WO2019153234A1 - 一种数据传输方法和装置 - Google Patents

一种数据传输方法和装置 Download PDF

Info

Publication number
WO2019153234A1
WO2019153234A1 PCT/CN2018/075956 CN2018075956W WO2019153234A1 WO 2019153234 A1 WO2019153234 A1 WO 2019153234A1 CN 2018075956 W CN2018075956 W CN 2018075956W WO 2019153234 A1 WO2019153234 A1 WO 2019153234A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier frequency
reliability
data
information
priority
Prior art date
Application number
PCT/CN2018/075956
Other languages
English (en)
French (fr)
Inventor
刘航
李明超
肖潇
王和俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/075956 priority Critical patent/WO2019153234A1/zh
Priority to CN201880088476.1A priority patent/CN111727613B/zh
Priority to JP2020542809A priority patent/JP7052056B2/ja
Priority to EP18905452.1A priority patent/EP3742766A4/en
Publication of WO2019153234A1 publication Critical patent/WO2019153234A1/zh
Priority to US16/988,397 priority patent/US11924674B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present application relates to the field of wireless communication technologies, including the field of vehicle networking technologies, and in particular, to a data transmission method and apparatus.
  • the vehicle networking system is a system for wireless communication and information exchange between a vehicle and X (Vehicle to X, V2X) based on the in-vehicle network, the inter-vehicle network and the vehicle-mounted mobile Internet, in accordance with the agreed communication protocol and data interaction standards.
  • V2X can be Vehicle to Vehicle (V2V), Vehicle to Network (V2N), Vehicle-to-Infrastructure (V2I), Vehicle-to-Infrastructure (V2P) )Wait. That is, X can be a vehicle, an infrastructure, a network, a pedestrian, and the like.
  • the car networking system aims to improve road safety, improve traffic efficiency and provide users with rich streaming services through V2X communication.
  • V2X can use cellular technology to communicate using a straight-through link (also known as a side link, Sidelink, etc.). That is, the vehicle and the X can use the resources scheduled or configured by the network device, or the pre-configured resources are used between the vehicle and the X, and the communication is directly performed through the through link, and does not need to be transited through the network device.
  • a straight-through link also known as a side link, Sidelink, etc.
  • V2X uses a straight-through link for communication
  • the reliability of the through-link communication is low due to the rapid change of the channel characteristics of the through-link and the lack of a corresponding feedback mechanism.
  • V2X uses a straight-through link for communication, how to ensure the reliability of data transmission on the through link is an urgent problem to be solved.
  • the application provides a data transmission method and apparatus to improve the reliability of data transmission in a through link.
  • the application scenario includes, but is not limited to, a V2X scenario, which may be applied to all scenarios that are communicated through a through link, such as a device-to-device application scenario and a device-to-machine application scenario.
  • the present application discloses the following technical solutions. :
  • the present application provides a data transmission method, where the method includes: acquiring, by a terminal, information for indicating a first condition; acquiring data to be transmitted; and when the first condition is met, the terminal uses a through link, A logical channel transmits the to-be-transmitted data on a first carrier frequency, and transmits the to-be-transmitted data on a second carrier frequency through a second logical channel.
  • the method further includes: determining, by the terminal, a first carrier frequency set and a second carrier frequency set; wherein the first carrier frequency is the first carrier a carrier frequency in the frequency set, the second carrier frequency is a carrier frequency in the second carrier frequency set, and the first carrier frequency set has a corresponding relationship with the first logical channel, and the second carrier The frequency set has a corresponding relationship with the second logical channel.
  • determining the first carrier frequency set and the second carrier frequency set includes: acquiring, by the terminal, the first to indicate the first carrier frequency set and the second carrier frequency set Determining, according to the first information, the first carrier frequency set and the second carrier frequency set; the first information is carried by radio resource control signaling RRC or pre-configuration information; or The second information of the three carrier frequency sets determines the first carrier frequency set and the second carrier frequency set according to the second information; the second information is carried by RRC signaling or pre-configuration information.
  • the to-be-transmitted data has a data attribute
  • the method further includes: acquiring, by the terminal, information for indicating a fourth carrier frequency set, the fourth carrier frequency set Corresponding to the data attribute, the fourth carrier frequency set includes the first carrier frequency and the second carrier frequency.
  • the data attribute includes one or more of the following: priority, reliability, delay, destination address, and service type.
  • the information for indicating the first condition includes: a first channel congestion threshold, where the first condition includes: a channel congestion degree of the third carrier frequency And the information indicating the first condition includes: a second channel congestion threshold, where the first condition includes: a channel congestion degree of the third carrier frequency is less than or equal to The second channel congestion threshold is used; or the information used to indicate the first condition is: a first channel congestion range, where the first condition includes: a channel congestion degree of a third carrier frequency of the terminal is in the first channel Within the congestion range; wherein the third carrier frequency belongs to one of the network device configurations or pre-configured all carrier frequencies for the straight-through link communication.
  • the third carrier frequency is determined by a network device by using an RRC signaling configuration or a pre-configuration manner; or, the third carrier frequency is a terminal transmission load. Any one of the frequencies; or, the third carrier frequency is a carrier frequency with the least degree of channel congestion in the terminal transmission carrier frequency; or the third carrier frequency is a carrier with the largest degree of channel congestion in the terminal transmission carrier frequency Or the third carrier frequency is any one of carrier frequencies supporting the data to be transmitted in the terminal transmission carrier frequency; or the third carrier frequency is supported by the terminal transmission carrier frequency.
  • the carrier frequency of the data to be transmitted, the carrier frequency of which the channel congestion degree is the smallest; or the third carrier frequency is a carrier frequency in which the channel congestion degree is the largest among the carrier frequencies supporting the data to be transmitted in the terminal transmission carrier frequency.
  • the indicating the first condition includes: a first reliability threshold, where the first condition includes: a reliability of the data to be transmitted is greater than or equal to The first reliability threshold; or the information for indicating the first condition includes: a first reliability enumeration value, where the first condition includes: reliability of data to be transmitted is equal to the first reliability
  • the information is used to indicate the first condition: the first reliability range, the first condition includes: the reliability of the data to be transmitted is within the first reliability range.
  • the method further includes: determining, by the terminal, the first logical channel and the second logical channel based on data attributes of each logical channel, where The data attribute includes one or more of a priority, a destination address, a delay, a service type, and a reliability, or the terminal determines the first logical channel by using a correspondence between IDs of logical channels.
  • the second logical channel is determining, by the terminal, the first logical channel and the second logical channel based on data attributes of each logical channel, where The data attribute includes one or more of a priority, a destination address, a delay, a service type, and a reliability
  • the correspondence between the logical channel IDs includes: a difference between an ID of the second logical channel and an ID of the first logical channel, or The sum value satisfies a preset value, and the preset value is a positive integer.
  • the method further includes: when the second condition is met, the terminal stops using the through link, and the first carrier channel is on the first carrier frequency. Transmitting data to be transmitted, and transmitting data to be transmitted on the second carrier frequency through the second logical channel.
  • the method before the terminal stops sending data to be transmitted, the method further includes: the terminal acquiring information for indicating a second condition, where The information indicating the second condition includes: any one of a third channel congestion threshold, a fourth channel congestion threshold, and a second channel congestion range;
  • the second condition includes: a channel congestion degree of the fourth carrier frequency is greater than or equal to the third channel congestion threshold; or, a channel congestion degree of the fourth carrier frequency is less than or equal to the fourth channel congestion threshold; or The channel congestion degree of the fourth carrier frequency is within the second channel congestion range.
  • the execution body of the method may have diversity, and the execution body may not be limited to a terminal, but may also be a chip, a chip system, an integrated circuit, or the like.
  • the present application further provides a data transmission method, the method includes: acquiring, by the terminal, configuration information, where the configuration information includes reliability information corresponding to the first identifier; acquiring data, where the data is reliable The first reliability is the first reliability; if the first reliability corresponds to the reliability information, the direct link buffer status report BSR is sent to the network device, and the first data field in the through link BSR is the first A logo.
  • the configuration information further includes a first identifier, such as a logical channel group identifier, an LCG ID, where the first identifier has a corresponding relationship with the reliability information.
  • a first identifier such as a logical channel group identifier, an LCG ID, where the first identifier has a corresponding relationship with the reliability information.
  • the method further includes: pre-negotiating or arranging a rule or a rule specified by the protocol at both ends of the terminal and the network device, for example, at least one LCG ID is from small to After the configuration is received, the terminal determines the reliability information corresponding to each LCGID of the at least one LCG ID according to the rules agreed with the network device.
  • the reliability information includes: a second reliability threshold, where the first reliability corresponding to the reliability information includes: the first reliability Greater than or equal to the second reliability threshold; or,
  • the reliability information includes: a third reliability threshold, where the first reliability corresponds to the reliability information, the first reliability is less than or equal to the third reliability threshold; or
  • the reliability information includes: a second reliability enumeration value, where the first reliability corresponds to the reliability information, the first reliability is equal to the second reliability enumeration value; or
  • the reliability information includes: a second reliability range, where the first reliability corresponds to the reliability information, the first reliability is within the second reliability range.
  • the configuration information further includes priority information, and the priority corresponding to the data is a first priority; And transmitting, by the reliability information, the direct link BSR to the network device, if the first reliability corresponds to the reliability information, and the first priority corresponds to the priority information, to the network device Send a straight-through link BSR.
  • the priority information includes a first priority threshold
  • the first priority corresponding to the priority information includes: the first priority Greater than or equal to the first priority threshold; or,
  • the priority information includes a second priority threshold, and the first priority corresponding to the priority information includes: the first priority is less than or equal to the second priority threshold; or
  • the priority information includes a first priority enumeration value, and the first priority corresponding to the priority information includes: the first priority is equal to the first priority enumeration value; or
  • the priority information includes a first priority range, and the first priority corresponding to the priority information includes: the first priority is within the first priority range.
  • the first identifier includes: a first logical channel group identifier; or a first destination address identifier; or a first logical channel group identifier and a first Destination address identifier.
  • the present application further provides a data transmission method, where the method includes: the network device sends configuration information to the terminal, where the configuration information includes: reliability information corresponding to the first identifier; The configuration information is used to configure the terminal to send the pass-through link buffer status report BSR to the network device as the first identifier if the reliability of the data corresponds to the reliability information. Receiving the through link BSR from the terminal.
  • the first identifier includes: a first logical channel group identifier; or a first destination address identifier; or a first logical channel group identifier and a first destination address identifier.
  • the configuration information further includes priority information, where the configuration information is used to configure the terminal, if the reliability of the data corresponds to the reliability information, And the priority of the data corresponds to the priority information, and the first data field in the BSR is set to be sent by the terminal to the network device as the first identifier.
  • the present application also provides a data transmission apparatus, the apparatus comprising means and components for performing the method steps of the implementations of the first aspect to the third aspect and aspects.
  • the device may be a terminal, a chip, a chip system or an integrated circuit.
  • the application provides a terminal, where the terminal includes the data transmission device of the fourth aspect, wherein the terminal includes: a processor, a transceiver, a memory, and the like; the processor can execute the a program or an instruction stored in the memory, thereby implementing the data transmission methods of the first to third aspects and the various implementations;
  • the processor is configured to couple with a memory to read an instruction in the memory.
  • the transceiver is configured to acquire information for indicating a first condition, and acquire data to be transmitted, where the processor is configured to use the first logical channel by using a through link when the first condition is met. Transmitting the data to be transmitted on the first carrier frequency, and transmitting the data to be transmitted on the second carrier frequency through the second logical channel.
  • the processor is further configured to: determine a first carrier frequency set and a second carrier frequency set; wherein, the first carrier frequency is a first carrier frequency a carrier frequency in the set, the second carrier frequency is a carrier frequency in the second carrier frequency set, and the first carrier frequency set has a corresponding relationship with the first logical channel, the second carrier frequency The set has a corresponding relationship with the second logical channel.
  • the processor is further configured to: determine the first carrier frequency set and the second carrier frequency set according to the first information or the second information, where The first information and the second information are obtained by the transceiver, and the first information is used to indicate the first carrier frequency set and the second carrier frequency set, and the second information is used to indicate the third carrier frequency set.
  • the first information and the second information are carried by RRC signaling or pre-configuration information.
  • the processor is further configured to: receive, by using a transceiver, information for indicating a fourth carrier frequency set, where the fourth carrier frequency set is Corresponding to the first data attribute, the fourth carrier frequency set includes the first carrier frequency and the second carrier frequency.
  • the data attribute includes one or more of the following: priority, reliability, delay, destination address, and service type.
  • the information used to indicate the first condition includes: a first channel congestion threshold, where the first condition includes a third carrier frequency channel congestion degree greater than or equal to the first channel congestion threshold;
  • the information indicating the first condition includes: a second channel congestion threshold, where the first condition includes a channel congestion degree of the third carrier frequency is less than or equal to the second channel congestion threshold;
  • the information indicating the first condition includes: a first channel congestion range, where the first condition includes a channel congestion degree of the third carrier frequency is within the first channel congestion range;
  • the third carrier frequency belongs to one of all carrier frequencies of the network device configuration or pre-configured for the through link communication.
  • the third carrier frequency is determined by the base station by using RRC signaling configuration or pre-configuration
  • the third carrier frequency is any one of the terminal transmission carrier frequencies
  • the third carrier frequency is a carrier frequency with a minimum channel congestion in the terminal transmission carrier frequency
  • the third carrier frequency is a carrier frequency with the largest channel congestion in the terminal transmission carrier frequency
  • the third carrier frequency is any carrier frequency of the carrier frequency in the terminal transmission carrier that supports the data to be transmitted;
  • the third carrier frequency is a carrier frequency in which the channel congestion degree is the smallest in the carrier frequency of the terminal transmission carrier that supports the data to be transmitted;
  • the third carrier frequency is a carrier frequency in which the channel congestion degree is the largest among the carrier frequencies supporting the data to be transmitted in the terminal transmission carrier frequency.
  • the information for indicating the first condition includes: a first reliability threshold, where the first condition includes that the reliability of the data to be transmitted is greater than Or equal to the first reliability threshold;
  • the information indicating the first condition includes: a first reliability enumeration value, where the first condition includes that the reliability of the data to be transmitted is equal to the first reliability enumeration value;
  • the information for indicating the first condition includes a first reliability range, and the first condition includes that the reliability of the data to be transmitted is within the first reliability range.
  • the processor is further configured to determine the first logical channel and the second logical channel based on data attributes of each logical channel, where The data attributes include one or more of priority, destination address, delay, service type, and reliability.
  • the correspondence includes that a difference or a sum between an ID of the second logical channel and an ID of the first logical channel meets a preset value.
  • the transceiver is further configured to stop using the through link through the first logical channel in the first when the second condition is met Transmitting data to be transmitted on a carrier frequency, and transmitting data to be transmitted on the second carrier frequency through the second logical channel.
  • the transceiver before the sending the data to be transmitted is stopped, the transceiver is further configured to acquire information for indicating a second condition, where the The information of the second condition includes: any one of a third channel congestion threshold, a fourth channel congestion threshold, and a second channel congestion range;
  • the second condition includes: a channel congestion degree of the fourth carrier frequency is greater than or equal to the third channel congestion threshold; or, a channel congestion degree of the fourth carrier frequency is less than or equal to the fourth channel congestion threshold; or The channel congestion degree of the fourth carrier frequency is within the second channel congestion range.
  • the present application further provides a computer storage medium, which can store a program, and when executed, can implement some or all of the steps in various embodiments of the data transmission method provided by the present application.
  • the application further provides a network device, where the network device includes a transceiver, a processor, and a memory, wherein the processor is configured to generate information indicating a first condition, and control the transceiver The information indicating the first condition is sent.
  • the information used to indicate the first condition includes: a first channel congestion threshold, a second channel congestion threshold, or a first channel congestion range;
  • the condition includes: the channel congestion degree of the third carrier frequency of the terminal is greater than or equal to the first channel congestion threshold, or the channel congestion degree of the third carrier frequency of the terminal is less than or equal to the second channel congestion threshold, or the terminal The channel congestion level of the third carrier frequency is within the first channel congestion range.
  • the information used to indicate the first condition may include: a first reliability threshold, a first reliability enumeration value, or a first reliability range,
  • the first condition includes that the reliability of the data to be transmitted is greater than or equal to the first reliability threshold; or the reliability of the data to be transmitted is equal to the first reliability enumeration value; or The reliability of the data to be transmitted is within the first reliability range.
  • the processor is further configured to generate information indicating a second condition, and control the transceiver to send the information indicating the second condition;
  • the information for indicating the second condition includes: any one of a third channel congestion threshold, a fourth channel congestion threshold, and a second channel congestion range; and the second condition includes: channel congestion of the fourth carrier frequency
  • the degree of channel congestion is greater than or equal to the third channel congestion threshold; or the channel congestion degree of the fourth carrier frequency is less than or equal to the fourth channel congestion threshold; or the channel congestion degree of the fourth carrier frequency is The second channel is within the congestion range.
  • the processor is further configured to send, by using the transceiver, RRC signaling, where the RRC signaling includes information for indicating a third carrier frequency.
  • the processor is further configured to send, by using the transceiver, RRC signaling, where the RRC signaling includes information for indicating a third carrier frequency set. .
  • the processor is further configured to send, by using the transceiver, RRC signaling, where the RRC signaling includes indicating a first carrier frequency set and a The information of the two carrier frequency sets.
  • the processor is further configured to send, by using the transceiver, RRC signaling, where the RRC signaling includes information for indicating a third carrier frequency set. .
  • the processor is further configured to send, by using the transceiver, RRC signaling, where the RRC signaling includes information for indicating a fourth carrier frequency set.
  • the fourth carrier frequency set corresponds to the first data carrier, and the fourth carrier frequency set includes the first carrier frequency and the second carrier frequency.
  • the data attribute includes one or more of priority, reliability, delay, destination address, and service type.
  • instructions are stored in the memory, the processor is operative to read instructions in the memory, and the methods in various implementations of the seventh aspect are performed in accordance with the instructions.
  • the present application also provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method steps described in the above aspects.
  • the terminal when the data repetition transmission activation condition is met, transmits data on the first logical channel and the second logical channel by using a different carrier frequency, wherein the first logical channel and the second The logical channels all contain the same data from the same PDCP entity, so that the same data on the straight-through link is transmitted on different logical carriers on two logical channels, and the receiving device can receive duplicated identical data, thereby improving the reliability of data transmission. Sex.
  • FIG. 1 is a schematic diagram of a scenario of a through link provided by the present application
  • FIG. 2 is a schematic structural diagram of an LTE system protocol stack provided by the present application.
  • FIG. 3 is a flowchart of a data transmission method provided by the present application.
  • FIG. 5 is a schematic diagram of a through link BSR according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a first data domain provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a data transmission apparatus provided by the present application.
  • FIG. 8 is a schematic structural diagram of a terminal provided by the present application.
  • the methods provided in the embodiments of the present application are applicable to an LTE (Long Term Evolution) system, or a wireless communication system using a radio access technology such as code division multiple access and orthogonal frequency division multiple access.
  • LTE Long Term Evolution
  • a wireless communication system using a radio access technology such as code division multiple access and orthogonal frequency division multiple access.
  • subsequent evolution systems using the LTE system such as a fifth generation (5G) communication system, an NR (new radio) system, and an Internet of Things system.
  • 5G fifth generation
  • NR new radio
  • the embodiment of the present application can also be applied to a WLAN system, which is not limited by the present invention.
  • the technical solutions provided by the various embodiments of the present application can be applied to a V2X communication scenario.
  • the data transmission method provided by the present application including but not limited to the application scenario of the V2X, may be applied to all scenarios of communication through a through link, for example, a device to device (D2D) application scenario,
  • D2D device to device
  • the data transmission method provided by this application can be used in the application scenario of Machine to Machine (M2M), and details are not described herein.
  • M2M Machine to Machine
  • the terminal 1 and the terminal 2 communicate through a through link, and communication resources between the terminals may be from network device scheduling, configuration, or pre-configuration.
  • One mode is a network device scheduling mode. That is, the terminal sends the request information to the network device, and after receiving the arrival request information, the network device dynamically or semi-dynamically schedules resources for the through link communication of the vehicle terminal.
  • Another mode is a terminal autonomous resource selection mode, that is, the network device configures a resource set for the terminal through radio resource control (RRC) signaling, and the terminal autonomously selects resources from the resource set to communicate, or the terminal Get resources in the pre-configured resource collection to communicate.
  • RRC radio resource control
  • the RRC signaling may be a system information block (SIB) message or a dedicated radio resource control (dedicated RRC) signaling; the resource set includes a plurality of time-frequency resources, and optionally, the resource set may be a resource pool. .
  • SIB system information block
  • RRC dedicated radio resource control
  • the pre-configuration refers to that the terminal is pre-configured inside the terminal at the time of shipment, or is pre-configured by the network, and the storage terminal is internal.
  • the selecting a resource from the resource pool by the terminal may be a random selection or a selection based on a listening reservation mechanism, which is not limited in this application.
  • an architecture as shown in FIG. 1 is employed, including at least one terminal and network device for data transmission on the through link.
  • the terminal may be a terminal device located in the vehicle in the V2X (for example, an in-vehicle terminal device, a terminal device carried by a user riding the vehicle), or may be located on an X (infrastructure, network, pedestrian, etc.)
  • the terminal device may be the vehicle terminal itself or X itself.
  • the terminal may further include a chip, an integrated circuit or a processor.
  • the terminal device in the present application may be a wireless terminal, and the wireless terminal may be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, may be portable, pocket, handheld, computer Built-in or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal may also be a subscriber unit (SU), a subscriber station (SS), a mobile station (MS), a remote station (RS), and a remote terminal (RT).
  • an access terminal AT
  • UT user terminal
  • U user agent
  • UE user equipment
  • the network device includes a wireless device, and specifically, the wireless device may be an access point (AP), and may also be other network devices, such as a base station, an enhanced base station, or a scheduling function. Relay, or device with base station function, etc.
  • AP access point
  • the wireless device may also be other network devices, such as a base station, an enhanced base station, or a scheduling function. Relay, or device with base station function, etc.
  • the base station may be an evolved Node B (eNB) in an LTE system, or a new radio node (NR node, gNB) in a future 5G network, or a base station in other systems, where the base station may be in a form It is a centralized type, for example, a Cloud Radio Access Network, a base station in the form of a Cloud RAN, which may be distributed, such as a conventional GSM base station, or separate from control and forwarding, such as gNB, which is not limited in the embodiment of the present application.
  • eNB evolved Node B
  • gNB new radio node
  • FIG. 2 shows a schematic structural diagram of an LTE system communication protocol stack.
  • the RRC layer From the upper layer to the lower layer, the RRC layer, the Packet Data Convergence Protocol (PDCP) layer, and the Radio Link Control protocol (Radio Link Control, The RLC) layer, the Medium Access Control (MAC) layer, and the Physical Layer (PHY), wherein the PDCP layer is used to process RRC messages on the control plane and data on the user plane.
  • the PDCP layer may perform header compression and encryption on the data, and then submit to the RLC layer.
  • the PDCP layer can also provide sequential submission and repeated packet detection functions to the upper layer.
  • the PDCP layer may provide signaling transmission services for the upper layer RRC, and implement encryption and consistency protection of the RRC signaling.
  • the MAC layer provides data transfer services on Logical Channels.
  • Logical channels can generally be divided into two categories: control channels and traffic channels.
  • the control channel is used to transmit control plane information
  • the traffic channel is used to transmit user plane information.
  • the MAC layer is also responsible for mapping logical channels to transport channels.
  • the PHY layer which is responsible for mapping the transport channel to the physical channel.
  • the PDCP layer can maintain one or more PDCP entities, and the RLC layer can maintain one or more RLC entities.
  • the terminal when data is not repeatedly transmitted, data of a single PDCP entity is delivered to one RLC entity.
  • the terminal submits the same data (the same to-be-transmitted data of the same PDCP entity) that needs to be transmitted by the PDCP layer to two logical channels, for example, the first logical channel and the second logical channel, respectively.
  • the terminal submits the data that needs to be transmitted by the PDCP layer to the first RLC entity and the second RLC entity, where the first RLC entity corresponds to the first logical channel, and the second RLC entity corresponds to the second logical channel.
  • the correspondence may be implicit or displayed.
  • the MAC layer performs resource selection and data encapsulation. For data retransmission, data on two logical channels for repeated data transmission needs to be encapsulated in different Transport Blocks (TBs) and transmitted through different carrier frequencies.
  • TBs Transport Blocks
  • data repeat transmission or “repetitive transmission” in the present application means “PDCP layer data repeated transmission”.
  • the embodiments of the present application take the PDCP layer data repetition transmission as an example, but as the technology evolves, the “PDCP layer data repetition transmission” may also be extended to other protocol layer repeated transmission scenarios similar to the PDCP layer repeated transmission. The application does not limit this.
  • the schematic diagram of the protocol stack of FIG. 2 does not constitute a limitation on the protocol stack for future applications of the present application. For example, it is not excluded to add new layers to the protocol stack structure of future applications, or to add new functions, or to delete certain layers, or to simplify or merge functions of certain layers.
  • SDAP Service Data Adaptation Protocol
  • the protocol stack can be further divided into a user plane protocol stack and a control plane protocol stack, and the user plane protocol stack may not require the RRC layer.
  • a data transmission method is provided according to an embodiment of the present application.
  • the method is used to implement repeated transmission of PDCP layer data on a direct connection path, thereby ensuring reliability of data transmission on a through link.
  • the method includes the following steps:
  • Step 101 The terminal acquires information for indicating the first condition.
  • the information used to indicate the first condition may be carried in the RRC signaling sent by the network device to the terminal, where the RRC signaling may be an SIB message or dedicated RRC signaling.
  • the terminal acquires the information for indicating the first condition by receiving the RRC signaling.
  • the information used to indicate the first condition may be carried in a data packet sent by the network device to the terminal device, for example, may be included in a MAC control element, referred to as “MAC CE”.
  • the terminal acquires the information for indicating the first condition by receiving the data packet.
  • the information used to indicate the first condition is carried on a physical downlink control channel (PDCCH), and the terminal obtains the indication by using a downlink control indicator (DCI) on the PDCCH.
  • DCI downlink control indicator
  • the information used to indicate the first condition is included in the pre-configuration information, and the terminal acquires the information used to indicate the first condition from the pre-configuration information.
  • the first condition may be an activation condition.
  • Step 102 The terminal acquires data to be transmitted.
  • the data to be transmitted is data to be transmitted or a data packet of a PDCP entity.
  • the information about the first condition is obtained by the terminal and the time for obtaining the data to be transmitted may be acquired, for example, the data to be transmitted is acquired first, and then the first condition information is obtained, or acquired at the same time.
  • Step 103 When the first condition is met, the terminal sends the data to be transmitted on the first carrier frequency through the first logical channel by using the through link, and sends the data on the second carrier frequency through the second logical channel. The data to be transmitted.
  • the first carrier frequency and the second carrier frequency are different, and the first logical channel and the second logical channel both contain the same data to be transmitted, and all are from the same PDCP entity.
  • the PDCP layer of the terminal when the terminal meets the first condition, the PDCP layer of the terminal respectively delivers the same to-be-sent data to two RLC entities, where the two RLC entities respectively correspond to two logical channels (for example, The first logical channel and the second logical channel have a one-to-one correspondence.
  • the terminal then sends the data on the first logical channel and the second logical channel to the peer device by using two different carrier frequencies, where the first logical channel and the second logical channel both contain the same waiting from the same PDCP entity. Transmit data to achieve repeated transmission of data over the pass-through link.
  • the PDCP layer of the terminal submits the same to-be-transmitted data to the two RLC entities respectively, or the terminal PDCP layer copies the same to-be-sent data into two, and then delivers the two to the two RLC entities respectively.
  • the present application does not restrict the timing of transmitting the to-be-transmitted data on the first carrier frequency through the first logical channel and the data to be transmitted on the second carrier frequency through the second logical channel. It can be understood that, when the terminal has the resource on the first carrier frequency, the terminal may use the first carrier frequency to transmit data in the first logical channel; when the terminal has the resource on the second carrier frequency, the terminal may use the second carrier. The data in the second logical channel is transmitted in frequency.
  • the first carrier frequency and the first logical channel when the terminal has resources on the first carrier frequency, the data in the first logical channel does not necessarily be included in a single transmission. It may also be necessary to consider the logical channel data encapsulation rules (eg, each logical channel present in the terminal, each logical channel priority, etc.). This application is not limited to specific packaging rules.
  • the MAC layer of the terminal may packetize data in a single logical channel, so the data to be sent included in a single logical channel is not limited in this application.
  • One transmission is completed by multiple transmissions, that is, carried in one TB or multiple TBs.
  • the data to be transmitted included in the first logical channel may be split, and it is required to transmit through multiple TBs.
  • the terminal may already have the first carrier frequency, and the first carrier frequency is used to transmit the data in the first logical channel, and the data is satisfied.
  • the terminal may further add the second logical channel, so that the same to-be-transmitted data in the same PDCP entity is simultaneously delivered to the first logical channel and the second logical channel. Since the first carrier frequency already exists, the terminal only needs to Determining a second carrier frequency and transmitting data in the second logical channel using the second carrier frequency. The second carrier frequency is different from the first carrier frequency.
  • the first carrier frequency may be one of the first carrier frequency sets
  • the second carrier frequency may be one of the second carrier frequency sets
  • the first carrier frequency set has a corresponding relationship with the first carrier frequency.
  • the second carrier frequency set has a corresponding relationship with the second logical channel, that is, any one of the first carrier frequency sets can be used to send data on the first logical channel, and any one of the second carrier frequency sets
  • the frequency can be used to transmit data on the second logical channel.
  • the first carrier frequency set and the second carrier frequency set are orthogonal, that is, the elements in the first carrier frequency set are different from the second carrier frequency set. The correspondence may be implicit or displayed.
  • the first carrier frequency set includes at least one carrier frequency
  • the second carrier frequency set includes at least one carrier frequency.
  • the terminal may already have the first carrier frequency set, and the first carrier frequency in the first carrier frequency set is used to transmit the data in the first logical channel.
  • the terminal may further add the second logical channel, so that the same to-be-transmitted data in the same PDCP entity is simultaneously delivered to the first logical channel and the second logical channel, because the first carrier frequency set already exists.
  • the terminal only needs to determine the second carrier frequency set and transmit the data in the second logical channel by using the second carrier frequency in the second carrier frequency set.
  • the step 103 may further include: the terminal determining the first carrier frequency set and the second carrier frequency set; wherein the first carrier frequency set corresponds to the first logical channel, and the second carrier frequency set corresponds to the second logic.
  • the first carrier frequency set and the second carrier frequency set are determined by the terminal. And, the first carrier frequency set corresponds to the first logical channel, and the second carrier frequency set corresponds to the second logical channel.
  • the corresponding relationship may be implicit or explicit.
  • the first carrier frequency set includes at least one carrier frequency, and the second carrier frequency set includes at least one carrier frequency.
  • the terminal acquires information for indicating a third carrier frequency set, and determines the first carrier frequency set and the second carrier frequency set according to the third carrier frequency set;
  • the information used to indicate the third carrier frequency set may be carried by RRC signaling or pre-configuration information.
  • the information used to indicate the “carrier frequency set” may be at least one carrier frequency identifier, and the terminal may determine at least one carrier frequency pointed by the at least one carrier frequency identifier by acquiring the at least one carrier frequency identifier, that is, determining This "carrier frequency set".
  • the information used to indicate the "carrier frequency set” may also be a carrier frequency identification sequence. The terminal determines the carrier frequency sequence pointed by the carrier frequency identification sequence by acquiring the carrier frequency identification sequence, thereby determining the "carrier frequency set".
  • the SIB message sent by the base station includes information indicating the third carrier frequency set, and the indication may be displayed or implicit.
  • the SIB message directly includes a carrier frequency identification sequence, ⁇ CC1, CC2, CC3 ⁇ , where CC1, CC2, and CC3 are different carrier frequency identifiers, respectively.
  • the third carrier frequency set includes a plurality of transmission carrier frequencies configured by the base station for performing V2X communication, wherein each transmission carrier frequency may be indicated by a carrier frequency identifier.
  • the information for indicating the third carrier frequency set may be at least one carrier frequency identifier, and the terminal acquires at least one transmission carrier frequency identifier, thereby determining at least one transmission carrier frequency, that is, obtaining a third carrier frequency set.
  • first carrier frequency set and the second carrier frequency set are not necessarily the complete division of the third carrier frequency set.
  • some carrier frequencies in the third carrier frequency set may not support the V2X service, and neither the first carrier frequency set nor the second carrier frequency set is transmitted.
  • the carrier frequency that does not support the V2X service is included.
  • Determining, by the terminal, the first carrier frequency set and the second carrier frequency set according to the transmission carrier frequency comprises: determining, by the terminal, the first carrier frequency set and the second carrier frequency set according to the carrier frequency to be transmitted in the V2X service and the third carrier frequency set.
  • the terminal determines, according to the received RRC signaling from the network device, where the RRC signaling includes information for indicating the first carrier frequency set and the second carrier frequency set.
  • the RRC signaling sent by the network device may include a first carrier frequency identification sequence and a second carrier frequency identification sequence; the terminal acquires the first carrier frequency set and the second carrier frequency set by using RRC signaling.
  • the terminal establishes a correspondence between the first carrier frequency set and the first logical channel, and establishes a correspondence between the second carrier frequency set and the second logical channel.
  • the RRC signaling sent by the network device further includes a logical channel identifier.
  • the RRC signaling includes a logical channel identifier 1 for indicating information of the first carrier frequency set, and the logical channel identifier 2 is used.
  • Information indicating the second carrier frequency set and the like.
  • the information used to indicate the carrier frequency set may be at least one carrier frequency identifier for indicating the corresponding carrier frequency.
  • the logical channel identifier 1 may point to a first logical channel
  • the logical channel identifier 2 may point to a second logical channel.
  • the carrier frequency may also be referred to as a carrier or carrier frequency, which may be a radio wave of a particular frequency, such as 2.5 GHz, 3 GHz, in Hz (hertz).
  • the carrier frequency or carrier is generally used to transmit information, and the digital signal is modulated onto a high frequency carrier and then transmitted and received in the air. It can be understood that using carrier frequency for transmission refers to utilizing time-frequency resources on the carrier frequency for data transmission.
  • the information for indicating the first condition includes one or more of channel congestion information and reliability information.
  • the first condition includes one or more of a congestion condition and a reliability condition.
  • the information indicating the first condition includes: channel congestion information and reliability information, or includes a congestion condition and a reliability condition
  • the activation condition of the PDCP layer data repetition transmission needs to be simultaneously satisfied, and the channel congestion judgment condition And the determination condition of the reliability
  • the following embodiment respectively describes the first condition information as channel congestion information or the activation condition of the reliability information, and the information about the first condition is channel congestion information and reliability information.
  • the activation condition refer to the description of the activation conditions of the channel congestion information and the reliability information in the embodiment.
  • the first condition may be an activation condition
  • the information used to indicate the first condition may be information for indicating an activation condition
  • the channel congestion information includes: any one of a first channel congestion threshold, a second channel congestion threshold, and a first channel congestion range.
  • the first condition includes any one of the following:
  • the third carrier frequency channel congestion degree is greater than or equal to the first channel congestion threshold
  • the channel congestion degree of the third carrier frequency is less than or equal to the second channel congestion threshold
  • the degree of channel congestion of the third carrier frequency is within the first channel congestion range.
  • the third carrier frequency belongs to one of network carrier configurations or pre-configured all carrier frequencies for through link communication.
  • the third carrier frequency may be configured or pre-configured by the base station by using RRC signaling; or the third carrier frequency may be any one of the terminal transmission carrier frequencies; or the third carrier frequency may be a terminal transmission. a carrier carrier frequency with the least degree of channel congestion in the carrier frequency; or, the third carrier frequency may be a transmission carrier frequency with the largest channel congestion in the terminal transmission carrier frequency; or the third carrier frequency may be the terminal transmission carrier frequency.
  • the third carrier frequency may be a carrier frequency in which the channel congestion is minimized among the carrier frequencies in the terminal transmission carrier that supports the data to be transmitted;
  • the third carrier frequency may be a carrier frequency in which the channel congestion degree is the largest among the carrier frequencies supporting the data to be transmitted in the terminal transmission carrier frequency.
  • the terminal transmission carrier frequency refers to a carrier frequency currently used by the terminal for performing direct link data transmission or communication.
  • the third carrier frequency may be the same as or different from the first carrier frequency or the second carrier frequency.
  • the channel congestion information may not be limited to being an identifier, an index, or other information for pointing or indicating the channel congestion information.
  • the first channel congestion threshold may point to the first reliability threshold by the identifier, the index, or the first channel congestion itself.
  • the degree of channel congestion indicates the load condition of the channel.
  • the channel congestion level may be the channel busy ratio (CBR) defined in section 5.1.30 of the third generation mobile partner program TS 36.214 V15.0.1 protocol, and the higher the channel load, the higher the channel congestion degree.
  • the degree of channel congestion corresponding to the carrier frequency or the degree of channel congestion of the carrier frequency refers to the degree of channel congestion on a certain time-frequency resource set on the carrier frequency.
  • the time-frequency resource set may be a resource pool.
  • the channel congestion degree corresponding to the carrier frequency A refers to the channel congestion degree of the first resource pool on the carrier frequency A
  • the channel congestion degree corresponding to the carrier frequency B is Refers to the degree of channel congestion of the second resource pool on carrier frequency B.
  • the degree of channel congestion may be measured by the terminal, or the network device may notify the terminal by using RRC signaling.
  • the eNB sends the RRC signaling to the terminal, where the RRC signaling includes a first channel congestion threshold of 0.5, the first condition is an activation condition, and the third carrier frequency channel congestion degree is greater than or equal to the first channel congestion threshold.
  • the terminal is using the carrier frequency ⁇ CC1, CC2, CC3 ⁇ for the direct link data transmission, that is, the transmission carrier frequency of the terminal is ⁇ CC1, CC2, CC3 ⁇ , wherein the channel congestion degree corresponding to the transmission carrier frequency is ⁇ 0.2, 0.6, respectively. 0.3 ⁇ , and the third carrier frequency is the carrier frequency with the largest degree of channel congestion in the transmission carrier frequency, and the third carrier frequency is CC2.
  • the data repeat transmission is activated, and the terminal delivers the same to-be-transmitted data of the PDCP layer to the first logical channel and the second logical channel, and passes The first carrier frequency transmits data in the first logical channel and transmits data in the second logical channel through the second carrier frequency.
  • the data attribute or identifier corresponding to the data is simultaneously submitted to the access layer in the form of a primitive, wherein
  • the data attribute or identifier may include at least one of priority, reliability, delay, destination address, service type, and the like.
  • the data submitted by the upper layer to the access layer may be a data packet.
  • the data attributes or identifiers may also have other forms of obtaining, and the invention is not limited thereto.
  • different data correspond to different priorities.
  • different parameters are generally configured for different data priorities, so that they are treated differently.
  • the terminal can exist in many different types of services.
  • the different types of services may be services corresponding to different receiving ends and/or different types of sending ends.
  • different types of services mentioned above may be V2V services, V2P services, V2I services, P2V services, P2P services, and P2I services. Wait.
  • different types of services may also be passed through an application layer identifier carried by the application layer or sent by the upper layer (above the access layer), such as ITS-AID: ITS Application Identifier or PSID: Provider Service Identifier. distinguish.
  • different destination addresses indicate different receiving ends.
  • terminal A communicates with terminal B and terminal A and terminal C
  • the corresponding destination addresses are usually different.
  • the destination address may be mapped to the service type.
  • the reliability reflects the transmission reliability requirement/level of the data or the importance/importance level of the data.
  • This transmission reliability requirement can be, but is not limited to, end-to-end transmission reliability requirements.
  • the transmission reliability may be defined as a 1-bit error ratio, a 1-symbol error ratio, or a 1-packet error ratio. ), etc., the detailed definition can be described in the LTE protocol defined by the 3rd Generation Mobile Partner Program. The higher the reliability, the more important the data is.
  • the delay reflects the transmission delay requirement of the data.
  • the delay may be an end-to-end transmission delay, an air interface delay requirement, a delay budget, a transmission time interval, and the like.
  • the data attribute may be, but is not limited to, an identifier, an index, or other information that points to or indicates the data attribute.
  • reliability can be reliability identification, reliability index or reliability itself.
  • the data to be transmitted with different data attributes or different identifiers may need to be transmitted on different carrier frequencies, for each data to be transmitted, there is a carrier frequency or carrier frequency set that is allowed to be transmitted.
  • service type 1 is a security type service, and transmission on carrier frequency ⁇ CC1, CC2 ⁇ is required.
  • Service type 2 is Non-secure services require transmission on the carrier frequency ⁇ CC3 ⁇ .
  • the base station can configure data of different priorities to be transmitted on different carrier frequencies.
  • the base station can be configured through RRC signaling: data with a priority of 1, and the configured carrier frequency set is ⁇ CC1, CC2, CC3 ⁇ .
  • the data with priority 2 is corresponding to the carrier frequency set of ⁇ CC1, CC4, CC5 ⁇ , so that the data with the priority of 1 is allowed to be transmitted by using the carrier frequency CC1, CC2 or CC3, and the data with the priority of 2 is It is allowed to transmit using the carrier frequency CC3, CC4 or CC5.
  • the corresponding service type is 1 and the priority is 1, the data to be transmitted can only be in the public carrier of the carrier frequency set ⁇ CC1, CC2 ⁇ and the carrier frequency set ⁇ CC1, CC2, CC3 ⁇ .
  • the terminal transmission carrier frequency set is ⁇ CC1, CC2, CC3 ⁇ , and the data to be transmitted is allowed to be transmitted on the carrier frequency ⁇ CC1, CC3 ⁇ , if the third carrier frequency is the carrier frequency supporting the data to be transmitted in the terminal transmission carrier frequency.
  • the carrier frequency is the one with the largest degree of channel congestion.
  • the first condition is an activation condition, and the third carrier frequency channel congestion degree is greater than or equal to the first channel congestion threshold. Then, the third carrier frequency is CC3, and the corresponding The channel congestion degree is 0.3, and the condition for repeated transmission is not satisfied at this time.
  • the third carrier frequency is configured by the network device through RRC signaling, where the RRC signaling may be SIB or dedicated RRC signaling.
  • the base station configures the third carrier frequency to be CC2 by using dedicated RRC signaling, where the first condition is an activation condition, the third carrier frequency channel congestion degree is greater than or equal to the first channel congestion threshold, and the terminal determines the channel congestion degree corresponding to CC2. If the value is greater than 0.5, the repeated transmission is activated at this time, and the PDCP layer needs to deliver the same to-be-sent data to the first logical channel and the second logical channel, and send the data in the first logical channel through the first carrier frequency, and pass the second carrier. The data in the second logical channel is transmitted in frequency.
  • the channel congestion level is too low or too high, and it is not suitable for data transmission. Because the channel congestion is too low, indicating that the channel conditions are good, it seems that no data transmission is needed. If the channel congestion level is too high, it indicates that the channel conditions are already very bad. At this time, repeated data transmission requires more resources. The channel conditions are further deteriorated, so there may be no need for data repetition transmission, so the channel congestion information may be implemented in a threshold or range.
  • the RRC signaling or the pre-configuration information sent by the foregoing network device may also include other network parameters of the activation condition, which is not limited in this embodiment.
  • the RRC signaling or the pre-configuration information sent by the network device may directly include the first condition, which is convenient for the terminal to determine whether to perform PDCP layer data repetition transmission.
  • the foregoing information used to indicate the first condition may further include reliability information.
  • the information for indicating the first condition is reliability information
  • the first condition is also related to the reliability of the data to be transmitted.
  • the reliability information includes: any one of a first reliability threshold, a first reliability enumeration value, and a first reliability range.
  • the first condition includes any one of the following:
  • the reliability of the data to be transmitted is greater than or equal to the first reliability threshold
  • the reliability of the data to be transmitted is equal to the first reliability enumeration value, and the enumeration value may be a set of discrete values, identifiers or indexes; the reliability of the data to be transmitted is equal to the first reliability
  • the value is that the reliability of the data to be transmitted is equal to any one of the first reliability enumeration values.
  • the reliability of the data to be transmitted is reliability 1
  • the first reliability enumeration value is ⁇ reliability 1, reliability 5, reliability 6 ⁇
  • the reliability of the data to be transmitted is equal to the first reliability.
  • the reliability of the data to be transmitted is within the first reliability range.
  • the boundary is not limited, and may include various possible combinations, such as (A1, B1), (A1, B1), [A1, B1], [A1, B1]. And so on, in which "(" means not including the end value, "]" means including the end value.
  • the reliability information may be a specific value reflecting the degree of reliability, for example, 99.99%, 99.999%; or, the reliability information is a relative value reflecting the degree of reliability, and exemplary, may be, high reliability, medium reliability , low reliability; of course, more levels can be divided according to different degrees of reliability, and this application does not limit this.
  • the reliability information may not be limited to being an identifier, an index, or other information for pointing or indicating the reliability information.
  • the first reliability threshold may represent the first reliability threshold by using an identifier, an index, or a first reliability threshold itself.
  • different identifiers may be used to represent the degree of reliability/level or degree of importance/level of the data, and the relative value of the reliability degree is represented by the reliability information, 1 indicates high reliability, and 2 indicates reliability. 3 indicates low reliability, or conversely, 1 indicates low reliability, 2 indicates medium reliability, and 3 indicates high reliability.
  • the reliability information may be carried in the RRC signaling sent by the network device to the terminal, for example, in the SIB message or the dedicated RRC signaling, or may be carried in the MAC CE or the DCI.
  • the reliability information when carried in the MAC CE, it can be embodied in a bitmap form. Different bits in the bit table represent different reliability/importance levels or reliability ranges, and different values on the corresponding bits reflect whether data is repeatedly transmitted, for example, different values on corresponding bits. It embodies whether to activate data repeat transmission.
  • the reliability of the data is divided into three levels, namely low reliability, medium reliability, and high reliability. Different reliability levels are indicated by fixed bits. As shown in Table 1, in the bitmap, each bit can be sequentially associated with one reliability level in order of reliability from low to high. Of course, each bit can be sequentially associated with a reliability level in order of reliability from high to low, and details are not described herein again.
  • the terminal When a certain bit is the first value, the terminal may be instructed to activate the data to be transmitted having the reliability corresponding to the bit for repeated transmission.
  • the terminal When a certain bit is the second value, the terminal may be instructed to stop the data to be transmitted having the reliability corresponding to the bit for repeated transmission. For example, when the first value is 1, the second value may be 0.
  • the reliability information is carried in a bitmap, for example, as shown in Table 2 below.
  • the reliability information is used to activate the terminal to repeatedly transmit the to-be-transmitted data with high reliability, that is, when the data to be transmitted of the PDCP layer of the terminal corresponds to high reliability, the terminal submits the PDCP layer to be sent to two different data. In the logical channel, and send through the carrier frequency of different points.
  • the high reliability, medium reliability, and low reliability may correspond to different reliability values, for example, the reliability of the high reliability corresponding data is greater than 99.999%.
  • bit in the bitmap can also be used to identify the reliability range, as shown in Table 3 below, whether or not the boundary is included.
  • the reliability information is carried in the bitmap, as shown in Table 2, the above reliability information is used to activate the terminal to the reliability in the range of 99.99-99.999%.
  • the data to be transmitted is repeatedly transmitted, that is, the terminal delivers the data to be transmitted whose PDCP layer reliability is in the range of 99.99-99.999% to two different logical channels, and transmits them through different carrier frequencies.
  • the reliability range may also be implicit.
  • the reliability range shown in FIG. 3 may also be represented by Table 4. Referring to Table 4, the meaning of the last bit in the bitmap may be 99.0-99.9%.
  • the terminal detects that the first condition is satisfied, the above step 103 is performed. On the other hand, if the first condition is not met, the action of the PDCP layer to separately deliver data to two different logical channels is not triggered.
  • the first condition is an activation condition
  • the reliability information configured by the network device through RRC signaling is 1, indicating high reliability or high importance
  • the reliability corresponding to the data to be sent by the terminal is high reliability or In high importance
  • the data is repeatedly transmitted, and the PDCP layer delivers the data to be transmitted to two different logical channels.
  • the first condition is an activation condition
  • the reliability information configured by the network device through the RRC signaling is that the first reliability threshold is 99.99%, and the reliability corresponding to the data to be sent on the terminal side is 99.999%, which is higher than the reliability.
  • the first reliability threshold activates the repeated data transmission, and the PDCP layer respectively delivers the data to be transmitted to two different logical channels.
  • the first condition is an activation condition
  • the reliability information of the network device configured by the RRC signaling is 1, indicating high reliability
  • the data reliability corresponding to the high reliability is greater than 99.999%
  • the data to be sent by the terminal side is corresponding.
  • the reliability is 99.9999%, which is higher than the first reliability threshold, and the repeated data transmission is activated, and the PDCP layer respectively delivers the data to be sent to two different logical channels.
  • the terminal may already have the first carrier frequency, and the data in the first logical channel is transmitted by using the first carrier frequency, or the terminal may already exist first.
  • the carrier frequency sets and transmits data in the first logical channel using the first carrier frequency in the first carrier frequency set.
  • the terminal may further determine the first carrier frequency of the transmission according to the reliability of the data, for example, the first reliability and the first logical channel corresponding to the first reliability, where the correspondence may be displayed. It can also be implicit.
  • the base station configures the correspondence between the reliability identifier of the terminal and the logical channel through dedicated RRC signaling.
  • the first reliability identifier corresponds to the logical channel identifier 1 (LCID1)
  • the first reliability identifier 2 corresponds to the logical channel identifier 2 (LCID2)
  • the traditional data transmission is performed before the repeated transmission is performed, and the single data is only submitted.
  • the terminal delivers the first data to the first logical channel, and sends the first data by using the first carrier frequency.
  • the logical channel identifier 1 may indicate a first logical channel. It can be understood that a plurality of different reliability identifiers can also correspond to one LCID.
  • the determining, by the terminal, the first carrier frequency and the second carrier frequency may be, but not limited to, determining, by the RRC layer, the first carrier frequency and the second carrier frequency.
  • the RRC layer may determine different carrier frequencies for transmitting data on the two logical channels, ie, determine the first carrier frequency and the second carrier frequency. Specifically, it can be, but is not limited to, determined by:
  • the first condition is an activation condition, if the information used to indicate the first condition includes a first channel congestion threshold 0.6 and a first reliability threshold of 99.99%.
  • the transmission carrier frequency set of the terminal is ⁇ CC1, CC2, CC3 ⁇ , wherein the channel congestion degree corresponding to the transmission carrier frequency is ⁇ 0.2, 0.6, 0.3 ⁇ , and the third carrier frequency is the channel congestion degree in the transmission carrier frequency is the largest.
  • the third carrier frequency is CC2, and the channel congestion degree corresponding to the third carrier frequency is greater than the first channel congestion threshold of 0.5, and the reliability of the data to be transmitted by the terminal is 99.999%, which is higher than the first reliability.
  • the threshold of 99.99% activates the repeated data transmission, and the PDCP layer delivers the data to be transmitted to two different logical channels.
  • a possible implementation manner is that the terminal determines the first carrier frequency and the second carrier frequency by using signaling sent by the network device.
  • the RRC signaling or the pre-configuration information sent by the network device to the terminal includes at least two carrier frequency identifiers, and the terminal determines the first carrier frequency and the second carrier frequency.
  • the information about the third carrier frequency set is included in the RRC signaling or the pre-configuration information sent by the network device to the terminal, for example, where multiple carrier frequency identifiers are directed to the network configuration or pre-configured,
  • the carrier frequency of the through link communication the terminal determines the first carrier frequency and the second carrier frequency according to the third carrier frequency set, wherein the first carrier frequency and the second carrier frequency belong to the third carrier frequency set.
  • the third carrier frequency set can also come from the pre-configuration.
  • the terminal determines the first carrier frequency set and the second carrier frequency set according to the third carrier frequency set, where the carrier frequency in the first carrier frequency set and the second carrier frequency set belong to the third carrier frequency set; the first carrier frequency The elements in the set and the second set of carrier frequencies are different.
  • the terminal selects a first carrier frequency from the first carrier frequency set and a second carrier frequency from the second carrier frequency set.
  • the first carrier frequency is selected from the first carrier frequency set
  • the second carrier frequency is selected from the second carrier frequency set by the RRC layer of the terminal, or may be implemented at the MAC layer.
  • the data to be transmitted has a data attribute, and the data attribute corresponds to a carrier frequency in a third carrier frequency set, where the correspondence may be implicit or It is displayed.
  • the data attributes may include one or more of the following combinations: priority, reliability, latency, destination address, and type of service.
  • the data attribute may be, but is not limited to, an identifier, an index, or other pointing or indication information.
  • the reliability may be a reliability identifier, a reliability index, or reliability itself.
  • the terminal After receiving the information from the network device for indicating the third carrier frequency set, the terminal determines the fourth carrier frequency set according to the data attribute of the data to be transmitted.
  • the fourth carrier frequency set may include all the data suitable for the data to be transmitted. Available carrier frequency resources. It can be understood that the terminal does not have to use all available carrier frequency resources.
  • the terminal may only use some of the carrier frequencies in the fourth carrier frequency set for a period of time or a single transmission of information.
  • the terminal determines the first carrier frequency set and the second carrier frequency set according to the fourth carrier frequency set; or directly determines the first carrier frequency and the second carrier frequency.
  • the third carrier frequency set may be the same as or different from the fourth carrier frequency set, which is not limited in this application.
  • the priority of the data to be transmitted is 1, and the base station configures the information used to indicate the carrier frequency set as the correspondence between the priority and the carrier frequency set.
  • the data of priority 1 has a corresponding relationship with the carrier frequency set ⁇ CC1, CC2, CC3, CC4 ⁇ , wherein CC1, CC2, CC3 and CC4 represent four different carrier frequencies.
  • the data of priority 2 has a correspondence with the carrier frequency set ⁇ CC2, CC3, CC5, CC6 ⁇ .
  • the terminal may determine its corresponding total carrier frequency resource according to the priority of the data to be transmitted. In the case where it is determined that the priority of the data to be transmitted is 1, the corresponding fourth carrier frequency set is ⁇ CC1, CC2, CC3, CC4 ⁇ .
  • the correspondence between the priority and the carrier frequency in the third carrier frequency set may be implicit or displayed, or may include other various implementation forms, for example, at each carrier frequency.
  • the configuration information carries the priority corresponding to the carrier frequency.
  • the carrier frequency CC1 configuration information includes ⁇ identity of carrier frequency 1, identification of priority 1 ⁇
  • the configuration information of carrier frequency CC2 includes ⁇ identity of carrier frequency 2, priority 1 identification ⁇ , which can indicate carrier frequency.
  • Both 1 and carrier 2 support data to be transmitted with a priority of 1. If the priority of the data to be transmitted is 1, the fourth carrier frequency set is ⁇ CC1, CC2 ⁇ .
  • the fourth carrier frequency set may include only one carrier frequency.
  • the first data attribute of the data to be transmitted includes: priority level 1 and destination address 1.
  • the base station configuration data priority level 1 has a corresponding relationship with the carrier frequency set ⁇ CC1, CC2, CC3, CC4 ⁇ , wherein CC1, CC2, CC3 and CC4 represent four different carrier frequencies.
  • Data priority 2 has a correspondence with the carrier frequency set ⁇ CC2, CC3, CC5, CC6 ⁇ .
  • the base station configuration destination address 1 has a corresponding relationship with the carrier frequency set ⁇ CC1, CC2 ⁇
  • the destination address 2 has a corresponding relationship with the carrier frequency set ⁇ CC3, CC4 ⁇ .
  • the terminal can be based on the data to be transmitted.
  • the priority and destination addresses determine their corresponding available carrier frequency resources. When it is determined that the data priority of the data to be transmitted is 1 and the corresponding destination address is 1, the corresponding fourth carrier frequency set is ⁇ CC1, CC2 ⁇ .
  • the terminal may also be configured according to the indicated carrier frequency set.
  • the relationship determines the set of carrier frequencies supported by the current data to be transmitted. Then, determining the first carrier frequency set and the second carrier frequency set according to the carrier frequency set, or directly selecting the first carrier frequency and the second carrier frequency.
  • the carrier frequency in the first carrier frequency set and the second carrier frequency set belong to the fourth carrier frequency set.
  • the data to be transmitted has a data attribute
  • the data attribute corresponds to a carrier frequency in the first carrier frequency set and the second carrier frequency set, where the corresponding relationship may be Implicit, or it can be displayed.
  • the data attributes may include one or more of the following combinations: priority, reliability, latency, destination address, and type of service.
  • the data attribute may be, but is not limited to, an identifier, an index, or other pointing or indication information.
  • the reliability may be a reliability identifier, a reliability index, or reliability itself.
  • the terminal receives information from the network device, the information including information indicating the first carrier frequency set and the second carrier frequency set, and indicating the corresponding to the first carrier frequency set and the second carrier frequency set Information about data attributes.
  • the terminal determines the corresponding first carrier frequency set and the second carrier frequency set according to the data attribute of the data to be transmitted, or the terminal directly determines the first carrier frequency and the second carrier frequency according to the data attribute of the data to be transmitted.
  • the message may be carried in an RRC signaling or a pre-configuration message.
  • the dedicated RRC signaling sent by the network device includes:
  • the destination address corresponding to the data to be sent by the terminal is the first destination address, and the terminal may determine, according to the dedicated RRC signaling, that the first carrier frequency is CC1, and the second carrier frequency is CC2, where CC1 may point to the first carrier frequency, and CC2 may point to the first carrier frequency. Two carrier frequencies.
  • the SIB message sent by the network device includes: ⁇ first destination address identifier, ⁇ CC1, CC2 ⁇ , ⁇ CC3, CC4 ⁇ , ⁇ second destination address identifier, CC3, CC4 ⁇ ;
  • the destination address corresponding to the data to be sent by the terminal is the first destination address, and the terminal determines, according to the dedicated RRC signaling, that the first carrier frequency set is ⁇ CC1, CC2 ⁇ , and the second carrier frequency set is ⁇ CC3, CC4 ⁇ .
  • the dedicated RRC signaling sent by the network device includes:
  • first destination address identifier ⁇ first destination address identifier, first reliability identifier, CC1, CC2 ⁇ ⁇ second destination address identifier, first reliability identifier, CC3, CC4 ⁇ ;
  • the destination address corresponding to the data to be sent by the terminal is the first destination address, and the corresponding reliability is the first reliability.
  • the terminal determines the first carrier frequency CC1 according to the dedicated RRC signaling, and the second carrier frequency is CC2, where CC1 can point to The first carrier frequency, CC2 can point to the second carrier frequency.
  • the dedicated RRC signaling sent by the network device includes:
  • the destination address corresponding to the data to be sent by the terminal is the first destination address, and the corresponding reliability is the first reliability, and the terminal determines, according to the dedicated RRC signaling, that the first carrier frequency set is ⁇ CC1, CC2 ⁇ , the second carrier frequency set is ⁇ CC3, CC4 ⁇ .
  • the terminal may perform carrier selection or carrier reselection, thereby transmitting data of the first logical channel by using the first carrier frequency.
  • the second carrier frequency is used to transmit data in the second logical channel, which is not limited by the present invention.
  • the terminal uses the direct carrier to transmit data on the first logical channel and the second logical channel by using different carrier frequencies, thereby realizing the same on the through link.
  • the data packet is transmitted on different logical carriers on two logical channels, and the receiving device can receive the same data packet that is repeated, thereby improving the reliability of data transmission.
  • the first carrier frequency and the second carrier frequency may be determined by the RRC layer of the terminal, and may also be determined by the MAC layer of the terminal.
  • the PDCP layer delivers the same to-be-sent data to the first logical channel and the second logical channel, but the RRC layer may not have the first logical channel and the second logical channel that notify the MAC layer to perform data repetition. Therefore, the MAC layer needs to determine two logical channels for repeated transmission, namely the first logical channel and the second logical channel. In addition, the MAC layer can maintain multiple logical channels.
  • the method for determining a logical channel by the MAC layer includes the following possibilities:
  • the MAC layer determines the first logical channel and the second logical channel based on each logical channel data attribute.
  • the data attribute may be one or a combination of a priority, a destination address, a delay, a service type, and a reliability.
  • the data attributes corresponding to the data are the same, for example, the data attribute is the priority and the destination address, and the data to be transmitted has the first priority.
  • the first destination address so the data attributes corresponding to the first logical channel and the second logical channel are the same, that is, the priorities corresponding to the first logical channel and the second logical channel are all the first priority, the first logical channel
  • the destination address corresponding to the second logical channel is the first destination address.
  • the first logical channel and the second logical channel can be determined by detecting whether the data attributes of the logical channels are the same.
  • the terminal Before detecting the same data attribute information of each logical channel, the terminal needs to acquire data attribute information of each logical channel.
  • the MAC layer detects whether the identification information or the data attributes on the two logical channels are the same. If they are the same, it indicates that two logical channels for data retransmission already exist, and repeated data transmission can be performed at this time.
  • the MAC layer initially determines the first logical channel and the second logical channel by detecting attributes of data on each logical channel, and whether the MAC layer further needs to determine whether the first logical channel and/or the second logical channel are to be determined.
  • the data is transmitted to determine whether the PDCP layer has been repeatedly transmitted. If the MAC layer detects that the data to be transmitted exists on both logical channels, and the data attributes of the first logical channel and the second logical channel are the same, it indicates that the data repetition transmission of the PDCP layer has been activated, that is, the same PDCP layer is to be transmitted. Data is delivered to these two logical channels.
  • logical channel 1 and logical channel 3 there are three logical channels in the MAC layer, which are called logical channel 1, logical channel 2 and logical channel 3.
  • the data attributes corresponding to the logical channels 1, 2, and 3 are priority 1, priority 2, and priority 1, respectively, because the data attributes of logical channel 1 and logical channel 3 are the same (all are priority 1) ), so it is determined that logical channel 1 and logical channel 3 are logical channels for data repeated transmission.
  • an indication information may be sent to the MAC layer through the RRC layer to indicate the first logical channel and the second logical channel, or the PDCP layer repeated transmission may be activated.
  • the data attribute corresponding to each logical channel may associate each logical channel with a data attribute when establishing a logical channel, where a data attribute corresponding to the logical channel is related to data in the logical channel.
  • the data attribute corresponding to the logical channel may be equal to the data attribute corresponding to the data in the logical channel.
  • the ID of the first logical channel for performing data repetition transmission and the ID of the second logical channel have a corresponding relationship, which may also be referred to as a presence pairing relationship.
  • the correspondence may be configured by the base station through RRC signaling, or pre-configured, or specified by a protocol. Then, at this time, the MAC layer determines the first logical channel and the second logical channel by the ID of each logical channel conforming to the correspondence.
  • the corresponding relationship may be represented by an operational relationship of logical channel IDs between two logical channels, or may be embodied by a specific correspondence.
  • the logical channel identifier may be a logical channel ID.
  • the logical channel that performs the repeated transmission satisfies the following relationship: for example, the difference or sum value between the ID of the second logical channel and the ID of the first logical channel satisfies a preset value.
  • LCID2 - LCID1 M
  • LCID2 represents the ID of the second logical channel
  • LCID1 represents the ID of the first logical channel
  • M is a preset value
  • the correspondence between two logical channels is expressed, such as ⁇ logical channel 1, logical channel 11 ⁇ and ⁇ logical channel 2, logical channel 5 ⁇ and the like.
  • the ID of the logical channel used by the terminal is 1 to 10.
  • the terminal For each logical channel that exists in the terminal, when the terminal detects the existence of a logical channel, the LCIDs are 1 and 11, respectively, indicating that two logical channels for data repeat transmission already exist, and repeated data transmission can be performed at this time. Or it is determined that data repeat transmission is triggered, that is, the same data packet is about to be delivered to two different logical channels.
  • the terminal may determine that the logical channel 1 is a logical channel that matches the logical channel 11 according to the correspondence between the logical channel 1 and the logical channel ID of the logical channel 11, thereby determining that the first logical channel is the logical channel 1, and the second logical channel is the logical channel 11. .
  • the MAC layer initially determines the first logical channel and the second logical channel by using a correspondence between IDs of the logical channels, and the MAC layer further needs to determine the first logical channel and/or Or whether there is data to be transmitted on the second logical channel, and further whether the PDCP layer has performed data repeated transmission. If the MAC layer detects that the data to be transmitted exists on both logical channels, and the IDs of the first logical channel and the second logical channel satisfy the correspondence, it indicates that the data repetition transmission of the PDCP layer has been activated, that is, the same PDCP layer is to be activated. The transmitted data is delivered to these two logical channels.
  • the terminal For example, for each logical channel that exists in the terminal, when the terminal detects that there is a logical channel, the LCID is 1 and 11, respectively, and the terminal determines that the logical channel with the LCID of 11 has data, it can be determined that the data repeated transmission, that is, the same data is triggered.
  • the packet has been delivered to two different logical channels.
  • the first carrier frequency and the second carrier frequency may also be determined by the MAC layer of the terminal, specifically but not limited to the following determining method:
  • the MAC layer receives information for indicating the third carrier frequency set or information for indicating the fourth carrier frequency set, and then determines the first carrier frequency and the first carrier frequency set according to the third carrier frequency set or the fourth carrier frequency set.
  • Two carrier frequencies The method is the same as the method for determining the first carrier frequency and the second carrier frequency by the RRC layer, and details are not described herein again. It can be understood that the first carrier frequency and the second carrier frequency may also be from the first carrier frequency set and the second carrier frequency set, respectively, and the first carrier frequency set is orthogonal to the second carrier frequency set. The method is the same as the method for determining the first carrier frequency set and the second carrier frequency set by the RRC layer, and details are not described herein again.
  • the present application does not limit the MAC layer to determine the first logical channel and the second logical channel and determine the timing relationship between the first carrier frequency and the second carrier frequency.
  • the method further includes: stopping, by the PDCP layer of the terminal, the data to be transmitted to the first logical channel and the second logical channel when the second condition is met.
  • the process includes: the terminal acquires information for indicating the second condition, when the second condition is met, the terminal stops using the through link to send the to-be-transmitted data on the first carrier frequency by using the first logical channel, And transmitting the data to be transmitted on the second carrier frequency through the second logical channel.
  • the information for indicating the second condition includes any one of a third channel congestion threshold, a fourth channel congestion threshold, and a second channel congestion range.
  • the second condition includes:
  • the fourth carrier frequency channel congestion degree is greater than or equal to the third channel congestion threshold
  • the fourth carrier frequency channel congestion degree is less than or equal to the fourth channel congestion threshold
  • the fourth carrier frequency channel congestion degree belongs to the second channel congestion range
  • the fourth carrier frequency may be configured or pre-configured by the base station by using RRC signaling; or the fourth carrier frequency may be any one of the terminal transmission carrier frequencies; or the fourth carrier frequency may be the terminal transmission load. a transmission carrier frequency with the least degree of channel congestion in the frequency; or, the fourth carrier frequency may be a transmission carrier frequency with the largest degree of channel congestion in the terminal transmission carrier frequency; or, the fourth carrier frequency may be in the terminal transmission carrier frequency, and is supported. Any one of the carrier frequencies of the data packet to be transmitted transmits a carrier frequency; or the fourth carrier frequency may be a carrier frequency in which the channel congestion degree is the smallest among the carrier frequencies of the terminal transmission carrier that supports the data packet to be transmitted. Or, the fourth carrier frequency may be a carrier frequency in which the channel is most congested among the carrier frequencies supporting the data packet to be transmitted in the terminal transmission carrier frequency.
  • the fourth carrier frequency belongs to one of the first carrier frequency set or the second carrier frequency set.
  • the first carrier frequency set corresponds to the first logical channel
  • the second carrier frequency set corresponds to the second logical channel.
  • the fourth carrier frequency may be the same as or different from the third carrier frequency.
  • the fourth carrier frequency may be any one of the terminal transmission carrier frequencies belonging to the first carrier frequency set; or the fourth carrier frequency may be the terminal transmission carrier frequency belonging to the first carrier frequency set, and the channel congestion degree The minimum carrier carrier frequency; or the fourth carrier frequency may be a transmission carrier frequency of the terminal transmission carrier frequency belonging to the first carrier frequency set, and the channel congestion degree is the greatest; or the fourth carrier frequency may be the first carrier frequency Supporting, in the terminal transmission carrier frequency of the frequency set, any one of the carrier frequencies of the data packet to be transmitted; or the fourth carrier frequency may be supported by the terminal transmission carrier frequency belonging to the first carrier frequency set.
  • the carrier frequency of the data packet to be transmitted is a carrier frequency with the smallest degree of channel congestion; or the fourth carrier frequency may be the carrier frequency of the terminal transmission carrier frequency of the first carrier frequency set that supports the data packet to be transmitted. A carrier frequency with the greatest degree of channel congestion.
  • the fourth carrier frequency may be any one of the terminal transmission carrier frequencies belonging to the second carrier frequency set; or the fourth carrier frequency may be the terminal transmission carrier frequency belonging to the second carrier frequency set, and the channel congestion degree is the smallest.
  • the terminal transmission carrier frequency supports any one of the carrier frequencies of the data packet to be transmitted; or the fourth carrier frequency may be the terminal transmission carrier frequency belonging to the second carrier frequency set to support the to-be-transmitted transmission.
  • the carrier frequency of the data packet is a carrier frequency with the least degree of channel congestion; or the fourth carrier frequency may be the carrier frequency of the terminal transmission carrier frequency belonging to the second carrier frequency set supporting the data packet to be transmitted, and the channel is congested. The most frequent carrier frequency.
  • the data to be transmitted in the PDCP entity is stopped from being sent to the first logical channel and the second logical channel, thereby saving network resources.
  • the second condition may be a deactivation condition.
  • a data transmission method is further provided.
  • the method reports the reliability of the through link data existing in the terminal to the network device by using the terminal, so that the network device can better perform the data transmission scheduling for the through link. Resources.
  • the method may include:
  • Step 201 The terminal acquires configuration information from the network device, where the configuration information includes reliability information corresponding to the first identifier.
  • the configuration information further includes a first identifier.
  • the first identifier includes: a first logical channel group identifier, or a first destination address identifier, or a first logical channel group identifier and a first destination address identifier.
  • the terminal may obtain the configuration information in the following multiple manners.
  • the terminal acquires through RRC signaling, which may be an SIB message or dedicated RRC signaling.
  • the terminal receives the RRC signaling, and acquires reliability information corresponding to the first identifier.
  • the terminal acquires the configuration information by means of a data packet sent by the network device, for example, may be included in a MAC control element (MAC CE). After receiving the data packet, the terminal acquires the first identifier, the reliability information, and the corresponding relationship between the two.
  • MAC CE MAC control element
  • the configuration information is carried on the PDCCH, and the terminal acquires the first identifier, the reliability information, and the corresponding relationship between the two by acquiring the DCI on the PDCCH.
  • the network device sets the configuration information in the pre-configuration information, and the terminal acquires the configuration information from the pre-configuration information.
  • the first identifier may be a first logical channel group identity (LCG ID), or a first destination address identifier, and may also be a first LCG ID and a first destination address identifier.
  • LCG ID logical channel group identity
  • LCG ID first destination address identifier
  • the reliability information includes a reliability threshold, a reliability enumeration value, or a reliability range.
  • the reliability information may not be limited to being an identification, an index, or other information for pointing or indicating the reliability information.
  • the correspondence between the first identifier and the reliability information may be implicit or displayed.
  • the first identifier is the first LCG ID
  • the reliability information is a reliability enumeration value
  • the reliability enumeration value is a series of discrete reliability values
  • the reliability value is indicated by the reliability identifier. example.
  • the configuration information generated by the network device may include at least one LCG ID and at least one reliability identifier, for example, including LCG ID1, reliability identifier 1 and LCG ID2, and reliability identifier 2, where LCG ID1 Corresponding to the reliability identifier 1, the LCG ID 2 corresponds to the reliability identifier 2, wherein the reliability identifier 1 can point to the reliability enumeration value 1, and the reliability identifier 2 can point to the reliability enumeration value 2, and the terminal receives After the configuration information is obtained, the LCG ID1 and the reliability enumeration value 1 are determined by the configuration information, and the LCG ID2 has a corresponding relationship with the reliability enumeration value.
  • the configuration information may not include the LCG ID, but only the at least one reliability information, but the terminal may determine the LCG ID corresponding to the at least one reliability information according to a pre-agreed order or rule.
  • the sequence may be specified by a protocol, or the network device negotiates with the terminal device.
  • the LCG ID can be a number, both parties can agree that the LCG IDs are arranged in ascending order. For example, if the LCG ID numbers are 0, 1, 2, and 3, the LCGID may not be included in the configuration information, but only at least one reliability information may be included.
  • the terminal may determine, by using the sequence of the at least one reliability information, a logical channel group identifier corresponding to the at least one reliability information.
  • the configuration information includes only ⁇ reliability identifier 1 ⁇ , ⁇ reliability identifier 2, reliability identifier 3 ⁇ , ⁇ reliability identifier 4 ⁇ , ⁇ reliability identifier 5, reliability identifier 6 ⁇ .
  • the two parties agree that the LCG IDs are arranged in order from small to large.
  • the terminal may determine that ⁇ reliability identifier 1 ⁇ corresponds to the logical channel group identifier numbered 0, ⁇ reliability identifier 2, reliability identifier 3 ⁇ Corresponding to the logical channel group identifier numbered 1, the reliability identifier 4 ⁇ , the reliability identifier 5, and the reliability identifier 6 ⁇ correspond to the logical channel group identifiers numbered 2 and 3, respectively.
  • the first configuration information may include only one reliability information, and the reliability information corresponds to the logical channel group identifier numbered 0.
  • Step 202 The terminal acquires data, and the data reliability corresponding to the data is the first data reliability.
  • the data attribute may include reliability, for example, the reliability of the terminal acquiring data is the first reliability.
  • step 201 and step 202 are not limited in the present application. Step 202 may be performed first, step 201 may be performed later, or step 201 and step 202 may be performed simultaneously.
  • Step 203 When the first reliability corresponds to the reliability information, send a pass-through link buffer status report BSR to the network device, where the first data field in the direct link BSR is the first identifier.
  • the first reliability corresponds to the reliability information, including:
  • the reliability information includes a second reliability threshold, where the first reliability corresponds to the reliability information, and the first reliability is greater than or equal to the second reliability threshold;
  • the reliability information includes a third reliability threshold, and the first reliability corresponding to the reliability information includes: the first reliability is less than or equal to the third reliability threshold;
  • the reliability information includes a second reliability enumeration value, where the first reliability corresponds to the reliability information, the first reliability is equal to the second reliability enumeration value, and the enumeration
  • the value may be a set of discrete values, identifiers or indexes; the first reliability corresponding to the second reliability enumeration value means that the first reliability is equal to the second reliability enumeration value Any one.
  • the first reliability is reliability 1
  • the second reliability enumeration value is ⁇ reliability 1, reliability 5, reliability 6 ⁇ , and the first reliability corresponds to the second reliability enumeration value.
  • the reliability information includes a second reliability range, where the first reliability corresponds to the reliability information, and the first reliability is within the second reliability range.
  • the terminal has data
  • the reliability corresponding to the data is the first reliability, corresponding to the reliability information corresponding to the first identifier
  • the terminal sets the first in the pass-through link buffer status report BSR.
  • a data field is a first identifier
  • a Buffer Status Reporting (BSR) is sent to the network device to notify the network device terminal that the data corresponding to the first reliable information is reliable, so that the network device learns the data of the terminal through link.
  • BSR Buffer Status Reporting
  • the data format of the direct link BSR, the trigger condition of the BSR, and the calculation or statistical method of the buffered data amount may refer to the related protocols in 5.14.1.4 and 6.1.3 of the third generation mobile partner program TS 36.321 V15.0.0.
  • the BSR is included in a MAC PDU sent by the terminal to the base station.
  • the BSR is included in the MAC CE sent by the terminal to the base station.
  • an LTE V2X through link BSR format is illustrated, where the BSR includes different data fields to indicate or reflect different information
  • the LTE V2X through link BSR includes: a destination address index field ( Destination index): used to identify the destination address, the buffer data field (Buffer Size): used to identify the size of the cached data, and the logical channel group identification field (LCG ID): used to identify the logical channel group identifier.
  • Destination index used to identify the destination address
  • Buffer Size used to identify the size of the cached data
  • LCG ID logical channel group identification field
  • Different data fields can occupy different bits.
  • the destination address index field can occupy 3 bits.
  • the present invention does not limit this.
  • the traditional LTE V2X pass-through link BSR format does not limit the application.
  • the present application completely adopts different BSR formats.
  • the terminal may also set the second data field in the BSR as the amount of data buffered by the terminal, so that the base station obtains more direct link data information.
  • the amount of data buffered by the terminal is the amount of data of the through link data that meets the reliability information that exists in the terminal.
  • a single BSR may include multiple destination address index fields, cache data volume domains, and logical channel group identifier domains.
  • the data to be sent on the direct link of the terminal is data 1, data 2, and data 3.
  • the reliability corresponding to data 1 is reliability identifier 1, the destination address is 1, and the data volume is B1.
  • the reliability is the reliability identifier 2, the destination address is 1, and the data volume is B2; the reliability corresponding to the data 3 is the reliability identifier 4, the destination address is 2, and the data volume is B3.
  • Data 1, data 2, and data 3 may each contain multiple data packets. Different services may have different destination addresses in the V2X service.
  • the BSR can contain different destination addresses.
  • the configuration information includes: the first identifier, the reliability information corresponding to the first identifier, such as the reliability identifier 1 and the reliability identifier 2.
  • the first identifier includes the LCG ID1, and the reliability information includes the reliability identifier 1 and the reliability identifier 2.
  • the terminal may include the destination address 1 in the through link BSR reported to the network device. , LCGID1, C1 ⁇ , where C1 represents an identifier or an index corresponding to the sum of the data amount B1 and the data amount B2; after receiving the through link BSR, the network device can know that the terminal has a destination address of 1, and the priority
  • the data volume of 1 and 2 is information such as C1, and prepares for subsequent network equipment scheduling for terminal resources.
  • the configuration information may further include a correspondence between the LCG ID2 and the reliability information, and a plurality of first identifiers, reliability identifiers, correspondences between the first identifiers and the reliability identifiers, and the like. This embodiment of the present application does not limit this.
  • C1 may be an index of a data volume interval, which is used to indicate a range in which the amount of data buffered by the terminal, which may be a specific exact value or a range interval.
  • the first configuration information further includes priority information; the priority corresponding to the data is a first priority;
  • the priority information includes a first priority threshold, where the first priority corresponds to the priority information, and the first priority is greater than or equal to the first priority threshold; or
  • the priority information includes a second priority threshold, where the first priority corresponds to the priority information, and the first priority is less than or equal to the second priority threshold; or
  • the priority information includes a first priority enumeration value, the first priority corresponds to priority information, and the first priority is equal to the first priority enumeration value; the enumeration value It may be a set of discrete values, identifiers or indexes; the first priority equal to the first priority enumeration value means that the first priority is equal to any one of the first priority enumeration values item. For example, the first priority is priority 1, and the first priority enumeration is ⁇ priority 1, priority 5, priority 6 ⁇ , and the first priority is equal to the first priority enumeration value;
  • the priority information includes a first priority range, where the first priority corresponds to the priority information, and the first priority is in the first priority range.
  • the application is not limited, and may include various possible combinations, for example, (A1, B1), (A1, B1), [A1, B1], [A1, B1] And so on, in which "(" means not including the end value, "]" means including the end value.
  • the priority information may not be limited to being an identifier, an index, or other information for pointing or indicating the priority information.
  • the first priority threshold may point to the first priority threshold by using the identifier, the index, or the first priority threshold itself.
  • the first reliability corresponds to the reliability information, where the first reliability corresponds to the reliability information and the first priority corresponds to the priority information, that is, only when the data to be sent of the terminal satisfies the reliability information and the priority.
  • the first data field of the direct link BSR is set to be the first identifier; the terminal sends the BSR including the first identifier to the network device, to notify the network device that the reliability of the network device corresponds to the reliable information and the priority.
  • the network device Corresponding to the data of the priority information, so that the network device knows the data reliability and priority of the terminal through link data.
  • the terminal may also set the second data field in the BSR as the amount of data buffered by the terminal, so that the base station obtains more direct link data information.
  • the amount of data cached by the terminal is the amount of data of the through link data that satisfies the reliability information and satisfies the priority information at the terminal.
  • the correspondence between the LCGID and the reliability information included in the configuration information is: ⁇ reliability identifier 1 ⁇ ⁇ reliability identifier 1 ⁇ ⁇ reliability identifier 2 ⁇ , ⁇ reliability identifier 3, reliability identifier 4 ⁇ .
  • the configuration information also includes: ⁇ Priority ID 1 ⁇ ⁇ Priority ID 2 ⁇ ⁇ Priority ID 3 ⁇ , ⁇ Priority ID 4 ⁇ .
  • the terminal can obtain the following correspondence according to the configuration information:
  • the terminal through link data is data 1 and data 2, respectively, where data 1 corresponds to priority identifier 1, reliability identifier 1, destination address 1, data amount is B1, and data 2 corresponds to priority identifier 4, Reliability ID 3, destination address 2, and data volume is B2. If the uplink resources are sufficient, the contents of the pass-through link BSR set by the terminal are as follows:
  • C1 represents an identifier or an index corresponding to the data amount B1
  • C2 represents an identifier or an index corresponding to the data amount B2.
  • the terminal may send only part of the BSR to the base station, that is, only one LCG ID and associated information corresponding to the LCG ID.
  • the BSR can only contain ⁇ destination address 1, LCGID1, C1 ⁇ .
  • the BSR reports the sequence of different LCGIDs.
  • the report can be reported in the order of the number of the LCG IDs, or in the order of reliability from high to low.
  • the configuration information further includes priority information corresponding to the second identifier, and the priority corresponding to the data is the first priority.
  • the second identifier may be the same as or different from the first identifier. It can be understood that the correspondence between the second identifier and the first data priority information may be displayed or implicit. Additionally, the second identification may be the same as or different from the first identification.
  • the second identifier may be a second logical channel group identifier and/or a second destination address identifier.
  • the priority information includes a third priority threshold, where the first priority corresponds to the priority information, and the first priority is greater than or equal to the first priority threshold.
  • the priority information includes a fourth priority threshold, where the first priority corresponds to the priority information, and the first priority is less than or equal to the fourth priority threshold;
  • the priority information includes a second priority enumeration value, where the first priority corresponds to the priority information, and the first priority is equal to the second priority enumeration value;
  • the value may be a set of discrete values, identifiers or indexes;
  • the first priority equal to the second priority enumeration value means that the first priority is equal to the second priority enumeration value Any one.
  • the first priority is priority 1
  • the second priority enumeration is ⁇ priority 1, priority 5, priority 6 ⁇ , and the first priority is equal to the second priority enumeration value.
  • the priority information includes a second priority range, where the first priority belongs to the priority information, and the first priority is included in the second priority range.
  • the application is not limited, and may include various possible combinations, for example, (A1, B1), (A1, B1), [A1, B1], [A1, B1] And so on, in which "(" means not including the end value, "]" means including the end value.
  • the priority information may not be limited to being an identifier, an index, or other information for pointing or indicating the priority information.
  • the second priority threshold may point to the second priority threshold by the identifier, the index, or the second priority threshold itself.
  • the first reliability corresponds to the reliability information
  • the first reliability corresponds to the reliability information and the first priority corresponds to the priority information.
  • the first data field in the Buffer Status Reporting (BSR) is the first identifier
  • the second data field of the BSR is set to the second identifier
  • the second data field is set to be the second identifier.
  • the terminal sends the BSR to the network device, and notifies the network device terminal that there is data whose reliability corresponds to the first reliable information and whose priority belongs to the priority information, so that the base station learns the data reliability and priority of the terminal through link data.
  • setting the first data field in the BSR to the first identifier includes: setting a first N1 bit of the first data field in the BSR as a first identifier, and setting a first N2 bits of the first data and
  • the second identifier, where N1 and N2 are positive integers, may be the same or different, so that the base station knows the data reliability and priority of the terminal through link data.
  • setting the first data field in the BSR to the first identifier includes: setting a first M1 bit of the first data field in the BSR as a first identifier, and setting a first M2 bits of the first data and
  • the second identifier, where M1 and M2 are positive integers, may be the same or different, so that the base station knows the data reliability and priority of the terminal through link data.
  • the terminal may also set the second data field in the BSR as the amount of data buffered by the terminal, so that the base station obtains more direct link data information.
  • the amount of data cached by the terminal is the amount of data of the through link data that satisfies the reliability information and satisfies the priority information at the terminal.
  • the terminal obtains the configuration information to obtain the following correspondence:
  • any one of the first columns in Table 6 may represent a first identifier
  • the corresponding second column represents priority information
  • any one of the third columns may represent a second identifier, corresponding to the first
  • the four columns can be expressed as reliability information.
  • the data of the direct link that exists in the terminal is data 1 and data 2, respectively, where data 1 corresponds to priority identifier 1, reliability identifier 2, destination address 1, data volume is B1, data 2 corresponds to priority identifier 4, and reliability identifier 3 , destination address 2, the amount of data is B2. If the uplink resources available to the terminal are sufficient, the content in the pass-through link BSR can be as follows:
  • first identifier and the second identifier may be included in one data domain, for example, the first data domain.
  • the corresponding first data domain format may be as shown in FIG. 6. Shown: where N1 in front is used to indicate LCG ID1, followed by N2 to indicate LCG ID2, or vice versa. N1 and N2 can be the same, the number is 4.
  • FIG. 7 is a schematic structural diagram of an embodiment of a data transmission apparatus according to the present application.
  • the device may be the terminal in the foregoing embodiment, for example, the first terminal, or may be disposed on the terminal, for performing the data transmission method corresponding to FIG.
  • the data transmission apparatus includes a processor 701 and a transceiver circuit 702.
  • the processor 701 is configured to: obtain, by the transceiver circuit, information for indicating a first condition; acquire data to be transmitted; and, when the first condition is met, use the through link to pass through the first logical channel. Transmitting the data to be transmitted on a carrier frequency, and transmitting the data to be transmitted on a second carrier frequency through a second logical channel.
  • the information for indicating the first condition includes one or more of channel congestion information and reliability information
  • the first condition includes one or more of a congestion condition and a reliability condition.
  • the first condition may be an activation condition.
  • the information used to indicate the first condition may be carried in the RRC signaling sent by the network device to the terminal, where the RRC signaling may be an SIB message or a dedicated RRC signaling.
  • the processor receives the RRC signaling by using the transceiver circuit, and acquires information about the first condition.
  • the information used to indicate the first condition may be carried in a data packet sent by the network device to the terminal device, for example, may be included in the MAC CE.
  • the processor receives the data packet through the transceiver circuit to obtain information indicating the first condition.
  • the processor receives the PDCCH by using a transceiver circuit, where the PDCCH includes a DCI, where the DCI carries information indicating the first condition.
  • the information for indicating the first condition is included in the pre-configuration information, and the processor acquires the information for indicating the first condition by using the transceiver circuit.
  • the channel congestion information includes: a first channel congestion threshold, where the congestion condition includes: a channel congestion degree of the third carrier frequency is greater than or equal to the first channel congestion threshold.
  • the channel congestion information includes: a second channel congestion threshold, where the congestion condition includes a channel congestion degree of the third carrier frequency is less than or equal to the second channel congestion threshold.
  • the channel congestion information is: a first channel congestion range, where the congestion condition includes a channel congestion degree of the third carrier frequency within the first channel congestion range.
  • the third carrier frequency belongs to one of network carrier configurations or pre-configured all carrier frequencies for through link communication.
  • the reliability information includes: a first reliability threshold, where the reliability condition includes that the reliability of the data to be transmitted is greater than or equal to the first reliability. Threshold.
  • the reliability information includes: a first reliability enumeration value, where the reliability condition includes that the reliability of the data to be transmitted is equal to the first reliability enumeration value.
  • the reliability information includes a first reliability range, where the reliability condition includes that the reliability of the data to be transmitted is within the first reliability range.
  • the processor 701 is further configured to: obtain, by using the transceiver circuit, information for indicating a carrier frequency set, where the carrier frequency set and the first Corresponding to a data attribute, the carrier frequency set includes the first carrier frequency and the second carrier frequency, and the data to be transmitted has the data attribute.
  • the data attribute includes at least one of the following: priority, reliability, delay, destination address, and service type.
  • the first data attribute may also include other features, which are not specifically limited in this embodiment.
  • the obtaining the information for indicating the carrier frequency set is similar to the method for obtaining the information for indicating the first condition, and details are not described herein again.
  • the processor 701 is further configured to: obtain, by using the transceiver circuit, data attributes of each logical channel.
  • the processor is further configured to detect data attributes of the logical channels, and determine the first logical channel and the second logical channel.
  • the processor 701 is further configured to: acquire, by using the transceiver circuit, a preset correspondence between logical channels for performing data repetition transmission; and And determining that the first logical channel and the second logical channel are determined if the existence of the preset correspondence is met.
  • the processor 701 is further configured to: stop using the through link through the first logical channel when the second condition is met Transmitting the data to be transmitted on the first carrier frequency, and transmitting the data to be transmitted on the second carrier frequency through the second logical channel.
  • the information used to indicate the second condition includes any one of a third channel congestion threshold, a fourth channel congestion threshold, and a second channel congestion range.
  • the second condition includes: a channel congestion degree of the fourth carrier frequency is greater than or equal to the third channel congestion threshold; or
  • the channel congestion degree of the fourth carrier frequency is greater than or equal to the fourth channel congestion threshold
  • the degree of channel congestion of the fourth carrier frequency is within the second channel congestion range.
  • the fourth carrier frequency may be the same as or different from the third carrier frequency.
  • the apparatus provided in this embodiment is further configured to generate a through link BSR that includes the identification information, and report the BSR to the network device to implement the data transmission method as shown in FIG. 4, specifically:
  • the transceiver circuit 702 is configured to obtain configuration information and data, where the configuration information includes reliability information corresponding to the first identifier, or may further include a first identifier.
  • the processor 701 is configured to: if the first reliability corresponds to the reliability information, set a first data field in the pass-through link buffer status report BSR as the first identifier, and send the network to the network through the transceiver circuit 702. The device sends the BSR.
  • the first identifier includes: a first logical channel group identifier; or a first destination address identifier; or a first logical channel group identifier and a first destination address identifier.
  • the reliability information includes: a second reliability threshold, where the first reliability corresponding to the reliability information includes: the first reliable Sex is greater than or equal to the second reliability threshold; or
  • the reliability information includes: a third reliability threshold, where the first reliability corresponds to the reliability information, the first reliability is less than or equal to the third reliability threshold; or
  • the reliability information includes: a second reliability enumeration value, where the first reliability corresponds to the reliability information, the first reliability is equal to the second reliability enumeration value; or
  • the reliability information includes: a second reliability range, where the first reliability corresponds to the reliability information, the first reliability is within the second reliability range.
  • the configuration information further includes priority information, and the priority corresponding to the data is a first priority
  • the processor 701 is specifically configured to: if the first reliability corresponds to the reliability information, and the first priority corresponds to the priority information, set a first data domain of a pass-through link buffer status report BSR The first identifier is used, and the BSR is sent to the network device by using the transceiver circuit 702.
  • the priority information includes a first priority threshold, where the first priority corresponds to the priority information, including: the first priority The level is greater than or equal to the first priority threshold; or
  • the priority information includes a second priority threshold, and the first priority corresponding to the priority information includes: the first priority is less than or equal to the second priority threshold; or
  • the priority information includes a first priority enumeration value, and the first priority corresponding to the priority information includes: the first priority is equal to the first priority enumeration value; or
  • the priority information includes a first priority range, and the first priority corresponding to the priority information includes: the first priority is within the first priority range.
  • the present application further provides a terminal, as shown in FIG. 8, for performing the data transmission method described in the foregoing embodiment.
  • the terminal may include: a processor 801, a transceiver 802, and a memory 803.
  • the terminal may further include more or less components, or combine some components, or different component arrangements, which is not limited in this application. .
  • the transceiver 802 includes a transceiver circuit, and the transceiver circuit can include a receiving unit and a sending unit, configured to implement communication transmission between the terminal and the terminal, and between the terminal and the network device, such as sending and receiving data, signaling, and request messages. Wait.
  • the transceiver 802 may include a wireless local area network (WLAN) module, a Bluetooth module, a baseband module, and the like, and a radio frequency (RF) circuit corresponding to the communication module.
  • WLAN wireless local area network
  • RF radio frequency
  • Bluetooth communication infrared communication
  • cellular communication system communication such as wideband code division multiple access (WCDMA) and/or high speed downlink packet access (high speed downlink packet access) , HSDPA).
  • WCDMA wideband code division multiple access
  • HSDPA high speed downlink packet access
  • the processor 801 is a control center of the terminal, and connects various parts of the entire terminal device by using various interfaces and lines, by running or executing software programs and/or modules stored in the memory, and calling data stored in the memory 803. To perform various functions of the terminal and/or process data.
  • the processor 801 may be composed of an integrated circuit (IC), for example, may be composed of a single packaged IC, or may be composed of a plurality of packaged ICs that have the same function or different functions.
  • the processor 801 may include only a central processing unit (CPU), or may be a GPU, a digital signal processor (DSP), and a control chip (for example, a baseband chip) in the transceiver module.
  • the CPU may be a single computing core or may include multiple computing cores.
  • the memory 803 may include a volatile memory, such as a random access memory (RAM), and may also include a non-volatile memory, such as a flash memory.
  • RAM random access memory
  • non-volatile memory such as a flash memory.
  • HDD hard disk drive
  • SSD solid-state drive
  • a program or code may be stored in the memory, and the processor 801 in the terminal may implement the function of the network device by executing the program or code.
  • transceiver circuit 702 shown in FIG. 7 may be implemented by the transceiver 802 of the terminal, or by the transceiver 802 controlled by the processor 801; the processor or processing unit shown in FIG.
  • the functions to be implemented can be implemented by the processor 801.
  • the memory 803 is configured to store various information from a network device, such as information for indicating a first condition, information for indicating a carrier frequency set, channel congestion information, reliability information, and information for indicating a second condition. And, further, the information can be carried by RRC signaling. In addition, the memory is further configured to store the first carrier frequency set, the second carrier frequency set, the PDCP layer to be transmitted data, and various congestion conditions and reliability conditions, and the like.
  • the present application further provides a computer storage medium, wherein the computer storage medium may store a program, and the program may include some or all of the steps in the embodiments of the data transmission method provided by the application.
  • the storage medium may be a magnetic disk, an optical disk, a ROM, a RAM, or the like.
  • the application further provides a network device, which is used to implement a data transmission method corresponding to the behavior of the terminal.
  • the network device includes a processor, a transceiver, and a memory, or a structure and a terminal thereof.
  • the structure is the same. specifically:
  • the network device generates information indicating a first condition; the first condition information includes an activation condition for activating PDCP layer repeated transmission, or includes information such as necessary parameters for indicating the activation condition.
  • the network device transmits the information of the first condition.
  • the information used to indicate the first condition includes: a first channel congestion threshold, a second channel congestion threshold, or a first channel congestion range; the first condition includes a congestion condition, and further, the congestion condition
  • the channel congestion degree of the third carrier frequency of the terminal is greater than or equal to the first channel congestion threshold, or the channel congestion degree of the third carrier frequency of the terminal is less than or equal to the second channel congestion threshold, or the terminal
  • the degree of channel congestion of the third carrier frequency is within the first channel congestion range.
  • the information used to indicate the first condition may include: a first reliability threshold, a first reliability enumeration value, or a first reliability range, where the first condition includes a reliability condition, and further, The reliability condition includes that the reliability of the data to be transmitted is greater than or equal to the first reliability threshold; or the reliability condition includes that the reliability of the data to be transmitted is equal to the first reliability enumeration Or the reliability condition includes that the reliability of the data to be transmitted is within the first reliability range.
  • the method further includes:
  • the network device generates information indicating a second condition, and sends the information indicating the second condition;
  • the information for indicating the second condition includes: any one of a third channel congestion threshold, a fourth channel congestion threshold, and a second channel congestion range; and the second condition includes: channel congestion of the fourth carrier frequency
  • the degree of channel congestion is greater than or equal to the third channel congestion threshold; or the channel congestion degree of the fourth carrier frequency is less than or equal to the fourth channel congestion threshold; or the channel congestion degree of the fourth carrier frequency is The second channel is within the congestion range.
  • the network device further sends RRC signaling, where the RRC signaling includes information for indicating a third carrier frequency.
  • the RRC signaling includes information used to indicate the first carrier frequency set and the second carrier frequency set.
  • the RRC signaling includes information used to indicate a third carrier frequency set.
  • the RRC signaling includes information for indicating a fourth carrier frequency set, where the fourth carrier frequency set corresponds to a first data attribute, where the fourth carrier frequency set includes the first carrier frequency And the second carrier frequency.
  • the data attribute includes one or more of priority, reliability, delay, destination address, and service type.
  • the network device is further configured to send configuration information to the terminal, which is used to obtain a direct link state of the terminal, thereby better scheduling resources for the terminal.
  • the data transmission method includes the following steps. :
  • the network device sends the configuration information to the terminal, where the configuration information includes reliability information corresponding to the first identifier, where the configuration information is used to configure the terminal if the reliability of the data corresponds to the reliability Information, the first data field in the BSR is set to be the first identifier;
  • the network device receives the pass-through link BSR from the terminal.
  • the configuration information further includes priority information.
  • the configuration information is used to configure the terminal to transmit the first data domain as the first if the reliability of the data corresponds to the reliability information, and the priority of the data corresponds to the priority information.
  • the first identifier includes: a first logical channel group identifier; or a first destination address identifier; or a first logical channel group identifier and a first destination address identifier.
  • the processor of the network device performs the above data transmission method by reading an instruction in a memory, where the memory is coupled to a processor, and the memory includes a storage medium, such as a magnetic disk, CD, ROM or RAM.
  • the terminal described in the present application is used in the technical solution of the through link, that is, the data transmission of the device to the device (D2D), and the transmitting device at one end of the terminal may also be the receiving device at the other end.
  • the present application further provides a communication system for transmission of repeated data packets under a direct link, the system comprising at least two terminals, each of which may be the data transmission device shown in FIG. 7, or The terminal structure shown in FIG. 8 is used to implement the data transmission method in the first embodiment of the present application.
  • the data transmission method includes the following steps:
  • the first terminal Transmitting, by the first terminal, data in the first logical channel and the second logical channel to the second terminal by using the at least one first carrier frequency and the at least one second carrier frequency, respectively, the first logical channel
  • the second logical channel includes first data, and the first data is from the same PDCP entity.
  • the first terminal determines the at least one first carrier frequency and the at least one second carrier frequency, including: the first terminal autonomously determines the at least one first carrier frequency and the at least one second carrier frequency, or The device is preconfigured to determine the at least one first carrier frequency and the at least one second carrier frequency.
  • the method further includes: acquiring, by the first terminal, a correspondence between the carrier frequency set and the identifier, where the identifier includes at least one of the following: a priority, a destination address, a reliability, a delay, and a service type;
  • Determining, by the first terminal, the at least one first carrier frequency and the at least one second carrier frequency further comprises: determining, by the first terminal, the at least one first carrier frequency and the at least one first according to the first identifier corresponding to the first data and the correspondence Two carrier frequencies, wherein the at least one first carrier frequency and the at least one second carrier frequency belong to the carrier frequency set.
  • the first identifier corresponding to the first data includes: a priority corresponding to the first data, a destination address corresponding to the first data, a reliability corresponding to the first data, a delay corresponding to the first data, and a first data corresponding to At least one of the type of business, etc.
  • the first terminal sends the first logical channel and the second logical channel to the second terminal by using the at least one first carrier frequency and the at least one second carrier frequency respectively through the through link.
  • the method further includes: determining, by the first terminal, whether the first condition is met, and if yes, delivering the first data to the first logical channel and the second logical channel respectively.
  • the method further includes: acquiring, by the first terminal, first channel congestion information,
  • the first condition includes that the channel congestion degree of the third carrier frequency is greater than or equal to the first channel congestion threshold
  • the first condition includes that a channel congestion degree of the third carrier frequency is less than or equal to the second channel congestion threshold
  • the first condition includes that the channel congestion degree of the third carrier frequency is within the first channel congestion range.
  • the method further includes: acquiring, by the first terminal, reliability information;
  • the first condition includes that the data reliability information corresponding to the first data is greater than or equal to the first reliability threshold
  • the reliability information includes a second reliability threshold
  • the first condition includes that the data reliability information corresponding to the first data is equal to a second reliability threshold
  • the second reliability threshold is one or Multiple enumerated values
  • the first condition includes that the data reliability information corresponding to the first data is within the first reliability range.
  • the method further includes:
  • the first terminal device determines to stop delivering the same first data to the first logical channel and the second logical channel respectively when the second condition is met.
  • the method further includes: acquiring, by the first terminal, second channel congestion information.
  • the second condition includes: the channel congestion degree of the at least one first carrier frequency corresponding to the first logical channel is greater than or equal to a third channel congestion threshold, and a channel congestion degree of the at least one second carrier frequency corresponding to the second logical channel is greater than or equal to the fourth channel congestion threshold;
  • the second condition includes: the channel congestion degree of the at least one first carrier frequency corresponding to the first logical channel is less than or Equal to the fifth channel congestion threshold, and the channel congestion degree of the at least one second carrier frequency corresponding to the second logical channel is less than or equal to the sixth channel congestion threshold;
  • the channel congestion degree of the at least one first carrier frequency corresponding to the first logical channel is the maximum value of the channel congestion degree corresponding to the at least one first carrier frequency, or the channel congestion corresponding to the at least one first carrier frequency The minimum value of the degree;
  • the channel congestion degree of the at least one second carrier frequency corresponding to the second logical channel is the maximum value of the channel congestion degree corresponding to the at least one second carrier frequency, or the channel congestion degree corresponding to the at least one second carrier frequency.
  • the first channel congestion threshold, the second channel congestion threshold, the third channel congestion threshold, the fourth channel congestion threshold, the fifth channel congestion threshold, and the sixth channel congestion threshold may be the same or different
  • the one-channel congestion range and the second channel congestion range may be the same or different
  • the first reliability threshold and the second reliability threshold may be the same or different, which is not limited in this application.
  • the method further includes:
  • the MAC layer of the terminal determines a first logical channel and a second logical channel for repeated transmission.
  • determining, by the MAC layer of the terminal, the first logical channel and the second logical channel specifically include:
  • the MAC layer determines the first logical channel and the second logical channel according to identification information of each logical channel.
  • the identification information may include at least one of the following: priority, reliability, delay, destination address, and service type;
  • the MAC layer may determine the first logical channel and the second logical channel according to the logical channel having the pairing relationship.
  • the technology in the embodiments of the present application can be implemented by means of software plus a necessary general hardware platform.
  • the technical solution in the embodiments of the present application may be embodied in the form of a software product in essence or in the form of a software product, and the computer software product may be stored in a storage medium such as a ROM/RAM. , a diskette, an optical disk, etc., including instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present application or portions of the embodiments.
  • a computer device which may be a personal computer, server, or network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种数据传输方法和装置,所述方法包括:终端获取用于指示第一条件的信息,并获取待传输数据;当满足第一条件时,所述终端利用直通链路,通过第一逻辑信道在第一载频上发送所述待传输数据,且通过第二逻辑信道在第二载频上发送所述待传输数据。本方法实现了直通链路上同一数据在两个逻辑信道上被不同载频发送,接收设备可以接收到重复的同一数据,进而提高了数据传输的可靠性。

Description

一种数据传输方法和装置 技术领域
本申请涉及无线通信技术领域,包括车联网技术领域,尤其涉及一种数据传输方法和装置。
背景技术
车联网***是以车内网、车际网和车载移动互联网为基础,按照约定的通信协议和数据交互标准,在车与X(Vehicle to X,V2X)之间进行无线通讯和信息交换的***网络。V2X可以为车辆与车辆(Vehicle to Vehicle,V2V)、车辆与网络(Vehicle to Network,V2N)、车辆与基础设施(Vehicle-to-Infrastructure,V2I)、车辆与行人(Vehicle-to-Infrastructure,V2P)等。即X可以为车辆、基础设施、网络、行人等。车联网***旨在通过V2X通信来达到提高道路安全,提高交通效率和为用户提供丰富的流媒体服务的目的。
由于蜂窝技术具有时延短、速度快、覆盖率广泛等优势,因此,车联网中的V2X之间采用蜂窝技术进行通信成为当前的主要趋势。如图1所示,V2X之间可以采用蜂窝技术,使用直通链路(也称为侧向链路、Sidelink等)进行通信。即,车与X之间可以使用网络设备调度或者配置的资源,或者,车与X之间使用预配置的资源,通过直通链路直接进行通信,不需要经过网络设备中转。
在V2X采用直通链路进行通信时,由于直通链路信道特性的快速变化,以及缺乏相应的反馈机制,直通链路通信可靠性较低。当V2X采用直通链路进行通信时,如何保障直通链路数据传输的可靠性是一个亟待解决的问题。
发明内容
本申请提供了一种数据传输方法和装置,以提高直通链路中数据传输的可靠性。其中,所述应用场景包括但不限于V2X场景可以应用于通过直通链路进行通信的所有场景,例如,设备到设备的应用场景、机器到机器的应用场景;具体地,本申请公开如下技术方案:
第一方面,本申请提供了一种数据传输方法,所述方法包括:终端获取用于指示第一条件的信息;获取待传输数据;当满足第一条件时,终端利用直通链路,通过第一逻辑信道在第一载频上发送所述待传输数据,且通过第二逻辑信道在第二载频上发送所述待传输数据。
结合第一方面,在第一方面的一种实现方式中,所述方法还包括:所述终端确定 第一载频集合和第二载频集合;其中,所述第一载频为第一载频集合中的一个载频,所述第二载频为第二载频集合中的一个载频,且所述第一载频集合与所述第一逻辑信道具有对应关系,所述第二载频集合与所述第二逻辑信道具有对应关系。
结合第一方面,在第一方面的另一种实现方式中,确定第一载频集合和第二载频集合包括:终端获取用于指示第一载频集合和第二载频集合的第一信息,根据所述第一信息确定所述第一载频集合和所述第二载频集合;所述第一信息通过无线资源控制信令RRC或预配置信息承载;或者,获取用于指示第三载频集合的第二信息,根据所述第二信息确定所述第一载频集合和所述第二载频集合;所述第二信息通过RRC信令或预配置信息承载。
结合第一方面,在第一方面的又一种实现方式中,所述待传输数据具有数据属性,方法还包括:终端获取用于指示第四载频集合的信息,所述第四载频集合与数据属性相对应,所述第四载频集合包括所述第一载频和所述第二载频。
结合第一方面,在第一方面的又一种实现方式中,所述数据属性包括以下一项或多项:优先级、可靠性、时延、目的地址和业务类型等。
结合第一方面,在第一方面的又一种实现方式中,所述用于指示第一条件的信息包括:第一信道拥塞阈值,所述第一条件包括:第三载频的信道拥塞程度大于或等于所述第一信道拥塞阈值;或者,所述用于指示第一条件的信息包括:第二信道拥塞阈值,所述第一条件包括:第三载频的信道拥塞程度小于或等于所述第二信道拥塞阈值;或者,所述用于指示第一条件的信息为:第一信道拥塞范围,所述第一条件包括:终端的第三载频的信道拥塞程度在所述第一信道拥塞范围内;其中第三载频属于网络设备配置或者预配置的用于直通链路通信的所有载频中的一个。
结合第一方面,在第一方面的又一种实现方式中,所述第三载频由网络设备通过RRC信令配置或者预配置的方式确定;或者,所述第三载频为终端传输载频中的任意一个;或者,所述第三载频为终端传输载频中信道拥塞程度最小的一个载频;或者,所述第三载频为终端传输载频中信道拥塞程度最大的一个载频;或者,所述第三载频为终端传输载频中支持所述待传输数据的载频中的任意一个载频;或者,所述第三载频为终端传输载频中支持所述待传输数据的载频中,信道拥塞程度最小的一个载频;或者,所述第三载频为终端传输载频中支持所述待传输数据的载频中,信道拥塞程度最大的一个载频。
结合第一方面,在第一方面的又一种实现方式中,所述用于指示第一条件的包括:第一可靠性阈值,所述第一条件包括:待传输数据的可靠性大于或等于所述第一可靠性阈值;或者,所述用于指示第一条件的信息包括:第一可靠性枚举值,所述第一条件包括:待传输数据的可靠性等于所述第一可靠性枚举值;或者,所述用于指示第一条件的信息包括:第一可靠性范围,所述第一条件包括:所述待传输数据的可靠性在所述第一可靠性范围内。
结合第一方面,在第一方面的又一种实现方式中,所述方法还包括:终端基于各逻辑信道的数据属性确定所述第一逻辑信道和所述第二逻辑信道,其中,所述数据属 性包括:优先级、目的地址、时延、业务类型、可靠性中的一项或多项,或者,所述终端通过各逻辑信道的ID之间的对应关系确定所述第一逻辑信道和所述第二逻辑信道。
结合第一方面,在第一方面的又一种实现方式中,所述逻辑信道ID之间的对应关系包括:第二逻辑信道的ID与第一逻辑信道的ID之间的差值,或,和值满足预设值,所述预设值为正整数。
结合第一方面,在第一方面的又一种实现方式中,所述方法还包括:当满足第二条件时,终端停止利用所述直通链路,通过第一逻辑信道在第一载频上发送待传输数据,和通过第二逻辑信道在第二载频上发送待传输数据。
结合第一方面,在第一方面的又一种实现方式中,在所述终端停止发送待传输数据之前,所述方法还包括:所述终端获取用于指示第二条件的信息,所述用于指示第二条件的信息包括:第三信道拥塞阈值、第四信道拥塞阈值和第二信道拥塞范围中任意一种;
所述第二条件包括:第四载频的信道拥塞程度大于或等于所述第三信道拥塞阈值;或者,所述第四载频的信道拥塞程度小于或等于所述第四信道拥塞阈值;或者,所述第四载频的信道拥塞程度在所述第二信道拥塞范围内。
所述方法的执行主体可以具有多样性,执行主体可以不限于是终端,也可以是芯片、芯片***、集成电路等。
第二方面,本申请还提供了一种数据传输方法,该方法包括:终端获取配置信息,所述配置信息中包括与所述第一标识对应的可靠性信息;获取数据,所述数据的可靠性为第一可靠性;若所述第一可靠性对应于所述可靠性信息,向网络设备发送直通链路缓存状态报告BSR,所述直通链路BSR中的第一数据域为所述第一标识。
其中,所述配置信息中还包括第一标识,例如逻辑信道组标识LCG ID,所述第一标识与可靠性信息具有对应关系。
此外,在一种可能的实现方式中,所述方法还包括:在所述终端和网络设备两端预先协商或约定一种规则或者是协议规定的一种规则,例如至少一个LCG ID按照从小到大的规则排序,终端在接收到所述配置信息后,根据与网络设备约定的规则,确定出该至少一个LCG ID中每个LCGID对应的可靠性信息。
结合第二方面,在第二方面的一种实现方式中,所述可靠性信息包括:第二可靠性阈值,所述第一可靠性对应于所述可靠性信息包括:所述第一可靠性大于或者等于所述第二可靠性阈值;或者,
所述可靠性信息包括:第三可靠性阈值,所述第一可靠性对应于所述可靠性信息包括,所述第一可靠性小于或者等于所述第三可靠性阈值;或者,
所述可靠性信息包括:第二可靠性枚举值,所述第一可靠性对应于所述可靠性信息包括:所述第一可靠性等于所述第二可靠性枚举值;或者,
所述可靠性信息包括:第二可靠性范围,所述第一可靠性对应于所述可靠性信息包括:所述第一可靠性在所述第二可靠性范围内。
结合第二方面,在第二方面的另一种实现方式中,所述配置信息还包括优先级信息,所述数据对应的优先级为第一优先级;所述若所述第一可靠性对应于所述可靠性信息,向网络设备发送直通链路BSR包括:若所述第一可靠性对应于所述可靠性信息,且所述第一优先级对应于所述优先级信息,向网络设备发送直通链路BSR。
结合第二方面,在第二方面的又一种实现方式中,所述优先级信息包括第一优先级阈值,所述第一优先级对应于所述优先级信息包括:所述第一优先级大于或者等于所述第一优先级阈值;或者,
所述优先级信息包括第二优先级阈值,所述第一优先级对应于所述优先级信息包括:所述第一优先级小于或者等于所述第二优先级阈值;或者,
所述优先级信息包括第一优先级枚举值,所述第一优先级对应于所述优先级信息包括:所述第一优先级等于所述第一优先级枚举值;或者,
所述优先级信息包括第一优先级范围,所述第一优先级对应于所述优先级信息包括:所述第一优先级在所述第一优先级范围内。
结合第二方面,在第二方面的另一种实现方式中,所述第一标识包括:第一逻辑信道组标识;或,第一目的地址标识;或,第一逻辑信道组标识和第一目的地址标识。
第三方面,本申请还提供了一种数据传输方法,所述方法包括:网络设备向终端发送配置信息,所述配置信息中包括:与所述第一标识对应的可靠性信息;其中,所述配置信息用于配置所述终端若其数据的可靠性对应于所述可靠性信息,设置所述终端向网络设备发送直通链路缓存状态报告BSR中第一数据域为所述第一标识;接收来自所述终端的所述直通链路BSR。
其中,所述第一标识包括:第一逻辑信道组标识;或,第一目的地址标识;或,第一逻辑信道组标识和第一目的地址标识。
结合第三方面,在第三方面的一种实现方式中,所述配置信息还包括优先级信息;所述配置信息用于配置所述终端若其数据的可靠性对应于所述可靠性信息,且所述数据的优先级对应于所述优先级信息,设置所述终端向网络设备发送直通链路缓存状态报告BSR中第一数据域为所述第一标识。
第四方面,本申请还提供了一种数据传输装置,该装置包括用于执行第一方面至第三方面及各方面对应的各实现方式的中方法步骤的单元和部件。
其中,所述装置可以是终端、芯片、芯片***或集成电路等。
第五方面,本申请提供了一种终端,该终端包括第四方面所述的数据传输装置,其中,所述终端包括:处理器、收发器和存储器等部件;所述处理器可以执行所述存储器中所存储的程序或指令,从而实现第一方面至第三方面以及各种实现方式所述数据传输方法;
其中,所述处理器用于与存储器耦合,读取所述存储器中的指令。具体地,所述收发器,用于获取用于指示第一条件的信息,以及获取待传输数据;所述处理器,用于当满足第一条件时,利用直通链路通过第一逻辑信道在第一载频上发送所述待传输数据,且通过第二逻辑信道在第二载频上发送所述待传输数据。
结合第五方面,在第五方面的一种实现方式中,所述处理器还用于:确定第一载频集合和第二载频集合;其中,所述第一载频为第一载频集合中的一个载频,所述第二载频为第二载频集合中的一个载频,且所述第一载频集合与所述第一逻辑信道具有对应关系,所述第二载频集合与所述第二逻辑信道具有对应关系。
结合第五方面,在第五方面的一种实现方式中,所述处理器还用于:根据第一信息或者第二信息确定所述第一载频集合和所述第二载频集合,其中,所述第一信息和所述第二信息通过收发器获取,且第一信息用于指示第一载频集合和第二载频集合,第二信息用于指示第三载频集合,此外,所述第一信息和所述第二信息通过RRC信令或预配置信息来承载。
结合第五方面,在第五方面的另一种实现方式中,所述处理器还用于:通过收发器接收用于指示第四载频集合的信息,其中,所述第四载频集合与第一数据属性相对应,所述第四载频集合包括所述第一载频和第二载频。
其中,所述数据属性包括以下一项或多项:优先级、可靠性、时延、目的地址和业务类型。
可选的,所述用于指示第一条件的信息包括:第一信道拥塞阈值,所述第一条件包括第三载频信道拥塞程度大于或等于所述第一信道拥塞阈值;
或者,所述用于指示第一条件的信息包括:第二信道拥塞阈值,所述第一条件包括第三载频的信道拥塞程度小于或等于所述第二信道拥塞阈值;
或者,所述用于指示第一条件的信息包括:第一信道拥塞范围,所述第一条件包括第三载频的信道拥塞程度在所述第一信道拥塞范围内;
其中,所述第三载频属于网络设备配置或者预配置的用于直通链路通信的所有载频中的一个载频。
结合第五方面,在第五方面的又一种实现方式中,所述第三载频由基站通过RRC信令配置或者预配置的方式确定;
或者,所述第三载频为终端传输载频中的任意一个;
或者,所述第三载频为终端传输载频中信道拥塞程度最小的一个载频;
或者,所述第三载频为终端传输载频中信道拥塞程度最大的一个载频;
或者,所述第三载频为终端传输载频中支持所述待传输数据的载频中的任意一个载频;
或者,所述第三载频为终端传输载频中支持所述待传输数据的载频中,信道拥塞程度最小的一个载频;
或者,所述第三载频为终端传输载频中支持所述待传输数据的载频中,信道拥塞程度最大的一个载频。
结合第五方面,在第五方面的又一种实现方式中,所述用于指示第一条件的信息包括:第一可靠性阈值,所述第一条件包括所述待传输数据的可靠性大于或等于所述第一可靠性阈值;
或者,所述用于指示第一条件的信息包括:第一可靠性枚举值,所述第一条件包 括所述待传输数据的可靠性等于所述第一可靠性枚举值;
或者,所述用于指示第一条件的信息包括第一可靠性范围,所述第一条件包括所述待传输数据的可靠性在所述第一可靠性范围内。
结合第五方面,在第五方面的又一种实现方式中,所述处理器,还用于基于各逻辑信道的数据属性确定所述第一逻辑信道和所述第二逻辑信道,其中,所述数据属性包括:优先级、目的地址、时延、业务类型、可靠性中的一项或多项,
或者,用于根据各逻辑信道的ID之间的对应关系,确定所述第一逻辑信道和所述第二逻辑信道。
其中,所述对应关系包括:第二逻辑信道的ID与第一逻辑信道的ID之间的差值或和值满足预设值。
结合第五方面,在第五方面的又一种实现方式中,所述收发器,还用于当满足第二条件时,停止利用所述直通链路通过所述第一逻辑信道在所述第一载频上发送待传输数据,和通过所述第二逻辑信道在所述第二载频上发送待传输数据。
结合第五方面,在第五方面的又一种实现方式中,在所述停止发送待传输数据之前,所述收发器,还用于获取用于指示第二条件的信息,所述用于指示第二条件的信息包括:第三信道拥塞阈值、第四信道拥塞阈值和第二信道拥塞范围中任意一种;
所述第二条件包括:第四载频的信道拥塞程度大于或等于所述第三信道拥塞阈值;或者,所述第四载频的信道拥塞程度小于或等于所述第四信道拥塞阈值;或者,所述第四载频的信道拥塞程度在所述第二信道拥塞范围内。
第六方面,本申请还提供了一种计算机存储介质,该计算机存储介质可存储有程序,该程序执行时可实现包括本申请提供的数据传输方法各实施例中的部分或全部步骤。
第七方面,本申请还提供了一种网络设备,所述网络设备包括收发器、处理器和存储器,其中,所述处理器,用于生成指示第一条件的信息,以及控制所述收发器发送该指示第一条件的信息。
结合第七方面,在第七方面的一种实现方式中,所述用于指示第一条件的信息包括:第一信道拥塞阈值、第二信道拥塞阈值或第一信道拥塞范围;所述第一条件包括:终端的第三载频的信道拥塞程度大于或等于所述第一信道拥塞阈值,或者,终端的第三载频的信道拥塞程度小于或等于所述第二信道拥塞阈值,或者,终端的第三载频的信道拥塞程度在所述第一信道拥塞范围内。
结合第七方面,在第七方面的另一种实现方式中,所述用于指示第一条件的信息可以包括:第一可靠性阈值、第一可靠性枚举值或第一可靠性范围,所述第一条件包括所述待传输数据的可靠性大于或等于所述第一可靠性阈值;或者,所述待传输数据的可靠性等于所述第一可靠性枚举值;或者,所述待传输数据的可靠性在所述第一可靠性范围内。
结合第七方面,在第七方面的又一种实现方式中,所述处理器,还用于生成指示第二条件的信息,以及控制所述收发器发送该指示第二条件的信息;
其中,所述用于指示第二条件的信息包括:第三信道拥塞阈值、第四信道拥塞阈值和第二信道拥塞范围中任意一种;所述第二条件包括:第四载频的信道拥塞程度大于或等于所述第三信道拥塞阈值;或者,所述第四载频的信道拥塞程度小于或等于所述第四信道拥塞阈值;或者,所述第四载频的信道拥塞程度在所述第二信道拥塞范围内。
结合第七方面,在第七方面的又一种实现方式中,所述处理器还用于通过所述收发器发送RRC信令,所述RRC信令包含用于指示第三载频的信息。结合第七方面,在第七方面的又一种实现方式中,所述处理器还用于通过所述收发器发送RRC信令,所述RRC信令包含用于指示第三载频集合的信息。
结合第七方面,在第七方面的又一种实现方式中,所述处理器还用于通过所述收发器发送RRC信令,所述RRC信令包含用于指示第一载频集合和第二载频集合的信息。
结合第七方面,在第七方面的又一种实现方式中,所述处理器还用于通过所述收发器发送RRC信令,所述RRC信令包含用于指示第三载频集合的信息。
结合第七方面,在第七方面的又一种实现方式中,所述处理器还用于通过所述收发器发送RRC信令,所述RRC信令包含用于指示第四载频集合的信息,其中述第四载频集合与第一数据属性相对应,所述第四载频集合包括所述第一载频和所述第二载频。所述数据属性包括优先级、可靠性、时延、目的地址和业务类型中的一项或多项。
此外,所述存储器中存储有指令,所述处理器用于读取所述存储器中的指令,并根据该指令执行第七方面各个实现方式中的方法。
第八方面,本申请还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得所述计算机执行上述各方面所述的方法步骤。
本实施例提供的数据传输方法,当满足数据重复传输激活条件时,终端利用直通链路使用不同的载频发送第一逻辑信道和第二逻辑信道上的数据,其中第一逻辑信道和第二逻辑信道都包含来自同一PDCP实体的同一数据,从而实现了直通链路上同一数据在两个逻辑信道上被不同载频发送,接收设备可以接收到重复的同一数据,进而提高了数据传输的可靠性。
附图说明
图1为本申请提供的一种直通链路的场景示意图;
图2为本申请提供的一种LTE***协议栈的结构示意图;
图3为本申请提供的一种数据传输方法的流程图;
图4为本申请提供的另一种数据传输方法的流程图;
图5为本申请实施例提供的一种直通链路BSR的示意图;
图6为本申请实施例提供的第一数据域的示意图;
图7为本申请提供的一种数据传输装置的结构示意图;
图8为本申请提供的一种终端的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请实施例中的技术方案,并使本申请实施例的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请实施例中的技术方案作进一步详细的说明。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在对本申请实施例的技术方案说明之前,首先结合附图对本申请实施例的技术场景进行说明。
本申请各实施例提供的方法可应用于LTE(Long Term Evolution,长期演进)***,或采用码分多址、正交频分多址等无线接入技术的无线通信***。此外,还可以适用于使用LTE***后续的演进***,如第五代(5G)通信***、NR(new radio,新空口)***和物联网***等。本申请实施例还可以用于WLAN***,本发明对此不进行限制。
本申请各个实施例所提供的技术方案可以应用于V2X通信场景。具体地,本申请所提供的数据传输方法,包括但不限于V2X的应用场景,可以应用于通过直通链路进行通信的所有场景,例如,设备到设备(Device to Device,D2D)的应用场景、机器到机器(Machine to Machine,M2M)的应用场景,均可以采用本申请所提供的数据传输方法,对此不再赘述。
如图1所示,终端1和终端2之间通过直通链路进行通信,终端之间的通信资源可来自于网络设备调度、配置或者预配置。
具体地,在直通链路中,终端之间通信可采用不同的模式。其中,一种模式是网络设备调度模式。即终端向网络设备发送请求信息,网络设备接收到来请求信息后,动态或者半动态地为车辆终端的直通链路通信调度资源。
另一种模式是终端自主资源选择方式,即网络设备通过无线资源控制(Radio Resource control,RRC)信令为终端配置一个资源集合,终端从该资源集合中自主地选择资源进行通信,或者终端从预配置的资源集合中获取资源来进行通信。
其中,RRC信令可以是***消息块(System information Block,SIB)消息或者是专用无线资源控制(专用RRC)信令;资源集合中包含若干时频资源,可选的,资源集合可以是资源池。
其中,所述预配置是指终端在出厂时预先配置在终端内部的,或者是由网络预配置的、且保存终端在内部的。
此外,所述终端从资源池中选择资源可以是随机选择或者是基于侦听预留机制来选择,本申请对此不予限制。
在无线通信***环境中,采用如图1所示的架构,包括至少一个终端和网络设备,用于在直通链路数据发送。
进一步地,所述终端,可以是V2X中位于车辆上的终端设备(例如,车载终端设备、乘坐车辆的用户所携带的终端设备),也可以是位于X(基础设施、网络、行人等)上的终端设备,或者可以是车辆终端本身或者X本身,此外,所述终端中还可以包括芯片、集成电路或处理器等。
本申请中的终端设备可以是无线终端,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。所述终端也可以为订户单元(subscriber unit,SU)、订户站(subscriber station,SS),移动站(mobile station,MS)、远程站(remote station,RS)、远端设备(remote terminal,RT)、接入终端(access terminal,AT)、用户终端(user terminal,UT)、用户代理(user agent,UA)、用户设备、或用户装备(user equipment,UE)等。
可选的,所述网络设备包括无线设备,具体地,所述无线设备可以是接入点(access point,AP),还可以是其它网络设备,例如基站、增强型基站、或具有调度功能的中继、或具有基站功能的设备等。其中,基站可以是LTE***中的演进型基站(evolved Node B,eNB),或者未来5G网络中的基站(New Radio Node,NR node,gNB),也可以其它***中的基站,其中基站形态可以是集中式,例如Cloud Radio Access Network,Cloud RAN形态的基站,可以分布式,例如传统的GSM基站,或者是控制与转发分离的,例如gNB,本申请实施例并不限定。
在对本申请提供的一种数据传输方法进行说明之前,先介绍通信***协议栈。
如图2所示,表示LTE***通信协议栈的结构示意图,从上层到下层依次是,RRC层、分组数据汇聚协议(Packet Date Convergence Protocol,PDCP)层、无线链路控制协议(Radio Link Control,RLC)层、媒体接入控制(Media Access Control,MAC)层和物理层(Physical Layer,PHY)其中,PDCP层用于处理控制面上的RRC消息以及用户面上的数据。可选的,在用户平面上,PDCP层接收到来自上层的数据后,可以对数据进行头压缩和加密,然后递交(submit)到RLC层。
另外,可选的,PDCP层还可以向上层提供按序提交和重复分组检测功能。可选的,在控制平面,PDCP层可以为上层RRC提供信令传输服务,并实现RRC信令的加密和一致性保护。
MAC层在逻辑信道(Logical Channels)上提供数据传送业务。逻辑信道通常可以分为两类:控制信道和业务信道。控制信道用于传输控制平面信息,而业务信道用于传输用户平面信息。此外,MAC层还负责将逻辑信道映射到传输信道。
在MAC层之下是PHY层,PHY层负责将传输信道映射到物理信道。
其中PDCP层可以维护一个或者多个PDCP实体,RLC层可以维护一个或者多个RLC实体。在LTE***中,不进行数据重复传输时,单个PDCP实体的数据递交给一个RLC实体。在数据重复传输被激活之后,终端会将PDCP层的需要传输的同一数据(同一PDCP实体的同一待传输数据)分别递交给两个逻辑信道,例如第一逻辑信道和第二逻辑信道,具体的,终端会将PDCP层的需要传输的数据分别递交给第一RLC实体和第二RLC实体,其中第一RLC实体与第一逻辑信道对应,第二RLC实体与第二逻辑信道对应。所述对应可以是隐式的,也可以是显示的。然后,MAC层进行资源选择以及数据封装。对数据重复传输而言,进行重复数据传输的两个逻辑信道上的数据需要被封装在不同的传输资源块(Transport Block,TB)中,并通过不同的载频进行发送。
其中,需要说明的是,如果没有特殊说明,本申请中“数据重复传输”或“重复传输”是指“PDCP层数据重复传输”。本申请的各实施例以PDCP层数据重复传输为例,但随着技术演进,所述“PDCP层数据重复传输”还可以扩展到类似于PDCP层重复传输的其他协议层重复传输的场景,本申请对此不予限制。
另外,图2协议栈示意图不对本申请未来应用的协议栈构成限制。例如,不排除在未来应用的协议栈结构中增加新的层,或者增加新的功能,或者删除某些层,或者简化或者合并某些层的功能。例如,对于用户面协议栈,在PDCP层之上可以存在,服务数据适配层(Service Data Adaptation Protocol,SDAP)。
另外,协议栈又可以分为用户面协议栈和控制面协议栈,用户面协议栈可能不需要RRC层。
参见图3,为本申请实施例提供的一种数据传输方法,该方法用于实现PDCP层数据在直通连路上的重复传输,进而保证数据能够在直通链路上传输的可靠性。
所述方法包括如下步骤:
步骤101:终端获取用于指示第一条件的信息。
其中,所述用于指示第一条件的信息可以是承载在网络设备向终端发送的RRC信令中,其中RRC信令可以是SIB消息或者专用RRC信令。终端通过接收该RRC信令,获取该用于指示第一条件的信息。
或者,所述用于指示第一条件的信息可以是承载在网络设备发送给终端设备的数据包中,例如,可以包含在MAC控制元素(control element),简称“MAC CE”。所述终端通过接收该数据包,获取该用于指示第一条件的信息。
或者,所述用于指示第一条件的信息承载在物理下行控制信道(Physical downlink control channel,PDCCH)上,终端通过获取PDCCH上的下行控制指示(downlink control indicator,DCI)获取该用于指示第一条件的信息。
或者,所述用于指示第一条件的信息包含在预配置信息中,终端从预配置信息中获取该用于指示第一条件的信息。
作为一种可选的实现方式,所述第一条件可以是激活条件。
步骤102:终端获取待传输数据。所述待传输数据为PDCP实体的待发送数据或数据包。
其中,终端获取指示第一条件的信息和获取待传输数据时间可以先后获取,例如先获取待传输数据,再获取指示第一条件信息,或者同时获取,对于时序前后本申请不予限制。
步骤103:当满足所述第一条件时,所述终端利用直通链路通过第一逻辑信道在第一载频上发送所述待传输数据,且通过第二逻辑信道在第二载频上发送所述待传输数据。
其中,所述第一载频和第二载频不同,第一逻辑信道和第二逻辑信道中均包含相同的待传输数据,且均来自同一PDCP实体。
作为一种可选的实现方式,当终端满足第一条件时,终端的PDCP层将同一待发送数据分别递交到两个RLC实体,其中,这两个RLC实体分别与两个逻辑信道(例如,第一逻辑信道和第二逻辑信道)一一对应。然后终端通过两个不同的载频分别将第一逻辑信道和第二逻辑信道上的数据发送给对端设备,其中,第一逻辑信道和第二逻辑信道中均包含来自同一PDCP实体的同一待发送数据,进而实现在直通链路上数据的重复传输。
可选的,终端的PDCP层将同一待传输数据分别递交到两个RLC实体可以是终端PDCP层将同一待发送数据复制成两份,然后将这两份分别递交到两个RLC实体。
需要说明的是,本申请不对通过第一逻辑信道在第一载频上发送所述待传输数据和通过第二逻辑信道在第二载频上发送所述待传输数据的时序先后进行约束。可以理解的,当终端存在第一载频上的资源时,终端可以利用第一载频发送第一逻辑信道中的数据;当终端存在第二载频上的资源时,终端可以利用第二载频发送第二逻辑信道中的数据。当然,可以理解的,以第一载频和第一逻辑信道为例,当终端存在第一载频上的资源时,在单次发送中,并不一定都会包含第一逻辑信道中的数据,可能还需要考虑到各逻辑信道数据封装规则(例如,终端存在的各逻辑信道、各逻辑信道优先级等)。对于具体的封装规则,本申请不进行限定。
另外,根据所获取的资源量的多少和/或封装规则,终端的MAC层可能会对单个逻辑信道中的数据进行切包,所以本申请中不限制单个逻辑信道中包含的待发送数据是通过一次传输,还是通过多次传输完成,即承载在一个TB或者多个TB中。例如,第一逻辑信道中包含的待发送数据可能被进行了切分,此时需要通过多个TB传输。
另一种可选的实现方式,在没有进行数据重复传输之前,即进行传统的数据传输,终端可能已经存在第一载频,并使用第一载频传输第一逻辑信道中的数据,在满足第一条件之后,终端可以再增加第二逻辑信道,从而将同一PDCP实体中的同一待传输数据,同时递交到第一逻辑信道和第二逻辑信道,由于第一载频已经存在,终端只需 要确定第二载频,并利用第二载频传输第二逻辑信道中的数据。其中第二载频与第一载频不同。
其中,所述第一载频可以是第一载频集合中的一个载频,第二载频可以是第二载频集合中的一个,且第一载频集合与第一逻辑信道具有对应关系,第二载频集合与第二逻辑信道具有对应关系,即第一载频集合中的任意一个载频均可以用于发送第一逻辑信道上的数据,第二载频集合中的任意一个载频均可以用于发送第二逻辑信道上的数据。其中,第一载频集合与第二载频集合是正交的,即第一载频集合中的元素与第二载频集合各不相同。所述对应关系可以是隐式的,也可以是显示的。其中第一载频集合中包含至少一个载频,第二载频集合中包含至少一个载频。
可选的,在没有进行数据重复传输之前,即进行传统的数据传输,终端可能已经存在第一载频集合,并使用第一载频集合中的第一载频传输第一逻辑信道中的数据,在满足第一条件之后,终端可以再增加第二逻辑信道,从而将同一PDCP实体中的同一待传输数据,同时递交到第一逻辑信道和第二逻辑信道,由于第一载频集合已经存在,终端只需要确定第二载频集合,并利用第二载频集合中的第二载频传输第二逻辑信道中的数据。
此时,步骤103还可以包括:终端确定第一载频集合和第二载频集合;其中,第一载频集合与第一逻辑信道对应,第二载频集合与第二逻辑对应。
其中,所述第一载频集合和第二载频集合是终端确定的。并且,所述第一载频集合和第一逻辑信道对应,所述第二载频集合和第二逻辑信道对应。其中所述对应关系可以是隐式的,也可以是显式的。其中第一载频集合中包含至少一个载频,第二载频集合中包含至少一个载频。
另一种可选的实现方式是,终端获取用于指示第三载频集合的信息,根据所述第三载频集合确定所述第一载频集合和所述第二载频集合;其中所述用于指示第三载频集合的信息可通过RRC信令或预配置信息来承载。
在本申请中,用于指示“载频集合”的信息可以是至少一个载频标识,终端通过获取该至少一个载频标识,可以确定在至少一个载频标识指向的至少一个载频,即确定该“载频集合”。用于指示“载频集合”的信息也可以是一个载频标识序列,终端通过获取该载频标识序列,确定载频标识序列指向的载频序列,从而确定“载频集合”。
例如,基站发送的SIB消息中包含用于指示第三载频集合的信息,这种指示可以是显示的,也可以是隐式的。示例性的,SIB消息中直接包含载频标识序列,{CC1,CC2,CC3},其中CC1,CC2,CC3分别是不同的载频标识。或者,第三载频集合中包含该基站配置的用于进行V2X通信的多个传输载频,其中每个传输载频可以通过载频标识来指示。所述用于指示第三载频集合的信息可以是至少一个载频标识,终端获取至少一个传输载频标识,从而确定至少一个传输载频,即获得第三载频集合。
需要说明的是,第一载频集合和第二载频集合不一定是第三载频集合的完全划分。示例性的,由于不同V2X业务可能需要在不同的载频上传输,第三载频集合中的部分载频可能不支持所述V2X业务,则第一载频集合和第二载频集合都不包含所 述不支持所述V2X业务的载频。
终端根据传输载频确定第一载频集合和第二载频集合包括:终端根据待传输V2X业务以及第三载频集合中包含的载频来确定第一载频集合和第二载频集合。
另一种可选的实现方式是,终端根据接收的来自网络设备的RRC信令确定,其中所述RRC信令中包含用于指示第一载频集合和第二载频集合的信息。例如,网络设备发送的RRC信令中,可以包含第一载频标识序列和第二载频标识序列;终端通过RRC信令获取第一载频集合和第二载频集合。终端将第一载频集合与第一逻辑信道之间建立对应关系,将第二载频集合与第二逻辑信道之间建立对应关系。
又一种实现方式是,网络设备发送的RRC信令中还包含逻辑信道标识,例如,RRC信令中包含逻辑信道标识1,用于指示第一载频集合的信息,逻辑信道标识2,用于指示第二载频集合的信息等。其中,用于指示载频集合的信息可以是至少一个载频标识,用于指示对应的载频。进一步地,所述逻辑信道标识1可以指向第一逻辑信道,逻辑信道标识2可以指向第二逻辑信道。
此外,所述载频也可称为载波或者载波频率,它可以是一个特定频率的无线电波,例如2.5GHz、3GHz,单位Hz(赫兹)。在无线通信中,一般使用载频或载波传递信息,将数字信号调制到一个高频载波上然后再在空中发射和接收。可以理解的,利用载频进行传输指利用载频上的时频资源来进行数据传输。
下面对本方法中的用于指示第一条件的信息和第一条件进行详细的说明。
在上述步骤101中,所述用于指示第一条件的信息包括:信道拥塞信息和可靠性信息中的一种或多种。步骤103中,所述第一条件包括:拥塞条件和可靠性条件中的一种或多种。
其中,如果所述指示第一条件的信息包括:信道拥塞信息和可靠性信息,或者包括拥塞条件和可靠性条件,则所述PDCP层数据重复传输的激活条件需要同时满足,信道拥塞的判断条件和可靠性的判断条件,下面本实施例分别对第一条件信息是信道拥塞信息,或者是可靠性信息的激活条件进行详细说明,对于第一条件的信息为信道拥塞信息和可靠性信息的情况,所述激活条件可参见本实施例中分别对信道拥塞信息和可靠性信息的激活条件的描述。
在具体的实现中,所述第一条件可以是激活条件,所述用于指示第一条件的信息可以是用于指示激活条件的信息。
进一步地,所述信道拥塞信息包括:第一信道拥塞阈值、第二信道拥塞阈值和第一信道拥塞范围中的任意一个。
所述第一条件包括以下任意一个:
第三载频信道拥塞程度大于或等于所述第一信道拥塞阈值;
第三载频的信道拥塞程度小于或等于所述第二信道拥塞阈值;
第三载频的信道拥塞程度在所述第一信道拥塞范围内。
其中,第三载频属于网络设备配置或者预配置的用于直通链路通信的所有载频中的一个。
可选的,所述第三载频可以是基站通过RRC信令配置的或者预配置的;或者,第三载频可以是终端传输载频中的任意一个;或者第三载频可以是终端传输载频中信道拥塞程度最小的一个传输载频;或者,第三载频可以是终端传输载频中信道拥塞程度最大的一个传输载频;或者,第三载频可以是终端传输载频中,支持所述待传输数据的载频中的任意一个传输载频;或者,第三载频可以是终端传输载频中支持所述待传输数据的载频中,信道拥塞程度最小的一个载频;或者,第三载频可以是终端传输载频中支持所述待传输数据的载频中,信道拥塞程度最大的一个载频。
其中,所述终端传输载频是指,终端当前使用的用来进行直通链路数据传输或通信的载频。
另外,本申请中第三载频与第一载频或第二载频可以相同,也可以不同。
本申请中,所述信道拥塞信息可以不限于是标识、索引、或者其它信息,用于指向或指示所述信道拥塞信息。以信道拥塞信息为第一信道拥塞阈值为例,第一信道拥塞阈值可以通过标识、索引或者第一信道拥塞本身指向第一可靠性阈值。
所述信道拥塞程度表示信道的负载状况。示例性的,信道拥塞程度可以是第三代移动伙伴计划TS 36.214 V15.0.1协议5.1.30章节定义的channel busy ratio(CBR),信道负载越高,信道拥塞程度越高。其中,载频对应的信道拥塞程度或者载频的信道拥塞程度指,该载频上的某个时频资源集合上的信道拥塞程度。具体地,该时频资源集合可以是资源池,例如,载频A对应的信道拥塞程度是指所述载频A上的第一资源池的信道拥塞程度,载频B对应的信道拥塞程度是指载频B上的第二资源池的信道拥塞程度。
另外,所述信道拥塞程度可以是通过终端测量得到,也可以是网络设备通过RRC信令通知终端的。
示例一
基站向终端发送RRC信令,所述RRC信令中包含第一信道拥塞阈值为0.5,所述第一条件为激活条件,第三载频信道拥塞程度大于或等于所述第一信道拥塞阈值。终端正在使用载频{CC1,CC2,CC3}进行直通链路数据传输,即终端的传输载频为{CC1,CC2,CC3},其中传输载频对应的信道拥塞程度分别为{0.2,0.6,0.3},且第三载频为传输载频中的信道拥塞程度最大的载频,则第三载频为CC2。
由于第三载频所对应的信道拥塞程度0.6大于第一信道拥塞阈值0.5,则此时激活数据重复传输,终端将PDCP层同一待发送数据递交到第一逻辑信道和第二逻辑信道,并通过第一载频发送第一逻辑信道中的数据,和通过第二载频发送第二逻辑信道中的数据。
示例性的,在V2X通信中,上层(接入层之上)在向接入层递交数据时,同时通过原语的形式向接入层递交该数据对应的数据属性或标识,其中,所述数据属性或标识可以包括:优先级,可靠性,时延,目的地址,业务类型等中的至少一项。所述上层向接入层递交的数据可以是数据包。所述数据属性或标识也可以有其它获得形式,本发明不对此进行限制。
其中,不同的数据对应不同的优先级。在接入层,一般会为不同数据优先级配置不同的参数,从而进行区别对待。
其中,终端可以存在多种不同类型的业务。所述不同类型的业务可以为对应不同接收端和/或不同发送端类型的业务,例如上述所说的不同类型的业务可以为V2V业务、V2P业务、V2I业务,P2V业务,P2P业务,P2I业务等。或者,示例性的,不同类型的业务也可以通过应用层携带的或者上层(接入层之上)传递下来的应用层标识,(例如ITS-AID:ITS Application Identifier或者PSID:Provider Service Identifier)来区分。
其中,不同目的地址指示了不同的接收端。例如,终端A与终端B、终端A与终端C进行通信时,对应的目的地址是通常是不同的。可选的,当终端进行广播通信时,目的地址可以与业务类型存在映射关系。
另外,可靠性体现了该数据的传输可靠性需求/级别或者体现了该数据的重要程度/重要级别。该传输可靠性需求可以但是不限于是端到端的传输可靠性需求。示例性的,传输可靠性可以定义为1-bit error ratio(1-比特误码率),1-symbol error ratio(1-符号误码率),或者1-packet error ratio(1-误包率)等,详细定义可以参考第三代移动伙伴计划定义的LTE协议中描述。可靠性越高在一定程度上体现了该数据越重要。
其中,时延体现了该数据的传输时延需求,示例性的,时延可以端到端传输时延,空口时延需求,时延预算,传输时间间隔等。
其中,所述数据属性可以是但是不限于是标识、索引、或者其它指向或者指示所述数据属性的信息。以数据属性是可靠性为例,可靠性可以是可靠性标识,可靠性索引或者是可靠性本身。
由于具有不同数据属性或者不同标识的待传输数据可能需要在不同的载频上进行传输,因此,对于每个待传输数据,存在被允许进行发送的载频或载频集合。
例如,根据不同地区的法规,不同的V2X业务可能需要在不同的载频上进行传输,例如,业务类型1为安全类业务,要求在载频{CC1,CC2}上进行传输,业务类型2为非安全类业务,要求在载频{CC3}上进行传输。
同时,基站可以配置不同优先级的数据在不同的载频上进行传输,例如,基站可以通过RRC信令配置:优先级为1的数据,其配置的载频集合为{CC1,CC2,CC3},优先级为2的数据,其对应的载频集合为{CC1,CC4,CC5},这样优先级为1的数据被允许利用载频CC1、CC2或CC3进行传输,优先级为2的数据被允许利用载频CC3、CC4或CC5进行传输。
这样对于某一个待传输数据,其对应业务类型为1,优先级为1,则该待传输数据只能在载频集合{CC1,CC2}和载频集合{CC1,CC2,CC3}的公共载频(即集合交集),即{CC1,CC2}上进行传输。即支持该待传输数据的载频为CC1或CC2。
示例二
终端传输载频集合为{CC1,CC2,CC3},待传输数据被允许在载频{CC1,CC3} 上传输,如果第三载频是终端传输载频中支持所述待传输数据的载频中,信道拥塞程度最大的一个载频,所述第一条件为激活条件,第三载频信道拥塞程度大于或等于所述第一信道拥塞阈值,则此时第三载频为CC3,其对应的信道拥塞程度为0.3,此时不满足进行重复传输的条件。
示例三
第三载频是网络设备通过RRC信令配置的,其中RRC信令可以是SIB或者是专用RRC信令。例如基站通过专用RRC信令配置第三载频为CC2,所述第一条件为激活条件,第三载频信道拥塞程度大于或等于所述第一信道拥塞阈值,终端判断CC2对应的信道拥塞程度0.6大于0.5,则此时激活重复传输,PDCP层需要将同一待发送数据递交到第一逻辑信道和第二逻辑信道,并通过第一载频发送第一逻辑信道中的数据,通过第二载频发送第二逻辑信道中的数据。
一般来说,信道拥塞程度过低或者过高,都不适合进行数据重复传输。因为信道拥塞程度过低,表明信道条件良好,似乎不需要进行数据重复传输;如果信道拥塞程度过高,则表明信道条件已经很恶劣,此时再进行数据重复传输,就需要消耗更多的资源,造成信道条件的更进一步恶化,所以可能也没有必要进行数据重复传输,所以信道拥塞信息的实现形式可以是阈值或范围。
对于其它信道拥塞程度的具体形式、支持待传输数据的载频的配置,获取或确定方式以及第三载频的实现形式,本申请对此不再一一举例。
需要说明的是,前述网络设备发送的RRC信令或者预配置信息中还可能包括其它激活条件的网络参数,本实施例不予限制。
另外,需要说明的是,所述网络设备下发的RRC信令或者预配置信息中还可以直接包括所述第一条件,为终端判断是否进行PDCP层数据重复传输提供便利。
可选的,上述用于指示第一条件的信息还可以包括可靠性信息。在所述用于指示第一条件的信息为可靠性信息的情况下,所述第一条件也与待发送数据的可靠性相关。
具体地,所述可靠性信息包括:第一可靠性阈值、第一可靠性枚举值、第一可靠性范围中的任意一个。
所述第一条件包括以下任意一个:
待传输数据的可靠性大于或等于所述第一可靠性阈值;
待传输数据的可靠性等于所述第一可靠性枚举值,所述枚举值可以是一组离散的数值、标识或索引;所述待传输数据的可靠性等于所述第一可靠性枚举值是指所述待传输数据的可靠性等于所述第一可靠性枚举值中的任意一项。例如,待传输数据的可靠性为可靠性1,第一可靠性枚举值为{可靠性1,可靠性5,可靠性6},则所述待传输数据的可靠性等于所述第一可靠性枚举值。
待传输数据的可靠性在所述第一可靠性范围内。
对于第一可靠性范围,是否包含其边界本申请不进行限制,可以包含多种可能的组合形式,例如(A1,B1)、(A1,B1]、[A1,B1]、[A1,B1]等多种形式,其中 “(”表示不包括端值,“]”表示包括端值。
其中,可靠性信息可以是体现可靠性程度的具体值,例如99.99%,99.999%;或者,可靠性信息是体现可靠性程度的相对值,示例性的,可以是,高可靠性,中可靠性,低可靠性;当然,也可以根据不同的可靠性程度划分更多的级别,本申请不对此进行限制。
本申请中,所述可靠性信息可以不限于是标识、索引、或者其它信息,用于指向或指示所述可靠性信息。以可靠性信息为第一可靠性阈值为例,第一可靠性阈值可以通过标识、索引或者第一可靠性阈值本身来表示第一可靠性阈值。
在具体实现中,可以利用不同的标识来表征数据可靠性程度/级别或重要性程度/级别,以可靠性信息体现可靠性程度的相对值为例,1表示高可靠性,2表示中可靠性,3表示低可靠性,或者反之,1表示低可靠性,2表示中可靠性,3表示高可靠性。
进一步地,所述可靠性信息可以是承载在网络设备向终端发送的RRC信令中,例如,SIB消息或者专用RRC信令中,也可以是承载在MAC CE或者DCI中。
进一步地,当可靠性信息承载在MAC CE中时,可以通过位图(bitmap)形式来体现。其中,位表中不同的比特位体现不同的可靠性/重要性级别或者可靠性范围,相应比特位上的不同的取值体现了是否进行数据重复传输,例如相应比特位上的不同的取值体现了是否激活数据重复传输。
举例说明,数据对应的可靠性被划分为三个级别,分别是低可靠性,中可靠性和高可靠性。通过固定的比特位来表示不同的可靠性级别。如表1所示,在位图中,可以按照可靠性从低到高顺序,依次将每个比特位与一个可靠性级别对应。当然,也可以按照可靠性从高到低的顺序,依次将每个比特位与一个可靠性级别对应,对此不再赘述。
可靠性高 可靠性中 可靠性低
表1
当某一比特位为第一值时,可以指示终端激活具有与该比特位对应的可靠性的待发送数据进行重复传输。当某一比特位为第二值时,可以指示终端停止具有与该比特位对应的可靠性的待发送数据进行重复传输。例如,在上述第一取值为1时,第二取值可以为0。
以上述表1所示的位图格式为例,所述可靠性信息承载在位图中,例如下述表2所示。
1 0 0
表2
上述可靠性信息,用于激活终端对可靠性为高的待发送数据进行重复传输,即当终端PDCP层的待发送数据对应高可靠性时,终端将该PDCP层待发送数据递交到两个不同的逻辑信道中,并通过不同点的载频进行发送。
进一步地,所述高可靠性、中可靠性、低可靠性可以与不同的可靠性取值相对应,例如高可靠性对应数据的可靠性大于99.999%。
另外,位图中某个比特位也可以用来标识可靠性范围,如下表3所示,其中是否包含边界本申请对此不进行约束。
99.99-99.999% 99.9-99.99% 99.0-99.9%
表3
具体地,以上述表3所示的位图格式为例,如果可靠性信息承载在位图中,如表2所示,则上述可靠性信息用于激活终端对可靠性在99.99-99.999%范围内的待发送数据进行重复传输,即终端将PDCP层可靠性在99.99-99.999%范围内的待发送数据递交到两个不同的逻辑信道中,并通过不同的载频进行发送。
可选的,所述可靠性范围也可以是隐式的,如图3所示的可靠性范围也可以通过表4来体现,参见表4,该位图中最后一个比特位表示的含义可以为99.0-99.9%。
99.999% 99.9% 99.0%
表4
当终端检测满足上述第一条件时,执行上面的步骤103。反之,如果不满足上述第一条件,则不触发PDCP层将数据分别递交给两个不同逻辑信道的动作。
举例说明,所述第一条件为激活条件,并且网络设备通过RRC信令配置的可靠性信息为1,指示高可靠性或者高重要性,当终端待发送数据对应的可靠性为高可靠性或者高重要性时,激活数据重复传输,PDCP层将待发送数据分别递交给两个不同的逻辑信道。
举例说明,所述第一条件为激活条件,并且网络设备通过RRC信令配置的可靠性信息为第一可靠性阈值为99.99%,终端侧待发送数据对应的可靠性为99.999%,高于该第一可靠性阈值,激活重复数据传输,PDCP层将待发送数据分别递交给两个不同的逻辑信道。
举例说明,所述第一条件为激活条件,并且网络设备通过RRC信令配置的可靠性信息为1,指示高可靠性,高可靠性对应的数据可靠性大于99.999%,终端侧待发送数据对应的可靠性为99.9999%,高于该第一可靠性阈值,激活重复数据传输,PDCP层将待发送数据分别递交给两个不同的逻辑信道。
可选的,在没有进行数据重复传输之前,即进行传统的数据传输,终端可能已经存在第一载频,并使用第一载频传输第一逻辑信道中的数据,或者终端可能已经存在第一载频集合,并使用第一载频集合中的第一载频传输第一逻辑信道中的数据。
另外,终端还可以根据数据的可靠性,例如第一可靠性以及与所述第一可靠性存在对应关系的第一逻辑信道来确定传输的第一载频,所述对应关系可以是显示的,也可以是隐式的。
举例说明,基站通过专用RRC信令配置终端的可靠性标识与逻辑信道的对应关系。例如:第一可靠性标识对应逻辑信道标识1(LCID1),第一可靠性标识2对应逻辑信道标识2(LCID2),则在没有进行重复传输之前,即进行传统的数据传输, 单个数据只递交给单个逻辑信道。如果数据1对应的第一数据可靠性为第一可靠性标识,则终端将第一数据递交到第一逻辑信道,并利用第一载频发送第一数据。其中所述逻辑信道标识1可以指示第一逻辑信道。可以理解的,多个不同的可靠性标识还可以对应一个LCID。
在一种可行的实施方式中,终端确定第一载频和第二载频可以是但是不限于是RRC层确定第一载频和第二载频。RRC层可以确定用于发送两个逻辑信道上的数据的不同载频,即确定第一载频和第二载频。具体地,可以但是不限于通过以下方式来确定:
具体包括,所述第一条件为激活条件,如果用于指示第一条件的信息包括第一信道拥塞阈值0.6和第一可靠性阈值99.99%。终端的传输载频集合为{CC1,CC2,CC3},其中传输载频对应的信道拥塞程度分别为{0.2,0.6,0.3},且第三载频为传输载频中的信道拥塞程度最大的载频,则第三载频为CC2,由于第三载频所对应的信道拥塞程度0.6大于第一信道拥塞阈值0.5,且终端待发送数据对应的可靠性为99.999%,高于该第一可靠性阈值99.99%,则激活重复数据传输,PDCP层将待发送数据分别递交给两个不同的逻辑信道。
一种可能的实施方式是,终端通过网络设备下发的信令中确定第一载频和第二载频。具体地,网络设备向终端发送的RRC信令中或预配置信息中包含至少两个载频标识,则终端确定第一载频和第二载频。
可选的,网络设备向终端发送的RRC信令中或预配置信息中包含用于指示第三载频集合的信息,例如包含多个载频标识指向网络配置的或者预配置的可以用于进行直通链路通信的载频,终端根据第三载频集合确定第一载频和第二载频,其中第一载频和第二载频属于第三载频集合。其中,可以理解的,第三载频集合也可以来自预配置。
或者,终端根据第三载频集合确定第一载频集合和第二载频集合,其中第一载频集合和第二载频集合中的载频都属于第三载频集合;第一载频集合和第二载频集合中的元素各不相同。
终端从第一载频集合中选择第一载频,从第二载频集合中选择第二载频。其中,所述从第一载频集合中选择第一载频,从第二载频集合中选择第二载频可以通过终端的RRC层实现,也可以是在MAC层实现。
在另一种可能的实施方式中,所述待传输数据具有数据属性,且所述数据属性与第三载频集合中的载频相对应,其中所述对应关系可以是隐式的,也可以是显示的。所述数据属性可以包括以下一项或多项组合:优先级、可靠性、时延、目的地址和业务类型。
其中,所述数据属性可以是但是不限于是标识、索引或者其它指向或者指示信息。以数据属性为可靠性为例,所述可靠性可以是可靠性标识、可靠性索引或者是可靠性本身。
终端接收到来自网络设备的用于指示第三载频集合的信息后,根据待传输数据的 数据属性确定第四载频集合,示例性的,第四载频集合可以包含适合待传输数据的所有可用载频资源。可以理解的,终端并不一定要使用所有可使用载频资源。根据终端的能力(例如发送链能力)或者其它约束(待传输数据包支持的载频等),终端可能在一段时间或者单次信息传输中只能使用第四载频集合中的部分载频。终端根据第四载频集合确定第一载频集合和第二载频集合;或者直接确定第一载频和第二载频。
需要说明的,所述第三载频集合可以与所述第四载频集合相同,也可以不同,本申请不对此进行限制。
举例说明,待传输数据的优先级为1,基站配置所述用于指示载频集合的信息为优先级与载频集合间的对应关系。如果存在两种优先级,优先级1的数据与载频集合{CC1,CC2,CC3,CC4}具有对应关系,其中,CC1、CC2、CC3和CC4表示四个不同的载频。优先级2的数据与载频集合{CC2,CC3,CC5,CC6}具有一种对应关系。终端接收到上述对应关系后,可根据待传输数据的优先级确定其对应的可用的总载频资源。在确定待传输数据的优先级为1的情况下,对应的第四载频集合为{CC1,CC2,CC3,CC4}。
其中,所述优先级与第三载频集合中载频之间的对应关系可以是隐式的,也可以是显示的,或者还可以包括其它多种实现形式,例如,在每个载频的配置信息中,携带该载频对应的优先级。例如,载频CC1配置信息中包含{载频1的标识,优先级1标识},载频CC2的配置信息中包括{载频2的标识,优先级1标识},这种形式可以表明载频1和载频2都支持优先级为1的待传输数据。如果待传输数据优先级为1,则第四载频集合为{CC1,CC2},当然,其中第四载频集合中可以只包含一个载频。
举例说明,待传输数据的第一数据属性包括:优先级1和目的地址1。基站配置数据优先级1与载频集合{CC1,CC2,CC3,CC4}具有一种对应关系,其中,CC1、CC2、CC3和CC4表示四个不同的载频。数据优先级2与载频集合{CC2,CC3,CC5,CC6}具有一种对应关系。同时,基站配置目的地址1与载频集合{CC1,CC2}具有对应关系,目的地址2与载频集合{CC3,CC4}具有对应关系,终端接收到上述对应关系后,可根据待传输数据的优先级和目的地址确定其对应的可用的总载频资源。在确定待传输数据对应数据优先级为1,对应的目的地址为1的情况下,对应的第四载频集合为{CC1,CC2}。
同理地,数据属性在为第一可靠性、第一时延、第一目的地址和第一业务类型中的任意一种,或者多种组合时,终端也可以根据所述指示载频集合的关系确定当前待传输数据所支持的载频集合。然后,根据该载频集合确定第一载频集合和第二载频集合,或者直接选择第一载频和第二载频。其中第一载频集合和第二载频集合中的载频都属于第四载频集合。
在另一种可能的实施方式中,所述待传输数据具有数据属性,且所述数据属性与第一载频集合和第二载频集合中的载频相对应,其中所述对应关系可以是隐式的,也可以是显示的。所述数据属性可以包括以下一项或多项组合:优先级、可靠性、时延、目的地址和业务类型。
其中,所述数据属性可以是但是不限于是标识、索引或者其它指向或者指示信息。以数据属性为可靠性为例,所述可靠性可以是可靠性标识、可靠性索引或者是可靠性本身。
终端接收到来自网络设备的信息,所述信息包含用于指示第一载频集合和第二载频集合的信息,以及用于指示与所述第一载频集合和第二载频集合对应的数据属性的信息。终端根据待传输数据的数据属性确定对应的第一载频集合和第二载频集合,或者终端根据待传输数据的数据属性直接确定第一载频和第二载频。所述消息可以承载在RRC信令或者预配置消息中。本
举例如下:网络设备发送的专用RRC信令中包含:
{第一目的地址标识,CC1,CC2}{第二目的地址标识,CC3,CC4};
终端待发送数据对应的目的地址为第一目的地址,终端可以根据该专用RRC信令确定第一载频为CC1,第二载频为CC2,其中CC1可以指向第一载频,CC2可以指向第二载频。
再例如,网络设备发送的SIB消息中包含,{第一目的地址标识,{CC1,CC2},{CC3,CC4}},{第二目的地址标识,CC3,CC4};
终端待发送数据对应的目的地址为第一目的地址,则终端根据该专用RRC信令确定第一载频集合为{CC1,CC2},第二载频集合为{CC3,CC4}。
再例如,网络设备发送的专用RRC信令中包含:
{第一目的地址标识,第一可靠性标识,CC1,CC2}{第二目的地址标识,第一可靠性标识,CC3,CC4};
终端待发送数据对应的目的地址为第一目的地址,对应的可靠性为第一可靠性,则终端根据该专用RRC信令确定第一载频CC1,第二载频为CC2,其中CC1可以指向第一载频,CC2可以指向第二载频。
再例如,网络设备发送的专用RRC信令中包含:
{第一目的地址标识,第一可靠性标识,{CC1,CC2}{CC3,CC4}}{第二目的地址标识,第一可靠性标识,CC3,CC4};
终端待发送数据对应的目的地址为第一目的地址,对应的可靠性为第一可靠性,则终端根据该专用RRC信令确定第一载频集合为{CC1,CC2}第二载频集合为{CC3,CC4}。
需要说明的是,当终端当前传输载频中不存在第一载频或者第二载频时,终端可以进行载波选择或载波重选,从而利用第一载频来传输第一逻辑信道的数据,利用第二载频来传输第二逻辑信道中的数据,本发明对此不进行限制。
本实施例提供的数据传输方法,当满足数据重复传输的激活条件时,终端利用直通链路使用不同的载频发送第一逻辑信道和第二逻辑信道上的数据,实现了直通链路上同一数据包在两个逻辑信道上被不同载频发送,接收设备可以接收到重复的同一数据包,进而提高了数据传输的可靠性。
此外,所述第一载频和第二载频可以由终端的RRC层确定,还可以通过终端的 MAC层来确定。
例如,激活数据重复传输之后,PDCP层将同一待发送数据递交到第一逻辑信道和第二逻辑信道,然而RRC层可能没有通知MAC层进行数据重复传输的第一逻辑信道和第二逻辑信道,所以,MAC层需要确定进行重复传输的两个逻辑信道,即第一逻辑信道和第二逻辑信道。另外,MAC层还可以维护多个逻辑信道。
具体地,MAC层确定逻辑信道的方法包括如下几种可能:
在一种可能的实现方式中,MAC层基于各逻辑信道数据属性来确定第一逻辑信道和第二逻辑信道。所述数据属性可以是:优先级、目的地址、时延、业务类型、可靠性中的一项或多项组合。
可以理解的,由于第一逻辑信道和第二逻辑信道中都包含同一待发送数据,该数据对应的数据属性是相同的,例如数据属性为优先级和目的地址,该待传输数据具有第一优先级和第一目的地址,所以第一逻辑信道和第二逻辑信道对应的数据属性是相同的,即第一逻辑信道和第二逻辑信道对应的优先级都为第一优先级,第一逻辑信道和第二逻辑信道对应的目的地址都为第一目的地址。通过检测各逻辑信道的数据属性是否相同,就可以确定第一逻辑信道和第二逻辑信道。
另外,终端在检测各逻辑信道的数据属性信息相同之前,还需要获取各逻辑信道的数据属性信息。
所述MAC层检测两个逻辑信道上的标识信息或数据属性是否相同,如果相同,表明进行数据重复传输的两个逻辑信道已经存在,此时可以进行重复数据传输。
可选的,MAC层通过检测各逻辑信道上数据的属性,初步确定第一逻辑信道和第二逻辑信道,同时MAC层还需要判断的第一逻辑信道和/或第二逻辑信道上是否存在待传输数据,进而判断PDCP层是否已经进行了数据重复传输。如果MAC层检测两个逻辑信道上都存在所述待传输数据,且第一逻辑信道和第二逻辑信道的数据属性相同,则表示PDCP层的数据重复传输已经被激活,即同一PDCP层待传输数据被递交到了这两个逻辑信道。
举例说明,MAC层存在3个逻辑信道,分别称为逻辑信道1,逻辑信道2和逻辑信道3。其中逻辑信道1、2、3对应的数据属性(例如数据优先级)分别为优先级1,优先级2,优先级1,由于逻辑信道1和逻辑信道3的数据属性相同(都为优先级1),所以确定出逻辑信道1和逻辑信道3为用于进行数据重复传输的逻辑信道。
此外,在终端内部还可以通过RRC层向MAC层发送一个指示信息来指示第一逻辑信道和第二逻辑信道,或者指示PDCP层重复传输已经被激活。
可选的,每个逻辑信道对应的数据属性可以在建立逻辑信道时,将每个逻辑信道与数据属性建立起对应关系,其中,逻辑信道对应的数据属性与逻辑信道中的数据有关。其中,逻辑信道对应的数据属性可以等同于逻辑信道中数据对应的数据属性。
在另一种实施方式中,进行数据重复传输的第一逻辑信道的ID(Identity)和第二逻辑信道的ID存在对应关系,也可称为存在配对关系。该对应关系可以是基站通过RRC信令配置的,或者预配置的,或者是协议规定的。则此时,MAC层通过各逻 辑信道的ID符合所述对应关系来确定第一逻辑信道和第二逻辑信道。
需要说明的是,所述对应关系的实现形式,所述对应关系可以通过两个逻辑信道之间的逻辑信道ID的运算关系来体现的,或者可以是通过具体的对应关系来体现的。在本申请中,逻辑信道标识可以是逻辑信道ID。
例如,进行重复传输的逻辑信道满足如下对应关系:例如,第二逻辑信道的ID与第一逻辑信道的ID之间的差值或和值满足预设值。以差值为例,例如:LCID2-LCID1=M,其中,LCID2表示第二逻辑信道的ID(Identity),LCID1表示第一逻辑信道的ID,M为预设值,且为正整数,或者,显示地,表达两个逻辑信道之间的对应关系,例如{逻辑信道1,逻辑信道11}和{逻辑信道2,逻辑信道5}等。
例如逻辑信道1和逻辑信道11之间存在对应关系,逻辑信道2和逻辑信道12存在对应关系,都满足:第二逻辑信道ID-第一逻辑信道ID=M,且M等于10,则在不进行重复数据传输的情况下,终端使用的逻辑信道的ID为1至10。
对于终端存在的各逻辑信道,当终端检测到存在逻辑信道,LCID分别为1和11,则表明进行数据重复传输的两个逻辑信道已经存在,此时可以进行重复数据传输。或者确定触发了数据重复传输,即相同的数据包即将被递交到了两个不同的逻辑信道。终端根据逻辑信道1和逻辑信道11逻辑信道ID的对应关系,可以确定逻辑信道1为与逻辑信道11匹配的逻辑信道,从而确定第一逻辑信道为逻辑信道1,第二逻辑信道为逻辑信道11。
在另外一种可选的实现方式中,MAC层通过各逻辑信道的ID之间的对应关系,初步确定第一逻辑信道和第二逻辑信道,同时MAC层还需要判断的第一逻辑信道和/或第二逻辑信道上是否存在待传输数据,进而判断PDCP层是否已经进行了数据重复传输。如果MAC层检测两个逻辑信道上都存在所述待传输数据,且第一逻辑信道和第二逻辑信道的ID满足对应关系,则表示PDCP层的数据重复传输已经被激活,即同一PDCP层待传输数据被递交到了这两个逻辑信道。
例如,对于终端存在的各逻辑信道,当终端检测到存在逻辑信道,LCID分别为1和11,同时终端确定LCID为11的逻辑信道存在数据,则可以确定触发了数据重复传输,即相同的数据包已经被递交到了两个不同的逻辑信道。
所述第一载频和第二载频也可以由终端的MAC层来确定的,具体但不限于以下确定方法:
MAC层接收RRC层递交的用于指示第三载频集合的信息或用于指示第四载频集合的信息,然后根据第三载频集合或第四载频集合来确定第一载频和第二载频。具体地方法与RRC层确定第一载频和第二载频方法相同,在此不再赘述。可以理解的,第一载频和第二载频也可以分别来自第一载频集合和第二载频集合,且所述第一载频集合与第二载频集合正交。具体地方法与RRC层确定第一载频集合和第二载频集合方法相同,在此不再赘述。
需要说明的是,本申请不限制MAC层确定第一逻辑信道和第二逻辑信道以及确定第一载频和第二载频的时序关系。
此外,上述实施例的方法中,还包括:当满足第二条件时终端的PDCP层停止将待传输数据递交到第一逻辑信道和第二逻辑信道。
进一步地,过程包括:终端获取用于指示第二条件的信息,当满足第二条件时,终端停止利用所述直通链路通过第一逻辑信道在第一载频上发送所述待传输数据,和通过第二逻辑信道在第二载频上发送所述待传输数据。
其中,所述用于指示第二条件的信息包括:第三信道拥塞阈值、第四信道拥塞阈值、第二信道拥塞范围中的任意一种。
所述第二条件包括:
第四载频信道拥塞程度大于或等于所述第三信道拥塞阈值;
或者,第四载频信道拥塞程度小于或等于所述第四信道拥塞阈值;
或者,第四载频信道拥塞程度属于第二信道拥塞范围,
其中,所述第四载频可以是基站通过RRC信令配置的或者预配置的;或者,第四载频可以是终端传输载频中的任意一个;或者,第四载频可以是终端传输载频中信道拥塞程度最小的一个传输载频;或者,第四载频可以是终端传输载频中信道拥塞程度最大的一个传输载频;或者,第四载频可以是终端传输载频中,支持所述待传输数据包的载频中的任意一个传输载频;或者,第四载频可以是终端传输载频中支持所述待传输数据包的载频中,信道拥塞程度最小的一个载频;或者,第四载频可以是终端传输载频中支持所述待传输数据包的载频中,信道拥塞程度最大的一个载频。
可选的,第四载频属于所述第一载频集合或第二载频集合中的一个载频。并且,所述第一载频集合与第一逻辑信道对应,所述第二载频集合与第二逻辑信道对应。所述第四载频可以与第三载频相同,也可以不同。
可选的,第四载频可以是属于第一载频集合的终端传输载频中的任意一个;或者,第四载频可以是属于第一载频集合的终端传输载频中,信道拥塞程度最小的一个传输载频;或者,第四载频可以是属于第一载频集合的终端传输载频中,信道拥塞程度最大的一个传输载频;或者,第四载频可以是属于第一载频集合的终端传输载频中,支持所述待传输数据包的载频中的任意一个传输载频;或者,第四载频可以是属于第一载频集合的终端传输载频中支持所述待传输数据包的载频中,信道拥塞程度最小的一个载频;或者,第四载频可以是属于第一载频集合的终端传输载频中支持所述待传输数据包的载频中,信道拥塞程度最大的一个载频。
或者,第四载频可以是属于第二载频集合的终端传输载频中的任意一个;或者,第四载频可以是属于第二载频集合的终端传输载频中,信道拥塞程度最小的一个传输载频;或者,第四载频可以是属于第二载频集合的终端传输载频中,信道拥塞程度最大的一个传输载频;或者,第四载频可以是属于第二载频集合的终端传输载频中,支持所述待传输数据包的载频中的任意一个传输载频;或者,第四载频可以是属于第二载频集合的终端传输载频中支持所述待传输数据包的载频中,信道拥塞程度最小的一个载频;或者,第四载频可以是属于第二载频集合的终端传输载频中支持所述待传输数据包的载频中,信道拥塞程度最大的一个载频。
本实施例中,当终端满足第二条件时,停止将PDCP实体中的待传输数据发送给第一逻辑信道和第二逻辑信道,从而可以节省网络资源。
可选的,所述第二条件可以是去激活条件。
本申请另一个实施例中,还提供了一种数据传输方法,该方法通过终端向网络设备上报终端存在的直通链路数据的可靠性,从而使得网络设备能够更好为直通链路数据传输调度资源。
如图4所示,该方法可以包括:
步骤201:终端获取来自网络设备的配置信息,所述配置信息中包括与第一标识对应的可靠性信息。
可选的,所述配置信息中还包括第一标识。所述第一标识包括:第一逻辑信道组标识,或,第一目的地址标识,或,第一逻辑信道组标识和第一目的地址标识。
具体的,终端可以通过以下多种方式获取所述配置信息。
一种可能的方式是,终端通过RRC信令获取,所述RRC信令可以是SIB消息或者专用RRC信令。终端接收该RRC信令,并获取与第一标识存在对应关系的可靠性信息。
另一种可能的方式是,终端通过网络设备发送的数据包携带的方式获取所述配置信息,例如,可以包含在MAC控制元素(control element),简称“MAC CE”。所述终端通过接收该数据包后获取第一标识,可靠性信息和二者的对应关系。
又一种可能的方式是,配置信息承载在PDCCH上,终端通过获取PDCCH上的DCI来获取第一标识、可靠性信息和二者的对应关系。
又一种可能的方式是,网络设备将配置信息设置在预配置信息中,终端从该预配置信息中获取所述配置信息。
其中,所述第一标识可以是第一逻辑信道组标识(Logical Channel Group Identity,LCG ID)、或者第一目的地址标识、还可以是第一LCG ID和第一目的地址标识。
所述可靠性信息包括可靠性阈值、可靠性枚举值或者可靠性范围。
此外,所述可靠性信息可以不限于是标识、索引、或者其它信息,用于指向或指示所述可靠性信息。其中,所述第一标识与可靠性信息的对应关系可以是隐式的,也可以显示的。
下面以第一标识为第一LCG ID,可靠性信息为可靠性枚举值,所述可靠性枚举值为一系列离散的可靠性数值,且所述可靠性数值通过可靠性标识来指示为例。
一种可能的实现方式中,网络设备生成的配置信息中可以包括至少一个LCG ID和至少一个可靠性标识,例如,包括LCG ID1、可靠性标识1和LCG ID2、可靠性标识2,其中LCG ID1与可靠性标识1对应,LCG ID2与可靠性标识2对应,其中,所述可靠性标识1可以指向可靠性枚举值1,所述可靠性标识2可以指向可靠性枚举值2,终端接收到配置信息后,可以通过配置信息确定LCG ID1与可靠性枚举值1具有对应关系,LCG ID2与可靠性枚举值具有对应关系。
在另一种可能的实现方式中,配置信息中可以不包含LCG ID,而只包含至少一 个可靠性信息,但是终端可以按照预先约定的顺序或者规则确定至少一个可靠性信息对应的LCG ID。其中所述顺序可以是协议规定的,或者网络设备与终端设备协商约定的。示例性的,由于LCG ID可以是一个编号,双方可以约定LCG ID按照从小到大的顺序排列。例如LCG ID编号依次为0,1,2,3,则在配置信息中,可以不包含LCGID,而只包含至少一个可靠性信息。终端通过所述至少一个可靠性信息的顺序可以确定其该所述至少一个可靠性信息对应的逻辑信道组标识。
例如,配置信息中只包含{可靠性标识1},{可靠性标识2,可靠性标识3},{可靠性标识4},{可靠性标识5,可靠性标识6}。双方约定LCG ID按照从小到大的顺序排列,终端在接收到配置信息之后,可以确定{可靠性标识1}与编号为0的逻辑信道组标识对应,{可靠性标识2,可靠性标识3}与编号为1的逻辑信道组标识对应,{可靠性标识4},{可靠性标识5,可靠性标识6}分别与编号为2和3的逻辑信道组标识对应。
当然可以理解的,第一配置信息中可以只包含一个可靠性信息,则该可靠性信息与编号为0的逻辑信道组标识对应。
步骤202:终端获取数据,所述数据对应的数据可靠性为第一数据可靠性;
具体的,对于每个直通链路数据,具有数据属性,其数据属性可以包括可靠性,例如终端获取数据的可靠性为第一可靠性。
关于数据属性参见上述实施例的步骤103中的相关描述,此处不再赘述。本申请中不限制步骤201和步骤202的时间先后顺序,可以步骤202在先执行,步骤201在后执行,或者步骤201和步骤202同时执行。
步骤203:当第一可靠性对应于可靠性信息时,向网络设备发送直通链路缓存状态报告BSR,所述直通链路BSR中的第一数据域为第一标识。
具体的,第一可靠性对应于所述可靠性信息,包括:
可靠性信息包括第二可靠性阈值,所述第一可靠性对应于所述可靠性信息,包括,所述第一可靠性大于或者等于所述第二可靠性阈值;
或者,所述可靠性信息包括第三可靠性阈值,所述第一可靠性对应于可靠性信息包括:所述第一可靠性小于或者等于所述第三可靠性阈值;
或者,所述可靠性信息包括第二可靠性枚举值,所述第一可靠性对应于可靠性信息包括:所述第一可靠性等于所述第二可靠性枚举值;所述枚举值可以是一组离散的数值、标识或索引;所述第一可靠性对应于所述第二可靠性枚举值是指所述第一可靠性等于所述第二可靠性枚举值中的任意一项。例如,第一可靠性为可靠性1,第二可靠性枚举值为{可靠性1,可靠性5,可靠性6},则所述第一可靠性对应于所述第二可靠性枚举值。
或者,所述可靠性信息包括第二可靠性范围,所述第一可靠性对应于可靠性信息,包括:所述第一可靠性在所述第二可靠性范围内。
在一种可选的实施方式中,终端存在数据,该数据对应的可靠性为第一可靠性, 对应于与第一标识对应的可靠性信息,终端设置直通链路缓存状态报告BSR中的第一数据域为第一标识,向网络设备发送缓存状态报告(Buffer Status Reporting,BSR),通知网络设备终端存在可靠性对应于第一可靠信息的数据,从而使得网络设备获知终端直通链路数据的数据可靠性。
需要说明的是,BSR发送可能存在一定的触发条件,本发明对此不进行限制。
示例性的,直通链路BSR的数据格式、BSR的触发条件以及缓存数据量计算或统计方法可以参考第三代移动伙伴计划TS 36.321V15.0.0中5.14.1.4以及6.1.3章相关协议。
可选的,BSR包含在终端向基站发送的MAC PDU中。
可选的,BSR包含在终端向基站发送的MAC CE中。
参见图5,示出了一种LTE V2X直通链路BSR格式,其中,该BSR中包括不同的数据域来指示或者体现不同的信息,例如LTE V2X直通链路BSR中包括:目的地址索引域(Destination index):用于标识目的地址,缓存数据量域(Buffer Size):用于标识缓存数据量大小,逻辑信道组标识域(LCG ID):用于标识逻辑信道组标识。其中不同的数据域可以占用不同的比特位,例如,目的地址索引域可以占用3bits。本发明对此不进行限制,传统LTE V2X直通链路BSR格式不对本申请进行限制,本申请完全采用不同的BSR格式。
可选的,终端也可以设置BSR中第二数据域为终端缓存数据量,从而使得基站获得更多直通链路数据信息。可选的,终端缓存数据量为终端存在的满足可靠性信息的直通链路数据的数据量。当然可以理解的,图5中只给出了一部分示例,单个BSR中可以包含多个目的地址索引域、缓存数据量域和逻辑信道组标识域。
举例说明,终端存在的直通链路待发送数据,分别为数据1、数据2和数据3,其中数据1对应的可靠性为可靠性标识1,目的地址为1,数据量为B1;数据2对应的可靠性为可靠性标识2,目的地址为1,数据量为B2;数据3对应的可靠性为可靠性标识4,目的地址为2,数据量为B3。其中数据1、数据2、数据3可以分别包含多个数据包。由于V2X业务中,不同业务可能具有不同的目的地址,可选的,BSR中可以包含不同的目的地址。
另外,所述配置信息包括:配置信息中包括:第一标识、与所述第一标识具有对应关系的可靠性信息,例如可靠性标识1和可靠性标识2。其中,第一标识包括LCG ID1,所述可靠性信息包括可靠性标识1和可靠性标识2,则终端接收到该配置信息之后,向网络设备上报的直通链路BSR中可以包括{目的地址1,LCGID1,C1},其中,C1表示数据量B1与数据量B2之和对应的标识或者索引;所述网络设备在接收到直通链路BSR之后,可以知道终端存在目的地址为1,且优先级为1和2的数据量为C1等信息,为后续网络设备为终端资源调度做准备。
当然,可以理解的,配置信息中还可以包含LCG ID2与可靠性信息之间的对应 关系,以及更多个第一标识、可靠性标识、第一标识与可靠性标识之间的对应关系等。本申请实施例对此不进行限制。
可选的,C1可以是一个数据量区间的索引,用来指示终端缓存数据量所在范围,可以是具体的精确值,也可以是范围区间。
可选的,所述第一配置信息还包括优先级信息;所述数据对应的优先级为第一优先级;
具体的,优先级信息包括第一优先级阈值,所述第一优先级对应于优先级信息,包括,所述第一优先级大于或者等于所述第一优先级阈值;或者,
优先级信息包括第二优先级阈值,所述第一优先级对应于优先级信息,包括,所述第一优先级小于或者等于所述第二优先级阈值;或者,
所述优先级信息包括第一优先级枚举值,所述第一优先级对应于优先级信息,包括,所述第一优先级等于所述第一优先级枚举值;所述枚举值可以是一组离散的数值、标识或索引;所述第一优先级等于所述第一优先级枚举值是指所述第一优先级等于所述第一优先级枚举值中的任意一项。例如所述第一优先级为优先级1,第一优先级枚举值为{优先级1,优先级5,优先级6},则所述第一优先级等于所述第一优先级枚举值;
或者,所述优先级信息包括第一优先级范围,所述第一优先级对应于优先级信息,包括,所述第一优先级在所述第一优先级范围内。
对于第一优先级范围,是否包含其边界本申请不进行限制,可以包含多种可能的组合形式,例如(A1,B1)、(A1,B1]、[A1,B1]、[A1,B1]等多种形式,其中“(”表示不包括端值,“]”表示包括端值。
本申请中,所述优先级信息可以不限于是标识、索引、或者其它信息,用于指向或指示所述优先级信息。以优先级信息为第一优先级阈值为例,第一优先级阈值可以通过标识、索引或者第一优先级阈值本身指向第一优先级阈值。
其中,所述第一可靠性对应于可靠性信息包括:第一可靠性对应于可靠性信息且第一优先级对应于优先级信息,即仅当终端的待发送数据满足可靠性信息和优先级信息的约束条件时,则设置直通链路BSR第一数据域为第一标识;终端将包含该第一标识的BSR发送给网络设备,以通知网络设备自己存在可靠性对应于可靠信息且优先级对应于优先级信息的数据,从而使得网络设备获知终端直通链路数据的数据可靠性和优先级。
可选的,终端也可以设置BSR中第二数据域为终端缓存数据量,从而使得基站获得更多直通链路数据信息。可选的,终端缓存数据量为终端存在的满足可靠性信息且同时满足优先级信息的直通链路数据的数据量。
示例性的:配置信息中包括LCGID与可靠性信息的对应关系为:{可靠性标识1}{可靠性标识1}{可靠性标识2},{可靠性标识3,可靠性标识4}。
此外,所述配置信息中同时还包括:{优先级标识1}{优先级标识2}{优先级标识3},{优先级标识4}。
终端根据所述配置信息可以获得如下对应关系:
Figure PCTCN2018075956-appb-000001
表5
在另一个示例中,终端直通链路数据分别为数据1和数据2,其中数据1对应优先级标识1,可靠性标识1,目的地址1,数据量为B1;数据2对应优先级标识4,可靠性标识3,目的地址2,数据量为B2。如果上行资源足够充足,则终端设置的直通链路BSR中内容如下所示:
{目的地址1,LCGID1,C1},{目的地址2,LCGID4,C2},
其中,C1表示数据量B1对应的标识或者索引,C2表示数据量B2对应的标识或者索引。
需要说明的是,由于BSR发送需要占用一定的上行资源,当上行资源不足时,终端可以只向基站发送部分所述BSR,即只包含一个LCG ID和与该LCG ID对应的关联信息。例如,BSR中可以只包含{目的地址1,LCGID1,C1}。
当存在多个LCG ID时,BSR上报不同的LCGID存在先后顺序。可以按照LCG ID的编号顺序进行上报,或者按照可靠性从高到低的顺序依次上报。
可选的,所述配置信息还包括与第二标识对应的优先级信息;所述数据对应的优先级为第一优先级。其中第二标识可以与第一标识相同或者不同。可以理解的,所述第二标识与第一数据优先级信息的对应关系可以是显示的,也可以隐式的。另外,所述第二标识可以与所述第一标识相同或者不同。
可选的,所述第二标识可以是第二逻辑信道组标识和/或第二目的地址标识。
具体的,优先级信息包括第三优先级阈值,所述第一优先级对应于优先级信息,包括:所述第一优先级大于或者等于所述第一优先级阈值,
或者,优先级信息包括第四优先级阈值,所述第一优先级对应于优先级信息,包括:所述第一优先级小于或者等于所述第四优先级阈值;
或者,所述优先级信息包括第二优先级枚举值,所述第一优先级对应于优先级信息,包括:所述第一优先级等于所述第二优先级枚举值;所述枚举值可以是一组离散的数值、标识或索引;所述第一优先级等于所述第二优先级枚举值是指所述第一优先级等于所述第二优先级枚举值中的任意一项。例如所述第一优先级为优先级1,第二优先级枚举值为{优先级1,优先级5,优先级6},则所述第一优先级等于所述第二 优先级枚举值。
或者,所述优先级信息包括第二优先级范围,所述第一优先级属于优先级信息,包括,所述第一优先级在所述第二优先级范围内。
对于第二优先级范围,是否包含其边界本申请不进行限制,可以包含多种可能的组合形式,例如(A1,B1)、(A1,B1]、[A1,B1]、[A1,B1]等多种形式,其中“(”表示不包括端值,“]”表示包括端值。
本申请中,所述优先级信息可以不限于是标识、索引、或者其它信息,用于指向或指示所述优先级信息。以优先级信息为第二优先级阈值为例,第二优先级阈值可以通过标识、索引或者第二优先级阈值本身指向第二优先级阈值。
则此时,所述第一可靠性对应于可靠性信息,包括:第一可靠性对应于可靠性信息且第一优先级对应于优先级信息。只有终端数据同时满足可靠性信息和优先级信息约束,设置缓存状态报告(Buffer Status Reporting,BSR)中的第一数据域为第一标识,设置所述BSR的第二数据域与为第二标识;终端向网络设备发送所述BSR,通知网络设备终端存在可靠性对应于第一可靠信息且优先级属于优先级信息的数据,从而使得基站获知终端直通链路数据的数据可靠性和优先级。
可选的,设置BSR中的第一数据域为第一标识包括:设置所述BSR中的第一数据域的前N1个bits为第一标识,设置所述第一数据与的后N2个bits为第二标识,其中N1和N2为正整数,可以相同或者不同,从而使得基站获知终端直通链路数据的数据可靠性和优先级。
可选的,设置BSR中的第一数据域为第一标识包括:设置所述BSR中的第一数据域的前M1个bits为第一标识,设置所述第一数据与的后M2个bits为第二标识,其中M1和M2为正整数,可以相同或者不同,从而使得基站获知终端直通链路数据的数据可靠性和优先级。
可选的,终端也可以设置BSR中第二数据域为终端缓存数据量,从而使得基站获得更多直通链路数据信息。可选的,终端缓存数据量为终端存在的满足可靠性信息且同时满足优先级信息的直通链路数据的数据量。
示例性的:配置信息中包含LCGID与可靠性信息的对应关系为:
{可靠性标识1}{可靠性标识2}{可靠性标识3},{可靠性标识4}。
配置信息中同时包含LCGID与优先级信息的对应关系为:
{优先级标识1}{优先级标识2}{优先级标识3},{优先级标识4};
终端获得配置信息可以获得如下对应关系:
LCGID1 优先级标识1 LCGID1 可靠性标识1
LCGID2 优先级标识2 LCGID2 可靠性标识2
LCGID3 优先级标识3 LCGID3 可靠性标识3
LCGID4 优先级标识4 LCGID4 可靠性标识4
表6
举例说明,表6中第一列中的任意一项可以表示一种第一标识,相对应的第二列表示优先级信息,第三列中的任一项可以表示第二标识,对应的第四列可以表示为可靠性信息。终端存在的直通链路数据分别为数据1和数据2,其中数据1对应优先级标识1,可靠性标识2,目的地址1,数据量为B1;数据2对应优先级标识4,可靠性标识3,目的地址2,数据量为B2。如果终端可利用的上行资源充足,则直通链路BSR中内容可以如下所示:
{目的地址1,LCGID1,LCGID2,C1},{目的地址2,LCGID4,LCGID3,C2},其中C1为数据量B1对应的标识或者索引,C2为数据量B2对应的标识或者索引。
当然可以理解的,所述第一标识和第二标识可以包含在一个数据域中,例如,第一数据域,对于数据1,示例性的,其对应的第一数据域格式可以如图6所示:其中前面N1个用来指示LCG ID1,后面N2个用来指示LCG ID2,或者反之。其中N1和N2可以相同,数量均为4.
参见图7,为本申请数据传输装置一个实施例的结构示意图。所述装置可以为前述实施例中的终端,例如第一终端,也可以设置在终端上,用于执行图3所对应的数据传输方法。
如图7所示,该数据传输装置包括:处理器701和收发电路702。
其中,所述处理器701用于:通过所述收发电路获取用于指示第一条件的信息;获取待传输数据;以及,当满足第一条件时,利用直通链路通过第一逻辑信道在第一载频上发送所述待传输数据,且通过第二逻辑信道在第二载频上发送所述待传输数据。
所述用于指示第一条件的信息包括:信道拥塞信息和可靠性信息中的一种或多种;
所述第一条件包括:拥塞条件和可靠性条件中的一种或多种。
可选的,所述第一条件可以是激活条件。
其中,所述用于指示第一条件的信息可以是承载在网络设备向终端发送的RRC信令中,其中RRC信令可以是SIB消息或者是专用RRC信令。所述处理器通过所述收发电路接收该RRC信令,获取所述第一条件的信息。
或者,所述用于指示第一条件的信息可以是承载在网络设备发送给终端设备的数据包中,例如,可以包含在MAC CE中。处理器通过收发电路接收该数据包来获取用于指示第一条件的信息。
或者,所述用于指示第一条件的信息承载在PDCCH上,所述处理器通过收发电路接收PDCCH,该PDCCH上包括DCI,所述DCI中携带用于指示第一条件的信息。
或者,所述用于指示第一条件的信息包含在预配置信息中,所述处理器通过收发电路获取该用于指示第一条件的信息。
可选的,在一种可能的实现方式中,所述信道拥塞信息包括:第一信道拥塞阈值, 所述拥塞条件包括:第三载频的信道拥塞程度大于或等于所述第一信道拥塞阈值。
或者,所述信道拥塞信息包括:第二信道拥塞阈值,所述拥塞条件包括第三载频的信道拥塞程度小于或等于所述第二信道拥塞阈值。
或者,所述信道拥塞信息为:第一信道拥塞范围,所述拥塞条件包括第三载频的信道拥塞程度在所述第一信道拥塞范围内。
其中,所述第三载频属于网络设备配置或者预配置的用于直通链路通信的所有载频中的一个。
可选的,在另一种可能的实现方式中,所述可靠性信息包括:第一可靠性阈值,所述可靠性条件包括所述待传输数据的可靠性大于或等于所述第一可靠性阈值。
或者,所述可靠性信息包括:第一可靠性枚举值,所述可靠性条件包括所述待传输数据的可靠性等于所述第一可靠性枚举值。
或者,所述可靠性信息包括第一可靠性范围,所述可靠性条件包括所述待传输数据的可靠性在所述第一可靠性范围内。
可选的,在本实施例的一种可能的实现方式中,所述处理器701还用于:通过所述收发电路获取用于指示载频集合的信息,其中,所述载频集合与第一数据属性相对应,所述载频集合包括所述第一载频和所述第二载频,所述待传输数据具有所述数据属性。
其中,所述数据属性包括以下至少一项:优先级、可靠性、时延、目的地址和业务类型等。所述第一数据属性还可以包括其它特征,本实施例具体不予限制。
其中,获取用于指示载频集合的信息与获取用于指示第一条件的信息方法类似,此处不再赘述。
可选的,在本实施例的又一种可能的实现方式中,所述处理器701还用于:通过所述收发电路获取各逻辑信道的数据属性。
所述处理器,还用于检测所述各逻辑信道的数据属性,确定所述第一逻辑信道和所述第二逻辑信道。
可选的,在本实施例的又一种可能的实现方式中,所述处理器701还用于:通过所述收发电路获取进行数据重复传输的逻辑信道之间的预设对应关系;以及,检测存在满足所述预设对应关系的情况下,确定所述第一逻辑信道和第二逻辑信道。
可以理解的,所述“检测”也可以解释为判断或者确定等。
可选的,在本实施例的又一种可能的实现方式中,所述处理器701还用于:当满足第二条件时,停止利用所述直通链路通过所述第一逻辑信道在所述第一载频上发送所述待传输数据,和通过所述第二逻辑信道在所述第二载频上发送所述待传输数据。
进一步地,所述用于指示第二条件的信息包括第三信道拥塞阈值、第四信道拥塞阈值、第二信道拥塞范围中的任意一种。
所述第二条件包括:第四载频的信道拥塞程度大于或等于所述第三信道拥塞阈值;或者,
第四载频的信道拥塞程度大于或等于所述第四信道拥塞阈值;或者,
第四载频的信道拥塞程度在所述第二信道拥塞范围内。
其中,所述第四载频可以与第三载频相同,也可以不同。
另外,本实施例提供的装置,还用于生成包含有标识信息的直通链路BSR,并将该BSR上报给网络设备,实现如图4所示的数据传输方法,具体地:
收发电路702,用于获取配置信息和数据,其中,所述配置信息中包括与第一标识对应的可靠性信息;或者还可以包括第一标识。
处理器701,用于检测若所述第一可靠性对应于所述可靠性信息,设置直通链路缓存状态报告BSR中的第一数据域为所述第一标识,并通过收发电路702向网络设备发送所述BSR。
其中,所述第一标识包括:第一逻辑信道组标识;或,第一目的地址标识;或,第一逻辑信道组标识和第一目的地址标识。
可选的,在本实施例的一种可能的实现方式中,所述可靠性信息包括:第二可靠性阈值,所述第一可靠性对应于所述可靠性信息包括:所述第一可靠性大于或者等于所述第二可靠性阈值;或者,
所述可靠性信息包括:第三可靠性阈值,所述第一可靠性对应于所述可靠性信息包括,所述第一可靠性小于或者等于所述第三可靠性阈值;或者,
所述可靠性信息包括:第二可靠性枚举值,所述第一可靠性对应于所述可靠性信息包括:所述第一可靠性等于所述第二可靠性枚举值;或者,
所述可靠性信息包括:第二可靠性范围,所述第一可靠性对应于所述可靠性信息包括:所述第一可靠性在所述第二可靠性范围内。
可选的,在本实施例的另一种可能的实现方式中,所述配置信息还包括优先级信息,所述数据对应的优先级为第一优先级;
所述处理器701,具体用于检测若第一可靠性对应于所述可靠性信息,且所述第一优先级对应于所述优先级信息,设置直通链路缓存状态报告BSR第一数据域为第一标识,并利用收发电路702向网络设备发送所述BSR。
可选的,在本实施例的又一种可能的实现方式中,所述优先级信息包括第一优先级阈值,所述第一优先级对应于所述优先级信息包括:所述第一优先级大于或者等于所述第一优先级阈值;或者,
所述优先级信息包括第二优先级阈值,所述第一优先级对应于所述优先级信息包括:所述第一优先级小于或者等于所述第二优先级阈值;或者,
所述优先级信息包括第一优先级枚举值,所述第一优先级对应于所述优先级信息包括:所述第一优先级等于所述第一优先级枚举值;或者,
所述优先级信息包括第一优先级范围,所述第一优先级对应于所述优先级信息包括:所述第一优先级在所述第一优先级范围内。
在具体实现中,本申请还提供了一种终端,如图8所示,用于执行前述实施例所 述的数据传输方法。所述终端可以包括:处理器801、收发器802和存储器803,所述终端还可以包括更多或更少的部件,或者组合某些部件,或者不同的部件布置,本申请对此不进行限定。
其中,所述收发器802包括收发电路,所述收发电路上可以包括接收单元和发送单元,用于实现终端与终端、终端与网络设备之间的通信传输,例如收发数据、信令、请求消息等。
进一步地,收发器802可以包括无线局域网(wireless local area network,WLAN)模块、蓝牙模块、基带(base band)模块等通信模块,以及所述通信模块对应的射频(radio frequency,RF)电路,用于进行无线网络通信、蓝牙通信、红外线通信及/或蜂窝式通信***通信,例如宽带码分多重接入(wideband code division multiple access,WCDMA)及/或高速下行封包存取(high speed downlink packet access,HSDPA)。
所述处理器801为终端的控制中心,利用各种接口和线路连接整个终端设备的各个部分,通过运行或执行存储在存储器内的软件程序和/或模块,以及调用存储在存储器803内的数据,以执行终端的各种功能和/或处理数据。
进一步地,所述处理器801可以由集成电路(integrated circuit,IC)组成,例如可以由单颗封装的IC所组成,也可以由连接多颗相同功能或不同功能的封装IC而组成。举例来说,处理器801可以仅包括中央处理器(central processing unit,CPU),也可以是GPU、数字信号处理器(digital signal processor,DSP)、及收发模块中的控制芯片(例如基带芯片)的组合。在本申请的各种实施方式中,CPU可以是单运算核心,也可以包括多运算核心。
所述存储器803可以包括易失性存储器(volatile memory),例如随机存取内存(random access memory,RAM);还可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);所述存储器还可以包括上述种类的存储器的组合。所述存储器中可以存储有程序或代码,所述终端中的处理器801通过执行所述程序或代码可以实现所述网络设备的功能。
在上述实施例中,图7所示的收发电路702的所有功能可以由终端的收发器802来实现,或者由处理器801控制的收发器802来实现;图7所示的处理器或者处理单元所要实现的功能可以由所述处理器801实现。
所述存储器803用于存储来自网络设备的各种信息,例如用于指示第一条件的信息、用于指示载频集合的信息、信道拥塞信息、可靠性信息和用于指示第二条件的信息等,进一步地,所述这些信息可以通过RRC信令来承载。此外,存储器还用于存储第一载频集合、第二载频集合、PDCP层的待传输数据,以及各种拥塞条件和可靠性条件等。
具体实现中,本申请还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时可包括本申请提供的数据传输方法的各实施例中的部分或全 部步骤。所述的存储介质可为磁碟、光盘、ROM或RAM等。
对应于前述终端的实施例,本申请还提供了一种网络设备,用于实现与终端行为对应的数据传输方法,具体地,该网络设备包括处理器、收发器和存储器,或者其结构与终端的结构相同。具体地:
网络设备生成指示第一条件的信息;所述第一条件信息包括用于激活PDCP层重复传输的激活条件,或者包括用于指示所述激活条件的必要参数等信息。
网络设备发送所述第一条件的信息。
可选的,所述用于指示第一条件的信息包括:第一信道拥塞阈值、第二信道拥塞阈值或第一信道拥塞范围;所述第一条件包括拥塞条件,进一步地,所述拥塞条件包括:终端的第三载频的信道拥塞程度大于或等于所述第一信道拥塞阈值,或者,终端的第三载频的信道拥塞程度小于或等于所述第二信道拥塞阈值,或者,终端的第三载频的信道拥塞程度在所述第一信道拥塞范围内。
可选的,所述用于指示第一条件的信息可以包括:第一可靠性阈值、第一可靠性枚举值或第一可靠性范围,所述第一条件包括可靠性条件,进一步地,所述可靠性条件包括所述待传输数据的可靠性大于或等于所述第一可靠性阈值;或者,所述可靠性条件包括所述待传输数据的可靠性等于所述第一可靠性枚举值;或者,所述可靠性条件包括所述待传输数据的可靠性在所述第一可靠性范围内。
可选的,所述方法还包括:
所述网络设备生成指示第二条件的信息,并发送所述指示第二条件的信息;
其中,所述用于指示第二条件的信息包括:第三信道拥塞阈值、第四信道拥塞阈值和第二信道拥塞范围中任意一种;所述第二条件包括:第四载频的信道拥塞程度大于或等于所述第三信道拥塞阈值;或者,所述第四载频的信道拥塞程度小于或等于所述第四信道拥塞阈值;或者,所述第四载频的信道拥塞程度在所述第二信道拥塞范围内。
可选的,所述网络设备还发送RRC信令,所述RRC信令包含用于指示第三载频的信息。
可选的,所述RRC信令包含用于指示第一载频集合和第二载频集合的信息。
可选的,所述RRC信令包含用于指示第三载频集合的信息。
可选的,所述RRC信令包含用于指示第四载频集合的信息,其中述第四载频集合与第一数据属性相对应,所述第四载频集合包括所述第一载频和所述第二载频。所述数据属性包括优先级、可靠性、时延、目的地址和业务类型中的一项或多项。
另外,在本实施例中,所述网络设备还用于向终端发送配置信息,用于获取终端的直通链路状态,进而更好地为终端调度资源,具体地所述数据传输方法包括以下步骤:
网络设备向终端发送配置信息,所述配置信息中包括与所述第一标识对应的可靠性信息;其中,所述配置信息用于配置所述终端若其数据的可靠性对应于所述可靠性信息,设置直通链路缓存状态报告BSR中第一数据域为所述第一标识;
所述网络设备接收来自所述终端的所述直通链路BSR。
可选的,所述配置信息还包括优先级信息;
所述配置信息用于配置所述终端若其数据的可靠性对应于所述可靠性信息,且所述数据的优先级对应于所述优先级信息,发送所述第一数据域为所述第一标识的直通链路BSR。
可选的,所述第一标识包括:第一逻辑信道组标识;或,第一目的地址标识;或,第一逻辑信道组标识和第一目的地址标识。
在具体实现中,所述网络设备的处理器通过读取存储器中的指令,来执行上述的数据传输方法,其中,所述存储器与处理器耦合,所述存储器包括存储介质,例如为磁碟、光盘、ROM或RAM等。
本申请所述的终端用于直通链路技术场景,即适用于设备到设备(device to device,D2D)的数据传输,所述终端一端的发送设备,也可以是另一端的接收设备。
此外,本申请还提供了一种通信***,用于直通链路下重复数据包的传输,该***包括至少两个终端,每个所述终端可以为图7所示的数据传输装置,或者包括图8所示的终端结构,用于实现本申请上述实施例一的数据传输方法。
具体地,该数据传输方法包括如下步骤:
第一终端确定至少一个第一载频和至少一个第二载频,所述第一载频和第二载频不同;
第一终端分别使用所述至少一个第一载频和所述至少一个第二载频通过直通链路向第二终端发送第一逻辑信道和第二逻辑信道中的数据,所述第一逻辑信道和所述第二逻辑信道均包括第一数据,且所述第一数据来自同一PDCP实体。
可选的,所述第一终端确定至少一个第一载频和至少一个第二载频,包括:所述第一终端自主确定至少一个第一载频和至少一个第二载频,或者通过网络设备预先配置来确定所述至少一个第一载频和至少一个第二载频。
可选的,所述方法还包括:第一终端获取载频集合与标识的对应关系,其中所述标识包括以下至少一项:优先级、目的地址、可靠性、时延和业务类型;
第一终端确定至少一个第一载频和至少一个第二载频还包括:第一终端根据所述第一数据对应的第一标识和所述对应关系确定至少一个第一载频和至少一个第二载频,其中,所述至少一个第一载频和所述至少一个第二载频属于所述载频集合。
此外,所述第一数据对应的第一标识包括:第一数据对应的优先级、第一数据对应的目的地址,第一数据对应的可靠性、第一数据对应的时延、第一数据对应的业务类型等中的至少一项。
可选的,在所述第一终端分别使用所述至少一个第一载频和所述至少一个第二载频通过直通链路向第二终端发送所述第一逻辑信道和第二逻辑信道中的数据之前,所述方法还包括:第一终端判断是否满足第一条件,如果满足,则将所述第一数据分别递交到第一逻辑信道和第二逻辑信道。
可选的,所述方法还包括:第一终端获取第一信道拥塞信息,
如果所述第一信道拥塞信息为第一信道拥塞阈值,则所述第一条件包括第三载频的信道拥塞程度大于或者等于所述第一信道拥塞阈值;
或者,如果所述第一信道拥塞信息为第二信道拥塞阈值,则所述第一条件包括第三载频的信道拥塞程度小于或者等于所述第二信道拥塞阈值;
或者,如果第一信道拥塞信息为第一信道拥塞范围,则所述第一条件包括第三载频的信道拥塞程度在所述第一信道拥塞范围内。
可选的,所述方法还包括:第一终端获取可靠性信息;
如果所述可靠性信息包括第一可靠性阈值,则所述第一条件包括所述第一数据对应的数据可靠性信息大于或者等于第一可靠性阈值;
或者,如果所述可靠性信息包括第二可靠性阈值,则所述第一条件包括所述第一数据对应的数据可靠性信息等于第二可靠性阈值;所述第二可靠性阈值为一个或多个枚举值;
或者,如果所述可靠性信息包括第一可靠性范围,则所述第一条件包括所述第一数据对应的数据可靠性信息在第一可靠性范围内。
可选的,所述方法还包括:
具体地,第一终端设备确定在满足第二条件下,停止将同一第一数据分别递交到所述第一逻辑信道和所述第二逻辑信道。
可选的,所述方法还包括:第一终端获取第二信道拥塞信息。
如果所述第二信道拥塞信息包括:第三信道拥塞阈值和第四信道拥塞阈值,则所述第二条件包括:第一逻辑信道对应的至少一个第一载频的信道拥塞程度大于或者等于所述第三信道拥塞阈值,且第二逻辑信道对应的至少一个第二载频的信道拥塞程度大于或者等于所述第四信道拥塞阈值;
或者,如果所述第二信道拥塞信息包括:第五信道拥塞阈值和第六信道拥塞阈值,则所述第二条件包括:第一逻辑信道对应的至少一个第一载频的信道拥塞程度小于或者等于所述第五信道拥塞阈值,且第二逻辑信道对应的至少一个第二载频的信道拥塞程度小于或者等于所述第六信道拥塞阈值;
其中,所述第一逻辑信道对应的至少一个第一载频的信道拥塞程度是指,至少一个第一载频对应的信道拥塞程度的最大值,或者,至少一个第一载频对应的信道拥塞程度的最小值;
所述第二逻辑信道对应的至少一个第二载频的信道拥塞程度是指,至少一个第二载频对应的信道拥塞程度的最大值,或者,至少一个第二载频对应的信道拥塞程度的最小值;
需要说明的是,本申请中,第一信道拥塞阈值、第二信道拥塞阈值、第三信道拥塞阈值、第四信道拥塞阈值,第五信道拥塞阈值、第六信道拥塞阈值可以相同或者不同,第一信道拥塞范围、第二信道拥塞范围可以相同或者不同,第一可靠性阈值、第二可靠性阈值可以相同或者不同,本申请不对此进行限制。
可选的,在所述第一终端确定至少一个第一载频和至少一个第二载频之前,方法还包括:
终端的MAC层确定进行重复传输的第一逻辑信道和第二逻辑信道。
可选的,终端的MAC层确定第一逻辑信道和第二逻辑信道具体包括:
MAC层根据各逻辑信道的标识信息确定所述第一逻辑信道和所述第二逻辑信道。
所述标识信息可以包括以下至少一项:优先级、可靠性、时延、目的地址和业务类型;
或者,如果所述第一逻辑信道和第二逻辑信道之间存在配对关系,MAC层可以根据具有所述配对关系的逻辑信道,确定所述第一逻辑信道和第二逻辑信道。
对于本方法的各种实现方式的详细说明可参见前述实施例的方法描述,此处不再赘述。
本领域的技术人员可以清楚地了解到本申请实施例中的技术可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本申请实施例中的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例或者实施例的某些部分所述的方法。
本说明书中各个实施例之间相同相似的部分互相参见即可。尤其,对于本申请上述各个实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例中的说明即可。
以上所述的本申请实施方式并不构成对本申请保护范围的限定。

Claims (22)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    获取用于指示第一条件的信息;
    获取待传输数据;
    当满足第一条件时,利用直通链路,通过第一逻辑信道在第一载频上发送所述待传输数据,且通过第二逻辑信道在第二载频上发送所述待传输数据。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    确定第一载频集合和第二载频集合;其中,所述第一载频为第一载频集合中的一个载频,所述第二载频为第二载频集合中的一个载频,且所述第一载频集合与所述第一逻辑信道具有对应关系,所述第二载频集合与所述第二逻辑信道具有对应关系。
  3. 根据权利要求2所述的方法,其特征在于,所述确定第一载频集合和第二载频集合,包括:
    获取用于指示第一载频集合和第二载频集合的第一信息,根据所述第一信息确定所述第一载频集合和所述第二载频集合;所述第一信息通过无线资源控制RRC信令或预配置信息承载;或者,
    获取用于指示第三载频集合的第二信息,根据所述第二信息确定所述第一载频集合和所述第二载频集合;所述第二信息通过RRC信令或预配置信息承载。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述待传输数据具有数据属性,所述方法还包括:
    获取用于指示第四载频集合的信息;所述第四载频集合与数据属性具有对应关系,且所述第四载频集合包括所述第一载频和所述第二载频。
  5. 根据权利要求4所述的方法,其特征在于,所述数据属性包括以下一项或多项:
    优先级、可靠性、时延、目的地址和业务类型。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,
    所述用于指示第一条件的信息包括:第一信道拥塞阈值,所述拥塞条件包括:第三载频的信道拥塞程度大于或等于所述第一信道拥塞阈值;或者,
    所述用于指示第一条件的信息包括:第二信道拥塞阈值,所述拥塞条件包括:第三载频的信道拥塞程度小于或等于所述第二信道拥塞阈值;或者,
    所述用于指示第一条件的信息为:第一信道拥塞范围,所述拥塞条件包括:终端的第三载频的信道拥塞程度在所述第一信道拥塞范围内;
    其中,所述第三载频属于网络设备配置或者预配置的用于直通链路通信的所有载频中的一个。
  7. 根据权利要求6所述的方法,其特征在于,
    所述第三载频由网络设备配置或者预配置的方式确定的;或者,
    所述第三载频为终端传输载频中的任意一个;或者,
    所述第三载频为终端传输载频中信道拥塞程度最小的一个载频;或者,
    所述第三载频为终端传输载频中信道拥塞程度最大的一个载频;或者,
    所述第三载频为终端传输载频中支持所述待传输数据的载频中的任意一个载频;或者,
    所述第三载频为终端传输载频中支持所述待传输数据的载频中,信道拥塞程度最小的一个载频;或者,
    所述第三载频为终端传输载频中支持所述待传输数据的载频中,信道拥塞程度最大的一个载频。
  8. 根据权利要求1-5任一项所述的方法,其特征在于,
    所述用于指示第一条件的信息包括:第一可靠性阈值,所述可靠性条件包括所述待传输数据的可靠性大于或等于所述第一可靠性阈值;或者,
    所述用于指示第一条件的信息包括:第一可靠性枚举值,所述可靠性条件包括所述待传输数据的可靠性等于所述第一可靠性枚举值;或者,
    所述用于指示第一条件的信息包括:第一可靠性范围,所述可靠性条件包括所述待传输数据的可靠性在所述第一可靠性范围内。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    根据各逻辑信道的数据属性确定所述第一逻辑信道和所述第二逻辑信道,所述数据属性包括优先级、可靠性、时延、目的地址和业务类型中的一项或多项;或者,
    根据各逻辑信道ID之间的对应关系确定所述第一逻辑信道和所述第二逻辑信道。
  10. 根据权利要求9所述的方法,其特征在于,
    所述逻辑信道ID之间的对应关系包括:第二逻辑信道的ID与第一逻辑信道的ID之间的差值,或,和值满足预设值。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述方法还包括:
    当满足第二条件时,停止利用所述直通链路,通过所述第一逻辑信道在所述第一载频上发送待传输数据,和通过所述第二逻辑信道在所述第二载频上发送待传输数据。
  12. 根据权利要求11所述的方法,其特征在于,在停止发送待传输数据之前,所述方法还包括:
    获取用于指示第二条件的信息,所述用于指示第二条件的信息包括:第三信道拥塞阈值、第四信道拥塞阈值和第二信道拥塞范围中任意一种;
    所述第二条件包括:第四载频的信道拥塞程度大于或等于所述第三信道拥塞 阈值;或者,所述第四载频的信道拥塞程度小于或等于所述第四信道拥塞阈值;或者,所述第四载频的信道拥塞程度在所述第二信道拥塞范围内。
  13. 一种数据传输方法,其特征在于,所述方法包括:
    获取配置信息,所述配置信息中包括与第一标识对应的可靠性信息;
    获取数据,所述数据的可靠性为第一可靠性;
    若所述第一可靠性对应于所述可靠性信息,向网络设备发送直通链路缓存状态报告BSR,所述直通链路BSR中包括所述第一标识。
  14. 根据权利要求13所述的方法,其特征在于,
    所述可靠性信息包括:第二可靠性阈值,所述第一可靠性对应于所述可靠性信息包括:所述第一可靠性大于或者等于所述第二可靠性阈值;或者,
    所述可靠性信息包括:第三可靠性阈值,所述第一可靠性对应于所述可靠性信息包括,所述第一可靠性小于或者等于所述第三可靠性阈值;或者,
    所述可靠性信息包括:第二可靠性枚举值,所述第一可靠性对应于所述可靠性信息包括:所述第一可靠性等于所述第二可靠性枚举值;或者,
    所述可靠性信息包括:第二可靠性范围,所述第一可靠性对应于所述可靠性信息包括:所述第一可靠性在所述第二可靠性范围内。
  15. 根据权利要求13或14所述的方法,其特征在于,所述配置信息还包括优先级信息,所述数据对应的优先级为第一优先级;
    所述若所述第一可靠性对应于所述可靠性信息,向网络设备发送直通链路BSR,包括:
    若所述第一可靠性对应于所述可靠性信息,且所述第一优先级对应于所述优先级信息,向网络设备发送直通链路BSR。
  16. 根据权利要求15所述的方法,其特征在于,
    所述优先级信息包括第一优先级阈值,所述第一优先级对应于所述优先级信息包括:所述第一优先级大于或者等于所述第一优先级阈值;或者,
    所述优先级信息包括第二优先级阈值,所述第一优先级对应于所述优先级信息包括:所述第一优先级小于或者等于所述第二优先级阈值;或者,
    所述优先级信息包括第一优先级枚举值,所述第一优先级对应于所述优先级信息包括:所述第一优先级等于所述第一优先级枚举值;或者,
    所述优先级信息包括第一优先级范围,所述第一优先级对应于所述优先级信息包括:所述第一优先级在所述第一优先级范围内。
  17. 根据权利要求13-16任一项所述的方法,所述第一标识包括:
    第一逻辑信道组标识;或,
    第一目的地址标识;或,
    第一逻辑信道组标识和第一目的地址标识。
  18. 一种数据传输方法,其特征在于,所述方法包括:
    向终端发送配置信息,所述配置信息中包括与第一标识对应的可靠性信息;其中,所述配置信息用于配置所述终端若其数据的可靠性对应于所述可靠性信息,向网络设备发送的直通链路缓存状态报告BSR包含所述第一标识;
    接收来自所述终端的所述直通链路BSR。
  19. 根据权利要求18所述的方法,其特征在于,所述配置信息还包括优先级信息;
    所述配置信息用于配置所述终端若其数据的可靠性对应于所述可靠性信息,且所述数据的优先级对应于所述优先级信息,向网络设备发送的所述直通链路BSR包含所述第一标识。
  20. 根据权利要求18或19所述的方法,所述第一标识包括:
    第一逻辑信道组标识;或,
    第一目的地址标识;或,
    第一逻辑信道组标识和第一目的地址标识。
  21. 一种数据传输装置,其特征在于,包括处理器;
    所述处理器用于与存储器耦合,读取所述存储器中的指令,并根据所述指令执行如权利要求1-20任一项所述的方法。
  22. 根据权利要求21所述的装置,其特征在于,还包括所述存储器。
PCT/CN2018/075956 2018-02-09 2018-02-09 一种数据传输方法和装置 WO2019153234A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2018/075956 WO2019153234A1 (zh) 2018-02-09 2018-02-09 一种数据传输方法和装置
CN201880088476.1A CN111727613B (zh) 2018-02-09 2018-02-09 一种数据传输方法和装置
JP2020542809A JP7052056B2 (ja) 2018-02-09 2018-02-09 データ伝送方法及び装置
EP18905452.1A EP3742766A4 (en) 2018-02-09 2018-02-09 DATA TRANSMISSION PROCESS AND APPARATUS
US16/988,397 US11924674B2 (en) 2018-02-09 2020-08-07 Data transmission method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/075956 WO2019153234A1 (zh) 2018-02-09 2018-02-09 一种数据传输方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/988,397 Continuation US11924674B2 (en) 2018-02-09 2020-08-07 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2019153234A1 true WO2019153234A1 (zh) 2019-08-15

Family

ID=67549184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075956 WO2019153234A1 (zh) 2018-02-09 2018-02-09 一种数据传输方法和装置

Country Status (5)

Country Link
US (1) US11924674B2 (zh)
EP (1) EP3742766A4 (zh)
JP (1) JP7052056B2 (zh)
CN (1) CN111727613B (zh)
WO (1) WO2019153234A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210219169A1 (en) * 2018-09-27 2021-07-15 Vivo Mobile Communication Co., Ltd. Buffer status report transmission method, terminal and scheduling device
EP4027665A4 (en) * 2019-09-30 2022-10-12 Huawei Technologies Co., Ltd. COMMUNICATION PROCESS AND COMMUNICATION DEVICE

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3544351A4 (en) * 2018-01-18 2019-11-06 Guangdong OPPO Mobile Telecommunications Corp., Ltd. METHOD FOR TRANSMITTING DATA IN THE INTERNET OF VEHICLES AND DEVICES
CN110166201B (zh) * 2018-02-13 2021-01-08 维沃移动通信有限公司 一种副链路数据的指示方法及终端设备
WO2019178850A1 (zh) * 2018-03-23 2019-09-26 Oppo广东移动通信有限公司 无线通信方法、用户设备和网络设备
CN110324784B (zh) * 2018-03-29 2021-02-19 维沃移动通信有限公司 通信范围信息的处理方法及终端
CN113170531A (zh) * 2018-12-11 2021-07-23 Oppo广东移动通信有限公司 数据传输的方法和设备
CN112055415B (zh) * 2019-06-06 2022-10-04 大唐移动通信设备有限公司 一种缓冲区状态报告的传输方法及终端
CN112436928B (zh) * 2020-11-23 2023-11-03 北京中航通用科技有限公司 一种数据传输的方法及装置
CN113852988B (zh) * 2021-09-10 2023-11-24 武汉联影医疗科技有限公司 拥塞控制方法、装置、计算机设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140177585A1 (en) * 2011-08-22 2014-06-26 Lg Electronics Inc. Device-to-device data transmission method in wireless access system supporting device-to-device communication, and apparatus therefor
US20140307657A1 (en) * 2013-04-16 2014-10-16 Samsung Electronics Co., Ltd. Device and method for performing device to device communication in wireless communication system
CN104954976A (zh) * 2015-06-30 2015-09-30 宇龙计算机通信科技(深圳)有限公司 一种资源调度方法、终端、基站及***
CN105703890A (zh) * 2014-11-28 2016-06-22 电信科学技术研究院 一种进行数据传输的方法和设备
CN107645710A (zh) * 2016-07-20 2018-01-30 普天信息技术有限公司 一种v2x业务的传输方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7505458B2 (en) * 2001-11-27 2009-03-17 Tellabs San Jose, Inc. Apparatus and method for a fault-tolerant scalable switch fabric with quality-of-service (QOS) support
ES2359522B1 (es) * 2008-12-18 2012-04-02 Vodafone España, S.A.U. Procedimiento y estación base de radio para planificar tr�?fico en redes telefónicas celulares de �?rea amplia.
CN103312441B (zh) * 2012-03-15 2017-11-17 华为技术有限公司 数据包传输方法及***、发送端设备与接收端设备
CN103828411B (zh) * 2012-09-17 2018-06-15 华为技术有限公司 调度方法、基站、用户设备和***
KR102082000B1 (ko) * 2013-08-07 2020-02-26 주식회사 팬택 무선 통신 시스템에서 버퍼상태보고 전송 방법 및 장치
US10594554B2 (en) * 2014-05-15 2020-03-17 Applied Invention, Llc Method and apparatus for communication system upgrade via phased adoption
JP6545906B2 (ja) * 2015-10-27 2019-07-17 エルジー エレクトロニクス インコーポレイティド D2d通信システムにおいてバッファ状態報告をトリガーする方法及びその装置
US20210267471A1 (en) * 2016-04-15 2021-09-02 Koninklijke Philips N.V. System and method for evaluating a variation of a heart rate of a subject
EP3863358A1 (en) * 2016-05-12 2021-08-11 IDAC Holdings, Inc. Flow-based processing in wireless systems
EP3637898B1 (en) * 2017-08-09 2022-01-19 Huawei Technologies Co., Ltd. Resource allocation method, first device and second device
US11902866B2 (en) * 2017-11-17 2024-02-13 Innovative Technology Lab Co., Ltd. Apparatus and method for performing wireless communication in wireless communication system supporting vehicle communication
WO2019108123A1 (en) * 2017-11-29 2019-06-06 Telefonaktiebolaget Lm Ericsson (Publ) Wireless device, radio network node and methods performed therein for handling communication between wireless devices in a wireless communication network
WO2019140558A1 (zh) * 2018-01-16 2019-07-25 Oppo广东移动通信有限公司 数据复制的数据量的上报方法、用户设备及网络设备
KR102412296B1 (ko) * 2018-02-15 2022-06-22 텔레폰악티에볼라겟엘엠에릭슨(펍) 무선 디바이스, 무선 네트워크 노드 및 수행된 방법
US11337229B2 (en) * 2019-10-29 2022-05-17 Lg Electronics Inc. Method and apparatus for logical channel prioritization in wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140177585A1 (en) * 2011-08-22 2014-06-26 Lg Electronics Inc. Device-to-device data transmission method in wireless access system supporting device-to-device communication, and apparatus therefor
US20140307657A1 (en) * 2013-04-16 2014-10-16 Samsung Electronics Co., Ltd. Device and method for performing device to device communication in wireless communication system
CN105703890A (zh) * 2014-11-28 2016-06-22 电信科学技术研究院 一种进行数据传输的方法和设备
CN104954976A (zh) * 2015-06-30 2015-09-30 宇龙计算机通信科技(深圳)有限公司 一种资源调度方法、终端、基站及***
CN107645710A (zh) * 2016-07-20 2018-01-30 普天信息技术有限公司 一种v2x业务的传输方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3742766A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210219169A1 (en) * 2018-09-27 2021-07-15 Vivo Mobile Communication Co., Ltd. Buffer status report transmission method, terminal and scheduling device
EP4027665A4 (en) * 2019-09-30 2022-10-12 Huawei Technologies Co., Ltd. COMMUNICATION PROCESS AND COMMUNICATION DEVICE

Also Published As

Publication number Publication date
JP7052056B2 (ja) 2022-04-11
CN111727613A (zh) 2020-09-29
JP2021513276A (ja) 2021-05-20
US20200374744A1 (en) 2020-11-26
EP3742766A1 (en) 2020-11-25
CN111727613B (zh) 2022-06-10
EP3742766A4 (en) 2020-12-23
US11924674B2 (en) 2024-03-05

Similar Documents

Publication Publication Date Title
WO2019153234A1 (zh) 一种数据传输方法和装置
US11800490B2 (en) Methods and apparatuses for autonomous resource selection in new radio vehicle to everything (NR V2X)
WO2019192596A1 (zh) 传输数据的方法及其装置和***
US20200221538A1 (en) Data transmission method, terminal device, and network device
CN113228777A (zh) 实现不同类型的同时传输的过程
WO2020143690A1 (zh) 一种无线承载的配置方法、终端及通信装置
WO2019153935A1 (zh) 传输方式确定方法及装置,存储介质和电子装置
WO2020192777A1 (zh) 通信方法及设备
WO2020221281A1 (zh) 用于获取无线承载配置的方法和装置
WO2018141244A1 (zh) 一种资源调度方法、装置及***
WO2018133669A1 (zh) 一种资源调度方法以及无线接入网设备和终端设备
CN110312285B (zh) 一种通信方法及相关设备
WO2017157128A1 (zh) 一种配置和确定半持续调度的方法及设备
JP7467597B2 (ja) 通信方法、slrb確立方法、および通信装置
WO2020087365A1 (zh) 边链路数据的发送和配置方法以及装置
WO2012136087A1 (zh) 一种资源调度的方法及***及一种终端
US20230262835A1 (en) Sidelink communication method and apparatus
CN107113811A (zh) 一种建立数据无线承载的方法及装置
WO2021244299A1 (zh) 通信方法及通信设备
WO2022022433A1 (zh) 一种侧行链路通信方法及装置
WO2019213883A1 (zh) 资源调度方法、终端及网络设备
WO2019029739A1 (zh) 一种多载频传输方法、设备及***
WO2021128350A1 (zh) 一种ue自动传输处理方法及其装置
WO2023130897A1 (zh) 一种通信方法、装置及***
WO2023030088A1 (zh) 旁链路通信方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905452

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020542809

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018905452

Country of ref document: EP

Effective date: 20200820