WO2019154067A1 - 一种主动主旋翼垂直起降飞行器 - Google Patents

一种主动主旋翼垂直起降飞行器 Download PDF

Info

Publication number
WO2019154067A1
WO2019154067A1 PCT/CN2019/072657 CN2019072657W WO2019154067A1 WO 2019154067 A1 WO2019154067 A1 WO 2019154067A1 CN 2019072657 W CN2019072657 W CN 2019072657W WO 2019154067 A1 WO2019154067 A1 WO 2019154067A1
Authority
WO
WIPO (PCT)
Prior art keywords
main rotor
mounting shaft
vertical take
drive motor
landing aircraft
Prior art date
Application number
PCT/CN2019/072657
Other languages
English (en)
French (fr)
Inventor
桂艳春
Original Assignee
桂艳春
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 桂艳春 filed Critical 桂艳春
Publication of WO2019154067A1 publication Critical patent/WO2019154067A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • B64C27/16Drive of rotors by means, e.g. propellers, mounted on rotor blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/467Aerodynamic features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/82Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D35/00Transmitting power from power plants to propellers or rotors; Arrangements of transmissions
    • B64D35/04Transmitting power from power plants to propellers or rotors; Arrangements of transmissions characterised by the transmission driving a plurality of propellers or rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts

Definitions

  • the invention relates to the technical field of vertical take-off and landing aircraft, and particularly relates to an active main rotor vertical take-off and landing aircraft.
  • a helicopter includes a fuselage, a main rotor mounted on the top of the fuselage intermediate portion, and an anti-torque tail rotor for counteracting torque transmitted from the main rotor to the fuselage.
  • Articulated main rotors and/or counter torque rotors are also known. More specifically, the articulated rotor includes a drive shaft that rotates about a first axis, a hub that rotates integrally with the drive shaft about the first axis, and a radial portion from the hub along a first axis relative to the first axis A plurality of blades extending from the two axes.
  • Each paddle is rotatable relative to the hub about a respective second axis to change its angle of impact with respect to the airflow and is free to oscillate about the respective third axis relative to the hub for so-called flap motion.
  • Each third axis intersects the first and second axes of the associated paddle.
  • Each paddle also freely oscillates about a respective fourth axis parallel to the first axis relative to the hub and other paddles for a so-called lead-lag motion.
  • the helicopter produces power through a built-in engine.
  • the common engine type is a fuel engine, a cylinder piston engine or a turbo engine.
  • the engine provides rotational power to a vertical parallel shaft.
  • the output of the vertical parallel shaft A six-unit propeller is connected to rotate the six individual propeller blades horizontally, so that the propeller blades cut the static air above them, and the cut static air generates a downward flowing air flow.
  • the air flow creates an upward lift on the propeller, and under such force and reaction force, the helicopter rises into the air.
  • the power of the existing helicopter rotor is only transmitted by the engine through the vertical take-off and landing aircraft main rotor variable pitch system to the main rotor. Because the main rotor of the helicopter is long, the torque required for the customer's air resistance is also large.
  • the object of the present invention is to overcome the defects existing in the prior art and to provide a simple structure, which can greatly reduce the driving force to the main rotor or rapidly increase the driving force to the main rotor, and can also overcome the twist caused by the gyro effect on the main rotor.
  • the active main rotor of the moment is a vertical take-off and landing aircraft.
  • the technical solution of the present invention is to design an active main rotor vertical take-off and landing aircraft, the aircraft includes at least two main rotors, one end of the main rotor is connected with the intermediate coupling member, and the intermediate coupling member and the main rotor are spaced apart.
  • the system is connected with a thrust device or a traction device for driving the rotation of the main rotor at the end of each main rotor.
  • the thrust device or the traction device is rotationally connected with the main rotor via a mounting shaft disposed at the end of the main rotor, and the axis of the mounting shaft Relating or parallel with the lateral axis of the main rotor, the thrust direction of the thrust device or the traction device is opposite to the direction of rotation of the main rotor, and perpendicular to the axial direction of the mounting shaft, fixed on one side of the thrust device or the traction device An directional flap is attached, the directional fin is symmetric with the axis of the thrust device or the traction device between each end of the main rotor, and the directional fin is used to rotate the center line of the rotating shaft of the thrust device or the traction device with the rotating surface of the main rotor end parallel.
  • a thrust device or a traction device is also connected at the end of the main rotor. Therefore, when the end of the main rotor of the helicopter is driven by the thrust device or the traction device, the main rotor rotates. Since the thrust device or the traction device is installed at the end of the main rotor, due to the principle of the lever, the thrust required for the driving force to be farther away from the center of rotation in the case where the output torque is the same is smaller, so that the thrust device or the traction can be greatly reduced. The output power of the device is energy-saving.
  • the mounting shaft is set to facilitate the connection between the thrust device or the traction device and the end of the main rotor, while ensuring that the main rotor is properly stressed.
  • the thrust device or the traction device is a driving motor or a turbojet.
  • An engine is provided with a drive blade on an output shaft of the drive motor.
  • the driving motor is connected to the mounting shaft through a mounting shaft seat, and the mounting shaft seat has a T-shaped tubular structure, and a bearing matched with the mounting shaft is installed in a transverse through hole of the T-shaped tubular structure mounting shaft seat, or the main bearing
  • the position of the rotor mounting shaft is designed as a bearing seat, and the original T-shaped tubular bearing seat is set as a mounting shaft, and a driving motor is installed in a vertical through hole of the T-shaped tubular structure mounting shaft seat, and a limit pin is arranged at the end of the main rotor
  • a limiting pin slot corresponding to the position of the limiting pin is provided on the vertical outer surface of the mounting shaft seat of the T-shaped tubular structure.
  • a further preferred solution is that the center of gravity of the orientation fin, the mounting shaft seat and the driving motor are all located on the axis of the mounting shaft. .
  • a further preferred solution is to have a drive fan at one end of the drive motor, and a mounting shaft seat in the T-shaped tubular structure.
  • the other end of the vertical through hole is provided with an end cap.
  • a further preferred solution is to mount the drive blades at both ends of the drive motor, respectively, or to install the T-shaped tubular structure.
  • Two vertical drive shafts are installed in the vertical through hole of the shaft base. The two drive motors can be driven in the same direction by the forward and reverse propellers.
  • a further preferred solution is to provide a heading drive motor at the tail of the vertical takeoff and landing aircraft.
  • the preferred technical solution is that the main rotor variable pitch system passes through the bearing housing and the bearing The hollow tube is connected, and a collecting ring is set on the hollow tube.
  • the drive motor is mounted on the main shaft and is disposed in the main A wire or a conductive film inside the rotor is electrically connected to the collector ring.
  • the collector ring is electrically connected to the electronic governor through a wire, and electronically adjusted.
  • the speed controller is electrically connected to the main controller, the main controller is electrically connected to the console, the main controller is also connected to the power source through the power manager, the electronic governor is also connected to the power manager, and the heading drive motor is also passed through the steering gear and the electronic
  • the governor is electrically connected to the main controller, and the main controller is also electrically connected to the rudder.
  • the active main rotor vertical take-off and landing aircraft has a simple structure, can greatly reduce the driving power to the main rotor or rapidly increase the driving force to the main rotor, and can overcome the gyro effect on the main rotor.
  • the characteristics of the torsional moment are that the active main rotor vertical take-off and landing aircraft has a simple structure, can greatly reduce the driving power to the main rotor or rapidly increase the driving force to the main rotor, and can overcome the gyro effect on the main rotor.
  • FIG. 1 is a schematic structural view of a system of an active main rotor vertical take-off and landing aircraft of the present invention
  • Figure 2 is a front elevational view of the main rotor of the active main rotor vertical take-off and landing aircraft of the present invention
  • Figure 2.1 is a partial enlarged view of the portion C of Figure 2;
  • Figure 3 is a view taken along line A-A of Figure 2;
  • Figure 4 is one of the top views of Figure 2;
  • Figure 5 is a second plan view of Figure 2;
  • Figure 6 is a top view of Figure 2
  • Figure 7.1 is a front view of the mounting shaft seat of Figure 2;
  • Figure 7.2 is a left side structural view of the mounting shaft seat of Figure 2;
  • Figure 7.3 is a right side view of the mounting shaft seat of Figure 2;
  • Figure 8 is a schematic view showing the structure of the mounting shaft seat of Figure 2 and the orientation flap;
  • Figure 9 is a perspective view of the structure of Figure 8.
  • Fig. 10 is a schematic perspective view of Fig. 2;
  • the present invention is an active main rotor vertical take-off and landing aircraft, the aircraft comprising at least two main rotors 1, one end of the main rotor 1 is connected with the intermediate coupling member, and the intermediate coupling member and the main rotor are changed.
  • each main rotor 1 Connected to the system 2, at the end of each main rotor 1 is equipped with a thrust device or a traction device for driving the rotation of the main rotor 1, and the thrust device or the traction device is rotated between the mounting shaft 3 disposed at the end of the main rotor 1 and the main rotor 1 Connected, and the axis of the mounting shaft 3 coincides or is parallel with the transverse axial direction of the main rotor 1, the thrust direction of the thrust device or the traction device is opposite to the rotation direction of the main rotor 1, and is perpendicular to the axial direction of the mounting shaft 1,
  • One side of the thrust device or the traction device is fixedly connected with an orientation flap 4, and the axis between the orientation flap 4 and the end of each main rotor 1 is symmetric with the axis of the thrust device or the traction device, and the orientation flap 4 is used for the thrust device Or the centerline of the axis of rotation of the traction device is parallel to the plane of rotation of the end
  • a thrust device or a traction device is also connected to the end of the main rotor 1. Therefore, when the end of the main rotor 1 of the helicopter is driven by the thrust device or the traction device, the main rotor 1 is rotated. Since the thrust device or the traction device is installed at the end of the main rotor 1, due to the principle of the lever, the thrust required for the driving force to be farther away from the center of rotation in the case where the output torque is the same is smaller, so that the thrust device can be greatly reduced or The output power of the traction device achieves the effect of energy saving.
  • the mounting shaft 3 is arranged to facilitate the connection between the thrust device or the traction device and the end of the main rotor 1 while ensuring that the main rotor 1 is properly stressed.
  • the thrust device or the traction device is the driving motor 5 or In the case of a turbojet engine, drive blades 6 are mounted on the output shaft of the drive motor 5.
  • the drive motor 5 is coupled to the mounting shaft 3 via a mounting shaft mount 7, the mounting shaft bracket 7 has a T-shaped tubular structure, and the transverse through hole of the mounting shaft seat 7 of the T-shaped tubular structure.
  • the bearing 8 is fitted with the mounting shaft 3, or the main rotor mounting shaft position is designed as a bearing seat, and the original T-shaped tubular bearing seat is set as a mounting shaft, and the vertical direction of the mounting shaft seat 7 in the T-shaped tubular structure
  • a drive motor 5 is mounted in the through hole, and a limit pin 9 is provided at the end of the main rotor 1, and a limit pin slot corresponding to the position of the limit pin 9 is provided on the vertical outer surface of the mounting shaft seat 7 of the T-shaped tubular structure. 10.
  • a further preferred embodiment of the invention also has the orientation fin 4, the mounting shaft 7 and the drive motor 5
  • the center of gravity is located on the axis of the mounting shaft 3.
  • a further preferred embodiment of the invention is further provided with a drive fan 6 at one end of the drive motor 5, in a T-shape.
  • the other end of the vertical through hole of the mounting shaft seat 7 of the tubular structure is provided with an end cap 11.
  • a further preferred embodiment of the present invention is further provided with drive blades 6 at both ends of the drive motor 5, or In the vertical through hole of the mounting shaft seat 7 of the T-shaped tubular structure, two driving motors 5 having opposite output shaft directions are mounted, and the two driving motors can make the power output directions the same through the positive and negative blades.
  • a further preferred embodiment of the present invention is further provided with a heading drive motor 12 at the rear of the VTOL aircraft.
  • the main rotor variable pitch system 2 The hollow tube 15 is connected to the hollow tube 15 via a bearing housing 13 and a bearing 14, and a slip ring 16 is fitted over the hollow tube 15.
  • a further preferred embodiment of the invention also has the drive motor 5 installed.
  • the shaft seat 7 and the wires or conductive films disposed inside the main rotor 1 are electrically connected to the slip ring 16.
  • the collector ring 16 is passed through a wire and an electronic governor. 18 is electrically connected, the electronic governor 18 is electrically connected to the main controller 19, the main controller 19 is electrically connected to the console 20, the main controller 19 is also connected to the power source 22 through the power manager 21, and the electronic governor 18 is also powered.
  • the manager 21 is electrically connected, and the heading drive motor 12 is also electrically connected to the main controller 19 via the steering gear 17 and the electronic governor 18, and the main controller 19 is also electrically connected to the rudder row 17.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Toys (AREA)

Abstract

本发明公开了一种主动主旋翼垂直起降飞行器,至少包括两片主旋翼,主旋翼一端与中间联接件连接,中间联接件与主旋翼变距***连接,在每片主旋翼的末端装有驱动主旋翼旋转的推力装置或牵引装置,推力装置或牵引装置通过设置在主旋翼末端的安装轴与主旋翼之间转动连接,且安装轴的轴线与主旋翼的横向轴向重合或平行,所述推力装置或牵引装置的推力方向与主旋翼的旋转方向相反,在推力装置或牵引装置的一侧固定连接有定向翼片,定向翼片用于使推力装置或牵引装置的旋转轴中心线与主旋翼末端的旋转面平行。该飞行器具有结构简单、可大幅降低对主旋翼的驱动功率或快速提高对主旋翼的驱动力,还能够克服陀螺效应对主旋翼造成的扭转力矩等特点。

Description

一种主动主旋翼垂直起降飞行器 技术领域
本发明涉及垂直起降飞行器备技术领域,具体涉及一种主动主旋翼垂直起降飞行器。
背景技术
众所周知,直升机包括机身、安装在机身中间部位的顶部上的主旋翼、以及用于抵消从主旋翼传递至机身的扭矩的反扭矩尾部旋翼。
铰接的主旋翼和/或反扭矩旋翼也是已知的。更为具体地,铰接的旋翼包括围绕第一轴线旋转的驱动轴、与驱动轴一体地围绕第一轴线旋转的桨毂、以及从桨毂上沿相对于第一轴线的为径向的各第二轴线伸出的多个桨片。
各桨片可相对于桨毂围绕各自的第二轴线旋转,以改变其相对于气流的冲击角度,并可相对于桨毂围绕各自的第三轴线自由的振荡,以进行所谓的拍翼运动。各第三轴线与相关桨片的第一和第二轴线交叉。
各桨片还相对于桨毂和其它桨片围绕平行于第一轴线的各自的第四轴线自由的振荡,以进行所谓的摇摆(lead-lag)运动。
在此领域内出现了这样一种需求:在不削弱旋翼自身的空气动力性能的情况下,在驱动轴围绕第一轴线的旋转速度的大范围内减弱桨片的摇摆运动所产生的振动。
目前,机直升机产生动力是通过内置发动机提供动力,常用发动机类型有燃油发动机、汽缸活塞式发动机或涡轮式发动机,发动机将旋转动力提供给一种立式平行转轴,该立式平行转轴的输出端一头连接六支单体的螺旋桨,使该六支单体的螺旋桨片水平转动起来,这样,螺旋桨片切割其上方静止空气,被切割后的静止空气便产生了一个向 下流动的空气流,同时空气流对螺旋桨产生向上的升力,在这样的作用力与反作用力的作用下,直升机升上空中。
现有直升机旋翼的动力都只是由发动机,通过垂直起降飞行器主旋翼变距***将动力传送给主旋翼,由于直升机的主旋翼较长,因此其客服空气阻力所需要的扭矩也会很大。
发明内容
本发明的目的在于克服现有技术中存在的缺陷,提供一种结构简单、可大幅降低对主旋翼的驱动力或快速提高对主旋翼的驱动力,还能够克服陀螺效应对主旋翼造成的扭转力矩的主动主旋翼垂直起降飞行器。
为实现上述目的,本发明的技术方案是设计一种主动主旋翼垂直起降飞行器,所述飞行器至少包括两片主旋翼,主旋翼的一端与中间联接件连接,中间联接件与主旋翼变距***连接,在每片主旋翼的末端装有驱动主旋翼旋转的推力装置或牵引装置,推力装置或牵引装置通过设置在主旋翼末端的安装轴与主旋翼之间转动连接,且安装轴的轴线与主旋翼的横向轴向重合或平行,所述推力装置或牵引装置的推力方向与主旋翼的旋转方向相反,且与安装轴的轴线方向垂直,在所述推力装置或牵引装置的一侧固定连接有定向翼片,定向翼片与每片主旋翼末端之间对称于推力装置或牵引装置的轴线,定向翼片用于使推力装置或牵引装置的旋转轴中心线与主旋翼末端的旋转面平行。
由于该直升机的主旋翼一端通过主旋翼变距***与空心管连接,在主旋翼的末端还连接有推力装置或牵引装置。因此当直升机主旋翼的末端由推力装置或牵引装置驱动主旋翼旋转。由于推力装置或牵引装置被安装在主旋翼的末端,由于杠杆原理的作用,在输出扭矩相同的情况下驱动力越远离旋转中心所需要的推力也就越小,因此可以大幅降低推力装置或牵引装置输出功率,达到节能的功效。安装轴的设置是为了便于推力装置或牵引装置与主旋翼末端之间的连接,同时保 证主旋翼受力合理,
为了简化驱动装置的结构,降低驱动装置的体积、重量,便于加工制造,便于维修保养,便于使用,便于降低成本,优选的技术方案是,所述推力装置或牵引装置为驱动电机或为涡轮喷气发动机,在所述驱动电机的输出轴上装有驱动叶片。
为了便于通过定向翼片带动驱动电机绕主旋翼的末端在一定范围内旋转,以克服陀螺效应对主旋翼翼面产生的扭矩,同时也便于驱动电机与主旋翼末端的连接,优选的技术方案还有,所述驱动电机通过安装轴座与安装轴连接,安装轴座呈T形管状结构,在T形管状结构的安装轴座的横向通孔内安装有与安装轴配合的轴承,或将主旋翼安装轴位置设计为轴承座,将原T形管状轴承座位置设置为安装轴,在T形管状结构的安装轴座的竖向通孔内安装驱动电机,在主旋翼的末端设有限位销,在T形管状结构的安装轴座的竖向外表面设有与限位销位置相对应的限位销槽。
为了避免主旋翼旋转过程中产生的惯性力矩对驱动电机造成的安装轴弯曲力矩,进一步优选的技术方案还有,所述定向翼片、安装轴座和驱动电机的重心均位于安装轴的轴线上。
为了简化驱动电机的结构或为了进一步提升驱动电机对于主旋翼的驱动力,进一步优选的技术方案还有,在所述驱动电机的一端装有驱动扇叶,在T形管状结构的安装轴座的竖向通孔另一端装有端帽。
为了简化驱动电机的结构或为了进一步提升驱动电机对于主旋翼的驱动力,进一步优选的技术方案还有,在所述驱动电机的两端分别装有驱动扇叶,或在T形管状结构的安装轴座的竖向通孔内安装有两台输出轴方向相反的驱动电机,两台驱动电机可通过正反桨使动力输出方向相同。
为了平衡主旋翼对直升机机身产生旋转力矩,同时也为了便于控制直升机的偏航航向,进一步优选的技术方案还有,在所述垂直起降 飞行器的尾部设有航向驱动电机。
为了便于将直升机上的电能传送到主旋翼末端上的驱动电动机上,并能够同时将电能传送到航向驱动电机上,优选的技术方案还有,所述主旋翼变距系通过轴承座及轴承与空心管连接,在所述空心管上套装有集电环。
为了便于将直升机上的电能传送到主旋翼末端上的驱动电动机上,并能够同时将电能传送到航向驱动电机上,进一步优选的技术方案还有,所述驱动电机通过安装轴座以及设置在主旋翼内部的导线或导电膜与集电环电连接。
为了便于对主旋翼驱动电机及航向驱动电机的工作状态进行有效地操控,并为其提供电力,进一步优选的技术方案还有,所述集电环通过导线与电子调速器电连接,电子调速器与主控制器电连接,主控制器与控制台电连接,主控制器还通过电源管理器与电源连接,电子调速器也电源管理器与电连接,航向驱动电机也通过舵机及电子调速器与主控制器电连接,主控制器还与舵行电连接。
本发明的优点和有益效果在于:所述主动主旋翼垂直起降飞行器具有结构简单、可大幅降低对主旋翼的驱动功率或快速提高对主旋翼的驱动力,还能够克服陀螺效应对主旋翼造成的扭转力矩等特点。
附图说明
图1是本发明主动主旋翼垂直起降飞行器的***结构示意图;
图2是本发明主动主旋翼垂直起降飞行器中主旋翼的主视图;
图2.1是图2的C处局部放大示意图;
图3是图2的A-A向示图;
图4是图2的俯视图之一;
图5是图2的俯视图之二;
图6是图2的俯视图之三
图7.1是图2中的安装轴座的主视结构示意图;
图7.2是图2中的安装轴座的左视结构示意图;;
图7.3是图2中的安装轴座的右视结构示意图;
图8是图2中的安装轴座与定向翼片连接的结构示意图;
图9是图8的立体结构示意图;
图10是图2的立体结构示意图。
图中:1、主旋翼;2、主旋翼变距***;3、安装轴;4、定向翼片;5、驱动电机;6、驱动叶片;7、安装轴座;8、轴承;9、限位销;10、限位销槽;11、端帽;12、航向驱动电机;13、轴承座;14、轴承;15、空心管;16、集电环;17、舵机;18、电子调速器;19、主控制器;20、控制台;21、电源管理器;22、电源。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
如图1~10所示,本发明是一种主动主旋翼垂直起降飞行器,所述飞行器至少包括两片主旋翼1,主旋翼1的一端与中间联接件连接,中间联接件与主旋翼变距***2连接,在每片主旋翼1的末端装有驱动主旋翼1旋转的推力装置或牵引装置,推力装置或牵引装置通过设置在主旋翼1末端的安装轴3与主旋翼1之间转动连接,且安装轴3的轴线与主旋翼1的横向轴向重合或平行,所述推力装置或牵引装置的推力方向与主旋翼1的旋转方向相反,且与安装轴1的轴线方向垂直,在所述推力装置或牵引装置的一侧固定连接有定向翼片4,定向翼片4与每片主旋翼1末端之间对称于推力装置或牵引装置的轴线,定向翼片4用于使推力装置或牵引装置的旋转轴中心线与主旋翼末端的旋转面平行。
由于该直升机的主旋翼1一端通过主旋翼变距***2与空心管连接,在主旋翼1的末端还连接有推力装置或牵引装置。因此当直升机主旋翼1的末端由推力装置或牵引装置驱动主旋翼1旋转。由于推力装 置或牵引装置被安装在主旋翼1的末端,由于杠杆原理的作用,在输出扭矩相同的情况下驱动力越远离旋转中心所需要的推力也就越小,因此可以大幅降低推力装置或牵引装置输出功率,达到节能的功效。安装轴3的设置是为了便于推力装置或牵引装置与主旋翼1末端之间的连接,同时保证主旋翼1受力合理,
为了简化驱动装置的结构,降低驱动装置的体积、重量,便于加工制造,便于维修保养,便于使用,便于降低成本,本发明优选的实施方案是,所述推力装置或牵引装置为驱动电机5或为涡轮喷气发动机,在所述驱动电机5的输出轴上装有驱动叶片6。
为了便于通过定向翼片4带动驱动电机5绕主旋翼1的末端在一定范围内旋转,以克服陀螺效应对主旋翼1翼面产生的扭矩,同时也便于驱动电机5与主旋翼1末端的连接,本发明优选的实施方案还有,所述驱动电机5通过安装轴座7与安装轴3连接,安装轴座7呈T形管状结构,在T形管状结构的安装轴座7的横向通孔内安装有与安装轴3配合的轴承8,或将主旋翼安装轴位置设计为轴承座,将原T形管状轴承座位置设置为安装轴,在T形管状结构的安装轴座7的竖向通孔内安装驱动电机5,在主旋翼1的末端设有限位销9,在T形管状结构的安装轴座7的竖向外表面设有与限位销9位置相对应的限位销槽10。
为了避免主旋翼旋1转过程中产生的惯性力矩对驱动电机5造成的安装轴3弯曲力矩,本发明进一步优选的实施方案还有,所述定向翼片4、安装轴座7和驱动电机5的重心均位于安装轴3的轴线上。
为了简化驱动电机5的结构或为了进一步提升驱动电机5对于主旋翼1的驱动力,本发明进一步优选的实施方案还有,在所述驱动电机5的一端装有驱动扇叶6,在T形管状结构的安装轴座7的竖向通孔另一端装有端帽11。
为了简化驱动电机5的结构或为了进一步提升驱动电机5对于主旋翼1的驱动力,本发明进一步优选的实施方案还有,在所述驱动电 机5的两端分别装有驱动扇叶6,或在T形管状结构的安装轴座7的竖向通孔内安装有两台输出轴方向相反的驱动电机5,两台驱动电机可通过正反桨使动力输出方向相同。
为了平衡主旋翼1对直升机机身产生旋转力矩,同时也为了便于控制直升机的偏航航向,本发明进一步优选的实施方案还有,在所述垂直起降飞行器的尾部设有航向驱动电机12。
为了便于将直升机上的电能传送到主旋翼1末端上的驱动电动机5上,并能够同时将电能传送到航向驱动电机12上,本发明优选的实施方案还有,所述主旋翼变距系2通过轴承座13及轴承14与空心管15连接,在所述空心管15上套装有集电环16。
为了便于将直升机上的电能传送到主旋翼1末端上的驱动电动机5上,并能够同时将电能传送到航向驱动电机12上,本发明进一步优选的实施方案还有,所述驱动电机5通过安装轴座7以及设置在主旋翼1内部的导线或导电膜与集电环16电连接。
为了便于对主旋翼驱动电机5及航向驱动电机12的工作状态进行有效地操控,并为其提供电力,本发明进一步优选的实施方案还有,所述集电环16通过导线与电子调速器18电连接,电子调速器18与主控制器19电连接,主控制器19与控制台20电连接,主控制器19还通过电源管理器21与电源22连接,电子调速器18也电源管理器21与电连接,航向驱动电机12也通过舵机17及电子调速器18与主控制器19电连接,主控制器19还与舵行17电连接。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种主动主旋翼垂直起降飞行器,其特征在于,所述飞行器至少包括两片主旋翼,主旋翼一端与中间联接件连接,中间联接件与主旋翼变距***连接,在每片主旋翼的末端装有驱动主旋翼旋转的推力装置或牵引装置,推力装置或牵引装置通过设置在主旋翼末端的安装轴与主旋翼之间转动连接,且安装轴的轴线与主旋翼的横向轴向重合或平行,所述推力装置或牵引装置的推力方向与主旋翼的旋转方向相反,且与安装轴的轴线方向垂直,在所述推力装置或牵引装置的一侧固定连接有定向翼片,定向翼片与每片主旋翼末端之间对称于推力装置或牵引装置的轴线,定向翼片用于使推力装置或牵引装置的旋转轴中心线与主旋翼末端的旋转面平行。
  2. 如权利要求1所述的主动主旋翼垂直起降飞行器,其特征在于,所述推力装置或牵引装置为驱动电机或为涡轮喷气发动机,在所述驱动电机的输出轴上装有驱动叶片。
  3. 如权利要求2所述的主动主旋翼垂直起降飞行器,其特征在于,所述驱动电机通过安装轴座与安装轴连接,安装轴座呈T形管状结构,在T形管状结构的安装轴座的横向通孔内安装有与安装轴配合的轴承,或将主旋翼安装轴位置设计为轴承座,将原T形管状轴承座位置设置为安装轴,在T形管状结构的安装轴座的竖向通孔内安装驱动电机,在主旋翼的末端设有限位销,在T形管状结构的安装轴座的竖向外表面设有与限位销位置相对应的限位销槽。
  4. 如权利要求3所述的主动主旋翼垂直起降飞行器,其特征在于,所述定向翼片、安装轴座和驱动电机的重心均位于安装轴的轴线上。
  5. 如权利要求4所述的主动主旋翼垂直起降飞行器,其特征在于,在所述驱动电机的一端装有驱动扇叶,在T形管状结构的安装轴座的竖向通孔另一端装有端帽。
  6. 如权利要求3所述的主动主旋翼垂直起降飞行器,其特征在于, 在所述驱动电机的两端分别装有驱动扇叶,或在T形管状结构的安装轴座的竖向通孔内安装有两台输出轴方向相反的驱动电机。
  7. 如权利要求1至6任意一项所述的主动主旋翼垂直起降飞行器,其特征在于,在所述垂直起降飞行器的尾部设有航向驱动电机。
  8. 如权利要求7所述的主动主旋翼垂直起降飞行器,其特征在于,所述主旋翼变距系通过轴承座及轴承与空心管连接,在所述空心管上套装有集电环。
  9. 如权利要求8所述的主动主旋翼垂直起降飞行器,其特征在于,所述驱动电机通过安装轴座以及设置在主旋翼内部的导线或导电膜与集电环电连接。
  10. 如权利要求9所述的主动主旋翼垂直起降飞行器,其特征在于,所述集电环通过导线与电子调速器电连接,电子调速器与主控制器电连接,主控制器与控制台电连接,主控制器还通过电源管理器与电源连接,电子调速器也电源管理器与电连接,航向驱动电机也通过舵机及电子调速器与主控制器电连接,主控制器还与舵行电连接。
PCT/CN2019/072657 2018-02-11 2019-01-22 一种主动主旋翼垂直起降飞行器 WO2019154067A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810142091.0A CN108163193B (zh) 2018-02-11 2018-02-11 一种主动主旋翼垂直起降飞行器
CN201810142091.0 2018-02-11

Publications (1)

Publication Number Publication Date
WO2019154067A1 true WO2019154067A1 (zh) 2019-08-15

Family

ID=62514191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072657 WO2019154067A1 (zh) 2018-02-11 2019-01-22 一种主动主旋翼垂直起降飞行器

Country Status (2)

Country Link
CN (1) CN108163193B (zh)
WO (1) WO2019154067A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3113893A1 (fr) * 2020-09-04 2022-03-11 Philippe CROCHAT Aéronef à voilure tournante à stator stabilisé en lacet
FR3113892A1 (fr) * 2020-09-04 2022-03-11 Philippe CROCHAT Aéronef à voilure tournante avec motorisation en bout de pales et à pas modifiable
CN114252262A (zh) * 2021-12-09 2022-03-29 中国船舶重工集团公司第七0三研究所 一种考虑平衡静态自重的直升机主减速器桨榖载荷模拟加载装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108163193B (zh) * 2018-02-11 2019-09-20 桂艳春 一种主动主旋翼垂直起降飞行器
CN108238247A (zh) * 2018-02-11 2018-07-03 桂艳春 一种油电混合动力主动旋翼垂直起降飞行器
IT201900006604A1 (it) * 2019-05-07 2020-11-07 Vinati S R L Velivolo ad ala rotante dotato di apparato propulsivo perfezionato
CN114476043B (zh) * 2021-12-31 2024-08-09 中国航天空气动力技术研究院 一种电动分布式旋翼无人运输机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2434226Y (zh) * 2000-07-20 2001-06-13 李小钢 主动旋翼直升飞行器
CN1335248A (zh) * 2000-07-20 2002-02-13 李小钢 主动旋翼直升飞行器
CN2502994Y (zh) * 2001-05-27 2002-07-31 尚晓 一种带动力的旋翼
WO2015089679A1 (de) * 2013-12-20 2015-06-25 Conca-Garcia Raphaël Senkrechtstarterflugzeug (vtol)
CN108163193A (zh) * 2018-02-11 2018-06-15 桂艳春 一种主动主旋翼垂直起降飞行器
CN108238247A (zh) * 2018-02-11 2018-07-03 桂艳春 一种油电混合动力主动旋翼垂直起降飞行器
CN207956057U (zh) * 2018-02-11 2018-10-12 桂艳春 一种主动主旋翼垂直起降飞行器
CN208007286U (zh) * 2018-02-11 2018-10-26 桂艳春 一种油电混合动力主动旋翼垂直起降飞行器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2434226Y (zh) * 2000-07-20 2001-06-13 李小钢 主动旋翼直升飞行器
CN1335248A (zh) * 2000-07-20 2002-02-13 李小钢 主动旋翼直升飞行器
CN2502994Y (zh) * 2001-05-27 2002-07-31 尚晓 一种带动力的旋翼
WO2015089679A1 (de) * 2013-12-20 2015-06-25 Conca-Garcia Raphaël Senkrechtstarterflugzeug (vtol)
CN108163193A (zh) * 2018-02-11 2018-06-15 桂艳春 一种主动主旋翼垂直起降飞行器
CN108238247A (zh) * 2018-02-11 2018-07-03 桂艳春 一种油电混合动力主动旋翼垂直起降飞行器
CN207956057U (zh) * 2018-02-11 2018-10-12 桂艳春 一种主动主旋翼垂直起降飞行器
CN208007286U (zh) * 2018-02-11 2018-10-26 桂艳春 一种油电混合动力主动旋翼垂直起降飞行器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3113893A1 (fr) * 2020-09-04 2022-03-11 Philippe CROCHAT Aéronef à voilure tournante à stator stabilisé en lacet
FR3113892A1 (fr) * 2020-09-04 2022-03-11 Philippe CROCHAT Aéronef à voilure tournante avec motorisation en bout de pales et à pas modifiable
CN114252262A (zh) * 2021-12-09 2022-03-29 中国船舶重工集团公司第七0三研究所 一种考虑平衡静态自重的直升机主减速器桨榖载荷模拟加载装置
CN114252262B (zh) * 2021-12-09 2023-12-08 中国船舶重工集团公司第七0三研究所 一种考虑平衡静态自重的直升机主减速器桨榖载荷模拟加载装置

Also Published As

Publication number Publication date
CN108163193B (zh) 2019-09-20
CN108163193A (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
WO2019154067A1 (zh) 一种主动主旋翼垂直起降飞行器
WO2019154064A1 (zh) 一种油电混合动力主动旋翼垂直起降飞行器
CN107458597B (zh) 用于直升机的反扭矩组件及***以及操作直升机的方法
EP3385160B1 (en) Helicopter with wing augmented lift
CN205707301U (zh) 一种变桨距机构
US8727265B2 (en) Helicopter with cycloidal rotor system
CN107140198B (zh) 双共轴倾转旋翼无人机短舱结构
CN107672802A (zh) 开槽涵道式卷流旋翼飞行器
CN109515704B (zh) 基于摆线桨技术的涵道卷流旋翼飞行器
CN104859859B (zh) 一种气动优化油电混合多旋翼飞行器
CN110294114B (zh) 一种共轴双桨飞行器的姿态控制***
CN102490898A (zh) 一种共轴式双旋翼直升机
CN207956057U (zh) 一种主动主旋翼垂直起降飞行器
US11230373B2 (en) Assembly and method for helicopter anti-torque
EP3878739B1 (en) Bidirectional aircraft rotor
CN202345911U (zh) 一种共轴式双旋翼直升机
CN110506001B (zh) 旋翼飞行器
CN208007286U (zh) 一种油电混合动力主动旋翼垂直起降飞行器
CN209382256U (zh) 一种多旋翼无人机用辅助机翼***
CN112478154A (zh) 一种适用于倾转旋翼机的旋翼桨
CN109367773B (zh) 一种有舵面的倾转机构
CN212354390U (zh) 一种垂直起降飞行器
JP2007050869A (ja) 可変ピッチプロペラ
CN204750573U (zh) 一种气动优化油电混合多旋翼飞行器
CN209600788U (zh) 一种带有空气流体升力结构的多旋翼无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19751350

Country of ref document: EP

Kind code of ref document: A1