WO2019154033A1 - 一种空间复用的方法和装置 - Google Patents

一种空间复用的方法和装置 Download PDF

Info

Publication number
WO2019154033A1
WO2019154033A1 PCT/CN2019/071997 CN2019071997W WO2019154033A1 WO 2019154033 A1 WO2019154033 A1 WO 2019154033A1 CN 2019071997 W CN2019071997 W CN 2019071997W WO 2019154033 A1 WO2019154033 A1 WO 2019154033A1
Authority
WO
WIPO (PCT)
Prior art keywords
spatial multiplexing
node
bss1
request
bss2
Prior art date
Application number
PCT/CN2019/071997
Other languages
English (en)
French (fr)
Inventor
丁昌峰
韩霄
何蓉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019154033A1 publication Critical patent/WO2019154033A1/zh
Priority to US16/988,082 priority Critical patent/US11317311B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present application relates to the field of communications, and in particular to spatial multiplexing techniques.
  • the millimeter wave transmission distance is short and the path loss is large.
  • the AP Choinese full name can be: access point, the full English name can be: Access point
  • the AP will be more densely arranged, such as conference rooms, waiting rooms, waiting halls.
  • the coverage areas of APs are often overlapping.
  • the millimeter-wave directional beam itself has the effect of spatial isolation and spatial multiplexing
  • two BSSs Choinese full name can be: basic service area set
  • the English full name can be: basic service set
  • the BSS can be the communication coverage formed by the AP, and in the dense user scenario, there may still be interference between the communication links of different BSSs.
  • 802.11ad and 802.11ay in order to protect the user's data communication and priority, a channel resource scheduling method called SP (Chinese full name can be: service period, English full name can be: service period) is used.
  • SP scheduling the AP allocates a period of time for the user.
  • a BI (Chinese full name can be: beacon slot, English full name can be: beacon interval) is divided into BHI (Chinese full name can be: beacon header time slot, The English full name can be: beacon header interval) and DTI (Chinese full name can be: data transmission time slot, English full name can be: data transfer interval), where BHI can be divided into BTI (Chinese full name can be: beacon transmission Gap, English full name can be: beacon transmission interval), A-BFT (Chinese full name can be: associated beam shaping training, English full name can be: association beamforming training) and ATI (Chinese full name can be: announcement transmission time slot, English The full name can be: announcement transmission interval), DTI can be divided into CBAP (Chinese full name can be: competition access period, English full name can be: contention based access period) and SP.
  • the scheduling of the time slots in the DTI is performed by the AP in the ATI by means of the AP and the STA (Chinese can be: the station, the English can be: station) polling and responding.
  • ATI is not included in BHI (ATI is optional)
  • the AP sends Beacon in BTI, it carries ESE in Beacon (Chinese full name can be: extended scheduling element, English full name can be: extended schedule element ) Complete the scheduling of the user.
  • the spatial multiplexing mechanism of 802.11ad allows SPs of different STAs belonging to the same spatial region to be scheduled simultaneously in space and reduce interference, that is, enables different D2D links in the BSS to communicate simultaneously.
  • the prior art only considers the method of spatial multiplexing and interference cancellation in the BSS, and does not consider interference from outside the BSS, that is, the communication of other BSSs may affect the communication of the SPs in the BSS, causing communication conflicts.
  • the present application provides a spatial multiplexing method or apparatus to implement spatial multiplexing of SPs between BSSs.
  • a first node in a first basic service area set BSS1 receives a measurement request sent by a second node in a second basic service area set BSS2, where the BSS1 is allocated One or more first service periods SP1, one or more second service periods SP2 are allocated in the BSS2, the measurement request is to request measurement of the one or more SP2s; the first node in the BSS1 receives a measurement report of the second node in the BSS2, the measurement report being a report of measuring one or more SP1s; the first node in the BSS1 determines whether one or more SP1s and one or one are allowed based on the received measurement report Multiple SP2s are spatially multiplexed.
  • a method for spatial multiplexing in which a second node in a second basic service area set BSS2 sends a measurement request to a first node in a first basic service area set BSS1, and one BSS1 is allocated Or a plurality of first service periods SP1, wherein the BSS2 is allocated one or more second service periods SP2, the measurement request is to request measurement of the one or more SP2s; and the second node in the BSS2 is directed to the BSS1
  • the first node within the node sends a measurement report, the measurement report being a report of one or more SP1 measurements, the measurement report being used to determine whether one or more SP1s and one or more SP2s are allowed to be spatially multiplexed.
  • a spatial multiplexing method in which a first node in a first basic service area set BSS1 receives a spatial multiplexing request sent by a second node in a second basic service area set BSS2, and the BSS1 allocates the same.
  • the spatial multiplexing request includes information of one or more SP2s, and/or one or more The information of the SP1, wherein the information of the SP2 includes the spatial multiplexing state information of the SP2, wherein the spatial multiplexing state information of the SP is used to indicate the spatial multiplexing state of the SP; the first node in the BSS1 is based on the spatial multiplexing of the SP1
  • the state and the received spatial multiplexing state information of the SP2 are used to determine whether the one or more SP2 and the one or more SP1s are allowed to be spatially multiplexed.
  • a method for spatial multiplexing where a second node in the second basic service area set BSS2 sends a spatial multiplexing request to a first node in the first basic service area set BSS1, where the BSS1 is allocated One or more first service periods SP1 in which one or more second service periods SP2 are allocated, the spatial multiplexing request including information of one or more SP2s, and/or one or more SP1s
  • the information of the SP2 includes the spatial multiplexing state information of the SP2, wherein the spatial multiplexing state information of the SP is used to indicate a spatial multiplexing state of the SP; the spatial multiplexing request is to request the one or more SP1 and the one or more SP2s are spatially multiplexed.
  • a fifth aspect provides a spatial multiplexing apparatus, including: a processing module and a transceiver module; the device is located in a first basic service area set BSS1; and the transceiver module is configured to receive a second basic service area set BSS2 a measurement request sent by the second node, the BSS1 is allocated with one or more first service periods SP1, and the BSS2 is allocated with one or more second service periods SP2, and the measurement request is a request for the Measuring by one or more SP2s; receiving a measurement report of a second node within the BSS2, the measurement report being a report requesting measurement of one or more SP1s; the processing module for determining based on the received measurement report Whether one or more SP1 and one or more SP2 are allowed to be spatially multiplexed.
  • a device for spatial multiplexing includes: a processing module and a transceiver module; the device is located in a second basic service area set BSS2; and the transceiver module is configured to be in a first basic service area set BSS1
  • the first node sends a measurement request, the BSS1 is allocated with one or more first service periods SP1, and the BSS2 is allocated with one or more second service periods SP2, and the measurement request is a request for the one or Measuring, by a plurality of SP2s; transmitting a measurement report to the first node in the BSS1, the measurement report being a report of measuring one or more SP1s, the measurement report being used to determine whether one or more SP1s and one or one are allowed Multiple SP2s are spatially multiplexed.
  • a device for spatial multiplexing includes: a processing module and a transceiver module; the device is located in a first basic service area set BSS1; and the transceiver module is configured to receive a second basic service area set BSS2 a spatial multiplexing request sent by the second node, the BSS1 is allocated one or more first service periods SP1, the BSS2 is allocated with one or more second service periods SP2, and the spatial multiplexing request includes one Or information of multiple SP2s, and/or information of one or more SP1s, wherein the information of SP2 includes spatial multiplexing state information of SP2, wherein spatial multiplexing state information of the SP is used to indicate spatial multiplexing of the SP
  • the processing module is configured to determine, according to the spatial multiplexing state of the SP1 and the spatial multiplexing state information of the received SP2, whether to allow the one or more SP2 and the one or more SP1s to perform spatial multiplexing.
  • a device for spatial multiplexing includes: a processing module and a transceiver module; the device is located in a second basic service area set BSS2; and the transceiver module is first to a first basic service area set BSS1
  • the node transmits a spatial multiplexing request, the BSS1 is allocated with one or more first service periods SP1, and the BSS2 is allocated with one or more second service periods SP2, the spatial multiplexing request including one or more Information of the SP2, and/or information of one or more SP1s, wherein the information of the SP2 includes spatial multiplexing state information of the SP2, wherein the spatial multiplexing state information of the SP is used to indicate the spatial multiplexing state of the SP;
  • the spatial multiplexing request is for spatial multiplexing of the one or more SP1s and the one or more SP2s.
  • a computer storage medium having stored therein program code, the program code being operative to indicate a method of performing the first to fourth aspects described above, or any alternative implementation thereof.
  • Figure 1 is a slot diagram of BI according to 802.11ad/ay
  • FIG. 2 is a schematic structural diagram of a system according to an embodiment of the present application.
  • FIG. 3 is a schematic flow chart of a method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of information bits of a spatial multiplexing indication in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a time slot of a dynamic ATI in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a frame structure of a dynamic ATI in an embodiment of the present application.
  • FIG. 7 is a schematic flow chart of a time slot according to an embodiment of the present application.
  • FIG. 8 is a schematic flow chart of a time slot according to another embodiment of the present application.
  • FIG. 9 is a schematic flow chart of a time slot according to another embodiment of the present application.
  • FIG. 10 is a schematic flow chart of a method according to another embodiment of the present application.
  • FIG. 11 is a schematic flow chart of a time slot according to another embodiment of the present application.
  • 12 is a schematic diagram of information bits of spatial multiplexing state information in an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of an apparatus according to an embodiment of the present application.
  • Figure 14 is a schematic structural view of another embodiment of the present application.
  • Figure 15 is a block diagram showing the structure of another embodiment of the present application.
  • the information transmission method and the network device provided by the embodiments of the present application can be applied to a WLAN system, such as the 802.11ad standard, the 802.11ay standard, and the standard improved WLAN system of the standard, and can also be used in a cellular network.
  • a WLAN system such as the 802.11ad standard, the 802.11ay standard, and the standard improved WLAN system of the standard
  • the network device can be an AP.
  • FIG. 2 is a schematic structural diagram of a network system to which the embodiments of the present application are applicable.
  • the communication coverage of one AP may be BSS, and the circle is represented by a circle. . Due to the dense arrangement of the APs, the coverage areas between adjacent BSSs overlap.
  • the AP and the neighboring APs can perform beamforming training to establish a directional beam link, and the APs can schedule time slots for communication and exchange some information frames.
  • FIG. 3 is a schematic flowchart of a method according to an embodiment of the present application, including the following processing procedure:
  • the second node in the second basic service area set (which may be recorded as BSS2, other terms are similar to the rule expression) sends a measurement request, and further, one or more second service periods SP2 are allocated in the BSS2 (SP Chinese The full name can be: service period, the full name of English can be: service period). Further, sending to the first node in the first basic service area set BSS1, one or more first service periods SP1 are allocated in the BSS1, and correspondingly, the first node in the BSS1 receives the measurement request; further, the The measurement request is a request to measure the one or more SP2s, which may be measurements for spatial multiplexing, such as channel measurements.
  • the first SP may be an SP that has been scheduled, may be referred to as an existing SP, and may also be referred to as another name.
  • the second SP may be an SP that is used for spatial multiplexing evaluation with the SP that has been scheduled, or an SP that may be rescheduled, or may be in a beacon slot (English full name may be beacon interval, English abbreviation may SP that is considered to be redistributed in BI).
  • the one or more SP1s may be the SPs of the same time slot, or may be the SPs of different time slots, and are not limited to the SPs that each SP1 must be identical.
  • One or more SP2s are also understood.
  • the first node is an access point AP or a station STA; the second node is an AP or an STA.
  • the measurement request can include one or more of the following information:
  • Information of the SP information that can be used to represent the SP, such as a start time indication or an offset time indication including the SP.
  • the information of the SP includes one or more SP2 information, and/or one or more SP1 information.
  • Time information measured Time information used to indicate the measurement, such as the start time of the measurement or the end time of the measurement.
  • Measurement mode Information indicating the manner in which the SP is measured, for example, may include measured channel information, channel measurement mode, or antenna measurement mode.
  • the first node in the BSS1 sends a measurement request response, where the measurement request response is a response to the measurement request; further, sending to the second node in the BSS2, and correspondingly, the second node in the BSS2 receives the measurement request. .
  • This process is optional.
  • the measurement request response can include one or more of the following:
  • Indication information of the subsequent beacon slot BI information used to indicate subsequent one or more BIs.
  • One or more SP2s are separately measured, and/or one or more SP1s are measured, and further, channel measurements can be made.
  • the first node in the BSS1, and/or the other nodes in the BSS1 scheduled by the first node in the BSS1 measure one or more SP2s, which can be understood as measuring one or more SP2s, and can also be understood To measure one or more candidate SPs.
  • the second node in the BSS2, and/or the other nodes in the BSS2 scheduled by the second node in the BSS2 measure one or more SP1s, which can be understood as measuring one or more SP1s, or can be understood as One or more existing SPs are measured.
  • the second node in the BSS2 sends a measurement report.
  • the measurement report is a report for measuring one or more SP1s, and further, is sent to the first node in the BSS1, and correspondingly, the first in the BSS1.
  • the node receives the measurement report.
  • the measurement report can contain one or more of the following information:
  • Measured channel information Information used to indicate the measured channel, such as indicating which channels are being measured.
  • Duration of measurement Used to indicate the duration of the measurement.
  • the content of the measurement report used to indicate the content of the measurement report; for example, the RSSI (Chinese full name: received signal strength indication) can be used to describe the content of the measurement report, or ANIPI can be used ( Chinese full name: average noise plus interference power indicator, English full name: average noise plus interference power indicator) way to describe the content of the measurement report or can use RSNI (Chinese full name: receiving signal and power indication, English full name: received signal-to- The manner of the noise indicator describes the content of the measurement report.
  • RSSI Choinese full name: received signal strength indication
  • ANIPI can be used ( Chinese full name: average noise plus interference power indicator, English full name: average noise plus interference power indicator) way to describe the content of the measurement report or can use RSNI (Chinese full name: receiving signal and power indication, English full name: received signal-to- The manner of the noise indicator describes the content of the measurement report.
  • the first node in the BSS1 determines, according to the received measurement report, whether one or more SP2s and one or more SP1s are allowed to perform spatial multiplexing. Further, the first node in the BSS1 determines whether one or more SP1s and one or more SP2s are allowed to be spatially multiplexed based on the received measurement report and the result of measuring one or more SP2s. Further, of course, the first node in the BSS1 can determine that there are multiple ways in the implementation, for example, it can also be determined according to the existing 802.16 technology. This processing is not the focus of the embodiments of the present application, and details are not described herein again.
  • the first node in the BSS1 sends a measurement report response, where the measurement report response is a response to the measurement report; further, sending to the second node in the BSS2, and correspondingly, the second node in the BSS2 receives the measurement request. .
  • This process is optional.
  • the measurement report response may include one or more of the following information
  • An indication of whether to allow spatial multiplexing of SP objects an indication indicating whether to allow spatial multiplexing of SP objects.
  • Power control information information for indicating power control, for example, the first node in the BSS1 sends a measurement report response to the second node in the BSS2, and the information is carried, which can be used to notify the second node in the BSS2 that the power is reduced to Or rise to a certain value, allow or reject the SR of the SP.
  • the embodiment shown in FIG. 3 can implement the measurement of the SP between the BSSs by using the communication link between the BSSs, can realize the SR of the SPs between the BSSs, does not need to stagger the SPs to reduce interference, and can better utilize space and Time resources to improve system throughput.
  • the techniques for the nodes in the BSS to schedule other nodes in the BSS or to perform measurement by themselves may refer to the existing measurement methods in IEEE 802.11ad.
  • IEEE 802.11ad the measurement technologies may mainly have the following two types:
  • ANIPI mode used to represent the average noise plus interference power on the node measurement channel. In this measurement mode, the STA cannot transmit frames and there is no frame sent to the STA.
  • the first method is the ANIPI method.
  • the spatial multiplexing indication is introduced, which is optional.
  • a spatial multiplexing indication (which may be referred to as an SR indication) may be carried in the scheduling information sent by the BI, where the SR indication is used to indicate whether the SP supports an inter-BSS SR, and the indication may be indicated by a bit. form.
  • the BSS may also be briefly described but not limited to being briefly described as an AP.
  • the SR indicates the location of the sent time slot, which can be located in the BTI or CBAP (the full name of the Chinese can be: the contention access period, the full name of the English can be: Contention Based Access Period) or the A-BFT (the full name of the Chinese can be the associated beam).
  • the shaping training, the English full name can be sent to the Association-Beamforming Training) or the SP; it can be carried in the Beacon, and can be carried in the extended scheduling information in the Beacon, or carried in other information, the extended scheduling information in English can be An extended schedule element (referred to as ESE for convenience of description), as shown in FIG.
  • the indicator bit can be carried in one or more red bit positions as follows.
  • This indication enables other BSS nodes, such as the neighboring AP, to know whether the SP supports the SR of the inter-BSS SP in order to schedule the measurement and feedback process.
  • the first node in the BSS1 sends a spatial multiplexing indication, where the spatial multiplexing indication is used to indicate whether the SP supports the inter-BSS SR, and the second node in the BSS2 receives the first node sent in the BSS1.
  • the spatial multiplexing indication is used to learn which SPs scheduled by the first node in the BSS1 can be spatially multiplexed. It can also be understood that the second node in the BSS2 learns one or more SP1 information scheduled by the first node in the BSS1.
  • one or more dynamic ATIs may be included in the DTI of the BI (English may be called dynamic ATI), and the dynamic ATI is understood to be an ATI that can be set.
  • Another understanding may be a scheduling time slot set in the DTI according to scheduling requirements, and optionally, may be set at certain time intervals. The functions of these scheduling slots can be the same as those of ATI in the existing standards. By flexibly setting up ATI, you can have more than one ATI in a single BI period, increasing the chances of scheduling in a BI.
  • the dynamic ATI can be implemented by setting the SP information.
  • the Source AID in the SP allocation is the AID of the AP
  • the Destination AID is the broadcast AID
  • the SP information becomes the scheduling information and becomes a dynamic ATI.
  • the SP acting as a dynamic ATI can be regarded as a special SP time slot, because if the SP's Source AID is set to the AP's AID and the Destination AID is set to broadcast. AID, then all STAs in this SP are in the receiving state to receive transmissions from the AP, so the AP can reschedule the scheduling of time slot resources within this time.
  • the dynamic ATI can be set at a fixed time interval in the DTI. Further, in one system, the dynamic ATIs of different APs do not overlap in time.
  • Dynamic ATI's technical advantage Compared to the existing 802.11ad standard, there is only one chance to schedule DTI scheduling within a BI. Scheduling can be implemented in BTI or in ATI. Dynamic ATI can also re-schedule nodes and resources within DTI, and implement flexible information interaction between BSS. Moreover, because in the DTI, the scheduling of the AP is performed according to the information reported by the STA or the request information of other APs, the AP already knows how to schedule the scheduling. Therefore, in these dynamic ATIs, the AP does not need to inquire the STAs in turn like ATI. The AP only needs to send a notification frame (which can include ESE) to each STA to save overhead.
  • a notification frame which can include ESE
  • Figure 5 below shows an example of a dynamic ATI frame structure
  • dynamic ATI there may also be scheduling information about the dynamic ATI
  • the scheduling information of the dynamic ATI is used to indicate scheduling information about the dynamic ATI.
  • the scheduling information of the dynamic ATI can be notified to other BSS nodes in the Beacon (for example, in the ESE of Beacon).
  • the first node in the BSS1 notifies the scheduling information of the dynamic ATI to the BSS2 through the Beacon frame.
  • Two nodes In combination with the foregoing embodiment, the first node in the BSS1 sends the dynamic ATI scheduling information, and the second node in the BSS2 receives the dynamic ATI scheduling information sent by the first node in the BSS1, and the first node in the BSS1 can implement the dynamic ATI.
  • the channel measurement of the SP between the BSS and the related signaling interaction so that the SP sharing can be completed in one BI, and the second node in the BSS2 can perform some signaling interaction with the first node in the BSS1 in multiple dynamic ATIs.
  • the first node in BSS1 may also schedule time to communicate with the second node within BSS2.
  • the dynamic ATI can also be other names.
  • the scheduling information of the dynamic ATI can be sent, for example, in the beacon transmission time slot BTI or A-BFT or CBAP or SP.
  • the scheduling information of the dynamic ATI can be carried in the extended scheduling information or in the beacon as an example.
  • the dynamic ATI scheduling information is exemplarily shown in FIG. 6 including one or more of the following information:
  • Start time The example is shown as Start Time, which is used to indicate the start time of the first ATI of dynamic ATI.
  • ATI Duration The example in the figure is ATI Duration, which is used to indicate the duration of ATI in dynamic ATI.
  • ATIMaxMem The figure is shown as ATIMaxMem, which is used to indicate the number of ATIs in the DTI.
  • the ATI number can be placed in the ATI control field (illustrated as ATI Control field in the figure).
  • node and time rescheduling can be implemented in the DTI, the interference between the BSSs can be handled more flexibly, and the interaction between the BSSs can be flexibly arranged.
  • the second node in the BSS2 is a node that sends a measurement request (English may be a measurement request), and the second node in the BSS2 sends the measurement request to the first node in the BSS1, the second node in the BSS2 and the BSS1 in the BSS1.
  • the first node may have completed beamforming training, and the second node within BSS2 and the first node within BSS1 may have time slots for communication.
  • the BTI information of the first node in the BSS1 can be obtained, and the spatial multiplexing SR indication (such as the illustrated Including Extended Schedule element) or the dynamic ATI scheduling information is learned from the BTI. Including Dynamic ATI Scheduling element).
  • the second node in the BSS2 can learn the SP information of the SR in the first node in the BSS1, such as the information of SP1 in FIG.
  • the SP that can be SR can be referred to as one or more SP1s, and FIG. 7 is exemplified as Existing SP1.
  • the second node in the BSS2 sends a measurement request (Measurement Request in FIG. 7) to the first node in the BSS1, the measurement request being a request for spatial multiplexing and/or interference mitigation; further in the BSS1
  • the CBAP/SP allocated by the first node transmits, requests the first node in the BSS1, and/or the other nodes in the BSS1 scheduled by the first node in the BSS1 to perform channel measurement when one or more SP2s transmit data.
  • the measurement request sent by the second node in the BSS2 to the first node in the BSS1 may include information of the SP, such as SP information that may include scheduling of the first node in the BSS1 of the SR, such as SP1 in FIG. It may also include SP information of the second node scheduling within the BSS 2 that wishes to perform the SR, such as SP2 of FIG.
  • the first node within BSS1 receives the measurement request sent by the second node within BSS2, optionally sends a measurement request response to indicate acceptance or rejection of the measurement request.
  • Figure 7 shows the Response to measurement request.
  • the measurement request and the measurement request response may be completed in front of the dynamic ATI (such as ATI2) of the second node within the BSS2 closest to the candidate SP2.
  • ATI dynamic ATI
  • the first node in BSS1, and/or the other nodes in BSS1 scheduled by the first node in BSS1 perform channel measurement when one or more SP2s transmit data (illustrated as Measurement of SP2), the first in BSS1
  • the node can obtain the result of performing channel measurement when one or more SP2s transmit data, and the measurement report is collected by BSS1.
  • the specific measurement can be realized in the implementation by a measurement process like 802.11ad, such as the directional channel quality request and/or the directional channel quality report mentioned in the standard.
  • the second node in the BSS2 sends its own, and/or the scheduled one or more STA-to-SP1 measurements to the first node in the BSS1 by means of a measurement report.
  • the first node in the BSS1 determines one measurement result of one or more SP2 according to the received measurement report, and/or according to the first node in the BSS1 and/or other nodes in the BSS1 scheduled by the first node in the BSS1. Whether multiple SP1s and one or more SP2s can be spatially multiplexed.
  • the first node in the BSS1 may send the determination result to the second node in the BSS2. As shown, the first node in the BSS1 sends a measurement report response to the second node in the BSS2, and the measurement report response is the measurement.
  • the reported response may include an indication of whether one or more SP2s and one or more SP1s are allowed to spatially multiplex, such as the first node within BSS1 transmitting a measurement report response indication allowing SP2 and SP1 to spatially multiplex.
  • the spatial multiplexing of one or more SP1s with one or more SP2s may be in the current BI or in the next BI, such as the SP1 and SP2 overlapped in time boxes in the illustration.
  • the SR of the SP between the two BSSs is described above. If an SR of three or three SPs or more SPs is involved, the above embodiment can be referred to. The following is a brief example of the SR of the SP between three BSSs in conjunction with FIG. 8 as follows:
  • one or more SP1s of the first node in the BSS1 and one or more SP2s of the second node in the BSS2 have performed SR, there may be one or more candidate SPs of other BSSs (such as the third node in the BSS3) One or more SP3) want to perform SR with SP1/SP2.
  • the first node in the BSS1 receives the measurement request, and it needs to determine whether there is time before the SP3 to interact with the second node in the BSS2 according to the information of the SP3 in the request.
  • the interaction is to notify the second node in the BSS2 about the BSS3.
  • the first node in the BSS1 can notify the second node measurement request in the BSS2, and the first node in the BSS1 and the second node in the BSS2 are able to reschedule the scheduling before the start of the candidate SP3 (one of the dynamic ATIs) For SP3 measurements, then the first node within BSS1 can allow for a measurement request.
  • the first node in BSS1 can allow the measurement request to go to the next BI to perform the above related operations, or can also reject the measurement request.
  • the first node in the BSS1 collects the measurement result information for the SP3 in the BSS2 and the measurement report sent by the third node in the BSS3, and the transmission time of the measurement report may be scheduled by the first node in the BSS1.
  • FIG. 2 can also achieve sharing between SPs in two or more BIs.
  • a general node such as an AP has an opportunity to schedule once in a BI, it can be scheduled every other BI, and the measurement request, the measurement response, the measurement, the measurement report, and the measurement report response are completed by using multiple BIs to implement the SR between the BSSs.
  • Signaling interaction between the measurement request and the measurement request response between the first node in the BSS1 and the second node in the BSS2 can also be completed by the Beacon frame through multiple BIs (the measurement request and the measurement request response and other signaling can be designed.
  • element can be placed in the beacon).
  • the second node in the BSS2 sends a measurement request, and after receiving the SR indication of the first node in the BSS1, the SR indication may specifically be an indication bit included in the extended schedule element, and the second node in the BSS2 uses the BSS1.
  • the first node-assigned CBAP (which may also be SP, A-BFT or ATI) sends a measurement request to the first node in the BSS1, and the measurement request may include information of the SP, for example, may include the SP in the BSS1 that wants to perform the SR.
  • Information such as SP1 in the illustration, may also include SP information within the BSS 2 that wishes to perform the SR, such as SP2 as shown.
  • the first node in BSS1 and the second node in BSS2 may have completed beamforming training, and the first node in BSS1 and the second node in BSS2 have time slots for communication.
  • the first node in the BSS1 receives the measurement request of the second node in the BSS2, and can reply to the measurement request response, and then does not operate in this BI.
  • the first node within BSS1, and/or other nodes within the BSS1 scheduled by the first node within BSS1, measure one or more SP2s. And scheduling the time to allow the second node in BSS2 to send a measurement report and send a measurement report response.
  • SP1 of the first node in BSS1 and SP2 of the second node in BSS2 can perform SR
  • the measurement report response will allow the SR of the second node within BSS2.
  • SP1 and SP2 can partially or completely overlap in time to achieve spatial multiplexing.
  • FIGS. 8 and 9 For an SP involving three or three BSSs or more to implement SR in two or more BIs, the embodiments of FIGS. 8 and 9 may be combined.
  • the measurement can still be implemented by two or more BIs, but only the measurement request notification and the collection of measurement results between the BSSs that have performed the SR.
  • the present invention also provides a method of spatial multiplexing, which can be used alone or in combination with the above embodiments.
  • the second node in the second basic service area set BSS2 transmits information of one or more second service periods (which may be referred to as SP2 for convenience of description), wherein one or more SP2s are allocated in the BSS2.
  • the manner of sending may be broadcast, multicast, or sent to the first node in the first basic service area set BSS1. Accordingly, the first node within BSS1 can receive the one or more SP2 information.
  • the second node in the BSS2 can send the information of other SPs in addition to the SP2 information. This step is optional.
  • the first node in the BSS1 receives the second node in the BSS2 to send information of one or more SP2s, the first node in the BSS1, and/or the other one in the BSS1 scheduled by the first node in the BSS1.
  • the node measures the one or more SP2s. If the second node in the BSS2 transmits the information of the other SPs in addition to the SP2 information, the first node in the BSS1, and/or other nodes in the BSS1 scheduled by the first node in the BSS1 may also be the other SPs. Make measurements.
  • the first node in the first basic service area set BSS1 sends information of one or more first service periods (which may be recorded as SP1 for convenience of description), wherein one or more SP1s are allocated in the BSS1.
  • the manner of transmission may be broadcast, multicast, or transmission to a second node within the second basic service area set BSS2. Accordingly, the second node within the BSS 2 can receive the one or more SP1 information.
  • the first node in BSS1 can send information of other SPs in addition to sending SP1 information. This step is optional.
  • the second node in the BSS2 receives the first node in the BSS1 to send one or more SP1 information, the second node in the BSS2, and/or the other node in the BSS2 scheduled by the second node in the BSS2.
  • the node measures the one or more SP1s. If the first node in the BSS1 transmits the information of the other SPs in addition to the SP1 information, the second node in the BSS2, and/or other nodes in the BSS2 scheduled by the second node in the BSS2 may also be the other SPs. Make measurements.
  • the measurement method can be performed according to the above embodiment, and details are not described herein again.
  • the second node in the BSS2 sends a spatial multiplexing request.
  • the first node in the BSS1 may receive a spatial multiplexing request sent by the second node in the BSS2, where the spatial multiplexing request includes one or more SP2s.
  • the one or more SP1s may be the SPs of the same time slot, or may be the SPs of different time slots, and are not limited to the SPs that each SP1 must be identical.
  • One or more SP2s are also understood.
  • the first node in the BSS1 determines whether to allow the one or more SP2 and the one or more SP1s to be spatially multiplexed according to the spatial multiplexing state of the SP1 and the spatial multiplexing state information of the received SP2.
  • the spatial multiplexing state information of the SP may be represented by the flag information of the SP.
  • the flag information is in the first state, and may also be regarded as the first state of the SP spatial multiplexing state, for example, as 1, as exemplified below, indicating that the SP can be used as the request space multiplexing SP or the target space complex. Use SP.
  • the flag information is in the second state, for example, 0. The following description is made by way of example, indicating that the SP cannot be used as the request spatial multiplexing SP or the target spatial multiplexing SP.
  • the SP flag information can be carried in multiple information elements, such as in extended scheduling information or in a beacon. Specifically, one or more red information bits exemplified in FIG. 12 can be seen.
  • the request spatial multiplexing SP may be an SP requesting spatial multiplexing evaluation with other SPs, an SP that can be rescheduled, or an SP that can be considered for reallocation.
  • the target spatial multiplexing SP may be an SP that has been scheduled, or may be an SP that is used for spatial multiplexing evaluation with the request spatial multiplexing SP.
  • the understanding of requesting spatial multiplexing SP and target spatial multiplexing SP may not be limited to the above description.
  • the flag information of the SP is 1, indicating that the SP can be used as the request spatial multiplexing SP or the target spatial multiplexing SP.
  • the time slot of SP2 needs to be moved to the time slot where SP1 is located, and the time slots overlap or partially overlap.
  • the flag information of SP2 is set to 0, and the flag information of SP1 is still 1.
  • the SP whose flag information is 0 cannot be used as the request spatial multiplexing SP or the target spatial multiplexing SP, so the spatial multiplexing request can no longer be initiated/received for the SP whose flag information is 0.
  • the spatially multiplexed SPs multiplexed with one or more time slots may form a spatially multiplexed SP set, in which the node where the SP with the flag information 1 is located is the central node, and only the central node can A spatial multiplexing request for the SP with the flag information of 1 is initiated or accepted.
  • the first node in the BSS1 is based on the spatial multiplexing state of the SP1 and the spatial multiplexing state information of the received SP2, and the first node in the BSS1, and/or the first node in the BSS1.
  • the request spatial multiplexing SP2 and the target spatial multiplexing SP1 can be multiplexed.
  • the spatial multiplexing request further includes a second node in the BSS2, and/or measurement result information of the one or more SP1s by other nodes in the BSS2 scheduled by the second node in the BSS2, in the BSS1.
  • the first node according to the spatial multiplexing state information of the SP1 and the received spatial multiplexing state information of the SP2, and the second node in the BSS2, and/or the other in the BSS2 scheduled by the second node in the BSS2
  • the node determines, by the measurement result information of the one or more SP1s, whether the one or more SP2s and the one or more SP1s are allowed to be spatially multiplexed.
  • the spatial multiplexing request further includes link quality or channel measurement result information of other SP objects in the spatial multiplexing SP set in which the one or more SP2s are located, and the first node in the BSS1 is based on the spatial multiplexing state information of the SP1.
  • the spatial multiplexing state information of the received SP2 and the link quality or channel measurement result information of other SP objects in the spatial multiplexing SP set in which one or more SP2s are located, determining whether the one or more SP2 and The one or more SP1s are spatially multiplexed.
  • the first node in the BSS1 is based on the spatial multiplexing state information of the SP1 and the spatial multiplexing state information of the received SP2, and the other SPs in the spatial multiplexing SP set where the one or more SP1s are located.
  • the link quality or channel measurement result of the object determines whether the one or more SP2 and the one or more SP1s are allowed to be spatially multiplexed.
  • the first node in the BSS 1 makes a determination according to one or more of the above-mentioned judging elements. I will not repeat them here.
  • the target spatial multiplexing SP such as SP1
  • the target spatial multiplexing SP1 has not been spatially multiplexed with the SPs scheduled by other nodes, so the first node in the BSS1 can directly directly measure the SP2 measurement result in the BSS1 and the second node in the BSS1.
  • the measurement result of the target spatial multiplexing SP1 determines whether the spatial multiplexing SP, such as SP2, can be spatially multiplexed.
  • SP1 has been spatially multiplexed with the SPs scheduled by other nodes, and the flag information of SP1 is 1, for example, the first node in BSS1 needs to be based on the measurement result of SP1, and the other in the spatial multiplexing SP set where SP1 is located.
  • the link quality or channel measurement result of the SP object determines whether SP2 can be spatially multiplexed.
  • the second node in the BSS2 has spatially multiplexed with the SPs scheduled by other nodes before transmitting the spatial multiplexing request to the first node in the BSS1, then the second node in the BSS2 is in the BSS1
  • the first node sends a channel request
  • the information about the link quality or the measurement result of the SP object in the spatial multiplexing SP set in which the SP2 is located is sent to the first node in the BSS1.
  • the first node in BSS1 then aggregates the information to determine whether these SPs can be spatially multiplexed with SP1 (or the spatially multiplexed SP set in which SP1 is located). Only all SPs can be spatially multiplexed for spatial multiplexing.
  • the first node in the BSS1 sends a spatial multiplexing request response to the second node in the BSS2, where the spatial multiplexing request response is used to indicate whether the one or more SP2s and one or more SP1s are allowed to perform spatial multiplexing. use.
  • the second node in the BSS2 can receive the spatial multiplexing request response, and perform spatial multiplexing of the SP according to the spatial multiplexing request response.
  • the second node in the BSS 2 sets the spatial multiplexing state information of one or more SP2s from the first state to the second state.
  • the 1007 is optional.
  • the second node in the BSS2 when the SP scheduled by the first node in the BSS1 is in data transmission, the second node in the BSS2 causes the scheduled STA of one or more SP objects to perform channel quality measurement, and the second node in the BSS2. The measurement result is collected.
  • the first node in the BSS1 when the SP scheduled by the second node in the BSS2 is transmitting data, the first node in the BSS1 also causes the scheduled STA of one or more SP objects to perform channel quality measurement, and the second in the BSS1.
  • a node collects measurement results.
  • the second node in the BSS2 initiates a spatial multiplexing request to the first node in the BSS1 according to the measurement result, and the request information includes requesting spatial multiplexing SP information such as SP2 information in the figure, and/or, the target spatial multiplexing SP information, for example, In the SP1 information. Further, the information of the link quality or channel measurement result of the spatial multiplexing SP2 may be included, and the information may be used by the first node in the BSS1 to determine whether the SP of the other BSS can join the SP1 spatial multiplexing set in the future.
  • the information that the measurement request can carry can also include various types, such as the information mentioned in the embodiment of FIG.
  • the first node in the BSS1 determines whether the SP1 and the SP2 can be spatially multiplexed according to the spatial multiplexing condition of the SP1, and may be, but is not limited to, one or more of the following:
  • SP2 may or may not perform spatial multiplexing.
  • the first node in BSS1 may reply information, such as transmitting a spatial multiplexing response, to indicate whether SP2 can be spatially multiplexed with SP1. If SP2 can perform spatial multiplexing, the second node in BSS2 will move the time slot of SP2 to the time slot of SP1 in the next scheduling, and change the flag information of SP2 to 0.
  • the SP in which the flag information is in the first state is equivalent to a center SP in the spatially multiplexed SP combination.
  • FIG. 13 is a schematic structural diagram of another apparatus according to an embodiment of the present application. As shown in FIG. 13, the apparatus 1300 can include:
  • the processing module 1301 is configured to implement processes other than sending and receiving involved in any one of the foregoing method embodiments.
  • the processing module can be implemented with a processing circuit or a processor or chip.
  • the transceiver module 1302 is configured to implement the sending and receiving processes involved in any one of the foregoing method embodiments.
  • the transceiver module can be implemented with a transceiver circuit or a transceiver or chip.
  • the transceiver module may also be implemented by a receiving circuit or a transmitting circuit, or by a receiver and a transmitter, or a receiving chip and a transmitting chip, respectively, for respectively implementing the sending involved in any one of the foregoing method embodiments. Or receive processing.
  • FIG. 14 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the device described in FIG. 13 above can be implemented by various product forms, for example:
  • bus 1401 is optionally implemented by bus 1401 as a general bus architecture.
  • bus 1401 can include any number of interconnect buses and bridges depending on the particular application of the device and overall design constraints.
  • Bus 1401 connects various circuits together, including one or more of processor 1402, optionally including storage medium 1403, bus interface 1404, or user interface 1406.
  • the device uses the bus interface 1404 to connect the optional device network adapter 1405 and the like via the bus 1401; the network adapter 1405 can be used to implement the signal processing function of the physical layer in the wireless local area network, and realize the transmission or reception of the radio frequency signal through the antenna 1407;
  • the antenna 1407 is used to implement transmission and reception of various information performed by the apparatus in the foregoing method embodiments.
  • the user interface 1406 can be connected to a user terminal, such as a keyboard, a display, a mouse, a joystick, and the like.
  • the bus 1401 can also be connected to various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, etc., which are well known in the art and therefore will not be described in detail.
  • the processor 1402 is responsible for managing the bus and general processing (including executing software stored on the storage medium 1403).
  • Processor 1402 can be implemented using one or more general purpose processors and/or special purpose processors. Examples of processors include microprocessors, microcontrollers, DSP processors, and other circuits capable of executing software.
  • Software should be interpreted broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or others; in the present application, processor 1402 is used to implement All the processes of the device in the above method embodiments except for various information transmission and reception.
  • storage medium 1403 is shown separate from processor 1402 in FIG. 14, however, those skilled in the art will readily appreciate that storage medium 1403, or any portion thereof, may be external to the device.
  • storage medium 1403 can include a transmission line, a carrier waveform modulated with data, and/or a computer article separate from the wireless device, which can be accessed by processor 1402 through bus interface 1404.
  • storage medium 1403, or any portion thereof, may be integrated into processor 1402, for example, may be a cache and/or a general purpose register; in the present application, storage medium 1403 is used to store a computer program that is processed by The processor 1402 executes all of the processing performed by the processor 1402.
  • the apparatus may also be configured as a general purpose processing system, such as may be generally referred to as a chip, the general purpose processing system comprising: one or more microprocessors providing processor functionality; and at least providing storage medium 1403 A portion of the external memory, all of which is connected to other support circuits through an external bus architecture.
  • a general purpose processing system such as may be generally referred to as a chip
  • the general purpose processing system comprising: one or more microprocessors providing processor functionality; and at least providing storage medium 1403 A portion of the external memory, all of which is connected to other support circuits through an external bus architecture.
  • the device may also be implemented using an application specific integrated circuit (ASIC) having a processor 1402, a bus interface 1404, and a user interface 1406; and integrated in a single chip. At least a portion of the storage medium 1403.
  • ASIC application specific integrated circuit
  • FIG. 15 is a schematic structural diagram of an apparatus according to an embodiment of the present application.
  • the apparatus includes: a Media Access Control (MAC) layer module and a physical (PHY) layer module.
  • the MAC layer module may perform the MAC layer protocol processing on the information to be sent, and then transmit the information to the physical layer module, where the physical layer module performs physical layer protocol processing, and then sends the signal through the antenna; the physical layer module can receive the antenna. After the information is processed by the physical layer protocol, it is transmitted to the MAC layer module, and the MAC layer module performs MAC layer protocol processing to obtain the actual received information.
  • the device may be a single antenna device or a multi-antenna device, and the multiple antennas are not limited to two as shown in FIG. 15, and may be other numbers.
  • the above device may be an access point AP or a station STA.
  • the above device embodiments may be supplemented by reference to method embodiments.
  • a and/or B of the present application means “A”, or “B” or “A and B”.
  • the contents of the various embodiments of the present application can be referred to each other.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • the device of the embodiment of the present invention may be a Field-Programmable Gate Array (FPGA), may be an Application Specific Integrated Circuit (ASIC), or may be a System on Chip (SoC). It can also be a Central Processor Unit (CPU), a Network Processor (NP), a Digital Signal Processor (DSP), or a Microcontroller (Micro).
  • the Controller Unit (MCU) can also be a Programmable Logic Device (PLD) or other integrated chip.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such an understanding, a portion of the technical solution of the present invention that contributes in essence or to the prior art or a part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种空间复用的方法,包括:第一基本服务区集BSS1内的第一节点接收第二基本服务区集BSS2内的第二节点发送的测量请求,该BSS1内分配有一个或多个第一服务周期SP1,该BSS2内分配有一个或多个第二服务周期SP2,该测量请求为请求对该一个或多个SP2进行测量;BSS1内的第一节点接收BSS2内的第二节点的测量报告,该测量报告为请求对一个或多个SP1进行测量的报告;BSS1内的第一节点基于接收的该测量报告判断是否允许一个或多个SP1和一个或多个SP2进行空间复用。

Description

一种空间复用的方法和装置
本申请要求于2018年2月12日提交中国国家知识产权局、申请号为201810144064.7、申请名称为“一种空间复用的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,特别地,涉及空间复用技术。
背景技术
在60GHz毫米波通信中,毫米波传输距离较短、路径损耗大,为了满足密集用户的服务需求,以及弥补较短的通信距离,AP(中文全称可以为:接入点,英文全称可以为:access point)的布置会比较密集,比如会议室,候机、候车大厅。AP的覆盖区域往往是重叠的,虽然毫米波定向波束本身就带空间隔离和空间复用的效果,但是在两个BSS(中文全称可以为:基本服务区集,英文全称可以为:basic service set)之间,其中BSS可以为AP所形成的通信覆盖范围,而且用户比较密集的场景下,不同BSS的通信链路之间仍然可能存在干扰。在802.11ad与802.11ay中,为了保护用户的数据通信与优先级,使用了称为SP(中文全称可以为:服务周期,英文全称可以为:service period)的信道资源调度方法。在SP调度中,AP会为用户分配一段时间,在这段时间内,只有被分配的用户才能通信,而且被分配的源source用户是在SP开始时就发送数据,并不会使用传统的CCA(中文全称可以为:空闲信道评估,英文全称可以为:clear channel assessment)检测与退避过程,SP的这种传输方式保证了在本BSS内部通信的可靠性。
如图一所示,在802.11ad/ay中,一个BI(中文全称可以为:信标时隙,英文全称可以为:beacon interval)被划分成BHI(中文全称可以为:信标头时隙,英文全称可以为:beacon header interval)和DTI(中文全称可以为:数据传输时隙,英文全称可以为:data transfer interval),其中BHI又可以被分为BTI(中文全称可以为:信标传输时隙,英文全称可以为:beacon transmission interval)、A-BFT(中文全称可以为:关联波束赋形训练,英文全称可以为:association beamforming training)和ATI(中文全称可以为:公告传输时隙,英文全称可以为:announcement transmission interval),DTI又可以分为CBAP(中文全称可以为:竞争接入周期,英文全称可以为:contention based access period)和SP。
DTI中时隙的调度有下面两种方法:
(1)在BHI中含有ATI时,DTI中时隙的调度由AP在ATI中通过AP和STA(中文可以为:站点,英文可以为:station)轮询与响应的方式完成
(2)当BHI中不含ATI时(ATI为可选地),由AP在BTI中发送Beacon时,在Beacon中携带ESE(中文全称可以为:扩展调度元,英文全称可以为:extended schedule element)完成对用户的调度。
并且在802.11ad标准中,为了提升空间利用效率,提升吞吐量,提出了空间复用和干扰消除的机制。802.11ad的空间复用机制允许属于同一空间区域的不同STA的SP能够在空间上同时进行调度,并且减少干扰,即能够让BSS内不同的D2D链路同时进行通信。
现有技术只考虑了BSS内的空间复用和干扰消除的方法,没有考虑来自于BSS外的干扰,即其他BSS的通信有可能影响本BSS内SP的通信,造成通信冲突。
发明内容
本申请提供了一种空间复用的方法或装置,以实现BSS间的SP的空间复用。
第一方面,提供了一种空间复用的方法,第一基本服务区集BSS1内的第一节点接收第二基本服务区集BSS2内的第二节点发送的测量请求,所述BSS1内分配有一个或多个第一服务周期SP1,所述BSS2内分配有一个或多个第二服务周期SP2,所述测量请求为请求对所述一个或多个SP2进行测量;BSS1内的第一节点接收BSS2内的第二节点的测量报告,所述测量报告为对一个或多个SP1进行测量的报告;BSS1内的第一节点基于接收的所述测量报告判断是否允许一个或多个SP1和一个或多个SP2进行空间复用。
第二方面,提供了一种空间复用的方法,第二基本服务区集BSS2内的第二节点向第一基本服务区集BSS1内的第一节点发送测量请求,所述BSS1内分配有一个或多个第一服务周期SP1,所述BSS2内分配有一个或多个第二服务周期SP2,所述测量请求为请求对所述一个或多个SP2进行测量;BSS2内的第二节点向BSS1内的第一节点发送测量报告,所述测量报告为对一个或多个SP1进行测量的报告,所述测量报告用于判断是否允许一个或多个SP1和一个或多个SP2进行空间复用。
第三方面,提供一种空间复用的方法,第一基本服务区集BSS1内的第一节点接收第二基本服务区集BSS2内的第二节点发送的空间复用请求,所述BSS1内分配有一个或多个第一服务周期SP1,所述BSS2内分配有一个或多个第二服务周期SP2,所述空间复用请求包括一个或多个SP2的信息,和/或,一个或多个SP1的信息,其中,SP2的信息包括SP2的空间复用状态信息,其中,SP的空间复用状态信息用来指示SP的空间复用状态;BSS1内的第一节点根据所述SP1的空间复用状态和接收到的SP2的空间复用状态信息判断是否允许所述一个或多个SP2和所述一个或多个SP1进行空间复用。
第四方面,提供一种空间复用的方法,第二基本服务区集BSS2内的第二节点向第一基本服务区集BSS1内的第一节点发送空间复用请求,所述BSS1内分配有一个或多个第一服务周期SP1,所述BSS2内分配有一个或多个第二服务周期SP2,所述空间复用请求包括一个或多个SP2的信息,和/或,一个或多个SP1的信息,其中,SP2的信息包括SP2的空间复用状态信息,其中,SP的空间复用状态信息用来指示SP的空间复用状态;所述空间复用请求为请求所述一个或多个SP1和所述一个或多个SP2进行空间复用。
第五方面,提供了一种空间复用的装置,包括:处理模块和收发模块;所述装置位于第一基本服务区集BSS1内;所述收发模块用于接收第二基本服务区集BSS2内的第二节点发送的测量请求,所述BSS1内分配有一个或多个第一服务周期SP1,所述BSS2内分配有一个或多个第二服务周期SP2,所述测量请求为请求对所述一个或多个SP2进行测量;接收BSS2内的第二节点的测量报告,所述测量报告为请求对一个或多个SP1进行测量的报告;所述处理模块用于基于接收的所述测量报告判断是否允许一个或多个SP1和一个或多个SP2进行空间复用。
第六方面,提供一种空间复用的装置,包括:处理模块和收发模块;所述装置位于第二基本服务区集BSS2内;所述收发模块用于向第一基本服务区集BSS1内的第一节点发送测量请求,所述BSS1内分配有一个或多个第一服务周期SP1,所述BSS2内分配有一个或多个第二服务周期SP2,所述测量请求为请求对所述一个或多个SP2进行测量;向BSS1内的第一节点发送测量报告,所述测量报告为对一个或多个SP1进行测量的报告,所述测量报告用于判断是否允许一个或多个SP1和一个或多个SP2进行空间复用。
第七方面,提供一种空间复用的装置,包括:处理模块和收发模块;所述装置位于第一基本服务区集BSS1内;所述收发模块用于接收第二基本服务区集BSS2内的第二节点发送的空间复用请求,所述BSS1内分配有一个或多个第一服务周期SP1,所述BSS2内分配有一个或多个第二服务周期SP2,所述空间复用请求包括一个或多个SP2的信息,和/或,一个或多个SP1的信息,其中,SP2的信息包括SP2的空间复用状态信息,其中,SP的空间复用状态信息用来指示SP的空间复用状态;所述处理模块用于根据所述SP1的空间复用状态和接收到的SP2的空间复用状态信息判断是否允许所述一个或多个SP2和所述 一个或多个SP1进行空间复用。
第八方面,提供一种空间复用的装置,包括:处理模块和收发模块;所述装置位于第二基本服务区集BSS2内;所述收发模块向第一基本服务区集BSS1内的第一节点发送空间复用请求,所述BSS1内分配有一个或多个第一服务周期SP1,所述BSS2内分配有一个或多个第二服务周期SP2,所述空间复用请求包括一个或多个SP2的信息,和/或,一个或多个SP1的信息,其中,SP2的信息包括SP2的空间复用状态信息,其中,SP的空间复用状态信息用来指示SP的空间复用状态;所述空间复用请求为请求所述一个或多个SP1和所述一个或多个SP2进行空间复用。
第九方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码可以用于指示执行上述第一至第四方面或其任意可选的实现方式中的方法。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据802.11ad/ay中的BI的时隙图;
图2是本申请实施例的***结构示意图;
图3是本申请一实施例方法流程示意图;
图4是本申请实施例中空间复用指示的信息位示意图;
图5是本申请实施例中动态ATI的时隙示意图;
图6是本申请实施例中动态ATI的帧结构示意图;
图7是本申请一实施例时隙流程示意图;
图8是本申请另一实施例时隙流程示意图;
图9是本申请另一实施例时隙流程示意图;
图10是本申请另一实施例方法流程示意图;
图11是本申请另一实施例时隙流程示意图;
图12是本申请实施例中空间复用状态信息的信息位示意图;
图13是本申请实施例装置结构示意图;
图14是本申请另一实施例装置结构示意图;
图15是本申请另一实施例装置结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了更加符合本领域技术人员的阅读习惯,在说明书附图中,有些示意图采用英文的方式描述,并在说明书具体实施方式中给出相应的解释。
本申请各实施例提供的信息传输方法及网络设备,可适用于WLAN***,如802.11ad标准、802.11ay标准及其标准的后续改进的标准的WLAN***,也可用于蜂窝网络。以WLAN为例,网络设备可以为AP。
图2举例地为本申请各实施例适用的一种网络***的结构示意图,图2中有多个AP,AP之间存在无线连接,一个AP的通信覆盖范围可以为BSS,图中用圆圈表示。由于AP布置的比较密集,邻近BSS之间的覆盖区域是重叠的。为了实现BSS间的协作,AP与邻近 的AP可以完成波束赋形训练,以建立定向波束链路,并且AP之间可以调度时隙进行通信,交互一些信息帧。
图3为本申请实施例的方法流程示意图,包括以下处理过程:
301:第二基本服务区集(可以记为BSS2,其他术语类似规则表述)内的第二节点发送测量请求,进一步地,该BSS2内分配有一个或多个第二服务周期SP2(SP的中文全称可以为:服务周期,英文全称可以为:service period)。进一步地,向第一基本服务区集BSS1内的第一节点发送,BSS1内分配有一个或多个第一服务周期SP1,相应地,BSS1内的第一节点接收该测量请求;进一步地,该测量请求为请求对该一个或多个SP2进行测量,该测量可以为用于空间复用的测量,比如信道测量。
第一SP可以是已经被调度的SP,可以被称为已有SP,也可以被称为其他名称。第二SP可以是被用来和已经被调度的SP进行空间复用评估的SP,或者,可以被重新调度的SP,或者,可以在信标时隙(英文全称可以为beacon interval,英文缩写可以为BI)中被考虑重新分配的SP。
其中,一个或多个SP1可以是相同时长时隙的SP,也可以是不同时长时隙的SP,不限定于每个SP1必须是一模一样的SP。一个或多个SP2也是同样理解。
第一节点为接入点AP或者站点STA;第二节点为AP或者STA。
该测量请求可以包含如下一种或多种信息:
·SP的信息:可以用于表示SP的信息,比如包含SP的起始时间指示或偏移时间指示,可选地,SP的信息包括一个或多个SP2信息,和/或,一个或多个SP1信息。
·测量的时间信息:用于表示测量的时间信息,比如包含测量的开始时间或测量的结束时间。
·测量方式:用于表示对SP进行测量的方式的信息,比如可以包含测量的信道信息、信道测量方式或者天线测量方式。
303:BSS1内的第一节点发送测量请求响应,该测量请求响应是对该测量请求的响应;进一步地,向BSS2内的第二节点发送,相应地,BSS2内的第二节点接收该测量请求。该处理可选。
测量请求响应可以包含如下一种或多种信息:
·接受或拒绝测量请求的指示:用于表示是否接受或者拒绝测量请求。
·后续信标时隙BI的指示信息:用于表示后续一个或多个BI的的信息。
分别对一个或多个SP2,和/或,对一个或多个SP1进行测量,进一步,可以进行信道测量。比如:BSS1内的第一节点,和/或,BSS1内的第一节点调度的BSS1内的其他节点对一个或多个SP2进行测量,可以理解为对一个或多个SP2进行测量,也可以理解为对一个或多个候选SP进行测量。BSS2内的第二节点,和/或,BSS2内的第二节点调度的BSS2内的其他节点对一个或多个SP1进行测量,可以理解为对一个或多个SP1进行测量,也可以理解为对一个或多个已有SP进行测量。
305:BSS2内的第二节点发送测量报告,进一步地,该测量报告为对一个或多个SP1进行测量的报告,进一步地,向BSS1内的第一节点发送,相应地,BSS1内的第一节点接收该测量报告。
测量报告可以包含如下一种或多种信息:
·测量的信道信息:用于表示测量的信道的信息,比如指示在哪些信道上进行测量。
·测量的持续时间:用来表示测量的持续的时间。
·测量报告的内容:用来表示测量报告的内容;比如可以采用RSSI(中文全称:接收信号强度指示,英文全称:received signal strength indication)的 方式来描述测量报告的内容,或,可以采用ANIPI(中文全称:平均噪声加干扰功率指示,英文全称:average noise plus interference power indicator)的方式来描述测量报告的内容或可以采用RSNI(中文全称:接收信号与功率指示,英文全称:received signal-to-noise indicator)的方式描述测量报告的内容。
进一步地,BSS1内的第一节点根据接收的该测量报告判断是否允许一个或多个SP2和一个或多个SP1进行空间复用。进一步地,BSS1内的第一节点基于该接收的该测量报告和对一个或多个SP2进行测量的结果来判断是否允许一个或多个SP1和一个或多个SP2进行空间复用。进一步当然BSS1内的第一节点如何判断在实现中有多种方式,比如也可以根据现有802.16的技术进行判断,该处理并非本申请实施方式论述的重点,在此不再赘述。
307:BSS1内的第一节点发送测量报告响应,该测量报告响应是对该测量报告的响应;进一步地,向BSS2内的第二节点发送,相应地,BSS2内的第二节点接收该测量请求。该处理可选。
进一步地,测量报告响应可以包含如下一种或多种信息
·是否允许SP对象进行空间复用的指示:用于表示是否允许SP对象进行空间复用的指示。
·功率控制信息:用于表示功率控制的信息,比如BSS1内的第一节点向BSS2内的第二节点发送测量报告响应,携带该信息,可以用于通知在BSS2内的第二节点功率降到或者升到一定值,允许或者拒绝SP的SR。
图3所示的实施例能够利用BSS之间的通信链路实现BSS之间的SP的测量,可以实现BSS间的SP的SR,不需要将SP错开以减少干扰,能够更好地利用空间和时间资源,提升***吞吐量。
本申请实施例中,BSS内的节点调度BSS内的其他节点或者自己进行测量的技术可以借鉴IEEE 802.11ad中已有的测量方法,在IEEE 802.11ad中,测量技术主要可以有下面两种:
1)以ANIPI的方式,用来表示节点测量信道上的平均噪声加干扰功率。在这种测量方式中,STA不能发送帧,而且也没有发送给该STA的帧。
2)以RSNI的方式,用来表示节点测量信道上的接收信号与噪声功率比。
一般主要是第一种方式,即ANIPI的方式。
为了更好地实现上述图2的实施例,下面进一步介绍一下概念。
首先,介绍空间复用指示这个信息,该信息为可选。
为了实现SP的SR,可以在BI发送的的调度信息中携带空间复用指示(简称可以为SR指示),该SR指示用于指示SP是否支持BSS间的SR,该指示可以以比特指示位的形式。在一些场景下,BSS间有时候也可以简述但不限于简述成AP间。
该SR指示所发送的时隙位置,可以举例地位于BTI中或者CBAP(中文全称可以为:竞争接入周期,英文全称可以为:Contention Based Access Period)或者A-BFT(中文全称可以为关联波束赋形训练,英文全称可以为Association-Beamforming Training)或者SP中发送;可以携带在Beacon中,具体可以携带在Beacon中的扩展调度信息中,也可以携带在其他信息中,该扩展调度信息英文可以称为extended schedule element(为了方便描述,可以简称为ESE),如下图4所示,以EDMG(Extended Directional Multi-Gigabit)为例,举例地说明指示位可以携带在如下一个或多个红色比特位置。通过该指示能让其他BSS的节点比如neighboring AP获知SP是否支持BSS间SP的SR,以便安排测量以及反馈过程。结合上述的实施例,BSS1内的第一节点发送空间复用指示,该空间复用指示用于指示SP是否支持BSS间的SR,BSS2内的第二节点收到BSS1内的第 一节点发送的空间复用指示,获知BSS1内的第一节点调度的哪些SP可以进行空间复用,也可以理解为BSS2内的第二节点获知BSS1内的第一节点调度的一个或多个SP1信息。
其次,介绍动态ATI,以及,动态ATI的调度信息,这也可以为可选。
为了实现在一个BI内实现BSS间的SP的SR,也可以在BI的DTI中包含一个或多个动态的ATI(英文可以称为dynamic ATI),动态ATI一种理解是可以设置的ATI。另一种理解可以是根据调度需求在DTI中设置的调度时隙,可选地,可以按照一定的时间间隔设置。这些调度时隙的功能与现有标准中的ATI的功能可以相同。通过灵活地设置ATI,从而使得一个BI期间可以不仅仅拥有一个ATI,从而增加了在一个BI中进行调度的机会。进一步地具体实现中,动态的ATI可以通过设置SP信息实现,比如其中SP allocation中的Source AID为AP的AID,Destination AID为broadcast AID,这样该SP信息就成为了调度信息,成为一个动态的ATI。其实从技术设计来看,如果用SP来实现动态的ATI,那么充当动态ATI的SP可以看作是特殊的SP时隙,因为如果SP的Source AID设置为AP的AID,而Destination AID设置为broadcast AID,那么在此SP内所有的STA都要处于接收状态,以接收来自于AP的传输,因此AP就可以在这个时间内重新安排时隙资源的调度。进一步地,动态的ATI可以是在DTI中按照固定的时间间隔设置的。进一步地,在一个***中,不同AP的动态的ATI在时间上是不重叠的。
动态的ATI的技术优势相较于现有的802.11ad标准中,一个BI内只有一次安排DTI调度的机会,调度可以在BTI中或在ATI中实现。而动态的ATI在DTI内部也能够实现对节点和资源的重新调度,及实现BSS间的灵活的信息交互。而且,因为在DTI中,AP的调度是根据STA上报的信息,或其它AP的请求信息来进行的,所以AP已经知道该如何安排调度。所以在这些动态ATI中,AP不需要像ATI那样依次询问STA,AP只需要向各个STA发送一个通知帧(可以包含ESE)即可,以节省开销。
下图5举例地示出了动态的ATI的帧结构:
当然,对于动态ATI(dynamic ATI),还可以有关于动态ATI的调度信息,该动态ATI的调度信息用于指示关于动态ATI的调度信息。其中,动态ATI的调度信息,可以通过携带在Beacon(举例地,Beacon的ESE中)中通知其他BSS的节点,比如BSS1内的第一节点通过Beacon帧把动态ATI的调度信息通知BSS2内的第二节点。结合上述的实施例,BSS1内的第一节点发送动态ATI调度信息,BSS2内的第二节点收到BSS1内的第一节点发送的动态ATI调度信息,BSS1内的第一节点可以利用动态ATI实现BSS间SP的信道测量和相关的信令交互,所以可以使SP分享在一个BI内完成,BSS2内的第二节点可以在多个动态ATI内与BSS1内的第一节点完成一些信令的交互,BSS1内的第一节点也可以调度时间与BSS2内的第二节点通信。
动态ATI也可以为其他名称,动态ATI的调度信息可以举例地在信标传输时隙BTI或者A-BFT或者CBAP或者SP中发送。动态ATI的调度信息举例地可以携带在扩展调度信息中或者信标中。动态ATI的调度信息举例地如图6包含如下一个或多个信息:
·起始时间:图中举例表示为Start Time,用于表示dynamic ATI的第一个ATI的起始时间。
·ATI的持续时间:图中举例表示为ATI Duration,用于表示dynamic ATI中ATI的持续时间。
·ATI个数:图中举例表示为ATIMaxMem,用于表示在DTI中的ATI个数,该ATI个数可以放在ATI控制字段(图中举例表示为ATI Control field)中。
·图6中其他部分内容,可以参见现有技术标准比如802.11ad的介绍和规定。
通过dynamic ATI的调度信息,能够在DTI内实现节点和时间的重新调度,能够更灵活地处理BSS间的干扰,以及灵活的安排BSS之间的交互。
如何实现图2的BSS间的SP的SR,下面结合图7进行描述在一个BI内实现SP的 SR:
BSS2内的第二节点为发送测量请求(英文可以为measurement request)的节点,在BSS2内的第二节点在向BSS1内的第一节点发送measurement request前,BSS2内的第二节点与BSS1内的第一节点可以已经完成波束赋形训练,并且BSS2内的第二节点与BSS1内的第一节点可以具有通信的时隙。
BSS2内的第二节点发送测量请求前,可以获知了BSS1内的第一节点的BTI信息,从BTI获知了空间复用SR指示(如图示的Including Extended Schedule element)或者dynamic ATI的调度信息(如图示的Including Dynamic ATI Scheduling element)。
BSS2内的第二节点在收到SR指示后,可以获知BSS1内的第一节点中的可以进行SR的SP信息,比如图7中的SP1的信息。其中,可以SR的SP可以称为一个或多个SP1,图7举例为Existing SP1。
BSS2内的第二节点向BSS1内的第一节点发送测量请求(图7中为Measurement Request),该测量请求为请求用于空间复用和/或干扰减轻的测量;进一步地可以在BSS1内的第一节点分配的CBAP/SP中发送,请求让BSS1内的第一节点,和/或,BSS1内的第一节点调度的BSS1内的其他节点在一个或多个SP2传输数据时进行信道测量。BSS2内的第二节点向BSS1内的第一节点发送的测量请求中,可以包括SP的信息,比如可以包括希望进行SR的BSS1内的第一节点调度的SP信息,例如图7中的SP1,还可以包括希望进行SR的BSS2内的第二节点调度的SP信息,例如图7的SP2。
BSS1内的第一节点接收到BSS2内的第二节点发送的测量请求,可选地,发送测量请求响应,以指示接受或拒绝测量请求。图7中为Response to measurement request。
进一步地,测量请求与测量请求响应可以在离candidate SP2最近的BSS2内的第二节点的dynamic ATI(如ATI2)前面完成。
BSS2内的第二节点,和/或,BSS2内的第二节点调度的BSS2内的其他节点在一个或多个SP1传输数据时进行信道测量(图为Measurement of SP1)。BSS1内的第一节点,和/或,BSS1内的第一节点调度的BSS1内的其他节点在一个或多个SP2传输数据时进行信道测量(图示为Measurement of SP2),BSS1内的第一节点可以获取上述在一个或多个SP2传输数据时进行信道测量的结果,图示中为Measurement report collected by BSS1。具体测量在实现中可以通过像802.11ad中的测量过程如标准中提到的directional channel quality request和/或directional channel quality report来实现。
BSS2内的第二节点将其自己,和/或,调度的一个或多个STA对SP1的测量结果通过测量报告measurement report的方式向BSS1内的第一节点发送。
BSS1内的第一节点根据接收的测量报告,和/或,根据BSS1内的第一节点和/或BSS1内的第一节点调度的BSS1内的其他节点对一个或多个SP2的测量结果判断一个或多个SP1和一个或多个SP2是否能进行空间复用。BSS1内的第一节点可以将判断结果发送给BSS2内的第二节点,如图示,BSS1内的第一节点发送测量报告响应向BSS2内的第二节点发送,该测量报告响应是对该测量报告的响应,测量报告响应可以包括是否允许一个或多个SP2和一个或多个SP1进行空间复用的指示,比如BSS1内的第一节点发送测量报告响应指示允许SP2和SP1进行空间复用。
一个或多个SP1与一个或多个SP2的空间复用可以在当前BI也可以在下个BI,如图示中的SP1and SP2overlapped in time框。
上面描述了两个BSS间的SP的SR。如果涉及到三个或三个BSS以上的SP的SR,可以参照上述的实施例。下面结合图8以三个BSS间的SP的SR简略举例介绍如下:
如果BSS1内的第一节点的一个或多个SP1与BSS2内的第二节点的一个或多个SP2已经进行了SR,可能有其它BSS的一个或多个候选SP(如BSS3内第三节点的一个或多个SP3)想与SP1/SP2进行SR。
BSS1内的第一节点收到measurement request,它需要根据request中SP3的信息,判断在SP3之前是否有时间与BSS2内的第二节点进行交互,交互是为了通知BSS2内的第二节点关于BSS3内的第三节点发送的measurement request,以及BSS1内的第一节点与BSS2内的第二节点是否能够重新安排调度做SP3的测量,假设BSS1内的第一节点与BSS1内的第二节点都知道对方的dynamic ATI时间。
如果BSS1内的第一节点能够通知BSS2内的第二节点measurement request,并且BSS1内的第一节点与BSS2内的第二节点都能够在candidate SP3(动态ATI的一个)开始之前重新安排调度做对于SP3的测量,那么BSS1内的第一节点可以允许measurement request。
如果BSS1内的第一节点不能够通知BSS2内的第二节点关于candidate SP3的measurement request,和/或者,BSS1内的第一节与BSS2内的第二节点都不能够在candidate SP3开始之前重新安排调度做SP3的测量,那么BSS1内的第一节点可以允许measurement request不过要到下个BI进行上面的相关操作,或者也可以拒绝measurement request。
BSS1内的第一节点要收集BSS2内的对于SP3的测量结果信息和BSS3内的第三节点发送的measurement report,measurement report的发送时间可以由BSS1内的第一节点调度。
上述图2的实施例也可以实现在两个或两个以上的BI内实现SP间的分享。
由于一般节点比如AP在一个BI才有一次调度的机会,所以可以每隔一个BI调度一次,利用多个BI完成测量请求、测量响应、测量、测量报告和测量报告响应,实现BSS间的SR。BSS1内的第一节点与BSS2内的第二节点之间的测量请求与测量请求响应等信令交互也可以通过Beacon帧经过多个BI完成(测量请求与测量请求响应等信令可以用设计的element实现,element可以放在beacon中)。
下面结合举例图9来简略描述,未提及之处可以参照其他实施例的解释:
BSS2内的第二节点发送测量请求,可选地在接收到BSS1内的第一节点的SR指示后,SR指示具体可以是extended schedule element中包含的指示位,BSS2内的第二节点利用BSS1内的第一节点分配的CBAP(也可以为SP、A-BFT或ATI)向BSS1内的第一节点发送测量请求,测量请求中可以包含SP的信息,比如可以包括希望进行SR的BSS1内的SP信息,例如图示中的SP1,还可以包括希望进行SR的BSS2内的SP信息,例如图示的SP2。当然BSS1内的第一节点和BSS2内的第二节点可以已经完成波束赋形训练,并且BSS1内的第一节点和BSS2内的第二节点有通信的时隙。
BSS1内的第一节点在收到BSS2内的第二节点的测量请求,可以回复测量请求响应后,然后在这个BI不做操作。在下个BI调度时间,BSS1内的第一节点,和/或,BSS1内的第一节点调度的BSS1内的其他节点对一个或多个SP2进行测量。并调度出时间让BSS2内的第二节点可以发送测量报告,并发送测量报告响应。
如果BSS1内的第一节点的SP1与BSS2内的第二节点的SP2可以进行SR,那么测量报告响应就会允许BSS2内的第二节点的SR。在第三个BI,SP1与SP2就可以在时间上实现部分或全部重叠,以实现空间复用。
对于涉及到三个或三个BSS以上的SP在两个或两个以上的BI内实现SR,可以结合参照图8和图9的实施例。可以仍然可以沿用按两个或两个以上BI来实现测量,只是多了已经进行SR的BSS之间的measurement request通知和测量结果的收集。参与空间复用的BSS越多,测量总体过程耗费的时间越多。
本发明还提供了一种空间复用的方法,这个方法可以单独使用,或者和上述实施例结合使用。
下面结合图10描述该实施例:
1001:第二基本服务区集BSS2内的第二节点发送一个或多个第二服务周期(为了方便描述,可以记为SP2)的信息,其中,该BSS2内分配有一个或多个SP2。发送的方式可以是广播、多播,或者,向第一基本服务区集BSS1内的第一节点发送。相应地,BSS1内的第一节点可以接收到该一个或多个SP2信息。当然BSS2内的第二节点可以除了发送SP2信息,还可以发送其他SP的信息。该步骤可选。
可选地,BSS1内的第一节点接收到BSS2内的第二节点发送一个或多个SP2的信息,BSS1内的第一节点,和/或,BSS1内的第一节点调度的BSS1内的其他节点对该一个或多个SP2进行测量。如果BSS2内的第二节点除了发送SP2信息,还发送其他SP的信息,那么BSS1内的第一节点,和/或,BSS1内的第一节点调度的BSS1内的其他节点还可以对该其他SP进行测量。
1003:第一基本服务区集BSS1内的第一节点发送一个或多个第一服务周期(为了方便描述,可以记为SP1)的信息,其中,该BSS1内分配有一个或多个SP1。发送的方式可以是广播、多播,或者,向第二基本服务区集BSS2内的第二节点的发送。相应地,BSS2内的第二节点可以接收到该一个或多个SP1信息。当然BSS1内的第一节点可以除了发送SP1信息,还可以发送其他SP的信息。该步骤可选。
可选地,BSS2内的第二节点接收到BSS1内的第一节点发送一个或多个SP1的信息,BSS2内的第二节点,和/或,BSS2内的第二节点调度的BSS2内的其他节点对该一个或多个SP1进行测量。如果BSS1内的第一节点除了发送SP1信息,还发送其他SP的信息,那么BSS2内的第二节点,和/或,BSS2内的第二节点调度的BSS2内的其他节点还可以对该其他SP进行测量。
测量方法可以根据上面实施例进行,在此不再赘述。
1005:BSS2内的第二节点发送空间复用请求,相应地,BSS1内的第一节点可以接收BSS2内的第二节点发送的空间复用请求,该空间复用请求包括一个或多个SP2的信息,和/或,一个或多个SP1的信息,其中,SP2的信息包括SP2的空间复用状态信息,其中,SP的空间复用状态信息用来指示SP的空间复用状态。
其中,一个或多个SP1可以是相同时长时隙的SP,也可以是不同时长时隙的SP,不限定于每个SP1必须是一模一样的SP。一个或多个SP2也是同样理解。
BSS1内的第一节点根据该SP1的空间复用状态和接收到的SP2的空间复用状态信息判断是否允许该一个或多个SP2和该一个或多个SP1进行空间复用。
本实施例引入SP的空间复用状态信息,用于指示SP的空间复用状态,SP的空间复用状态信息举例可以用SP的标志信息来表示。可选地,标志信息为第一状态,也可以认为是SP空间复用状态的第一状态,比如记为1,下面以此做举例描述,表示SP可以作为请求空间复用SP或目标空间复用SP。标志信息为第二状态,比如为0,下面以此做举例描述,表示SP不能作为请求空间复用SP或目标空间复用SP。SP的标志信息可以携带在多种信息元中发送,比如在扩展调度信息中或者在beacon中。具体可以看图12举例的一个或多个红色信息位。
请求空间复用SP可以是请求与其他SP进行空间复用评估的SP,可以是能被重新调度的SP,或者可以被考虑重新分配的SP。目标空间复用SP可以是已经被调度的SP,或,可以是被用来和请求空间复用SP进行空间复用评估的SP。请求空间复用SP和目标空间复用SP的理解可以不限于以上描述。
在未进行空间复用前,SP的标志信息为1,表明该SP可以作为请求空间复用SP或目标空间复用SP。而当SP2与SP1进行空间复用后,SP2的时隙需要移到SP1所在的时隙,时隙重合或部分重合。SP2的标志信息设置为0,SP1的标志信息则仍为1。标志信息为0的SP不能作为请求空间复用SP或目标空间复用SP,所以不能再对标志信息为0的SP发起/接受空间复用请求。复用同一个或多个时隙的已空间复用的SP可以组成一个空间复用 SP集合,在该集合中,分配有标志信息为1的SP所在的节点为中心节点,只有该中心节点能发起或接受关于该标志信息为1的SP的空间复用请求。
可选地,该BSS1内的第一节点根据该SP1的空间复用状态和接收到的SP2的空间复用状态信息,以及,BSS1内的第一节点,和/或,BSS1内的第一节点调度的BSS1内的其他节点对一个或多个SP2进行测量的结果,判断请求空间复用SP2和目标空间复用SP1是否可以进行复用。
可选地,该空间复用请求进一步包括BSS2内的第二节点,和/或,BSS2内的第二节点调度的BSS2内的其他节点对该一个或多个SP1的测量结果信息,该BSS1内的第一节点根据该SP1的空间复用状态信息和接收到的SP2的空间复用状态信息,以及,BSS2内的第二节点,和/或,BSS2内的第二节点调度的BSS2内的其他节点对该一个或多个SP1的测量结果信息,判断是否允许该一个或多个SP2和该一个或多个SP1进行空间复用。
当然空间复用请求进一步包括该一个或多个SP2所在的空间复用SP集合内其他SP对象的链路质量或信道测量结果信息,该BSS1内的第一节点根据该SP1的空间复用状态信息和接收到的SP2的空间复用状态信息,以及,一个或多个SP2所在的空间复用SP集合内其他SP对象的链路质量或信道测量结果信息,判断是否允许该一个或多个SP2和该一个或多个SP1进行空间复用。
可选地,该BSS1内的第一节点根据该SP1的空间复用状态信息和接收到的SP2的空间复用状态信息,以及,该一个或多个SP1所在的空间复用SP集合内其他SP对象的链路质量或信道测量结果,判断是否允许该一个或多个SP2和该一个或多个SP1进行空间复用。
可选地,BSS1内的第一节点根据上述所提到的判断元素的一种或多种来进行判断。在此不再赘述。
其中,具体判断方法在是实现中可以有多种,简略列举但不限于以下几种:
1)目标空间复用SP比如SP1还未与其他节点调度的SP进行空间复用,那么BSS1内的第一节点可以直接根据BSS1内的第一节点对SP2的测量结果和BSS1内的第二节点对目标空间复用SP1的测量结果判断请求空间复用SP比如SP2是否能进行空间复用。
2)如果SP1已与其他节点调度的SP进行了空间复用,并且SP1的标志信息为比如1,BSS1内的第一节点需要根据SP1的测量结果,以及SP1所在的空间复用SP集合内其他SP对象的链路质量或信道测量结果判断SP2是否能进行空间复用。
3)如果SP1已与其它节点调度的SP进行了空间复用,并且SP1的标志信息为第二状态比如为0(因为SP1的标志信息更新可能有滞后),那么BSS1内的第一节点会拒绝BSS2内的第二节点的空间复用请求。
4)如果BSS2内的第二节点在向BSS1内的第一节点发送空间复用请求前,SP2已经与其它节点调度的SP进行了空间复用,那么BSS2内的第二节点在向BSS1内的第一节点发送信道请求时,会将SP2所在的空间复用SP集合内SP对象的链路质量或测量结果的信息发送给BSS1内的第一节点。BSS1内的第一节点再集合该信息判断这些SP是否可以与SP1(或SP1所在的空间复用SP集合)进行空间复用。只有所有的SP可以进行空间复用才可以进行空间复用。
1007:BSS1内的第一节点向BSS2内的第二节点发送空间复用请求响应,该空间复用请求响应用于指示是否允许该一个或多个的SP2和一个或多个的SP1进行空间复用。相应地,BSS2内的第二节点可以接收空间复用请求响应,根据空间复用请求响应来进行SP的空间复用。进一步地,BSS2内的第二节点设置一个或多个的SP2的空间复用状态信息从第一状态变更为第二状态。该1007为可选。
具体举例为:
如图11所示,当BSS1内的第一节点调度的SP在数据传输时,BSS2内的第二节点会 让调度的一个或多个SP对象的STA进行信道质量测量,BSS2内的第二节点会收集测量结果;同样,当BSS2内的第二节点调度的SP在数据传输时,BSS1内的第一节点也会让调度的一个或多个SP对象的STA进行信道质量测量,BSS1内的第一节点会收集测量结果。
BSS2内的第二节点根据测量结果向BSS1内的第一节点发起空间复用请求,请求信息中包括请求空间复用SP信息比如图中SP2信息,和/或,目标空间复用SP信息比如图中SP1信息。进一步可以包括请求空间复用SP2的链路质量或信道测量结果的信息,该信息可以使得BSS1内的第一节点用于判断未来其它BSS的SP能否加入该SP1空间复用集合。当然测量请求可以携带的信息还可以包括多种,比如图10实施例提及的信息。
BSS1内的第一节点根据SP1的空间复用情况判断SP1与SP2是否可以进行空间复用,可以但不限于有如下判断情况的一种或多种:
SP2可以或者不可以进行空间复用,BSS1内的第一节点都可以回复信息,比如发送空间复用响应,来指示SP2是否可以与SP1进行空间复用。如果SP2可以进行空间复用,BSS2内的第二节点会在下次调度时将SP2的时隙移到SP1的时隙,并将SP2的标志信息改为0。
在上述过程中,标志信息为第一状态的SP相当于为空间复用的SP结合中的一个中心SP,通过标识信息,只有该中心SP所在的节点才可以接收/发起空间复用请求,因此减少了多个AP之间的交互过程,减少了时延和复杂性。
图13为本申请实施例提供的另一种装置的结构示意图。如图13所示,装置1300可包括:
处理模块1301,用于实现上述任一一个方法实施例中涉及的除发送和接收之外其他处理过程。处理模块可以用处理电路或处理器或芯片实现。
收发模块1302,用于实现上述任一一个方法实施例中涉及的发送和接收处理过程。收发模块可以用收发电路或收发器或芯片实现。收发模块也可以分别由接收电路或发送电路实现,或者,由接收器和发送器来实现,或者,接收芯片和发送芯片来实现,用于分别实现上述任一一个方法实施例中涉及的发送或接收处理过程。
如下结合图14对图13的具体产品形态进行说明。图14为本申请实施例提供的一种装置的结构示意图。上述图13所述的装置,可以通过多种产品形态来实现,例如:
作为一种可能的产品形态,装置可选地由总线1401作一般性的总线体系结构来实现。如图14所示,根据装置的具体应用和整体设计约束条件,总线1401可以包括任意数量的互连总线和桥接。总线1401将各种电路连接在一起,这些电路包括处理器1402、可选地包括存储介质1403、总线接口1404或用户接口1406的一种或多种。
其中,装置使用总线接口1404将可选的器件网络适配器1405等经由总线1401连接;网络适配器1405可用于实现无线局域网中物理层的信号处理功能,并通过天线1407实现射频信号的发送或接收;在本申请中,天线1407用于实现上述方法实施例中装置执行的各种信息的收发。
其中,用户接口1406可以连接用户终端,例如:键盘、显示器、鼠标、操纵杆等。总线1401还可以连接各种其它电路,如定时源、***设备、电压调节器、功率管理电路等,这些电路是本领域所熟知的,因此不再详述。
其中,处理器1402负责管理总线和一般处理(包括执行存储在存储介质1403上的软件)。处理器1402可以使用一个或多个通用处理器和/或专用处理器来实现。处理器的例子包括微处理器、微控制器、DSP处理器和能够执行软件的其它电路。应当将软件广义地解释为表示指令、数据或其任意组合,而不论是将其称作为软件、固件、中间件、微代码、硬件描述语言还是其它;在本申请中,处理器1402用于实现上述方法实施例中装置除各种信息收发以外的所有处理。
另,在图14中存储介质1403被示为与处理器1402分离,然而,本领域技术人员很容易明白,存储介质1403或其任意部分可位于装置之外。举例来说,存储介质1403可以 包括传输线、用数据调制的载波波形、和/或与无线装置分离开的计算机制品,这些介质均可以由处理器1402通过总线接口1404来访问。可替换地,存储介质1403或其任意部分可以集成到处理器1402中,例如,可以是高速缓存和/或通用寄存器;在本申请中,存储介质1403用于存储计算机程序,该计算机程序由处理器1402执行,实现处理器1402执行的所有处理。
作为另一种可能的产品形态,装置也可配置成通用处理***,例如可以通称为芯片,该通用处理***包括:提供处理器功能的一个或多个微处理器;以及提供存储介质1403的至少一部分的外部存储器,所有这些都通过外部总线体系结构与其它支持电路连接在一起。
作为另一种可能的产品形态,装置也可以使用下述来实现:具有处理器1402、总线接口1404、用户接口1406的专用集成电路(application specific integrated circuit,ASIC);以及集成在单个芯片中的存储介质1403的至少一部分。
如图15为本申请实施例提供的一种装置的结构示意图。如图15所示,该装置包括:介质访问控制(Media Access Control,MAC)层模块和物理(PHY)层模块。其中,MAC层模块可对待发送的信息进行MAC层协议处理后,传输至物理层模块,由该物理层模块再进行物理层协议处理,继而通过天线发送;该物理层模块可对天线接收到的信息进行物理层协议处理后,传输至MAC层模块,由该MAC层模块再进行MAC层协议处理,用以获取实际的接收信息。需要说明的是,图15所示的装置中,仅是以两个天线为例,当然,也可包括其他个数的天线。也就是说,装置可以为单天线的装置,也可以为多天线的装置,而该多天线不限于图15所示的2个,也可以为其他个数。
上述装置可以为接入点AP或者站点STA。上述装置实施例可以引用方法实施例作为描述补充。
权利要求内容也作为实施例的一部分作为描述补充。
本申请文件的“A和/或B”表示“A”、或、“B”或“A和B”。本申请各实施方式的内容可以互相引用。
在本说明书中使用的术语“部件”、“模块”、“***”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地***、分布式***和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它***交互的互联网)的信号通过本地和/或远程进程来通信。
本申请实施方式的装置可以是现场可编程门阵列(Field-Programmable Gate Array,FPGA),可以是专用集成芯片(Application Specific Integrated Circuit,ASIC),还可以是***芯片(System on Chip,SoC),还可以是中央处理器(Central Processor Unit,CPU),还可以是网络处理器(Network Processor,NP),还可以是数字信号处理电路(Digital Signal Processor,DSP),还可以是微控制器(Micro Controller Unit,MCU),还可以是可编程控制器(Programmable Logic Device,PLD)或其他集成芯片。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。各实施例为了方便简洁,也可以互为参考引用,不再赘述。
在本申请所提供的几个实施例中,应所述理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者所述技术方案的部分可以以软件产品的形式体现出来,所述计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (44)

  1. 一种空间复用的方法,其特征在于,包括:
    第一基本服务区集BSS1内的第一节点接收第二基本服务区集BSS2内的第二节点发送的测量请求,所述BSS1内分配有一个或多个第一服务周期SP1,所述BSS2内分配有一个或多个第二服务周期SP2,所述测量请求为请求对所述一个或多个SP2进行测量;
    BSS1内的第一节点接收BSS2内的第二节点的测量报告,所述测量报告为对一个或多个SP1进行测量的报告;
    BSS1内的第一节点基于接收的所述测量报告判断是否允许一个或多个SP1和一个或多个SP2进行空间复用。
  2. 根据权利要求1所述的方法,其特征在于,
    BSS1内的第一节点,和/或,BSS1内的第一节点调度BSS1内的其他节点对所述一个或多个SP2进行测量。
  3. 根据权利要求2所述的方法,其特征在于,
    所述BSS1内的第一节点基于接收的所述测量报告判断是否允许一个或多个SP1和一个或多个SP2进行空间复用具体为:
    BSS1内的第一节点基于接收的所述测量报告和所述对一个或多个SP2进行测量的结果来判断是否允许一个或多个SP1和一个或多个SP2进行空间复用。
  4. 根据权利要求1-3任一所述的方法,其特征在于,还包括
    BSS1内的第一节点发送空间复用指示,所述空间复用指示用于指示SP是否支持BSS间的SR;
    和/或
    BSS1内的第一节点发送动态公告传输时隙ATI的调度信息,所述动态ATI的调度信息用于指示关于动态ATI的调度信息。
  5. 根据权利要求4任一所述的方法,其特征在于,
    所述空间复用指示或者动态ATI的调度信息携带在扩展调度信息中或者信标中;
    和/或
    所述空间复用指示或者动态ATI的调度信息在信标传输时隙BTI或者关联波束赋形训练A-BFT或者竞争接入周期CBAP或者SP中发送。
  6. 根据上述任一一个所述的方法,其特征在于,
    BSS1内的第一节点发送测量请求响应,所述测量请求响应是对测量请求的响应;
    和/或
    BSS1内的第一节点发送测量报告响应,所述测量报告响应包括是否允许一个或多个SP1和一个或多个SP2进行空间复用的指示。
  7. 根据上述任一一个所述的方法的方法,其特征在于,
    第一服务周期是已经被调度的SP;
    和/或
    第二服务周期是被用来和已经被调度的SP进行空间复用评估的SP,或者,可以被重新调度的SP,或者,可以被考虑重新分配的SP。
  8. 根据上述任一一个所述的方法,其特征在于,
    第一节点为接入点AP或者站点STA;
    和/或
    第二节点为AP或者STA。
  9. 一种空间复用的方法,其特征在于,包括:
    第二基本服务区集BSS2内的第二节点向第一基本服务区集BSS1内的第一节点发送测量请求,所述BSS1内分配有一个或多个第一服务周期SP1,所述BSS2内分配有一个或 多个第二服务周期SP2,所述测量请求为请求对所述一个或多个SP2进行测量;
    BSS2内的第二节点向BSS1内的第一节点发送测量报告,所述测量报告为对一个或多个SP1进行测量的报告,所述测量报告用于判断是否允许一个或多个SP1和一个或多个SP2进行空间复用。
  10. 根据权利要求9所述的方法,其特征在于,所述对一个或多个SP1进行测量具体为:
    BSS2内的第二节点,和/或,BSS2内的第二节点调度BSS2内的其他节点对一个或多个SP1进行测量。
  11. 根据权利要求9或10所述的方法,其特征在于,
    BSS2内的第二节点接收BSS1内的第一节点发送的测量请求响应,所述测量请求响应是对测量请求的响应;
    和/或
    BSS2内的第二节点接收BSS1内的第一节点发送的测量报告响应,所述测量报告响应是对该测量报告的响应。
  12. 根据权利要求11所述的方法,其特征在于,
    基于所述测量报告响应,BSS2内的第二节点调度所述一个或多个SP2与一个或多个SP1进行空间复用。
  13. 一种空间复用的方法,其特征在于,包括:
    第一基本服务区集BSS1内的第一节点接收第二基本服务区集BSS2内的第二节点发送的空间复用请求,所述BSS1内分配有一个或多个第一服务周期SP1,所述BSS2内分配有一个或多个第二服务周期SP2,所述空间复用请求包括一个或多个SP2的信息,和/或,一个或多个SP1的信息,其中,SP2的信息包括SP2的空间复用状态信息,其中,SP的空间复用状态信息用来指示SP的空间复用状态;
    BSS1内的第一节点根据所述SP1的空间复用状态和接收到的SP2的空间复用状态信息判断是否允许所述一个或多个SP2和所述一个或多个SP1进行空间复用。
  14. 根据权利要求13所述的方法,其特征在于,
    SP的空间复用状态包括第一状态或第二状态,所述第一状态用于表示SP可以作为请求空间复用SP或目标空间复用SP,所述第二状态表示SP不能作为请求空间复用SP或目标空间复用SP;其中,所述请求空间复用SP是请求与其他SP进行空间复用评估的SP,或者,是能被重新调度的SP,或者,是被考虑重新分配的SP,目标空间复用SP是已经被调度的SP,或者,是被用来和请求空间复用SP进行空间复用评估的SP。
  15. 根据权利要求13或14所述的方法,其特征在于,包括:
    BSS1内的第一节点向BSS2内的第二节点发送空间复用请求响应,所述空间复用请求响应用于指示是否允许所述一个或多个的SP2和一个或多个的SP1进行空间复用。
  16. 根据上述任一权利要求所述的方法,其特征在于,包括:
    BSS1内的第一节点,和/或,BSS1内的第一节点调度的BSS1内的其他节点对所述一个或多个SP2进行测量。
  17. 根据权利要求16所述的方法,其特征在于,
    所述BSS1内的第一节点根据所述SP1的空间复用状态和接收到的SP2的空间复用状态信息判断是否允许所述一个或多个SP2和所述一个或多个SP1进行空间复用具体为:
    所述BSS1内的第一节点根据所述SP1的空间复用状态信息和接收到的SP2的空间复用状态信息,以及,BSS1内的第一节点,和/或,BSS1内的第一节点调度的BSS1内的其他节点对一个或多个SP2进行测量的结果,判断请求空间复用SP2和目标空间复用SP1是否可以进行复用。
  18. 根据上述任一权利要求所述的方法,其特征在于,
    所述空间复用请求进一步包括BSS2内的第二节点,和/或,BSS2内的第二节点调度的BSS2内的其他节点对所述一个或多个SP1的测量结果信息,
    所述BSS1内的第一节点根据所述SP1的空间复用状态信息和接收到的SP2的空间复用状态信息判断是否允许所述一个或多个SP2和所述一个或多个SP1进行空间复用具体为:
    所述BSS1内的第一节点根据所述SP1的空间复用状态信息和接收到的SP2的空间复用状态信息,以及,BSS2内的第二节点,和/或,BSS2内的第二节点调度的BSS2内的其他节点对所述一个或多个SP1的测量结果信息,判断是否允许所述一个或多个SP2和所述一个或多个SP1进行空间复用。
  19. 根据上述任一权利要求所述的方法,其特征在于,
    所述空间复用请求进一步包括所述一个或多个SP2所在的空间复用SP集合内其他SP对象的链路质量或信道测量结果信息,
    所述BSS1内的第一节点根据所述SP1的空间复用状态信息和接收到的SP2的空间复用状态信息判断是否允许所述一个或多个SP2和所述一个或多个SP1进行空间复用具体为:
    所述BSS1内的第一节点根据所述SP1的空间复用状态信息和接收到的SP2的空间复用状态信息,以及,一个或多个SP2所在的空间复用SP集合内其他SP对象的链路质量或信道测量结果信息,判断是否允许所述一个或多个SP2和所述一个或多个SP1进行空间复用。
  20. 根据上述任一权利要求所述的方法,其特征在于,
    所述BSS1内的第一节点根据所述SP1的空间复用状态信息和接收到的SP2的空间复用状态信息判断是否允许所述一个或多个SP2和所述一个或多个SP1进行空间复用具体为:
    所述BSS1内的第一节点根据所述SP1的空间复用状态信息和接收到的SP2的空间复用状态信息,以及,所述一个或多个SP1所在的空间复用SP集合内其他SP对象的链路质量或信道测量结果,判断是否允许所述一个或多个SP2和所述一个或多个SP1进行空间复用。
  21. 一种空间复用的方法,其特征在于,包括:
    第二基本服务区集BSS2内的第二节点向第一基本服务区集BSS1内的第一节点发送空间复用请求,所述BSS1内分配有一个或多个第一服务周期SP1,所述BSS2内分配有一个或多个第二服务周期SP2,所述空间复用请求包括一个或多个SP2的信息,和/或,一个或多个SP1的信息,其中,SP2的信息包括SP2的空间复用状态信息,其中,SP的空间复用状态信息用来指示SP的空间复用状态;所述空间复用请求为请求所述一个或多个SP1和所述一个或多个SP2进行空间复用。
  22. 根据权利要求21所述的方法,其特征在于,包括:
    BSS2内的第二节点接收BSS1内的第一节点发送的空间复用请求响应,所述空间复用请求响应用于指示是否允许所述一个或多个的SP2和一个或多个的SP1进行空间复用。
  23. 根据权利要求22所述的方法,其特征在于,包括:
    BSS2内的第二节点根据接收的空间复用请求响应使一个或多个的SP2与一个或多个的SP1进行空间复用。
  24. 根据权利要求23所述的方法,其特征在于,包括:
    BSS2内的第二节点设置一个或多个的SP2的空间复用状态信息从第一状态变更为第二状态;所述第一状态用于表示SP可以作为请求空间复用SP或目标空间复用SP,所述第二状态表示SP不能作为请求空间复用SP或目标空间复用SP;其中,所述请求空间复用SP是请求与其他SP进行空间复用评估的SP,或者,是能被重新调度的SP,或者,是被考虑重新分配的SP,目标空间复用SP是已经被调度的SP,或者,是被用来和请求空间复用SP进行空间复用评估的SP。
  25. 根据上述任一权利要求所述的方法,其特征在于:
    BSS2内的第二节点,和/或,BSS2内的第二节点调度BSS2内的其他节点对所述一个或多个SP2的测量结果;
    所述BSS2内的第二节点向BSS1内的第一节点发送空间复用请求进一步包括BSS2内的第二节点,和/或,BSS2内的第二节点调度的BSS2内的其他节点对所述一个或多个SP1的测量结果信息。
  26. 一种空间复用的装置,其特征在于,包括:处理模块和收发模块;所述装置位于第一基本服务区集BSS1内;
    所述收发模块用于
    接收第二基本服务区集BSS2内的第二节点发送的测量请求,所述BSS1内分配有一个或多个第一服务周期SP1,所述BSS2内分配有一个或多个第二服务周期SP2,所述测量请求为请求对所述一个或多个SP2进行测量;
    接收BSS2内的第二节点的测量报告,所述测量报告为请求对一个或多个SP1进行测量的报告;
    所述处理模块用于
    基于接收的所述测量报告判断是否允许一个或多个SP1和一个或多个SP2进行空间复用。
  27. 根据权利要求26所述的装置,其特征在于,
    所述处理模块进一步用于对所述一个或多个SP2进行测量,和/或,调度BSS1内的其他节点对所述一个或多个SP2进行测量。
  28. 根据权利要求27所述的装置,其特征在于,
    所述处理模块进一步用于
    基于接收的所述测量报告和所述对一个或多个SP2进行测量的结果来判断是否允许一个或多个SP1和一个或多个SP2进行空间复用。
  29. 根据上述任一一个所述的装置,其特征在于,
    所述收发模块进一步用于发送测量请求响应,所述测量请求响应是对测量请求的响应;和/或
    所述收发模块进一步用于发送测量报告响应,所述测量报告响应包括是否允许一个或多个SP1和一个或多个SP2进行空间复用的指示。
  30. 一种空间复用的装置,其特征在于,包括:处理模块和收发模块;所述装置位于第二基本服务区集BSS2内;
    所述收发模块用于
    向第一基本服务区集BSS1内的第一节点发送测量请求,所述BSS1内分配有一个或多个第一服务周期SP1,所述BSS2内分配有一个或多个第二服务周期SP2,所述测量请求为请求对所述一个或多个SP2进行测量;
    向BSS1内的第一节点发送测量报告,所述测量报告为对一个或多个SP1进行测量的报告,所述测量报告用于判断是否允许一个或多个SP1和一个或多个SP2进行空间复用。
  31. 根据权利要求30所述的装置,其特征在于,
    所述处理模块用于对一个或多个SP1进行测量,和/或,调度BSS2内的其他节点对一个或多个SP1进行测量。
  32. 根据权利要求30或31所述的装置,其特征在于,
    所述收发模块进一步用于接收BSS1内的第一节点发送的测量请求响应,所述测量请求响应是对测量请求的响应;和/或
    所述收发模块进一步用于接收BSS1内的第一节点发送的测量报告响应,所述测量报告响应是对该测量报告的响应。
  33. 根据权利要求32所述的装置,其特征在于,
    所述处理模块进一步用于基于所述测量报告响应,调度所述一个或多个SP2与一个或多个SP1进行空间复用。
  34. 一种空间复用的装置,其特征在于,包括:处理模块和收发模块;所述装置位于第一基本服务区集BSS1内;
    所述收发模块用于接收第二基本服务区集BSS2内的第二节点发送的空间复用请求,所述BSS1内分配有一个或多个第一服务周期SP1,所述BSS2内分配有一个或多个第二服务周期SP2,所述空间复用请求包括一个或多个SP2的信息,和/或,一个或多个SP1的信息,其中,SP2的信息包括SP2的空间复用状态信息,其中,SP的空间复用状态信息用来指示SP的空间复用状态;
    所述处理模块用于根据所述SP1的空间复用状态和接收到的SP2的空间复用状态信息判断是否允许所述一个或多个SP2和所述一个或多个SP1进行空间复用。
  35. 根据权利要求34所述的装置,其特征在于,
    SP的空间复用状态包括第一状态或第二状态,所述第一状态用于表示SP可以作为请求空间复用SP或目标空间复用SP,所述第二状态表示SP不能作为请求空间复用SP或目标空间复用SP;其中,所述请求空间复用SP是请求与其他SP进行空间复用评估的SP,或者,是能被重新调度的SP,或者,是被考虑重新分配的SP,目标空间复用SP是已经被调度的SP,或者,是被用来和请求空间复用SP进行空间复用评估的SP。
  36. 根据权利要求34或35所述的装置,其特征在于,包括:
    所述收发模块进一步用于向BSS2内的第二节点发送空间复用请求响应,所述空间复用请求响应用于指示是否允许所述一个或多个的SP2和一个或多个的SP1进行空间复用。
  37. 根据上述任一权利要求所述的装置,其特征在于,
    所述空间复用请求进一步包括所述一个或多个SP2所在的空间复用SP集合内其他SP对象的链路质量或信道测量结果信息,
    所述处理模块进一步用于根据所述SP1的空间复用状态和接收到的SP2的空间复用状态信息,以及,一个或多个SP2所在的空间复用SP集合内其他SP对象的链路质量或信道测量结果信息,判断是否允许所述一个或多个SP2和所述一个或多个SP1进行空间复用。
  38. 一种空间复用的装置,其特征在于,包括:处理模块和收发模块;所述装置位于第二基本服务区集BSS2内;
    所述收发模块向第一基本服务区集BSS1内的第一节点发送空间复用请求,所述BSS1内分配有一个或多个第一服务周期SP1,所述BSS2内分配有一个或多个第二服务周期SP2,所述空间复用请求包括一个或多个SP2的信息,和/或,一个或多个SP1的信息,其中,SP2的信息包括SP2的空间复用状态信息,其中,SP的空间复用状态信息用来指示SP的空间复用状态;所述空间复用请求为请求所述一个或多个SP1和所述一个或多个SP2进行空间复用。
  39. 根据权利要求38所述的装置,其特征在于,包括:
    所述收发模块进一步用于接收BSS1内的第一节点发送的空间复用请求响应,所述空间复用请求响应用于指示是否允许所述一个或多个的SP2和一个或多个的SP1进行空间复用;
    所述处理模块进一步用于根据接收的空间复用请求响应使一个或多个的SP2与一个或多个的SP1进行空间复用。
  40. 根据权利要求38或39所述的装置,其特征在于,包括:
    所述处理模块进一步用于设置一个或多个的SP2的空间复用状态信息从第一状态变更为第二状态;所述第一状态用于表示SP可以作为请求空间复用SP或目标空间复用SP,所述第二状态表示SP不能作为请求空间复用SP或目标空间复用SP;其中,所述请求空间复用SP是请求与其他SP进行空间复用评估的SP,或者,是能被重新调度的SP,或者, 是被考虑重新分配的SP,目标空间复用SP是已经被调度的SP,或者,是被用来和请求空间复用SP进行空间复用评估的SP。
  41. 一种装置,其特征在于,该装置包括处理器和存储器,所述存储器用于存储程序,所述处理器用于执行存储器中的程序以执行权利要求1至25中任一项所述的方法。
  42. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机可以执行权利要求1至25中任一项所述的方法。
  43. 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行所述权利要求1至25中任一项所述的方法的指令。
  44. 一种装置,用于实现权利要求1至25中任一项所述的方法。
PCT/CN2019/071997 2018-02-12 2019-01-16 一种空间复用的方法和装置 WO2019154033A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/988,082 US11317311B2 (en) 2018-02-12 2020-08-07 Spatial reuse method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810144064.7 2018-02-12
CN201810144064.7A CN110167145B (zh) 2018-02-12 2018-02-12 一种空间复用的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/988,082 Continuation US11317311B2 (en) 2018-02-12 2020-08-07 Spatial reuse method and apparatus

Publications (1)

Publication Number Publication Date
WO2019154033A1 true WO2019154033A1 (zh) 2019-08-15

Family

ID=67549273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071997 WO2019154033A1 (zh) 2018-02-12 2019-01-16 一种空间复用的方法和装置

Country Status (3)

Country Link
US (1) US11317311B2 (zh)
CN (1) CN110167145B (zh)
WO (1) WO2019154033A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105978614A (zh) * 2016-06-28 2016-09-28 东南大学 一种毫米波***定向天线空间复用方法
CN106961733A (zh) * 2016-01-11 2017-07-18 华为技术有限公司 传输数据的方法和装置
CN107548570A (zh) * 2015-05-06 2018-01-05 高通股份有限公司 Wlan中的用于增加重用的通信推迟策略
CN107645788A (zh) * 2016-07-22 2018-01-30 中兴通讯股份有限公司 一种空间复用传输的方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468879B (zh) * 2010-10-29 2015-08-05 日电(中国)有限公司 用于无线通信***的波束形成训练方法、设备和***
EP3079424B1 (en) * 2014-01-03 2019-10-30 Huawei Technologies Co., Ltd. Timeslot scheduling apparatus and method
JP6433260B2 (ja) * 2014-11-19 2018-12-05 パナソニック株式会社 ワイヤレス通信システムにおける空間共有の方法
US10051588B2 (en) * 2014-11-27 2018-08-14 Mediatek Inc. Collaborative OBSS interference mitigation for wireless communication systems
CN106550377B (zh) * 2015-09-18 2020-02-14 华为技术有限公司 通信方法、接入点和站点
CN115396075B (zh) 2017-08-14 2023-10-03 华为技术有限公司 信息传输方法及网络设备
KR102239111B1 (ko) * 2017-12-01 2021-04-12 엘지전자 주식회사 무선랜 시스템에서 채널 측정 정보를 송수신하는 방법 및 이를 위한 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107548570A (zh) * 2015-05-06 2018-01-05 高通股份有限公司 Wlan中的用于增加重用的通信推迟策略
CN106961733A (zh) * 2016-01-11 2017-07-18 华为技术有限公司 传输数据的方法和装置
CN105978614A (zh) * 2016-06-28 2016-09-28 东南大学 一种毫米波***定向天线空间复用方法
CN107645788A (zh) * 2016-07-22 2018-01-30 中兴通讯股份有限公司 一种空间复用传输的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROPITAULT, TANGUY: "Evaluation of RTOT Algorithm: A First Implementation of OBSS PD-based SR Method for IEEE 802.1 lax", 2018 15TH IEEE ANNUAL CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE (CCNC, 15 January 2018 (2018-01-15), pages 1 - 7, XP033331882, doi:10.1109/CCNC.2018.8319274 *

Also Published As

Publication number Publication date
US20200374732A1 (en) 2020-11-26
CN110167145A (zh) 2019-08-23
CN110167145B (zh) 2024-04-09
US11317311B2 (en) 2022-04-26

Similar Documents

Publication Publication Date Title
JP5795023B2 (ja) ミリ波無線システムにおけるクラスタリング管理
US11589245B2 (en) Technologies for spatial sharing in wireless communications system
US8526887B2 (en) Unscheduled protocols for switched antenna arrays
US20140038598A1 (en) Small cell detection method and apparatuses using the same
WO2020259341A1 (zh) 资源确定方法及装置
WO2020221318A1 (zh) 一种上行波束管理方法及装置
US9357526B2 (en) Device and method for performing device to device communication in wireless communication system
JP5323847B2 (ja) 通信システムで無線チャンネル資源を共有する方法
CN115396075B (zh) 信息传输方法及网络设备
WO2018095241A1 (zh) 通信方法、装置和***
US10433323B2 (en) Communication control station device, communication terminal device, and communication control method
WO2019192410A1 (zh) 一种信号传输方法及通信设备
WO2024036671A1 (zh) 侧行通信的方法及装置
KR20110008193A (ko) 채널 시간을 할당하고 호환성 있는 링크를 결정하는 방법 및 데이터를 처리하기 위한 장치
WO2022194082A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US9236919B2 (en) MIMO wireless communication method and system
WO2019154033A1 (zh) 一种空间复用的方法和装置
KR20200012391A (ko) 통신 시스템에서 비면허대역을 사용하는 방법 및 장치
CN110383705A (zh) 一种训练传输波束的方法、装置及***
WO2017012125A1 (zh) 无线接入点同步协作方法、设备及***
CN114125938B (zh) 通讯装置排程方法、伺服器、回报数据的方法及通讯装置
JP6632089B2 (ja) Pcp/ap装置、端末装置およびこれらの通信方法
JP2020043606A (ja) Pcp/ap装置、端末装置およびこれらの通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19751004

Country of ref document: EP

Kind code of ref document: A1