WO2019154229A1 - 一种选择驻留小区的方法及装置 - Google Patents

一种选择驻留小区的方法及装置 Download PDF

Info

Publication number
WO2019154229A1
WO2019154229A1 PCT/CN2019/073974 CN2019073974W WO2019154229A1 WO 2019154229 A1 WO2019154229 A1 WO 2019154229A1 CN 2019073974 W CN2019073974 W CN 2019073974W WO 2019154229 A1 WO2019154229 A1 WO 2019154229A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
camping
selecting
cells
list
Prior art date
Application number
PCT/CN2019/073974
Other languages
English (en)
French (fr)
Inventor
魏璟鑫
韩磊
冯坤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19751605.7A priority Critical patent/EP3735099B1/en
Publication of WO2019154229A1 publication Critical patent/WO2019154229A1/zh
Priority to US16/989,164 priority patent/US11937173B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present application relates to the field of communications, and in particular, to a method and apparatus for selecting a camping cell.
  • the UE When performing initial receive beam scanning, the UE acquires multiple cells by scanning multiple beams, and if only the existing cell camping process is performed, the physical broadcast channel (PBCH) and the remaining minimum are sequentially decoded for the acquired multiple cells.
  • PBCH physical broadcast channel
  • RMSI Remaining Minimum System Information
  • the embodiments of the present application provide a method and a device for camping, which are convenient for reducing the delay of cell camping and improving the camping success rate.
  • a first aspect of the present application provides a method for selecting a camping cell, where the method includes: selecting N camping cells from a candidate cell list, where N is an integer not less than 2; for N camped cells Each of the cells decodes the physical broadcast channel PBCH; selects one cell from the at least one cell that is successfully decoded by the PBCH as the cell to be camped; decodes the RMSI for the cell to be camped to obtain the RMSI decoding result; when the RMSI decoding result When the continuing to camp resident cell indicates that the camping criterion is met, determining that the continuing to camp resident cell is the camping cell.
  • the cell camping method first selects a cell to be camped from the candidate cell list, and then decodes the PBCH for each selected cell to be camped, and then selects a cell to decode the RMSI from the cell in which the PBCH decoding succeeds, and when the RMSI decoding succeeds, This cell acts as a camping cell. Since the cell for decoding the RMSI is selected by two selection processes, the probability of successful RMSI decoding is improved, thereby improving the success rate of cell camping, avoiding attempted camping on multiple cells, and reducing the cell camping delay. .
  • the method before selecting the N cells to be camped from the candidate cell list, the method further includes: obtaining an initial cell list by using an initial receive beam scan; and using the initial cell list and the forbidden cell list of the terminal Obtaining the candidate cell list; further, selecting the N to camped cells from the candidate cell list comprises: selecting, by the candidate cell list, the N to camped cells according to the signal strength measurement value of the cell. .
  • the cells in the restricted cell list of the terminal in the cell list obtained by the initial receive beam scanning are screened out, and further, the cell to be camped is selected according to the strength of the cell signal, and the subsequent camping process is performed, so that the signal can be avoided. Wasting time on cells that are weak or prohibited from camping, reducing the cell camping delay and improving the cell resident success rate.
  • the blocked cell list of the terminal includes at least one of the following: the historical PBCH decoding result indicates that the cell is prohibited from camping; or the historical PBCH decoding result indicates that the camping is not prohibited, but the historical RMSI Decoding failed.
  • obtaining the candidate cell list based on the initial cell list and the forbidden cell list of the terminal includes: if any cell is in the initial cell list and not in the forbidden cell list, determining the A cell is located in the candidate cell list.
  • obtaining the candidate cell list based on the initial cell list and the forbidden cell list of the terminal includes: if any cell is in the initial cell list and in the forbidden cell list, but any If the cell does not currently meet the forbidden condition, it is determined that the any cell is located in the candidate cell list. .
  • the selecting the N to camped cells according to the signal strength and weakness metric of the cell in the candidate cell list includes: calculating the signal strength metric of each cell in the candidate cell list; The signal strength metric is located in the first N bits of the cell as the N camped cells.
  • the selecting the N to camped cells according to the signal strength and weakness metric of the cell in the candidate cell list includes: calculating the signal strength metric of each cell in the pre-obtained cell list. And selecting, as the to-be-resident cell, a cell whose signal strength and weakness metric is greater than a preset threshold to be camped on.
  • the method before selecting the N cells to be camped in the candidate cell list, the method further includes: acquiring the candidate cell list by using an initial receive beam scan; and selecting N candidate cells from the candidate cell list.
  • the camped cell includes: selecting, from the candidate cell list, M pre-resident camps according to the signal strength and weakness metric of the cell, where M is not less than N; and banned from the M pre-resident cells according to the terminal
  • the cell list selects the N camped cells.
  • selecting the N to-be-resident cells according to the forbidden cell list of the terminal from the M pre-resident cells includes: the M pre-resident cells located in the terminal The cells in the forbidden cell list are removed, and the N cells to be camped are obtained.
  • the list of forbidden cells stored in the terminal is obtained based on historical prior information, and some cells are repeatedly displayed in the process of historical camping to be prohibited from camping, and such a cell may be included in the list of forbidden cells to avoid Wasting time on the banned community.
  • selecting one cell from the at least one cell that is successfully decoded by the PBCH as the continuation of the camping cell includes: selecting, from the at least one cell that the PBCH is successfully decoded, the result of the decoding result indicated by the PBCH The cell that is camped on is prohibited; the cell with the highest signal strength metric is selected as the cell to be camped from the cell that is not prohibited from camping.
  • the method further includes: when the RMSI is decoded for the continuing to camp cell and fails for the first time, acquiring a cell list by initial receiving beam scanning, and continuing cell camping; If the number of failed RMSI attempts to continue to camp on the cell exceeds one, the camp fails.
  • the signal strength metric includes at least one of a reference signal received power RSRP, a reference signal received quality RSRQ, or a signal to interference and noise ratio SINR.
  • the PBCH decoding result includes at least one of a prohibited state of the cell or configuration information of the RMSI.
  • the second aspect of the present application provides an apparatus for selecting a camping cell, where the apparatus includes: a first selecting module, configured to select N camping cells from a candidate cell list, where N is an integer not less than 2; a first decoding module, configured to decode a physical broadcast channel PBCH for each of the N cells to be camped; and a second selecting module, configured to select one cell from the at least one cell that is successfully decoded by the PBCH to continue to camp a second decoding module, configured to decode the RMSI of the continuing to-be-resident cell to obtain an RMSI decoding result, and a determining module, configured to determine, when the RMSI decoding result indicates that the continuing to-be-resident cell satisfies a camping criterion
  • the cell to be camped on is the camped cell.
  • the cell camping device first selects a cell to be camped from the candidate cell list, and then decodes the PBCH for each selected cell to be camped, and then selects a cell to decode the RMSI from the cell with successful PBCH decoding, and completes when the RMSI decoding succeeds.
  • the cell resides. Since the cell for decoding the RMSI is selected by two selection processes, the probability of successful RMSI decoding is improved, thereby improving the success rate of cell camping, avoiding attempted camping on multiple cells, and reducing the cell camping delay. .
  • the apparatus further includes: a first acquiring module, configured to obtain an initial cell list by using an initial receiving beam scan; and a second acquiring module, configured to use the initial cell list and the blocked cell list of the device Obtaining the candidate cell list; the first selecting module is specifically configured to select the N to camped cells according to the signal strength and weakness metric of the cell from the candidate cell list.
  • the blocked cell list of the device includes at least one of the following: the historical PBCH decoding result indicates that the cell is prohibited from camping; or the historical PBCH decoding result indicates that the camping is not prohibited, but the historical RMSI Decoding failed.
  • the list of forbidden cells stored in the device is obtained based on historical prior information, and some cells are repeatedly displayed in the process of historical camping to be prohibited from camping, and such a cell may be included in the list of forbidden cells to avoid Wasting time on the banned community.
  • the second obtaining module is specifically configured to: if any cell is in the initial cell list and not in the forbidden cell list, determine that any cell is located in the candidate cell list.
  • the second obtaining module is specifically configured to: if any cell is in the initial cell list and in the forbidden cell list, but the cell does not currently meet the forbidden condition, then determine The any cell is located in the candidate cell list.
  • the first selection module is specifically configured to: calculate the signal strength and weakness metric value of each cell in the candidate cell list; and select a cell in which the signal strength metric value is located in the first N bits as the N camps to be camped on.
  • the device further includes: an obtaining module; the acquiring module is configured to obtain the candidate cell list by using an initial receiving beam scan; the first selecting module is specifically configured to: according to the cell from the candidate cell list The signal strength and weakness metrics are selected from the M pre-resident cells, where M is not less than N; and the N to-be-resident cells are selected according to the forbidden cell list of the terminal from the M pre-resident cells.
  • the second selection module is specifically configured to: select, from the at least one cell that the PBCH is successfully decoded, a cell that is not prohibited from camping indicated by the decoding result of the PBCH; The cell with the strongest signal strength metric is selected as the cell to be camped in the reserved cell.
  • Selecting the cell that is not forbidden and the strongest signal is used as the RMSI to continue to camp on the cell, to avoid wasting time on the forbidden cell, and the cell with the strongest signal has a higher probability of decoding the RMSI, and the cell staying is reduced. Delay, improve the success rate of cell resident.
  • the signal strength metric includes at least one of a reference signal received power RSRP, a reference signal received quality RSRQ, or a signal to interference and noise ratio SINR.
  • a third aspect of the present application provides an apparatus for selecting a camping cell, the apparatus comprising: a processor configured to read a software instruction stored in a memory, execute the software instruction to: operate from a candidate cell Selecting N cells to be camped in the list, where N is an integer not less than 2; decoding a physical broadcast channel PBCH for each of the N camping cells; selecting one of at least one cell successfully decoded by the PBCH Determining the RMSI as a continuation to be camped on the cell to obtain the RMSI decoding result; and determining, when the RMSI decoding result indicates that the continuation of the cell to be camped meets the camping criterion, determining that the cell to be camped is Resident cell.
  • a processor configured to read a software instruction stored in a memory, execute the software instruction to: operate from a candidate cell Selecting N cells to be camped in the list, where N is an integer not less than 2; decoding a physical broadcast channel PBCH for each of the N camping cells; selecting one of at least
  • the apparatus further includes a memory for storing program instructions for driving the processor to perform the operations described above.
  • the memory comprises at least one of a computer readable storage medium, a floppy disk device, a hard disk device, an optical disk device, or a magnetic disk device.
  • the processor is further configured to perform the method described in any of the possible designs of the first aspect above.
  • a fourth aspect of the present application provides a computer readable storage medium having stored therein instructions that, when executed on a computer or processor, cause the computer or processor to perform the first aspect as described above Or the method described in any of its possible designs.
  • a fifth aspect of the present application provides a computer program product comprising instructions which, when run on a computer or processor, cause the computer or processor to perform as in the first aspect described above or in any of its possible designs The method described.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of hardware of an access network device 20 and a terminal 30 in communication according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of multi-beam communication between a base station and a terminal according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a time-frequency structure of a synchronization signal block SSB according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of a method for selecting a camping cell according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of another method for selecting a camping cell according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of an apparatus for selecting a camped cell according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another apparatus for selecting a camping cell according to an embodiment of the present disclosure.
  • At least one of a, b or c may mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, c can be single or multiple.
  • the communication system 100 includes an access network device 20 and one or more terminals 30 coupled to the access device 20.
  • the access network device 20 is a wireless network node capable of providing the terminal 30 with, for example, voice calls, video, data, messaging, broadcast, or other various wireless communication services. Since mobile communication is also called cellular communication, the access network device 20 can form one or more cells and serve multiple terminals 30 present within the cell. Illustratively, the access network device 20 can be a base station, a relay station, or other wireless access point or the like.
  • the base station supports various types of wireless communication protocols, such as a base transceiver station (Base Transceiver Station, BTS) in a Global System for Mobile Communication (GSM) or Code Division Multiple Access (CDMA) network.
  • BTS Base Transceiver Station
  • GSM Global System for Mobile Communication
  • CDMA Code Division Multiple Access
  • the NB in the Wideband Code Division Multiple Access (WCDMA), or the eNB or the eNodeB (Evolutional NodeB) in the Long Term Evolution (LTE), or It is an eNB in IoT or NB-IoT.
  • the access network device 20 may also be a gNB (New Radio Node B) in a 5th generation (5th generation) mobile communication network, and each gNB has multiple transmission and reception points (TRPs).
  • the access network device 20 may also be the transmitting and receiving station TRP, and the access network device may also be a network device in a publicly evolved Public Land Mobile Network (PLMN).
  • PLMN publicly evolved Public Land Mobile Network
  • the terminal 30 is also called a user equipment (UE), and may be an access terminal, a terminal unit, a terminal station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a wireless communication device, a terminal agent, or a terminal device. Wait.
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a global positioning system. (Global Positioning System, GPS), cameras, audio players, and other types of products such as handheld devices, in-vehicle devices, and wearable devices with wireless communication capabilities, terminals in future 5G networks, or terminals in future evolved PLMN networks.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the common form of the terminal 30 is a smart terminal, including a mobile phone, a tablet computer, or a wearable device, which is not specifically limited in this embodiment of the present application.
  • the terminal 30 can support at least one of the above various types of wireless communication protocols supported by the access network device 20 to implement communication with the access network device 20.
  • FIG. 2 is a schematic diagram showing the hardware structure of the access network device 20 and the terminal 30 provided by the embodiment of the present application.
  • the terminal 30 includes at least one processor 301, at least one memory 302, and at least one transceiver 303.
  • the terminal 30 may further include one or more antennas 31, an output device 304, and an input device 305.
  • the processor 301, the memory 302, and the transceiver 303 are coupled by a connector, and the connector may include various types of interfaces, transmission lines, or buses, etc., which are not limited in this embodiment.
  • the memory 302 can exist independently and coupled to the processor 301 via a connector. Alternatively, the memory 302 can also be integrated with the processor 301. It should be understood that in various embodiments of the present application, coupling refers to interconnections in a particular manner, including being directly connected or indirectly connected through other devices.
  • the processor 301 is configured to control a radio frequency circuit (not shown in the figure, which may be included in the transceiver 303 to implement radio frequency processing) to receive and transmit signals through one or more antennas 31, and the processor 301 is further configured to process the foregoing.
  • Signals for example, can decode, modulate, or otherwise various known signal processing procedures, as well as new signal processing procedures that may occur in the future.
  • the processor 301 can be used to implement part or all of the operations of the embodiments of the present application, for example, to implement PBCH decoding, RMSI decoding, receive beam scanning, and the like.
  • a communication processor 3010 can be included in the processor 301.
  • the processor 301 may include at least one of the following types: a central processing unit (CPU), a digital signal processor (DSP), a microprocessor, and a microcontroller (Microcontroller Unit, MCU), or microprocessor.
  • the processor 301 can be a single-CPU processor or a multi-core processor.
  • the processor 301 can be a processor group of a plurality of processors coupled to each other by one or more buses.
  • the processor may include an Analog-to-Digital Converter (ADC), a Digital-to-Analog Converter (DAC) to implement signal connection between different components of the device;
  • ADC Analog-to-Digital Converter
  • DAC Digital-to-Analog Converter
  • the plurality of processors or units included in the processor 301 may be integrated in one chip or on a plurality of different chips.
  • the chip involved in the embodiment of the present application is a system fabricated on the same semiconductor substrate by an integrated circuit process, also called a semiconductor chip, which may be fabricated on the substrate by an integrated circuit process (usually, for example, silicon).
  • the integrated circuit may include various functional devices, each of which includes a logic gate circuit, a metal-oxide-semiconductor (MOS) transistor, a bipolar transistor or a diode, and may also include a capacitor and a resistor. Or other components such as inductors.
  • MOS metal-oxide-semiconductor
  • bipolar transistor or a diode may also include a capacitor and a resistor. Or other components such as inductors.
  • Each functional device can work independently or with the necessary driver software to implement various functions such as communication, computing, or storage.
  • the memory 302 can be used to store computer program instructions, including a computer operating system (OS), various user applications, and various types of computer program code for executing the program code of the present application; the memory 302 can also For storing user data, such as calendar information, contact information, and the like; optionally, the memory 302 can also be used to store a list of forbidden cells, a list of cells acquired by initial receive beam scanning, and the like, and the memory 302 can also be used to store some or all of the pre-preparations.
  • the parameter information is set, for example, the number of selected cells to be camped by the terminal, the judgment threshold of the cell resident, and the like.
  • the processor 301 can execute the computer program code stored in the memory 302, and the various types of computer program code being executed can also be considered as the driver of the processor 301.
  • processor 301 can be used to execute computer program code stored in memory 302 to implement the methods in subsequent embodiments of the present application.
  • the computer program code is large in number and can form computer executable instructions executable by at least one of the processors 301 to drive the associated processor to perform various types of processing, such as communication signals supporting the various types of wireless communication protocols described above. Processing algorithms, operating system runs, or application runs.
  • the processor 301 can implement related processing functions based on preset parameter information stored in the memory 302.
  • the memory 302 can be a non-power-down volatile memory, such as an Embedded Multi Media Card (EMMC), a Universal Flash Storage (UFS), or a Read-Only Memory (Read-Only Memory).
  • EMMC Embedded Multi Media Card
  • UFS Universal Flash Storage
  • Read-Only Memory Read-Only Memory
  • ROM Read-Only Memory
  • RAM random access memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • optical storage including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • disk storage media or other magnetic storage devices or capable of carrying or storing program code in the form of instructions or data structures and capable of Any other computer readable storage medium accessed by a computer, but is not limited thereto.
  • the transceiver 303 which can be any device for implementing communication signal transceiving, can include a radio frequency circuit that can be coupled to the antenna 31.
  • the transceiver 303 includes a transmitter Tx and a receiver Rx.
  • the transceiver 303 implements receiving and receiving signals under the driving of the processor 301.
  • one or more antennas 31 are used to receive radio frequency signals
  • the receiver Rx of the transceiver 303 is configured to receive the radio frequency signals from an antenna and convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals
  • the digital baseband signal or digital intermediate frequency signal is provided to a communication processor 3010 included in the processor 301 for the communication processor 3010 to further process the digital baseband signal or the digital intermediate frequency signal, such as demodulation processing and decoding processing. .
  • the transmitter Tx in the transceiver 303 is further configured to receive the modulated digital baseband signal or digital intermediate frequency signal from the communication processor 3010, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal and pass One or more antennas 31 transmit the radio frequency signals.
  • the receiver Rx may selectively perform one or more stages of downmix processing and analog to digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal, the downmix processing and the analog to digital conversion processing. The order is adjustable.
  • the transmitter Tx can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or the digital intermediate frequency signal to obtain a radio frequency signal, the upmixing processing and the digital to analog conversion processing.
  • the order is adjustable.
  • Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • Output device 304 is in communication with processor 301 and can display information in a variety of ways.
  • the output device 304 can be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector.
  • Input device 305 is in communication with processor 301 and can accept user input in a variety of ways.
  • input device 305 can be a mouse, keyboard, touch screen device, or sensing device, and the like.
  • the antenna 31 may be an antenna array having multiple antenna elements, and the multiple antenna elements apply multiple sets of beamforming weights to form a plurality of beams. Specifically, when the terminal 30 is a 5G terminal, the antenna 31 is a large-scale antenna array, and is generated. Multiple receive and transmit beams.
  • Access network device 20 includes at least one processor 201, at least one memory 202, at least one transceiver 203, one or more antennas 21, and at least one network interface 204.
  • the antenna 21 may be an antenna array having multiple antenna elements.
  • Processor 201, memory 202, transceiver 203, and network interface 204 are coupled by a connector.
  • the network interface 204 is configured to be coupled to the core network device 10 via a communication link, such as an S1 interface. Or the network interface 204 is connected to the network interface of other access network devices via a wired or wireless link, such as an X2 interface.
  • the connection mode is not shown in the figure, and the embodiment of the present application does not specifically limit the specific connection mode.
  • the related description of the antenna 21, the processor 201, the memory 202, and the transceiver 203 can refer to the description of the antenna 31, the processor 301, the memory 302, and the transceiver 303 in the terminal 30 to implement similar functions, for example, the processor 201 can A communication processor is included for polar coding the information or data that needs to be sent to the terminal 30 to obtain a coded sequence, and modulating the coded sequence to generate modulated data for transmission to the antenna through the transmitter Tx in the transceiver 303. .
  • the embodiment of the present application can be extended to more communication application scenarios, which is not limited in this embodiment.
  • the following embodiments mainly use a mobile communication scenario as an example, the user can be understood in any communication scenario.
  • the communication device used can be regarded as a user device, and the peer device that communicates with the device held by the user can be regarded as an access network device. Therefore, the above communication application scenario is only for convenience of description, and is not used to strictly limit the embodiment.
  • the base stations mentioned in the embodiments of the present application are all examples of the access network device 20, and the base station can be replaced with any of the foregoing access network devices 20.
  • the network end mentioned in the embodiment of the present application may include the access network device 20, and may further optionally include a core network device.
  • both the 5G base station and the 5G terminal configure the antenna array, and in order to counter the path attenuation and effectively increase the signal coverage, the base station usually uses a plurality of narrow beams with different pointing directions.
  • the base station usually uses a plurality of narrow beams with different pointing directions.
  • there are also a plurality of narrow beams with different pointing directions on the terminal side which means that in the 5G communication system, to achieve efficient communication between the base station and the terminal, it is necessary to select an appropriate beam from among multiple beams.
  • FIG. 3 is a schematic diagram of a multi-beam communication provided by an embodiment of the present application.
  • the base station specifically refers to the access network device 20, and the terminal 1 and the terminal 2 specifically refer to the foregoing terminal 30.
  • the base station 20 in FIG. 3 is a 5G base station
  • the terminal 30 is a 5G terminal
  • the beam mode transmits data to each other on resources in the high frequency band.
  • the base station 20 may transmit related system information, cell resources, and downlink data to be transmitted on multiple downlink transmit beams.
  • the terminal 30 scans multiple receive beams.
  • the system information, the cell resource, and the downlink data sent by the base station are received by the appropriate receiving beam to implement a cell search, a cell synchronization, and a cell camping process.
  • the terminal needs to select an appropriate one.
  • the uplink transmit beam transmits uplink data
  • the base station needs to select an uplink beam sent by the corresponding uplink receive beam receiving terminal.
  • the downlink transmission in the embodiment of the present application refers to the transmission of the base station to the terminal, including but not limited to the transmission of data and control signaling
  • the uplink transmission refers to the transmission of the terminal to the base station, including but not limited to data and Control signaling transmission.
  • the base station uses a total of 8 beams of t1-t8.
  • the base station sequentially uses different directed beams to transmit radio signals, so the base station needs to perform downlink transmit beam scanning to select the most aligned one terminal. Good transmit beam.
  • the terminal also uses a plurality of differently directed beams.
  • the terminal 1 uses four beams of r1-r4, and the terminal 2 uses four beams of u1-u4, and the two terminals respectively need to perform downlink receiving beams. The scan selects the best downlink receive beam.
  • the optimum downlink transmit-receive beam pairs corresponding to terminal 1 and terminal 2 in Fig. 3 are (t4, r3) and (t6, u2), respectively. It should be understood that the number of beams on the base station side and the terminal side is only one case enumerated in the embodiment of the present application, and the actual number of beams may be various. Similarly, the number of base stations and terminals does not provide any technical solution provided by the present application. The composition is limited.
  • the terminal When the terminal needs to reside in a certain cell, the terminal performs initial receive beam scanning near a certain frequency point to acquire cell resources around the frequency point. Generally, the terminal does not perform cell resident judgment on all obtained cells.
  • the preset number of the to-be-resident cells is selected from the obtained cell resources, and the preset number is stored in the terminal. For example, the selected to-be-resident cell is the strongest signal in the cell resource.
  • FIG. 4 is a schematic diagram of the time-frequency structure of the SSB according to the embodiment of the present application.
  • each SSB includes four time-domain adjacent symbols, which are respectively a Primary Synchronization Signal (PSS)-PBCH-Secondary Synchronization Signal ( Secondary Synchronization Signal (SSS)-PBCH, which occupies 4 Orthogonal Frequency Division Multiplexing (OFDM) symbols and numbers from 0 to 3 in ascending order.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • OFDM Orthogonal Frequency Division Multiplexing
  • the PSS occupies the OFDM symbol of 0, and the SSS occupies the 2nd.
  • the OFDM symbol, the PBCH occupies the OFDM symbols No. 1 and No. 3, and also has a part of the PBCH in the No. 2 OFDM symbol.
  • the SSB is mapped to the corresponding subcarriers from low to high resource elements (Resource Element, RE); the SSB continuously occupies 240 consecutive frequency domain REs (corresponding to the subcarrier number 0-239 in FIG. 4) .
  • RE Resource Element
  • the OFDM symbol No. 2 On the OFDM symbol No. 0, within 240 REs, REs outside the PSS do not place data; on the OFDM symbol No. 2, there are 8 and 9 REs at the intersection of SSS and PBCH, and no data is placed. .
  • there is a 1 bit flag in the PBCH payload of the NR to indicate whether the corresponding cell is prohibited from camping.
  • the SSB time-frequency structure shown in FIG. 4 is only an example, and the SSB may have other forms of frame structure, which is not limited in this embodiment of the present application.
  • the base station periodically sends multiple SSBs. During the period, the base station can transmit in different transmit beam directions for different SSBs. The same SSBs in the period correspond to the same transmit beam direction.
  • the UE receives the SSB on each receive beam for cell search.
  • the cell search process is a process in which the UE acquires a physical cell identifier (PCI) and completes downlink synchronization, that is, the UE and the cell complete synchronization in time and frequency.
  • PCI physical cell identifier
  • the UE needs to receive the following synchronization signals: PSS and SSS. After the UE receives the PSS and the SSS, it can decode the PCI and complete the downlink synchronization.
  • the UE decodes the PBCH for the cell, and obtains a Master Information Block (MIB).
  • MIB includes some of the most important system parameters in the system and some premise parameter information required to continue to acquire the system message. For example, the MIB may It includes the prohibited state of the cell, the system frame number, and the configuration information of the RMSI.
  • SIBs System Information Blocks
  • the SIB1 message can be roughly classified into cell access related information, cell selection information, and cell. Bandwidth information, etc.
  • the time to decode the PBCH for the cell is about 150 milliseconds, and the time to decode the RMSI for the cell is about seconds.
  • the decoding of the PBCH is successful for a certain cell and the decoding of the RMSI fails, the replacement cell continues to try to camp on the process.
  • the camping criterion for the cell selection may be an S criterion, where the S criterion includes an assessment of the cell signal power and an evaluation of the cell service level.
  • the S criterion includes an assessment of the cell signal power and an evaluation of the cell service level.
  • the criteria for selecting a camping cell may have other criteria in addition to the S criterion, as long as the signal strength (including signal quality, signal power, etc.) and service level of the selected cell satisfy the communication requirements.
  • the PBCH and the RMSI are sequentially solved for the cell acquired in the initial receive beam scanning process, the PBCH and the RMSI are first solved for the first cell, and whether the PBCH and the RMSI are decomposed for the second cell according to the decoding result, when the cell signal fluctuates,
  • the cell that tries to camp first decodes the PBCH successfully, but when the RMSI fails to be decoded, the terminal wastes time on the cell that does not solve the RMSI, increasing the delay of cell camping.
  • FIG. 5 is a schematic flowchart of a method for selecting a camping cell according to an embodiment of the present application.
  • the embodiment of the present application describes a method for camp resident in the form of a step, although in the method flow.
  • the order of the method is illustrated in Figure 5, but in some cases, the steps described may be performed in a different order than herein.
  • the method for selecting a camping cell includes the step 501: obtaining an initial cell list by using an initial receive beam scan.
  • the terminal performs initial receive beam scanning near a certain frequency point to obtain all searchable cells near the frequency point, and all the searchable cells form an initial cell list.
  • the initial cell list is a set of all searchable cells, and the list mentioned in the embodiment of the present application has the same meaning as the “set” in mathematics.
  • the certain frequency point may be obtained by the terminal according to the frequency point measurement, or may be obtained according to the a priori information.
  • the method for obtaining the frequency of the receiving beam scanning is not limited in the embodiment of the present application.
  • the UE receives the SSB on each receive beam for cell search, acquires PCI based on cell search, and completes downlink synchronization.
  • the searched physical cell identifier PCI may be included in the initial cell list.
  • the method for selecting a camping cell includes the step 502 of acquiring a candidate cell list based on the initial cell list and the forbidden cell list of the terminal.
  • the initial cell list obtained by the terminal through the initial receive beam scan may include a forbidden cell, remove the forbidden cell in the initial cell list, and perform subsequent cell camping process, thereby avoiding wasting time on the forbidden cell and reducing the cell resident The delay of staying.
  • the terminal usually stores a list of forbidden cells, where the forbidden cell list includes a forbidden cell.
  • the forbidden cell may be determined according to a priori information. When some of the forbidden cells are identified in the process of cell camping near the frequency point, the forbidden cells are added to the list of forbidden cells of the terminal.
  • the forbidden reason of the cell in the forbidden cell list may include: the historical PBCH load of the cell indicates that the cell is prohibited from camping, or the historical PBCH load of the cell indicates that the cell is not prohibited from camping, but the cell history RMSI decoding fails.
  • the RMSI decoding failure means that the decoding failure does not result in a reasonable decoding result; or the historical RMSI decoding result of the cell indicates that the cell does not comply with the resident criterion.
  • the PBCH load indicates that the forbidden cell is notified by the network to the terminal, and the part of the cell is unchangeable in the list of forbidden cells, and the cell that is listed in the forbidden cell list due to the decoding of the RMSI failure may be updated.
  • this part of the cell may be a failure of decoding RMSI due to signal fluctuation, after a period of fluctuation is eliminated, the decoding may be successful, or after a period of time, the signal of the cell that originally failed to decode the RMSI becomes better, and decoding the RMSI may succeed.
  • the cell in the forbidden cell list may be unconditionally prohibited from camping, that is, the part of the cell is always prohibited from camping; optionally, the cell in the forbidden cell list is prohibited from being stationed when certain conditions are met. For example, a cell is located in the list of forbidden cells. When the signal strength of the cell is less than the preset threshold, the cell is forbidden to camp, and when the signal strength of the cell is greater than The preset threshold is not preset to be reserved.
  • the preset threshold may be preset by the terminal.
  • obtaining the candidate cell list based on the initial cell list and the forbidden cell list of the terminal includes: determining whether the cell in the initial cell list is in the forbidden cell list of the terminal, if a certain cell is in the initial cell list, but not in the In the list of forbidden cells, the cell is listed in the candidate cell list; optionally, if the cell in the initial cell list is in the forbidden cell list, but the cell does not currently meet the forbidden condition, for example, the cell The current signal strength metric is greater than the preset threshold. At this time, although the cell is in the forbidden cell list, but is not prohibited from camping, the cell is also listed in the candidate cell list; in an optional case.
  • the terminal presets a threshold Thres.
  • the cell can be considered as not meeting the forbidden condition at this time. Further, the cell can be listed in the candidate cell list.
  • the method for selecting a camping cell includes the step 503 of selecting, from the candidate cell list, N camping cells according to a signal strength metric of the cell.
  • the candidate cell list is obtained after removing the cell located in the forbidden cell list in the initial cell list obtained by the initial receive beam scan.
  • the terminal does not perform cell camping judgment on all cells in the candidate cell list, but selects multiple cells as the to-be-resident cell and tries to perform the cell again.
  • some preset parameters are stored in the terminal.
  • these preset parameters may include the number of cells to be camped by the terminal. It should be understood that N is the number of actually selected cells to be camped. When the number of cells to be camped is actually selected, the preset parameters stored in the terminal may be taken. Optionally, the number of cells to be camped is also selected. Can be smaller than the preset parameter. For example, if the preset number of terminals is Num, the number N of actually selected cells to be camped should not exceed Num.
  • the signal strength metric includes: reference signal received power. (RSRP), at least one of a Reference Signal Received Quality (RSRQ) or a Signal to Interference plus Noise Ratio (SINR).
  • RSRP reference signal received power.
  • RSRQ Reference Signal Received Quality
  • SINR Signal to Interference plus Noise Ratio
  • the signal strength metric may also be Other variables indicating signal quality or power are not limited in this embodiment of the present application.
  • the cells in the candidate cell list may be sorted based on the signal strength metric, and then the cell with the signal strength of the first N bits is selected as the cell to be camped.
  • the ordering in this example may be a sorting from large to small, or may be a sorting from small to large, as long as the cell with the signal strength of the first N bits can be selected as the cell to be camped.
  • the sorting method is not limited.
  • a threshold may be set. When the cell in the candidate cell list is greater than the threshold, the corresponding cell is selected as the to-be-resident cell.
  • the method of selecting a camped cell includes the step 504 of decoding a physical broadcast channel PBCH for each of the N camped cells.
  • the MIB By decoding the physical broadcast channel PBCH for the cell, the MIB can be obtained to understand the specific configuration of the cell, and the system frame number (SFN) and the RMSI configuration information can be obtained through the received MIB, and the PBCH can be decoded. Knowing the banned state of the cell, for example, there is a 1-bit flag in the PBCH payload of the cell to indicate whether the corresponding cell is prohibited from camping.
  • the method for selecting a camping cell includes the following step 505: determining whether all the cells to be camped to decode the PBCH fail.
  • step 506 is performed.
  • the method for selecting a camping cell includes the step 506 of selecting a cell from the at least one cell that is successfully decoded by the PBCH as the cell to be camped on.
  • the cell to be camped is selected from the cells with successful PBCH decoding. It should be understood that the cell to be camped on will continue to be resident.
  • the cell of the process ie after decoding the PBCH, will continue to decode the cell of the RMSI.
  • selecting a cell from the cell that is successfully decoded by the PBCH as the cell to be camped includes: selecting a cell that is not prohibited from camping based on the PBCH decoding result in the cell that is successfully decoded by the PBCH, which has been mentioned in the foregoing embodiment.
  • the PBCH load has a 1 bit flag to indicate whether the corresponding cell is forbidden to camp. For example, the PBCH load indicating the cell that is not prohibited from camping is selected from the cells with successful PBCH decoding.
  • selecting a cell from the cell that is successfully decoded by the PBCH as the continuation of the cell to be camped further includes: selecting, from the selected cell that is not forbidden to camp, the cell with the highest signal strength metric as the continuation The cell to be camped on.
  • the cell with the largest signal strength measurement metric may be the cell with the highest received signal power RSRP, or the cell with the best received signal quality RSRQ, or the cell with the largest signal to interference and noise ratio SINR. Selecting the cell with the largest signal strength metric as the continuation of the cell to be camped and continuing the subsequent cell homing process can improve the success rate of the cell camping, and avoid wasting time on the weaker cell and reducing the cell resident time. Delay.
  • the method for selecting the camped cell includes the step 507 of decoding the RMSI for the cell to be camped to obtain the RMSI decoding result.
  • the system information block SIB may be obtained.
  • the RMSI decoding result includes a system information block SIB, and the system information included in the SIB may include, for example, some scheduling. Information list, time window length and period of message transmission, wireless channel configuration parameters, etc.
  • the SIB information includes SIB1, and the SIB1 includes information such as cell access information, minimum access level, and the like. It should be understood that the terminal needs to measure the cell to be selected for channel quality evaluation to determine whether it meets the resident standard. SIB1 includes parameters for evaluating the channel quality, and the terminal can determine whether the current cell is determined by analyzing SIB1. Suitable for residence.
  • the method for selecting the camped cell includes the following step 508: determining whether the decoding of the RMSI for the cell to be camped is failed.
  • step 501 - step 508 is repeated, and the process is performed at most once. If the decoding of the second RMSI is successful, step 509 is performed. If the decoding of the second RMSI fails, the cell camping fails. Exemplarily, as shown in FIG. 5, when the RMSI of the cell to be camped continues to be decoded, it is determined whether the RMSI is currently decoded for the first time. If it is the first time, then go to step 501, if the cell to be camped on continues. If the decoding RMSI fails again, the cell camp fails.
  • the method for selecting a camping cell includes the step 509 of determining, when the RMSI decoding result of the cell to be camped indicates that the continuing to camp resident cell meets the camping criterion, determining that the camping cell to be camped is a camping cell.
  • the dwell criterion may be an S criterion
  • the S criterion includes an evaluation of the cell signal power and an evaluation of the cell service level.
  • the S criterion formula please refer to the prior art, and the details are not detailed here. Expand.
  • the criteria for selecting a camping cell may have other criteria in addition to the S criterion, as long as the signal strength (including signal quality, signal power, etc.) and service level of the selected cell satisfy the communication requirements.
  • the current cell conforms to the camping criterion, and the selected camp to be camped is used as the camping cell.
  • a subsequent random access procedure may be performed in the camped cell.
  • the embodiment of the present application selects N to-be-resident cells according to the calculated cell signal strength and weakness metric value and the forbidden cell list stored in the terminal from the initial reception beam scan, for all N to-be-resident cells.
  • the PBCH is sequentially decoded, and the cell that is not prohibited from camping and the strongest signal is selected to decode the RMSI from the cells with successful PBCH decoding. Since the cell that is prohibited from camping is selected and the cell with the strongest signal is selected, the cell is greatly improved. The success rate of camping, and avoiding wasting time on cells with weak signals, reducing the delay of cell camping.
  • FIG. 6 is a schematic flowchart of another method for selecting a camping cell according to an embodiment of the present application.
  • the embodiment of the present application describes a method for camp resident in the form of a step, although The order of the method is illustrated in method flow chart 6, but in some cases the described steps may be performed in a different order than herein.
  • the method for selecting a camping cell includes the step 601: acquiring a candidate cell list by using an initial receive beam scan.
  • the terminal performs initial receive beam scanning near a certain frequency point to obtain all searchable cells near the frequency point, and all the searchable cells form a candidate cell list.
  • the candidate cell list is a collection of all the searchable cells in the vicinity of the frequency point.
  • the list mentioned in the embodiment of the present application has the same meaning as the “set” in the mathematics.
  • the certain frequency point may be obtained by the terminal according to the frequency point measurement, or may be obtained according to the a priori information.
  • the method for obtaining the frequency of the receiving beam scanning is not limited in the embodiment of the present application.
  • the UE receives the SSB on each receive beam for cell search, acquires PCI based on cell search, and completes downlink synchronization.
  • the searched physical cell identifier PCI may be included in the candidate cell list.
  • the method for selecting a camped cell includes the step 602 of selecting, from the candidate cell list, M pre-resident cells according to the signal strength metric of the cell.
  • step 503 same as step 503, please refer to the description in step 503 for details.
  • the cell camping method includes the following steps: Step 603: Select, according to the forbidden cell list of the terminal, the N to camped cells from the M pre-resident camps.
  • the M pre-resident camps in step 602 are selected according to the signal strength measurement value of the cell from the initial collection of the beam scan, but the terminal searches through the initial receive beam scan.
  • the received cell set may include a forbidden cell, remove the forbidden cell in the M pre-resident cells, obtain N to-be-resident cells, and further perform subsequent camping on the obtained N to-be-resident cells.
  • the process can avoid wasting time on the forbidden cell and reduce the delay of cell camping.
  • a list of forbidden cells is usually stored in the terminal. For a description of the list of forbidden cells, refer to step 502.
  • the cells that are prohibited from camping in the M pre-resident cells are removed according to the list of forbidden cells of the terminal, and N cells to be camped are obtained.
  • determining whether each of the M pre-resident cells is in the forbidden cell list of the terminal if a cell is in the M pre-resident cells but not in the forbidden cell list, The cell is included in the N camped cell set; optionally, if a cell in the M pre-resident cells is in the forbidden cell list, but the cell does not currently meet the forbidden condition, an example is performed.
  • sexually the current signal strength metric of the cell is greater than a preset threshold.
  • N is an integer that is not greater than M.
  • M is equal to N; when M pre-resident cells are in the M When there is a cell located in the list of forbidden cells, then N is less than M.
  • the relatively weak cells may be removed according to the signal strength metric to obtain N waiting stations. Leave the cell, where N is less than M.
  • the method of selecting a camped cell includes the step 604 of decoding a physical broadcast channel PBCH for each of the N camped cells.
  • step 504 please refer to the description in step 504.
  • the method for selecting the camped cell includes the following step 605: determining whether all the cells to be camped to decode the PBCH fail.
  • step 606 is performed.
  • the method for selecting a camping cell includes the step 606 of selecting a cell from the at least one cell that is successfully decoded by the PBCH as the cell to be camped on.
  • step 506 please refer to the description in step 506 for details.
  • the method for selecting a camped cell includes the step 607 of decoding the RMSI for the cell to be camped to obtain an RMSI decoding result.
  • step 607 please refer to the description in step 607 for details.
  • the method for selecting the camped cell includes the step 608, determining whether the decoding of the RMSI for the cell to be camped is failed.
  • steps 601-608 are repeated, and the process is performed at most once, if the decoding result of the second RMSI satisfies the camping criterion, Then, the cell camping succeeds, and if the decoding result of the second RMSI still does not satisfy the camping criterion, the cell camping fails.
  • FIG. 6 when the RMSI of the cell to be camped continues to be decoded, it is determined whether the RMSI is currently decoded for the first time. If it is the first time, go to step 601, if the cell to be camped on continues. If the decoding RMSI fails again, the cell camp fails.
  • the method for selecting a camping cell includes the step 609, when determining that the RMSI decoding result of the to-be-resident cell indicates that the continuing to-be-resident cell satisfies the camping criterion, determining that the continuing camping cell is a camping cell.
  • step 509 please refer to the description in step 509 for details.
  • the cell with strong signal is selected from the cell searched by the initial receive beam scan, and then the forbidden cell is screened according to the list of the forbidden cell of the terminal to obtain the set of the cell to be camped, and then the to-be-resident is set.
  • the cell set decodes the PBCH, and selects the cell that is not prohibited from camping and has the strongest signal to decode the RMSI from the cell with successful PBCH decoding, thereby avoiding wasting time on the cell with weak signal or being prohibited from camping, and reducing the cell camping. Delay, which improves the cell resident success rate.
  • the embodiment of the present application provides an apparatus 700 for selecting a camping cell, where the apparatus 700 includes:
  • the first selecting module 701 is configured to select N camping cells from the candidate cell list.
  • N is an integer not less than 2, and N is not greater than the number of cells in the candidate cell list.
  • the first selection module 701 may be specifically configured to perform the methods in the step 503 and the step 602. For details, refer to the description of the steps 503 and 602 in the method embodiment, and details are not described herein again.
  • the decoding module 702 is configured to decode a physical broadcast channel PBCH for each of the N to camped cells.
  • the PBCH decoding process for the N cells to be camped may be performed sequentially, and in an optional case, may also be performed simultaneously.
  • the decoding module 702 is specifically configured to perform the method in the step 504 and the step 604 to decode the PBCH for the cell.
  • the decoding module 702 is further configured to perform the method in the step 507 and the step 607, and is used to decode the RMSI of the cell to be camped. For details, refer to the description in the steps 507 and 607.
  • the second selecting module 703 is configured to select one cell from the at least one cell that is successfully decoded by the PBCH as the cell to be camped on.
  • the second selection module 703 can be used to perform the method in the step 506 and the step 606.
  • details refer to the description of the method 506 and the step 606, and details are not described herein again.
  • the determining module 704 is configured to determine, when the RMSI decoding result of the continuing to camp resident cell indicates that the continuing to camp resident cell meets a camping criterion, determining that the continuing to camp resident cell is a camping cell.
  • the residing module 704 can be used to perform the methods in the step 509 and the step 609. For details, refer to the description of the steps 509 and 609 in the method embodiment part, and details are not described herein again.
  • the device provided by the embodiment of the present application sequentially decodes the PBCH for the filtered cell, and selects one cell to decode the RMSI from the PBCH successfully decoded cell, and decoding the RMSI for the selected cell can improve the success rate of the cell camping, and avoid decoding the RMSI multiple times. Thereby reducing the delay of cell camping.
  • the embodiment of the present application provides another apparatus 800 for selecting a camping cell, where the apparatus 800 includes:
  • the obtaining module 801 is configured to obtain an initial cell list by using an initial receive beam scan.
  • the obtaining module 801 is further configured to obtain a candidate cell list based on the initial cell list and the forbidden cell list of the terminal.
  • the obtaining module 801 is specifically configured to perform the methods in the step 501, the step 502, and the step 601.
  • the obtaining module 801 may include a first obtaining module and a second obtaining module.
  • the first acquiring module may be specifically configured to perform the method in step 501, and the second obtaining module may specifically be used.
  • the method in step 502 is performed.
  • the method in the step 501 and the step 502 may be performed by using the same acquiring module, and the first acquiring module and the second acquiring module are not required to be distinguished.
  • the first selecting module 802 is configured to select N camping cells from the candidate cell list.
  • the decoding module 803 is configured to: decode a physical broadcast channel PBCH for each of the N to camped cells or use to decode an RMSI for a cell to be camped on.
  • PBCH physical broadcast channel
  • RMSI radio station
  • the determining module 804 is configured to determine whether all of the to-be-resident cells decode the PBCH or fail to determine whether at least one of the to-be-resident cell decoding RMSI fails.
  • the determining module 804 may be specifically configured to perform the methods in the steps 505, 508, 605, and 608. For details, refer to the description of the steps 505, 508, 605, and 608 in the method embodiment. I will not repeat them here.
  • the determining module 804 may include a first determining module and a second determining module.
  • the first determining module may be configured to perform the method in step 505 and step 605, that is, to determine whether All the cells to be camped to decode the PBCH have failed; the second judging module can be used to perform the method in step 508 and step 608, that is, to determine whether the RMSI for continuing to camp the cell fails.
  • the steps of the method embodiment related to the determining may be completed by the same determining module, and need not be divided into the first determining module and the second determining module. This embodiment of the present application does not limit this.
  • the second obtaining module 805 is configured to select one cell from the at least one cell that is successfully decoded by the PBCH as the cell to be camped on.
  • the second selection module 703 in FIG. 7 please refer to the description of the second selection module 703.
  • the determining module 806 is configured to determine, when the RMSI decoding result of the continuing to camp resident cell indicates that the continuing to camp resident cell meets a camping criterion, determining that the continuing to camp resident cell is a camping cell.
  • the specific function is the same as the resident module 704 in FIG. 7, please refer to the description of the method of the resident module 704.
  • the constituent modules of the above devices may be implemented by hardware, software functional units, or a combination of both.
  • at least one of the modules can be a logic module formed by a logic integrated circuit, which can include a transistor, a logic gate, or a circuit function module.
  • the device embodiments provided in the present application are merely schematic, and the cell division in FIG. 7 and FIG. 8 is only a logical function division, and may be further divided in actual implementation.
  • multiple modules may be combined or may be integrated into another system.
  • the coupling of the various modules to one another may be through some interfaces, which are typically electrical communication interfaces, but may not exclude mechanical interfaces or other form interfaces.
  • the modules described as separate components may or may not be physically separate, and may be located in one location or in different locations on the same or different devices.
  • a device in the embodiment of the present application is described above from the perspective of a modular functional entity.
  • the device provided in the embodiment of the present application is described below with reference to the terminal 30 shown in FIG. 2 . It should be understood that the terminal 30 shown in FIG. 2 is an embodiment of the apparatus of the embodiment of the present application.
  • the communication processor 3010 in the terminal 30 is configured to perform some or all of the functions of any of the above-described method embodiments.
  • the specific type of the communication processor 3010 can be referred to the description of the processor 301 in the terminal 30.
  • the memory 302 is used to store related instructions. When the related instructions are run on a computer or a processor, any method provided by the embodiment of the present application may be implemented.
  • the type of the memory may refer to the description of the memory 302 in the terminal 30.
  • the output device 304, the input device 305, the antenna 31, and the connector have been described in detail in the description of FIG. 2, and details are not described herein again.
  • Embodiments of the present application also provide a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform one or more of any of the above methods.
  • the constituent modules of the above signal processing device may be stored in the computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the embodiment of the present application further provides a computer program product including instructions, and the technical solution of the present application may contribute to the prior art or all or part of the technical solution may be a software product.
  • the computer software product is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor therein to perform various embodiments of the present application. All or part of the steps of the method. Please refer to the relevant description of the memory 302 for the kind of the storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种选择驻留小区的方法及装置,包括:从候选小区列表中选取N个待驻留小区;对选取的N个待驻留小区中的每个小区解码物理广播信道PBCH;从PBCH解码成功的至少一个小区中选取一个继续待驻留小区;当所述继续待驻留小区的RMSI解码结果指示所述继续待驻留小区满足驻留准则时,确定所述继续待驻留小区为所述驻留小区。本申请实施例公开的方案便于提升小区驻留的成功率降低小区驻留时延。

Description

一种选择驻留小区的方法及装置
本申请要求于2018年02月11日提交中国国家知识产权局、申请号为201810143299.4、申请名称为“一种选择驻留小区的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种选择驻留小区的方法及装置。
背景技术
在第五代(fifth-generation,5G)通信技术中,高频段的频谱资源的应用成为实现大数据速率通信的一种有效方式。但是,由于高频段的无线传播特性,5G高频信号衰减严重,为了有效增加信号覆盖、克服高频段的路径衰减,5G引入了多波束通信技术,基站和用户设备(User Equipment,UE)均有多个不同指向的波束,但是只在特定方向上信号增益最强,因此UE在高频点进行小区驻留时,一般会尝试多个接收波束,即通过接收波束扫描(Rx beam sweeping)以便选取合适的小区进行驻留。
在进行初始接收波束扫描时,UE通过扫描多个波束获取多个小区,如果只是按照现有的小区驻留过程依次对获取的多个小区解码物理广播信道(Physical Broadcast Channel,PBCH)及剩余最小***信息(Remaining Minimum System Information,RMSI)来选择合适的驻留小区,则可能在某些存在信号波动或不稳定的小区上浪费时间,增加了小区驻留时延,降低了小区驻留的成功率,因此,如何实现快速准确的小区驻留便成为一个问题。
发明内容
本申请的实施例提供一种小区驻留的方法及装置,便于降低小区驻留的时延、提升驻留成功率。
本申请第一方面提供了一种选择驻留小区的方法,该方法包括:从候选小区列表中选取N个待驻留小区,其中,N为不小于2的整数;对N个待驻留小区中的每个小区解码物理广播信道PBCH;从PBCH解码成功的至少一个小区中选取一个小区作为继续待驻留小区;对该继续待驻留小区解码RMSI以得到RMSI解码结果;当该RMSI解码结果指示该继续待驻留小区满足驻留准则时,确定所述继续待驻留小区为所述驻留小区。
该小区驻留方法先从候选小区列表中选取待驻留小区,再对选取的每个待驻留小区解码PBCH,然后从PBCH解码成功的小区中选择一个小区解码RMSI,当RMSI解码成功则将该小区作为驻留小区。由于解码RMSI的小区是经过两次选取过程选出来的,提升了RMSI解码成功的概率,因而提升了小区驻留的成功率,避免在多个小区上尝试驻留,降低了小区驻留时延。
在一种可能的设计中,在从候选小区列表中选取N个待驻留小区之前,该方法还 包括:通过初始接收波束扫描获取初始小区列表;基于该初始小区列表和终端的被禁小区列表获取该候选小区列表;进一步的,所述从候选小区列表中选取N个待驻留小区包括:从该候选小区列表中根据小区的信号强弱度量值选取该N个待驻留小区。。
将初始接收波束扫描获取的小区列表中位于终端的被禁小区列表中的小区筛掉,进一步的,根据小区信号强弱进行挑选得到待驻留小区并进行后续驻留流程,这样可以避免在信号较弱或被禁止驻留的小区上浪费时间,降低了小区驻留时延,提升了小区驻留成功率。
在一种可能的设计中,该终端的被禁小区列表包括如下至少一项:历史PBCH解码结果指示被禁止驻留的小区;或,该历史PBCH解码结果指示未被禁止驻留,但是历史RMSI解码失败。
在一种可能的设计中,基于该初始小区列表和终端的被禁小区列表获取该候选小区列表包括:若任一小区在该初始小区列表中且不在该被禁小区列表中,则确定该任一小区位于该候选小区列表中。
在一种可能的设计中,基于该初始小区列表和终端的被禁小区列表获取该候选小区列表包括:若任一小区在该初始小区列表中且在该被禁小区列表中,但是该任一小区当前不满足被禁条件,则确定该任一小区位于所述候选小区列表中。。
在一种可能的设计中,该从候选小区列表中根据小区的信号强弱度量值选取N个待驻留小区包括:计算该候选小区列表中的每个小区的该信号强弱度量值;选取该信号强弱度量值位于前N位的小区作为该N个待驻留小区。
在一种可能的设计中,该从候选小区列表中根据小区的信号强弱度量值选取N个待驻留小区包括:计算该预先获得的小区列表中的每个小区的该信号强弱度量值;选取该信号强弱度量值大于待驻留预设门限值的小区作为该待驻留小区。
在一种可能的设计中,在该从候选小区列表中选取N个待驻留小区之前,该方法还包括:通过初始接收波束扫描获取该候选小区列表;该从候选小区列表中选取N个待驻留小区包括:从该候选小区列表中根据小区的信号强弱度量值选取M个预待驻留小区,其中M不小于N;从该M个预待驻留小区中根据该终端的被禁小区列表选取该N个待驻留小区。
在一种可能的设计中,从该M个预待驻留小区中根据该终端的被禁小区列表选取该N个待驻留小区包括:将该M个预待驻留小区中位于该终端的被禁小区列表中的小区去除,得到该N个待驻留小区。
终端中存储的被禁小区列表是基于历史先验信息获得的,有一些小区在历史驻留的过程中多次显示被禁止驻留,那这样的小区则可以列入被禁小区列表中,避免在被禁小区上浪费时间。
在一种可能的设计中,该从PBCH解码成功的至少一个小区中选取一个小区作为继续待驻留小区包括:从该PBCH解码成功的至少一个小区中选取该PBCH的解码结果所指示的未被禁止驻留的小区;从该未被禁止驻留的小区中选取该信号强弱度量值最大的小区作为该继续待驻留小区。
选取未被禁止和信号最强的小区作为继续待驻留小区解码RMSI,避免在被禁止的小区上浪费时间,且信号最强的小区解码RMSI成功的概率更大,降低了小区驻留的时 延,提升小区驻留的成功率。
在一种可能的设计中,该方法还包括:当对该继续待驻留小区解码RMSI失败且为第一次失败,则通过初始接收波束扫描获取小区列表,继续进行小区驻留;当对该继续待驻留小区解码RMSI失败次数超过一次,则驻留失败。
在一种可能的设计中,该信号强弱度量值包括:参考信号接收功率RSRP、参考信号接收质量RSRQ或信干噪比SINR中的至少一项。
在一种可能的设计中,PBCH解码结果包括:小区的被禁状态或RMSI的配置信息中的至少一项。
本申请第二方面提供了一种选择驻留小区的装置,该装置包括:第一选取模块,用于从候选小区列表中选取N个待驻留小区,其中,N为不小于2的整数;第一解码模块,用于对该N个待驻留小区中的每个小区解码物理广播信道PBCH;第二选取模块,用于从PBCH解码成功的至少一个小区中选取一个小区作为继续待驻留小区;第二解码模块,用于对该继续待驻留小区解码RMSI以得到RMSI解码结果;确定模块,用于当该RMSI解码结果指示该继续待驻留小区满足驻留准则时,确定所述继续待驻留小区为所述驻留小区。
该小区驻留装置先从候选小区列表中选取待驻留小区,再对选取的每个待驻留小区解码PBCH,然后从PBCH解码成功的小区中选择一个小区解码RMSI,当RMSI解码成功则完成小区驻留。由于解码RMSI的小区是经过两次选取过程选出来的,提升了RMSI解码成功的概率,因而提升了小区驻留的成功率,避免在多个小区上尝试驻留,降低了小区驻留时延。
在一种可能的设计中,该装置还包括:第一获取模块,用于通过初始接收波束扫描获取初始小区列表;第二获取模块,用于基于该初始小区列表和该装置的被禁小区列表获取该候选小区列表;该第一选取模块具体用于:从该候选小区列表中根据小区的信号强弱度量值选取该N个待驻留小区。
在一种可能的设计中,该装置的被禁小区列表包括如下至少一项:历史PBCH解码结果指示被禁止驻留的小区;或,该历史PBCH解码结果指示未被禁止驻留,但是历史RMSI解码失败。
装置中存储的被禁小区列表是基于历史先验信息获得的,有一些小区在历史驻留的过程中多次显示被禁止驻留,那这样的小区则可以列入被禁小区列表中,避免在被禁小区上浪费时间。
在一种可能的设计中,该第二获取模块具体用于:若任一小区在该初始小区列表中且不在该被禁小区列表中,则确定该任一小区位于该候选小区列表中。
在一种可能的设计中,该第二获取模块具体用于:若任一小区在该初始小区列表中且在该被禁小区列表中,但是该任一小区当前不满足被禁条件,则确定该任一小区位于该候选小区列表中。
在一种可能的设计中,该第一选取模块具体用于:计算该候选小区列表中的每个小区的该信号强弱度量值;选取该信号强弱度量值位于前N位的小区作为该N个待驻留小区。
在一种可能的设计中,该装置还包括:获取模块;该获取模块,用于通过初始接 收波束扫描获取该候选小区列表;该第一选取模块具体用于:从该候选小区列表中根据小区的信号强弱度量值选取M个预待驻留小区,其中M不小于N;从该M个预待驻留小区中根据该终端的被禁小区列表选取该N个待驻留小区。
在一种可能的设计中,该第二选取模块具体用于:从该PBCH解码成功的至少一个小区中选取该PBCH的解码结果所指示的未被禁止驻留的小区;从该未被禁止驻留的小区中选取该信号强弱度量值最大的小区作为所述继续待驻留小区。
选取未被禁止和信号最强的小区作为继续待驻留小区解码RMSI,避免在被禁止的小区上浪费时间,且信号最强的小区解码RMSI成功的概率更大,降低了小区驻留的时延,提升小区驻留的成功率。
在一种可能的设计中,该信号强弱度量值包括:参考信号接收功率RSRP、参考信号接收质量RSRQ或信干噪比SINR中的至少一项。
本申请第三方面提供了一种选择驻留小区的装置,该装置包括:处理器;该处理器被配置为读取存储器中存储的软件指令,执行该软件指令以实现如下操作:从候选小区列表中选取N个待驻留小区,其中,N为不小于2的整数;对该N个待驻留小区中的每个小区解码物理广播信道PBCH;从PBCH解码成功的至少一个小区中选取一个小区作为继续待驻留小区;对该继续待驻留小区解码RMSI以得到RMSI解码结果;当该RMSI解码结果指示该继续待驻留小区满足驻留准则时,确定所述继续待驻留小区为驻留小区。
在一种可能的设计中,该装置还包括存储器,该存储器用于存储程序指令,该程序指令用于驱动该处理器执行上述操作。
在一种可能的设计中,该存储器包括计算机可读存储介质、软盘设备、硬盘设备、光盘设备或磁盘设备中的至少一项。
在一种可能的设计中,该处理器还被配置为执行上述第一方面的任一种可能的设计中所述的方法。
本申请第四方面提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机或处理器上运行时,使得所述计算机或处理器执行如上述第一方面或者其任一种可能的设计中所述的方法。
本申请第五方面提供了一种包含指令的计算机程序产品,当其在计算机或处理器上运行时,使得所述计算机或处理器执行如上述第一方面或者其任一种可能的设计中所述的方法。
附图说明
图1为本申请实施例提供的一种通信***的架构示意图;
图2为本申请实施例提供的一种通信中接入网设备20和终端30的硬件结构示意图;
图3为本申请实施例提供的一种基站和终端之间多波束通信的示意图;
图4为本申请实施例提供的一种同步信号块SSB的时频结构示意图;
图5为本申请实施例提供的一种选择驻留小区的方法流程示意图;
图6为本申请实施例提供的另一种选择驻留小区的方法流程示意图;
图7为本申请实施例提供的一种选择驻留小区的装置示意图;
图8为本申请实施例提供的另一种选择驻留小区的装置示意图。
具体实施方式
本申请的说明书实施例和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
如图1所示,为本申请实施例提供的一种示例性的通信***100。该通信***100中包括一个接入网设备20,以及与该接入设备20连接的一个或多个终端30。
该接入网设备20是一种无线网络节点,能够为所述终端30提供如语音通话、视频、数据、消息接发、广播或其他各种无线通信服务。由于移动通信也叫蜂窝通信,接入网设备20可以形成一个或多个小区,并为小区内存在的多个终端30服务。示例性地,接入网设备20可以是基站、中继站或其他无线接入点等。基站支持各类无线通信协议,如可以是全球移动通信***(Global System for Mobile Communication,GSM)或码分多址(Code Division Multiple Access,CDMA)网络中的基站收发信台(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的NB(NodeB),还可以是长期演进(Long Term Evolution,LTE)中的eNB或eNodeB(Evolutional NodeB),或者可以是IoT或者NB-IoT中的eNB。可选的,接入网设备20还可以是未来第五代(5th Generation,5G)移动通信网络中的gNB(New Radio Node B),每个gNB有多个发送接收点(Transmission Reception Point,TRP),接入网设备20也可以是该发送接收站点TRP,接入网设备还可以是未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备。
终端30也叫用户设备(user equipment,UE),具体可以是接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、全球定位***(Global Positioning System,GPS)、相机、音频播放器等具有无线通信功能的手持设备、车载设备、可穿戴设备等各种类型的产品,未来5G网络中的终端或者未来演进的PLMN网络中的终端等,例如,该终端30 的常见形态是智能终端,包括手机、平板电脑或可穿戴设备,本申请实施例对此不作具体限定。所述终端30可以支持所述接入网设备20所支持的以上各类无线通信协议的至少一种,以实现与所述接入网设备20的通信。
如图2所示,为本申请实施例提供的接入网设备20和终端30的硬件结构示意图。终端30包括至少一个处理器301、至少一个存储器302、至少一个收发器303。可选的,终端30还可以包括一个或多个天线31、输出设备304和输入设备305。
处理器301、存储器302和收发器303通过连接器相耦合,所述连接器可包括各类接口、传输线或总线等,本实施例对此不做限定。存储器302可以是独立存在,通过连接器与处理器301相耦合,可选的,存储器302也可以和处理器301集成在一起。应当理解,在本申请的各个实施例中,耦合是指通过特定方式的相互联系,包括直接相连或通过其他设备间接相连。
处理器301,可用于控制射频电路(图中未示出,可包括在收发器303中,实现射频处理)通过一个或多个天线31实现信号的接收和发送,处理器301还用于处理上述信号,例如可以对接收的信号进行解码、调制或其他各种已知的信号处理过程,以及将来可能出现的新的信号处理过程。示例性的,处理器301可以用于实现本申请实施例的部分或全部运算,例如可以用于实现PBCH解码、RMSI解码、接收波束扫描等。示例性地,如图2所示,处理器301中可包括通信处理器3010。可选的,处理器301可以包括如下至少一种类型:通用中央处理器(Central Processing Unit,CPU)、数字信号处理器(Digital Signal Processor,DSP)、微处理器、微控制器(Microcontroller Unit,MCU)、或微处理器。例如,处理器301可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。该处理器301可以是多个处理器构成的处理器组,多个处理器之间通过一个或多个总线彼此耦合。该处理器可以包括模拟-数字转换器(Analog-to-Digital Converter,ADC)、数字-模拟转换器(Digital-to-Analog Converter,DAC)以实现装置不同部件之间信号的连接;可选的,处理器301内包括的多个处理器或单元可以是集成在一个芯片中或位于多个不同的芯片上。
在本申请实施例中涉及的芯片是以集成电路工艺制造在同一个半导体衬底上的***,也叫半导体芯片,其可以是利用集成电路工艺制作在所述衬底(通常是例如硅一类的半导体材料)上形成的集成电路的集合,其外层通常被半导体封装材料封装。所述集成电路可以包括各类功能器件,每一类功能器件包括逻辑门电路、金属氧化物半导体(Metal-Oxide-Semiconductor,MOS)晶体管、双极晶体管或二极管等晶体管,也可包括电容、电阻或电感等其他部件。每个功能器件可以独立工作或者在必要的驱动软件的作用下工作,可以实现通信、运算、或存储等各类功能。
存储器302,可用于存储计算机程序指令,包括计算机操作***(Operation System,OS)、各种用户应用程序、以及用于执行本申请方案的程序代码在内的各类计算机程序代码;存储器302还可以用于存储用户数据,例如日历信息、联系人信息等;可选的,存储器302还可用于存储被禁小区列表、初始接收波束扫描获取的小区列表等,存储器302还可用于存储部分或全部预设参数信息,例如终端预设的选取的待驻留小区的个数、小区驻留的判断门限值等。处理器301可以执行存储在存储器302中的计算机程序代码,被执行的各类计算机程序代码也可被视为是处理器301的驱动程序。 例如,处理器301可用于执行存储器302中存储的计算机程序代码,从而实现本申请后续实施例中的方法。所述计算机程序代码数量很大,可形成能够被处理器301中的至少一个处理器执行的计算机可执行指令,以驱动相关处理器执行各类处理,如支持上述各类无线通信协议的通信信号处理算法、操作***运行或应用程序运行。可选的,处理器301可以基于存储在存储器302中的预设参数信息以实现相关的处理功能。可选的,存储器302可以是非掉电易失性存储器,例如是嵌入式多媒体卡(Embedded Multi Media Card,EMMC)、通用闪存存储(Universal Flash Storage,UFS)或只读存储器(Read-Only Memory,ROM),或者是可存储静态信息和指令的其他类型的静态存储设备,还可以是掉电易失性存储器(volatile memory),例如随机存取存储器(Random Access Memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的程序代码并能够由计算机存取的任何其他计算机可读存储介质,但不限于此。
收发器303,可以是任何用于实现通信信号收发的装置,可包括射频电路,其可以耦合至天线31。收发器303包括发射机Tx和接收机Rx。可选的,收发器303在处理器301的驱动下实现对信号的接收和方。示例性地,一个或多个天线31用于接收射频信号,该收发器303的接收机Rx用于从天线接收所述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器301中包括的通信处理器3010,以便通信处理器3010对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器303中的发射机Tx还用于从通信处理器3010接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线31发送所述射频信号。具体地,接收机Rx可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,所述下混频处理和模数转换处理的先后顺序是可调整的。发射机Tx可以选择性地对经过调制的数字基带信号或数字中频信号进行一级或多级上混频处理和数模转换处理以得到射频信号,所述上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。
输出设备304和处理器301通信,可以以多种方式来显示信息。例如,输出设备304可以是液晶显示器(Liquid Crystal Display,LCD),发光二级管(Light Emitting Diode,LED)显示设备,阴极射线管(Cathode Ray Tube,CRT)显示设备,或投影仪(projector)等。输入设备305和处理器301通信,可以以多种方式接受用户的输入。例如,输入设备305可以是鼠标、键盘、触摸屏设备或传感设备等。
天线31可以是具有多天线元件的天线阵列,多天线元件应用多组波束形成权重以形成多个波束,具体地,当该终端30为5G终端时,该天线31为大规模的天线阵列,产生多个接收和发射波束。
接入网设备20包括至少一个处理器201、至少一个存储器202、至少一个收发器 203、一个或多个天线21、和至少一个网络接口204。具体的,该天线21可以是具有多天线元件的天线阵列。处理器201、存储器202、收发器203和网络接口204通过连接器相耦合。其中,网络接口204用于通过通信链路,例如S1接口,与核心网设备10耦合。或者网络接口204通过有线或无线链路,例如X2接口,与其它接入网设备的网络接口进行连接。图中对连接方式未示出,本申请实施例对具体连接方式是什么不作具体限定。另外,天线21、处理器201、存储器202和收发器203的相关描述可参考终端30中天线31、处理器301、存储器302和收发器303的描述,以实现类似功能,例如,处理器201可包括通信处理器,用于对需要发送至终端30的信息或数据做极化编码得到编码序列,并对编码序列做调制已生成调制后的数据以便通过收发器303中的射机Tx传输至天线。
基于上述描述,本申请实施例还可以扩展到更多的通信应用场景中,本实施例对此不做限定,尽管后续实施例主要以移动通信场景为例进行说明,可以理解任何通信场景中用户所使用的通信设备均可视为用户设备,而与用户所持有的设备进行通信的对端设备可视为接入网设备。因此以上通信应用场景仅为了便于说明,不用于严格限定本实施例。
进一步的,为了便于说明,在后续的描述中,本申请实施例所提到的基站都是作为接入网设备20的一种示例,该基站可以替换为上述的接入网设备20的任一种其他示例。另外,本申请实施例所提到的网络端可以包括接入网设备20,也可以选择性的进一步包括核心网设备。
示例性地,在5G通信技术中,由于高频场景信号衰减严重,5G基站和5G终端都会配置天线阵列,且为了对抗路径衰减、有效增加信号覆盖,基站通常使用多个不同指向的窄波束,对应的,终端侧也有多个不同指向的窄波束,这意味着,在5G通信***中,要实现基站和终端的高效通信,需要从多个波束中选择合适的波束。
如图3所示,为本申请实施例提供的一种多波束通信的示意图。其中,基站具体参考上述的接入网设备20,终端1和终端2具体参考上述的终端30,具体地,图3中的基站20为5G基站,终端30为5G终端,基站20和终端30采用波束的方式在高频段的资源上相互传输数据。示例性的,在需要进行下行传输时,基站20可以在多个下行发射波束上都发射相关的***信息、小区资源以及要传输的下行数据;对应的,终端30对多个接收波束进行扫描,以选取合适的接收波束接收基站发送的上述***信息、小区资源以及下行数据等,以实现小区搜索、小区同步以及小区驻留等过程;对应的,在需要进行上行传输时,终端需要选择合适的上行发射波束发送上行数据,基站需要选择对应的上行接收波束接收终端发送的上行波束。应当理解,本申请实施例所述的下行传输是指基站向终端方向的传输,包括但不限于数据和控制信令的传输,上行传输是指终端向基站方向的传输,包括但不限于数据和控制信令的传输。图3以下行传输为例对多波束通信过程进行说明。如图3所示,基站使用了t1-t8共8个波束,在下行传输过程中,基站依次使用不同指向的波束发射无线信号,因此基站需要进行下行发射波束扫描选择对准某一终端的最佳发射波束。对应的,终端也使用多个不同指向的波束,如图3所示,终端1使用r1-r4四个波束,终端2使用u1-u4四个波束,所述两个终端各自需要做下行接收波束扫描选择最佳下行接收波束。图3中终端1和 终端2对应的最佳下行发射-接收波束对分别为(t4,r3)和(t6,u2)。应当理解,基站侧和终端侧的波束数量仅是本申请实施例所列举的一种情况,其实际的波束数量可以多种多样,同样,基站和终端的个数对本申请提供的技术方案也不构成限定。
当终端需要驻留在某小区时,终端在某频点附近进行初始接收波束扫描获取频点周围的小区资源,通常来说,终端并不会对获得的所有小区都进行小区驻留判断,而是会从获取的小区资源中选取预设个数的待驻留小区,该预设个数是存储在终端中的,示例性的,选取的待驻留小区是小区资源中信号最强的前几个小区。
为了讲述小区驻留的流程,需要先介绍同步信号块(Synchronization Signal Block,SSB)的时频结构,如图4所示为本申请实施例提供的一种SSB的时频结构示意图。
如图4所示,在新无线(New Radio,NR)***中,每个SSB包括4个时域相邻的符号,分别为主同步信号(Primary Synchronization Signal,PSS)-PBCH-辅同步信号(Secondary Synchronization Signal,SSS)-PBCH,共占4个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,并按增序从0到3编号,PSS占用0号OFDM符号,SSS占用2号OFDM符号,PBCH占用1号和3号OFDM符号,并且在2号OFDM符号中也有一部分PBCH。在频域上,SSB按从低到高的资源元素(Resource Element,RE)映射到相应的子载波上;SSB连续占用240个频域连续的RE(对应图4中子载波号0-239)。在0号OFDM符号上,在240个RE内,PSS之外的RE不放置数据;在2号OFDM符号上,位于SSS与PBCH的交界处各自有8个和9个RE空出来不放任何数据。示例性的,NR的PBCH负载(PBCH payload)中有1bit标志位用于指示对应的小区是否被禁止驻留。应当理解,图4所示的SSB时频结构只是一种示例,SSB也可以有其他形式的帧结构,本申请实施例对此不做限定。
基站周期性发送多个SSB,在该周期内对于不同的SSB,基站可以采用不同的发射波束方向发射,周期间相同的SSB对应相同的发射波束方向。UE在每个接收波束上接收SSB,以进行小区搜索。小区搜索过程是UE获取物理小区标识(Physical Cell Identities,PCI)以及完成下行同步的过程,即UE和小区在时间和频率上完成同步,为进行小区搜索,UE需要接收下列同步信号:PSS和SSS,当UE接收到PSS和SSS之后,就能解码出PCI,完成下行同步。UE对小区解码PBCH,获得主信息块(Master Information Block,MIB),MIB中包含的是***中最重要的一些***参数以及继续获取***消息所需要的一些前提参数信息,示例性的,MIB可以包括小区的被禁状态、***帧号、RMSI的配置信息等。在PBCH解码成功之后,UE对小区解码RMSI以获取***信息块(System Information Blocks,SIB),例如包括SIB1,示例性的,SIB1消息大致可以分为小区接入相关信息、小区选择信息以及小区的带宽信息等。示例性的,对小区解码PBCH的时间大约在150毫秒左右,而对小区解码RMSI的时间大约为秒级。当对某小区解码PBCH成功,而解码RMSI失败时,则更换小区继续尝试驻留流程。
UE同步成功之后,就会读取MIB和SIB,通过解析SIB1来判断当前小区是否适合驻留。小区选择过程中,终端需要对将要选择的小区进行测量,以便进行信道质量评估,判断其是否符合驻留的标准。可选的,小区选择的驻留准则可以为S准则,S准则包括对小区信号功率的评估以及对小区服务水平的评估,具体的S准则公式请参 考现有技术,此处不再详细展开。当某个小区的信道质量满足S准则之后,就可以被选择为驻留小区。应当理解,选择驻留小区的准则除了S准则之外还可以有其他判断准则,只要所选取的小区的信号强度(包括信号质量和信号功率等)和服务水平满足通信要求即可。
如果对初始接收波束扫描过程中获取的小区依次解PBCH及RMSI,即先对第一个小区解PBCH、RMSI,根据解码结果再决定是否对第二个小区解PBCH、RMSI,当小区信号波动导致先尝试驻留的小区解码PBCH成功,但是解码RMSI失败时,终端在解不对RMSI的小区上浪费了时间,增加了小区驻留的时延。而且这样存在很多偶然的不利因素,小区驻留的成功率也不高。因此,选择合适的驻留小区进行驻留对于降低小区驻留时延、提升小区驻留成功率至关重要。
如图5所示,为本申请实施例提供的一种选择驻留小区的方法的流程示意图,为了便于理解,本申请实施例以步骤的形式对小区驻留的方法进行描述,虽然在方法流程图5中示出了该方法的顺序,但是在某些情况下,可以以不同于此处的顺序执行所描述的步骤。
可选的,该选择驻留小区的方法包括步骤501,通过初始接收波束扫描获取初始小区列表。
具体的,终端在某个频点附近进行初始接收波束扫描,得到频点附近所有可搜到的小区,这些所有可搜到的小区组成初始小区列表。应当理解,初始小区列表为所有可搜到的小区集合,本申请实施例提到的列表和数学中的“集合”意义相同。可选的,所述某个频点可以是终端根据频点测量获得的,也可以根据先验信息获得,本申请实施例对获取接收波束扫描的频点的方法不做限定。
示例性的,UE在每个接收波束上接收SSB,以进行小区搜索,基于小区搜索获取PCI并完成下行同步。示例性的,初始小区列表中可以包含搜索到的物理小区标示PCI。
可选的,该选择驻留小区的方法包括步骤502,基于初始小区列表和终端的被禁小区列表获取候选小区列表。
终端通过初始接收波束扫描获得的初始小区列表中可能含有被禁小区,把初始小区列表中的被禁小区去除,再进行后续小区驻留过程,可以避免在被禁小区上浪费时间,降低小区驻留的时延。示例性的,终端中通常会存储一个被禁小区列表,该被禁小区列表中包含被禁小区,可选的,该被禁小区可以是根据先验信息确定的,示例性的,终端之前在该频点附近进行小区驻留的过程中识别出了某些被禁小区,则这些被禁小区就会被加入终端的被禁小区列表中。可选的,被禁小区列表中的小区的被禁原因可能包括:小区的历史PBCH负载显示小区被禁止驻留,或者小区的历史PBCH负载显示小区未被禁止驻留,但是小区历史RMSI解码失败,应当理解,RMSI解码失败是指译码失败即没有得到合理的解码结果;或者小区的历史RMSI解码结果指示该小区不符合驻留准则。可选的,PBCH负载显示被禁的小区是网络端告知终端的,这部分小区是被禁小区列表中不可变更的,而由于解码RMSI失败被列入被禁小区列表的小区是可以更新的,因为这部分小区可能是由于信号波动导致的解码RMSI失败,一段时间波动消除后则可以解码成功,或者一段时间后,原来解码RMSI失败的小区的信号变好了,则解码RMSI可能成功。可选的,被禁小区列表中的小区可能是无条件 被禁止驻留,即这部分小区始终被禁止驻留;可选的,被禁小区列表中的小区在满足某种条件时会被禁止驻留,示例性的,某小区位于被禁小区列表中,当该某小区的信号强弱度量值小于预设门限,则该小区被禁止驻留,而当该某小区的信号强弱度量值大于预设门限,则该小区没有被禁止驻留,可选的,该预设门限可以是终端预先设置的。
示例性的,基于初始小区列表和终端的被禁小区列表获取候选小区列表包括:判断初始小区列表中的小区是否在终端的被禁小区列表中,若某一小区在初始小区列表中,但是不在被禁小区列表中,则将该小区列入候选小区列表;可选的,若初始小区列表中的小区在被禁小区列表中,但是该小区当前不满足被禁条件,示例性的,该小区当前的信号强弱度量值大于预设门限,此时该小区虽然在被禁小区列表中,但是并没有被禁止驻留,则该小区也被列入候选小区列表;在一种可选的情况中,终端会预设一个门限值Thres,若位于被禁小区列表中的某小区当前的信号强弱度量值强于该小区被禁时的度量值与终端预设的门限值Thres之和,则可以认为该小区此时不满足被禁条件,进一步的,可以将该小区列入候选小区列表。
该选择驻留小区的方法包括步骤503,从候选小区列表中根据小区的信号强弱度量值选取N个待驻留小区。
将初始接收波束扫描获得的初始小区列表中位于被禁小区列表的小区去除之后得到上述候选小区列表。可选的,在本申请实施例提供的小区驻留方法中,终端并不会对候选小区列表中的所有小区都进行小区驻留判断,而是选取若干小区作为待驻留小区再尝试进行小区驻留,通常来说,终端中会存储一些预设参数,示例性的,这些预设参数可能包括终端推荐选取的待驻留小区的个数。应当理解,N是实际选择的待驻留小区的个数,在实际选择待驻留小区个数N时,可以取终端存储的预设参数,可选的,选取的待驻留小区个数也可以小于该预设参数。例如,终端设置的预设个数为Num,则实际选择的待驻留小区个数N应当不超过Num。
示例性的,在选取待驻留小区之前,对候选小区列表中的每个小区计算其信号强弱度量值,可选的,该信号强弱度量值包括:参考信号接收功率(Reference Signal Received Power,RSRP)、参考信号接收质量(Reference Signal Received Quality,RSRQ)或信干噪比(Signal to Interference plus Noise Ratio,SINR)中的至少一项,可选的,该信号强弱度量值也可以是其他表明信号质量或功率的变量,本申请实施例对此不做限制。可选的,可以基于信号强弱度量值对候选小区列表中的小区进行排序,然后选择信号强度位于前N位的小区作为待驻留小区。可选的,这里的排序可以是从大到小排序,也可以是从小到大排序,只要可以选出信号强度位于前N位的小区作为待驻留小区即可,本申请实施例对于具体的排序方法不做限定。可选的,可以设置一个门限值,当候选小区列表中的小区大于该门限值,则将对应的小区选为待驻留小区。
该选择驻留小区的方法包括步骤504,对N个待驻留小区中的每个小区解码物理广播信道PBCH。
通过对小区解码物理广播信道PBCH,可以获得MIB以便了解小区的具体配置,并通过接收到的MIB得知***帧号(System Frame Number,SFN)、RMSI的配置信息等可选的,解码PBCH可以得知小区的被禁状态,示例性的,小区的PBCH负载中 有1bit标志位用于指示对应的小区是否被禁止驻留。
可选的,该选择驻留小区的方法包括步骤505,判断是否所有的待驻留小区解码PBCH均失败?
在一种可选的情况中,如果所有的待驻留小区解码PBCH均失败,则在此次初始接收波束扫描过程中没有寻找到适合驻留的小区,小区驻留失败。当不是所有的待驻留小区解码PBCH均失败,则执行步骤506。
该选择驻留小区的方法包括步骤506,从PBCH解码成功的至少一个小区中选取一个小区作为继续待驻留小区。
如果对某个小区解码PBCH失败,则不再考虑在该小区上尝试驻留,因此从PBCH解码成功的小区中选择继续待驻留小区,应当理解,继续待驻留小区是会继续后续驻留过程的小区,即在解码PBCH之后会继续解码RMSI的小区。示例性的,从PBCH解码成功的小区中选取一个小区作为继续待驻留小区包括:从PBCH解码成功的小区中基于PBCH的解码结果选取未被禁止驻留的小区,在前述实施例中已经提到,PBCH负载会有1bit标志位用于指示对应的小区是否被禁止驻留,示例性的,从PBCH解码成功的小区中选取PBCH负载指示未被禁止驻留的小区。
示例性的,从PBCH解码成功的小区中选取一个小区作为继续待驻留小区还包括:从选出的未被禁止驻留的小区中选取所述信号强弱度量值最大的小区作为所述继续待驻留小区。示例性的,信号强弱度量值最大的小区可以为参考信号接收功率RSRP最大的小区,也可以为参考信号接收质量RSRQ最好的小区,或者也可以为信干噪比SINR最大的小区。选择信号强弱度量值最大的小区作为继续待驻留小区并继续后续小区驻留过程可以提升小区驻留的成功率,并且避免在信号较弱的小区上浪费时间,降低了小区驻留的时延。
可选的,该选择驻留小区的方法包括步骤507,对继续待驻留小区解码RMSI以得到RMSI解码结果。
在解码PBCH之后,对选出的继续待驻留小区解码RMSI,可以获得***信息块SIB,示例性的,该RMSI解码结果包括***信息块SIB,SIB中包含的***信息可以包括,例如一些调度信息列表、消息发送的时间窗口长度以及周期、无线信道配置参数等。示例性的,SIB信息包括SIB1,SIB1中包含小区接入信息、最小接入电平等信息。应当理解,终端需要对将要选择的小区进行测量,以便进行信道质量评估,判断其是否符合驻留的标准,SIB1中包含了对信道质量进行评估的参数,终端可以通过解析SIB1来判断当前小区是否适合驻留。
可选的,该选择驻留小区的方法包括步骤508,判断对继续待驻留小区解码RMSI是否失败?
在一种可选的情况中,如果对选出的继续待驻留小区解码RMSI失败,则重复步骤501-步骤508,此过程至多执行一次,若第二次RMSI的解码成功,则执行步骤509,若第二次RMSI的解码失败,则小区驻留失败。示例性的,如图5所示,当继续待驻留小区解码RMSI失败,则判断当前是不是第一次解码RMSI失败,如果是第一次,则转到步骤501,如果继续待驻留小区解码RMSI再次失败,则小区驻留失败。
该选择驻留小区的方法包括步骤509,当继续待驻留小区的RMSI解码结果指示 该继续待驻留小区满足驻留准则时,确定所述继续待驻留小区为驻留小区。
在一种可选的情况中,驻留准则可以为S准则,S准则包括对小区信号功率的评估以及对小区服务水平的评估,具体的S准则公式请参考现有技术,此处不再详细展开。当某个小区的信道质量满足S准则之后,就可以被选择为驻留小区。应当理解,选择驻留小区的准则除了S准则之外还可以有其他判断准则,只要所选取的小区的信号强度(包括信号质量和信号功率等)和服务水平满足通信要求即可。示例性的,当解码RMSI得到的SIB1中包含的信息满足S准则,则说明当前小区符合驻留标准,将该选择出来的继续待驻留小区作为驻留小区。可选的,在该驻留小区中可以进行后续的随机接入过程。
本申请实施例根据计算的小区信号强弱度量值以及存储在终端中的被禁小区列表从初始接收波束扫描搜到的小区集中选取N个待驻留小区,对所有的N个待驻留小区依次解码PBCH,并从PBCH解码成功的小区中选择未被禁止驻留并且信号最强的小区解码RMSI,由于筛去了被禁止驻留的小区且选择了信号最强的小区,大大提升了小区驻留的成功率,并且避免在信号较弱的小区上浪费时间,降低了小区驻留的时延。
如图6所示,为本申请实施例提供的另一种选择驻留小区的方法的流程示意图,同样,为了便于理解,本申请实施例以步骤的形式对小区驻留的方法进行描述,虽然在方法流程图6中示出了该方法的顺序,但是在某些情况下,可以以不同于此处的顺序执行所描述的步骤。
可选的,该选择驻留小区的方法包括步骤601,通过初始接收波束扫描获取候选小区列表。
具体的,终端在某个频点附近进行初始接收波束扫描,得到频点附近所有可搜到的小区,这些所有可搜到的小区组成候选小区列表。即候选小区列表为频点附近所有可搜到的小区集合,本申请实施例提到的列表和数学中的“集合”意义相同。可选的,所述某个频点可以是终端根据频点测量获得的,也可以根据先验信息获得,本申请实施例对获取接收波束扫描的频点的方法不做限定。示例性的,UE在每个接收波束上接收SSB,以进行小区搜索,基于小区搜索获取PCI并完成下行同步。示例性的,候选小区列表中可以包含搜索到的物理小区标示PCI。
该选择驻留小区的方法包括步骤602,从候选小区列表中根据小区的信号强弱度量值选取M个预待驻留小区。
同步骤503,具体请参考步骤503部分的描述。
该小区驻留的方法包括步骤603,从所述M个预待驻留小区中根据所述终端的被禁小区列表选取所述N个待驻留小区。
在该方法实施例中,步骤602中的M个预待驻留小区是从初始接受波束扫描搜到的小区集中根据小区的信号强弱度量值选出来的,然而,终端通过初始接收波束扫描搜到的小区集中可能含有被禁小区,将所述M个预待驻留小区中的被禁小区去除,得到N个待驻留小区,并进一步对得到的N个待驻留小区进行后续驻留过程,可以避免在被禁小区上浪费时间,降低小区驻留的时延。示例性的,终端中通常会存储一个被禁小区列表,关于被禁小区列表的描述,请参考步骤502部分。根据终端的被禁小区列表将M个预待驻留小区中被禁止驻留的小区除去,得到N个待驻留小区。示例性的, 判断M个预待驻留小区中的每一个小区是否在终端的被禁小区列表中,若某一小区在M个预待驻留小区中,但是不在被禁小区列表中,则将该小区列入所述N个待驻留小区集中;可选的,若M个预待驻留小区中的某个小区在被禁小区列表中,但是该小区当前不满足被禁条件,示例性的,该小区当前的信号强弱度量值大于预设门限,此时该小区虽然在被禁小区列表中,但是并没有被禁止驻留,则该小区也被列入所述N个待驻留小区集中。可选的,N为不大于M的整数,可选的,当M个预待驻留小区中的所有小区都不在被禁小区列表中,则M等于N;当M个预待驻留小区中存在位于被禁小区列表中的小区时,则N小于M。在一种可选的情况中,当M个预待驻留小区中的所有小区都不在被禁小区列表中,也可以根据信号强弱度量值去掉几个相对较弱的小区得到N个待驻留小区,此时N小于M。
该选择驻留小区的方法包括步骤604,对N个待驻留小区中的每个小区解码物理广播信道PBCH。
同步骤504,具体请参考步骤504部分的描述。
可选的,该选择驻留小区的方法包括步骤605,判断是否所有的待驻留小区解码PBCH均失败?
在一种可选的情况中,如果所有的待驻留小区解码PBCH均失败,则在此次初始接收波束扫描过程中没有寻找到适合驻留的小区,小区驻留失败。当不是所有的待驻留小区解码PBCH均失败,则执行步骤606。
该选择驻留小区的方法包括步骤606,从PBCH解码成功的至少一个小区中选取一个小区作为继续待驻留小区。
同步骤506,具体请参考步骤506部分的描述。
可选的,该选择驻留小区的方法包括步骤607,对继续待驻留小区解码RMSI以得到RMSI解码结果。
同步骤607,具体请参考步骤607部分的描述。
可选的,该选择驻留小区的方法包括步骤608,判断对继续待驻留小区解码RMSI是否失败?
在一种可选的情况中,如果对选出的继续待驻留小区解码RMSI失败,则重复步骤601-步骤608,此过程至多执行一次,若第二次RMSI的解码结果满足驻留准则,则小区驻留成功,若第二次RMSI的解码结果依然不满足驻留准则,则小区驻留失败。示例性的,如图6所示,当继续待驻留小区解码RMSI失败,则判断当前是不是第一次解码RMSI失败,如果是第一次,则转到步骤601,如果继续待驻留小区解码RMSI再次失败,则小区驻留失败。
该选择驻留小区的方法包括步骤609,当继续待驻留小区的RMSI解码结果指示该继续待驻留小区满足驻留准则时,确定所述继续待驻留小区为驻留小区。
同步骤509,具体请参考步骤509部分的描述。
本申请实施例先从初始接收波束扫描搜到的小区集中选择信号较强的小区,然后根据终端的被禁小区列表将被禁小区筛去得到待驻留小区集,然后再对该待驻留小区集解码PBCH,并从PBCH解码成功的小区中选择未被禁止驻留的且信号最强的小区解码RMSI,避免在信号弱或者被禁止驻留的小区上浪费时间,降低了小区驻留的时 延,提升了小区驻留成功率。
在对本申请实施例的选择驻留小区的方法进行描述之后,下面对本申请实施例的一种选择驻留小区的装置进行描述。
如图7所示,本申请实施例提供了一种选择驻留小区的装置700,该装置700包括:
第一选取模块701:用于从候选小区列表中选取N个待驻留小区。在一种可选的情况中,N为不小于2的整数,并且N不大于所述候选小区列表中的小区个数。示例性的,该第一选取模块701具体可以用于执行步骤503和步骤602中的方法,具体请参考方法实施例对步骤503和步骤602部分的描述,此处不再赘述。
解码模块702:用于对所述N个待驻留小区中的每个小区解码物理广播信道PBCH。示例性的,对N个待驻留小区的PBCH解码过程可以依次进行,在一种可选的情况中,也可以同时进行。示例性的,解码模块702具体可以用于执行步骤504、步骤604中的方法,对小区解码PBCH,具体请参考方法实施例对步骤504和步骤604部分的描述,此处不再赘述。在一种可选的情况中,解码模块702还可以用于执行步骤507、步骤607中的方法,用于对继续待驻留小区解码RMSI,具体请参考步骤507、步骤607部分的描述。
第二选取模块703:用于从PBCH解码成功的至少一个小区中选取一个小区作为继续待驻留小区。示例性的,第二选取模块703可以用于执行步骤506、步骤606中的方法,具体请参考方法实施例对步骤506和步骤606部分的描述,此处不再赘述。
确定模块704:用于当所述继续待驻留小区的RMSI解码结果指示所述继续待驻留小区满足驻留准则时,确定所述继续待驻留小区为驻留小区。示例性的,驻留模块704可以用于执行步骤509、步骤609中的方法,具体请参考方法实施例部分对步骤509和步骤609部分的描述,此处不再赘述。
本申请实施例提供的装置对经过筛选的小区依次解码PBCH,并从PBCH解码成功的小区中选取一个小区解码RMSI,对选取的小区解码RMSI可以提高小区驻留的成功率,避免多次解码RMSI从而降低小区驻留的时延。
如图8所示,本申请实施例提供了又一种选择驻留小区的装置800,该装置800包括:
获取模块801:用于通过初始接收波束扫描获取初始小区列表;可选的,获取模块801还用于基于初始小区列表和终端的被禁小区列表获取候选小区列表。示例性的,获取模块801具体可以用于执行步骤501、步骤502、步骤601中的方法,具体请参考方法实施例部分对步骤501、步骤502、步骤601部分的描述,此处不再赘述。在一种可选的情况中,获取模块801可以包括第一获取模块和第二获取模块,示例性的,第一获取模块具体可以用于执行步骤501中的方法,第二获取模块具体可以用于执行步骤502中的方法。可选的,步骤501、步骤502中的方法也可以通过同一个获取模块执行,而无需区分第一获取模块和第二获取模块,本申请实施例对此不做限定。
第一选取模块802:用于从候选小区列表中选取N个待驻留小区。同第一选取模块701,具体请参考第一选取模块701部分的描述。
解码模块803:用于对所述N个待驻留小区中的每个小区解码物理广播信道PBCH 或者用于对继续待驻留小区解码RMSI。同解码模块702,具体请参考上述装置实施例中解码模块702部分的描述。
判断模块804:用于判断是否所有的待驻留小区解码PBCH均失败或者用于判断继续待驻留小区解码RMSI是否失败中的至少一项。示例性的,判断模块804具体可以用于执行步骤505、步骤508、步骤605、步骤608中的方法,具体请参考方法实施例中对步骤505、步骤508、步骤605、步骤608部分的描述,此处不再赘述。在一种可选的情况中,判断模块804可以包括第一判断模块和第二判断模块,示例性的,第一判断模块可以用于执行步骤505、步骤605中的方法,即用于判断是否所有的待驻留小区解码PBCH均失败;第二判断模块可以用于执行步骤508、步骤608中的方法,即用于判断继续待驻留小区解码RMSI是否失败。在一种可选的情况中,方法实施例涉及判断的步骤均可以由同一个判断模块完成,而不需要区分为第一判断模块和第二判断模块。本申请实施例对此不做限定。
第二获取模块805:用于从PBCH解码成功的至少一个小区中选取一个小区作为继续待驻留小区。其功能同图7中的第二选取模块703,请参考第二选取模块703部分的描述。
确定模块806:用于当所述继续待驻留小区的RMSI解码结果指示所述继续待驻留小区满足驻留准则时,确定所述继续待驻留小区为驻留小区。其具体功能同图7中的驻留模块704,请参考对驻留模块704方法的描述。
上述装置的各组成模块可以采用硬件、软件功能单元,或者两者的结合来实现。当采用硬件实现的时候,该装置中的至少一个模块可以是一个逻辑集成电路所形成的逻辑模块,所述逻辑集成电路可包括晶体管、逻辑门或电路功能模块。
本申请所提供的装置实施例仅仅是示意性的,图7和图8中的单元划分仅仅是一种逻辑功能划分,实际实现时可以有另外的划分方式。例如多个模块可以结合或者可以集成到另一个***。各个模块相互之间的耦合可以是通过一些接口实现,这些接口通常是电性通信接口,但是也不排除可能是机械接口或其它的形式接口。因此,作为分离部件说明的模块可以是或者也可以不是物理上分开的,既可以位于一个地方,也可以分布到同一个或不同设备的不同位置上。
上面从模块化功能实体的角度对本申请实施例中的一种装置进行描述,下面结合图2中所示的终端30对本申请实施例提供硬件层面的装置进行描述。应当理解,图2中所示的终端30为本申请实施例的装置的一种实施方式。
该终端30中的通信处理器3010被配置为可执行上述任一个方法实施例的部分或全部功能。该通信处理器3010的具体类型可参考终端30中的处理器301的描述。该存储器302用于存储相关指令,当相关指令在计算机或处理器上运行时,可以实现本申请实施例提供的任一个方法,该存储器的类型具体可参考对终端30中存储器302的描述。
对于输出设备304、输入设备305、天线31和连接器的在介绍图2时已经有过详细描述,在此不再赘述。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述任一个方法中的一个或多个步 骤。上述信号处理装置的各组成模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在所述计算机可读取存储介质中。
基于这样的理解,本申请实施例还提供一种包含指令的计算机程序产品,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或其中的处理器执行本申请各个实施例所述方法的全部或部分步骤。该存储介质的种类请参考存储器302的相关描述。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。例如,装置实施例中的一些具体操作可以参考之前的方法实施例。

Claims (21)

  1. 一种选择驻留小区的方法,其特征在于,该方法包括:
    从候选小区列表中选取N个待驻留小区,其中,所述N为不小于2的整数;
    对所述N个待驻留小区中的每个小区解码物理广播信道PBCH;
    从PBCH解码成功的至少一个小区中选取一个小区作为继续待驻留小区;
    对所述继续待驻留小区解码RMSI以得到RMSI解码结果;
    当所述RMSI解码结果指示所述继续待驻留小区满足驻留准则时,确定所述继续待驻留小区为所述驻留小区。
  2. 根据权利要求1所述的方法,其特征在于,在所述从候选小区列表中选取N个待驻留小区之前,所述方法还包括:
    通过初始接收波束扫描获取初始小区列表;
    基于所述初始小区列表和终端的被禁小区列表获取所述候选小区列表;
    所述从候选小区列表中选取N个待驻留小区包括:从所述候选小区列表中根据小区的信号强弱度量值选取所述N个待驻留小区。
  3. 根据权利要求2所述的方法,其特征在于,所述终端的被禁小区列表包括如下至少一项:
    历史PBCH解码结果指示被禁止驻留的小区;或
    所述历史PBCH解码结果指示未被禁止驻留,但是历史RMSI解码失败。
  4. 根据权利要求2或3所述的方法,其特征在于,所述基于所述初始小区列表和终端的被禁小区列表获取所述候选小区列表包括:
    若任一小区在所述初始小区列表中且不在所述被禁小区列表中,则确定所述任一小区位于所述候选小区列表中。
  5. 根据权利要求2或3所述的方法,其特征在于,所述基于所述初始小区列表和终端的被禁小区列表获取所述候选小区列表包括:
    若任一小区在所述初始小区列表中且在所述被禁小区列表中,但是所述任一小区当前不满足被禁条件,则确定所述任一小区位于所述候选小区列表中。
  6. 根据权利要求2-5任一项所述的方法,其特征在于,所述从候选小区列表中根据小区的信号强弱度量值选取N个待驻留小区包括:
    计算所述候选小区列表中的每个小区的所述信号强弱度量值;
    选取所述信号强弱度量值位于前N位的小区作为所述N个待驻留小区。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,在所述从候选小区列表中选取N个待驻留小区之前,所述方法还包括:
    通过初始接收波束扫描获取所述候选小区列表;
    所述从候选小区列表中选取N个待驻留小区包括:
    从所述候选小区列表中根据小区的信号强弱度量值选取M个预待驻留小区,其中所述M不小于所述N;
    从所述M个预待驻留小区中根据所述终端的被禁小区列表选取所述N个待驻留小区。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述从PBCH解码成功的 至少一个小区中选取一个小区作为继续待驻留小区包括:
    从所述PBCH解码成功的至少一个小区中选取所述PBCH的解码结果所指示的未被禁止驻留的小区;
    从所述未被禁止驻留的小区中选取所述信号强弱度量值最大的小区作为所述继续待驻留小区。
  9. 根据权利要求2-8任一项所述的方法,其特征在于,所述信号强弱度量值包括:参考信号接收功率RSRP、参考信号接收质量RSRQ或信干噪比SINR中的至少一项。
  10. 一种选择驻留小区的装置,其特征在于,该装置包括:
    第一选取模块,用于从候选小区列表中选取N个待驻留小区,其中,所述N为不小于2的整数;
    第一解码模块,用于对所述N个待驻留小区中的每个小区解码物理广播信道PBCH;
    第二选取模块,用于从PBCH解码成功的至少一个小区中选取一个小区作为继续待驻留小区;
    第二解码模块,用于对所述继续待驻留小区解码RMSI以得到RMSI解码结果;
    确定模块,用于当所述RMSI解码结果指示所述继续待驻留小区满足驻留准则时,确定所述继续待驻留小区为所述驻留小区。
  11. 根据权利要求10所述的装置,其特征在于,所述装置还包括:
    第一获取模块,用于通过初始接收波束扫描获取初始小区列表;
    第二获取模块,用于基于所述初始小区列表和所述装置的被禁小区列表获取所述候选小区列表;
    所述第一选取模块具体用于:从所述候选小区列表中根据小区的信号强弱度量值选取所述N个待驻留小区。
  12. 根据权利要求11所述的装置,其特征在于,所述装置的被禁小区列表包括如下至少一项:
    历史PBCH解码结果指示被禁止驻留的小区;或
    所述历史PBCH解码结果指示未被禁止驻留,但是历史RMSI解码失败。
  13. 根据权利要求11或12所述的装置,其特征在于,所述第二获取模块具体用于:
    若任一小区在所述初始小区列表中且不在所述被禁小区列表中,则确定所述任一小区位于所述候选小区列表中。
  14. 根据权利要求11或12所述的装置,其特征在于,所述第二获取模块具体用于:
    若任一小区在所述初始小区列表中且在所述被禁小区列表中,但是所述任一小区当前不满足被禁条件,则确定所述任一小区位于所述候选小区列表中。
  15. 根据权利要求11-14任一项所述的装置,其特征在于,所述第一选取模块具体用于:
    计算所述候选小区列表中的每个小区的所述信号强弱度量值;
    选取所述信号强弱度量值位于前N位的小区作为所述N个待驻留小区。
  16. 根据权利要求10-15任一项所述的装置,其特征在于,所述装置还包括:获取模块;
    所述获取模块,用于通过初始接收波束扫描获取所述候选小区列表;
    所述第一选取模块具体用于:
    从所述候选小区列表中根据小区的信号强弱度量值选取M个预待驻留小区,其中所述M不小于所述N;
    从所述M个预待驻留小区中根据所述终端的被禁小区列表选取所述N个待驻留小区。
  17. 根据权利要求10-16任一项所述的装置,其特征在于,所述第二选取模块具体用于:
    从所述PBCH解码成功的至少一个小区中选取所述PBCH的解码结果所指示的未被禁止驻留的小区;
    从所述未被禁止驻留的小区中选取所述信号强弱度量值最大的小区作为所述继续待驻留小区。
  18. 根据权利要求11-17任一项所述的装置,其特征在于,所述信号强弱度量值包括:参考信号接收功率RSRP、参考信号接收质量RSRQ或信干噪比SINR中的至少一项。
  19. 一种选择驻留小区的装置,其特征在于,该装置包括:处理器;
    所述处理器被配置为读取存储器中的软件指令,执行所述软件指令以实现如下操作:
    从候选小区列表中选取N个待驻留小区,其中,所述N为不小于2的整数;
    对所述N个待驻留小区中的每个小区解码物理广播信道PBCH;
    从PBCH解码成功的至少一个小区中选取一个小区作为继续待驻留小区;
    对所述继续待驻留小区解码RMSI以得到RMSI解码结果;
    当所述RMSI解码结果指示所述继续待驻留小区满足驻留准则时,确定所述继续待驻留小区为驻留小区。
  20. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机或处理器上运行时,使得所述计算机或处理器执行如权利要求1-10任一项所述的方法。
  21. 一种包含指令的计算机程序产品,当其在计算机或处理器上运行时,使得所述计算机或处理器执行如权利要求1-10任一项所述的方法。
PCT/CN2019/073974 2018-02-11 2019-01-30 一种选择驻留小区的方法及装置 WO2019154229A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19751605.7A EP3735099B1 (en) 2018-02-11 2019-01-30 Method and apparatus for selecting camping cell
US16/989,164 US11937173B2 (en) 2018-02-11 2020-08-10 Method and apparatus for selecting cell to be camped on

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810143299.4A CN110149676B (zh) 2018-02-11 2018-02-11 一种选择驻留小区的方法及装置
CN201810143299.4 2018-02-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/989,164 Continuation US11937173B2 (en) 2018-02-11 2020-08-10 Method and apparatus for selecting cell to be camped on

Publications (1)

Publication Number Publication Date
WO2019154229A1 true WO2019154229A1 (zh) 2019-08-15

Family

ID=67548200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073974 WO2019154229A1 (zh) 2018-02-11 2019-01-30 一种选择驻留小区的方法及装置

Country Status (4)

Country Link
US (1) US11937173B2 (zh)
EP (1) EP3735099B1 (zh)
CN (1) CN110149676B (zh)
WO (1) WO2019154229A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113194510A (zh) * 2020-01-14 2021-07-30 荣耀终端有限公司 小区的选择方法及装置
EP4054248A4 (en) * 2019-10-30 2022-11-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. CELL SELECTION METHOD AND APPARATUS AND STORAGE MEDIUM

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112312506B (zh) * 2020-11-20 2023-03-31 紫光展锐(重庆)科技有限公司 驻留小区的方法及装置、存储介质、终端
CN112637801B (zh) * 2020-12-11 2023-05-23 深圳市汇顶科技股份有限公司 一种小区驻留方法、终端及计算机可读存储介质
CN114828162B (zh) * 2021-01-27 2024-03-12 深圳市汇顶科技股份有限公司 入网方法、NB-IoT芯片、NB-IoT终端以及计算机存储介质
US20220408235A1 (en) * 2021-06-17 2022-12-22 Verizon Patent And Licensing Inc. Systems and methods for providing femtocell and macro cell interference connectivity solutions for internet of things devices
CN113873591A (zh) * 2021-09-28 2021-12-31 展讯通信(上海)有限公司 一种小区驻留的方法、通信装置、芯片及其模组设备
CN114245437A (zh) * 2021-11-11 2022-03-25 上海微波技术研究所(中国电子科技集团公司第五十研究所) 提高5g终端业务接通率的方法及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101426255A (zh) * 2007-10-30 2009-05-06 华为技术有限公司 小区的接入控制方法、***及装置
WO2010105402A1 (zh) * 2009-03-16 2010-09-23 华为技术有限公司 信息发送和信息接收方法、基站、用户设备及网络***
CN103634800A (zh) * 2013-12-11 2014-03-12 国家无线电监测中心 一种基于公共信息解调的移动通信同频复用方法
US20170353257A1 (en) * 2016-06-01 2017-12-07 Qualcomm Incorporated Time division multiplexing of synchronization channels

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6771960B1 (en) * 2000-11-06 2004-08-03 Motorola, Inc. Method for a cellular radiotelephone to scan for service from adjacent cells
US20040224684A1 (en) * 2003-05-07 2004-11-11 Dorsey Donald A. Method for a radiotelephone to search for higher priority networks
US7444150B2 (en) * 2003-10-08 2008-10-28 Qualcomm Incorporated Cell reselection with power scan and parallel decoding
US20090067386A1 (en) * 2007-06-19 2009-03-12 Qualcomm Incorporated Method and apparatus for cell reselection enhancement for e-utran
EP2901640A2 (en) * 2012-09-26 2015-08-05 Interdigital Patent Holdings, Inc. Methods, systems and apparatuses for operation in long-term evolution (lte) systems
CN104105162B (zh) * 2013-04-05 2017-11-17 华为技术有限公司 基站与终端之间传递信息的方法、基站、终端和***
ES2769237T3 (es) * 2014-01-30 2020-06-25 Nec Corp Terminal máquina a máquina (M2M), estación base, método y medio legible por ordenador
CN103945478B (zh) * 2014-04-24 2018-09-21 华为终端(东莞)有限公司 小区重选方法和移动终端
CN105007606A (zh) * 2014-04-24 2015-10-28 中兴通讯股份有限公司 小区选择重选参数确定方法、基站、终端及通信***
CN105284161B (zh) * 2014-05-20 2018-11-30 华为技术有限公司 网络注册方法、装置及移动终端
US20150365834A1 (en) * 2014-06-16 2015-12-17 Qualcomm Incorporated Systems and methods for enhanced cell selection and cell re-selection
US9924493B1 (en) * 2015-04-07 2018-03-20 Mbit Wireless, Inc. Method and apparatus for multiple parallel broadcast channel decoder
US10117152B2 (en) * 2015-05-13 2018-10-30 Qualcomm Incorporated Cell selection procedures for machine type communication devices
EP3297334B1 (en) * 2015-05-15 2019-12-18 Sharp Kabushiki Kaisha Terminal device, base station device and method
WO2017155138A1 (ko) * 2016-03-09 2017-09-14 엘지전자 주식회사 밀리미터웨이브를 지원하는 무선접속 시스템에서 자원할당 방법 및 장치
US11218236B2 (en) * 2016-06-01 2022-01-04 Qualcomm Incorporated Time division multiplexing of synchronization channels
US10887035B2 (en) * 2016-06-01 2021-01-05 Qualcomm Incorporated Time division multiplexing of synchronization channels
EP3476157B1 (en) * 2016-07-22 2022-08-31 Samsung Electronics Co., Ltd. Method and system for system information acquisition in wireless communication system
US10470191B2 (en) * 2016-12-09 2019-11-05 Samsung Electronics Co., Ltd. Method and apparatus of broadcast signals and channels for system information transmission
WO2019024087A1 (zh) * 2017-08-04 2019-02-07 北京小米移动软件有限公司 获取剩余关键***信息的公共控制资源集时频资源位置的方法
JP7092797B2 (ja) * 2017-12-13 2022-06-28 株式会社Nttドコモ 端末、無線通信方法及びシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101426255A (zh) * 2007-10-30 2009-05-06 华为技术有限公司 小区的接入控制方法、***及装置
WO2010105402A1 (zh) * 2009-03-16 2010-09-23 华为技术有限公司 信息发送和信息接收方法、基站、用户设备及网络***
CN103634800A (zh) * 2013-12-11 2014-03-12 国家无线电监测中心 一种基于公共信息解调的移动通信同频复用方法
US20170353257A1 (en) * 2016-06-01 2017-12-07 Qualcomm Incorporated Time division multiplexing of synchronization channels

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3735099A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4054248A4 (en) * 2019-10-30 2022-11-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. CELL SELECTION METHOD AND APPARATUS AND STORAGE MEDIUM
CN113194510A (zh) * 2020-01-14 2021-07-30 荣耀终端有限公司 小区的选择方法及装置
CN113194510B (zh) * 2020-01-14 2023-07-11 荣耀终端有限公司 小区的选择方法及装置

Also Published As

Publication number Publication date
EP3735099B1 (en) 2023-03-29
US20200374788A1 (en) 2020-11-26
EP3735099A4 (en) 2021-03-03
CN110149676B (zh) 2022-03-25
EP3735099A1 (en) 2020-11-04
CN110149676A (zh) 2019-08-20
US11937173B2 (en) 2024-03-19

Similar Documents

Publication Publication Date Title
WO2019154229A1 (zh) 一种选择驻留小区的方法及装置
US11910300B2 (en) Communication method and apparatus
US20210266821A1 (en) Information transmission method and device
US11388650B2 (en) System information transmission method, terminal device, and network device
US11310767B2 (en) Paging message transmission method and apparatus
US20230156785A1 (en) Methods and apparatus for sidelink resource exclusion for intra-device coordination in wireless communication
EP4156821A1 (en) Information indication method and apparatus
US20220264334A1 (en) Network device access method and apparatus
US20230379947A1 (en) User equipment and method for allocating sidelink resources
US10757642B2 (en) Information transmission method, terminal device, and network device
WO2020098145A1 (en) Communication method and apparatus
CN116939754A (zh) 小区重选方法及装置、计算机可读存储介质、终端设备
WO2019109484A1 (zh) 一种通信的方法及装置
WO2019109483A1 (zh) 一种通信的方法及装置
CN117279097A (zh) 同步信号块传输方法及装置、存储介质、终端设备、网络设备
CN117177315A (zh) 小区重选方法及装置、存储介质、终端设备
CN117956526A (zh) 服务小区更新方法及通信装置、存储介质、终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751605

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019751605

Country of ref document: EP

Effective date: 20200727

NENP Non-entry into the national phase

Ref country code: DE