最小剩余***信息、寻呼消息等)、时隙格式指示、调度信息等。所述物理下行控制信道或控制资源集合与同步信号块相关联。
当这y个符号被信道状态信息参考信号或解调参考信号占据时,基站可以在传输同步信号块的时候同时传输信道状态信息参考信号,以助用户设备完成波束训练、信道状态信息计算等操作。
在一些实施例中,这y个符号和一个同步信号块组成一个整体资源单位,所述整体资源单位占据的OFDM符号是连续的。这样可以减少发现参考信号的占空比。
在一些实施例中,多个所述资源单位频分复用,从而可以降低多个所述整体资源单位发送的占空比。
在一些实施例中,所述发现参考信号在发现测量时间配置(Discovery Measurement Timing Configuration,DMTC)或者同步测量时间配置(Synchronization Measurement Timing Configuration,SMTC)中的任意一个或多个子帧中出现。其中,发现参考信号内的所述整体资源单位的预定发送时机设定在预设的OFDM符号上。
在一些实施例中,一个或多个所述同步信号块在发现参考信号的持续时间内,或测量窗口内,或测量窗口对应参考信号的持续时间内连续发送。这样可以减少发现参考信号的占空比。
在一些实施例中,一个或多个所述整体资源单位在发现参考信号的持续时间内,或测量窗口内,或测量窗口对应参考信号的持续时间内连续发送。这样可以减少发现参考信号的占空比。
参考图19,图19是图1中S12的一种具体实现的部分流程图。在将所述整体资源单位发送至用户设备之前,所述方法还包括:
S21,进行发射前监听。
S22,若监听到信道空闲,将所述整体资源单位在预定发送时机发送至用户设备。
S23,若监听到信道忙,则推迟发送所述整体资源单位,并将指示推迟时间给用户设备。
在一些实施例中,所述整体资源单位中包括同步信号块以及其之前或之后的y个符号,其中,y为零或正整数。当y为零时,所述整体资源单位即为同步信号块,也就是说,对于步骤S12:在预设的载波间隔下,将所述同步信号块发送至用户设备,在步骤12之前,也进行发现前监听及图19所示的其余步骤。
参考图20,图20是图1中S12的另一种具体实现的部分流程图。在将所述整体资源单位发送至用户设备之前,所述方法还包括:
S31,进行发射前监听。
S32,若监听到信道空闲,将所述整体资源单位在预定发送时机发送至用户设备。
S33,若监听到信道忙,则不发送所述整体资源单位。
在一些实施例中,所述发送方法与图19所示的发送方法不同之处在于,在S33中,若监听到信道忙,则基站不发送所述整体资源单位。因此基站无需推迟发送所述整体资源单位,从而降低***复杂度。
在一些实施例中,基站指示的所述推迟时间被承载于物理广播信道中的解调参考信号或物理广播信道中的主信息块或与同步信号块关联的物理下行控制信道中的解调参考信号。
在一些实施例中,所述物理广播信道中的解调参考信号承载基站指示的推迟时间。这样,用户设备只需要检测物理广播信道中的解调参考信号就能获得基站指示的推迟时间。
在一些实施例中,所述物理广播信道中的主信息块承载基站指示的推迟时间。这样,基站指示的推迟时间编码在主信息块中,减小了误检和虚警概率。
在一些实施例中,同步信号块关联的物理下行控制信道中的解调参考信号承载基站指示的推迟时间。这样,用户设备只需要检测物理下行控制信道中的解调参考信号就能获得基站指示的推迟时间
参考图21,图21是本发明的一个实施例的同步信号块的接收方法的流程图。所述接收方法可以包 括以下步骤。
S41,接收在新空口非授权频谱中配置的同步信号块,所述同步信号块占据x个OFDM符号,其中,x为不大于4的正整数。
S42,若同步信号块被推迟发送,则接收推迟时间,以使用户设备进行小区搜索时能根据推迟时间和同步信号块的时间索引,获得搜索到的小区的定时信息。
在一些实施例中,所述同步信号块所占据的OFDM符号前有y个OFDM符号,所述y个OFDM符号被物理下行控制信道或控制资源集合或信道状态信息参考信号或解调参考信号占据,其中,y为零或正整数。
本实施例中关于同步信号块的接收方法的工作原理、工作方式的更多内容,可以参照图1至图19中的相关描述,这里不再赘述。
图21提供了本发明的一个实施例的同步信号块的发送装置,包括存储器211、处理器212,存储器上211存储有可在处理器212上运行的计算机程序,所述存储在存储器211上的计算机程序即为实现上述方法步骤的程序,所述处理器212执行所述程序时实现上文所述步骤。所述存储器211可以包括:ROM、RAM、磁盘或光盘等。所述步骤请参见上文的步骤,此处不再赘述。
图22提供了本发明的一个实施例的同步信号块的接收装置,包括存储器221、处理器222,存储器221上存储有可在处理器222上运行的计算机程序,所述存储在存储器221上的计算机程序即为实现上述方法步骤的程序,所述处理器222执行所述程序时实现上文所述步骤。所述存储器221可以包括:ROM、RAM、磁盘或光盘等。所述步骤请参见上文的步骤,此处不再赘述。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (58)

  1. 一种同步信号块的发送方法,其特征在于,包括:
    在新空口非授权频谱中配置所述同步信号块,所述同步信号块占据x个OFDM符号,其中,x为不大于4的正整数;
    在预设或配置的子载波间隔下,将所述同步信号块发送至用户设备。
  2. 根据权利要求1所述的同步信号块的发送方法,其特征在于,所述同步信号块包括主同步信号、辅同步信号和物理广播信道。
  3. 根据权利要求2所述的同步信号块的发送方法,其特征在于,当所述同步信号块占据1个OFDM符号时,所述主同步信号、辅同步信号和物理广播信道频分复用占据该符号。
  4. 根据权利要求2所述的同步信号块的发送方法,其特征在于,当所述同步信号块占据2个OFDM符号时,所述主同步信号和辅同步信号频分复用占据1个OFDM符号,所述物理广播信道占据1个OFDM符号。
  5. 根据权利要求2所述的同步信号块的发送方法,当所述同步信号块占据2个OFDM符号时,所述主同步信号和辅同步信号各占据1个OFDM符号,所述物理广播信道频分复用所述主同步信号和辅同步信号占据的OFDM符号。
  6. 根据权利要求4所述的同步信号块的发送方法,其特征在于,当所述同步信号块占据3个OFDM符号时,所述主同步信号、所述辅同步信号和所述物理广播信道各占据1个OFDM符号。
  7. 根据权利要求6所述的同步信号块的发送方法,其特征在于,所述物理广播信道使用主同步信号和辅同步信号占据的OFDM符号上的频域资源。
  8. 根据权利要求2所述的同步信号块的发送方法,其特征在于,当所述同步信号块占据3个OFDM符号时,所述主同步信号和辅同步信号频分复用占据1个OFDM符号,所述物理广播信道占据2个OFDM符号。
  9. 根据权利要求2所述的同步信号块的发送方法,其特征在于,当所述同步信号块占据4个OFDM符号时,所述主同步信号占据1个OFDM符号,所述辅同步信号占据1个OFDM符号,所述物理广播信道占据2个OFDM符号。
  10. 根据权利要求9所述的同步信号块的发送方法,其特征在于,所述物理广播信道使用辅同步信号占据的OFDM符号上的频域资源。
  11. 根据权利要求3至10中任一所述的同步信号块的发送方法,其特征在于,所述物理广播信道占据连续P个物理资源块,其中,P为所述物理广播信道在1个同步信号块内占据的物理资源块的个数。
  12. 根据权利要求1所述的同步信号块的发送方法,其特征在于,所述同步信号块包括主同步信号、辅同步信号。
  13. 根据权利要求12所述的同步信号块的发送方法,其特征在于,当所述同步信号块占据1个OFDM符号时,所述主同步信号、辅同步信号频分复用占据该符号。
  14. 根据权利要求13所述的同步信号块的发送方法,其特征在于,当所述同步信号块占据2个OFDM符号时,所述主同步信号占据1个OFDM符号,所述辅同步信号占据1个OFDM符号。
  15. 根据权利要求1所述的同步信号块的发送方法,其特征在于,所述同步信号块所占据的OFDM符号前面或后面有y个OFDM符号,基站在所述y个OFDM符号上发送物理下行控制信道或控制资源集合或信道状态信息参考信号或解调参考信号,其中,y为零或正整数。
  16. 根据权利要求15所述的同步信号块的发送方法,其特征在于,所述y个OFDM符号与其前或后的1个同步信号块组成一个整体资源单位。
  17. 根据权利要求16所述的同步信号块的发送方法,其特征在于,一个或多个所述整体资源单位在发现参考信号的持续时间内,或测量窗口内,或测量窗口对应参考信号的持续时间内连续发送。
  18. 根据权利要求16所述的同步信号块的发送方法,其特征在于,多个所述整体资源单位频分复用。
  19. 根据权利要求16所述的同步信号块的发送方法,其特征在于,所述整体资源单位的预定发送时机设定在预设的OFDM符号上。
  20. 根据权利要求19所述的同步信号块的发送方法,其特征在于,在将所述整体资源单位发送至用户设备之前,所述方法还包括:
    进行发射前监听;
    若监听到信道空闲,将所述整体资源单位在预定发送时机发送至用户设备;
    若监听到信道忙,则推迟发送所述整体资源单位,并将指示推迟时间给用户设备。
  21. 根据权利要求19所述的同步信号块的发送方法,其特征在于,在将所述整体资源单位发送至用户设备之前,所述方法还包括:
    进行发射前监听;
    若监听到信道空闲,将所述整体资源单位在预定发送时机发送至用户设备;
    若监听到信道忙,则不发送所述整体资源单位。
  22. 根据权利要求20所述的同步信号块的发送方法,其特征在于,基站指示的所述推迟时间被承载于物理广播信道中的解调参考信号或物理广播信道中的主信息块或与同步信号块关联的物理下行控制信道中的解调参考信号。
  23. 根据权利要求1所述的同步信号块的发送方法,其特征在于,所述预设或配置的子载波间隔为30kHz。
  24. 根据权利要求1所述的同步信号块的发送方法,其特征在于,所述预设或配置的子载波间隔为60kHz。
  25. 根据权利要求1所述的同步信号块的发送方法,其特征在于,当x为1或2或3时,基站在一个时隙内发送4个同步信号块。
  26. 根据权利要求1所述的同步信号块的发送方法,其特征在于,当x为1时,基站在一个时隙内发送8个同步信号块。
  27. 一种同步信号块的接收方法,其特征在于,包括:
    接收在新空口非授权频谱中配置的同步信号块,所述同步信号块占据x个OFDM符号,其中,x为不大于4的正整数。
  28. 根据权利要求27所述的同步信号块的接收方法,其特征在于,还包括:
    若同步信号块被推迟发送,则接收推迟时间,以使用户设备进行小区搜索时能根据推迟时间和同步信号块的时间索引,获得搜索到的小区的定时信息。
  29. 根据权利要求28所述的同步信号块的接收方法,其特征在于,所述同步信号块所占据的OFDM符号前面或后面有y个OFDM符号,基站在所述y个OFDM符号上发送物理下行控制信道或控制资源集合或信道状态信息参考信号或解调参考信号,其中,y为零或正整数。
  30. 一种同步信号块的发送装置,包括存储器、处理器,存储器上存储有可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现以下步骤:
    在新空口非授权频谱中配置所述同步信号块,所述同步信号块占据x个OFDM符号,其中,x为不大于4的正整数;
    在预设或配置的子载波间隔下,将所述同步信号块发送至用户设备。
  31. 根据权利要求30所述的同步信号块的发送装置,其特征在于,所述同步信号块包括主同步信号、辅同步信号和物理广播信道。
  32. 根据权利要求31所述的同步信号块的发送装置,其特征在于,当所述同步信号块占据1个OFDM符号时,所述主同步信号、辅同步信号和物理广播信道频分复用占据该符号。
  33. 根据权利要求31所述的同步信号块的发送装置,其特征在于,当所述同步信号块占据2个OFDM符号时,所述主同步信号和辅同步信号频分复用占据1个OFDM符号,所述物理广播信道占据1个OFDM符号。
  34. 根据权利要求31所述的同步信号块的发送装置,当所述同步信号块占据2个OFDM符号时,所述主同步信号和辅同步信号各占据1个OFDM符号,所述物理广播信道频分复用所述主同步信号和辅同步信号占据的OFDM符号。
  35. 根据权利要求33所述的同步信号块的发送装置,其特征在于,当所述同步信号块占据3个OFDM符号时,所述主同步信号、所述辅同步信号和所述物理广播信道各占据1个OFDM符号。
  36. 根据权利要求35所述的同步信号块的发送装置,其特征在于,所述物理广播信道使用主同步信号和辅同步信号占据的OFDM符号上的频域资源。
  37. 根据权利要求31所述的同步信号块的发送装置,其特征在于,当所述同步信号块占据3个OFDM符号时,所述主同步信号和辅同步信号频分复用占据1个OFDM符号,所述物理广播信道占据2个OFDM符号。
  38. 根据权利要求31所述的同步信号块的发送装置,其特征在于,当所述同步信号块占据4个OFDM符号时,所述主同步信号占据1个OFDM符号,所述辅同步信号占据1个OFDM符号,所述物理广播信道占据2个OFDM符号。
  39. 根据权利要求38所述的同步信号块的发送装置,其特征在于,所述物理广播信道使用辅同步信号占据的OFDM符号上的频域资源。
  40. 根据权利要求32至39中任一所述的同步信号块的发送装置,其特征在于,所述物理广播信道占据连续P个物理资源块,其中,P为所述物理广播信道在1个同步信号块内占据的物理资源块的个数。
  41. 根据权利要求30所述的同步信号块的发送装置,其特征在于,所述同步信号块包括主同步信号、辅同步信号。
  42. 根据权利要求41所述的同步信号块的发送装置,其特征在于,当所述同步信号块占据1个OFDM符号时,所述主同步信号、辅同步信号频分复用占据该符号。
  43. 根据权利要求42所述的同步信号块的发送装置,其特征在于,当所述同步信号块占据2个OFDM符号时,所述主同步信号占据1个OFDM符号,所述辅同步信号占据1个OFDM符号。
  44. 根据权利要求30所述的同步信号块的发送装置,其特征在于,所述同步信号块所占据的OFDM符号前面或后面有y个OFDM符号,基站在所述y个OFDM符号上发送物理下行控制信道或控制资源集合或信道状态信息参考信号或解调参考信号,其中,y为零或正整数。
  45. 根据权利要求44所述的同步信号块的发送装置,其特征在于,所述y个OFDM符号与其前或后的1个同步信号块组成一个整体资源单位。
  46. 根据权利要求45所述的同步信号块的发送装置,其特征在于,一个或多个所述整体资源单位在发现参考信号的持续时间内,或测量窗口内,或测量窗口对应参考信号的持续时间内连续发送。
  47. 根据权利要求45所述的同步信号块的发送装置,其特征在于,多个所述整体资源单位频分复用。
  48. 根据权利要求45所述的同步信号块的发送装置,其特征在于,所述整体资源单位的预定发送时机设定在预设的OFDM符号上。
  49. 根据权利要求48所述的同步信号块的发送装置,其特征在于,在将所述整体资源单位发送至用户设备之前,还包括:
    进行发射前监听;
    若监听到信道空闲,将所述整体资源单位在预定发送时机发送至用户设备;
    若监听到信道忙,则推迟发送所述整体资源单位,并将指示推迟时间给用户设备。
  50. 根据权利要求48所述的同步信号块的发送装置,其特征在于,在将所述整体资源单位发送至用户设备之前,还包括:
    进行发射前监听;
    若监听到信道空闲,将所述整体资源单位在预定发送时机发送至用户设备;
    若监听到信道忙,则不发送所述整体资源单位。
  51. 根据权利要求49所述的同步信号块的发送装置,其特征在于,基站指示的所述推迟时间被承载于物理广播信道中的解调参考信号或物理广播信道中的主信息块或与同步信号块关联的物理下行控制信道中的解调参考信号。
  52. 根据权利要求30所述的同步信号块的发送装置,其特征在于,所述预设或配置的子载波间隔为30kHz。
  53. 根据权利要求30所述的同步信号块的发送装置,其特征在于,所述预设或配置的子载波间隔为60kHz。
  54. 根据权利要求30所述的同步信号块的发送装置,其特征在于,当x为1或2或3时,基站在一个时隙内发送4个同步信号块。
  55. 根据权利要求30所述的同步信号块的发送装置,其特征在于,当x为1时,基站在一个时隙内发送8个同步信号块。
  56. 一种同步信号块的接收装置,包括存储器、处理器,存储器上存储有可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现以下步骤,其特征在于,包括:
    接收在新空口非授权频谱中配置的同步信号块,所述同步信号块占据x个OFDM符号,其中,x为不大于4的正整数。
  57. 根据权利要求56所述的同步信号块的接收装置,其特征在于,还包括:
    若同步信号块被推迟发送,则接收推迟时间,以使用户设备进行小区搜索时能根据推迟时间和同步信号块的时间索引,获得搜索到的小区的定时信息。
  58. 根据权利要求57所述的同步信号块的接收装置,其特征在于,所述同步信号块所占据的OFDM符号前面或后面有y个OFDM符号,基站在所述y个OFDM符号上发送物理下行控制信道或控制资源集合或信道状态信息参考信号或解调参考信号,其中,y为零或正整数。
PCT/CN2019/072470 2018-02-13 2019-01-21 同步信号块的发送、接收方法及装置 WO2019157904A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/321,633 US20210044471A1 (en) 2018-02-13 2019-01-21 Synchronization signal block transmitting and receiving method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810153251.1 2018-02-13
CN201810153251.1A CN110166393B (zh) 2018-02-13 2018-02-13 同步信号块的发送、接收方法及装置

Publications (1)

Publication Number Publication Date
WO2019157904A1 true WO2019157904A1 (zh) 2019-08-22

Family

ID=67618907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072470 WO2019157904A1 (zh) 2018-02-13 2019-01-21 同步信号块的发送、接收方法及装置

Country Status (3)

Country Link
US (1) US20210044471A1 (zh)
CN (1) CN110166393B (zh)
WO (1) WO2019157904A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220086776A1 (en) * 2019-01-10 2022-03-17 Beijing Xiaomi Mobile Software Co., Ltd. Methods and devices for configuring, sending and receiving discovery reference signal (drs)
CN110601809B (zh) * 2019-09-30 2021-04-02 北京紫光展锐通信技术有限公司 信息发送方法及装置、信息接收方法及装置
EP4044713A4 (en) * 2019-09-30 2022-10-05 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE
US12010637B2 (en) * 2020-06-12 2024-06-11 Qualcomm Incorporated Indication methods for synchronization signal block configuration changes
CN113939035B (zh) * 2020-06-29 2024-06-14 上海朗帛通信技术有限公司 一种用于无线通信的节点中的方法和装置
CN114499800A (zh) * 2020-11-13 2022-05-13 华为技术有限公司 信号传输的方法和通信装置
WO2024035055A1 (ko) * 2022-08-11 2024-02-15 엘지전자 주식회사 하향링크 신호를 수신하는 방법, 사용자기기, 프로세싱 장치 및 저장 매체, 그리고 하향링크 신호를 전송하는 방법 및 기지국

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060050626A1 (en) * 2004-09-03 2006-03-09 University Of South Florida Covert OFDM Transmission Using Cyclic Prefix
CN104301273A (zh) * 2014-08-25 2015-01-21 中兴通讯股份有限公司 使用非授权载波发送及接收信号的方法、基站及用户设备
CN105451251A (zh) * 2015-11-06 2016-03-30 东莞酷派软件技术有限公司 一种非授权频谱的drs配置方法、测量方法和相关设备
CN105577339A (zh) * 2014-11-06 2016-05-11 中兴通讯股份有限公司 数据传输方法及装置
CN106161317A (zh) * 2015-04-08 2016-11-23 ***通信集团公司 一种同步方法及装置
CN106411805A (zh) * 2015-07-28 2017-02-15 中兴通讯股份有限公司 一种非授权载波的同步信号的发送方法和基站
CN107682133A (zh) * 2017-09-20 2018-02-09 宇龙计算机通信科技(深圳)有限公司 一种发现参考信号的生成方法、装置及网络侧设备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101938824B (zh) * 2009-06-29 2013-01-23 ***通信集团公司 空口同步方法、设备及***
CN102223696B (zh) * 2011-06-17 2013-09-25 电子科技大学 一种lte***中小区搜索方法
CN102510566B (zh) * 2011-11-30 2014-07-16 合肥东芯通信股份有限公司 一种lte***的邻区搜索方法及装置
CN103391265B (zh) * 2012-05-11 2018-01-19 中兴通讯股份有限公司 一种基站及新载波中主辅同步信号的传输方法
CN104796218B (zh) * 2014-01-17 2019-02-12 电信科学技术研究院 信号传输方法和装置
EP3119018B1 (en) * 2014-03-12 2021-01-13 LG Electronics Inc. Discovery signal receiving method and terminal
WO2016021979A1 (ko) * 2014-08-07 2016-02-11 엘지전자 주식회사 동기 신호 수신 방법 및 사용자기기와, 동기 신호 전송 방법 및 기지국
US20160142241A1 (en) * 2014-11-14 2016-05-19 Telefonaktiebolaget L M Ericsson (Publ) Cell Search Procedure Frame Format
US10356737B2 (en) * 2015-04-27 2019-07-16 Telefonaktiebolaget Lm Ericsson (Publ) Cell search procedure frame format
CN104968052B (zh) * 2015-05-15 2017-05-17 宇龙计算机通信科技(深圳)有限公司 配置方法、配置***、设备、接收方法、接收***和终端
US10218785B2 (en) * 2016-12-02 2019-02-26 Qualcomm Incorporated Opportunistic sync block transmission for mm wave NR-SS
CN110463327A (zh) * 2017-04-03 2019-11-15 瑞典爱立信有限公司 在无线通信网络中信令发送下行链路控制信息
CN109309955B (zh) * 2017-07-28 2021-02-09 华为技术有限公司 一种同步信号块的传输方法、接入网设备及终端设备
CN110383723B (zh) * 2017-08-11 2021-02-02 Lg电子株式会社 用于在coreset中接收/发送控制信道的方法和设备
CN109688625B (zh) * 2017-10-19 2021-01-15 ***通信有限公司研究院 一种控制信息的发送方法、检测方法、网络设备及终端
CN109787732B (zh) * 2017-11-14 2020-10-20 电信科学技术研究院 一种资源配置方法及装置、计算机存储介质
WO2019096404A1 (en) * 2017-11-17 2019-05-23 Nokia Technologies Oy Method, system and apparatus to measure a received signal strength indicator
WO2019104672A1 (zh) * 2017-11-30 2019-06-06 北京小米移动软件有限公司 信息指示方法及装置、基站和用户设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060050626A1 (en) * 2004-09-03 2006-03-09 University Of South Florida Covert OFDM Transmission Using Cyclic Prefix
CN104301273A (zh) * 2014-08-25 2015-01-21 中兴通讯股份有限公司 使用非授权载波发送及接收信号的方法、基站及用户设备
CN105577339A (zh) * 2014-11-06 2016-05-11 中兴通讯股份有限公司 数据传输方法及装置
CN106161317A (zh) * 2015-04-08 2016-11-23 ***通信集团公司 一种同步方法及装置
CN106411805A (zh) * 2015-07-28 2017-02-15 中兴通讯股份有限公司 一种非授权载波的同步信号的发送方法和基站
CN105451251A (zh) * 2015-11-06 2016-03-30 东莞酷派软件技术有限公司 一种非授权频谱的drs配置方法、测量方法和相关设备
CN107682133A (zh) * 2017-09-20 2018-02-09 宇龙计算机通信科技(深圳)有限公司 一种发现参考信号的生成方法、装置及网络侧设备

Also Published As

Publication number Publication date
US20210044471A1 (en) 2021-02-11
CN110166393B (zh) 2021-06-25
CN110166393A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
US11677607B2 (en) Method for transmitting information in communication system, base station and user equipment
WO2019157904A1 (zh) 同步信号块的发送、接收方法及装置
US10652882B2 (en) Data transmission method, wireless network device, and communications system
US10728891B2 (en) Information sending and receiving methods and devices
EP3334201B1 (en) Terminal device and corresponding method
JP6441483B2 (ja) 無認可スペクトル上におけるセル検出、同期化及び測定のための方法及び装置
US9917616B2 (en) Synchronization signal design for wireless devices in a long range extension mode
KR102324958B1 (ko) 무선 통신 시스템에서 다양한 서비스를 지원하기 위한 방법 및 장치
WO2015106715A1 (zh) 信号传输方法和装置
EP3334234A1 (en) Terminal device, base station device, and communication method
WO2015042858A1 (zh) 通信的方法、用户设备和基站
WO2018028347A1 (zh) 一种确定基带参数的方法和设备
WO2016050196A2 (zh) 一种蜂窝通信中的laa传输的基站、ue中的方法和设备
US10341977B2 (en) Method for obtaining downlink synchronization, and MTC apparatus
US10952168B2 (en) Method for transmitting downlink control signal and apparatus
CN115088377A (zh) 用于无线通信***中的随机接入过程的方法和装置
TWI640215B (zh) 經由錨定載波的小區存取方法和裝置
WO2021012256A1 (zh) 速率匹配的指示方法、装置、设备及存储介质
WO2021016967A1 (zh) 随机接入方法、接收方法、装置、设备及介质
US9332570B2 (en) Access response signaling in a cellular communication system
WO2019095916A1 (zh) 一种非授权频段上同步信号的发送方法、网络设备及终端设备
CN114599070B (zh) 一种数据传输方法、装置、***、网络设备及用户设备
US11974240B2 (en) Resource information determining method and device, storage medium, and user equipment
WO2018028428A1 (zh) 接入子带的方法、装置及存储媒介
CN103796194B (zh) 载波汇聚中上行数据的传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754370

Country of ref document: EP

Kind code of ref document: A1