WO2019156118A1 - 抗菌用多孔質材料及びそれを含む抗菌加工製品、並びにそれを用いた抗菌方法 - Google Patents

抗菌用多孔質材料及びそれを含む抗菌加工製品、並びにそれを用いた抗菌方法 Download PDF

Info

Publication number
WO2019156118A1
WO2019156118A1 PCT/JP2019/004242 JP2019004242W WO2019156118A1 WO 2019156118 A1 WO2019156118 A1 WO 2019156118A1 JP 2019004242 W JP2019004242 W JP 2019004242W WO 2019156118 A1 WO2019156118 A1 WO 2019156118A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
porous material
processed product
film
material according
Prior art date
Application number
PCT/JP2019/004242
Other languages
English (en)
French (fr)
Inventor
平井 香成
竜太 及川
武 石丸
立 池上
Original Assignee
株式会社フルヤ金属
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フルヤ金属 filed Critical 株式会社フルヤ金属
Priority to CN201980011678.0A priority Critical patent/CN111683532A/zh
Publication of WO2019156118A1 publication Critical patent/WO2019156118A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • A01N25/04Dispersions, emulsions, suspoemulsions, suspension concentrates or gels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds

Definitions

  • the present disclosure relates to an antibacterial porous material in which a platinum group metal is supported on porous silica, an antibacterial agent, an antibacterial film, an antibacterial processed product and an antibacterial dispersion containing the antibacterial porous material, and an antibacterial using these And, more particularly, to a method for producing antimicrobial processed products.
  • various antibacterial agents have been used in order to enhance the hygiene viewpoint and the preservability of foods and cosmetics.
  • natural antibacterial agents and synthetic antibacterial agents have been used.
  • organic antibacterial agents and inorganic antibacterial agents are known as synthetic antibacterial agents
  • benzoic acid esters and sorbates are known as organic antibacterial agents, but the duration of the effect is 1 It may be as short as ⁇ 2 months.
  • the supply of natural antibacterial agents is unstable and a lot of production costs.
  • antibacterial agents containing silver ions, copper ions and the like are known as inorganic antibacterial agents.
  • silver ions and copper ions have a problem that they are easily affected by light, heat, coexisting substances, and the like.
  • Patent Document 1 discloses an antibacterial agent made of tungsten oxide. This antibacterial agent exhibits high antibacterial performance under light irradiation due to the photocatalytic action of tungsten oxide.
  • Patent Document 2 discloses an antibacterial agent that exhibits antibacterial performance even in the dark or by irradiation with a fluorescent light cut from ultraviolet rays. Yes.
  • an object of the present disclosure is to provide an antibacterial porous material that does not utilize photocatalysis. Furthermore, it aims at providing the antibacterial agent containing the porous material for antibacterial, an antibacterial film, an antibacterial processed product, and the antibacterial dispersion liquid. Furthermore, it aims at providing the antimicrobial method using these, and the manufacturing method of an antimicrobial processed product.
  • the present inventors have found that an antibacterial porous material in which particles containing a platinum group metal are supported on porous silica can solve the above problems, and have completed the present invention.
  • the antibacterial porous material according to the present invention is an antibacterial porous material in which particles containing a platinum group metal are supported on porous silica, and the pore diameter of the antibacterial porous material is 1 And a BET specific surface area of 300 to 2000 m 2 / g.
  • the antibacterial porous material according to the present invention includes a form in which the platinum group metal is at least one selected from platinum, rhodium, ruthenium, iridium and palladium.
  • the antibacterial agent according to the present invention includes the antibacterial porous material according to the present invention.
  • the antibacterial membrane according to the present invention includes the antibacterial porous material according to the present invention.
  • the antibacterial processed product according to the present invention is characterized in that the processed product includes the antibacterial porous material according to the present invention.
  • the processed product is any one of a nonwoven fabric, a ceramic honeycomb, and a paper honeycomb.
  • the method for producing an antibacterial processed product according to the present invention comprises a step of forming an antibacterial film by coating a dispersion of the antibacterial porous material according to the present invention on the surface of the processed product. .
  • the processed product is preferably any one of a nonwoven fabric, a ceramic honeycomb, and a paper honeycomb.
  • the antibacterial method according to the present invention is characterized by using the antibacterial agent according to the present invention.
  • the antibacterial method according to the present invention is characterized by having a step of forming an antibacterial film by applying a dispersion liquid in which the antibacterial porous material according to the present invention is dispersed to a processed product.
  • the antibacterial method according to the present invention includes a form in which antibacterial properties are exhibited against at least one bacterium selected from Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa.
  • the antibacterial dispersion according to the present invention is a dispersion in which the antibacterial porous material according to the present invention is dispersed.
  • an antibacterial porous material that exhibits high antibacterial performance without using photocatalytic action.
  • an antibacterial agent including an antibacterial porous material, an antibacterial film, an antibacterial processed product, and an antibacterial dispersion can be provided.
  • an antibacterial method using these and a method for manufacturing an antibacterial processed product can be provided.
  • the antibacterial porous material of this embodiment is an antibacterial porous material in which particles containing a platinum group metal are supported on porous silica, and the antibacterial porous material has a pore diameter (pore diameter) of 1 to 50 nm and the BET specific surface area is 300 to 2000 m 2 / g.
  • the pore diameter is preferably 1 to 10 nm, and the BET specific surface area is preferably 500 to 1500 m 2 / g.
  • the total pore volume of the porous silica before supporting the particles containing the platinum group metal is 0.5 to 0.8 cm 3 / g, more preferably 0.5 to 0.6 cm 3. / G, the average pore diameter is preferably 2 to 10 nm, more preferably 3 to 5 nm.
  • the porous silica used may be in the form of powder or pellets.
  • porous silica having a BET specific surface area of 800 m 2 / g or more and a pore diameter of 3 nm or more before supporting the particles containing a platinum group metal.
  • BET specific surface area 800 m 2 / g or more and a pore diameter of 3 nm or more.
  • the BET specific surface area is 1100 m 2 / g or less and the pore diameter is 50 nm or less.
  • the method for producing the porous silica before supporting the particles containing the platinum group metal is not particularly limited, and can be produced, for example, according to the production method described in JP-A-2017-23889. . Specifically, it is as follows. First, an inorganic raw material and an organic raw material are mixed and reacted to form an organic matter-inorganic matter composite in which an inorganic matter skeleton is formed around the organic matter as a template. Subsequently, porous silica is obtained by removing organic substances from the obtained composite.
  • the inorganic material tetramethoxysilane, tetraethoxysilane, alkoxysilane, such as tetra propoxy silane, sodium silicate, kanemite (kanemite, NaHSi 2 O 5 ⁇ 3H 2 O), silica, silica - like metal composite oxide and the like It is done.
  • These inorganic raw materials form a silicate skeleton. These can be used alone or in admixture of two or more.
  • template is not specifically limited, For example, surfactant etc. are mentioned.
  • the surfactant may be any of cationic, anionic, and nonionic, specifically, alkyltrimethylammonium (preferably alkyltrimethylammonium having an alkyl group having 8 to 18 carbon atoms).
  • alkyltrimethylammonium preferably alkyltrimethylammonium having an alkyl group having 8 to 18 carbon atoms.
  • examples include amines, triblock copo
  • a suitable solvent can be used.
  • a solvent For example, water, an organic solvent, the mixture of water and an organic solvent, etc. are mentioned.
  • the formation method of the complex of inorganic and organic is not particularly limited. For example, after dissolving the organic raw material in a solvent, adding the inorganic raw material and adjusting to a predetermined pH, the reaction mixture is brought to a predetermined temperature. A method of carrying out the condensation polymerization reaction while holding is mentioned.
  • the reaction temperature of the polycondensation reaction varies depending on the type and concentration of the organic raw material and inorganic raw material to be used, but is usually preferably about 0 to 100 ° C., more preferably 35 to 80 ° C.
  • the reaction time for the condensation polymerization reaction is usually preferably about 1 to 24 hours.
  • the above condensation polymerization reaction may be performed either in a stationary state or in a stirring state, or may be performed in combination.
  • porous silica can be obtained.
  • the organic substance can be removed from the complex of organic substance and inorganic substance by an organic substance removing method such as a method of baking at 400 to 800 ° C. or a method of treating with a solvent such as water or alcohol.
  • the particle diameter of the particles containing a platinum group metal supported on the porous silica is preferably 95% or less, more preferably 20 to 50% of the pore diameter of the porous silica. If it exceeds 95%, particles containing a platinum group metal may grow abnormally in the pores, and the antibacterial effect may be reduced.
  • the particles containing platinum group metal supported on the porous silica are platinum, rhodium, ruthenium, palladium, iridium simple particles, or alloy particles thereof.
  • As the alloy particles ruthenium / palladium alloys and platinum / ruthenium alloys are preferable.
  • the particle diameter of the particles is preferably 0.5 nm to 10 nm, more preferably 0.5 nm to 4 nm.
  • These particles containing a platinum group metal are preferably particles containing at least one of platinum, ruthenium and iridium, and more preferably any one of platinum, ruthenium and iridium.
  • the particles containing the platinum group metal are supported on the porous silica by nucleating and growing the particles from the solution containing the platinum group metal in the presence of the porous silica before supporting the particles containing the platinum group metal. It is preferable. By doing so, particles having a uniform particle diameter can be carried in the pores of the porous silica.
  • the solution containing a platinum group metal is, for example, an aqueous solution of an inorganic acid salt such as a platinum group metal hydrochloride, nitrate or sulfate, an aqueous solution of an organic complex of a platinum group metal, or a solution with an organic solvent.
  • An aqueous solution of an inorganic acid salt is preferable from the viewpoint of handling, and an acid solution such as hydrochloric acid, nitric acid, sulfuric acid is preferable from the viewpoint of solubility.
  • a hydrochloric acid solution of a platinum group metal is used.
  • antibacterial porous material on which particles containing a platinum group metal are supported exhibits an antibacterial property and is therefore preferably used as an antibacterial agent.
  • antibacterial means “suppressing the growth of bacteria on the surface of the product”. It is distinguished from sterilization and sterilization that kill bacteria.
  • the antibacterial agent or antibacterial action in the present embodiment has an effect of suppressing the growth of bacteria or reducing the number of bacteria in a certain space or on the product surface, and the suppression of the growth may be due to death.
  • the antibacterial agent of the present embodiment includes the above-mentioned antibacterial porous material, and the antibacterial porous material may be used alone as an antibacterial agent, or a mixture with an agent having other functions, for example, other
  • the antibacterial agent made into a mixture with agents such as antibacterial agents, bactericides, fragrances, and desiccants.
  • the antibacterial membrane can be produced by mixing porous silica for an antibacterial agent with a resin to form a film.
  • the antibacterial membrane can be prepared by preparing a dispersion containing an antibacterial porous material, applying the dispersion to a support, drying the coating, and removing the support to form a film.
  • the resin include resins that can be generally used for films, such as nylon, polyester, polyethylene, polypropylene, and ethylene vinyl acetate.
  • antibacterial properties are applied to all products such as straps and handrails that are touched by an unspecified number of people, products that are touched by hands such as stationery and kitchenware, interior materials in the living environment, and textile products.
  • the processed product which has the antibacterial porous material which concerns on this embodiment is preferable as an antibacterial processed product.
  • Such an antibacterial processed product is preferable from the viewpoint of hygiene.
  • the porous material for antibacterial according to the present embodiment may be applied to any part as long as it is an inner surface or an outer surface of the processed product, and is particularly preferably applied to a surface that is easily contacted by bacteria.
  • the material of the processed product is not particularly limited, and for example, a product made of any material such as plastic, metal, ceramics, wood, concrete, and paper can be targeted.
  • a plastic substrate for example, polyvinyl chloride resin, ABS resin, AES resin, polyacrylic resin, polyurethane resin, polyethylene terephthalate, amorphous polyethylene terephthalate copolymer, completely amorphous polyester resin , Polycarbonate, polyethylene, polypropylene and the like.
  • antibacterial processed products include building materials (ceiling materials, tiles, glass, wallpaper, wall materials, floors, etc.), automotive interior materials (automotive instrument panels, automotive seats, automotive ceilings). Materials, automotive glass, etc.), household appliances (refrigerators, air conditioners, etc.), textile products (clothing, curtains, etc.), articles that can be contacted by an unspecified number of people (train straps, desk mats, table cloths, elevator buttons) Stairs, handrails in hallways, etc.).
  • an antibacterial processed product in which the base material has a porous material for antibacterial purposes as described later as the processed product is preferable.
  • Examples of the substrate include a film shape, a sheet shape, a columnar shape, a honeycomb shape, a non-woven fabric shape, a woven fabric shape, a paper shape, and a felt shape. It may be.
  • Examples of the material include metal, resin, wood, paper, fiber, natural leather, and synthetic leather.
  • the honeycomb shape here has a broad meaning and is not limited to a regular hexagon, but a three-dimensional space-filled shape in which solid figures are arranged without interruption, and has communication holes, and the shape of the holes is circular. And polygons such as a triangle, a quadrangle, a pentagon, and a hexagon.
  • the shapes of the holes may all be the same, or may have two or more of these shapes.
  • honeycomb substrate examples include a ceramic honeycomb and a paper honeycomb.
  • the ceramic honeycomb component is preferably composed of a component selected from the group consisting of cordierite, silicon carbide, silicon nitride, alumina, mullite, aluminum titanate, titania and zirconia.
  • the paper honeycomb is preferably made of paper selected from the group consisting of kraft paper, K liner paper, reinforced core base paper, water-resistant core base paper, aluminum hydroxide paper and the like.
  • paper having insulating properties is preferable, and paper having incombustibility or flame retardancy is preferable.
  • the ceramic honeycomb can be manufactured by molding the above components into a predetermined shape by extrusion molding.
  • the paper honeycomb can be manufactured by continuously molding and laminating the above paper into a flat plate shape, a wave shape, a cylindrical shape, a honeycomb shape, or the like. These are appropriately selected and used according to the application and environment.
  • a ceramic honeycomb is preferable from the viewpoint of heat resistance, and a paper honeycomb is preferable from the viewpoint of lightness.
  • the nonwoven fabric is made of, for example, aramid fiber, glass fiber, cellulose fiber, nylon fiber, vinylon fiber, polyester fiber, polyethylene fiber, polypropylene fiber, polyolefin fiber, or rayon fiber, or low density polyethylene resin, ethylene vinyl acetate resin, It consists of fibers such as polymerized polyamide resin, copolymerized polyester resin, polyphenylene sulfide resin or polyester / modacrylic resin.
  • Non-woven fabric made of aramid fiber, glass fiber, cellulose fiber, nylon fiber, vinylon fiber or polyester fiber is preferable from the viewpoint of heat resistance, and polyester / modacrylic resin from the viewpoint of being excellent in flame retardancy and cleanability from the outside air.
  • a non-woven fabric made of these fibers is more preferred.
  • Examples of paper include Japanese paper, Western paper, paper and paperboard (cardboard), and wrapping paper (wrapping paper and envelope).
  • packaging paper product packaging paper is preferable from the viewpoint of being waterproof and water-resistant, and food packaging paper is preferable from the viewpoint of being excellent in resistance to oil and lipid and flame retardancy.
  • the antibacterial porous material is not particularly limited as long as it exists in a portion that comes into contact with bacteria, but is usually applied to the surface of a processed product such as a substrate.
  • a method of manufacturing a processed product having an antibacterial porous material a method of heat-sealing the processed product and the antibacterial porous material, a method of forming an antibacterial film on the processed product, a material of the processed product and an antibacterial porous material
  • Examples include a method in which the materials are mixed in advance and then molded into the shape of the intended processed product.
  • a method of forming an antibacterial film on a processed product is preferable because antibacterial performance can be imparted to a desired portion of the processed product.
  • the place where the antibacterial film is formed is not particularly limited as long as it is a place where the antibacterial film is in contact with the bacteria, but the antibacterial film is usually provided on the surface of the processed product and may be formed on a part of the surface or on the entire surface.
  • the antibacterial porous material is dispersed in water or an organic solvent such as ethanol, and if necessary, a binder or an antisettling agent is added to prepare a dispersion.
  • a method of applying this dispersion liquid as a coating liquid to a processed product such as a substrate can be exemplified.
  • the binder contained in the coating solution examples include inorganic binders such as alumina, zirconia, and silica, polyethylene resins, polypropylene resins, acrylic resins such as methyl methacrylate, ABS resins, polyester resins such as PET, phenol resins, Examples include epoxy resins, urethane resins, vinyl acetate resins, polyvinyl alcohol, cellulose such as carboxymethyl cellulose, organic binders such as arabic rubber, urethane, phenol, and diene. Further, the coating solution may further contain an anti-settling agent such as silica or famed silica.
  • the coating solution When the coating solution is applied to the surface of the processed product, if the coating film contains an inorganic binder, drying is promoted by heating and drying the processed product after applying the coating solution under reduced pressure. Furthermore, when the coating film contains an inorganic binder, the adhesion between the coating film and the processed product is improved.
  • the compatibility between the coating film and water is reduced, the water repellency of the coating film after drying is improved, and moisture is prevented from entering the pores of the antibacterial porous material. it can. Further, when the coating film contains an organic binder, the adhesion between the coating film and the processed product is improved.
  • the anti-settling agent is added when the antibacterial porous material is wet-dispersed, and when the dispersion is dispersed in a solvent such as water or ethanol, and after the dispersion is concentrated and dried to a powder, When the dry powder is dispersed again with water, a solvent or the like to form a coating solution for a coating film, sedimentation of the dispersed powder is suppressed.
  • the anti-settling agent is present in the coating when it becomes a dry coating. When the dispersibility of the coating liquid is good, a uniform coating film can be formed, and as a result, the antibacterial effect in the antibacterial film can be improved.
  • the content of the dispersion medium is usually 300 to 20000 parts by mass, preferably 500 to 10,000 parts by mass with respect to 100 parts by mass of the antibacterial agent.
  • the dispersion medium is contained in such a range, the antibacterial agent is unlikely to settle, and is preferable from the viewpoint of volume efficiency.
  • the method of applying the coating liquid is also not particularly limited, and is applied and dispersed by a known method such as blade coating, gravure coating, reverse coating, brush roll coating, spray coating, kiss coating, die coating, dipping, bar coating, applicator, etc. What is necessary is just to volatilize a medium.
  • the film thickness of the antibacterial film is preferably 0.1 to 500 ⁇ m, more preferably 0.1 to 100 ⁇ m.
  • the amount of the organic solvent or the like to be used is usually 300 to 20000 parts by mass, preferably 500 to 10000 parts by mass with respect to 100 parts by mass of the antibacterial porous material.
  • the organic solvent or the like is contained in such a range, the antibacterial porous material is less likely to settle, and is preferable from the viewpoint of volume efficiency.
  • a base layer may be formed between the antibacterial film and the processed product, if necessary.
  • the underlayer is formed by applying an underlayer-forming coating solution containing a modified silicone or a modified silicone polymer to the surface of the processed product.
  • the film thickness of the underlayer is not particularly limited, and may be set as appropriate according to the application. Usually, it is in the range of about 20 nm to 3 mm.
  • the film thickness of the antibacterial film applied to the processed product is the same as described above.
  • a high antibacterial effect can be exhibited over a long period of time by a method such as installing the antibacterial agent in a certain space or using a processed product having a porous material for antibacterial purposes.
  • a method such as installing the antibacterial agent in a certain space or using a processed product having a porous material for antibacterial purposes.
  • an antibacterial method using an antibacterial processed product in which the above-described antibacterial film is formed on the processed product is preferable.
  • the target bacteria are Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, anthrax, tuberculosis, cholera, diphtheria, tetanus, plague, shigella, botulinum, acinetobacter, and NDM-1 Agent-resistant bacteria, enterococci, Legionella, and other pathogenic bacteria can be exemplified, and the growth of these bacteria can be suppressed.
  • Example 1 Synthesis of antimicrobial porous material carrying platinum
  • the porous silica 1 g of mesoporous silica (trade name TMPS-4R trademark registered name TMPS manufactured by Taiyo Kagaku Co., Ltd.) is suspended in 50 ml of water, and an aqueous chloroplatinic acid solution so that the supported amount of platinum particles is 1 mass% And the solution was left at room temperature overnight. Thereafter, the suspension was heated at an oil temperature of about 70 ° C. using an evaporator, and the suspension was concentrated by volatilizing the solvent under reduced pressure (3 kPa), followed by drying overnight. The resulting powder was vacuum dried at 60 ° C. for 16-18 hours.
  • the powder was heated for 2 hours in a hydrogen-nitrogen mixed gas atmosphere at a temperature of 100 ° C. to 200 ° C. while flowing nitrogen gas at 300 ml / min and hydrogen gas at 300 ml / min. Thereafter, the powder was reduced at 100 to 200 ° C. in a hydrogen atmosphere substituted with hydrogen.
  • an antibacterial porous material 1 platinum support rate 1 wt% in which platinum particles were supported on porous silica was obtained.
  • Example 2 Synthesis of antibacterial porous material carrying ruthenium
  • Example 1 an antibacterial porous material 2 was obtained in the same manner except that ruthenium chloride was used instead of chloroplatinic acid.
  • Example 3 (Synthesis of antibacterial porous material carrying iridium)
  • the antibacterial porous material 3 was obtained in the same manner except that iridium chloride was used instead of chloroplatinic acid.
  • All of the antibacterial porous materials of Examples 1 to 3 had a BET specific surface area of 807 m 2 / g, a pore diameter of 3 to 4 nm, an average pore diameter of 3.7 nm, and a total pore volume of 0.7 cm 3 / g. .
  • the specific surface area (S BET ) was measured by the BET method using an adsorption isotherm obtained by nitrogen adsorption / desorption measurement. (Average pore diameter) It was measured by the ⁇ S plot method. (Total pore volume) It measured by BJH method.
  • the BET specific surface area, average pore diameter, and total pore volume were measured using a specific surface area / pore distribution measuring device (BELSORP-mini II manufactured by Microtrack Bell Co., Ltd.).
  • Preculture was performed in a normal agar medium (manufactured by Eiken Chemical Co., Ltd.) at 35 ⁇ 1 ° C. for 18 to 24 hours.
  • the bacterial solution was prepared with purified water and inoculated with Escherichia coli NBRC 3927 (E. coli) at a cell count of 10 5 to 10 6 / ml.
  • Staphylococcus aureus subsp.
  • Aureus NBRC 12732 (Staphylococcus aureus) was prepared with a physiological saline solution and seeded at 10 5 to 10 6 / ml.
  • Antibacterial activity value log (N 0 / N) N 0 : Number of viable bacteria when no sample is added N: Number of viable bacteria after adding 1 g of sample and storing at room temperature for 24 hours Note that the sample is the sample (antibacterial) obtained in Example 1, 2 or 3 Porous material), or the sample (porous silica alone) obtained in Comparative Example 1.
  • the amount of the sample added is 1 g (that is, 1 g / 10 ml) with respect to 10 ml of the test bacterial solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Dentistry (AREA)
  • Inorganic Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catalysts (AREA)

Abstract

本開示は、光触媒作用を利用しない抗菌用多孔質材料を提供することを目的とする。本開示に係る抗菌用多孔質材料は、多孔質シリカに白金族金属を含有する粒子を担持した抗菌用多孔質材料であって、該抗菌用多孔質材料の細孔径が1~50nmであり、かつBET比表面積が300~2000m/gであることを特徴とする。

Description

抗菌用多孔質材料及びそれを含む抗菌加工製品、並びにそれを用いた抗菌方法
  本開示は、多孔質シリカに白金族金属を担持した抗菌用多孔質材料と、該抗菌用多孔質材料を含む抗菌剤、抗菌膜、抗菌加工製品及び抗菌用分散液と、これらを用いた抗菌方法とに関し、さらには抗菌加工製品の製造方法に関する。
  従来から、衛生上の観点や、食品や化粧品の保存性を高めるために各種抗菌剤が用いられており、例えば天然抗菌剤や合成抗菌剤が用いられている。一般に合成抗菌剤としては有機系抗菌剤および無機系抗菌剤が知られており、有機系抗菌剤としては、安息香酸エステル類やソルビン酸塩などが知られているが、効果の持続期間が1~2ヶ月程度と短い場合がある。また、天然抗菌剤に関しては、供給が不安定であり、生成に多くのコストがかかることが指摘されている。
 一方、無機系抗菌剤としては、銀イオン、銅イオンなどを含む抗菌剤が知られている。しかし、銀イオンや銅イオンは、光、熱、共存物質などの影響を受けやすいという問題点がある。
  また、光触媒作用を利用した抗菌剤も知られており、特許文献1には、酸化タングステンからなる抗菌剤が開示されている。この抗菌剤は、酸化タングステンの光触媒作用により、光照射下では高い抗菌性能を発揮する。しかしながら光触媒作用を利用した抗菌剤は暗所下では抗菌性能が十分でないことから、特許文献2には暗所や紫外線をカットした蛍光灯の光照射でも抗菌性能を発現する抗菌剤が開示されている。
国際公開第2009/110233号 特開2013-216596号
  光触媒作用を利用した抗菌剤の場合、必ず何らかの光照射が必要なことから、光触媒作用を利用しない抗菌剤の開発が望まれていた。
 そこで本開示は、光触媒作用を利用しない抗菌用多孔質材料を提供することを目的とする。さらに、抗菌用多孔質材料を含む抗菌剤、抗菌膜、抗菌加工製品及び抗菌用分散液を提供することを目的とする。さらに、これらを用いた抗菌方法及び抗菌加工製品の製造方法を提供することを目的とする。
  本発明者らは、鋭意検討を行った結果、多孔質シリカに白金族金属を含有する粒子を担持した抗菌用多孔質材料が上記課題を解決できることを見出し、本発明を完成するに至った。具体的には、本発明に係る抗菌用多孔質材料は、多孔質シリカに白金族金属を含有する粒子を担持した抗菌用多孔質材料であって、該抗菌用多孔質材料の細孔径が1~50nmであり、かつBET比表面積が300~2000m/gであることを特徴とする。
 本発明に係る抗菌用多孔質材料では、前記白金族金属が、白金、ロジウム、ルテニウム、イリジウム及びパラジウムから選ばれる少なくとも一種である形態を包含する。
 本発明に係る抗菌剤は、本発明に係る抗菌用多孔質材料を含むことを特徴とする。
 本発明に係る抗菌膜は、本発明に係る抗菌用多孔質材料を含むことを特徴とする。
 本発明に係る抗菌加工製品は、加工製品が本発明に係る抗菌用多孔質材料を含むことを特徴とする。
 本発明に係る抗菌加工製品では、前記加工製品が、不織布、セラミックハニカム、または、ペーパーハニカムのいずれか一つであることが好ましい。
 本発明に係る抗菌加工製品の製造方法は、本発明に係る抗菌用多孔質材料を分散した分散液を加工製品の表面に塗工して、抗菌膜を形成する工程を有することを特徴とする。
 本発明に係る抗菌加工製品の製造方法では、前記加工製品が不織布、セラミックハニカム、または、ペーパーハニカムのいずれか一つであることが好ましい。
 本発明に係る抗菌方法は、本発明に係る抗菌剤を用いることを特徴とする。
 また、本発明に係る抗菌方法は、本発明に係る抗菌用多孔質材料を分散した分散液を加工製品に塗工して、抗菌膜を形成する工程を有することを特徴とする。
 本発明に係る抗菌方法では、黄色ブドウ球菌、大腸菌、肺炎桿菌、および緑膿菌から選ばれる少なくとも1種の菌に対して抗菌性を発揮させる形態を包含する。
 本発明に係る抗菌用分散液は、本発明に係る抗菌用多孔質材料を分散した分散液であることを特徴とする。
 本開示によれば、光触媒作用を利用せずに高い抗菌性能を発揮する抗菌用多孔質材料を提供することができる。さらに本開示によれば、抗菌用多孔質材料を含む抗菌剤、抗菌膜、抗菌加工製品及び抗菌用分散液を提供することができる。さらに本開示によれば、これらを用いた抗菌方法及び抗菌加工製品の製造方法を提供することができる。
 以降、本発明について実施形態を示して詳細に説明するが本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。
  以下、本実施形態について、詳細に説明する。本実施形態の抗菌用多孔質材料は、多孔質シリカに白金族金属を含有する粒子を担持した抗菌用多孔質材料であって、抗菌用多孔質材料の細孔径(細孔直径)が1~50nmであり、かつBET比表面積が300~2000m/gである。細孔径は1~10nmが好ましく、BET比表面積は500~1500m/gが好ましい。
 また抗菌性能の観点から、白金族金属を含有する粒子を担持する前の多孔質シリカの全細孔容積は0.5~0.8cm/g、より好ましくは0.5~0.6cm/g、平均細孔径は2~10nmが好ましく、3~5nmがより好ましい。用いる多孔質シリカは粉末状であってもペレット状であってもよい。
 白金族金属を含む粒子を担持する前の多孔質シリカのBET比表面積は800m/g以上、細孔径は3nm以上の多孔質シリカを使用することが好ましい。BET比表面積および細孔径の上限は特にないが、通常、BET比表面積は1100m/g以下、細孔径は50nm以下である。
 白金族金属を含む粒子を担持する前の多孔質シリカの製造方法としては、特に限定されるものではないが、例えば特開2017-23889号公報に記載の製造方法にしたがって、製造することができる。具体的には、次のとおりである。まず、無機原料と有機原料を混合し、反応させることにより、有機物を鋳型としてそのまわりに無機物の骨格が形成された有機物と無機物の複合体を形成させる。次いで、得られた複合体から有機物を除去することにより、多孔質シリカが得られる。無機原料としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン等のアルコキシシラン、ケイ酸ソーダ、カネマイト(kanemite、NaHSi・3HO)、シリカ、シリカ-金属複合酸化物等が挙げられる。これらの無機原料はシリケート骨格を形成する。これらは、単独で又は2種以上を混合して用いることができる。鋳型として使用される有機原料は、特に限定されるものではないが、例えば界面活性剤等が挙げられる。界面活性剤は陽イオン性、陰イオン性、非イオン性のうちのいずれであってもよく、具体的には、アルキルトリメチルアンモニウム(好ましくはアルキル基の炭素数が8~18のアルキルトリメチルアンモニウム)、アルキルアンモニウム、ジアルキルジメチルアンモニウム、ベンジルアンモニウムの塩化物、臭化物、ヨウ化物又は水酸化物の他、脂肪酸塩、アルキルスルホン酸塩、アルキルリン酸塩、ポリエチレンオキサイド系非イオン性界面活性剤、一級アルキルアミン、トリブロックコポリマー型のポリアルキレンオキサイド、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル等が挙げられる。これらは、単独で又は2種以上を混合して用いることができる。無機原料と有機原料を混合する場合、適当な溶媒を用いることができる。溶媒としては、特に限定されるものではないが、例えば水、有機溶媒、水と有機溶媒との混合物等が挙げられる。無機物と有機物の複合体の形成方法は特に限定されるものではないが、例えば、有機原料を溶媒に溶解後、無機原料を添加し、所定のpHに調製した後に、反応混合物を所定の温度に保持して縮重合反応を行う方法が挙げられる。縮重合反応の反応温度は使用する有機原料や無機原料の種類や濃度によって異なるが、通常0~100℃程度が好ましく、より好ましくは35~80℃である。縮重合反応の反応時間は、通常1~24時間程度が好ましい。また、上記の縮重合反応は、静置状態、撹拌状態のいずれで行ってもよく、またそれらを組み合わせて行ってもよい。縮重合反応後に得られる複合体から有機原料を除去することによって、多孔質シリカが得られる。有機物と無機物の複合体からの有機物の除去は、400~800℃で焼成する方法、水やアルコール等の溶媒で処理する方法等の有機物除去方法により行うことができる。
 上記多孔質シリカに担持される白金族金属を含む粒子の粒子径は、上記多孔質シリカの細孔径の95%以下であることが好ましく、20~50%であることがより好ましい。95%を超えると、細孔内で白金族金属を含む粒子が異形に成長してしまうおそれがあり、抗菌効果が低下する可能性がある。
 多孔質シリカに担持させる白金族金属を含む粒子は、白金、ロジウム、ルテニウム、パラジウム、イリジウムの単体粒子、または、これらの合金粒子である。合金粒子としては、ルテニウム/パラジウム合金、白金/ルテニウム合金が好ましい。粒子の粒子径は、0.5nm~10nmであることが好ましく、より好ましくは0.5nm~4nmである。
 これら白金族金属を含む粒子は白金、ルテニウム、イリジウムの少なくとも一種を含む粒子が好ましく、白金、ルテニウムまたはイリジウムのいずれか一種の粒子がより好ましい。
 白金族金属を含む粒子は、白金族金属を含む粒子を担持する前の多孔質シリカの存在下で、白金族金属を含む溶液から核生成させて粒成長させることによって、多孔質シリカに担持させることが好ましい。こうすることによって多孔質シリカの細孔内に粒子径が揃った粒子を担持させることができる。
 白金族金属を含む溶液は、例えば、白金族金属の塩酸塩、硝酸塩、硫酸塩等の無機酸塩の水溶液、白金族金属の有機錯体等の水溶液や有機溶媒との溶液である。取り扱いの観点から無機酸塩の水溶液が好ましく、溶解性の観点から塩酸、硝酸、硫酸などの酸溶液が好ましい。通常は、白金族金属の塩酸水が使用される。
 白金族金属を含む粒子が担持された抗菌用多孔質材料は、抗菌性を発揮するため、抗菌剤として好適に使用される。抗菌とは、一般社団法人抗菌製品技術協議会のホームページ(http://www.kohkin.net)の定義によれば、「製品の表面上における細菌の増殖を抑制すること」とあり、微生物や細菌を死滅させる滅菌や殺菌と区別されている。本実施形態における抗菌剤または抗菌作用とは、ある一定の空間内または製品表面上において細菌の増殖を抑制するまたは細菌数を減少させる効果を有するものであり、増殖の抑制は死滅によってもよい。
 本実施形態の抗菌剤は上記抗菌用多孔質材料を含むものであり、該抗菌用多孔質材料をそのまま単独で抗菌剤として用いてもよいし、他の機能を有する剤との混合物、例えば他の抗菌剤、殺菌剤、芳香剤、乾燥剤等の剤との混合物とした抗菌剤でもよい。
 また本実施形態に係る抗菌用多孔質材料を含む膜(以下抗菌膜と称する場合もある)としてもよい。抗菌膜は抗菌剤用多孔質シリカを樹脂と混合しフィルム状とすることにより作製することができる。または抗菌膜は抗菌用多孔質材料を含有する分散液を調製し、支持体に塗布後、塗膜を乾燥し、支持体を除去して膜状とすることにより作製することもできる。また他の樹脂と混合してフィルム状として他のフィルムと積層する、共押出等により他の樹脂との多層フィルムを形成する、などの方法で抗菌膜(抗菌層)を形成してもよい。樹脂としては、例えば、ナイロン、ポリエステル、ポリエチレン、ポリプロピレン、エチレン酢酸ビニル等、通常、フィルムに使用できる樹脂が例示できる。
 衛生上の観点から、つり革や手すりのような不特定多数の人が触れる製品、文房具や台所用品のような手で触れる製品、住環境における内装材、繊維製品等のあらゆる製品に抗菌性を付与するために、本実施形態に係る抗菌用多孔質材料を有する加工製品が抗菌加工製品として好ましい。このような抗菌加工製品は衛生上の観点から好ましい。
  本実施形態に係る抗菌用多孔質材料は、加工製品の内表面または外表面であれば、どの部分に付与されていてもよく、特に、菌が接触しやすい面に付与されていることが好ましい。加工製品の材質は、特に限定されず、例えば、プラスチック、金属、セラミックス、木材、コンクリート、紙など、あらゆる材料からなる製品を対象にすることができる。さらに、プラスチックの基材としては、例えばポリ塩化ビニル系樹脂、ABS系樹脂、AES系樹脂、ポリアクリル系樹脂、ポリウレタン系樹脂、ポリエチレンテレフタレート、非結晶性ポリエチレンテレフタレートコポリマー、完全非晶性ポリエステル系樹脂、ポリカーボネート、ポリエチレン、ポリプロピレンなどが挙げられる。本実施形態に係る抗菌加工製品としては、具体的には建築資材(天井材、タイル、ガラス、壁紙、壁材、床など)、自動車内装材(自動車インストルメントパネル、自動車用シート、自動車用天井材、自動車用ガラスなど)、家電製品(冷蔵庫、エアコンなど)、繊維製品(衣類、カーテンなど)、不特定多数の人が接触する物品(電車のつり革、デスクマット、テーブルクロス、エレベーターのボタン、階段や廊下の手摺など)などが挙げられる。
 また抗菌効果と取り扱いやすさの観点から、加工製品として後述するような、基材が抗菌用多孔質材料を有する抗菌加工製品が好ましい。
 基材としては、その形状は例えばフィルム状、シート状、柱状、ハニカム状等の形状や不織布状、織布状、紙状、フェルト状が例示でき、塗布する表面は平滑であっても、凹凸であってもよい。その材質は金属、樹脂、木材、紙、繊維、天然皮革、合成皮革等が例示できる。
 基材としては抗菌効率の観点から、表面積が大きい基材が好ましく、取り扱いの観点からハニカム状の基材、不織布または紙が好ましい。ここでいうハニカム状とは、広義の意味であり、正六角形に限らず、立体図形を間断なく並べた三次元空間充填形状のものであって連通孔を有するものであり、孔の形状は円形や三角形、四角形、五角形、六角形等の多角形が例示できる。孔の形状は全て同じであっても、これら形状の2以上を有するものであっても良い。
 ハニカム状の基材としてはセラミックハニカムやペーパーハニカムが例示できる。セラミックハニカムの成分は、コージェライト、炭化珪素、窒化珪素、アルミナ、ムライト、アルミニウムチタネート、チタニア及びジルコニアからなる群から選ばれる成分からなるものが好ましい。
 ペーパーハニカムは、クラフト紙、Kライナー紙、強化中芯原紙、耐水中芯原紙、水酸化アルミ紙等からなる群から選ばれる紙からなるものが好ましい。またこれら紙の中でも絶縁性を有する紙が好ましく、不燃性または難燃性を有するものが好ましい。
 セラミックハニカムは上記成分を押出し成型により所定の形状に成型することで製造することができる。またペーパーハニカムは上記の紙を平板状、波形状、円柱状、蜂巣状等に連続成型積層することで製造することが出来る。これらを用途・環境に合わせて適宜選択し使用する。耐熱性の観点からセラミックハニカムが好ましく、軽量性の観点からペーパーハニカムが好ましい。
不織布は、例えば、アラミド繊維、ガラス繊維、セルロース繊維、ナイロン繊維、ビニロン繊維、ポリエステル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリオレフィン繊維又はレーヨン繊維からなり、または、低密度ポリエチレン樹脂、エチレン酢酸ビニル樹脂、共重合ポリアミド樹脂、共重合ポリエステル樹脂、ポリフェニレンスルフィド樹脂又はポリエステル/モダアクリル樹脂等の繊維からなる。耐熱性の観点からアラミド繊維、ガラス繊維、セルロース繊維、ナイロン繊維、ビニロン繊維又はポリエステル繊維からなる不織布が好ましく、難燃性や外気からの洗浄処理性に富んでいるという観点から、ポリエステル/モダアクリル樹脂の繊維からなる不織布がさらに好ましい。
 紙は、和紙、洋紙、紙と板紙(ボール紙)、包装用紙(包装紙や封筒)等の紙が例示できる。特に包装用紙においては防水や耐水性に富んでいるという観点から製品包装用紙が、また、油や脂質への耐性や難燃性に富んでいるという観点から食品包装用紙が好ましい。
 抗菌性を付与した抗菌加工製品とする場合、抗菌用多孔質材料は菌と接触する部分に存在すれば特に制限はないが、通常は基材等の加工製品の表面に付与される。
 抗菌用多孔質材料を有する加工製品を製造する方法としては、加工製品と抗菌用多孔質材料を熱融着する方法、加工製品に抗菌膜を形成する方法、加工製品の材料と抗菌用多孔質材料を予め混合したのち、目的とする加工製品の形状に成型する方法、等が挙げられる。これらの方法の中でも、加工製品に抗菌膜を形成する方法が加工製品の所望の部分に抗菌性能を付与することができることから好ましい。抗菌膜を形成する場所は菌と接触する箇所であれば特に制限はないが、抗菌膜は通常は加工製品の表面に設けられ、表面の一部分に形成されても全面に形成されてもよい。
 抗菌膜を加工製品に形成する方法としては、上記抗菌用多孔質材料を水、またはエタノール等の有機溶媒に分散させ、必要に応じてバインダーや沈降防止剤を添加して分散液を調製し、この分散液を塗布液として、基材等の加工製品に塗布する方法が例示できる。
 塗布液に含まれるバインダーとして、例えば、アルミナ、ジルコニア、シリカ等の無機バインダー、ポリエチレン系樹脂、ポリプロピレン系樹脂、メタクリル酸メチル等のアクリル系樹脂、ABS樹脂、PET等のポリエステル系樹脂、フェノール樹脂、エポキシ樹脂、ウレタン樹脂、酢酸ビニル系樹脂、ポリビニルアルコール、カルボキシメチルセルロース等のセルロース、アラビヤゴム、ウレタン、フェノール、ジエン等の有機バインダーが例示できる。また塗布液にはさらに、シリカ、フェームドシリカ等の沈降防止剤を含んでいてもよい。
 塗布液を加工製品の表面に塗布したとき、塗膜に無機バインダーを含有させていると、塗布液を塗布した後の加工製品を昇温・減圧乾燥することによって、乾燥が促進される。さらに、塗膜に無機バインダーを含有させていると、塗膜と加工製品との密着性が向上する。
 塗膜に有機バインダーを含有させると、塗膜と水の相溶性が低減し、乾燥後の塗膜の撥水性が向上し、抗菌用多孔質材料の細孔内に水分が混入することを防止できる。さらに塗膜に有機バインダーを含有させると、塗膜と加工製品との密着性が向上する。
 沈降防止剤は、抗菌用多孔質材料を湿式分散するときに、添加され、水またはエタノール等の溶媒に分散させた分散液としたとき、及び、分散液を濃縮乾燥して粉末としたのち、水、溶媒等で乾燥粉末を再度分散させて塗膜用の塗布液としたとき、分散した粉末の沈降を抑制する。沈降防止剤は乾燥した塗膜となったときに塗膜中に存在する。塗布液の分散性が良好であると、均一な塗膜を形成することができ、この結果、抗菌膜における抗菌効果を向上させることができる。
  上記塗布液において、分散媒の含有量は、抗菌剤100質量部に対して、通常300~20000質量部、好ましくは500~10000質量部である。分散媒がこのような範囲で含有される場合、抗菌剤が沈降しにくく、また容積効率の点でも好ましい。
 塗布液の塗布の方法も特に制限はなく、ブレードコーティング、グラビアコーティング、リバースコーティング、刷毛ロールコーティング、スプレーコーティング、キスコーティング、ダイコーティング、ディッピング、バーコーティング、アプリケーターなどの公知の方法で塗布し、分散媒を揮発させればよい。抗菌膜の膜厚は、0.1~500μmであることが好ましく、0.1~100μmであることがより好ましい。
  塗布液において、使用する有機溶媒等の量は、抗菌用多孔質材料100質量部に対して、通常300~20000質量部、好ましくは500~10000質量部である。有機溶媒等がこのような範囲で含有される場合、抗菌用多孔質材料が沈降しにくく、また容積効率の点でも好ましい。
  加工製品と抗菌膜との密着性を向上させる目的で、必要に応じて、抗菌膜と加工製品との間に下地層を形成してもよい。下地層は、変性シリコーンや変成シリコーンポリマーを含む下地層形成用コート液を加工製品表面に塗布することによって形成される。下地層の膜厚は、特に制限されるものではなく、その用途などに応じて、適宜設定すればよい。通常、20nm~3mm程度の範囲である。加工製品に付与する抗菌膜の膜厚は上述と同じである。
 上記抗菌剤を一定の空間内に設置する、または抗菌用多孔質材料を有する加工製品を用いる等の方法によって高い抗菌効果を長期に亘って発現することができる。抗菌効果の観点から、上記のような抗菌膜を加工製品に形成した抗菌加工製品を用いる抗菌方法が好ましい。対象となる菌は、黄色ブドウ球菌、大腸菌、肺炎桿菌、緑膿菌、炭疽菌、結核菌、コレラ菌、ジフテリア菌、破傷風菌、ペスト菌、赤痢菌、ボツリヌス菌、アシネトバクター、NDM-1産生多剤耐性菌、腸球菌、レジオネラ菌などの病原菌が例示でき、これらの菌の増殖を抑制できる。
 以下、実施例および比較例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例および比較例における各物性の測定および抗菌性活性の評価については、以下の方法で行った。
(実施例1)
(白金が担持された抗菌用多孔質材料の合成)
 多孔質シリカとして、メソポーラスシリカ(太陽化学株式会社製 商品名TMPS-4R 商標登録名TMPS)1gを50mlの水に懸濁させ、白金粒子の担持量が1質量%になるように塩化白金酸水溶液を滴下し、その溶液を室温にて一晩放置した。その後、懸濁液を、エバポレータを用いてオイル温度約70℃にて加熱し、かつ減圧(3kPa)下において、溶媒を揮発させることで懸濁液を濃縮した後、終夜で乾燥した。得られた粉末を60℃で16~18時間、真空乾燥させた。その後、窒素ガス300ml/min及び水素ガスを300ml/minで流通させながら、100℃から200℃の温度となるように水素-窒素の混合ガス雰囲気下で粉末を2時間加熱した。その後、水素で置換した水素雰囲気下において粉末を100℃から200℃で還元処理した。これにより、多孔質シリカに白金粒子を担持した抗菌用多孔質材料1(白金担持率1wt%)を得た。
(実施例2)
(ルテニウムが担持された抗菌用多孔質材料の合成)
 実施例1において、塩化白金酸の代わりに塩化ルテニウムを用いた以外は同様にして抗菌用多孔質材料2を得た。
(実施例3)
(イリジウムが担持された抗菌用多孔質材料の合成)
 実施例1において、塩化白金酸の代わりに塩化イリジウムを用いた以外は同様にして抗菌用多孔質材料3を得た。
 実施例1~3の抗菌用多孔質材料は、いずれも、BET比表面積807m/g、細孔径3~4nm、平均細孔径3.7nm、全細孔容積0.7cm/gであった。
 実施例1~3の抗菌用多孔質材料について、大腸菌および黄色ブドウ球菌に対する抗菌性活性の測定を行った。結果を表1に示した。
(比較例1)
 金属を担持しない多孔質シリカとして、メソポーラスシリカ(太陽化学株式会社製 商品名TMPS-4R 商標登録名TMPS)単体での抗菌性活性の測定を行った。使用したメソポーラスシリカのBET比表面積850m/g、細孔径3~4nm、平均細孔径3.8nm、全細孔容積0.85cm/gであった。結果を表1に示した。
(BET比表面積)
 比表面積(SBET)は窒素吸脱着測定より得られた吸着等温線を用いてBET法により測定した。
(平均細孔径)
 αSプロット法により測定した。
(全細孔容積)
  BJH法により測定した。
 なお、BET比表面積、平均細孔径及び全細孔容積は、比表面積/細孔分布測定装置(マイクロトラック・ベル株式会社製BELSORP-mini II)を用いて測定した。
(抗菌性活性の測定)
  普通寒天培地(栄研化学株式会社製)、35±1℃、18~24時間で前培養を行った。菌液は精製水で調製し、Escherichia coli NBRC 3927(大腸菌)の菌数は10~10/mlで播種した。Staphylococcus aureus subsp. Aureus NBRC 12732(黄色ブドウ球菌)は同様に、生理食塩水で菌液を調製し、10~10/mlで播種した。試験菌液10mlに、試料1gを添加して24時間室温で保存した。生菌数測定はSCDLP寒天培地(日本製薬株式会社製)を用い、混釈平板培養法にて35±1℃、二日間培養して測定した。
  抗菌活性値は(数1)の式で求めた。
  (数1)    抗菌活性値=log(N0/N)
0:試料を添加しない場合の生菌数
N:試料1gを添加し、24時間室温で保存後の生菌数
なお、試料とは、実施例1、2または3で得られた試料(抗菌用多孔質材料)、或いは比較例1で得られた試料(多孔質シリカ単体)である。
Figure JPOXMLDOC01-appb-T000001
1)試料の添加量はいずれも試験菌液10mlに対して1g(すなわち1g/10ml)である。
  上記表1から明らかなように、実施例1~3の抗菌用多孔質材料は大腸菌および黄色ブドウ球菌に対して高い抗菌性能を発揮することがわかった。

Claims (12)

  1.  多孔質シリカに白金族金属を含有する粒子を担持した抗菌用多孔質材料であって、該抗菌用多孔質材料の細孔径が1~50nmであり、かつBET比表面積が300~2000m/gであることを特徴とする抗菌用多孔質材料。
  2.  前記白金族金属が、白金、ロジウム、ルテニウム、イリジウム及びパラジウムから選ばれる少なくとも一種であることを特徴とする請求項1に記載の抗菌用多孔質材料。
  3.  請求項1又は2に記載の抗菌用多孔質材料を含むことを特徴とする抗菌剤。
  4.  請求項1又は2に記載の抗菌用多孔質材料を含むことを特徴とする抗菌膜。
  5.  加工製品が請求項1又は2に記載の抗菌用多孔質材料を含むことを特徴とする抗菌加工製品。
  6.  前記加工製品が、不織布、セラミックハニカム、または、ペーパーハニカムのいずれか一つであることを特徴とする請求項5に記載の抗菌加工製品。
  7.  請求項1又は2に記載の抗菌用多孔質材料を分散した分散液を加工製品の表面に塗工して、抗菌膜を形成する工程を有することを特徴とする抗菌加工製品の製造方法。
  8.  前記加工製品が不織布、セラミックハニカム、または、ペーパーハニカムのいずれか一つであることを特徴とする請求項7に記載の抗菌加工製品の製造方法。
  9.  請求項3に記載の抗菌剤を用いることを特徴とする抗菌方法。
  10.  請求項1又は2に記載の抗菌用多孔質材料を分散した分散液を加工製品に塗工して、抗菌膜を形成する工程を有することを特徴とする抗菌方法。
  11.  黄色ブドウ球菌、大腸菌、肺炎桿菌、および緑膿菌から選ばれる少なくとも1種の菌に対して抗菌性を発揮させることを特徴とする請求項9又は10に記載の抗菌方法。
  12.  請求項1又は2に記載の抗菌用多孔質材料を分散した分散液であることを特徴とする抗菌用分散液。

     
PCT/JP2019/004242 2018-02-09 2019-02-06 抗菌用多孔質材料及びそれを含む抗菌加工製品、並びにそれを用いた抗菌方法 WO2019156118A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980011678.0A CN111683532A (zh) 2018-02-09 2019-02-06 抗菌用多孔质材料及含有其的抗菌加工产品、以及使用其的抗菌方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-022409 2018-02-09
JP2018022409A JP2019136655A (ja) 2018-02-09 2018-02-09 抗菌用多孔質材料及びそれを含む抗菌加工製品、並びにそれを用いた抗菌方法

Publications (1)

Publication Number Publication Date
WO2019156118A1 true WO2019156118A1 (ja) 2019-08-15

Family

ID=67549729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004242 WO2019156118A1 (ja) 2018-02-09 2019-02-06 抗菌用多孔質材料及びそれを含む抗菌加工製品、並びにそれを用いた抗菌方法

Country Status (3)

Country Link
JP (1) JP2019136655A (ja)
CN (1) CN111683532A (ja)
WO (1) WO2019156118A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7219539B2 (ja) * 2018-02-09 2023-02-08 株式会社Furuya Eco-Front Technology 防カビ用多孔質材料及びそれを含む防カビ加工製品、並びにそれを用いた防カビ方法
CN112870221B (zh) * 2021-01-05 2023-03-28 中山大学附属第五医院 一种壳聚糖纳米铑材料及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09124425A (ja) * 1995-11-06 1997-05-13 Sekisui Chem Co Ltd 抗菌剤
WO2011045627A1 (en) * 2009-10-12 2011-04-21 Arce Macias, Carlos, Francisco Viricide agents having nanostructured biocatalysts materials of titanium dioxide (tio2) and silicium dioxide (si02) with platinum and iridium modified and dispersed on the surface

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128706A (ja) * 1998-10-26 2000-05-09 Toyota Central Res & Dev Lab Inc 光触媒を保持したクロス
JP2000154340A (ja) * 1998-11-20 2000-06-06 Kenji Nakamura 抗菌性無機多孔質体組成物とその使用
DE19935230C2 (de) * 1999-07-28 2003-06-26 Kallies Feinchemie Ag Biofilmhemmendes Mittel
EP1287886A1 (de) * 2001-08-09 2003-03-05 OMG AG & Co. KG Katalysator für die Reinigung der Abgase eines Verbrennungsmotors
JP4712378B2 (ja) * 2002-06-05 2011-06-29 俊夫 小室 抗血栓性を有する白金含有セラミックス組成物及びそれを含む物品
DE10353756A1 (de) * 2003-11-17 2005-06-30 Bio-Gate Bioinnovative Materials Gmbh Schichtmaterial
US20090214606A1 (en) * 2005-05-10 2009-08-27 Patrice Bujard Antimicrobial porous silicon oxide particles
JP2009061372A (ja) * 2007-09-05 2009-03-26 Taiyo Kagaku Co Ltd 一酸化炭素選択酸化触媒、及び該触媒を用いた水素中の一酸化炭素の除去方法
KR101135571B1 (ko) * 2009-12-01 2012-04-17 (주)에이씨티 항균성분이 코팅된 실리카 분말의 제조방법 및 이를 포함하는 피부 외용제 조성물
CN101731275A (zh) * 2009-12-29 2010-06-16 浙江理工大学 一种硅锌纳米介孔无机抗菌剂及其制备方法
CN101744002B (zh) * 2009-12-29 2012-11-21 浙江理工大学 一种硅锌介孔材料载银抗菌剂及制备方法
JP2011225521A (ja) * 2010-03-30 2011-11-10 Sony Corp 殺菌剤、光触媒複合材料、吸着剤及び浄化剤
CN103798289A (zh) * 2014-02-14 2014-05-21 浙江理工大学 一种载银介孔二氧化硅抗菌剂的制备方法
JP6617384B2 (ja) * 2015-07-15 2019-12-11 太陽化学株式会社 エチレン分解剤
CN105536825B (zh) * 2016-01-09 2018-11-23 深圳市康风环境科技发展有限公司 空气杀菌消毒净化用催化剂及其制备方法
CN106975496B (zh) * 2017-04-11 2019-09-27 苏州格绿新材料科技有限公司 抑菌催化还原多孔材料及其制备和在生产还原水上的应用
JP6993846B2 (ja) * 2017-11-01 2022-01-14 株式会社ファンケル 抗菌剤

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09124425A (ja) * 1995-11-06 1997-05-13 Sekisui Chem Co Ltd 抗菌剤
WO2011045627A1 (en) * 2009-10-12 2011-04-21 Arce Macias, Carlos, Francisco Viricide agents having nanostructured biocatalysts materials of titanium dioxide (tio2) and silicium dioxide (si02) with platinum and iridium modified and dispersed on the surface

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE, D. W. ET AL.: "Synthesis of Pt-containing mesoporous silica using Pt precursor as a pore- forming agent", JOURNAL OF NON-CRYSTALLINE SOLIDS, vol. 353, 1 June 2007 (2007-06-01), pages 1501 - 1507, XP022036932, doi:10.1016/j.jnoncrysol.2007.02.005 *

Also Published As

Publication number Publication date
CN111683532A (zh) 2020-09-18
JP2019136655A (ja) 2019-08-22

Similar Documents

Publication Publication Date Title
Orooji et al. Preparation of anti-adhesion and bacterial destructive polymeric ultrafiltration membranes using modified mesoporous carbon
Yoon et al. Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers
JP6911030B2 (ja) 無機/有機ハイブリッド化合物からなる抗微生物、抗ウイルス、および/または防藻材料およびその製造方法
WO2007088879A1 (ja) 消臭剤および消臭加工製品
WO2019156118A1 (ja) 抗菌用多孔質材料及びそれを含む抗菌加工製品、並びにそれを用いた抗菌方法
JP2006200834A (ja) 吸放湿性フィルタおよび加湿装置
JP5616542B2 (ja) 有害物質の吸着、分解、遮断及び脱臭用造成物及びこれの製造方法
Jamshidi et al. Antibacterial activity of a novel biocomposite chitosan/graphite based on zinc-grafted mesoporous silica nanoparticles
TWI783050B (zh) 分解材料以及使用其之分解方法
JP7219539B2 (ja) 防カビ用多孔質材料及びそれを含む防カビ加工製品、並びにそれを用いた防カビ方法
KR20170058121A (ko) 은나노-실리카 복합체를 포함하는 고기능성 항균·탈취 필터
JP2001070741A (ja) 調湿剤
JP7412692B2 (ja) 抗菌性多孔質膜およびそれを用いた抗菌コーティング材
JP4873923B2 (ja) 消臭及び/又は除菌用シート
RU2008141552A (ru) Фильтрующая среда для очистки жидкости и газа, способ ее получения и способ фильтрования
CN110093814B (zh) 一种多效室内空气质量保障纸的制备方法及得到的产品
TWM549778U (zh) 石墨烯濾材結構
JP7345995B2 (ja) 酸化チタン組成物、分散液、酸化チタン組成物を表面層に有する部材
JP2004188165A (ja) 機能性部材
JP2002028484A (ja) 脱臭フィルター
WO2019058803A1 (ja) シート
KR101647672B1 (ko) 구리계 화합물이 포함된 필터용 미세다공막
JP2005304844A (ja) 複合消臭フィルター
JP4614327B2 (ja) 多孔性焼成物の製造方法
JP2012143720A (ja) 吸着用シート及び構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19750975

Country of ref document: EP

Kind code of ref document: A1