WO2019153585A1 - 一种真空反应装置及反应方法 - Google Patents

一种真空反应装置及反应方法 Download PDF

Info

Publication number
WO2019153585A1
WO2019153585A1 PCT/CN2018/088804 CN2018088804W WO2019153585A1 WO 2019153585 A1 WO2019153585 A1 WO 2019153585A1 CN 2018088804 W CN2018088804 W CN 2018088804W WO 2019153585 A1 WO2019153585 A1 WO 2019153585A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
reaction
reaction chamber
gas
chemical source
Prior art date
Application number
PCT/CN2018/088804
Other languages
English (en)
French (fr)
Inventor
张鹤
黎微明
左敏
Original Assignee
江苏微导纳米装备科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏微导纳米装备科技有限公司 filed Critical 江苏微导纳米装备科技有限公司
Priority to EP18904550.3A priority Critical patent/EP3751018A4/en
Publication of WO2019153585A1 publication Critical patent/WO2019153585A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4587Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially vertically
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32522Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32577Electrical connecting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32651Shields, e.g. dark space shields, Faraday shields

Definitions

  • the invention belongs to the vacuum preparation of a film material, in particular to a plasma enhanced atomic layer deposition device and a plasma enhanced chemical vapor deposition device and a reaction method thereof.
  • Plasma-enhanced atomic layer deposition has the following synonyms: plasma-assisted atomic layer deposition (PAALD), plasma atomic layer deposition (plasma) ALD) or radical-enhanced atomic layer deposition (radical-enhanced ALD).
  • PAALD plasma-assisted atomic layer deposition
  • plasma atomic layer deposition plasma atomic layer deposition
  • radical-enhanced atomic layer deposition radical-enhanced atomic layer deposition
  • ALD refers to atomic layer deposition
  • CVD refers to chemical vapor deposition
  • PEALD Plasma enhanced atomic layer deposition
  • the present invention discloses a vacuum reaction apparatus and a method thereof.
  • a vacuum reaction device is provided with a heater outside the reaction chamber.
  • the preferred heater is a resistance wire heater.
  • the resistance wire heater heats the reaction chamber, and the heat radiation heats the silicon wafer on the carrier to control the silicon deposition during film deposition.
  • a surface temperature of the sheet a carrier placed in the reaction chamber, the carrier being electrically conductive and insulated from other portions of the reaction chamber, the carrier being at least one set of parallel aligned plates, the adjacent plates being respectively connected to the poles of the plasma power source
  • the parallel plates are provided with multiple groups, the parallel plates are alternately connected to each other and lead out of the reaction chamber, the odd plates are interconnected to form one electrode, the even plates are interconnected to form another electrode, and the two electrodes are led out to the outside of the reaction chamber by respective wires, respectively The two poles of the plasma power supply.
  • a preferred technical solution for parallel plate connection is that all parallel plates are vertically connected by insulated straight rods at four corners of the plate, and adjacent plates are separated by insulating spacers on the straight bars, alternating plates One end of the plate is interconnected by a conductive material.
  • the surface of the parallel plate may be placed on a sheet material to be coated, such as a silicon wafer, and a silicon wafer may be placed on each side of the flat plate.
  • the flat plate may be made wider so that one flat surface can carry a plurality of silicon wafers. In the same plane.
  • One end of the reaction chamber is provided with a gas outlet, and the air outlet is connected with a vacuum pump.
  • the vacuum pump vacuums the reaction chamber to maintain the vacuum inside the chamber, and the other end is provided with an air inlet, and the air inlet is connected to the air source.
  • the reaction chamber of the vacuum reactor can be applied to both plasma enhanced atomic layer deposition and plasma enhanced chemical vapor deposition.
  • the technical solution of the reaction chamber of the present invention is a mutually compatible device for atomic layer deposition and chemical vapor deposition of a vacuum reaction device, which can perform atomic layer deposition coating in the reaction chamber or chemical vapor deposition coating in the reaction chamber.
  • the gas source includes a reaction gas, a chemical source vapor, and a carrier gas; the gas may be connected to the air inlet in a plurality of ways.
  • the gas connection here refers to a container for holding the gas, a pipe, and a control valve and the intake air.
  • the connection of the mouth for the convenience of the description of the connection between the gas and the inlet, the different coating reactions require different reactant gases, chemical sources; different coating reactions may require several reagent gases or different coating reactions require several chemical sources In the actual reaction, it needs to be adjusted according to the needs:
  • reaction gas the chemical source vapor, and the carrier gas are respectively connected to the air inlet;
  • reaction gas, the chemical source steam, and the carrier gas are respectively connected to the air inlet, and the carrier gas is connected with the chemical source steam; part of the carrier gas carries the chemical source vapor into the reaction chamber, and part of the carrier gas directly enters the reaction chamber.
  • a first valve is disposed between the inlet of the reaction chamber and the chemical source; a second valve is disposed between the chemical source and the carrier gas; and a third valve is disposed between the gas inlet of the reaction chamber and the carrier gas; a fourth valve between the gas inlet of the reaction chamber and the reaction gas; the gas inlet of the reaction chamber is connected to the reaction gas 2 through the fifth valve.
  • the most basic chemical source, carrier gas and reaction gas are given above. Specific to each process, different chemical sources, carrier gases and reaction gases and their respective quantities can be set according to the process.
  • an atomic layer deposition reaction can be performed, as an atomic layer deposition device, and a chemical vapor deposition reaction can be performed as a vapor deposition device; in the prior art, an atomic layer deposition device and Chemical vapor deposition equipment is not universal.
  • the plasma enhanced atomic layer deposition reaction method is as follows:
  • the deposition method is composed of a plurality of identical cycles, each cycle guaranteeing an atomic layer of the deposited film material, and controlling the number of cycles can accurately control the film thickness;
  • Step 1 opening the first valve and the second valve, so that the carrier gas flows into the reaction chamber through the chemical source, and controls the time when the chemical source enters the cavity (chemical source pulse time);
  • Step 2 closing the first valve and the second valve, opening the third valve, and the carrier gas purging the reaction chamber;
  • Step 3 opening the fourth valve and/or the fifth valve to open the reaction gas, and then turning on the plasma power source for processing;
  • step 4 the plasma power source is turned off, the third valve is opened, and the carrier gas purges the reaction chamber.
  • the carrier gas can all enter the chemical source and enter the reaction chamber, or partially enter the chemical source and another part. Go directly into the reaction chamber.
  • the carrier gas portion carries the chemical source into the reaction chamber or the carrier gas directly enters the reaction chamber through the third valve, and the manner is also that the carrier gas carries the chemical source vapor into the reaction chamber.
  • the carrier gas only partially enters the chemical source, and some of the carrier gas directly enters the cavity.
  • the chemical source enters the reaction chamber reaction, and after being purged by the carrier gas, the fourth valve and the fifth valve are opened, the reaction gas 1 and the reaction gas 2 enter the reaction chamber, the plasma power source is turned on, and plasma is generated between the two parallel plates of the carrier.
  • the body excites the chemical reaction of the reaction gas and the surface layer of the silicon wafer.
  • the plasma enhanced chemical vapor deposition reaction method is as follows:
  • the chemical source and the reaction gas are respectively introduced into the reaction chamber, and the plasma power source is turned on to generate a plasma; a part of the chemical source or the reaction gas may be first introduced into the reaction chamber, and the plasma power source is turned on to generate a plasma, and then other chemical sources are generated. Or the reaction gas is introduced into the reaction chamber. Keep the corresponding valve open, keep the chemical source and reaction gas into the reaction chamber continuously, and keep the plasma power supply continuously open to ensure that the plasma continues to exist between the parallel carriers, and control the opening time of the plasma power source to control the film thickness.
  • the fourth valve and the fifth valve remain normally open during the whole reaction process, while the plasma power source is normally open, and the reaction gas and the reaction gas two react with the chemical source, and a chemical reaction occurs between the reaction gases.
  • the device can be prepared by plasma enhanced chemical vapor deposition: alumina (AlOx), aluminum nitride (AlNx), aluminum oxynitride (AlOxNy), silicon nitride (SiNx), silicon oxide (SiOx) and silicon oxynitride. (SiOxNy) and the like.
  • an insulated tubular furnace body and a carrier capable of carrying a large amount of silicon wafers can be used to simultaneously process the silicon wafers on the carrier while maintaining the in-chip, inter-chip, and batch-to-plate ratios of the coated film.
  • the atomic layer deposited film produced has the following advantages: 1) good conformality of the coating, 2) fine control to the sub-nanometer level, and 3) richer types of deposited films than PECVD and thermal ALD techniques.
  • the material properties of the film are wider and wider, and are suitable for a variety of applications.
  • the device is also compatible with plasma enhanced chemical vapor deposition (PECVD).
  • PEALD and PECVD technologies for processing silicon wafers can be completed in the same cavity, which can significantly reduce equipment investment in semiconductor and photovoltaic manufacturers and reduce the cost of wafer fabrication.
  • the device Comparing PEALD equipment that can process only one or several wafers at a time, because of the above-mentioned tube furnace and the use of the above-mentioned vehicles, the device can simultaneously process a large number of 400 or more wafers with PEALD technology, and is compatible at the same time. PECVD process.
  • Figure 1 is a schematic view showing the structure of a vacuum reaction apparatus.
  • FIG. 2 is a schematic cross-sectional view of a vacuum reactor.
  • Figure 3 is a diagram of the operation of each gas and chemical source of plasma enhanced atomic layer deposition into a cavity mode and a plasma feed cavity mode.
  • Figure 4 is a working diagram of various gas and chemical sources for plasma enhanced chemical vapor deposition entering a cavity mode and a plasma feed cavity mode.
  • the furnace body is a cylindrical reaction chamber 6.
  • the preparation material of the reaction chamber 6 is quartz, ceramics, etc.
  • the diameter of the reaction chamber 6 is between 300 mm and 500 mm, and the length is between 2000 mm and 2500 mm. between.
  • the carrier 8 is prepared from materials such as graphite, stainless steel, etc., and can carry an area of 156 mm x 156 mm. -416 tablets.
  • the carrier 8 is electrically conductive and insulated from other portions of the reaction chamber 6.
  • the carrier 8 is a plurality of sets of parallel-arranged flat plates.
  • the parallel plates are alternately connected to each other and lead out of the reaction chamber, respectively connected to the two poles of the plasma power source 9;
  • One end of the reaction chamber 6 is provided with a gas outlet, the air outlet is connected to the vacuum pump 10, the other end is provided with an air inlet, and the air inlet is connected to the air source.
  • the arrow in Fig. 1 represents the direction of the air flow.
  • a first valve 1 is disposed between the inlet of the reaction chamber 6 and the chemical source 11; a second valve 2 is disposed between the chemical source 11 and the carrier gas 12; and an inlet port of the reaction chamber 6 is disposed between the inlet port 12 and the carrier gas 12.
  • the carrier gas not carrying the chemical source can directly enter the reaction chamber 6 through the third valve 3.
  • the carrier gas flow can be carried through the source bottle of the chemical source.
  • the chemical source enters the reaction chamber.
  • the reaction gas can be directly accessed through the respective valves, and multiple reactive gases can be installed to prepare ternary and multi-component compounds.
  • FIG. 2 is a schematic cross-sectional view of a vacuum reactor, showing that the carrier 8 is a plurality of sets of parallel-arranged flat plates, and the silicon wafer 15 is placed on both sides of the flat plate, except for the outermost flat plate, and the silicon wafer 15 is only disposed on the innermost side of the flat plate. .
  • the parallel plates are alternately connected to each other and led out to the outside of the vacuum chamber, respectively connected to the two poles of the plasma power source 9.
  • the carrier 8 is placed on the reaction chamber 6 and insulated from the rest of the furnace body.
  • the plasma 16 is generated between adjacent silicon wafers on the inside of adjacent plates.
  • a vacuum pump is connected to one end of the reaction chamber 6 to maintain a vacuum in the reaction chamber.
  • the other end of the reaction chamber 6 is supplied with a carrier gas, a chemical source and various reaction gases.
  • Figure 3 is a diagram of the operation of each gas and chemical source of plasma enhanced atomic layer deposition into a cavity mode and a plasma feed cavity mode.
  • the atomic layer deposition reaction is a combination of several identical cycles, each cycle guaranteeing an atomic layer of deposited film material, and controlling the number of cycles allows precise control of film thickness.
  • Step 1 opening the first valve 1 and the second valve 2, let the carrier gas 12 flow through the chemical source 11 into the reaction chamber 6, and control the chemical source 11 to enter the cavity time (chemical source pulse time);
  • Step 2 closing the first valve 1 and the second valve 2, opening the third valve 3, the carrier gas 12 purging the reaction chamber;
  • Step 3 opening the fourth valve 4 and the fifth valve 5 to open the reaction gas, and then turning on the plasma power source for processing;
  • step 4 the plasma power source 9 is turned off, the third valve 3 is opened, and the carrier gas 11 is purged from the reaction chamber 6.
  • the carrier gas 12 has two ways of loading the chemical source 11: when the first valve 1 and the second valve 2 are open, by controlling the third valve 3, the carrier gas 11 can all enter the chemical source 12 and enter the reaction chamber 6, also The chemical source 12 can be partially introduced and the other portion directly enters the reaction chamber 6.
  • mode 1 is pulse type
  • mode 2 is constant type
  • reaction gas 1 and reaction gas 2 can be used for air intake in two ways.
  • the reaction gas has two feed cavity modes: either the fourth valve 4 and the fifth valve 5 are opened throughout the cycle to ensure uniform feeding into the cavity, or only to feed the cavity in the third step. Since the reaction gas can react with the chemical source only under plasma treatment, the reaction gas can be combined with the carrier gas for purging in the absence of plasma. Therefore, it is also necessary to indicate that the reaction gas can be used as a carrier gas on the device.
  • a 5 nm thick aluminum oxide film was prepared by using liquid trimethylaluminum (Al(CH3) 3 ) as a chemical source and stored in a source bottle; argon (Ar) was used as a carrier gas, and Al(CH3) 3 was carried through the source bottle.
  • the vapor enters the reaction chamber, the flow rate is controlled to 5 SLM (standard liter per minute), and the laughing gas (N 2 O) is used as the reaction gas, and the flow rate is controlled to 0.5 SLM.
  • Each ALD cycle can grow Al2O3 film ⁇ 0.125nm, so after 40 cycles, 1200s can achieve the target thickness of 5nm growth.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the device is a reaction chamber of a plasma enhanced chemical vapor deposition apparatus and performs a plasma enhanced chemical vapor deposition reaction.
  • each gas and chemical source of plasma enhanced chemical vapor deposition enters a working mode of a cavity mode and a plasma feed cavity mode.
  • the difference from the first embodiment is that the air intake mode is different.
  • the reaction gas 13 and the reaction gas 214 and the chemical source 11 are fed in a stable manner, and the plasma power source 9 is normally opened and a stable plasma is maintained, plasma enhanced chemistry can be realized.
  • Vapor deposition (PECVD) PECVD
  • a 10 nm thick aluminum oxide film was prepared using liquid trimethylaluminum (Al(CH3) 3 ) as a chemical source and stored in a source bottle; argon (Ar) was used as a carrier gas, and Al(CH3) 3 was carried through the source bottle.
  • the vapor enters the reaction chamber, the flow rate is controlled to 5 SLM (standard liter per minute), and the laughing gas (N 2 O) is used as the reaction gas, and the flow rate is controlled to 0.5 SLM.
  • Ar is introduced into the reaction chamber for 60 s.
  • the plasma power is turned on, and the plasma power is input into the cavity for 30 s.
  • Al(CH3) 3 and N 2 O are simultaneously introduced, and Al2O3 is grown at this time. film.
  • Controlling the plasma power input time can control the film thickness. If a low frequency (such as 40 kHz) plasma power source is used, the Al2O3 deposition rate is generally ⁇ 0.05 nm/s, and the expected thickness can be obtained by growing 200 s.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

公开了一种真空反应装置,反应腔(6)外设有加热器(7);反应腔(6)内放置载具(8),载具(8)导电并与反应腔(6)内的其他部分绝缘,载具(8)为至少一组平行排列的平板,两相邻的平板分别接等离子体电源(9)的两极;设有多组平行排列的平板时,平行平板通过导电元件交替相互连接并引出真空腔体外,分别接等离子体电源(9)的两极;反应腔(6)一端设出气口,出气口连真空泵(10),另一端设进气口,进气口连接气源。还公开了基于一种用于真空反应装置的反应腔、一种基于真空反应装置的等离子体增强原子层沉积镀膜方法及一种基于真空反应装置的等离子体增强化学气相沉积镀膜方法。

Description

一种真空反应装置及反应方法 技术领域
本发明属于薄膜材料真空制备,具体涉及到等离子体增强原子层沉积设备和等离子体增强化学气相沉积设备及其反应方法。
背景技术
等离子体增强原子层沉积(plasma-enhanced atomic layer deposition,PEALD)有异名如下:等离子体辅助原子层沉积(plasma-assisted atomic layer deposition,PAALD),等离子体原子层沉积(plasma atomic layer deposition,plasma ALD)或基团增强原子层沉积(radical-enhanced atomic layer deposition,radical-enhanced ALD)。因为历史原因而命名不同,但处理硅片的工艺方式实际完全相同,是同一种方法。本文采用PEALD名称,但是专利应涵盖其他名称。
ALD是指原子层沉积,CVD是指化学气相沉积。
等离子体增强原子层沉积(PEALD)真空镀膜技术已经广泛应用于半导体及光伏领域,可沉积多种半导体或金属薄膜,并精确控制薄膜到亚纳米级别。等离子体电源的使用使得PEALD技术所沉积的薄膜具有多变的材料性能,可用于各种场合。目前,PEALD设备仅限于小尺寸设备,一次仅能处理1片或若干片硅片,限制了产能提高了制备成本。
发明内容
为了解决现有技术中存在的问题,本发明公开了一种真空反应装置及其方法。
一、真空反应装置的技术方案如下:
一种真空反应装置,反应腔外设有加热器,优选的加热器为电阻丝加热器,电阻丝加热器加热反应腔,热辐射加热炉内载具上的硅片,以控制薄膜沉积时硅片表面温度;反应腔内放置载具,所述载具导电并与反应腔内的其他部分绝缘,所述载具为至少一组平行排列的平板,相邻的平板分别接等离子体电源的两极,平行平板设有多组时,平行平板交替相互连接并引出反应腔外,奇数平板互连成为一个电极,偶数平板互连成为另一个电极,两个电极由导线引出到反应腔外部,分别接等离子体电源的两极。
平行平板连接的优选技术方案为,所有的平行平板由绝缘的直杆在平板的四个顶角的位置垂直贯穿连接,相邻的平板由穿在直杆上的绝缘垫片隔离,交替的平板在平板的一端由导电材料互连。
这组平行平板的表面可上放置待镀膜的片状物料,如硅片,每个平板的两侧可以分别放置一个硅片,平板可以做的比较宽,使得一个平板表面可以承载多个硅片在同一平面。
反应腔一端设出气口,出气口连真空泵,真空泵对反应腔抽真空,保持腔体内的真空度,另一端设进气口,进气口连接气源。
真空反应装置的反应腔既可以应用于等离子体增强原子层沉积反应,又可以应用于等离子体增强化学气相沉积反应。本发明的反应腔的技术方案是真空反应装置原子层沉积和化学气相沉积的相互兼容的设备,既可以在反应腔内发生原子层沉积镀膜,又可以在反应腔内发生化学气相沉积镀膜。
所述气源包括反应气、化学源蒸汽、载气;上述气体与进气口连接的方式可以有多种,(此处气体连接指的是盛放气体的容器、管道以及控制阀门与进气口的连接,为了陈述方便简称气体与进气口的连接),不同的镀膜反应需要不同的反应气,化学源;不同的镀膜反应可能需要几种反应气或者不同的镀膜反应需要几种化学源,在实际反应中需要根据需求进行调整:
(1)所述反应气、化学源蒸汽、载气分别与进气口连接;
(2)化学源蒸汽、反应气体分别与进气口连接;载气连接化学源蒸汽,载气携带化学源蒸汽进入反应腔;
(3)所述反应气、化学源蒸汽、载气分别与进气口连接,同时载气与化学源蒸汽连接;部分载气携带化学源蒸汽进入反应腔,部分载气直接进入反应腔。
反应腔的进气口与化学源之间设有第一阀门;化学源与载气之间设有第二阀门;反应腔的气体进气口与载气之间设有第三阀门;所述反应腔的气体进气口与反应气体一之间第四阀门;所述反应腔的气体进气口与反应气体二通过第五阀门连接。以上给出最基本的化学源、载气及反应气体的设置,具体到各个工艺中,可以根据工艺设置不同的化学源、载气及反应气体以及各自的数量。
本技术方案的真空反应装置的反应腔内,既可以进行原子层沉积反应,作为原子层沉积设备,又可以进行化学气相沉积反应,作为气相沉积设备;而现有技术中,原子层沉积设备与化学气相沉积设备并不能实现通用。
二、等离子体增强原子层沉积反应的方法如下:
所述沉积方法由若干个完全相同的循环组合而成,每个循环保证所沉积薄膜材料的一层原子层,控制循环数量可以精确控制薄膜厚度;
在每个循环中,分为四个步骤:
步骤1,打开第一阀门和第二阀门,令载气流经化学源进入反应腔,控制化学源进入腔体时间(化学源脉冲时间);
步骤2,关闭第一阀门和第二阀门,开第三阀门,载气吹扫反应腔;
步骤3,打开第四阀门和/或第五阀门通入反应气,随后打开等离子体电源进行处理;
步骤4,关闭等离子体电源,打开第三阀门,载气吹扫反应腔。
载气有两种载入化学源的方式:当第一阀门和第二阀门开放时,通过控制第三阀门,载气可以全部进入化学源再进入反应腔,也可以部分进入化学源而另一部分直接进入反应腔。
化学源进入反应腔的方式分为三种:
(1)打开第一阀门,化学源进入反应腔,该种方式进入反应腔是纯化学源蒸气,没有载气参与,化学源浓度最高;
(2)打开第一阀门和第二阀门,载气进入化学源,载气带化学源进入反应腔,该种方式载气携带化学源蒸气进入反应腔,且载气全部进入化学源;
(3)开第一阀门、第二阀门和第三阀门,载气部分携带化学源进入反应腔或者载气直接通过第三阀门进入反应腔,该种方式也是载气携带化学源蒸气进入反应腔,但是载气仅部分进入化学源,还有部分载气直接进入腔体。
化学源进入反应腔反应,并通过载气吹扫后,第四阀门和第五阀门打开,反应气体一和反应气体二进入反应腔,打开等离子体电源,载具的两平行板之间产生等离子体,激发反应气和硅片表面膜层的化学反应。
三、等离子体增强化学气相沉积反应的方法如下:
同时或分别将化学源和反应气体通入反应腔,并开启等离子体电源生成等离子体;可以部分化学源或反应气体先通入反应腔,并开启等离子体电源生成等离子体,再将其他化学源或反应气体通入反应腔。保持打开相应的阀门,维持化学源、反应气体不断进入反应腔,并保持等离子体电源持续开启保证等离子体在平行载具间持续存在,控制等离子体电源的开启时间,可以控制薄膜厚度。
整个反应循环过程中第四阀门和第五阀门在整个反应过程中保持常开,同时等离子体电源常开,反应气体一与反应气体二与化学源反应,反应气之间发生化学反应。
该设备完全可以采用等离子体增强化学气相沉积工艺制备:氧化铝(AlOx),氮化铝(AlNx),氮氧化铝(AlOxNy),氮化硅(SiNx),氧化硅(SiOx)及氮氧化硅(SiOxNy)等。
采用本发明的有益效果:
(1)本发明中采用绝缘的管式炉体和可承载大批量硅片的载具,可使载具上这些硅片一次同时处理,同时保持所镀薄膜的片内,片间,批间具有较高的厚度均匀性。
(2)产出的原子层沉积薄膜具有如下优点:1)镀膜保形性好,2)厚度可以精细控制到亚纳米级,3)相比PECVD技术和热ALD技术,沉积薄膜种类更加丰富,薄膜的材料特性可变范围更为宽广,适用于多种场合,4)对比PECVD技术,更加节省化学源(如三甲基铝TMA)。
(3)同时,本设备也兼容等离子体增强化学气相沉积技术(PECVD)。PEALD和PECVD两种处理硅片的技术可以在同一腔体中依次完成,可显著降低半导体和光伏厂商的设备投资,降低硅片制成品的成本。
(3)对比仅能一次处理1片或若干片硅片的PEALD设备,因为上述管式炉和上述载具的使用,本设备可采用PEALD技术同时处理大批量400片以上)硅片,同时兼容PECVD工艺。
附图说明
图1为一种真空反应装置的结构示意图。
图2为一种真空反应装置的剖面示意图。
图3为等离子体增强原子层沉积的各气体和化学源进入腔体模式和等离子体馈入腔体模式的工作图。
图4为等离子体增强化学气相沉积的各气体和化学源进入腔体模式和等离子体馈入腔体模式的工作图。
具体实施方式
下面结合图1至图3和具体实施例对本发明作进一步的说明。
实施例一
图1为一种真空反应装置的结构示意图,炉体为圆柱形反应腔6,反应腔6的制备材料如石英、陶瓷等,反应腔6的直径在300mm到500mm之间,长度在2000mm到2500mm之间。
反应腔6外有电阻丝加热器7,热辐射加热炉内载具上的硅片表面,以控制薄膜沉积时硅片表面温度。工艺实施时,反应腔6内放置大批量的载具8,载具8内放置待镀膜的物体,例如硅片等,载具8制备材料如石墨、不锈钢等,可承载面积156mm x156mm硅片240-416片。载具8导电并与反应腔6内的其他部分绝缘,所述载具8为多组平行排列的平板,平行平板交替相互连接并引出反应腔外,分别接等离子体电源9的两极;所述反应腔6一端设出气口,出气口连真空泵10,另一端设进气口,进气口连接气源,图1中的箭头代表气流的方向。
反应腔6的进气口与化学源11之间设有第一阀门1;化学源11与载气12之间设有第二阀门2;反应腔6的进气口与载气12之间设有第三阀门3;反应 腔的进气口与反应气体一13之间第四阀门4;所述反应腔的进气口与反应气体二14通过第五阀门5连接。
如图1所示,不携带化学源的载气可以通过第三阀门3直接进入反应腔6内,当第一阀门1和第二阀门22打开时,载气流经化学源的源瓶,可以携带化学源进入反应腔。而反应气可以通过各自的阀直接进入,可以安装多路反应气以制备三元和多元化合物。
图2为一种真空反应装置的剖面示意图,可见载具8为多组平行排列的平板,而硅片15放置在平板两侧,最外侧平板除外,硅片15仅装置在最外侧的平板内侧。
这种平行平板交替相互连接并引出到真空腔体外,分别接等离子体电源9的两极。而载具8放置在反应腔6上,与炉体内其他部分绝缘。工艺实施中,等离子体16产生于相邻平板内侧的相邻硅片之间。在反应腔6一端连接真空泵保持反应腔内真空。反应腔6的另一端通入载气,化学源和各种反应气。
图3为等离子体增强原子层沉积的各气体和化学源进入腔体模式和等离子体馈入腔体模式的工作图。
原子层沉积反应由若干个完全相同的循环组合而成,每个循环保证所沉积薄膜材料的一层原子层,控制循环数量可以精确控制薄膜厚度。
在每个循环中,分为四个步骤:
步骤1,打开第一阀门1和第二阀门2,令载气12流经化学源11进入反应腔6,控制化学源11进入腔体时间(化学源脉冲时间);
步骤2,关闭第一阀门1和第二阀门2,开第三阀门3,载气12吹扫反应腔;
步骤3,打开第四阀门4和第五阀5门通入反应气,随后打开等离子体电源进行处理;
步骤4,关闭等离子体电源9,打开第三阀门3,载气11吹扫反应腔6。
载气12有两种载入化学源11的方式:当第一阀门1和第二阀门2开放时,通过控制第三阀门3,载气11可以全部进入化学源12再进入反应腔6,也可以部分进入化学源12而另一部分直接进入反应腔6。
进气方式有两种:方式1是脉冲式,方式2是恒定式;反应气一和反应气二都可以采用两种方式进气。
反应气有两种馈入腔体模式:或者整个循环中打开第四阀门4和第五阀门5保证一致馈入腔体,或者仅在第3步骤内馈入腔体。因为仅在等离子体处理下,反应气才能和化学源反应,因此在没有等离子体时,反应气可以和载气共同做吹扫作用。因此,同时需要指明,在本设备上可以采用反应气作为载气使用。
具体以制备氧化铝(Al2O3)薄膜制备为例,描述如下:
制备5nm厚的氧化铝薄膜,采用液态三甲基铝(Al(CH3) 3)为化学源,储存于源瓶中;采用氩气(Ar)作为载气,通过源瓶携带Al(CH3) 3蒸气进入反应腔,控制流量为5SLM(标准升每分钟),同时采用笑气(N 2O)作为反应气,控制流量为0.5SLM。
在一个ALD循环中,通入Al(CH3) 3,持续时间为5s然后切断;仅通入Ar吹扫时间为10s;接下来通入N 2O,并开启等离子体电源,输入等离子体功率进入腔体,维持5s,同时关闭N 2O源和等离子体功率;继续通入Ar时间为10s完成ALD循环。一个循环共需时间30s。
每个ALD循环过程可以生长Al2O3薄膜~0.125nm,因此经过40个循环,1200s可以完成目标厚度5nm的生长。
实施例二:
本装置为等离子体增强化学气相沉积设备的反应腔及进行等离子体增强化学气相沉积反应。
如图4所示,等离子体增强化学气相沉积的各气体和化学源进入腔体模式和等离子体馈入腔体模式的工作图。
与实施例一区别在于进气方式不同,当反应气一13和反应气二14和化学源11以稳定方式馈入,同时等离子体电源9常开并维持稳定等离子体,可以实现等离子体增强化学气相沉积(PECVD)。
具体以制备氧化铝(Al2O3)薄膜制备为例,描述如下:
制备10nm厚的氧化铝薄膜,采用液态三甲基铝(Al(CH3) 3)为化学源,储存于源瓶中;采用氩气(Ar)作为载气,通过源瓶携带Al(CH3) 3蒸气进入反应腔,控制流量为5SLM(标准升每分钟),同时采用笑气(N 2O)作为反应气,控制流量为0.5SLM。
首先,将Ar通入反应腔,持续60s;然后,开启等离子体电源,输入等离子体功率进入腔体,维持30s;最后,同时通入Al(CH3) 3和N 2O,此时开始生长Al2O3薄膜。
控制等离子体功率输入的时间可以控制薄膜厚度,如果采用低频(比如40kHz)等离子体电源,Al2O3沉积速率一般为~0.05nm/s,生长200s可以获得预期厚度。

Claims (9)

  1. 一种用于真空反应装置的反应腔,其特征在于:所述反应腔外设有加热器;反应腔内放置载具,载具上放置待镀膜物体,所述载具导电并与反应腔内的其他部分绝缘;所述载具为至少一组平行排列的平板,两相邻的平板分别接等离子体电源的两极;所述反应腔一端设出气口,出气口连真空泵,另一端设进气口,进气口连接气源。
  2. 根据权利要求1所述的一种用于真空反应装置的反应腔,其特征在于:所述载具设有至少二组平行平板时,平行平板通过导电元件交替相互连接并引出真空腔体外,分别接等离子体电源的两极。
  3. 根据权利要求1所述的一种用于真空反应装置的反应腔,其特征在于:所述气源包括反应气、化学源蒸汽、载气;所述反应气、化学源蒸汽、载气分别通过管道与进气口连接;反应气体种类有一种、两种或者二种以上;化学源种类有一种、两种或者二种以上;载气种类有一种、两种或者二种以上。
  4. 根据权利要求3所述的一种用于真空反应装置的反应腔,其特征在于:所述反应腔的进气口与化学源之间设有第一阀门;化学源与载气之间设有第二阀门;反应腔的进气口与载气之间设有第三阀门;所述反应腔的进气口与反应气体一之间设有第四阀门;所述反应腔的进气口与反应气体二之间设有第五阀门。
  5. 一种真空反应装置,其特征在于:所述的真空反应装置的反应腔采用权利要求1所述的反应腔,所述真空反应装置进行原子层沉积反应;打开第一 阀门,化学源蒸汽进入反应腔;或者打开第一阀门和第二阀门,载气进入化学源,载气带化学源蒸汽进入反应腔;或者打开第一阀门、第二阀门和第三阀门,载气部分携带化学源蒸汽进入反应腔;化学源进入反应腔反应,并通过载气吹扫后,第四阀门和/或第五阀门打开,反应气体一和/或反应气体二进入反应腔,打开等离子体电源,载具的两平行板之间产生等离子体。。
  6. 一种真空反应装置,其特征在于:所述真空反应装置的反应腔采用权利要求1所述的反应腔,真空反应装置进行化学气相沉积反应;打开第一阀门,化学源蒸汽进入反应腔;或者打开第一阀门和第二阀门,载气进入化学源,载气带化学源蒸汽进入反应腔;或者打开第一阀门、第二阀门和第三阀门,载气部分携带化学源蒸汽进入反应腔;整个反应循环过程中第四阀门和/或第五阀门在整个反应过程中保持常开,同时等离子体电源常开,反应气体一和/或反应气体二与化学源反应。
  7. 基于权利要求5的真空反应装置的等离子体增强原子层沉积镀膜方法,其特征在于:沉积方法由若干个完全相同的循环组合而成,每个循环保证所沉积亚纳米级别厚度的薄膜材料,通过控制循环数量精确控制薄膜厚度;
    在每个循环中,分为四个步骤:
    工艺开始前,所有阀门处于关闭状态;
    步骤1,打开第一阀门,令化学源蒸汽直接进入反应腔;或者打开第一阀门和第二阀门,令载气流经化学源,载气携带化学源蒸汽进入反应腔;或者打 开第一阀门,第二阀门和第三阀门,令部分载气流经化学源,并携带化学源蒸汽进入反应腔,三种方式均通过控制阀门开闭动作控制化学源进入腔体时间;
    步骤2,关闭第一阀门和第二阀门,仅开第三阀门,使得不携带任何化学源的载气吹扫反应腔,控制第三阀门开关动作控制吹扫时间
    步骤3,打开第四阀门和/或第五阀门通入反应气,随后打开等离子体电源,在所述载具的平行板之间生成等离子体,令反应气体等离子体能量辅助下与衬底表面反应;控制第四阀门和/或第五阀门开闭控制反应气注入反应腔的时间;
    步骤4,关闭第四阀门和/或第五阀门,关闭等离子体电源,打开第三阀门,采用不携带任何化学源的载气吹扫反应腔;
    在步骤1-4中,可以保持第四阀门和/或第五阀门常通,使得反应气体始终流入反应腔。
  8. 根据权利要求7所述的等离子体增强原子层沉积镀膜方法,其特征在于:所述载气有两种载入化学源的方式:当第一阀门和第二阀门开放时,关闭第三阀门载气全部进入化学源再进入反应腔;打开第三阀门,载气部分进入化学源而另一部分直接进入反应腔。
  9. 基于权利要求6的真空反应装置的等离子体增强化学气相沉积镀膜方法,其特征在于:同时或分别将化学源和反应气体通入反应腔,并开启等离子体电源生成等离子体;可以部分化学源或反应气体先通入反应腔,并开启等离子体电源生成等离子体,再将其他化学源或反应气体通入反应腔;保持打开相应的阀门,维持化学源、反应气体不断进入反应腔,并保持等离子体电 源持续开启保证等离子体在平行载具间持续存在,控制等离子体电源的开启时间,可以控制薄膜厚度。
PCT/CN2018/088804 2018-02-06 2018-05-29 一种真空反应装置及反应方法 WO2019153585A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18904550.3A EP3751018A4 (en) 2018-02-06 2018-05-29 VACUUM REACTION DEVICE AND REACTION PROCEDURE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810116519.4 2018-02-06
CN201810116519.4A CN108149225A (zh) 2018-02-06 2018-02-06 一种真空反应装置及反应方法

Publications (1)

Publication Number Publication Date
WO2019153585A1 true WO2019153585A1 (zh) 2019-08-15

Family

ID=62456942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088804 WO2019153585A1 (zh) 2018-02-06 2018-05-29 一种真空反应装置及反应方法

Country Status (3)

Country Link
EP (1) EP3751018A4 (zh)
CN (1) CN108149225A (zh)
WO (1) WO2019153585A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109023301B (zh) * 2018-10-24 2023-10-13 乐山新天源太阳能科技有限公司 氧化铝膜制备装置
CN112391611B (zh) * 2019-08-14 2023-05-26 湖南红太阳光电科技有限公司 一种等离子体增强原子层沉积镀膜装置
DE102020112641A1 (de) 2020-05-11 2021-11-11 Hanwha Q Cells Gmbh Haltevorrichtung und Verwendung der Haltevorrichtung
CN111793791A (zh) * 2020-07-06 2020-10-20 山东大学 一种柔性类氧化硅薄膜生长装置
CN114622183A (zh) * 2020-12-11 2022-06-14 湖南红太阳光电科技有限公司 一种制备氧化硅薄膜的方法
CN113862644A (zh) * 2021-09-22 2021-12-31 江苏微导纳米科技股份有限公司 镀膜设备
CN114438476A (zh) * 2021-12-23 2022-05-06 周向前 原子层沉积反应气体的制备机构及其制备方法
CN114453345B (zh) * 2021-12-30 2023-04-11 广东鼎泰高科技术股份有限公司 一种等离子体清洗***
CN114959649A (zh) * 2022-05-19 2022-08-30 江苏微导纳米科技股份有限公司 一种基片处理设备和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101245449A (zh) * 2007-02-14 2008-08-20 北京行者多媒体科技有限公司 大批量生产薄膜的等离子箱
CN101245450A (zh) * 2007-02-14 2008-08-20 北京行者多媒体科技有限公司 可移式等离子箱单室大批量镀膜的方法
CN101245448A (zh) * 2007-02-14 2008-08-20 北京行者多媒体科技有限公司 单室等离子箱制作薄膜硅光电转换器件的方法
CN101265573A (zh) * 2008-03-14 2008-09-17 福建钧石能源有限公司 薄膜沉积方法
CN101962759A (zh) * 2009-07-21 2011-02-02 深圳市宇光高科新能源技术有限公司 一种带有内加热器的pecvd***
CN103890229A (zh) * 2011-09-26 2014-06-25 株式会社岛津制作所 等离子体成膜装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI559425B (zh) * 2009-10-28 2016-11-21 應用材料股份有限公司 垂直的整合製程腔室
KR101288130B1 (ko) * 2011-07-13 2013-07-19 삼성디스플레이 주식회사 기상 증착 장치, 기상 증착 방법 및 유기 발광 표시 장치 제조 방법
KR101478151B1 (ko) * 2012-11-29 2014-12-31 주식회사 엔씨디 대면적 원자층 증착 장치
JP2016184610A (ja) * 2015-03-25 2016-10-20 株式会社東芝 上部電極、エッジリングおよびプラズマ処理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101245449A (zh) * 2007-02-14 2008-08-20 北京行者多媒体科技有限公司 大批量生产薄膜的等离子箱
CN101245450A (zh) * 2007-02-14 2008-08-20 北京行者多媒体科技有限公司 可移式等离子箱单室大批量镀膜的方法
CN101245448A (zh) * 2007-02-14 2008-08-20 北京行者多媒体科技有限公司 单室等离子箱制作薄膜硅光电转换器件的方法
CN101265573A (zh) * 2008-03-14 2008-09-17 福建钧石能源有限公司 薄膜沉积方法
CN101962759A (zh) * 2009-07-21 2011-02-02 深圳市宇光高科新能源技术有限公司 一种带有内加热器的pecvd***
CN103890229A (zh) * 2011-09-26 2014-06-25 株式会社岛津制作所 等离子体成膜装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3751018A4 *

Also Published As

Publication number Publication date
EP3751018A4 (en) 2021-10-13
EP3751018A1 (en) 2020-12-16
CN108149225A (zh) 2018-06-12

Similar Documents

Publication Publication Date Title
WO2019153585A1 (zh) 一种真空反应装置及反应方法
US7141499B2 (en) Apparatus and method for growth of a thin film
TW578212B (en) Atomic layer deposition reactor
KR102197576B1 (ko) 재순환을 이용하는 공간적인 원자 층 증착을 위한 장치 및 사용 방법들
CN101092691B (zh) 消除pecvd膜的第一晶片效应
KR101037962B1 (ko) 기판 처리 방법 및 기판 처리 장치
TW200307998A (en) Treatment device of substrate
US20180269067A1 (en) Techniques and systems for continuous-flow plasma enhanced atomic layer deposition (PEALD)
KR20120028305A (ko) 기판상에 박막을 성장시키는 방법 및 장치
TW201903848A (zh) 用來在半導體基材上形成膜層的方法與裝置及半導體基材
JP5305328B2 (ja) 基板処理装置
CN212199412U (zh) 一种等离子体原子层沉积的反应装置
CN100362128C (zh) 大气压平面放电化学气相沉积纳米颗粒膜方法及装置
CN109778143B (zh) 一种沉积***及其气体传输方法
WO2023222033A1 (zh) 一种基片处理设备和方法
CN207933525U (zh) 一种真空反应装置及反应腔
JP4794942B2 (ja) 原子層堆積装置
TW202109798A (zh) 用於供應氣體的裝置及使用其處理基板的裝置
CN217202947U (zh) 一种led芯片上沉积氧化硅及氧化铝薄膜的ald设备
US20240141486A1 (en) Apparatus for providing a gas mixture to a reaction chamber and method of using same
JPS62142780A (ja) 堆積膜形成法
US20220145455A1 (en) Reactor and related methods
JPS58127331A (ja) プラズマ化学気相生成装置
JP2022061961A (ja) ガス供給ユニットおよびガス供給ユニットを含む基材処理装置
CN118109803A (zh) 原子层沉积设备及其方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018904550

Country of ref document: EP

Effective date: 20200907