WO2019156497A1 - 광대역 여기광에 의한 라만 분광법 및 장치 - Google Patents

광대역 여기광에 의한 라만 분광법 및 장치 Download PDF

Info

Publication number
WO2019156497A1
WO2019156497A1 PCT/KR2019/001562 KR2019001562W WO2019156497A1 WO 2019156497 A1 WO2019156497 A1 WO 2019156497A1 KR 2019001562 W KR2019001562 W KR 2019001562W WO 2019156497 A1 WO2019156497 A1 WO 2019156497A1
Authority
WO
WIPO (PCT)
Prior art keywords
raman
light
resolution
excitation light
spectroscopy
Prior art date
Application number
PCT/KR2019/001562
Other languages
English (en)
French (fr)
Inventor
조성호
Original Assignee
주식회사 스킨어세이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 스킨어세이 filed Critical 주식회사 스킨어세이
Priority to SG11202008702RA priority Critical patent/SG11202008702RA/en
Priority to US16/968,754 priority patent/US11879846B2/en
Publication of WO2019156497A1 publication Critical patent/WO2019156497A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/027Control of working procedures of a spectrometer; Failure detection; Bandwidth calculation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0294Multi-channel spectroscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • G01J3/1804Plane gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0631Homogeneising elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0633Directed, collimated illumination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0636Reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0638Refractive parts

Definitions

  • the present technology relates to Raman spectroscopy and apparatus by broadband excitation light.
  • Raman scattering is a phenomenon in which scattered light of a wavelength, that is, frequency is changed by interaction with a medium when irradiated with excitation light of a constant frequency to a material.
  • Raman spectroscopy is a method of qualitatively and quantitatively analyzing a substance's vibration structure by measuring vibration spectra of molecules generated in Raman scattering.
  • Raman spectroscopy has spectrum peaks that contain inherent information related to the vibrations of molecules, enabling the analysis of molecules that contain substances as if it were a fingerprint print, allowing for general absorption or Rayleigh scattering It is relatively accurate compared to the spectroscopy based technology.
  • Spectral peaks occur when light incident on a material scatters as it absorbs or emits light energy as much as the intrinsic vibrational energy of the molecule, due to the Raman shift, which is the difference between these incident and scattering energies.
  • Raman spectral peaks measured in the wavelength domain have a smaller width in the wavelength domain, and the higher the resolution and the higher the signal-to-noise ratio, the greater the discrimination of molecules.
  • a laser is generally used because narrow band light and high power light having a small band width of the excitation light are required.
  • Narrow band laser or single frequency laser is generally used to obtain stable narrow band, which is complicated and expensive because a driver device and a cooling device for controlling the wavelength variation due to temperature change are required. There is a disadvantage.
  • the present technology is to overcome the above disadvantages of the prior art, the problem to be solved by the present technology is to enable high resolution Raman spectroscopy at a simple and low cost compared to the prior art.
  • the Raman spectrometer according to the present embodiment is a Raman spectrometer which analyzes Raman light obtained by irradiating a broadband excitation light to a target sample.
  • the Raman spectrometer having a first resolution has a signal of detecting Raman spectroscopy.
  • a computing unit configured to form a Raman optical signal having a second resolution higher than the first resolution by performing a deconvolution operation on.
  • Raman spectroscopic signal processing method comprises the steps of obtaining a Raman spectroscopy of the first resolution by irradiating a target sample with broadband excitation light, calculating a Raman spectroscopy signal corresponding to the Raman spectroscopy of the first resolution, Deconvoluting the Raman optical signal to calculate a signal corresponding to the Raman spectroscopy of a second resolution higher than the first resolution.
  • an Raman optical signal having high resolution can be obtained without using an expensive and complicated narrowband light source.
  • FIGS. 1A to 1D are diagrams schematically illustrating the configuration of the Raman spectrometer according to the present embodiment.
  • FIG. 2 (A) is a diagram showing the spectrum of a narrowband light source used in the Raman spectroscopy according to the prior art
  • FIG. 2 (B) is a diagram showing the intensity according to the wavelength of light output from the broadband light source
  • 2 (C) is a diagram illustrating intensity according to wavelength of light output through a band pass filter.
  • FIG. 3 is a diagram illustrating an outline of a Raman spectroscopic signal processing method according to the present embodiment.
  • FIG. 4A is a diagram showing an outline of a Raman optical signal having a second resolution
  • FIG. 4B is a diagram showing a Raman optical signal corresponding to a Raman light having a first resolution.
  • each step may occur differently from the stated order unless the context clearly dictates the specific order. That is, each step may occur in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order.
  • FIGS. 1A to 1D are diagrams schematically illustrating the configuration of the Raman spectrometer according to the present embodiment.
  • the Raman spectrometer according to the embodiment illustrated in FIGS. 1A to 1D provides a light source 100 for providing broadband excitation light and a dichroism for transmitting the broadband excitation light as a target sample and transmitting the Raman light.
  • a spectroscope 500 for spectroscopic Raman light is spectroscopic Raman light.
  • the spectroscope 500 includes a diffraction grate 510 for spectroscopic Raman light and a detector 520 for detecting Raman light spectroscopy by the diffraction grating and outputting the Raman light as a corresponding electrical signal. .
  • FIG. 2 (A) shows the spectrum of a narrowband light source used in the Raman spectroscopy according to the prior art
  • FIG. 2 (B) shows the intensity according to the wavelength of light output from the broadband light source
  • FIG. C) shows the intensity according to the wavelength of the light output through the band pass filter. 1 and 2
  • the light source 100 outputs light having a broadband bandwidth of several tens to hundreds of nm as shown in FIG. 2B.
  • the light source may be any one of thermal radiation, a light emitting diode (LED) and a pulsed laser.
  • the pulse laser may be any one of a mode-locking pulsed laser, a Q-switching laser, and a gain switching laser.
  • a band pass filter 200 is provided with light output from the light source 100 and converted to have a bandwidth of about 10 nm as shown in FIG. 2C.
  • the light output by the light source 100 may be provided to the target sample TS without passing through the band pass filter.
  • the bandwidth of the narrowband spectrum used for the Raman spectroscopy of the prior art shown in Fig. 2A is approximately 0.1 nm or less.
  • the bandpass filter 200 has a relatively wide bandwidth even though it has a bandwidth of several nm as shown in FIG. 2 (C).
  • Light output from the light source 100 is provided to the target sample TS through a dichroic mirror 300.
  • the dichroic mirror 300 reflects light of the first wavelength but transmits light of the second wavelength.
  • the dichroic mirror 300 according to the present embodiment reflects the light output from the light source 100 or the band pass filter 200 and provides it to the target sample TS.
  • the Raman light RL which is reflected by the dichroic mirror 300 and provided to the target sample TS and is changed in wavelength and frequency by interaction with the material of the target sample TS, is output.
  • the Raman spectrometer may further include a long pass filter (LPF) for removing short wavelength components of the excitation light EL from the Raman light RL.
  • LPF long pass filter
  • the light output from the target sample TS includes the excitation light EL and the Raman light RL.
  • the excitation light component of the light output from the light source may be reflected by the second dichroic mirror 310 ′ and provided to the second spectrometer, as in the embodiment illustrated in FIG. 1A.
  • the excitation light EL component of the light output from the target sample TS is reflected by the second dichroic mirror 310 and provided to the second spectroscope 600 as in the embodiment illustrated in FIG. 1B.
  • the second spectrometer 600 may detect a spectral shape of the excitation light provided to the target sample TS from the provided light.
  • the Raman light RL component transmitted through the second dichroic mirror 310 is provided to the spectroscope 500 to be spectroscopically detected, and the spectral component is detected and output as a corresponding electric signal.
  • the spectrometer 500 includes a spectrometer including at least one diffraction grating 510, a slit (not shown) for adjusting spectroscopic resolution, a lens for condensing light, and a mirror. And a detector 520 that outputs an electrical signal corresponding to a light collecting system (not shown) and provided light.
  • the calculation unit (not shown) receives an electrical signal output from the detector 520 and the second spectrometer 600 and calculates an algorithm to be described later.
  • the Raman light RL component and the excitation light component EL which are transmitted through the dichroic mirror 300, may be provided to the spectroscope 500 and analyzed.
  • a filter capable of selectively reducing only the intensity of the excitation light component (hatched) may be used.
  • the spectroscope 500 detects the spectral components of the Raman light (RL) component and the excitation light (EL) component (FIG. 1C, hatched) and outputs the corresponding electrical signals.
  • the spectroscope 500 detects a Raman light RL component and outputs a first detector 522 and an excitation light component EL and hatched to output a corresponding electrical signal. It may include a second detector 524 that detects and outputs a corresponding electrical signal.
  • the attenuation filter attenuates the intensity of the excitation light EL in front of the second detector 524. Light intensity can be adjusted by placing an AF, an attenuation filter (NF) or a negative density filter (NDF).
  • An embodiment not shown may further include a long pass filter for selectively passing Raman light (RL) components before the spectroscope 500.
  • RL Raman light
  • the calculation unit (not shown) is provided with a Raman optical signal having a first resolution corresponding to the detected Raman light, and performs an algorithm operation to form a Raman optical signal having a second resolution higher than the first resolution.
  • the calculator may be integrally formed with the light source 100, the band pass filter 200, the dichroic mirror 300, and the spectrometer 500.
  • the operation unit may be formed separately from the light source 100, the band pass filter 200, the dichroic mirror 300 and the spectrometer 500, such as smart terminals, laptops, desktops, workstations Algorithms to be described in the computing device can be performed.
  • the Raman spectroscopic signal processing method according to the present embodiment includes irradiating a target sample with broadband excitation light to obtain a Raman light having a first resolution (S100), and the detector 520 detects the Raman light. And outputs a Raman light signal corresponding to the Raman light of the first resolution corresponding thereto.
  • the Raman optical signal corresponding to the Raman light of the first resolution has a low resolution since the Raman optical signal is formed by convolution of the broadband excitation light and the Raman transfer function of the target sample.
  • the calculation unit 300 deconvolves the Raman optical signal to calculate a signal corresponding to the Raman spectroscopy having a second resolution higher than the first resolution (S300).
  • the excitation light is divided into a narrow band f ( ⁇ ) and a wide band g ( ⁇ ) in the wavelength domain, and the Raman light generated by the excitation light is called R ( ⁇ ) and S ( ⁇ ), respectively.
  • the Raman light generated by the narrow band excitation light f ( ⁇ ) and the Raman light by the broadband excitation light g ( ⁇ ) can be expressed by the following equation by the Raman generation transfer function.
  • Raman Transfer Function which generates Raman light, is an inherent property that depends on the molecule of the material.
  • Equation 2 When the spectrum of the broadband excitation light is divided into m narrow-band light source spectra, their relationship is expressed by Equation 2 below.
  • the wideband excitation light g ( ⁇ ) may be decomposed into m components into narrow band components by a delta function.
  • Delta function is defined as the following equation.
  • f ( ⁇ ) can be any one of various basis functions or a function in which they are linear or nonlinear combined.
  • the basis function may include any one of the following functions.
  • Equation 4 The mathematical representation of the Raman light RL for which such excitation light is provided is expressed by Equation 4 below.
  • Equation 4 is a broadband Raman spectroscopy S ( ⁇ ) as the sum of each Raman spectra R ( ⁇ 1 ), R ( ⁇ 2 ), R ( ⁇ 3 ), ..., R ( ⁇ n ) by narrow band. Can be represented.
  • the Raman spectroscopy R ( ⁇ k ) for the excitation light f ( ⁇ k ) at any particular wavelength can be applied to all n values together.
  • the narrowband Raman spectra R ( ⁇ 1 ), R ( ⁇ 2 ), R ( ⁇ 3 ), ..., R ( ⁇ n ) are excitation light f ( ⁇ 1 ) for each wavelength ⁇ m . If you know the values of, f ( ⁇ 2 ), ..., f ( ⁇ n ), you can use the previously measured values. At this time, the amplitude of the Raman light for each wavelength is determined by the excitation light intensity at that wavelength.
  • the desired R ( ⁇ ) can be obtained by performing a deconvolution operation on the measured Raman light S ( ⁇ ).
  • the Raman spectra R ( ⁇ ) due to the Raman light S ( ⁇ ) and the narrow band excitation light may be represented as shown in Equation 1, respectively, and R ( ⁇ ) deconvolved by eliminating TS is represented as S ( ⁇ ). It is expressed as Equation 5 below.
  • the calculation unit may numerically analyze Equation 5 to obtain a desired narrow-band Raman spectroscopy R ( ⁇ ).
  • the Raman optical signal having the first resolution is formed in convolution with the broadband excitation light and thus has a low resolution.
  • Equation 5 a Raman optical signal having a high resolution can be obtained as shown in FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

본 실시예에 의한 라만 분광 신호 처리 방법은 광대역 여기광을 타겟 샘플에 조사하여 제1 분해능의 라만 분광을 획득하는 단계와, 제1 분해능의 라만 분광에 상응하는 라만 분광 신호를 연산하는 단계와, 라만 광 신호를 디컨벌루션 연산하여 제1 분해능 보다 높은 제2 분해능의 라만 분광에 상응하는 신호를 연산하는 단계를 포함한다.

Description

광대역 여기광에 의한 라만 분광법 및 장치
본 기술은 광대역 여기광에 의한 라만 분광법 및 장치에 관한 것이다.
라만 산란(Raman scattering)은 물질에 일정한 주파수의 여기광을 조사하였을 때, 매질과 상호 작용에 의하여 파장 즉, 주파수가 변화한 산란광이 나타나는 현상이다. 라만 분광학(Raman spectroscopy)은 라만 산란에서 발생하는 분자의 진동 분광을 측정하여 분자의 진동 구조를 파악하고, 이를 바탕으로 물질을 정성적 정량적으로 분석하는 방법이다.
라만 분광은 분자의 진동과 관련된 고유 정보를 포함하고 있는 분광 피크(spectrum peak)가 존재하므로 마치 지문(finger print)처럼 물질이 포함하고 있는 분자 분석이 가능하여, 일반적인 흡수나 레일리 산란(Rayleigh scattering) 에 기반을 둔 분광기술에 비하여 상대적으로 정확성이 높다.
분광 피크는 물질에 입사하는 빛이 분자의 고유 진동 에너지만큼 광 에너지를 흡수하거나 방출하며 산란할 때 발생하는 데, 이러한 입사와 산란의 에너지 차이인 라만 변이(Raman shift)에 기인한다. 파장 도메인에서 측정하게 되는 라만 분광 피크는 파장 도메인에서 폭이 작으며 고 분해능과 고 신호대잡음비일수록 분자의 구분력이 커진다. 이를 위하여 여기광의 파장 폭 (Bandwidth)이 작은 협대역 (Narrow band light) 및 파워가 높은 빛이 필요하므로 일반적으로 레이저가 사용된다.
고분해능 라만분광을 얻기 위하여 광대역의 여기광은 사용할 수 없다. 안정된 협대역을 얻기 위하여 일반적으로 협대역 레이저(Narrow band laser) 또는 단파장 레이저(Single frequency laser)를 사용하는데, 드라이버 장치 및 온도 변화에 의한 파장 변이를 제어하기 위한 냉각 장치 등이 필요하므로 복잡하고 고가인 단점이 있다.
본 기술은 상기한 종래 기술의 단점을 극복하기 위한 것으로, 본 기술로 해결하고자 하는 과제는 종래 기술 대비 단순하고 낮은 비용으로 고분해능 라만 분광 을 가능하게 하는 것이다.
본 실시예에 의한 라만 분광기는 광대역 여기광(broadband excitation light)을 타겟 샘플에 조사하여 얻어진 라만 광(Raman light)을 분석하는 라만 분광기로, 제1 분해능(resolution)를 가지는 라만 분광을 검출한 신호에 대하여 디컨벌루션(deconvolution) 연산을 수행하여 제1 분해능에 비하여 높은 제2 분해능을 가지는 라만 광 신호를 형성하는 연산부를 포함한다.
본 실시예에 의한 라만 분광 신호 처리 방법은 광대역 여기광을 타겟 샘플에 조사하여 제1 분해능의 라만 분광을 획득하는 단계와, 제1 분해능의 라만 분광에 상응하는 라만 분광 신호를 연산하는 단계와, 라만 광 신호를 디컨벌루션 연산하여 제1 분해능 보다 높은 제2 분해능의 라만 분광에 상응하는 신호를 연산하는 단계를 포함한다.
본 실시예에 의하면 고가이고 복잡한 협대역 광원을 사용하지 않고 높은 분해능를 가지는 라만 광신호를 획득할 수 있다는 장점이 제공된다.
도 1(A) 내지 도 1(D)는 본 실시예에 의한 라만 분광기의 구성을 개요적으로 설명하는 도면이다.
도 2(A)는 종래기술에 의한 라만 분광에서 사용되는 협대역 광원의 스펙트럼을 도시한 도면이고, 도 2(B)는 광대역 광원이 출력하는 광의 파장에 따른 강도(intensity)를 도시한 도면이며, 도 2(C)는 대역 통과 필터를 통하여 출력된 광의 파장에 따른 강도(intensity)를 도시한 도면이다.
도 3은 본 실시예에 의한 라만 분광 신호 처리 방법의 개요를 도시한 도면이다.
도 4(A)는 제2 분해능의 라만 광 신호의 개요를 도시한 도면이고, 도 4(B)는 제1 분해능의 라만 광에 상응하는 라만 광 신호를 도시한 도면이다.
본 발명에 관한 설명은 구조적 내지 기능적 설명을 위한 실시예에 불과하므로, 본 발명의 권리범위는 본문에 설명된 실시예에 의하여 제한되는 것으로 해석되어서는 아니 된다. 즉, 실시예는 다양한 변경이 가능하고 여러 가지 형태를 가질 수 있으므로 본 발명의 권리범위는 기술적 사상을 실현할 수 있는 균등물들을 포함하는 것으로 이해되어야 한다.
한편, 본 출원에서 서술되는 용어의 의미는 다음과 같이 이해되어야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
각 단계들은 문맥상 명백하게 특정 순서를 기재하지 않은 이상 명기된 순서와 다르게 일어날 수 있다. 즉, 각 단계들은 명기된 순서와 동일하게 일어날 수도 있고 실질적으로 동시에 수행될 수도 있으며 반대의 순서대로 수행될 수도 있다.
본 개시의 실시예들을 설명하기 위하여 참조되는 도면은 설명의 편의 및 이해의 용이를 위하여 의도적으로 크기, 높이, 두께 등이 과장되어 표현되어 있으며, 비율에 따라 확대 또는 축소된 것이 아니다. 또한, 도면에 도시된 어느 구성요소는 의도적으로 축소되어 표현하고, 다른 구성요소는 의도적으로 확대되어 표현될 수 있다.
여기서 사용되는 모든 용어들은 다르게 정의되지 않는 한, 본 발명이 속하는 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한 이상적이거나 과도하게 형식적인 의미를 지니는 것으로 해석될 수 없다.
이하에서는 첨부된 도면들을 참조하여 본 실시예에 의한 라만 분광기 및 라만 분광 신호 형성 방법을 설명한다. 도 1(A) 내지 도 1(D)는 본 실시예에 의한 라만 분광기의 구성을 개요적으로 설명하는 도면이다. 도 1(A) 내지 도 1(D)로 예시된 실시예에 의한 라만 분광기는 광대역 여기광을 제공하는 광원(100)과, 광대역 여기광을 타겟 샘플로 제공하고, 라만광을 투과하는 이색성 거울(dichroic mirror, 300)과, 라만광을 분광하는 분광부(500)를 포함한다.
일 실시예로, 분광부(500)는 라만 광을 분광하는 회절 격자(diffraction grate, 510)와 회절 격자에 의하여 분광된 라만 광을 검출하여 상응하는 전기 신호로 출력하는 디텍터(520)를 포함한다.
도 2(A)는 종래기술에 의한 라만 분광에서 사용되는 협대역 광원의 스펙트럼을 도시하고, 도 2(B)는 광대역 광원이 출력하는 광의 파장에 따른 강도(intensity)를 도시하며, 도 2(C)는 대역 통과 필터를 통하여 출력된 광의 파장에 따른 강도(intensity)를 도시한다. 도 1과 도 2을 참조하면, 광원(100)은 도 2(B)로 도시된 것과 같이 수 십 내지 수 백 nm의 광대역의 대역폭(bandwidth)를 가지는 광을 출력한다. 일 실시예로, 광원은 열복사(thermal radiation), LED(light emitting diode) 및 펄스 레이저(pulsed laser)중 어느 하나일 수 있다. 일 예로 펄스 레이저는 모드 락킹 레이저(mode-locking pulsed laser), Q 스위칭(Q-switching) 레이저 및 게인 스위칭(gain switching) 레이저 중 어느 하나일 수 있다.
도 1로 예시된 실시예에서, 대역 통과 필터(band pass filter, 200)는 광원(100)에서 출력된 광을 제공받고, 도 2(C)로 도시된 것과 같이 약 10nm의 대역폭을 가지도록 변환하여 타겟 샘플(TS)에 제공한다. 도시되지 않은 실시예에서, 광원(100)이 출력한 광은 대역 통과 필터를 거치지 않고 타겟 샘플(TS)에 제공될 수 있다.
도 2(A)로 도시된 종래 기술의 라만 분광에 사용되는 협대역 스펙트럼의 대역폭은 대략 0.1nm 이하이다. 따라서, 대역 통과 필터(200)을 거쳐 도 2(C)로 도시된 것과 수 nm의 대역폭을 가진다고 하더라도 상대적으로 넓은 대역폭을 가진다.
광원(100)에서 출력된 광은 이색성 거울(dichroic mirror, 300)을 통하여 타겟 샘플(TS)에 제공된다. 이색성 거울(300)은 제1 파장의 광은 반사하나, 제2 파장의 광은 투과하는 성질을 가지는 거울이다. 본 실시예에 의한 이색성 거울(300)은 광원(100) 또는 대역 통과 필터(200)에서 출력된 광을 반사하여 타겟 샘플(TS)에 제공한다. 이색성 거울(300)에서 반사되어 타겟 샘플(TS)에 제공되어 타겟 샘플(TS)의 물질과 상호 작용에 의하여 파장 및 주파수가 변화한 라만 광(RL)이 출력된다.
일 실시예에서 라만 분광기는 라만 광(RL)에서 여기광(EL)의 단파장 성분을 제거하는 롱패스필터(LPF)를 더 포함할 수 있다.
타겟 샘플(TS)에서 출력된 광은 여기 광(EL)과 라만 광(RL)을 포함한다.
광원에서 출력된 광 중 여기 광 성분은 도 1(A)로 예시된 실시예와 같이 제2 이색성 거울(310')에 의하여 반사되어 제2 분광기에 제공될 수 있다. 또한 타겟 샘플(TS)에서 출력된 광 중 여기 광(EL) 성분은 도 1(B)로 예시된 실시예와 같이 제2 이색성 거울(310)에 의하여 반사되어 제2 분광기(600)에 제공될 수 있다. 제2 분광기(600)는 제공된 광으로부터 타겟 샘플(TS)에 제공된 여기광(excitation)의 스펙트럼 형태(spectral shape)를 검출할 수 있다.
제2 이색성 거울(310)을 투과한 라만 광(RL) 성분은 분광부(500)에 제공되어 분광되고, 그 스펙트럼 성분이 검출되어 상응하는 전기신호로 출력된다. 일 실시예에 의하면, 분광부(500)는 적어도 하나의 회절 격자(510)를 포함하는 분광계와, 분광 분해능을 조절할 수 있는 슬릿(slit, 미도시), 광을 집광하는 렌즈 및 거울을 포함하는 집광계(미도시) 및 제공된 광에 상응하는 전기 신호를 출력하는 디텍터(520)를 포함한다.
연산부(미도시)는 디텍터(520) 및 제2 분광기(600)가 출력한 전기 신호를 입력받아 후술할 알고리듬을 연산한다.
도 1(C)로 예시된 실시예에서, 이색성 거울(300)을 투과한 라만 광(RL) 성분 및 여기 광 성분(EL, 빗금)은 분광부(500)에 제공되어 분석될 수 있다. 여기광 성분(빗금)의 세기만을 선별적으로 감소 가능한 필터(filter)를 사용할 수 있다. 분광부(500)는 라만 광(RL) 성분과 여기 광(EL) 성분(도 1(C), 빗금)에 대한 스펙트럼 성분을 검출하여 상응하는 전기적 신호로 출력한다.
도 1(D)로 예시된 실시예와 같이, 분광부(500)는 라만 광(RL) 성분을 검출하여 상응하는 전기적 신호로 출력하는 제1 디텍터(522)와 여기광 성분(EL, 빗금)을 검출하여 상응하는 전기적 신호로 출력하는 제2 디텍터(524)를 포함할 수 있다. 일 예로, 여기 광(EL)의 강도(intensity)는 라만 광(RL) 성분의 강도에 비하여 크므로, 제2 디텍터(524) 앞에 여기 광(EL)의 강도(intensity)를 감쇠하는 감쇠 필터(AF, attenuation filter) 또는 NDF(neutral density filter)를 두어 광 세기를 조절할 수 있다.
도시되지 않은 실시예는 분광부(500) 이전에 라만광(RL) 성분을 선택적으로 통과시키는 롱패스필터(long pass filter)를 더 포함할 수 있다.
연산부(미도시)는 검출된 라만광에 상응하는 제1 분해능을 가지는 라만 광 신호를 제공받고, 알고리듬의 연산을 수행하여 제1 분해능에 비하여 높은 제2 분해능을 가지는 라만 광 신호를 형성한다. 일 실시예로, 연산부는 광원(100), 대역 통과 필터(200), 이색성 거울(300) 및 분광부(500)와 일체로 형성될 수 있다. 다른 실시예로, 연산부는 광원(100), 대역 통과 필터(200), 이색성 거울(300) 및 분광부(500)와 분리되어 형성될 수 있으며, 스마트 단말, 랩톱, 데스크톱, 워크스테이션 등의 연산 장치에서 설명될 알고리듬을 수행할 수 있다.
이하에서는 첨부된 도면들을 참조하여 본 실시예에 의한 라만 분광 신호 형성 방법을 설명한다. 도 3은 본 실시예에 의한 라만 분광 신호 처리 방법의 개요를 도시한 도면이다. 도 3을 참조하면, 본 실시예에 의한 라만 분광 신호 처리 방법은 광대역 여기광을 타겟 샘플에 조사하여 제1 분해능의 라만 광을 획득하는 단계(S100)와, 디텍터(520)는 라만 광을 검출하고, 이에 상응하는 제1 분해능의 라만 광에 상응하는 라만 광 신호를 출력한다.
제1 분해능의 라만 광에 상응하는 라만 광신호는 광대역의 여기광과 타겟 샘플의 라만 전달 함수(Raman transfer function)가 컨벌루션되어 형성되는 것이므로 낮은 분해능을 가진다. 연산부(300)는 라만 광 신호를 디컨벌루션 연산하여 제1 해상도 보다 높은 제2 해상도의 라만 분광에 상응하는 신호를 연산(S300)한다.
여기 광(EL) 및 라만 광(RL)에 대한 수학적인 표현을 정리하면 아래와 같다. 여기광을 파장 도메인에서 일반적인 협대역 f(λ) 과 광대역 g(λ)으로 구분하고, 이러한 여기광에 의한 라만광을 각각 R(λ),S(λ) 라고 한다.
협대역 여기광 f(λ)에 의하여 발생하는 라만광 및 광대역 여기광 g(λ)에 의한 라만광은 라만 발생 전달 함수(Transfer function)에 의해 아래의 수학식으로 표시될 수 있다.
Figure PCTKR2019001562-appb-M000001
(*: 컨벌루션 연산, TS: 타겟 샘플의 라만 전달 함수)
라만 광을 발생시키는 라만 전달 함수(Raman Transfer Function)는 물질의 분자에 따라 달라지는 고유 특성이다. 광대역 여기광의 스펙트럼을 m개의 협대역 광원 스펙트럼으로 분할하면 이들의 관계식은 아래의 수학식 2와 같다.
Figure PCTKR2019001562-appb-M000002
즉, 광대역 여기광 g(λ)는 델타 함수(delta function)에 의하여 협대역 성분으로 m 개의 성분으로 분해될 수 있다. 델타 함수는 아래의 수학식과 같이 정의된다.
Figure PCTKR2019001562-appb-M000003
f(λ)는 다양한 베이시스 함수(basis function)들 중 어느 하나 또는 이들이 선형 혹은 비선형 결합된 함수일 수 있다. 일 실시예로, 베이시스 함수(basis function)는 아래의 함수들 중 어느 하나를 포함할 수 있다.
로렌치안 함수(Lorentzian)
Figure PCTKR2019001562-appb-I000001
가우시안 함수(Gaussian)
Figure PCTKR2019001562-appb-I000002
사각 함수(Rectangular)
Figure PCTKR2019001562-appb-I000003
위에 기재된 로렌치안, 가우시안 및 사각함수의 진폭(Amplitude) fo은 파장에 따라 달라지며, 특정 파장 에서 최대값 fo,max 및/또는 최소값 fo,min을 가질 수 있다. 이러한 여기 광이 제공되어 형성된 대한 라만 광(RL)의 수학적 표현은 아래의 수학식 4와 같다.
Figure PCTKR2019001562-appb-M000004
상기한 수학식 4는 협대역에 의한 각 라만 분광 R(λ1), R(λ2), R(λ3), ...,R(λn)의 합으로 광대역 라만 분광 S(λ)를 나타낼 수 있다는 것이다.
라만 분광이 여기광의 파장에 크게 영향이 없는 경우, 임의의 특정 파장에 의 여기광 f(λk) 에 대한 라만분광 R(λk)을 모든 n 값에 다 같이 적용할 수 있다. 다른 실시예로, 협대역 라만 분광 R(λ1), R(λ2), R(λ3),...,R(λn)은 각 파장 λm에 대한 여기광 f(λ1), f(λ2), ..., f(λn)의 값을 알 경우 미리 측정한 값을 사용할 수 있다. 이때 각 파장 별 라만 광의 진폭(amplitude)는 그 파장에서의 여기광 세기에 의하여 결정된다.
측정된 라만광인 S(λ)을 디컨벌루션(Deconvolution) 연산을 수행하여 목적하는 R(λ)를 얻을 수 있다. 라만광 S(λ)과 협대역 여기광에 의한 라만 분광 R(λ)는 각각 상기한 수학식 1과 같이 표시될 수 있으며 TS를 소거하여 디컨벌루션한 R(λ)를 S(λ)로 표시하면 아래의 수학식 5와 같다.
Figure PCTKR2019001562-appb-M000005
연산부는 수학식 5를 수치 해석적으로 연산하여 목적하는 협대역 라만 분광 R(λ)을 얻을 수 있다.
도 4(B)는 디텍터(520)가 출력한 제1 분해능의 라만 광에 상응하는 라만 광 신호를 도시한 도면이다. 위에서 설명된 바와 같이 제1 분해능의 라만 광 신호는 광대역의 여기광과 컨벌루션되어 형성되는 것이므로 낮은 분해능을 가진다. 그러나, 상기한 수학식 5를 연산하면 도 4(A)와 같이 높은 분해능의 라만 광 신호를 얻을 수 있다.
본 발명에 대한 이해를 돕기 위하여 도면에 도시된 실시 예를 참고로 설명되었으나, 이는 실시를 위한 실시예로, 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.

Claims (15)

  1. 광대역 여기광(broadband excitation light)을 타겟 샘플에 조사하여 얻어진 라만 광(Raman light)을 분석하는 라만 분광기로,
    상기 분광기는,
    제1 분해능(resolution)를 가지는 라만 분광을 검출한 신호에 대하여 디컨벌루션(deconvolution) 연산을 수행하여 상기 제1 분해능에 비하여 높은 제2 분해능를 가지는 라만 광 신호를 형성하는 연산부를 포함하는 라만 분광기.
  2. 제1항에 있어서,
    상기 연산부는,
    협대역 여기광을 상기 타겟 샘플에 조사하여 얻어진 라만 광에 상응하는 신호가 중첩된 신호를 디컨벌루션 연산하여 상기 제2 분해능를 가지는 라만 광 신호를 형성하는 라만 분광기.
  3. 제2항에 있어서,
    상기 협대역 여기광을 상기 타겟 샘플에 조사하여 얻어진 라만 광에 상응하는 신호는 미리 측정되어 저장된 것인 라만 분광기.
  4. 제1항에 있어서,
    상기 광대역 여기광은, 복수의 베이시스 함수들이 결합된 함수로 표시되는 라만 분광기.
  5. 제1항에 있어서,
    상기 연산부는,
    수학식
    Figure PCTKR2019001562-appb-I000004
    을 연산하여 상기 제2 분해능를 가지는 라만 분광 신호를 형성하는 라만 분광기.(S(λ): 제1 분해능(resolution)를 가지는 라만 분광을 검출한 신호, R(λ): 제2 분해능를 가지는 라만 광 신호, f: 협대역 여기광, g: 광대역 여기광)
  6. 제1항에 있어서,
    상기 라만 분광기는,
    상기 광대역 여기광을 제공하는 광원;
    상기 광대역 여기광을 상기 타겟 샘플로 제공하고, 상기 라만광을 투과하는 반투과 거울;
    상기 라만광을 분광하는 분광부를 포함하는 라만 분광기.
  7. 제6항에 있어서,
    상기 광원은 열복사(thermal radiation), LED, 펄스 레이저(pulsed laser)인 라만 분광기.
  8. 제6항에 있어서,
    상기 분광부는,
    상기 라만광을 분광하는 하나 이상의 회절 격자와,
    분광 분해능을 조절할 수 있는 슬릿(slit)과,
    상기 회절 격자에서 출력된 광을 집광하는 렌즈 및 거울 및
    상기 렌즈들이 출력한 광을 검출하는 디텍터(detector)를 포함하는 라만 분광기.
  9. 제8항에 있어서,
    상기 디텍터는 상기 회절 격자에서 분광된 광으로부터 상기 여기광을 더 검출하는 라만 분광기.
  10. 제1항에 있어서,
    상기 광원은 열복사(thermal radiation), LED, 펄스 레이저 중 어느 하나 이상을 포함하며,
    상기 라만 분광기는 상기 광원이 제공하는 광에서 목적하는 대역만을 통과하는 대역 통과 필터(band pass filter)를 더 포함하는 라만 분광기.
  11. 제1항에 있어서,
    상기 라만 분광기는,
    상기 라만광으로부터 상기 여기광의 스펙트럼을 검출하는 스펙트럼 검출기(spectrometer) 및
    라만광 만을 선택적으로 통과시키는 롱패스필터(long pass filter)를 더 포함하는 라만 분광기.
  12. 광대역 여기광을 타겟 샘플에 조사하여 제1 분해능의 라만 분광을 획득하는 단계와,
    상기 제1 분해능의 라만 분광에 상응하는 라만 분광 신호를 연산하는 단계와,
    상기 라만 광 신호를 디컨벌루션 연산하여 상기 제1 분해능 보다 높은 제2 분해능의 라만 분광에 상응하는 신호를 연산하는 단계를 포함하는 라만 분광 신호 형성 방법.
  13. 제12항에 있어서,
    상기 제2 분해능의 라만 분광에 상응하는 신호를 연산하는 단계는 아래의 수학식을 연산하여 수행되는 라만 분광 신호 형성 방법.
  14. 제12항에 있어서,
    제2 분해능의 라만 분광에 상응하는 신호를 연산하는 단계는,
    협대역 여기광과 광대역 여기광의 역함수 및 제2 분해능을 가지는 라만 광 신호를 컨벌루션 연산하여 수행하는 라만 분광 신호 형성 방법.
  15. 제12항에 있어서,
    제2 분해능의 라만 분광에 상응하는 신호를 연산하는 단계는,
    수학식
    Figure PCTKR2019001562-appb-I000005
    을 연산하여 수행하는 라만 분광 신호 형성 방법.
    (S(λ): 제1 분해능(resolution)를 가지는 라만 분광을 검출한 신호, R(λ): 제2 분해능를 가지는 라만 광 신호, f: 협대역 여기광, g: 광대역 여기광)
PCT/KR2019/001562 2018-02-08 2019-02-08 광대역 여기광에 의한 라만 분광법 및 장치 WO2019156497A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11202008702RA SG11202008702RA (en) 2018-02-08 2019-02-08 Raman spectroscopy method and apparatus using broadband excitation light
US16/968,754 US11879846B2 (en) 2018-02-08 2019-02-08 Raman spectroscopy method and apparatus using broadband excitation light

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180015756 2018-02-08
KR10-2018-0015756 2018-02-08

Publications (1)

Publication Number Publication Date
WO2019156497A1 true WO2019156497A1 (ko) 2019-08-15

Family

ID=67548486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001562 WO2019156497A1 (ko) 2018-02-08 2019-02-08 광대역 여기광에 의한 라만 분광법 및 장치

Country Status (4)

Country Link
US (1) US11879846B2 (ko)
KR (1) KR102234113B1 (ko)
SG (1) SG11202008702RA (ko)
WO (1) WO2019156497A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11874229B2 (en) 2022-04-07 2024-01-16 Onto Innovation Inc. Apparatus and method for multiple source excitation Raman spectroscopy

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022177373A1 (ko) * 2021-02-19 2022-08-25 주식회사 앤서레이 라만 분광 장치
KR102671821B1 (ko) 2021-11-26 2024-05-31 부산대학교 산학협력단 시료의 수평방향으로 대물렌즈 움직임이 가능한 라만 프로브

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5994690A (en) * 1997-03-17 1999-11-30 Kulkarni; Manish D. Image enhancement in optical coherence tomography using deconvolution
US20060027754A1 (en) * 2003-04-10 2006-02-09 David Ramsden Gamma-ray spectrometry
KR20080064138A (ko) * 2005-10-04 2008-07-08 너스킨 인터어내셔날 인코포레이팃드 강한 백그라운드 형광의 존재 하에서 미약 신호를 측정하기위한 라만 기기
KR20130113136A (ko) * 2012-04-05 2013-10-15 한국화학연구원 비침습적 라인-조사 공간변위라만분광기
KR20130135730A (ko) * 2010-05-26 2013-12-11 인핸스트 스펙트로메트리, 인코포레이티드 물질의 라만 및 광루미네선스 스펙트럼을 검출하기 위한 장치 및 그 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5572125A (en) * 1991-03-25 1996-11-05 Dunkel; Reinhard Correction and automated analysis of spectral and imaging data
EP0557658B1 (en) * 1992-02-24 1997-05-07 Hewlett-Packard Company Raman spectroscopy of respiratory gases
US5455673A (en) * 1994-05-27 1995-10-03 Eastman Chemical Company Apparatus and method for measuring and applying a convolution function to produce a standard Raman spectrum
US5697373A (en) * 1995-03-14 1997-12-16 Board Of Regents, The University Of Texas System Optical method and apparatus for the diagnosis of cervical precancers using raman and fluorescence spectroscopies
KR20010101831A (ko) * 1999-02-09 2001-11-14 아코르디스 인두스트리알 피베르스 게엠베하 폴리에틸렌 테레프탈레이트 섬유의 염착량 측정방법
US20060176478A1 (en) * 2005-02-09 2006-08-10 Raman Systems, Inc. Raman spectroscopy with stabilized multi-mode lasers
US7327453B2 (en) * 2005-05-13 2008-02-05 Axsun Technologies, Inc. Post dispersion spatially filtered Raman spectrometer
US7545493B2 (en) * 2005-12-23 2009-06-09 Bwt Property, Inc. Raman spectroscopic apparatus utilizing internal grating stabilized semiconductor laser with high spectral brightness
JP5957825B2 (ja) * 2011-08-09 2016-07-27 株式会社リコー ラマン分光装置およびラマン分光測定法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5994690A (en) * 1997-03-17 1999-11-30 Kulkarni; Manish D. Image enhancement in optical coherence tomography using deconvolution
US20060027754A1 (en) * 2003-04-10 2006-02-09 David Ramsden Gamma-ray spectrometry
KR20080064138A (ko) * 2005-10-04 2008-07-08 너스킨 인터어내셔날 인코포레이팃드 강한 백그라운드 형광의 존재 하에서 미약 신호를 측정하기위한 라만 기기
KR20130135730A (ko) * 2010-05-26 2013-12-11 인핸스트 스펙트로메트리, 인코포레이티드 물질의 라만 및 광루미네선스 스펙트럼을 검출하기 위한 장치 및 그 방법
KR20130113136A (ko) * 2012-04-05 2013-10-15 한국화학연구원 비침습적 라인-조사 공간변위라만분광기

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11874229B2 (en) 2022-04-07 2024-01-16 Onto Innovation Inc. Apparatus and method for multiple source excitation Raman spectroscopy

Also Published As

Publication number Publication date
KR102234113B1 (ko) 2021-03-31
KR102234113B9 (ko) 2023-04-12
US20200408692A1 (en) 2020-12-31
US11879846B2 (en) 2024-01-23
SG11202008702RA (en) 2020-10-29
KR20190096294A (ko) 2019-08-19

Similar Documents

Publication Publication Date Title
EP1004042B1 (en) Optical computational system
US6529276B1 (en) Optical computational system
US7123844B2 (en) Optical computational system
WO2019156497A1 (ko) 광대역 여기광에 의한 라만 분광법 및 장치
US7692775B2 (en) Time and space resolved standoff hyperspectral IED explosives LIDAR detection
US8049881B2 (en) Optical analysis system and methods for operating multivariate optical elements in a normal incidence orientation
US6281971B1 (en) Method for adjusting spectral measurements to produce a standard Raman spectrum
US20080309930A1 (en) Calibration for Spectroscopic Analysis
US8537354B2 (en) System and method for instrument response correction based on independent measurement of the sample
WO2005074525A2 (en) Entangled-photon fourier transform spectroscopy
US20050083521A1 (en) System and method for detection and identification of optical spectra
JPH0915156A (ja) 分光測定方法及び測定装置
EP3173770B1 (en) A portable analyzer using optical emission spectroscopy
US10451479B2 (en) Multichannel ultra-sensitive optical spectroscopic detection
WO2003010519A1 (fr) Dispositif de mesure d'absorption temporaire par resolution temporelle
Myrick et al. Application of multivariate optical computing to near-infrared imaging
CN114207391A (zh) 信号采集光谱仪
WO1999052010A2 (en) Optical computational system
EP4206655A1 (en) System and method for raman spectroscopy
JP2818042B2 (ja) パルス光源を用いたフーリエ変換分光法
JP2023164360A (ja) 高スペクトル及び時間分解能グロー放電分光測定デバイス及び方法
CN115683334A (zh) 渐变滤光片快速光谱测试方法及***
Davies et al. Improving Raman stand-off distance for the detection of chemical warfare agents
JP2022500655A (ja) プラズマスペクトル分析を介してサンプルの材料組成を分析するための装置
Myntti Target identification with hyperspectral lidar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19751206

Country of ref document: EP

Kind code of ref document: A1