WO2019153201A1 - 一种信道检测方法及装置、计算机存储介质 - Google Patents

一种信道检测方法及装置、计算机存储介质 Download PDF

Info

Publication number
WO2019153201A1
WO2019153201A1 PCT/CN2018/075852 CN2018075852W WO2019153201A1 WO 2019153201 A1 WO2019153201 A1 WO 2019153201A1 CN 2018075852 W CN2018075852 W CN 2018075852W WO 2019153201 A1 WO2019153201 A1 WO 2019153201A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwps
indication information
control resource
resources
search space
Prior art date
Application number
PCT/CN2018/075852
Other languages
English (en)
French (fr)
Inventor
沈嘉
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to KR1020207025202A priority Critical patent/KR20200118829A/ko
Priority to JP2020542731A priority patent/JP2021516888A/ja
Priority to PCT/CN2018/075852 priority patent/WO2019153201A1/zh
Priority to US16/968,589 priority patent/US11716676B2/en
Priority to AU2018407188A priority patent/AU2018407188A1/en
Priority to EP18905750.8A priority patent/EP3742651A4/en
Priority to CN201880088827.9A priority patent/CN111819808A/zh
Publication of WO2019153201A1 publication Critical patent/WO2019153201A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a channel detection method and apparatus, and a computer storage medium.
  • LTE Long Term Evolution
  • NR New Radio
  • BWP Band Width Part
  • the base station can configure multiple BWPs through RRC (Radio Resource Control) signaling, and then dynamically activate a BWP in Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • Each BWP is based on a parameter set, wherein the parameter set includes a subcarrier spacing, a cyclic prefix (CP, Cyclic Prefix).
  • CP cyclic prefix
  • CP Cyclic Prefix
  • BWP1 when BWP1 is active, if BWP2 is activated, BWP1 will be deactivated. If BWP1 is activated again, BWP2 will be deactivated again.
  • a control resource set (CORESET, Control Resource Set) and a search space (SS, Search Space) of a Physical Downlink Control Channel (PDCCH) are respectively configured for each BWP.
  • CORESET Control Resource Set
  • SS Search Space
  • the prior art solution cannot support the simultaneous activation of multiple BWPs, and thus cannot support the simultaneous use of multiple parameter sets, and thus cannot optimize their parameter sets for different services when transmitting multiple types of services in parallel. If the switch between the two parameter sets is switched, the two BWPs are switched, causing the radio frequency bandwidth of the terminal to be switched. The conversion of the radio frequency bandwidth may cause the terminal to fail to receive or transmit data for a period of time, thereby causing spectrum resources. waste.
  • the subcarrier spacing of BWP1 is 15 kHz
  • the subcarrier spacing of BWP2 is 30 kHz.
  • BWP1 and BWP2 there are 2 search space sets in each slot. It can be seen that the search space set in BWP1 and the search space of BWP2 partially overlap in the time domain, so that at some moments, the terminal needs to simultaneously detect the PDCCH on two BWPs, resulting in additional control signaling and higher terminals. Complexity and power consumption.
  • an embodiment of the present invention provides a channel detection method and apparatus, and a computer storage medium.
  • the nth BWP of the N BWPs are configured with Cn control resource sets and Sn search space sets, and the terminal according to the indication information or the reservation of the network device Rules to determine K BWPs and/or Control resource sets and/or Set of search spaces, N ⁇ 2,1 ⁇ n ⁇ N, 0 ⁇ K ⁇ N, 0 ⁇ Cn' ⁇ Cn, 0 ⁇ Sn' ⁇ Sn;
  • the terminal is in the K BWPs and/or Control resource sets and/or The search spaces collectively detect the downlink control channel.
  • the predetermined rule includes at least one of the following:
  • Control resource set All the control resources of the N BWPs are concentrated, including the most or least of the frequency domain resources.
  • All the control resources of the N BWPs are concentrated, and the time domain length is the largest or the smallest Control resource set;
  • the entire search space of the N BWPs is concentrated, and the time domain density is the largest or the smallest Set of search spaces.
  • the indication information of the network device includes at least one of the following:
  • the indication information of the BWP the indication information of the control resource set, and the indication information of the search space set.
  • the terminal is in the K BWPs and/or Control resource sets and/or
  • the search space focuses on detecting the downlink control channel, including:
  • the terminal detects a downlink control channel in a BWP determined based on the indication information of the BWP; and/or,
  • the terminal detects a downlink control channel in a control resource set determined based on the indication information of the control resource set; and/or,
  • the terminal detects a downlink control channel in a search space set determined based on the indication information of the search space set.
  • the indication information of the network device is DCI, or RRC signaling, or system information (SI, System Information).
  • the method further includes:
  • the network device sends the indication information to the terminal, so that the terminal is in the K BWPs and/or according to the indication information of the network device.
  • Control resource sets and/or The search space is configured to detect the downlink control channel, wherein the N downlink bandwidth portions BWP corresponding to the terminal are in an active state, and the nth BWP of the N BWPs are configured with Cn control resource sets and Sn search space sets. , N ⁇ 2, 1 ⁇ n ⁇ N, 0 ⁇ K ⁇ N, 0 ⁇ Cn' ⁇ Cn, 0 ⁇ Sn' ⁇ Sn.
  • the method further includes:
  • the network device is in the K BWPs and/or according to a predetermined rule Control resource sets and/or The search spaces collectively transmit downlink control channels.
  • the predetermined rule includes at least one of the following:
  • Control resource set All the control resources of the N BWPs are concentrated, including the most or least of the frequency domain resources.
  • All the control resources of the N BWPs are concentrated, and the time domain length is the largest or the smallest Control resource set;
  • the entire search space of the N BWPs is concentrated, and the time domain density is the largest or the smallest Set of search spaces.
  • the indication information of the network device includes at least one of the following:
  • the indication information of the BWP the indication information of the control resource set, and the indication information of the search space set.
  • the indication information of the network device is DCI, or RRC signaling, or SI.
  • the resources scheduled by the downlink control channel include resources in the K BWPs, and/or resources in the BWPs other than the K BWPs among the N BWPs.
  • a first determining unit configured to: when the N downlink bandwidth parts BWP corresponding to the terminal are in an active state, where the nth BWP of the N BWPs are configured with Cn control resource sets and Sn search space sets, according to Information indicating the network device or a predetermined rule to determine K BWPs and/or Control resource sets and/or Set of search spaces, N ⁇ 2,1 ⁇ n ⁇ N, 0 ⁇ K ⁇ N, 0 ⁇ Cn' ⁇ Cn, 0 ⁇ Sn' ⁇ Sn;
  • a detection unit for the K BWPs and/or Control resource sets and/or The search spaces collectively detect the downlink control channel.
  • the predetermined rule includes at least one of the following:
  • Control resource set All the control resources of the N BWPs are concentrated, including the most or least of the frequency domain resources.
  • All the control resources of the N BWPs are concentrated, and the time domain length is the largest or the smallest Control resource set;
  • the entire search space of the N BWPs is concentrated, and the time domain density is the largest or the smallest Set of search spaces.
  • the indication information of the network device includes at least one of the following:
  • the indication information of the BWP the indication information of the control resource set, and the indication information of the search space set.
  • the detecting unit is configured to detect a downlink control channel in a BWP determined based on the indication information of the BWP; and/or detect a centralized control resource determined based on the indication information of the control resource set. a downlink control channel; and/or detecting a downlink control channel in a search space set determined based on the indication information of the search space set.
  • the indication information of the network device is DCI, or RRC signaling, or SI.
  • the device further includes:
  • a second determining unit configured to determine resources scheduled by a downlink control channel in the K BWPs, where resources scheduled by the downlink control channel include resources in the K BWPs, and/or the N Resources in BWPs other than the K BWPs in the BWP.
  • a sending unit configured to send indication information to the terminal, so that the terminal is in the K BWPs and/or according to the indication information.
  • Control resource sets and/or The search space is configured to detect the downlink control channel, wherein the N downlink bandwidth portions BWP corresponding to the terminal are in an active state, and the nth BWP of the N BWPs are configured with Cn control resource sets and Sn search space sets. , N ⁇ 2, 1 ⁇ n ⁇ N, 0 ⁇ K ⁇ N, 0 ⁇ Cn' ⁇ Cn, 0 ⁇ Sn' ⁇ Sn.
  • the device further includes:
  • the predetermined rule includes at least one of the following:
  • Control resource set All the control resources of the N BWPs are concentrated, including the most or least of the frequency domain resources.
  • All the control resources of the N BWPs are concentrated, and the time domain length is the largest or the smallest Control resource set;
  • the entire search space of the N BWPs is concentrated, and the time domain density is the largest or the smallest Set of search spaces.
  • the indication information includes at least one of the following:
  • the indication information of the BWP the indication information of the control resource set, and the indication information of the search space set.
  • the indication information is DCI, or RRC signaling, or SI.
  • the resources scheduled by the downlink control channel include resources in the K BWPs, and/or resources in the BWPs other than the K BWPs among the N BWPs.
  • the computer storage medium provided by the embodiment of the present invention has computer executable instructions stored thereon, and the computer executable instructions are implemented by the processor to implement the channel detecting method.
  • the nth BWP of the N BWPs are configured with Cn control resource sets and Sn search space sets, where The terminal determines K BWPs and/or according to the indication information of the network device or a predetermined rule.
  • Control resource sets and/or Set of search spaces N ⁇ 2, 1 ⁇ n ⁇ N, 0 ⁇ K ⁇ N, 0 ⁇ Cn' ⁇ Cn, 0 ⁇ Sn' ⁇ Sn; the terminal is in the K BWPs and/or Control resource sets and/or The search spaces collectively detect the downlink control channel.
  • selecting a part of the BWP and/or the control resource set and/or the search space set to detect the PDCCH may reduce the PDCCH detection complexity and reduce the signal. Increase overhead and increase system spectral efficiency.
  • Figure 1 is a schematic diagram showing that only one BWP can be activated
  • FIG. 2 is a schematic diagram of PDCCH detection in all search space sets in the case of multiple BWPs;
  • FIG. 3 is a schematic flowchart 1 of a channel detecting method according to an embodiment of the present invention.
  • FIG. 4 is a second schematic flowchart of a channel detecting method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of determining, by using a predetermined rule, a BWP for detecting a PDCCH according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of determining, according to an explicit indication of a network device, a BWP for detecting a PDCCH according to an embodiment of the present invention
  • FIG. 7 is a first schematic structural diagram of a channel detecting apparatus according to an embodiment of the present invention.
  • FIG. 8 is a second schematic structural diagram of a channel detecting apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a computer device according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart 1 of a channel detecting method according to an embodiment of the present invention. As shown in FIG. 3, the channel detecting method includes the following steps:
  • Step 301 When the N downlink BWPs of the terminal are in an active state, the nth BWP of the N BWPs are configured with Cn control resource sets and Sn search space sets, and the terminal according to the indication of the network device Information or scheduling rules to determine K BWPs and/or Control resource sets and/or Set of search spaces, N ⁇ 2, 1 ⁇ n ⁇ N, 0 ⁇ K ⁇ N, 0 ⁇ Cn' ⁇ Cn, 0 ⁇ Sn' ⁇ Sn.
  • the terminal may be any device capable of communicating with a network, such as a mobile phone, a tablet computer, a notebook computer, or a desktop computer.
  • the network device may be a base station, for example, a gNB of a 5G system.
  • the N downlink BWPs corresponding to the terminal are in an active state, and N ⁇ 2, for example, BWP1, BWP2, BWP3, and BWP4 are in an active state, where BWP1 is configured with C1 control resource sets and S1 search space sets.
  • BWP1 is configured with C1 control resource sets and S1 search space sets.
  • one BWP may include multiple control resource sets, one control resource set may include multiple search space sets, and similarly, BWP2 is configured with C2 control resource sets and S2 search space sets, and BWP3 configuration has C3 controls.
  • the resource set and the S3 search space set, the BWP4 is configured with C4 control resource sets and S4 search space sets.
  • the terminal may determine K BWPs and/or according to predetermined rules.
  • Control resource sets and/or a set of search spaces wherein the predetermined rule includes at least one of the following:
  • Control resource set All the control resources of the N BWPs are concentrated, including the most or least of the frequency domain resources.
  • All the control resources of the N BWPs are concentrated, and the time domain length is the largest or the smallest Control resource set;
  • the entire search space of the N BWPs is concentrated, and the time domain density is the largest or the smallest Set of search spaces.
  • the terminal may determine K BWPs and/or according to the indication information of the network device.
  • the indication information of the BWP the indication information of the control resource set, and the indication information of the search space set.
  • the terminal detects a downlink control channel in a BWP determined based on the indication information of the BWP; and/or, the terminal detects a downlink control channel in a control resource set determined according to the indication information of the control resource set; And/or, the terminal detects the downlink control channel in a search space set determined based on the indication information of the search space set.
  • the indication information of the network device is DCI, or RRC signaling, or SI.
  • Step 302 The terminal is in the K BWPs and/or Control resource sets and/or The search spaces collectively detect the downlink control channel.
  • the BWP1 is configured with C1 control resource sets and S1 search space sets. It should be understood that one BWP may include multiple control resource sets and one control resource set. A plurality of search space sets may be included.
  • BWP2 is configured with C2 control resource sets and S2 search space sets
  • BWP3 is configured with C3 control resource sets and S3 search space sets
  • BWP4 is configured with C4 control resource sets and S4 search space sets.
  • Example 1 Determining K BWPs, for example, determining BWP1 and BWP2.
  • all search space sets included in BWP1 and all search space sets included in BWP2 need to perform downlink control channel detection; that is, terminal needs The downlink control channel is detected in the S1 search space set and the S2 search space sets.
  • Example 2 Determined a set of control resources, for example, determining C1' control resource sets in C1 control resource sets of BWP1, and determining C3' control resource sets in C3 control resource sets of BWP3.
  • C1' control resources All search space sets included in the set include all search space sets included in the C3' control resource set, and the downlink control channel detection is required.
  • Example 3 Determined Sets of search spaces, for example, S1' search space sets are determined in S1 search space sets of BWP1, and S4' search space sets are determined in S4 search space sets of BWP4.
  • the terminal needs to be at S1' The search space set and the S4' search spaces collectively detect the downlink control channel.
  • the partial BWP, or part of the control resource set, or part of the search space set is selected to detect the downlink control channel, and the number of search space sets can be reduced compared to detecting the downlink control channel in all search space sets.
  • the embodiment of the present invention may also combine the BWP, the control resource set, and any two or three of the search space sets to select the final search space set, for example, select BWP1 (that is, all the search space sets included in BWP1). ), C2' control resource set of BWP2, S3' search space set of BWP3.
  • the final search space set can be flexibly selected in different combinations in the BWP, the control resource set, and the search space set.
  • the technical solution of the embodiment of the present invention further includes: the terminal determining, by the terminal, the resource scheduled by the downlink control channel in the K BWP, where the resource scheduled by the downlink control channel includes the K BWP a resource, and/or a resource in the BWP other than the K BWPs among the N BWPs.
  • FIG. 4 is a schematic flowchart 2 of a channel detecting method according to an embodiment of the present invention. As shown in FIG. 4, the channel detecting method includes the following steps:
  • Step 401 The network device sends indication information to the terminal, so that the terminal is in the K BWPs and/or according to the indication information of the network device.
  • Control resource sets and/or The search space is configured to detect the downlink control channel, wherein the N downlink bandwidth portions BWP corresponding to the terminal are in an active state, and the nth BWP of the N BWPs are configured with Cn control resource sets and Sn search space sets. , N ⁇ 2, 1 ⁇ n ⁇ N, 0 ⁇ K ⁇ N, 0 ⁇ Cn' ⁇ Cn, 0 ⁇ Sn' ⁇ Sn.
  • the network device is in the K BWPs and/or according to a predetermined rule.
  • Control resource sets and/or The search spaces collectively transmit downlink control channels.
  • the predetermined rule includes at least one of the following:
  • Control resource set All the control resources of the N BWPs are concentrated, including the most or least of the frequency domain resources.
  • All the control resources of the N BWPs are concentrated, and the time domain length is the largest or the smallest Control resource set;
  • the entire search space of the N BWPs is concentrated, and the time domain density is the largest or the smallest Set of search spaces.
  • the indication information of the network device includes at least one of the following:
  • the indication information of the BWP the indication information of the control resource set, and the indication information of the search space set.
  • the terminal may detect the downlink control channel in the BWP determined based on the indication information of the BWP; and/or the terminal detects the downlink control channel in the control resource set determined based on the indication information of the control resource set; and And/or, the terminal detects the downlink control channel in a search space set determined based on the indication information of the search space set.
  • the indication information of the network device is DCI, or RRC signaling, or SI.
  • the resources scheduled by the downlink control channel include resources in the K BWPs, and/or resources in the BWPs other than the K BWPs among the N BWPs.
  • Example 1 Determining the BWP of detecting PDCCH by using a predetermined rule
  • the subcarrier spacing of BWP1 is 15 kHz
  • the subcarrier spacing of BWP2 is 30 kHz.
  • BWP1 and BWP2 there are 2 search space sets in each slot. Since the number of search space sets on the BWP2 is twice that of the BWP1 in a unit time, the terminal only needs to detect the PDCCH in the search space of the BWP2, and no longer detect the PDCCH in the search space of the BWP1, and schedule the BWP1 through the PDCCH in the BWP2. H.
  • the terminal does not need to detect the PDCCH in the search space of the two BWPs at the same time, thereby greatly reducing the control signaling overhead and reducing the complexity and power consumption of the terminal detecting the PDCCH.
  • Example 2 Determining a BWP for detecting a PDCCH according to a dominant indication of a network device
  • the subcarrier spacing of BWP1 is 15 kHz, and the subcarrier spacing of BWP2 is 30 kHz.
  • BWP1 there are 4 search space sets in each slot.
  • BWP2 there are 2 search space sets in each slot.
  • the number of search space sets on BWP1 and BWP2 is the same due to bit time.
  • the terminal only needs to detect the PDCCH in the search space of the BWP2, and no longer detect the PDCCH in the search space of the BWP1, and schedule the resources in the BWP1 through the PDCCH in the BWP2.
  • the terminal does not need to detect the PDCCH in the search space of the two BWPs at the same time, thereby greatly reducing the control signaling overhead and reducing the complexity and power consumption of the terminal detecting the PDCCH.
  • FIG. 7 is a first schematic structural diagram of a channel detecting apparatus according to an embodiment of the present invention. As shown in FIG. 7, the channel detecting apparatus includes:
  • the first determining unit 701 is configured to: when the N downlink bandwidth parts BWP corresponding to the terminal are in an active state, where the nth BWP of the N BWPs are configured with Cn control resource sets and Sn search space sets, Determine K BWPs and/or according to the indication information of the network device or the predetermined rule Control resource sets and/or Set of search spaces, N ⁇ 2,1 ⁇ n ⁇ N, 0 ⁇ K ⁇ N, 0 ⁇ Cn' ⁇ Cn, 0 ⁇ Sn' ⁇ Sn;
  • Detection unit 702 for using the K BWPs and/or Control resource sets and/or The search spaces collectively detect the downlink control channel.
  • the predetermined rule includes at least one of the following:
  • Control resource set All the control resources of the N BWPs are concentrated, including the most or least of the frequency domain resources.
  • All the control resources of the N BWPs are concentrated, and the time domain length is the largest or the smallest Control resource set;
  • the entire search space of the N BWPs is concentrated, and the time domain density is the largest or the smallest Set of search spaces.
  • the indication information of the network device includes at least one of the following:
  • the indication information of the BWP the indication information of the control resource set, and the indication information of the search space set.
  • the detecting unit 702 is configured to detect a downlink control channel in a BWP determined according to the indication information of the BWP; and/or, in a control resource set determined according to the indication information of the control resource set. Detecting a downlink control channel; and/or detecting a downlink control channel in a search space set determined based on the indication information of the search space set.
  • the indication information of the network device is DCI, or RRC signaling, or SI.
  • the device further includes:
  • a second determining unit 703 configured to determine resources scheduled by a downlink control channel in the K BWPs, where resources scheduled by the downlink control channel include resources in the K BWPs, and/or Resources in the BWPs other than the K BWPs among the N BWPs.
  • the implementation functions of the units in the channel detecting apparatus shown in FIG. 7 can be understood by referring to the related description of the foregoing channel detecting method.
  • the functions of the units in the channel detecting apparatus shown in FIG. 7 can be realized by a program running on a processor, or can be realized by a specific logic circuit.
  • FIG. 8 is a schematic structural diagram of a structure of a channel detecting apparatus according to an embodiment of the present invention. As shown in FIG. 8, the channel detecting apparatus includes:
  • the sending unit 801 is configured to send indication information to the terminal, so that the terminal is in the K BWPs and/or according to the indication information.
  • Control resource sets and/or The search space is configured to detect the downlink control channel, wherein the N downlink bandwidth portions BWP corresponding to the terminal are in an active state, and the nth BWP of the N BWPs are configured with Cn control resource sets and Sn search space sets. , N ⁇ 2, 1 ⁇ n ⁇ N, 0 ⁇ K ⁇ N, 0 ⁇ Cn' ⁇ Cn, 0 ⁇ Sn' ⁇ Sn.
  • the device further includes:
  • a transmitting unit 802 configured to: in the K BWPs and/or according to a predetermined rule Control resource sets and/or The search spaces collectively transmit downlink control channels.
  • the predetermined rule includes at least one of the following:
  • Control resource set All the control resources of the N BWPs are concentrated, including the most or least of the frequency domain resources.
  • All the control resources of the N BWPs are concentrated, and the time domain length is the largest or the smallest Control resource set;
  • the entire search space of the N BWPs is concentrated, and the time domain density is the largest or the smallest Set of search spaces.
  • the indication information includes at least one of the following:
  • the indication information of the BWP the indication information of the control resource set, and the indication information of the search space set.
  • the indication information is DCI, or RRC signaling, or SI.
  • the resources scheduled by the downlink control channel include resources in the K BWPs, and/or resources in the BWPs other than the K BWPs among the N BWPs.
  • the implementation functions of the units in the channel detecting apparatus shown in FIG. 8 can be understood by referring to the related description of the foregoing channel detecting method.
  • the functions of the respective units in the channel detecting apparatus shown in FIG. 8 can be realized by a program running on the processor, or can be realized by a specific logic circuit.
  • Embodiments of the Invention may also be stored in a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a standalone product. Based on such understanding, the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • the embodiment of the present invention further provides a computer storage medium, wherein the computer executable instructions are stored, and the computer executable instructions are executed by the processor to implement the channel detecting method of the embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a computer device according to an embodiment of the present invention.
  • the computer device may be a terminal or a network device.
  • computer device 100 may include one or more (only one shown) processor 1002 (processor 1002 may include, but is not limited to, a Micro Controller Unit (MCU) or a programmable logic device.
  • a processing device such as an FPGA (Field Programmable Gate Array), a memory 1004 for storing data, and a transmission device 1006 for a communication function.
  • FPGA Field Programmable Gate Array
  • FIG. 9 is merely illustrative and does not limit the structure of the above electronic device.
  • computer device 100 may also include more or fewer components than shown in FIG. 9, or have a different configuration than that shown in FIG.
  • the memory 1004 can be used to store software programs and modules of application software, such as program instructions/modules corresponding to the method in the embodiment of the present invention, and the processor 1002 executes various functional applications by running software programs and modules stored in the memory 1004. And data processing, that is, to achieve the above method.
  • Memory 1004 can include high speed random access memory, and can also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 1004 can further include memory remotely located relative to processor 1002, which can be connected to computer device 100 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 1006 is for receiving or transmitting data via a network.
  • the network specific examples described above may include a wireless network provided by a communication provider of computer device 100.
  • the transmission device 1006 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 1006 can be a radio frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF radio frequency
  • the disclosed method and smart device may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one second processing unit, or each unit may be separately used as one unit, or two or more units may be integrated into one unit;
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Quality & Reliability (AREA)

Abstract

本发明公开了一种信道检测方法及装置、计算机存储介质,所述方法包括:终端对应的N个下行BWP处于激活状态时,其中,所述N个BWP中的第n个BWP配置有Cn个控制资源集和Sn个搜索空间集,所述终端根据网络设备的指示信息或预定规则,确定K个BWP和/或aa个控制资源集和/或 bb个搜索空间集,N≥2,1≤n≤N,0≤K≤N,0≤Cn'≤Cn,0≤Sn'≤Sn;所述终端在所述K个BWP和/或aa个控制资源集和/或 bb个搜索空间集中检测下行控制信道。

Description

一种信道检测方法及装置、计算机存储介质 技术领域
本发明涉及无线通信技术领域,尤其涉及一种信道检测方法及装置、计算机存储介质。
背景技术
在长期演进(LTE,Long Term Evolution)***中,终端的频域资源是在整个***带宽中分配的。在第五代(5G,5 th Generation)新无线(NR,New Radio)***中,由于***带宽大大提高,终端的传输带宽可能只占有***带宽的一部分。
在5G NR目前的研究中,已经决定引入带宽部分(BWP,Band Width Part)概念,实现比***带宽更小范围的频域资源分配。基站可以通过无线资源控制(RRC,Radio Resource Control)信令配置多个BWP,然后在下行控制信息(DCI,Downlink Control Information)中动态的激活某个BWP。每种BWP基于一种参数集,其中,参数集包括子载波间隔、循环前缀(CP,Cyclic Prefix)。按目前的方案,针对一个终端只能激活一个BWP,当激活一个新的BWP的同时,原有的BWP就被去激活。
如图1所示,在BWP1处于激活状态时,如果激活BWP2,BWP1就会被去激活,如果再次激活BWP1,BWP2又会被去激活。针对每个BWP分别配置了物理下行控制信道(PDCCH,Physical Downlink Control Channel)的控制资源集(CORESET,Control Resource Set)及搜索空间(SS,Search Space),当某个BWP被激活时,终端根据这个BWP对应的CORESET/SS配置对PDCCH进行盲检测。
现有技术方案无法支持同时激活多个BWP,也就无法支持同时使用多种参数集,也就无法在并行传输多种类型的业务时对不同的业务分别优化它们的参数集。且如果在两种参数集之间切换,也会造成在两个BWP切换,造成终端的射频带宽发生转换,而射频带宽的转换会造成一段时间内终端无法接收或发送数据,从而造成频谱资源的浪费。
但如果同时激活多个BWP,将造成一个终端在多个BWP上同时检测PDCCH,造成信令开销的浪费和终端复杂度及耗电的提升。如图2所示,BWP1的子载波间隔=15kHz,BWP2的子载波间隔=30kHz。在BWP1和BWP2中,在每个时隙中有2个搜索空间集。可以看到,BWP1中的搜索空间集与BWP2的搜索空间在时域上部分重叠,这样在某些时刻,终端要在两个BWP上同时检测PDCCH,造成额外的控制信令和更高的终端复杂度 及耗电量。
发明内容
为解决上述技术问题,本发明实施例提供了一种信道检测方法及装置、计算机存储介质。
本发明实施例提供的信道检测方法,包括:
终端对应的N个下行BWP处于激活状态时,其中,所述N个BWP中的第n个BWP配置有Cn个控制资源集和Sn个搜索空间集,所述终端根据网络设备的指示信息或预定规则,确定K个BWP和/或
Figure PCTCN2018075852-appb-000001
个控制资源集和/或
Figure PCTCN2018075852-appb-000002
个搜索空间集,N≥2,1≤n≤N,0≤K≤N,0≤Cn’≤Cn,0≤Sn’≤Sn;
所述终端在所述K个BWP和/或
Figure PCTCN2018075852-appb-000003
个控制资源集和/或
Figure PCTCN2018075852-appb-000004
个搜索空间集中检测下行控制信道。
本发明实施例中,所述预定规则,包括以下至少之一:
所述N个BWP中子载波间隔最大或最小的K个BWP;
所述N个BWP中带宽最大或最小的K个BWP;
所述N个BWP中的控制资源集的频域范围最大或最小的K个BWP;
所述N个BWP的全部控制资源集中,包含频域资源最多或最少的
Figure PCTCN2018075852-appb-000005
个控制资源集;
所述N个BWP的全部控制资源集中,时域长度最大或最小的
Figure PCTCN2018075852-appb-000006
个控制资源集;
所述N个BWP的全部搜索空间集中,时域密度最大或最小的
Figure PCTCN2018075852-appb-000007
个搜索空间集。
本发明实施例中,所述网络设备的指示信息包括以下至少之一:
BWP的指示信息、控制资源集的指示信息、搜索空间集的指示信息。
本发明实施例中,所述终端在所述K个BWP和/或
Figure PCTCN2018075852-appb-000008
个控制资源集和/或
Figure PCTCN2018075852-appb-000009
个搜索空间集中检测下行控制信道,包括:
所述终端在基于所述BWP的指示信息确定的BWP中检测下行控制信道;和/或,
所述终端在基于所述控制资源集的指示信息确定的控制资源集中检测下行控制信道;和/或,
所述终端在基于所述搜索空间集的指示信息确定的搜索空间集中检测下行控制信道。
本发明实施例中,所述网络设备的指示信息为DCI、或RRC信令、或***信息(SI,System Information)。
本发明实施例中,所述方法还包括:
所述终端确定所述K个BWP中的下行控制信道所调度的资源,其中,所述下行控制信道所调度的资源包括所述K个BWP中的资源,和/或所述N个BWP中除所述K个BWP以外的BWP中的资源。
本发明实施例提供的信道检测方法,包括:
网络设备向终端发送指示信息,以使所述终端根据所述网络设备的指示信息在K个BWP和/或
Figure PCTCN2018075852-appb-000010
个控制资源集和/或
Figure PCTCN2018075852-appb-000011
个搜索空间集中检测下行控制信道,其中,所述终端对应的N个下行带宽部分BWP处于激活状态,所述N个BWP中的第n个BWP配置有Cn个控制资源集和Sn个搜索空间集,N≥2,1≤n≤N,0≤K≤N,0≤Cn’≤Cn,0≤Sn’≤Sn。
本发明实施例中,所述方法还包括:
所述网络设备根据预定规则在所述K个BWP和/或
Figure PCTCN2018075852-appb-000012
个控制资源集和/或
Figure PCTCN2018075852-appb-000013
个搜索空间集中传输下行控制信道。
本发明实施例中,所述预定规则,包括以下至少之一:
所述N个BWP中子载波间隔最大或最小的K个BWP;
所述N个BWP中带宽最大或最小的K个BWP;
所述N个BWP中的控制资源集的频域范围最大或最小的K个BWP;
所述N个BWP的全部控制资源集中,包含频域资源最多或最少的
Figure PCTCN2018075852-appb-000014
个控制资源集;
所述N个BWP的全部控制资源集中,时域长度最大或最小的
Figure PCTCN2018075852-appb-000015
个控制资源集;
所述N个BWP的全部搜索空间集中,时域密度最大或最小的
Figure PCTCN2018075852-appb-000016
个搜索空间集。
本发明实施例中,所述网络设备的指示信息包括以下至少之一:
BWP的指示信息、控制资源集的指示信息、搜索空间集的指示信息。
本发明实施例中,所述网络设备的指示信息为DCI、或RRC信令、或SI。
本发明实施例中,所述下行控制信道所调度的资源包括所述K个BWP中的资源,和/或所述N个BWP中除所述K个BWP以外的BWP中的资源。
本发明实施例提供的信道检测装置,包括:
第一确定单元,用于在终端对应的N个下行带宽部分BWP处于激活 状态时,其中,所述N个BWP中的第n个BWP配置有Cn个控制资源集和Sn个搜索空间集,根据网络设备的指示信息或预定规则,确定K个BWP和/或
Figure PCTCN2018075852-appb-000017
个控制资源集和/或
Figure PCTCN2018075852-appb-000018
个搜索空间集,N≥2,1≤n≤N,0≤K≤N,0≤Cn’≤Cn,0≤Sn’≤Sn;
检测单元,用于在所述K个BWP和/或
Figure PCTCN2018075852-appb-000019
个控制资源集和/或
Figure PCTCN2018075852-appb-000020
个搜索空间集中检测下行控制信道。
本发明实施例中,所述预定规则,包括以下至少之一:
所述N个BWP中子载波间隔最大或最小的K个BWP;
所述N个BWP中带宽最大或最小的K个BWP;
所述N个BWP中的控制资源集的频域范围最大或最小的K个BWP;
所述N个BWP的全部控制资源集中,包含频域资源最多或最少的
Figure PCTCN2018075852-appb-000021
个控制资源集;
所述N个BWP的全部控制资源集中,时域长度最大或最小的
Figure PCTCN2018075852-appb-000022
个控制资源集;
所述N个BWP的全部搜索空间集中,时域密度最大或最小的
Figure PCTCN2018075852-appb-000023
个搜索空间集。
本发明实施例中,所述网络设备的指示信息包括以下至少之一:
BWP的指示信息、控制资源集的指示信息、搜索空间集的指示信息。
本发明实施例中,所述检测单元,用于在基于所述BWP的指示信息确定的BWP中检测下行控制信道;和/或,在基于所述控制资源集的指示信息确定的控制资源集中检测下行控制信道;和/或,在基于所述搜索空间集的指示信息确定的搜索空间集中检测下行控制信道。
本发明实施例中,所述网络设备的指示信息为DCI、或RRC信令、或SI。
本发明实施例中,所述装置还包括:
第二确定单元,用于确定所述K个BWP中的下行控制信道所调度的资源,其中,所述下行控制信道所调度的资源包括所述K个BWP中的资源,和/或所述N个BWP中除所述K个BWP以外的BWP中的资源。
本发明实施例提供的信道检测装置,包括:
发送单元,用于向终端发送指示信息,以使所述终端根据所述指示信息在K个BWP和/或
Figure PCTCN2018075852-appb-000024
个控制资源集和/或
Figure PCTCN2018075852-appb-000025
个搜索空间集中检测下行控制信道,其中,所述终端对应的N个下行带宽部分BWP处于激活状态,所述N个BWP中的第n个BWP配置有Cn个控制资源集和Sn个搜索空间集,N≥2,1≤n≤N,0≤K≤N,0≤Cn’≤Cn,0≤Sn’≤Sn。
本发明实施例中,所述装置还包括:
传输单元,用于根据预定规则在所述K个BWP和/或
Figure PCTCN2018075852-appb-000026
个控制资源集和/或
Figure PCTCN2018075852-appb-000027
个搜索空间集中传输下行控制信道。
本发明实施例中,所述预定规则,包括以下至少之一:
所述N个BWP中子载波间隔最大或最小的K个BWP;
所述N个BWP中带宽最大或最小的K个BWP;
所述N个BWP中的控制资源集的频域范围最大或最小的K个BWP;
所述N个BWP的全部控制资源集中,包含频域资源最多或最少的
Figure PCTCN2018075852-appb-000028
个控制资源集;
所述N个BWP的全部控制资源集中,时域长度最大或最小的
Figure PCTCN2018075852-appb-000029
个控制资源集;
所述N个BWP的全部搜索空间集中,时域密度最大或最小的
Figure PCTCN2018075852-appb-000030
个搜索空间集。
本发明实施例中,所述指示信息包括以下至少之一:
BWP的指示信息、控制资源集的指示信息、搜索空间集的指示信息。
本发明实施例中,所述指示信息为DCI、或RRC信令、或SI。
本发明实施例中,所述下行控制信道所调度的资源包括所述K个BWP中的资源,和/或所述N个BWP中除所述K个BWP以外的BWP中的资源。
本发明实施例提供的计算机存储介质,其上存储有计算机可执行指令,该计算机可执行指令被处理器执行时实现上述的信道检测方法。
本发明实施例的技术方案中,终端对应的N个下行BWP处于激活状态时,其中,所述N个BWP中的第n个BWP配置有Cn个控制资源集和Sn个搜索空间集,所述终端根据网络设备的指示信息或预定规则,确定K个BWP和/或
Figure PCTCN2018075852-appb-000031
个控制资源集和/或
Figure PCTCN2018075852-appb-000032
个搜索空间集,N≥2,1≤n≤N,0≤K≤N,0≤Cn’≤Cn,0≤Sn’≤Sn;所述终端在所述K个BWP和/或
Figure PCTCN2018075852-appb-000033
个控制资源集和/或
Figure PCTCN2018075852-appb-000034
个搜索空间集中检测下行控制信道。采用本发明实施例的技术方案,提出一种在多个BWP同时激活的情况下,选择一部分BWP和/或控制资源集和/或搜索空间集来检测PDCCH,可以降低PDCCH检测复杂度,降低信令开销,提高***频谱效率。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发 明的不当限定。在附图中:
图1为仅有一个BWP能够处于激活状态的示意图;
图2为多个BWP的情况下在全部的搜索空间集中进行PDCCH检测的示意图;
图3为本发明实施例的信道检测方法的流程示意图一;
图4为本发明实施例的信道检测方法的流程示意图二;
图5为本发明实施例的采用预定规则确定检测PDCCH的BWP的示意图;
图6为本发明实施例的根据网络设备的显性指示确定检测PDCCH的BWP的示意图;
图7为本发明实施例的信道检测装置的结构组成示意图一;
图8为本发明实施例的信道检测装置的结构组成示意图二;
图9为本发明实施例的计算机设备的结构组成示意图。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
图3为本发明实施例的信道检测方法的流程示意图一,如图3所示,所述信道检测方法包括以下步骤:
步骤301:终端对应的N个下行BWP处于激活状态时,其中,所述N个BWP中的第n个BWP配置有Cn个控制资源集和Sn个搜索空间集,所述终端根据网络设备的指示信息或预定规则,确定K个BWP和/或
Figure PCTCN2018075852-appb-000035
个控制资源集和/或
Figure PCTCN2018075852-appb-000036
个搜索空间集,N≥2,1≤n≤N,0≤K≤N,0≤Cn’≤Cn,0≤Sn’≤Sn。
本发明实施例中,所述终端可以是手机、平板电脑、笔记本电脑、台式机等任意能够与网络进行通信的设备。
本发明实施例中,所述网络设备可以是基站,例如5G***的gNB。
本发明实施例中,终端对应的N个下行BWP处于激活状态,N≥2,例如:BWP1、BWP2、BWP3、BWP4处于激活状态,其中,BWP1配置有C1个控制资源集和S1个搜索空间集,应理解,一个BWP可以包括多个控制资源集,一个控制资源集可以包括多个搜索空间集,同理,BWP2配置有C2个控制资源集和S2个搜索空间集,BWP3配置有C3个控制资源集和S3个搜索空间集,BWP4配置有C4个控制资源集和S4个搜索空间集。
在一实施方式中,所述终端可以根据预定规则确定K个BWP和/或
Figure PCTCN2018075852-appb-000037
个控制资源集和/或
Figure PCTCN2018075852-appb-000038
个搜索空间集,其中,所述预定规则,包括 以下至少之一:
所述N个BWP中子载波间隔最大或最小的K个BWP;
所述N个BWP中带宽最大或最小的K个BWP;
所述N个BWP中的控制资源集的频域范围最大或最小的K个BWP;
所述N个BWP的全部控制资源集中,包含频域资源最多或最少的
Figure PCTCN2018075852-appb-000039
个控制资源集;
所述N个BWP的全部控制资源集中,时域长度最大或最小的
Figure PCTCN2018075852-appb-000040
个控制资源集;
所述N个BWP的全部搜索空间集中,时域密度最大或最小的
Figure PCTCN2018075852-appb-000041
个搜索空间集。
在另一实施方式中,所述终端可以根据网络设备的指示信息确定K个BWP和/或
Figure PCTCN2018075852-appb-000042
个控制资源集和/或
Figure PCTCN2018075852-appb-000043
个搜索空间集,其中,所述网络设备的指示信息包括以下至少之一:
BWP的指示信息、控制资源集的指示信息、搜索空间集的指示信息。
基于此,所述终端在基于所述BWP的指示信息确定的BWP中检测下行控制信道;和/或,所述终端在基于所述控制资源集的指示信息确定的控制资源集中检测下行控制信道;和/或,所述终端在基于所述搜索空间集的指示信息确定的搜索空间集中检测下行控制信道。
在一实施方式中,所述网络设备的指示信息为DCI、或RRC信令、或SI。
步骤302:所述终端在所述K个BWP和/或
Figure PCTCN2018075852-appb-000044
个控制资源集和/或
Figure PCTCN2018075852-appb-000045
个搜索空间集中检测下行控制信道。
假设:终端对应的BWP1、BWP2、BWP3、BWP4处于激活状态,其中,BWP1配置有C1个控制资源集和S1个搜索空间集,应理解,一个BWP可以包括多个控制资源集,一个控制资源集可以包括多个搜索空间集,同理,BWP2配置有C2个控制资源集和S2个搜索空间集,BWP3配置有C3个控制资源集和S3个搜索空间集,BWP4配置有C4个控制资源集和S4个搜索空间集。
例子一:确定出K个BWP,例如确定出BWP1和BWP2,这种情况下,BWP1包括的所有搜索空间集以及BWP2包括的所有搜索空间集,均需要进行下行控制信道的检测;也即终端需要在S1个搜索空间集和S2个搜索空间集中检测下行控制信道。
例子二:确定出
Figure PCTCN2018075852-appb-000046
个控制资源集,例如在BWP1的C1个控制资源集中确定出C1’个控制资源集,在BWP3的C3个控制资源集中确定出C3’ 个控制资源集,这种情况下,C1’个控制资源集包括的所有搜索空间集C3’个控制资源集包括的所有搜索空间集,均需要进行下行控制信道的检测。
例子三:确定出
Figure PCTCN2018075852-appb-000047
个搜索空间集,例如在BWP1的S1个搜索空间集中确定出S1’个搜索空间集,在BWP4的S4个搜索空间集中确定出S4’个搜索空间集,这种情况下,终端需要在S1’个搜索空间集和S4’个搜索空间集中检测下行控制信道。
以上例子中,选取部分的BWP、或部分的控制资源集、或部分的搜索空间集来检测下行控制信道,相比在全部的搜索空间集检测下行控制信道,可以减少搜索空间集的数目。不局限于此,本发明实施例还可以结合BWP、控制资源集、搜索空间集中的任意两种或三种来选取最终的搜索空间集,例如选取BWP1(也即BWP1包括的所有的搜索空间集)、BWP2的C2’个控制资源集,BWP3的S3’个搜索空间集。
本发明实施例的技术方案,可以在BWP、控制资源集、搜索空间集中以不同的组合灵活的选取最终的搜索空间集。
此外,本发明实施例的技术方案还包括:所述终端确定所述K个BWP中的下行控制信道所调度的资源,其中,所述下行控制信道所调度的资源包括所述K个BWP中的资源,和/或所述N个BWP中除所述K个BWP以外的BWP中的资源。
图4为本发明实施例的信道检测方法的流程示意图二,如图4所示,所述信道检测方法包括以下步骤:
步骤401:网络设备向终端发送指示信息,以使所述终端根据所述网络设备的指示信息在K个BWP和/或
Figure PCTCN2018075852-appb-000048
个控制资源集和/或
Figure PCTCN2018075852-appb-000049
个搜索空间集中检测下行控制信道,其中,所述终端对应的N个下行带宽部分BWP处于激活状态,所述N个BWP中的第n个BWP配置有Cn个控制资源集和Sn个搜索空间集,N≥2,1≤n≤N,0≤K≤N,0≤Cn’≤Cn,0≤Sn’≤Sn。
在一实施方式中,所述网络设备根据预定规则在所述K个BWP和/或
Figure PCTCN2018075852-appb-000050
个控制资源集和/或
Figure PCTCN2018075852-appb-000051
个搜索空间集中传输下行控制信道。其中,所述预定规则,包括以下至少之一:
所述N个BWP中子载波间隔最大或最小的K个BWP;
所述N个BWP中带宽最大或最小的K个BWP;
所述N个BWP中的控制资源集的频域范围最大或最小的K个BWP;
所述N个BWP的全部控制资源集中,包含频域资源最多或最少的
Figure PCTCN2018075852-appb-000052
个控制资源集;
所述N个BWP的全部控制资源集中,时域长度最大或最小的
Figure PCTCN2018075852-appb-000053
个 控制资源集;
所述N个BWP的全部搜索空间集中,时域密度最大或最小的
Figure PCTCN2018075852-appb-000054
个搜索空间集。
本发明实施例中,所述网络设备的指示信息包括以下至少之一:
BWP的指示信息、控制资源集的指示信息、搜索空间集的指示信息。
这样,终端就可以在基于所述BWP的指示信息确定的BWP中检测下行控制信道;和/或,所述终端在基于所述控制资源集的指示信息确定的控制资源集中检测下行控制信道;和/或,所述终端在基于所述搜索空间集的指示信息确定的搜索空间集中检测下行控制信道。
本发明实施例中,所述网络设备的指示信息为DCI、或RRC信令、或SI。
本发明实施例中,所述下行控制信道所调度的资源包括所述K个BWP中的资源,和/或所述N个BWP中除所述K个BWP以外的BWP中的资源。
以下结合具体应用示例对本发明实施例的技术方案做进一步描述。
示例一:采用预定规则确定检测PDCCH的BWP
如图5所示,BWP1的子载波间隔=15kHz,BWP2的子载波间隔=30kHz。BWP1和BWP2中,在每个时隙中有2个搜索空间集。由于单位时间内,BWP2上的搜索空间集的数量是BWP1的两倍,终端只需在BWP2的搜索空间集中检测PDCCH,不再在BWP1的搜索空间集中检测PDCCH,通过BWP2中的PDCCH调度BWP1中的资源。
这样终端就不需要同时在两个BWP的搜索空间中检测PDCCH,从而大大节省了控制信令开销,降低了终端检测PDCCH的复杂度和耗电量。
示例二:根据网络设备的显性指示确定检测PDCCH的BWP
如图6所示,BWP1的子载波间隔=15kHz,BWP2的子载波间隔=30kHz。BWP1中,在每个时隙中有4个搜索空间集。BWP2中,在每个时隙中有2个搜索空间集。由于位时间内,BWP1和BWP2上的搜索空间集的数量相同。根据基站的指示信息,终端只需在BWP2的搜索空间集中检测PDCCH,不再在BWP1的搜索空间集中检测PDCCH,通过BWP2中的PDCCH调度BWP1中的资源。
这样终端就不需要同时在两个BWP的搜索空间中检测PDCCH,从而大大节省了控制信令开销,降低了终端检测PDCCH的复杂度和耗电量。
图7为本发明实施例的信道检测装置的结构组成示意图一,如图7所示,所述信道检测装置包括:
第一确定单元701,用于在终端对应的N个下行带宽部分BWP处于激活状态时,其中,所述N个BWP中的第n个BWP配置有Cn个控制资源集和Sn个搜索空间集,根据网络设备的指示信息或预定规则,确定 K个BWP和/或
Figure PCTCN2018075852-appb-000055
个控制资源集和/或
Figure PCTCN2018075852-appb-000056
个搜索空间集,N≥2,1≤n≤N,0≤K≤N,0≤Cn’≤Cn,0≤Sn’≤Sn;
检测单元702,用于在所述K个BWP和/或
Figure PCTCN2018075852-appb-000057
个控制资源集和/或
Figure PCTCN2018075852-appb-000058
个搜索空间集中检测下行控制信道。
在一实施方式中,所述预定规则,包括以下至少之一:
所述N个BWP中子载波间隔最大或最小的K个BWP;
所述N个BWP中带宽最大或最小的K个BWP;
所述N个BWP中的控制资源集的频域范围最大或最小的K个BWP;
所述N个BWP的全部控制资源集中,包含频域资源最多或最少的
Figure PCTCN2018075852-appb-000059
个控制资源集;
所述N个BWP的全部控制资源集中,时域长度最大或最小的
Figure PCTCN2018075852-appb-000060
个控制资源集;
所述N个BWP的全部搜索空间集中,时域密度最大或最小的
Figure PCTCN2018075852-appb-000061
个搜索空间集。
在一实施方式中,所述网络设备的指示信息包括以下至少之一:
BWP的指示信息、控制资源集的指示信息、搜索空间集的指示信息。
在一实施方式中,所述检测单元702,用于在基于所述BWP的指示信息确定的BWP中检测下行控制信道;和/或,在基于所述控制资源集的指示信息确定的控制资源集中检测下行控制信道;和/或,在基于所述搜索空间集的指示信息确定的搜索空间集中检测下行控制信道。
在一实施方式中,所述网络设备的指示信息为DCI、或RRC信令、或SI。
在一实施方式中,所述装置还包括:
第二确定单元703,用于确定所述K个BWP中的下行控制信道所调度的资源,其中,所述下行控制信道所调度的资源包括所述K个BWP中的资源,和/或所述N个BWP中除所述K个BWP以外的BWP中的资源。
本领域技术人员应当理解,图7所示的信道检测装置中的各单元的实现功能可参照前述信道检测方法的相关描述而理解。图7所示的信道检测装置中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
图8为本发明实施例的信道检测装置的结构组成示意图二,如图8所示,所述信道检测装置包括:
发送单元801,用于向终端发送指示信息,以使所述终端根据所述指示信息在K个BWP和/或
Figure PCTCN2018075852-appb-000062
个控制资源集和/或
Figure PCTCN2018075852-appb-000063
个搜索空间集中 检测下行控制信道,其中,所述终端对应的N个下行带宽部分BWP处于激活状态,所述N个BWP中的第n个BWP配置有Cn个控制资源集和Sn个搜索空间集,N≥2,1≤n≤N,0≤K≤N,0≤Cn’≤Cn,0≤Sn’≤Sn。
在一实施方式中,所述装置还包括:
传输单元802,用于根据预定规则在所述K个BWP和/或
Figure PCTCN2018075852-appb-000064
个控制资源集和/或
Figure PCTCN2018075852-appb-000065
个搜索空间集中传输下行控制信道。
在一实施方式中,所述预定规则,包括以下至少之一:
所述N个BWP中子载波间隔最大或最小的K个BWP;
所述N个BWP中带宽最大或最小的K个BWP;
所述N个BWP中的控制资源集的频域范围最大或最小的K个BWP;
所述N个BWP的全部控制资源集中,包含频域资源最多或最少的
Figure PCTCN2018075852-appb-000066
个控制资源集;
所述N个BWP的全部控制资源集中,时域长度最大或最小的
Figure PCTCN2018075852-appb-000067
个控制资源集;
所述N个BWP的全部搜索空间集中,时域密度最大或最小的
Figure PCTCN2018075852-appb-000068
个搜索空间集。
在一实施方式中,所述指示信息包括以下至少之一:
BWP的指示信息、控制资源集的指示信息、搜索空间集的指示信息。
在一实施方式中,所述指示信息为DCI、或RRC信令、或SI。
在一实施方式中,所述下行控制信道所调度的资源包括所述K个BWP中的资源,和/或所述N个BWP中除所述K个BWP以外的BWP中的资源。
本领域技术人员应当理解,图8所示的信道检测装置中的各单元的实现功能可参照前述信道检测方法的相关描述而理解。图8所示的信道检测装置中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
本发明实施例上述信道检测装置如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。
相应地,本发明实施例还提供一种计算机存储介质,其中存储有计算机可执行指令,该计算机可执行指令被处理器执行时实现本发明实施例的上述信道检测方法。
图9为本发明实施例的计算机设备的结构组成示意图,该计算机设备可以是终端,也可以是网络设备。如图9所示,计算机设备100可以包括一个或多个(图中仅示出一个)处理器1002(处理器1002可以包括但不限于微处理器(MCU,Micro Controller Unit)或可编程逻辑器件(FPGA,Field Programmable Gate Array)等的处理装置)、用于存储数据的存储器1004、以及用于通信功能的传输装置1006。本领域普通技术人员可以理解,图9所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,计算机设备100还可包括比图9中所示更多或者更少的组件,或者具有与图9所示不同的配置。
存储器1004可用于存储应用软件的软件程序以及模块,如本发明实施例中的方法对应的程序指令/模块,处理器1002通过运行存储在存储器1004内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器1004可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器1004可进一步包括相对于处理器1002远程设置的存储器,这些远程存储器可以通过网络连接至计算机设备100。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置1006用于经由一个网络接收或者发送数据。上述的网络具体实例可包括计算机设备100的通信供应商提供的无线网络。在一个实例中,传输装置1006包括一个网络适配器(NIC,Network Interface Controller),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置1006可以为射频(RF,Radio Frequency)模块,其用于通过无线方式与互联网进行通讯。
本发明实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
在本发明所提供的几个实施例中,应该理解到,所揭露的方法和智能设备,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分 或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个第二处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。

Claims (25)

  1. 一种信道检测方法,所述方法包括:
    终端对应的N个下行带宽部分BWP处于激活状态时,其中,所述N个BWP中的第n个BWP配置有Cn个控制资源集和Sn个搜索空间集,所述终端根据网络设备的指示信息或预定规则,确定K个BWP和/或
    Figure PCTCN2018075852-appb-100001
    个控制资源集和/或
    Figure PCTCN2018075852-appb-100002
    个搜索空间集,N≥2,1≤n≤N,0≤K≤N,0≤Cn’≤Cn,0≤Sn’≤Sn;
    所述终端在所述K个BWP和/或
    Figure PCTCN2018075852-appb-100003
    个控制资源集和/或
    Figure PCTCN2018075852-appb-100004
    个搜索空间集中检测下行控制信道。
  2. 根据权利要求1所述的方法,其中,所述预定规则,包括以下至少之一:
    所述N个BWP中子载波间隔最大或最小的K个BWP;
    所述N个BWP中带宽最大或最小的K个BWP;
    所述N个BWP中的控制资源集的频域范围最大或最小的K个BWP;
    所述N个BWP的全部控制资源集中,包含频域资源最多或最少的
    Figure PCTCN2018075852-appb-100005
    个控制资源集;
    所述N个BWP的全部控制资源集中,时域长度最大或最小的
    Figure PCTCN2018075852-appb-100006
    个控制资源集;
    所述N个BWP的全部搜索空间集中,时域密度最大或最小的
    Figure PCTCN2018075852-appb-100007
    个搜索空间集。
  3. 根据权利要求1所述的方法,其中,所述网络设备的指示信息包括以下至少之一:
    BWP的指示信息、控制资源集的指示信息、搜索空间集的指示信息。
  4. 根据权利要求3所述的方法,其中,所述终端在所述K个BWP和/或
    Figure PCTCN2018075852-appb-100008
    个控制资源集和/或
    Figure PCTCN2018075852-appb-100009
    个搜索空间集中检测下行控制信道,包括:
    所述终端在基于所述BWP的指示信息确定的BWP中检测下行控制信道;和/或,
    所述终端在基于所述控制资源集的指示信息确定的控制资源集中检测下行控制信道;和/或,
    所述终端在基于所述搜索空间集的指示信息确定的搜索空间集中检测下行控制信道。
  5. 根据权利要1至4任一项所述的方法,其中,所述网络设备的指 示信息为下行控制信息DCI、或无线资源控制RRC信令、或***信息SI。
  6. 根据权利要1至5任一项所述的方法,其中,所述方法还包括:
    所述终端确定所述K个BWP中的下行控制信道所调度的资源,其中,所述下行控制信道所调度的资源包括所述K个BWP中的资源,和/或所述N个BWP中除所述K个BWP以外的BWP中的资源。
  7. 一种信道检测方法,所述方法包括:
    网络设备向终端发送指示信息,以使所述终端根据所述网络设备的指示信息在K个BWP和/或
    Figure PCTCN2018075852-appb-100010
    个控制资源集和/或
    Figure PCTCN2018075852-appb-100011
    个搜索空间集中检测下行控制信道,其中,所述终端对应的N个下行带宽部分BWP处于激活状态,所述N个BWP中的第n个BWP配置有Cn个控制资源集和Sn个搜索空间集,N≥2,1≤n≤N,0≤K≤N,0≤Cn’≤Cn,0≤Sn’≤Sn。
  8. 根据权利要求7所述的方法,其中,所述方法还包括:
    所述网络设备根据预定规则在所述K个BWP和/或
    Figure PCTCN2018075852-appb-100012
    个控制资源集和/或
    Figure PCTCN2018075852-appb-100013
    个搜索空间集中传输下行控制信道。
  9. 根据权利要求8所述的方法,其中,所述预定规则,包括以下至少之一:
    所述N个BWP中子载波间隔最大或最小的K个BWP;
    所述N个BWP中带宽最大或最小的K个BWP;
    所述N个BWP中的控制资源集的频域范围最大或最小的K个BWP;
    所述N个BWP的全部控制资源集中,包含频域资源最多或最少的
    Figure PCTCN2018075852-appb-100014
    个控制资源集;
    所述N个BWP的全部控制资源集中,时域长度最大或最小的
    Figure PCTCN2018075852-appb-100015
    个控制资源集;
    所述N个BWP的全部搜索空间集中,时域密度最大或最小的
    Figure PCTCN2018075852-appb-100016
    个搜索空间集。
  10. 根据权利要求7至9任一项所述的方法,其中,所述网络设备的指示信息包括以下至少之一:
    BWP的指示信息、控制资源集的指示信息、搜索空间集的指示信息。
  11. 根据权利要求7至10任一项所述的方法,其中,所述网络设备的指示信息为DCI、或RRC信令、或SI。
  12. 根据权利要求7至11任一项所述的方法,其中,所述下行控制信道所调度的资源包括所述K个BWP中的资源,和/或所述N个BWP中除所述K个BWP以外的BWP中的资源。
  13. 一种信道检测装置,所述装置包括:
    第一确定单元,用于在终端对应的N个下行带宽部分BWP处于激活状态时,其中,所述N个BWP中的第n个BWP配置有Cn个控制资源集和Sn个搜索空间集,根据网络设备的指示信息或预定规则,确定K个BWP和/或
    Figure PCTCN2018075852-appb-100017
    个控制资源集和/或
    Figure PCTCN2018075852-appb-100018
    个搜索空间集,N≥2,1≤n≤N,0≤K≤N,0≤Cn’≤Cn,0≤Sn’≤Sn;
    检测单元,用于在所述K个BWP和/或
    Figure PCTCN2018075852-appb-100019
    个控制资源集和/或
    Figure PCTCN2018075852-appb-100020
    个搜索空间集中检测下行控制信道。
  14. 根据权利要求13所述的装置,其中,所述预定规则,包括以下至少之一:
    所述N个BWP中子载波间隔最大或最小的K个BWP;
    所述N个BWP中带宽最大或最小的K个BWP;
    所述N个BWP中的控制资源集的频域范围最大或最小的K个BWP;
    所述N个BWP的全部控制资源集中,包含频域资源最多或最少的
    Figure PCTCN2018075852-appb-100021
    个控制资源集;
    所述N个BWP的全部控制资源集中,时域长度最大或最小的
    Figure PCTCN2018075852-appb-100022
    个控制资源集;
    所述N个BWP的全部搜索空间集中,时域密度最大或最小的
    Figure PCTCN2018075852-appb-100023
    个搜索空间集。
  15. 根据权利要求13所述的装置,其中,所述网络设备的指示信息包括以下至少之一:
    BWP的指示信息、控制资源集的指示信息、搜索空间集的指示信息。
  16. 根据权利要求15所述的装置,其中,所述检测单元,用于在基于所述BWP的指示信息确定的BWP中检测下行控制信道;和/或,在基于所述控制资源集的指示信息确定的控制资源集中检测下行控制信道;和/或,在基于所述搜索空间集的指示信息确定的搜索空间集中检测下行控制信道。
  17. 根据权利要求13至16任一项所述的装置,其中,所述网络设备的指示信息为DCI、或RRC信令、或SI。
  18. 根据权利要求13至17任一项所述的装置,其中,所述装置还包括:
    第二确定单元,用于确定所述K个BWP中的下行控制信道所调度的资源,其中,所述下行控制信道所调度的资源包括所述K个BWP中的资源,和/或所述N个BWP中除所述K个BWP以外的BWP中的资源。
  19. 一种信道检测装置,所述装置包括:
    发送单元,用于向终端发送指示信息,以使所述终端根据所述指示 信息在K个BWP和/或
    Figure PCTCN2018075852-appb-100024
    个控制资源集和/或
    Figure PCTCN2018075852-appb-100025
    个搜索空间集中检测下行控制信道,其中,所述终端对应的N个下行带宽部分BWP处于激活状态,所述N个BWP中的第n个BWP配置有Cn个控制资源集和Sn个搜索空间集,N≥2,1≤n≤N,0≤K≤N,0≤Cn’≤Cn,0≤Sn’≤Sn。
  20. 根据权利要求19所述的装置,其中,所述装置还包括:
    传输单元,用于根据预定规则在所述K个BWP和/或
    Figure PCTCN2018075852-appb-100026
    个控制资源集和/或
    Figure PCTCN2018075852-appb-100027
    个搜索空间集中传输下行控制信道。
  21. 根据权利要求20所述的装置,其中,所述预定规则,包括以下至少之一:
    所述N个BWP中子载波间隔最大或最小的K个BWP;
    所述N个BWP中带宽最大或最小的K个BWP;
    所述N个BWP中的控制资源集的频域范围最大或最小的K个BWP;
    所述N个BWP的全部控制资源集中,包含频域资源最多或最少的
    Figure PCTCN2018075852-appb-100028
    个控制资源集;
    所述N个BWP的全部控制资源集中,时域长度最大或最小的
    Figure PCTCN2018075852-appb-100029
    个控制资源集;
    所述N个BWP的全部搜索空间集中,时域密度最大或最小的
    Figure PCTCN2018075852-appb-100030
    个搜索空间集。
  22. 根据权利要求19至21任一项所述的装置,其中,所述指示信息包括以下至少之一:
    BWP的指示信息、控制资源集的指示信息、搜索空间集的指示信息。
  23. 根据权利要求19至22任一项所述的装置,其中,所述指示信息为DCI、或RRC信令、或SI。
  24. 根据权利要求19至23任一项所述的装置,其中,所述下行控制信道所调度的资源包括所述K个BWP中的资源,和/或所述N个BWP中除所述K个BWP以外的BWP中的资源。
  25. 一种计算机存储介质,其上存储有计算机可执行指令,该计算机可执行指令被处理器执行时实现权利要求1至6任一项所述的方法步骤,或者权利要求7至12任一项所述的方法步骤。
PCT/CN2018/075852 2018-02-08 2018-02-08 一种信道检测方法及装置、计算机存储介质 WO2019153201A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020207025202A KR20200118829A (ko) 2018-02-08 2018-02-08 채널 검출 방법, 장치 및 컴퓨터 기억 매체
JP2020542731A JP2021516888A (ja) 2018-02-08 2018-02-08 チャネル検出方法、装置及びコンピュータ記憶媒体
PCT/CN2018/075852 WO2019153201A1 (zh) 2018-02-08 2018-02-08 一种信道检测方法及装置、计算机存储介质
US16/968,589 US11716676B2 (en) 2018-02-08 2018-02-08 Channel detection method and device, and computer storage medium
AU2018407188A AU2018407188A1 (en) 2018-02-08 2018-02-08 Channel detection method and device, and computer storage medium
EP18905750.8A EP3742651A4 (en) 2018-02-08 2018-02-08 CHANNEL DETECTION METHOD AND DEVICE AND COMPUTER STORAGE MEDIUM
CN201880088827.9A CN111819808A (zh) 2018-02-08 2018-02-08 一种信道检测方法及装置、计算机存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/075852 WO2019153201A1 (zh) 2018-02-08 2018-02-08 一种信道检测方法及装置、计算机存储介质

Publications (1)

Publication Number Publication Date
WO2019153201A1 true WO2019153201A1 (zh) 2019-08-15

Family

ID=67548676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075852 WO2019153201A1 (zh) 2018-02-08 2018-02-08 一种信道检测方法及装置、计算机存储介质

Country Status (7)

Country Link
US (1) US11716676B2 (zh)
EP (1) EP3742651A4 (zh)
JP (1) JP2021516888A (zh)
KR (1) KR20200118829A (zh)
CN (1) CN111819808A (zh)
AU (1) AU2018407188A1 (zh)
WO (1) WO2019153201A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021068946A1 (en) * 2019-10-10 2021-04-15 Huawei Technologies Co., Ltd. Methods and systems for control resource set and search space set management
CN114747278A (zh) * 2020-02-24 2022-07-12 Oppo广东移动通信有限公司 下行控制信道的检测方法及相关装置
CN114765841A (zh) * 2021-01-13 2022-07-19 宏碁股份有限公司 处理实体下链路控制通道的检测的装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117939649A (zh) * 2018-05-11 2024-04-26 中兴通讯股份有限公司 一种获取信息的方法、终端及存储介质
CN115189838A (zh) * 2021-04-02 2022-10-14 维沃移动通信有限公司 物理下行控制信道重复传输方法、装置及用户设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107257275A (zh) * 2012-01-27 2017-10-17 交互数字专利控股公司 由WTRU执行的用于ePDCCH的方法、WTRU、搜索空间监视方法和UE

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102190939B1 (ko) * 2015-12-24 2020-12-15 한국조선해양 주식회사 선박
US11115868B2 (en) * 2017-05-15 2021-09-07 Samsung Electronics Co., Ltd. Method and apparatus for control resource set configuration and monitoring of downlink control channel in wireless communication system
JP6995392B2 (ja) * 2017-06-16 2022-01-14 ウィルス インスティテュート オブ スタンダーズ アンド テクノロジー インコーポレイティド 無線通信システムにおけるデータチャネル及び制御チャネルの送受信方法、装置、及びシステム
WO2019031850A1 (ko) * 2017-08-11 2019-02-14 한국전자통신연구원 하향링크 제어 채널의 송수신 방법 및 이를 이용하는 장치
CN109699054B (zh) * 2017-10-24 2020-11-06 华为技术有限公司 一种检测下行控制信息的方法、终端设备和网络设备
US11191011B2 (en) * 2017-11-16 2021-11-30 Nokia Technologies Oy Managing control channel blind searches between search spaces in new radio
WO2019138063A1 (en) * 2018-01-11 2019-07-18 Nokia Technologies Oy Apparatuses and methods for managing blind searches

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107257275A (zh) * 2012-01-27 2017-10-17 交互数字专利控股公司 由WTRU执行的用于ePDCCH的方法、WTRU、搜索空间监视方法和UE

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"R1-1719894 LG RMSI CORESET configuration final", 3GPP DRAFT, 18 November 2017 (2017-11-18), XP051369607 *
See also references of EP3742651A4 *
ZTE ET AL.: "R1-1800130 Search space design and related issues", 3GPP DRAFT, 13 January 2018 (2018-01-13), XP051384620 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021068946A1 (en) * 2019-10-10 2021-04-15 Huawei Technologies Co., Ltd. Methods and systems for control resource set and search space set management
CN114747278A (zh) * 2020-02-24 2022-07-12 Oppo广东移动通信有限公司 下行控制信道的检测方法及相关装置
CN114765841A (zh) * 2021-01-13 2022-07-19 宏碁股份有限公司 处理实体下链路控制通道的检测的装置
CN114765841B (zh) * 2021-01-13 2023-05-16 宏碁股份有限公司 处理实体下链路控制通道的检测的装置

Also Published As

Publication number Publication date
JP2021516888A (ja) 2021-07-08
AU2018407188A1 (en) 2020-09-17
EP3742651A4 (en) 2021-01-27
EP3742651A1 (en) 2020-11-25
KR20200118829A (ko) 2020-10-16
CN111819808A (zh) 2020-10-23
US20210050937A1 (en) 2021-02-18
US11716676B2 (en) 2023-08-01

Similar Documents

Publication Publication Date Title
WO2019153201A1 (zh) 一种信道检测方法及装置、计算机存储介质
US11553498B2 (en) PDCCH resource configuration method, PDCCH resource determining method, network device and user equipment
US20200077430A1 (en) Scheduling method and device in ue and base station
US11589266B2 (en) Resource configuration method and device, and computer storage medium
WO2020030167A1 (zh) 信号的发送、接收方法、装置、存储介质及处理装置
WO2019136666A1 (zh) 一种资源配置方法及装置、计算机存储介质
WO2019174011A1 (zh) 一种数据传输方法及装置、计算机存储介质
WO2020221130A1 (zh) 节能参数的发送方法、接收方法及设备
CN109845319B (zh) 用户装置
US11363594B2 (en) Time-domain resource determination method and apparatus, and computer storage medium
WO2019114467A1 (zh) 一种信道资源集的指示方法及装置、计算机存储介质
WO2019153205A1 (zh) 一种资源配置方法及装置、计算机存储介质
WO2019153194A1 (zh) 一种资源配置方法及装置、计算机存储介质
WO2019153192A1 (zh) 一种资源配置方法及装置、计算机存储介质
WO2019153189A1 (zh) 一种资源配置方法及装置、计算机存储介质
WO2022127493A1 (zh) Dci检测方法及装置、存储介质、用户设备
CN109121210B (zh) 一种检测下行控制信道的方法及设备
WO2019153206A1 (zh) 一种信道传输方法及装置、计算机存储介质
WO2018201785A1 (zh) 不完整子帧的传输和解调方法、相应的用户设备和基站
CN117856994A (zh) 灵活双工sbfd信息指示方法、终端及网络侧设备
CN112543086A (zh) 一种控制资源集合的设计方法、网络设备及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905750

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020542731

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018905750

Country of ref document: EP

Effective date: 20200818

ENP Entry into the national phase

Ref document number: 20207025202

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018407188

Country of ref document: AU

Date of ref document: 20180208

Kind code of ref document: A