WO2019157730A1 - User equipment and method of wireless communication of same - Google Patents

User equipment and method of wireless communication of same Download PDF

Info

Publication number
WO2019157730A1
WO2019157730A1 PCT/CN2018/076871 CN2018076871W WO2019157730A1 WO 2019157730 A1 WO2019157730 A1 WO 2019157730A1 CN 2018076871 W CN2018076871 W CN 2018076871W WO 2019157730 A1 WO2019157730 A1 WO 2019157730A1
Authority
WO
WIPO (PCT)
Prior art keywords
sidelink resource
resource units
frequency
user equipment
sidelink
Prior art date
Application number
PCT/CN2018/076871
Other languages
French (fr)
Inventor
Hai Tang
Huei-Ming Lin
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp., Ltd. filed Critical Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority to PCT/CN2018/076871 priority Critical patent/WO2019157730A1/en
Priority to CN201880081044.8A priority patent/CN111480379B/en
Publication of WO2019157730A1 publication Critical patent/WO2019157730A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/7143Arrangements for generation of hop patterns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0033Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation each allocating device acting autonomously, i.e. without negotiation with other allocating devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Definitions

  • the present disclosure relates to the field of communication systems, and more particularly, to a user equipment and a method of wireless communication of same.
  • LTE long term evolution
  • Tx UE transmitting user equipment
  • TB data transport block
  • a receiver UE misses an initial or one of re-transmissions of the data TB, which may be due to half-duplex limitation and cellular uplink (UL) transmission, the receiver UE has no knowledge of time and frequency locations of next re-transmissions to perform receiver combining to improve decoding performance or even receive such data TB.
  • UL cellular uplink
  • An object of the present disclosure is to propose a user equipment (UE) and a method of wireless communication of same for solving the described problems in existing technologies for sidelink communications by channelization of resources in a sidelink resource pool.
  • UE user equipment
  • a user equipment for wireless communication includes a memory and a processor coupled to the memory.
  • the processor is configured to perform a communication over a sidelink interface to at least one second user equipment and map and transmit at least one data transport block (TB) using at least one sidelink resource unit of a sidelink resource pool to the at least one second user equipment.
  • the sidelink resource pool includes a plurality of sidelink resource units and a plurality of frequency zones in a frequency domain.
  • Channelization of the sidelink resource units is by grouping the sidelink resource units into a plurality of transmit channels.
  • Each of the transmit channels includes at least two consecutive sidelink resource units in a time domain.
  • Each of the sidelink resource units in one transmit channel is located in a different frequency zone.
  • the sidelink resource pool of a size of N physical resource blocks (PRBs) based on a network configuration or a pre-configuration is divided into a plurality of equal sized sidelink resource units, each of the equal sized sidelink resource units has m PRBs in the frequency domain and one transmission time interval (TTI) length in the time domain.
  • PRBs physical resource blocks
  • TTI transmission time interval
  • one TTI length has a duration of one slot of 14 symbols for a normal TTI transmission.
  • one TTI length has a duration shorter than one slot of at least three symbols for a short TTI transmission.
  • a frequency hopping pattern of the sidelink resource units in a transmit channel z according to
  • X is a number of the sidelink resource units within the transmit channel z for an initial transmission and all re-transmissions of the at least one data TB
  • X is also a number of the frequency zones
  • K is a number of the sidelink resource units in the frequency domain
  • K is equal to N/m
  • l is a lth sidelink resource unit within the transmit channel z
  • z is an index number of the transmit channel.
  • all of the sidelink resource units (RUs) for the transmit channel z in the time domain and in the frequency domain satisfies
  • k is a frequency index of the sidelink resource units in the frequency domain.
  • the sidelink resource pool in the frequency domain is further based on a network configuration or a pre-configuration divided into X number of equal sized frequency zones, and each of the equal sized frequency zones includes at least one consecutive sidelink resource unit.
  • the sidelink resource units are consecutively arranged into a plurality of sets in the time domain, and each set of the sidelink resource units has a length of the X number of TTIs for transmitting an initial transmission and all re-transmissions of the at least one data TB.
  • the X number of TTIs is also a length of one transmit channel and X value in the number of the TTIs is the same as X value in a number of the frequency zones.
  • each set of the sidelink resource units in the time domain a first TTI position is designated for the initial transmission of the at least one data TB, a second TTI position is for a first re-transmission, a third TTI position is for a second re-transmission, and a last TTI position is for a last re-transmission.
  • channelization of sidelink resource units is by grouping X number of sidelink resource units with one sidelink resource unit from each frequency zone and each TTI position.
  • each transmit channel includes X number of the sidelink resource units with one from a first frequency zone and a first TTI position and another one from a second frequency zone and a second TTI position.
  • a current sidelink resource unit is located in a last frequency zone, and a next sidelink resource unit is located in a first frequency zone.
  • a number of the frequency zones is the same as a number of the sidelink resource units in one transmit channel.
  • each of the frequency zones includes at least one sidelink resource unit.
  • all of the frequency zones have an equal size.
  • all of the sidelink resource units have an equal size.
  • a method of wireless communication of a user equipment includes performing a communication over a sidelink interface to at least one second user equipment and mapping and transmitting at least one data transport block (TB) using at least one sidelink resource unit of a sidelink resource pool to the at least one second user equipment.
  • the sidelink resource pool includes a plurality of sidelink resource units and a plurality of frequency zones in a frequency domain.
  • Channelization of the sidelink resource units is by grouping the sidelink resource units into a plurality of transmit channels.
  • Each of the transmit channels includes at least two consecutive sidelink resource units in a time domain.
  • Each of the sidelink resource units in one transmit channel is located in a different frequency zone.
  • the sidelink resource pool of a size of N physical resource blocks (PRBs) based on a network configuration or a pre-configuration is divided into a plurality of equal sized sidelink resource units, each of the equal sized sidelink resource units has m PRBs in the frequency domain and one transmission time interval (TTI) length in the time domain.
  • PRBs physical resource blocks
  • TTI transmission time interval
  • one TTI length has a duration of one slot of 14 symbols for a normal TTI transmission.
  • one TTI length has a duration shorter than one slot of at least three symbols for a short TTI transmission.
  • a frequency hopping pattern of the sidelink resource units in a transmit channel z according to
  • X is a number of the sidelink resource units within the transmit channel z for an initial transmission and all re-transmissions of the at least one data TB
  • X is also a number of the frequency zones
  • K is a number of the sidelink resource units in the frequency domain
  • K is equal to N/m
  • l is a lth sidelink resource unit within the transmit channel z
  • z is an index number of the transmit channel.
  • all of the sidelink resource units (RUs) for the transmit channel z in the time domain and in the frequency domain satisfies
  • k is a frequency index of the sidelink resource units in the frequency domain.
  • the sidelink resource pool in the frequency domain is further based on a network configuration or a pre-configuration divided into X number of equal sized frequency zones, and each of the equal sized frequency zones includes at least one consecutive sidelink resource unit.
  • the sidelink resource units are consecutively arranged into a plurality of sets in the time domain, and each set of the sidelink resource units has a length of the X number of TTIs for transmitting an initial transmission and all re-transmissions of the at least one data TB.
  • the X number of TTIs is also a length of one transmit channel and X value in the number of the TTIs is the same as X value in a number of the frequency zones.
  • each set of the sidelink resource units in the time domain a first TTI position is designated for the initial transmission of the at least one data TB, a second TTI position is for a first re-transmission, a third TTI position is for a second re-transmission, and a last TTI position is for a last re-transmission.
  • channelization of sidelink resource units is by grouping X number of sidelink resource units with one sidelink resource unit from each frequency zone and each TTI position.
  • each transmit channel includes X number of the sidelink resource units with one from a first frequency zone and a first TTI position and another one from a second frequency zone and a second TTI position.
  • a current sidelink resource unit is located in a last frequency zone, and a next sidelink resource unit is located in a first frequency zone.
  • a number of the frequency zones is the same as a number of the sidelink resource units in one transmit channel.
  • each of the frequency zones includes at least one sidelink resource unit.
  • all of the frequency zones have an equal size.
  • all of the sidelink resource units have an equal size.
  • the user equipment and the method of wireless communication of same solve the described problems in existing technologies for sidelink communications by channelization of resources in a sidelink resource pool, provide fast and robust data transmission for new radio (NR) sidelink communication through fixed transmission pattern and frequency hopping, and provide high utilization of sidelink radio resources.
  • NR new radio
  • FIG. 1 is a block diagram of a user equipment for wireless communication according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram of a structure of a sidelink resource according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram of a structure of a sidelink resource pool according to an embodiment of the present disclosure.
  • FIG. 4 is a scenario of vehicle-to-everything (V2X) communication according to an embodiment of the present disclosure.
  • V2X vehicle-to-everything
  • FIG. 5 is a flowchart illustrating a method of wireless communication according to the present disclosure, from an aspect of operation of a user equipment for transmitting signals.
  • FIG. 1 and FIG. 2 illustrate that, in some embodiments, a user equipment 100 for wireless communication includes a memory 102 and a processor 104 coupled to the memory 102.
  • the processor 104 is configured to perform a wireless communication directly over a sidelink interface such as PC5 interface to at least one second user equipment 200.
  • the processor 104 is configured to map and transmit at least one data transport block (TB) using at least one sidelink resource unit 301 of a sidelink resource pool 300 to the at least one second user equipment 200.
  • the sidelink resource pool 300 includes a plurality of sidelink resource units 301 and a plurality of frequency zones 302 in a frequency domain.
  • Channelization of the sidelink resource units 301 is by grouping the sidelink resource units 301 into a plurality of transmit channels such as CH_1 309, 310, and 311, CH_2 312’s , and CH_z 313’s illustrated in FIG. 2.
  • Each of the transmit channels such as CH_1 309, 310, and 311, CH_2 312’s , and CH_z 313’s includes at least two consecutive sidelink resource units 301 in a time domain.
  • Each of the sidelink resource units 301 in one transmit channel such as CH_1 309, 310, and 311, CH_2 312’s , and CH_z 313’s is located in a different frequency zone 302.
  • the user equipment solves the described problems in existing technologies for sidelink communications by channelization of the sidelink resource units 301 in the sidelink resource pool 300, provides fast and robust data transmission for new radio (NR) sidelink communication through fixed transmission pattern and frequency hopping, and provides high utilization of sidelink radio resources.
  • NR new radio
  • the user equipment 100 may be a user equipment for transmitting signals and the user equipment 200 may be a user equipment for receiving signals.
  • the communication between the user equipment 100 and the user equipment 200 over the sidelink interface such as the PC5 interface could be based on long term evolution (LTE) sidelink technology developed under 3rd generation partnership project (3GPP) and/or 5th generation new radio (5G-NR) radio access technology.
  • LTE long term evolution
  • 3GPP 3rd generation partnership project
  • 5G-NR 5th generation new radio access technology
  • the memories 102 and 202 each may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device.
  • the processors 104 and 204 each may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device.
  • the processors 104 and 204 each may also include baseband circuitry to process radio frequency signals.
  • the techniques described herein can be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein.
  • the modules can be stored in memories 102 and 202 and executed by processors 104 and 204.
  • the memories 102 and 202 can be implemented within the processors 104 and 204 or external to the processors 104 and 204 in which case those can be communicatively coupled to the processors 104 and 204 via various means as is known in the art.
  • FIG. 2 illustrates that, in some embodiments, the sidelink (SL) resource pool 300 of a size of N physical resource blocks (PRBs) based on a network configuration or a pre-configuration is divided into multiple equal sized SL resource units 301, each SL resource unit 301 with m PRBs in the frequency domain and a length of one transmission time interval (TTI) in the time domain.
  • the TTI length may have a duration of one slot of 14 symbols for normal TTI transmission or less than one slot of at least three symbols long for short TTI (sTTI) transmission.
  • the SL resource pool 300 in the frequency domain is further based on network configuration or pre-configuration divided into X number of equal sized frequency zones 302’s .
  • Each frequency zone 302 includes at least one consecutive SL resource unit.
  • the SL resource units are consecutively arranged into sets 303, 304, and 305 in the time domain and each set 303, 304, and 305 has a length of X TTIs that are required for sending an initial transmission 306 and all re-transmissions 307 and 308 of a data transport block (TB) .
  • the X number of TTIs is also a length of a transmit (Tx) channel and a X value is the same as X value in number of frequency zones 302’s .
  • a first TTI position is designated for an initial transmission of a data message TB 306
  • a second TTI position is for a first re-transmission 307
  • a third TTI position is for a second re-transmission 308, and so on.
  • channelization of SL resource units is performed by grouping X number of SL resource units 301 with one SL resource unit 301 from each frequency zone 302 and TTI position.
  • Tx-channel such as CH_1 309, 310, and 311 as an example
  • the Tx-channel CH_1 includes X number of SL resource units with one resource unit 301 from a first frequency zone 302 and a first TTI position 309, one resource unit 301 from a second frequency zone 302 and a second TTI position 310, and so on until one resource unit 301 from a last frequency zone 302 and a last TTI position 311.
  • the SL resource units of CH_1 309, 310, and 311 are frequency hopped within the Tx-channel and a frequency hopping rule is defined such that a next SL resource unit 301 is located in a next adjacent frequency zone 302. If a current SL resource unit 301 is located in the last frequency zone 302, then the next SL resource unit 301 may located in the first frequency zone 302. Similarly, the same channelization process is also performed for other Tx-channels such as CH_2 112 and CH_z 113.
  • a frequency hopping pattern of the sidelink resource units 301 in a transmit channel z according to
  • X is a number of the sidelink resource units 301 within the transmit channel z for an initial transmission 306 and all re-transmissions 307 and 308 of the at least one data TB
  • X is also a number of the frequency zones 302
  • K is a number of the sidelink resource units 301 in the frequency domain
  • K is equal to N/m
  • l is a lth sidelink resource unit 301 within the transmit channel z
  • z is an index number of the transmit channel.
  • all of the sidelink resource units (RUs) 301 for the transmit channel z in the time domain and in the frequency domain satisfies
  • k is a frequency index of the sidelink resource units 301 in the frequency domain of the sidelink resource pool 300
  • the number of SL resource units 301 in the frequency domain is indexed from 0, ..., k, ..., K
  • the number of SL resource units 301 within one Tx-channel length in the time domain is indexed from 0, ..., l, ..., X-1
  • total number of Tx-channels within N number of PRBs and spanning across X number TTIs is Z and is indexed from 1, ..., z ..., Z.
  • FIG. 3 illustrates that, in some embodiments, an illustration of indexing and time frequency location of SL resource units for all Tx-channels in a sidelink resource pool 400 is provided.
  • the sidelink resource pool 400 has 16 resource units and one Tx-channel length of 4 nTTI or sTTIs 402.16 resource units is also a number of Tx-channels 401.
  • One Tx-channel length of 4 nTTI or sTTIs 402 is also a number of frequency zones 403’s .
  • time frequency resource units for Tx-channel 1 can be found in symbols 404, 405, 406, and 407.
  • Tx-channel 1 (l, k) RU (0, 0) , RU (1, 4) , RU (2, 8) , RU (3, 12) .
  • time frequency resource units for Tx-channel 6 can be found in symbols 408, 409, 410, and 411.
  • Tx-channel 6 (l, k) RU (0, 5) , RU (1, 9) , RU (2, 13) , RU (3, 1) .
  • time frequency resource units for Tx-channel 11 can be found in symbols 412, 413, 414, and 415.
  • Tx-channel 11 (l, k) RU (0, 10) , RU (1, 14) , RU (2, 2) , RU (3, 6) .
  • time frequency resource units for Tx-channel 16 can be found in symbols 416, 417, 418, and 419.
  • Tx-channel 16 (l, k) RU (0, 15) , RU (1, 3) , RU (2, 7) , RU (3, 11) .
  • FIG. 4 illustrates that, in some embodiments, the communication between the user equipment 100 and the user equipment 200 relates to vehicle-to-everything (V2X) communication including vehicle-to-vehicle (V2V) , vehicle-to-pedestrian (V2P) , and vehicle-to-infrastructure/network (V2I/N) according to LTE sidelink technology developed under 3rd generation partnership project (3GPP) and/or 5G-NR radio access technology.
  • 3GPP 3rd generation partnership project
  • 5G-NR radio access technology 3rd generation partnership project
  • FIG. 5 illustrate a method 500 of wireless communication according to the present disclosure, from an aspect of operation of the user equipment 100 for transmitting signals.
  • the method 500 includes: at block 502, performing a wireless communication directly over a sidelink interface to at least one second user equipment 200, and at block 504, mapping and transmitting at least one data transport block (TB) using at least one sidelink resource unit of a sidelink resource pool to the at least one second user equipment 200.
  • the sidelink resource pool includes a plurality of sidelink resource units and a plurality of frequency zones in a frequency domain.
  • Channelization of the sidelink resource units is by grouping the sidelink resource units into a plurality of transmit channels.
  • Each of the transmit channels includes at least two consecutive sidelink resource units in a time domain.
  • Each of the sidelink resource units in one transmit channel is located in a different frequency zone.
  • the user equipment and the method of wireless communication of same solve the described problems in existing technologies for sidelink communications in 5G-NR system by channelization of resources in a sidelink resource pool, provide fast and robust data transmission for new radio (NR) sidelink communication through fixed transmission pattern and frequency hopping, and provide high utilization of sidelink radio resources.
  • NR new radio
  • the embodiment of the present disclosure has at least one of following advantages by channelization of resources in a sidelink resource pool.
  • the units as separating components for explanation are or are not physically separated.
  • the units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments.
  • each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
  • the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer.
  • the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product.
  • one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product.
  • the software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure.
  • the storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A user equipment includes a memory and a processor coupled to the memory. The processor is configured to perform a communication over a sidelink interface to at least one second user equipment and map and transmit at least one data transport block (TB) using at least one sidelink resource unit of a sidelink resource pool to the at least one second user equipment. The sidelink resource pool includes a plurality of sidelink resource units and a plurality of frequency zones in a frequency domain. Channelization of the sidelink resource units is by grouping the sidelink resource units into a plurality of transmit channels. Each of the transmit channels includes at least two consecutive sidelink resource units in a time domain. Each of the sidelink resource units in one transmit channel is located in a different frequency zone.

Description

USER EQUIPMENT AND METHOD OF WIRELESS COMMUNICATION OF SAME
BACKGROUND OF DISCLOSURE
1. Field of the Disclosure
The present disclosure relates to the field of communication systems, and more particularly, to a user equipment and a method of wireless communication of same.
2. Description of the Related Art
In long term evolution (LTE) radio access technology, current sidelink mode 4 operation requires a transmitting user equipment (Tx UE) randomly selects radio resources among available resources autonomously on its own within a sidelink resource pool for packet data transmissions. In such operation, all required resources for sidelink transmissions need to be detected and selected separately for an initial transmission and all of re-transmissions of a data transport block (TB) . The resources could be all scattered around in a sidelink resource pool with no guarantee that the resources may fulfil a latency requirement associated to data message. Furthermore, if a receiver UE misses an initial or one of re-transmissions of the data TB, which may be due to half-duplex limitation and cellular uplink (UL) transmission, the receiver UE has no knowledge of time and frequency locations of next re-transmissions to perform receiver combining to improve decoding performance or even receive such data TB.
In future 5th generation new radio (5G-NR) system, there are even more increasing needs for urgent transmission of data over sidelink/PC5 interface to support public safety, road safety and mission critical communications. Data latency requirement for end-to-end communication becomes extremely short and at the same time these applications and use cases demands for even higher reliability of message being delivered without error. As an example of fully driverless operation such as autonomous driving, fast and reliable communication between closed-by vehicles is crucial for safe driving and maneuver on the road. For the existing LTE-sidelink technology, it is very difficult to satisfy these requirements and there is no guarantee that it may meet these requirements due to the resource selection mechanism as described earlier. As the result, this has given the rise to the need to support ultra reliable and low latency communication (URLLC) in a next generation of wireless communication system.
SUMMARY
An object of the present disclosure is to propose a user equipment (UE) and a method of wireless communication of same for solving the described problems in existing technologies for sidelink communications by channelization of resources in a sidelink resource pool.
In a first aspect of the present disclosure, a user equipment for wireless communication includes a memory and a processor coupled to the memory. The processor is configured to  perform a communication over a sidelink interface to at least one second user equipment and map and transmit at least one data transport block (TB) using at least one sidelink resource unit of a sidelink resource pool to the at least one second user equipment. The sidelink resource pool includes a plurality of sidelink resource units and a plurality of frequency zones in a frequency domain. Channelization of the sidelink resource units is by grouping the sidelink resource units into a plurality of transmit channels. Each of the transmit channels includes at least two consecutive sidelink resource units in a time domain. Each of the sidelink resource units in one transmit channel is located in a different frequency zone.
According to an embodiment in conjunction to the first aspect of the present disclosure, the sidelink resource pool of a size of N physical resource blocks (PRBs) based on a network configuration or a pre-configuration is divided into a plurality of equal sized sidelink resource units, each of the equal sized sidelink resource units has m PRBs in the frequency domain and one transmission time interval (TTI) length in the time domain.
According to an embodiment in conjunction to the first aspect of the present disclosure, one TTI length has a duration of one slot of 14 symbols for a normal TTI transmission.
According to an embodiment in conjunction to the first aspect of the present disclosure, one TTI length has a duration shorter than one slot of at least three symbols for a short TTI transmission.
According to an embodiment in conjunction to the first aspect of the present disclosure, a frequency hopping pattern of the sidelink resource units in a transmit channel z according to
Figure PCTCN2018076871-appb-000001
where X is a number of the sidelink resource units within the transmit channel z for an initial transmission and all re-transmissions of the at least one data TB, X is also a number of the frequency zones, K is a number of the sidelink resource units in the frequency domain, K is equal to N/m, l is a lth sidelink resource unit within the transmit channel z, and z is an index number of the transmit channel.
According to an embodiment in conjunction to the first aspect of the present disclosure, all of the sidelink resource units (RUs) for the transmit channel z in the time domain and in the frequency domain satisfies
Figure PCTCN2018076871-appb-000002
for l=0, …, X-1
where k is a frequency index of the sidelink resource units in the frequency domain.
According to an embodiment in conjunction to the first aspect of the present disclosure, the sidelink resource pool in the frequency domain is further based on a network configuration or a pre-configuration divided into X number of equal sized frequency zones, and each of the equal sized frequency zones includes at least one consecutive sidelink resource unit.
According to an embodiment in conjunction to the first aspect of the present disclosure, the sidelink resource units are consecutively arranged into a plurality of sets in the time domain, and each set of the sidelink resource units has a length of the X number of TTIs for transmitting an initial transmission and all re-transmissions of the at least one data TB.
According to an embodiment in conjunction to the first aspect of the present disclosure, the X number of TTIs is also a length of one transmit channel and X value in the number of the TTIs is the same as X value in a number of the frequency zones.
According to an embodiment in conjunction to the first aspect of the present disclosure, each set of the sidelink resource units in the time domain, a first TTI position is designated for the initial transmission of the at least one data TB, a second TTI position is for a first re-transmission, a third TTI position is for a second re-transmission, and a last TTI position is for a last re-transmission.
According to an embodiment in conjunction to the first aspect of the present disclosure, within a period of one transmit channel length of X TTIs, channelization of sidelink resource units is by grouping X number of sidelink resource units with one sidelink resource unit from each frequency zone and each TTI position.
According to an embodiment in conjunction to the first aspect of the present disclosure, each transmit channel includes X number of the sidelink resource units with one from a first frequency zone and a first TTI position and another one from a second frequency zone and a second TTI position.
According to an embodiment in conjunction to the first aspect of the present disclosure, a current sidelink resource unit is located in a last frequency zone, and a next sidelink resource unit is located in a first frequency zone.
According to an embodiment in conjunction to the first aspect of the present disclosure, a number of the frequency zones is the same as a number of the sidelink resource units in one transmit channel.
According to an embodiment in conjunction to the first aspect of the present disclosure, each of the frequency zones includes at least one sidelink resource unit.
According to an embodiment in conjunction to the first aspect of the present disclosure, all of the frequency zones have an equal size.
According to an embodiment in conjunction to the first aspect of the present disclosure, all of the sidelink resource units have an equal size.
In a second aspect of the present disclosure, a method of wireless communication of a user equipment includes performing a communication over a sidelink interface to at least one second user equipment and mapping and transmitting at least one data transport block (TB) using at least one sidelink resource unit of a sidelink resource pool to the at least one second user equipment. The sidelink resource pool includes a plurality of sidelink resource units and a plurality of frequency zones in a frequency domain. Channelization of the sidelink resource units is by grouping the sidelink resource units into a plurality of transmit channels. Each of the transmit channels includes at least two consecutive sidelink resource units in a time domain. Each of the sidelink resource units in one transmit channel is located in a different frequency zone.
According to an embodiment in conjunction to the second aspect of the present disclosure, the sidelink resource pool of a size of N physical resource blocks (PRBs) based on a network configuration or a pre-configuration is divided into a plurality of equal sized sidelink resource units, each of the equal sized sidelink resource units has m PRBs in the frequency domain and one transmission time interval (TTI) length in the time domain.
According to an embodiment in conjunction to the second aspect of the present disclosure, one TTI length has a duration of one slot of 14 symbols for a normal TTI transmission.
According to an embodiment in conjunction to the second aspect of the present disclosure, one TTI length has a duration shorter than one slot of at least three symbols for a short TTI transmission.
According to an embodiment in conjunction to the second aspect of the present disclosure, a frequency hopping pattern of the sidelink resource units in a transmit channel z according to
Figure PCTCN2018076871-appb-000003
where X is a number of the sidelink resource units within the transmit channel z for an initial transmission and all re-transmissions of the at least one data TB, X is also a number of the  frequency zones, K is a number of the sidelink resource units in the frequency domain, K is equal to N/m, l is a lth sidelink resource unit within the transmit channel z, and z is an index number of the transmit channel.
According to an embodiment in conjunction to the second aspect of the present disclosure, all of the sidelink resource units (RUs) for the transmit channel z in the time domain and in the frequency domain satisfies
Figure PCTCN2018076871-appb-000004
for l=0, ..., X-1
where k is a frequency index of the sidelink resource units in the frequency domain.
According to an embodiment in conjunction to the second aspect of the present disclosure, the sidelink resource pool in the frequency domain is further based on a network configuration or a pre-configuration divided into X number of equal sized frequency zones, and each of the equal sized frequency zones includes at least one consecutive sidelink resource unit.
According to an embodiment in conjunction to the second aspect of the present disclosure, the sidelink resource units are consecutively arranged into a plurality of sets in the time domain, and each set of the sidelink resource units has a length of the X number of TTIs for transmitting an initial transmission and all re-transmissions of the at least one data TB.
According to an embodiment in conjunction to the second aspect of the present disclosure, the X number of TTIs is also a length of one transmit channel and X value in the number of the TTIs is the same as X value in a number of the frequency zones.
According to an embodiment in conjunction to the second aspect of the present disclosure, each set of the sidelink resource units in the time domain, a first TTI position is designated for the initial transmission of the at least one data TB, a second TTI position is for a first re-transmission, a third TTI position is for a second re-transmission, and a last TTI position is for a last re-transmission.
According to an embodiment in conjunction to the second aspect of the present disclosure, within a period of one transmit channel length of X TTIs, channelization of sidelink resource units is by grouping X number of sidelink resource units with one sidelink resource unit from each frequency zone and each TTI position.
According to an embodiment in conjunction to the second aspect of the present disclosure, each transmit channel includes X number of the sidelink resource units with one from a first frequency zone and a first TTI position and another one from a second frequency zone and a second TTI position.
According to an embodiment in conjunction to the second aspect of the present disclosure, a current sidelink resource unit is located in a last frequency zone, and a next sidelink resource unit is located in a first frequency zone.
According to an embodiment in conjunction to the second aspect of the present disclosure, a number of the frequency zones is the same as a number of the sidelink resource units in one transmit channel.
According to an embodiment in conjunction to the second aspect of the present disclosure, each of the frequency zones includes at least one sidelink resource unit.
According to an embodiment in conjunction to the second aspect of the present disclosure, all of the frequency zones have an equal size.
According to an embodiment in conjunction to the second aspect of the present disclosure, all of the sidelink resource units have an equal size.
In the embodiment of the present disclosure, the user equipment and the method of wireless communication of same solve the described problems in existing technologies for sidelink communications by channelization of resources in a sidelink resource pool, provide fast and robust data transmission for new radio (NR) sidelink communication through fixed transmission pattern and frequency hopping, and provide high utilization of sidelink radio resources.
BRIEF DESCRIPTION OF DRAWINGS
In order to more clearly illustrate the embodiments of the present disclosure or related art, the following figures will be described in the embodiments are briefly introduced. It is obvious that the drawings are merely some embodiments of the present disclosure, a person having ordinary skill in this field can obtain other figures according to these figures without paying the premise.
FIG. 1 is a block diagram of a user equipment for wireless communication according to an embodiment of the present disclosure.
FIG. 2 is a diagram of a structure of a sidelink resource according to an embodiment of the present disclosure.
FIG. 3 is a diagram of a structure of a sidelink resource pool according to an embodiment of the present disclosure.
FIG. 4 is a scenario of vehicle-to-everything (V2X) communication according to an embodiment of the present disclosure.
FIG. 5 is a flowchart illustrating a method of wireless communication according to the present disclosure, from an aspect of operation of a user equipment for transmitting signals.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the present disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as follows. Specifically, the terminologies in the embodiments of the present disclosure are merely for describing the purpose of the certain embodiment, but not to limit the disclosure.
FIG. 1 and FIG. 2 illustrate that, in some embodiments, a user equipment 100 for wireless communication includes a memory 102 and a processor 104 coupled to the memory 102. The processor 104 is configured to perform a wireless communication directly over a sidelink interface such as PC5 interface to at least one second user equipment 200. The processor 104 is configured to map and transmit at least one data transport block (TB) using at least one sidelink resource unit 301 of a sidelink resource pool 300 to the at least one second user equipment 200. The sidelink resource pool 300 includes a plurality of sidelink resource units 301 and a plurality of frequency zones 302 in a frequency domain. Channelization of the sidelink resource units 301 is by grouping the sidelink resource units 301 into a plurality of transmit channels such as  CH_1  309, 310, and 311, CH_2 312’s , and CH_z 313’s illustrated in FIG. 2. Each of the transmit channels such as  CH_1  309, 310, and 311, CH_2 312’s , and CH_z 313’s includes at least two consecutive sidelink resource units 301 in a time domain. Each of the sidelink resource units 301 in one transmit channel such as  CH_1  309, 310, and 311, CH_2 312’s , and CH_z 313’s is located in a different frequency zone 302.
In the embodiment of the present disclosure, the user equipment solves the described problems in existing technologies for sidelink communications by channelization of the sidelink resource units 301 in the sidelink resource pool 300, provides fast and robust data transmission for new radio (NR) sidelink communication through fixed transmission pattern and frequency hopping, and provides high utilization of sidelink radio resources.
The user equipment 100 may be a user equipment for transmitting signals and the user equipment 200 may be a user equipment for receiving signals. In some embodiments, the communication between the user equipment 100 and the user equipment 200 over the sidelink interface such as the PC5 interface could be based on long term evolution (LTE) sidelink technology developed under 3rd generation partnership project (3GPP) and/or 5th generation new radio (5G-NR) radio access technology.
In some embodiments, the  memories  102 and 202 each may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device. The  processors  104 and 204 each may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device. The  processors  104 and 204 each may also include baseband circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The modules can be stored in  memories  102 and 202 and executed by  processors  104 and 204. The  memories  102 and 202 can be implemented within the  processors  104 and 204 or external to the  processors  104 and 204 in which case those can be communicatively coupled to the  processors  104 and 204 via various means as is known in the art.
In details, FIG. 2 illustrates that, in some embodiments, the sidelink (SL) resource pool 300 of a size of N physical resource blocks (PRBs) based on a network configuration or a pre-configuration is divided into multiple equal sized SL resource units 301, each SL resource unit 301 with m PRBs in the frequency domain and a length of one transmission time interval (TTI) in the time domain. The TTI length may have a duration of one slot of 14 symbols for normal TTI transmission or less than one slot of at least three symbols long for short TTI (sTTI) transmission.
The SL resource pool 300 in the frequency domain is further based on network configuration or pre-configuration divided into X number of equal sized frequency zones 302’s . Each frequency zone 302 includes at least one consecutive SL resource unit. The SL resource units are consecutively arranged into  sets  303, 304, and 305 in the time domain and each set 303, 304, and 305 has a length of X TTIs that are required for sending an initial transmission 306 and all  re-transmissions  307 and 308 of a data transport block (TB) . The X number of TTIs is also a length of a transmit (Tx) channel and a X value is the same as X value in number of frequency zones 302’s .
Furthermore, within each  set  303, 304, and 305 of SL resource units in the time domain, a first TTI position is designated for an initial transmission of a data message TB 306, a second TTI position is for a first re-transmission 307, a third TTI position is for a second re-transmission 308, and so on.
Within a period of one Tx-channel length of X TTIs 303, channelization of SL resource units is performed by grouping X number of SL resource units 301 with one SL resource unit 301 from each frequency zone 302 and TTI position. As illustrated by Tx-channel such as  CH_1  309, 310, and 311 as an example, the Tx-channel CH_1 includes X number of SL resource units with one resource unit 301 from a first frequency zone 302 and a first TTI position 309, one resource unit 301 from a second frequency zone 302 and a second TTI position 310, and so on until one resource unit 301 from a last frequency zone 302 and a last TTI position 311. Therefore,  the SL resource units of  CH_1  309, 310, and 311 are frequency hopped within the Tx-channel and a frequency hopping rule is defined such that a next SL resource unit 301 is located in a next adjacent frequency zone 302. If a current SL resource unit 301 is located in the last frequency zone 302, then the next SL resource unit 301 may located in the first frequency zone 302. Similarly, the same channelization process is also performed for other Tx-channels such as CH_2 112 and CH_z 113.
It is understood that, in some embodiments, a frequency hopping pattern of the sidelink resource units 301 in a transmit channel z according to
Figure PCTCN2018076871-appb-000005
where X is a number of the sidelink resource units 301 within the transmit channel z for an initial transmission 306 and all  re-transmissions  307 and 308 of the at least one data TB, X is also a number of the frequency zones 302, K is a number of the sidelink resource units 301 in the frequency domain, K is equal to N/m, l is a lth sidelink resource unit 301 within the transmit channel z, and z is an index number of the transmit channel.
In some embodiments, all of the sidelink resource units (RUs) 301 for the transmit channel z in the time domain and in the frequency domain satisfies
Figure PCTCN2018076871-appb-000006
for l=0, ..., X-1
where k is a frequency index of the sidelink resource units 301 in the frequency domain of the sidelink resource pool 300, the number of SL resource units 301 in the frequency domain is indexed from 0, …, k, …, K, the number of SL resource units 301 within one Tx-channel length in the time domain is indexed from 0, …, l, …, X-1, and total number of Tx-channels within N number of PRBs and spanning across X number TTIs is Z and is indexed from 1, …, z …, Z.
Same channelization process is also applied in all other sets of  SL resource units  304 and 305. FIG. 3 illustrates that, in some embodiments, an illustration of indexing and time frequency location of SL resource units for all Tx-channels in a sidelink resource pool 400 is provided. The sidelink resource pool 400 has 16 resource units and one Tx-channel length of 4 nTTI or sTTIs 402.16 resource units is also a number of Tx-channels 401. One Tx-channel length of 4 nTTI or sTTIs 402 is also a number of frequency zones 403’s .
Following equation, time frequency resource units for Tx-channel 1 can be found in  symbols  404, 405, 406, and 407. Tx-channel 1 (l, k) = RU (0, 0) , RU (1, 4) , RU (2, 8) , RU (3, 12) .
Following equation, time frequency resource units for Tx-channel 6 can be found in  symbols  408, 409, 410, and 411. Tx-channel 6 (l, k) = RU (0, 5) , RU (1, 9) , RU (2, 13) , RU (3, 1) .
Following equation, time frequency resource units for Tx-channel 11 can be found in  symbols  412, 413, 414, and 415. Tx-channel 11 (l, k) = RU (0, 10) , RU (1, 14) , RU (2, 2) , RU (3, 6) .
Following equation, time frequency resource units for Tx-channel 16 can be found in  symbols  416, 417, 418, and 419. Tx-channel 16 (l, k) = RU (0, 15) , RU (1, 3) , RU (2, 7) , RU (3, 11) .
FIG. 4 illustrates that, in some embodiments, the communication between the user equipment 100 and the user equipment 200 relates to vehicle-to-everything (V2X) communication including vehicle-to-vehicle (V2V) , vehicle-to-pedestrian (V2P) , and vehicle-to-infrastructure/network (V2I/N) according to LTE sidelink technology developed under 3rd generation partnership project (3GPP) and/or 5G-NR radio access technology. The  user equipments  100 and 200 are communicated with each other directly via a sidelink interface such as a PC5 interface.
FIG. 5 illustrate a method 500 of wireless communication according to the present disclosure, from an aspect of operation of the user equipment 100 for transmitting signals. The method 500 includes: at block 502, performing a wireless communication directly over a sidelink interface to at least one second user equipment 200, and at block 504, mapping and transmitting at least one data transport block (TB) using at least one sidelink resource unit of a sidelink resource pool to the at least one second user equipment 200. The sidelink resource pool includes a plurality of sidelink resource units and a plurality of frequency zones in a frequency domain. Channelization of the sidelink resource units is by grouping the sidelink resource units into a plurality of transmit channels. Each of the transmit channels includes at least two consecutive sidelink resource units in a time domain. Each of the sidelink resource units in one transmit channel is located in a different frequency zone.
In the embodiment of the present disclosure, the user equipment and the method of wireless communication of same solve the described problems in existing technologies for sidelink communications in 5G-NR system by channelization of resources in a sidelink resource pool, provide fast and robust data transmission for new radio (NR) sidelink communication through fixed transmission pattern and frequency hopping, and provide high utilization of sidelink radio resources.
In summary, the embodiment of the present disclosure has at least one of following advantages by channelization of resources in a sidelink resource pool.
1. Ensure initial transmission and all re-transmissions/repetitions of a sidelink data TB is delivered within latency requirement.
2. Frequency diversity gain is fully exploited.
3. Fast receiver combining from fixed resource locations within transmission (Tx) -channels.
4. If one sidelink resource is missed by a receiver UE due to UL operation, UE still be able to listen and combine subsequent re-transmissions of the same data TB.
5. Reduced sidelink control information without having to indicate time and frequency location of the next sidelink resource for re-transmission. Higher reliability and faster decoding of PSCCH are provided. Less sidelink resources (symbols) needed for PSCCH transmission and faster decoding are provided.
6. Potentially lead to higher utilization of sidelink resources due to structured approach.
7. No separate resource contention for initial Tx and Re-Tx’s of same data TB. Overall less resource contention, only need to reserve once for the initial and all of the re-transmissions of a data TB.
A person having ordinary skill in the art understands that each of the units, algorithm, and steps described and disclosed in the embodiments of the present disclosure are realized using electronic hardware or combinations of software for computers and electronic hardware. Whether the functions run in hardware or software depends on the condition of application and design requirement for a technical plan. A person having ordinary skill in the art can use different ways to realize the function for each specific application while such realizations should not go beyond the scope of the present disclosure.
It is understood by a person having ordinary skill in the art that he/she can refer to the working processes of the system, device, and unit in the above-mentioned embodiment since the working processes of the above-mentioned system, device, and unit are basically the same. For easy description and simplicity, these working processes will not be detailed.
It is understood that the disclosed system, device, and method in the embodiments of the present disclosure can be realized with other ways. The above-mentioned embodiments are exemplary only. The division of the units is merely based on logical functions while other divisions exist in realization. It is possible that a plurality of units or components are combined or integrated in another system. It is also possible that some characteristics are omitted or skipped. On the other hand, the displayed or discussed mutual coupling, direct coupling, or communicative coupling operate through some ports, devices, or units whether indirectly or communicatively by ways of electrical, mechanical, or other kinds of forms.
The units as separating components for explanation are or are not physically separated. The units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments.
Moreover, each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
If the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer. Based on this understanding, the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product. Or, one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product. The software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure. The storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.
While the present disclosure has been described in connection with what is considered the most practical and preferred embodiments, it is understood that the present disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements made without departing from the scope of the broadest interpretation of the appended claims.

Claims (34)

  1. A user equipment for wireless communication, comprising:
    a memory; and
    a processor coupled to the memory and configured to:
    perform a communication over a sidelink interface to at least one second user equipment; and
    map and transmit at least one data transport block (TB) using at least one sidelink resource unit of a sidelink resource pool to the at least one second user equipment, wherein the sidelink resource pool comprises a plurality of sidelink resource units and a plurality of frequency zones in a frequency domain, channelization of the sidelink resource units is by grouping the sidelink resource units into a plurality of transmit channels, each of the transmit channels comprises at least two consecutive sidelink resource units in a time domain, and each of the sidelink resource units in one transmit channel is located in a different frequency zone.
  2. The user equipment of claim 1, wherein the sidelink resource pool of a size of N physical resource blocks (PRBs) based on a network configuration or a pre-configuration is divided into a plurality of equal sized sidelink resource units, each of the equal sized sidelink resource units has m PRBs in the frequency domain and one transmission time interval (TTI) length in the time domain.
  3. The user equipment of claim 2, wherein one TTI length has a duration of one slot of 14 symbols for a normal TTI transmission.
  4. The user equipment of claim 2, wherein one TTI length has a duration shorter than one slot of at least three symbols for a short TTI transmission.
  5. The user equipment of claim 2, wherein a frequency hopping pattern of the sidelink resource units in a transmit channel z according to
    Figure PCTCN2018076871-appb-100001
    where X is a number of the sidelink resource units within the transmit channel z for an initial transmission and all re-transmissions of the at least one data TB, X is also a number of the frequency zones, K is a number of the sidelink resource units in the frequency domain, K is equal to N/m, l is a lth sidelink resource unit within the transmit channel z, and z is an index  number of the transmit channel.
  6. The user equipment of claim 5, wherein all of the sidelink resource units (RUs) for the transmit channel z in the time domain and in the frequency domain satisfies
    Figure PCTCN2018076871-appb-100002
    where k is a frequency index of the sidelink resource units in the frequency domain.
  7. The user equipment of claim 1, wherein the sidelink resource pool in the frequency domain is further based on a network configuration or a pre-configuration divided into X number of equal sized frequency zones, and each of the equal sized frequency zones comprises at least one consecutive sidelink resource unit.
  8. The user equipment of claim 7, wherein the sidelink resource units are consecutively arranged into a plurality of sets in the time domain, and each set of the sidelink resource units has a length of the X number of TTIs for transmitting an initial transmission and all re-transmissions of the at least one data TB.
  9. The user equipment of claim 8, wherein the X number of TTIs is also a length of one transmit channel and X value in the number of the TTIs is the same as X value in a number of the frequency zones.
  10. The user equipment of claim 9, wherein within each set of the sidelink resource units in the time domain, a first TTI position is designated for the initial transmission of the at least one data TB, a second TTI position is for a first re-transmission, a third TTI position is for a second re-transmission, and a last TTI position is for a last re-transmission.
  11. The user equipment of claim 8, wherein within a period of one transmit channel length of X TTIs, channelization of sidelink resource units is by grouping X number of sidelink resource units with one sidelink resource unit from each frequency zone and each TTI position.
  12. The user equipment of claim 8, wherein each transmit channel comprises X number of the sidelink resource units with one from a first frequency zone and a first TTI position and another one from a second frequency zone and a second TTI position.
  13. The user equipment of claim 1, wherein a current sidelink resource unit is located in a last frequency zone, and a next sidelink resource unit is located in a first frequency zone.
  14. The user equipment of claim 1, wherein a number of the frequency zones is the same as a number of the sidelink resource units in one transmit channel.
  15. The user equipment of claim 1, wherein each of the frequency zones comprises at least one sidelink resource unit.
  16. The user equipment of claim 1, wherein all of the frequency zones have an equal size.
  17. The user equipment of claim 1, wherein all of the sidelink resource units have an equal size.
  18. A method of wireless communication of a user equipment, comprising:
    performing a communication over a sidelink interface to at least one second user equipment; and
    mapping and transmitting at least one data transport block (TB) using at least one sidelink resource unit of a sidelink resource pool to the at least one second user equipment, wherein the sidelink resource pool comprises a plurality of sidelink resource units and a plurality of frequency zones in a frequency domain, channelization of the sidelink resource units is by grouping the sidelink resource units into a plurality of transmit channels, each of the transmit channels comprises at least two consecutive sidelink resource units in a time domain, and each of the sidelink resource units in one transmit channel is located in a different frequency zone.
  19. The method of claim 18, wherein the sidelink resource pool of a size of N physical resource blocks (PRBs) based on a network configuration or a pre-configuration is divided into a plurality of equal sized sidelink resource units, each of the equal sized sidelink resource units has m PRBs in the frequency domain and one transmission time interval (TTI) length in the time domain.
  20. The method of claim 19, wherein one TTI length has a duration of one slot of 14 symbols for a normal TTI transmission.
  21. The method of claim 19, wherein one TTI length has a duration shorter than one slot of at least three symbols for a short TTI transmission.
  22. The method of claim 19, wherein a frequency hopping pattern of the sidelink resource units in a transmit channel z according to
    Figure PCTCN2018076871-appb-100003
    where X is a number of the sidelink resource units within the transmit channel z for an initial transmission and all re-transmissions of the at least one data TB, X is also a number of the  frequency zones, K is a number of the sidelink resource units in the frequency domain, K is equal to N/m, l is a lth sidelink resource unit within the transmit channel z, and z is an index number of the transmit channel.
  23. The method of claim 22, wherein all of the sidelink resource units (RUs) for the transmit channel z in the time domain and in the frequency domain satisfies
    Figure PCTCN2018076871-appb-100004
    where k is a frequency index of the sidelink resource units in the frequency domain.
  24. The method of claim 18, wherein the sidelink resource pool in the frequency domain is further based on a network configuration or a pre-configuration divided into X number of equal sized frequency zones, and each of the equal sized frequency zones comprises at least one consecutive sidelink resource unit.
  25. The method of claim 24, wherein the sidelink resource units are consecutively arranged into a plurality of sets in the time domain, and each set of the sidelink resource units has a length of the X number of TTIs for transmitting an initial transmission and all re-transmissions of the at least one data TB.
  26. The method of claim 25, wherein the X number of TTIs is also a length of one transmit channel and X value in the number of the TTIs is the same as X value in a number of the frequency zones.
  27. The method of claim 26, wherein within each set of the sidelink resource units in the time domain, a first TTI position is designated for the initial transmission of the at least one data TB, a second TTI position is for a first re-transmission, a third TTI position is for a second re-transmission, and a last TTI position is for a last re-transmission.
  28. The method of claim 25, wherein within a period of one transmit channel length of X TTIs, channelization of sidelink resource units is by grouping X number of sidelink resource units with one sidelink resource unit from each frequency zone and each TTI position.
  29. The method of claim 25, wherein each transmit channel comprises X number of the sidelink resource units with one from a first frequency zone and a first TTI position and another one from a second frequency zone and a second TTI position.
  30. The method of claim 18, wherein a current sidelink resource unit is located in a last frequency zone, and a next sidelink resource unit is located in a first frequency zone.
  31. The method of claim 18, wherein a number of the frequency zones is the same as a number of the sidelink resource units in one transmit channel.
  32. The method of claim 18, wherein each of the frequency zones comprises at least one sidelink resource unit.
  33. The method of claim 18, wherein all of the frequency zones have an equal size.
  34. The method of claim 18, wherein all of the sidelink resource units have an equal size.
PCT/CN2018/076871 2018-02-14 2018-02-14 User equipment and method of wireless communication of same WO2019157730A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/076871 WO2019157730A1 (en) 2018-02-14 2018-02-14 User equipment and method of wireless communication of same
CN201880081044.8A CN111480379B (en) 2018-02-14 2018-02-14 User equipment and wireless communication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/076871 WO2019157730A1 (en) 2018-02-14 2018-02-14 User equipment and method of wireless communication of same

Publications (1)

Publication Number Publication Date
WO2019157730A1 true WO2019157730A1 (en) 2019-08-22

Family

ID=67620189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076871 WO2019157730A1 (en) 2018-02-14 2018-02-14 User equipment and method of wireless communication of same

Country Status (2)

Country Link
CN (1) CN111480379B (en)
WO (1) WO2019157730A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022027372A1 (en) * 2020-08-05 2022-02-10 Apple Inc. Configuring cellular sidelink control channel with frequency hopping and multi-beam diversity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160174179A1 (en) * 2014-12-10 2016-06-16 Lg Electronics Inc. Method of selecting synchronization source in wireless communication system and apparatus therefor
WO2016159715A2 (en) * 2015-04-01 2016-10-06 엘지전자 주식회사 Method and device for transmitting and receiving, by v2x terminal, signal in wireless communication system
WO2016163848A1 (en) * 2015-04-10 2016-10-13 엘지전자 주식회사 Method and device for transmitting/receiving d2d signal considering priority in wireless communication system
WO2016165124A1 (en) * 2015-04-17 2016-10-20 Panasonic Intellectual Property Corporation Of America Multiple prose group communication during a sidelink control period

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3051736B1 (en) * 2015-01-30 2020-04-29 Panasonic Intellectual Property Corporation of America Prioritization in the logical channel prioritization procedure for sidelink logical channels in ProSe direct communications
EP3206452B1 (en) * 2016-02-10 2019-10-16 Panasonic Intellectual Property Corporation of America Priority-optimized sidelink data transfer in the case of autonomous resource allocation in lte prose communication
WO2017171250A2 (en) * 2016-03-29 2017-10-05 엘지전자(주) Method for allocating pc5 resource in wireless communication system and apparatus therefor
CN107347219B (en) * 2016-05-06 2019-11-12 普天信息技术有限公司 To the method and terminal of V2X traffic assignments resource
CN107371260B (en) * 2016-05-13 2020-05-22 中兴通讯股份有限公司 Resource request and resource allocation method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160174179A1 (en) * 2014-12-10 2016-06-16 Lg Electronics Inc. Method of selecting synchronization source in wireless communication system and apparatus therefor
WO2016159715A2 (en) * 2015-04-01 2016-10-06 엘지전자 주식회사 Method and device for transmitting and receiving, by v2x terminal, signal in wireless communication system
WO2016163848A1 (en) * 2015-04-10 2016-10-13 엘지전자 주식회사 Method and device for transmitting/receiving d2d signal considering priority in wireless communication system
WO2016165124A1 (en) * 2015-04-17 2016-10-20 Panasonic Intellectual Property Corporation Of America Multiple prose group communication during a sidelink control period

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022027372A1 (en) * 2020-08-05 2022-02-10 Apple Inc. Configuring cellular sidelink control channel with frequency hopping and multi-beam diversity

Also Published As

Publication number Publication date
CN111480379B (en) 2021-11-09
CN111480379A (en) 2020-07-31

Similar Documents

Publication Publication Date Title
EP3881483B1 (en) Apparatus and method of processing collision between ssb transmission and periodic transmission
US11251925B2 (en) Apparatus and method of wireless communication of same
EP3970296B1 (en) User equipment and method of resource transmission
WO2019157739A1 (en) User equipment and method of wireless communication of same
US11121795B2 (en) User equipment and method for transmitting synchronization signal block of same
CN109495966B (en) Method for determining and configuring resources for transmitting downlink data, terminal and base station
US20230107364A1 (en) Communication device and method of transmission of same
US20220124677A1 (en) Apparatus and method for transmitting or receiving physical sidelink broadcast channel
WO2019153147A1 (en) User equipment and method of wireless communication of same
CN111512684B (en) User equipment and wireless communication method thereof
WO2019157730A1 (en) User equipment and method of wireless communication of same
CN103312435B (en) A kind of modulation of control channel or the determination method and apparatus of the transmission number of plies
CN112399621B (en) Uplink control information transmission method and communication device
US20230023518A1 (en) Apparatus and method of communication of same
CN106686730B (en) PUCCH resource allocation, indication method, PUCCH feedback information, base station and terminal
CN111262647B (en) Data transmission method and device
EP3664315B1 (en) Method and apparatus for determining frequency hopping of channel, and computer storage medium
CN102348253B (en) Method for sending information, apparatus and system thereof
CN111770571B (en) Communication method and terminal device
WO2023078296A1 (en) Available time slot determination method and apparatus, and terminal
WO2024108927A1 (en) Configuration indication and processing for data channels in wireless communications
US20230337285A1 (en) Apparatus and method of wireless communication
WO2023130993A1 (en) Communication method and terminal device
JPWO2021098305A5 (en)
CN116455541A (en) Communication method and terminal equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905988

Country of ref document: EP

Kind code of ref document: A1