WO2019151174A1 - 繊維強化成形品およびその製造方法 - Google Patents

繊維強化成形品およびその製造方法 Download PDF

Info

Publication number
WO2019151174A1
WO2019151174A1 PCT/JP2019/002676 JP2019002676W WO2019151174A1 WO 2019151174 A1 WO2019151174 A1 WO 2019151174A1 JP 2019002676 W JP2019002676 W JP 2019002676W WO 2019151174 A1 WO2019151174 A1 WO 2019151174A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
mold
epoxy resin
fiber
pultrusion
Prior art date
Application number
PCT/JP2019/002676
Other languages
English (en)
French (fr)
Inventor
岡英樹
鈴木温久
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020207017241A priority Critical patent/KR20200107936A/ko
Priority to US16/965,764 priority patent/US11827759B2/en
Priority to EP19747164.2A priority patent/EP3747936A4/en
Priority to JP2019511797A priority patent/JP7205464B2/ja
Priority to CN201980010456.7A priority patent/CN111655766B/zh
Publication of WO2019151174A1 publication Critical patent/WO2019151174A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/5073Amines heterocyclic containing only nitrogen as a heteroatom having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/047Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material
    • C08J5/048Macromolecular compound to be reinforced also in fibrous form
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2507/00Use of elements other than metals as filler
    • B29K2507/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/182Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring comprising synthetic filaments
    • H01B7/1825Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring comprising synthetic filaments forming part of a high tensile strength core

Definitions

  • the present invention relates to a fiber reinforced molded product containing a resin composition and a method for producing the same.
  • Fiber reinforced resin made of carbon fiber, glass fiber, and other reinforced fibers and epoxy resins, phenol resins, and other thermosetting resins are lightweight but have excellent mechanical properties such as strength and rigidity, heat resistance, and corrosion resistance. Therefore, it has been applied to many fields such as aviation / space, automobiles, railway vehicles, ships, civil engineering and construction equipment.
  • fiber reinforced resins using continuous reinforcing fibers are used.
  • Carbon fibers having excellent specific strength and specific elastic modulus have been used as reinforcing fibers
  • thermosetting resins have been used as matrix resins.
  • As a thermosetting resin many epoxy resins excellent in adhesiveness with carbon fiber are used.
  • a prepreg method As a method for producing a fiber reinforced resin, a prepreg method, a hand layup method, a filament winding method, a pultrusion method, an RTM (Resin Transfer Molding) method, and the like are appropriately selected and applied.
  • a prepreg method As a method for producing a fiber reinforced resin, a prepreg method, a hand layup method, a filament winding method, a pultrusion method, an RTM (Resin Transfer Molding) method, and the like are appropriately selected and applied.
  • a reinforcing fiber bundle in which thousands to tens of thousands of filaments are arranged in one direction is passed through a resin bath containing a liquid matrix resin, and the reinforcing fiber bundle is impregnated with the matrix resin. Thereafter, the reinforcing fiber bundle impregnated with the matrix resin is cured while continuously pulling out the reinforcing fiber bundle impregnated with the matrix resin with a tension machine through a squeeze die and a heating die.
  • the obtained molded product is a molded product having a smooth surface
  • the molded product is molded until the resin impregnated in the reinforcing fiber bundle is sufficiently cured. It is necessary to make it closely adhere to or to hold down with an appropriate pressure.
  • the matrix resin used for pultrusion needs to have a sufficiently low viscosity in order to quickly impregnate the reinforcing fibers in the resin impregnation tank, and the stability of the viscosity from the viewpoint of long-term continuous productivity.
  • the heat resistance of the cured product is also an important factor.
  • the matrix resin when the matrix resin is impregnated into the reinforcing fiber bundle (hereinafter referred to as “resin-impregnated fiber base material”) and thermally cured while being continuously drawn in the pultrusion mold, the matrix resin is in a liquid state. Since it hardens and transitions to a solid state, curing shrinkage of the matrix resin occurs. At that time, a part of the matrix resin may remain attached to the inner surface of the pultrusion mold. This is a resin residue called scale. When this scale occurs, the pulling stress may increase. Also, if the pultrusion is stopped halfway and the pultrusion is moved again, the scale will be discharged, but the properties of the resin impregnated fiber base material will change with other parts, and continuous molding will occur. It may be difficult to perform.
  • wire cables are very long conductive wires, and wire cable cores have a small product cross-sectional area. It is an important factor to suppress the above and increase the drawing speed. In order to suppress the scale generation, improvement of curing conditions in the mold, improvement of thermosetting resin compositions, and the like have been performed.
  • Patent Document 1 (Claims, Specification 0055) includes a phenol novolac type epoxy resin as an epoxy resin, an aminophenol type epoxy resin and / or a tetraglycidylamine type epoxy resin, and an acid anhydride.
  • An epoxy resin composition containing methyl nadic acid anhydride is disclosed. Furthermore, this resin composition was put into a raw material tank at 25 ° C., carbon fiber was passed through the raw material tank containing this resin composition to impregnate the resin, and then inserted into a circular mold at 180 ° C.
  • a method is described in which a molded product is prepared by heat curing for 0.8 min and after-curing at 210 ° C. for 3 min.
  • an epoxy resin containing an aminophenol type epoxy resin as an epoxy resin, 50% by mass, and methyl nadic acid anhydride and methyltetrahydrophthalic anhydride in a mass ratio of 50/50 A composition is described.
  • the matrix epoxy resin composition has a low viscosity and is sufficiently impregnated into the reinforcing fiber, and the obtained molded product has high heat resistance.
  • Patent Document 2 (Claims, Specification 0018), [A] a bifunctional or higher functional epoxy resin containing an aromatic ring, [B] phthalic anhydride, and [C] tetrahydrophthalic anhydride, methyltetrahydroanhydride.
  • An epoxy resin composition containing at least one acid anhydride selected from the group consisting of phthalic acid, methyl nadic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride is described. And it is disclosed that a molded product that can achieve both high tensile strength and heat resistance at a high level can be obtained.
  • Patent Document 3 describes an epoxy resin composition containing a bifunctional or higher functional epoxy resin containing an aromatic ring and an acid anhydride curing agent. Accordingly, it is disclosed that a molded product capable of achieving both high heat resistance and tensile strength at a high level can be obtained.
  • Patent Document 4 (specification 0039, FIG. 1)
  • a molding apparatus including three molds of a third mold from which a pultruded product is finally drawn out, each of which can control the curing temperature independently, and provides a difference in temperature range between the molds.
  • Patent Document 5 (specification 0027) describes a pultrusion process.
  • the mold temperature is about 100-250 ° C, and it is preferable to lower the temperature at the mold entrance and gradually increase it to the curing temperature toward the back of the mold. It is described that after-curing at 130 to 150 ° C. without curing. It is described that the insufficient curing of the matrix resin in the final product can be resolved and the speed of pultrusion can be increased.
  • Patent Document 6 the fabric sheet impregnated with the resin composition is heated to cause the epoxy resin and the curing agent to partially react to increase the viscosity of the resin composition.
  • a continuous pultrusion process that gels using pressure is further disclosed, and further this partial reaction is performed at 1000-10000 mPa.s.
  • a pultrusion method is disclosed in which a viscosity in the range of s is achieved, gelation is carried out to a degree of cure of 40% to 75%, and further cured to a degree of crosslinking of 90% or more by heat.
  • the literature includes an epoxy resin composition comprising at least one epoxy resin that is a tri- or tetrafunctional epoxy resin, and (ii) a curing agent system that includes at least two reactive groups having different reactivities. Are disclosed.
  • Patent Document 1 has a problem with the heat resistance of the obtained molded product.
  • the shrinkage caused by curing occurs in the course of passing through the mold, it is difficult to completely suppress the scale in this configuration.
  • the epoxy resin composition of Patent Document 2 is manufactured by a liquid process such as a filament winding method, and has a main viewpoint of improving the impregnation property of the reinforcing fiber bundle. Even with this configuration, it was difficult to completely suppress the scale.
  • Patent Document 3 has a problem of low viscosity for improving the impregnation property of reinforcing fiber bundles when methyl nadic anhydride is used alone as an acid anhydride curing agent. Further, the use of hydrophthalic anhydride alone has a problem in heat resistance. In addition, it is difficult for this configuration to completely suppress the scale.
  • Patent Document 4 avoids the fiber reinforced resin composition from being easily pulled out in an uncured state, and suppresses the occurrence of cracks and warping defects in a molded product caused by a rapid curing reaction. was the purpose. Even with this configuration, it was difficult to completely suppress the generation of scale.
  • Patent Document 5 The method of Patent Document 5 was premised on curing a thermosetting matrix resin while passing through a mold while continuously drawing. After-curing was used for the purpose of reinforcing the curing of a resin in an insufficiently cured state without completely curing. That is, in this method, curing shrinkage that occurs when transitioning to a solid state occurs in the course of passing through the mold, so it has been difficult to completely suppress the generation of scale.
  • the epoxy resin composition used in the method of Patent Document 6 uses a curing agent containing at least two types of reactive groups having different reactivities, has a large variation in the degree of cure, and can control the reaction. It was complicated. Therefore, it has been difficult to stably perform pultrusion at a high speed. Moreover, it was difficult to suppress the generation of scale by suppressing the occurrence of curing shrinkage during the passage of the mold.
  • the object of the present invention is to provide a resin component when a thermosetting resin composition is cured from a liquid state and transitions to a solid state in a fiber reinforced molded product manufacturing process in pultrusion molding. This is to suppress the generation of a resin residue called so-called scale in which the portion remains attached to the inner surface of the pultrusion mold. As a result, an increase in the drawing force during the manufacturing process can be avoided, and pultrusion can be continuously performed at a high speed.
  • the fiber-reinforced molded product according to the present invention has the following configuration.
  • a fiber reinforced molded product obtained by impregnating an epoxy resin composition into a bundle of reinforcing fiber bundles in which a plurality of reinforcing fiber bundles are converged, and curing the epoxy resin composition,
  • the epoxy resin composition includes at least the following components [A], [B], [C] and [D], [A] is 60 to 100 parts by mass with respect to 100 parts by mass of the total epoxy resin contained in the epoxy resin composition. Fiber reinforced molded product.
  • the method for producing a fiber-reinforced molded product according to the present invention has the following configuration.
  • a resin-impregnated fiber base material impregnated with an epoxy resin composition in a bundle of reinforcing fiber bundles in which the reinforcing fiber bundles are converged is cured by heating the epoxy resin composition while passing through a pultrusion molding region, thereby obtaining a predetermined shape.
  • the epoxy resin composition contains at least the following components [A], [B], [C] and [D], A method for producing a fiber-reinforced molded article, wherein [A] is 60 to 100 parts by mass with respect to 100 parts by mass of the total epoxy resin contained in the epoxy resin composition.
  • An epoxy resin composition suitable for obtaining the fiber-reinforced molded article of the present invention has the following composition.
  • An epoxy resin composition containing an epoxy resin At least the following components [A], [B], [C] and [D] are included.
  • [A] is 60 to 100 parts by mass with respect to 100 parts by mass of the total epoxy resin contained in the epoxy resin composition.
  • Anhydride [C]: a filler that is at least one selected from silicon compounds, magnesium compounds, calcium compounds, aluminum compounds, and inorganic carbon, and has a Mohs hardness of 3 or less.
  • the component [B] in 100 parts by mass of the component [B], 50 to 90 parts by mass of the component [B1] and 50 to 10 parts by mass of the component [B2] are contained.
  • the content of the component [B] relative to parts by mass is 50 to 200 parts by mass.
  • the component [C] is particulate talc, and the average particle size defined by a laser diffraction particle size distribution analyzer is 2 to 7 ⁇ m.
  • the component [D] is contained in an amount of 0.1 to 8 parts by mass with respect to 100 parts by mass of the component [A].
  • an imidazole derivative is further blended as component [E] in an amount of 0.1 to 5 parts by mass with respect to 100 parts by mass of component [A].
  • the present invention further discloses the following production method.
  • a method for producing a fiber-reinforced molded article that is pultruded into a predetermined shape In the pultrusion region, at least a pultrusion mold having an inlet portion and an outlet portion, and an after cure furnace are arranged, In the pultrusion region, the resin-impregnated fiber base material is introduced from the inlet portion of the pultrusion mold, passed through the mold, led out from the outlet portion of the mold, and then in the after-curing furnace
  • the process of passing through A method for producing a fiber-reinforced molded article that satisfies the following conditions (i) to (v) in the pultrusion region.
  • thermosetting resin composition maintains a liquid state at the entrance of the pultrusion mold.
  • thermosetting resin composition transitions from a liquid state to a gelled state.
  • thermosetting resin composition maintains a gelled state having a curing degree of 33 to 80% at the mold outlet.
  • the thermosetting resin composition In the after-curing furnace, the thermosetting resin composition is in a cured state with a curing degree of 95% or more.
  • the “base passage length” is the distance that the resin-impregnated fiber base passes through the mold
  • the “molding speed (m / min)” is the basis per minute in molding. It is the moving speed of the material.
  • the region in which the thermosetting matrix resin composition starts to be in a gelled state in the pultrusion mold is in relation to the mold passage length. It is in the region of 10-50% length from the exit of the passage.
  • the resin-impregnated fiber base material is heated in a non-contact state with the heating element in the after-curing furnace.
  • the epoxy resin composition having the characteristics of the present invention suppresses the generation of scale that occurs inside the mold during pultrusion molding. Further, since the viscosity change at the time of pultrusion is small, the low pultrusion force can be maintained for a long time, and the curability is excellent, continuous pultrusion at high speed can be realized. Moreover, this epoxy resin composition has a viscosity that can be sufficiently impregnated and is excellent in the heat resistance of the cured product. Further, in the invention according to the manufacturing method characterized by the relationship between the mold temperature and the residence time in the mold, the thermosetting resin composition is held in a gelled state in the pultrusion mold, and the degree of cure is within a certain range.
  • thermosetting matrix resin hardens from the liquid state and transitions to the solid state, and it is possible to suppress the generation of so-called scale that remains attached to the inner surface of the pultrusion mold. It is possible to realize pultrusion molding at high speed continuously.
  • epoxy resin refers to a compound having two or more epoxy groups in one molecule.
  • epoxy resin composition in which materials necessary for polymerization or curing reaction are mixed, “epoxy resin cured product” that has been cured by polymerization or crosslinking, and “cured product of epoxy resin composition” Or “cured product”.
  • An epoxy resin composition suitable for obtaining the fiber-reinforced molded article of the present invention has the following composition.
  • An epoxy resin composition containing an epoxy resin At least the following components [A], [B], [C] and [D] are included.
  • [A] is 60 to 100 parts by mass with respect to 100 parts by mass of the total epoxy resin contained in the epoxy resin composition.
  • the product has a low viscosity, and the heat resistance of the fiber-reinforced molded product is increased.
  • the aminophenol type epoxy resin is a resin having an oxygen atom directly bonded to the benzene ring, and further having an epoxy group via a carbon atom, and a nitrogen atom directly bonded to the benzene ring and further having an epoxy group via a carbon atom. .
  • the former has one epoxy group and the latter has two epoxy groups.
  • the viscosity of the aminophenol type epoxy resin at 25 ° C. is preferably 500 to 7,000 mPa ⁇ s.
  • the viscosity referred to here is determined by a measuring method using a cone-plate type rotational viscometer in ISO2884-1 (1999) at 25 ° C.
  • the resulting epoxy resin composition may have low heat resistance.
  • the viscosity at 25 ° C. is larger than 7,000 mPa ⁇ s, the viscosity of the resulting epoxy resin composition may be too high.
  • aminophenol type epoxy resins having a viscosity of 500 to 7,000 mPa ⁇ s at 25 ° C.
  • jER registered trademark
  • Aldite registered trademark
  • MY0500 Heuntsman Advanced Material Co., Ltd.
  • MY0510 An example of the structure of an aminophenol type epoxy resin is shown below.
  • the acid anhydride includes an acid anhydride [B] composed of two types, an acid anhydride [B1] having a nadic acid anhydride structure and an acid anhydride [B2] having a hydride structure of hydrophthalic anhydride.
  • the “nadic acid anhydride structure” in the component [B1] includes nadic acid anhydride, that is, Bicyclo [2.2.1] hept-5-ene-2,3-dicboxylic anhydride itself.
  • the structure includes a structure in which an atom contained in nadic acid anhydride is substituted with a functional group.
  • An example is a compound in which hydrogen bonded to carbon is substituted with a functional group, and methyl nadic anhydride is an example of a preferable compound.
  • nadic acid anhydride is substituted by the functional group in a part of ring structure, if it can act as a hardening
  • Specific examples include nadic acid anhydride and methyl nadic acid anhydride.
  • component [B1] is preferably methyl nadic acid anhydride.
  • the component [B2] acid anhydride having a hydride structure of phthalic anhydride has a chemical structure of a hydride of phthalic anhydride.
  • the phthalic anhydride hydride itself is included, but the phthalic anhydride hydride includes a structure in which atoms contained in the phthalic anhydride hydride are substituted with a functional group. Examples are compounds in which hydrogen bonded to carbon is substituted with a functional group, and preferred compounds include tetrahydromethylphthalic anhydride and hexahydromethylphthalic anhydride.
  • what has the structure by which the atom contained in the nadic acid anhydride was substituted by the functional group in a part of ring structure corresponds, if it can act as a hardening
  • component [B2] examples include tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride and the like.
  • component [B2] is preferably tetrahydromethylphthalic anhydride or hexahydromethylphthalic anhydride.
  • the content ratio of the component [B1] and the component [B2] is as follows.
  • the acid anhydride [B] (that is, [B1] and [B2]) is 100 parts by mass
  • the component [B1] is 50 to 90 parts by mass
  • [B2] is preferably contained in an amount of 50 to 10 parts by mass.
  • component [B1] is 55 to 85 parts by mass and component [B2] is 45 to 15 parts by mass. More preferably, the component [B1] is 60 to 80 parts by mass and the component [B2] is 40 to 20 parts by mass. More preferably, the component [B1] is 70 to 75 parts by mass and the component [B2] is 30 to 25 parts by mass.
  • the cured product obtained from the epoxy resin composition can be made highly heat resistant.
  • content of component [B1] is less than 50 mass parts, the heat resistance of a fiber reinforced molded product may become low.
  • the initial viscosity of the epoxy resin composition can be kept low and the curing rate can be improved.
  • content of component [B2] is less than 10 mass parts, it may become a resin composition inferior to initial low-viscosity.
  • the viscosity of Component [B2] at 25 ° C. is preferably 20 mPa ⁇ s or more and 1,000 mPa ⁇ s or less.
  • the viscosity mentioned here is determined by a measurement method using a cone-plate type rotational viscometer in ISO2884-1 (1999) at 25 ° C. *
  • Examples of commercially available products of methyl nadic acid anhydride include “Kayahard” (registered trademark) MCD (viscosity: 250 mPa ⁇ s, manufactured by Nippon Kayaku Co., Ltd.) and “ARADUR” (registered trademark) HY906 (viscosity: 200 mPa ⁇ s). s, manufactured by Huntsman Advanced Material).
  • Examples of commercial products of tetrahydromethylphthalic anhydride include HN-2000 (viscosity: 40 mPa ⁇ s, manufactured by Hitachi Chemical Co., Ltd.), HN-2200 (viscosity: 65 mPa ⁇ s, manufactured by Hitachi Chemical Co., Ltd.), “ARADUR” (registered trademark) HY917 (viscosity: 75 mPa ⁇ s, manufactured by Huntsman Advanced Materials) and the like.
  • Examples of commercially available hexahydromethylphthalic anhydride include HN-5500 (viscosity: 65 mPa ⁇ s, manufactured by Hitachi Chemical Co., Ltd.).
  • the compounding amount of the acid anhydride is the acid anhydride equivalent of the acid anhydride to the epoxy equivalent of the epoxy group contained in all epoxy resins including the component [A] (the molecular weight of the acid anhydride is divided by the number of acid anhydride groups).
  • Value is preferably in the range of 0.5 to 1.5 equivalents. More preferably, it is 0.7 to 1.2 equivalents. Although two preferred ranges are shown, a range combining a preferred upper value and a preferred lower value may be used. When the amount is less than 0.5 equivalent, the initial viscosity of the resin composition may be increased and curing may be insufficient. When the amount is more than 1.5 equivalent, the mechanical properties of the cured product may be deteriorated.
  • the content of the component [B] with respect to 100 parts by mass of the component [A] is preferably 50 to 200 parts by mass.
  • the component [B] is less than 50 parts by mass, the initial viscosity of the resin composition is increased. If the amount exceeds 200 parts by mass, the mechanical properties of the cured product may deteriorate.
  • the component [C] is a filler having a Mohs hardness of 3 or more, and is at least one selected from silicon compounds, magnesium compounds, calcium compounds, aluminum compounds, and inorganic carbon As a component.
  • the inorganic carbon it is possible to use a carbon such as graphite which exists in a simple substance form such as graphite, or a carbide called CaC 2 or SiC.
  • a carbon such as graphite which exists in a simple substance form such as graphite, or a carbide called CaC 2 or SiC.
  • silicon, magnesium, calcium, and aluminum the compound containing these atoms is included including what exists in these simple substance forms.
  • the filler enters between the carbon fibers of the fiber base material, an effect of suppressing curing shrinkage is obtained when the resin composition is cured.
  • the Mohs hardness since it is soft when the Mohs hardness is 3 or less, damage to the mold can be reduced.
  • examples thereof include calcium carbonate, aluminum hydroxide, talc, and carbon black.
  • talc hydrous magnesium silicate (Mg 3 Si 4 O 10 (OH) 4 )
  • particulate talc particularly particulate talc.
  • particulate talc having an average particle size of 2 to 7 ⁇ m as measured by a laser diffraction particle size distribution meter is a small particle size, so that the talc is more likely to enter between the carbon fibers, and the shrinkage reduction effect becomes higher.
  • the average particle size is preferably 3 to 6 ⁇ m, more preferably 3.5 to 5.5 ⁇ m. The range which combined any of said upper limit and lower limit may be sufficient.
  • the amount of the filler [C] contained in the epoxy resin of the present invention is preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the aminophenol type epoxy resin [A].
  • the release agent [D] is preferably an ester of a polyhydric alcohol such as glycerin or pentaerythritol and a fatty acid.
  • the number of carbon atoms of the fatty acid is preferably 12 or more. Moreover, it is preferable that it is 30 or less.
  • oleic acid ester or stearic acid ester is preferable.
  • Pentaerythritol tetraoleate or glyceryl isostearate can be more preferably used.
  • the liquid epoxy resin composition can be mixed uniformly.
  • the release agent in the resin By mixing the release agent in the resin, the release property between the thermosetting resin composition and the pultrusion mold 6 can be improved, and the pultrusion property is improved.
  • the compounding amount of the release agent is preferably 0.1 to 8 parts by mass with respect to 100 parts by mass of the aminophenol type epoxy resin [A]. More preferably, it is 0.2 to 6 parts by mass.
  • the range which combined any of said upper limit and lower limit may be sufficient. If it is less than 0.1 parts by mass, sufficient releasability may not be obtained. Moreover, when adding more than 8 mass parts, the intensity
  • a liquid release agent having a viscosity of 50 mPa ⁇ s to 1,000 mPa ⁇ s at 25 ° C. is preferably used in order to suppress the influence on the viscosity of the resin composition.
  • a curing catalyst [E] is included for curing the epoxy resin.
  • the curing catalyst is not particularly limited as long as it promotes the chemical reaction between the epoxy resin and the acid anhydride curing agent, but an imidazole derivative is preferable from the viewpoint of the balance between viscosity stability and heat resistance.
  • An imidazole derivative means a compound having an imidazole ring in the molecule. Specifically, imidazole, 1-methylimidazole, 2-methylimidazole, 2-ethylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 1,2-dimethylimidazole, 2-ethyl- 4-methylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-isobutyl-2-methylimidazole, Examples thereof include, but are not limited to, 1-aminoethyl-2-methylimidazole and the like.
  • imidazole derivatives having a substituent at the 1-position of the five-membered ring are excellent in viscosity stability and are preferably used.
  • an imidazole derivative having a melting point of 50 ° C. or lower, more preferably a melting point of 25 ° C. or lower and being liquid at 25 ° C. is used. It is done.
  • These imidazole derivatives may be used alone or in combination of two or more.
  • imidazole derivatives having a substituent at the 1-position include 1,2DMZ (1,2-dimethylimidazole, manufactured by Shikoku Chemicals Co., Ltd.), 1B2MZ (1-benzyl-2-methylimidazole, Shikoku Chemicals ( 1B2PZ (1-benzyl-2-phenylimidazole, manufactured by Shikoku Kasei Kogyo Co., Ltd.), DY070 (1-methylimidazole, manufactured by Huntsman Advanced Materials), and the like.
  • the imidazole derivative is preferably contained in an amount of 0.1 to 5 parts by mass with respect to 100 parts by mass of the aminophenol type epoxy resin [A]. If it is less than 0.1 parts by mass, the curing rate of the thermosetting resin composition may be slow and the rapid curability may be poor. On the other hand, when the amount is more than 5 parts by mass, the viscosity stability of the resin composition is deteriorated and may not be suitable for continuous production.
  • the reinforcing fiber constituting the reinforcing fiber bundle glass fiber, aramid fiber, polyethylene fiber, silicon carbide fiber and carbon fiber are preferably used.
  • carbon fiber is preferably used because it is lightweight and has high performance, and a molded product having excellent mechanical properties can be obtained.
  • Carbon fibers are classified into polyacrylonitrile-based carbon fibers, rayon-based carbon fibers, pitch-based carbon fibers, and the like. Among these, polyacrylonitrile-based carbon fibers having high tensile strength are preferably used.
  • the polyacrylonitrile-based carbon fiber can be produced, for example, through the following steps. A spinning solution containing polyacrylonitrile obtained from a monomer containing acrylonitrile as a main component is spun by a wet spinning method, a dry wet spinning method, a dry spinning method or a melt spinning method. The coagulated yarn obtained by spinning becomes a precursor through a spinning process, and then becomes a carbon fiber through processes such as a flameproofing process and a carbonizing process.
  • twisted yarn As the form of carbon fiber, twisted yarn, untwisted yarn, untwisted yarn and the like can be used.
  • a twisted yarn since the blending of the filaments constituting the reinforcing fiber bundle is not parallel, the mechanical properties of the fiber reinforced composite material tend to be lowered. For this reason, an untwisted yarn or a non-twisted yarn excellent in the balance between moldability and strength characteristics of the fiber-reinforced composite material is preferably used.
  • the carbon fiber bundle is preferably composed of 2,000 to 70,000 filaments, and the fineness per single yarn is preferably in the range of 50 to 5000 tex, more preferably 10,000 to 60
  • the fineness per single yarn is 100 to 2000 tex.
  • the range which combined any of said upper limit and lower limit may be sufficient.
  • the fineness (tex) refers to the mass (g / 1000 m) per 1000 m of single yarn.
  • Impregnation of the epoxy resin composition into carbon fibers having a filament number of 2000 to 70000 and a single yarn fineness of 50 to 5000 tex was difficult in the prior art, but the epoxy resin composition of the present invention has a viscosity of Is low, the epoxy resin composition can be easily impregnated between the single fibers.
  • Such carbon fibers preferably have a tensile modulus in the range of 180 to 400 GPa. If the tensile modulus is within this range, the resulting fiber-reinforced composite material can be given rigidity, and the resulting molded product can be reduced in weight. In general, the strength of the carbon fiber tends to decrease as the elastic modulus increases, but the strength of the carbon fiber itself can be maintained within this range.
  • a more preferable elastic modulus is in the range of 200 to 370 GPa, and further preferably in the range of 220 to 350 GPa. The range which combined any of said upper limit and lower limit may be sufficient.
  • the tensile elastic modulus of the carbon fiber is a value measured according to JIS R7601-2006.
  • Examples of commercially available carbon fibers include the following. “Torayca (registered trademark)” T300-12000 (tensile strength: 3.5 GPa, tensile elastic modulus: 230 GPa), “Torayca (registered trademark)” T300B-12000 (tensile strength: 3.5 GPa, tensile elastic modulus: 230 GPa), “Torayca (registered trademark)” T400HB-6000 (tensile strength: 4.4 GPa, tensile elastic modulus: 250 GPa), “Torayca (registered trademark)” T700SC-12000 (tensile strength: 4.9 GPa, tensile elastic modulus: 230 GPa), “Torayca®” T800HB-12000 (tensile strength: 5.5 GPa, tensile elastic modulus: 294 GPa), “Torayca®” T800SC-24000 (tensile strength: 5.9 GPa, tensile elastic modulus: 294 GPa), “To
  • thermosetting resin composition typified by an epoxy resin composition
  • FIG. 4 A resin-impregnated fiber base material 7 in which a bundled fiber base material is impregnated with a thermosetting resin composition typified by an epoxy resin composition is passed through the distance of the pultrusion region 17. During this passage, the thermosetting resin composition is heat-cured and pultruded into a predetermined shape.
  • the pultrusion mold 6 and the after-curing furnace 24 are arranged in the pultrusion region 17.
  • the resin-impregnated fiber base material 7 is introduced from the inlet portion 11 of the pultrusion die 6, passes through the pultrusion die 6, and is led out from the outlet portion 12 of the pultrusion die 6. Thereafter, the resin-impregnated fiber base material 7 passes through the after-curing furnace 24.
  • the thermosetting resin composition maintains a liquid state at the inlet 11 of the mold, the thermosetting resin composition transitions to a gelled state inside the pultrusion mold 6.
  • the thermosetting resin composition is in a gelled state with a curing degree of 33 to 80% at the outlet 12 of the mold, and is in a cured state with a curing degree of 95% or more in the after-curing furnace 24. Is preferred.
  • FIG. 1 shows a general pultrusion process.
  • the reinforcing fiber bundle 2 is drawn from the creel 3 while being pulled by the puller 10.
  • the reinforcing fiber bundle 2 is introduced into the resin bath 4 through a guide roll (not shown), and the thermosetting resin composition is adhered.
  • the excess thermosetting resin composition is removed by rubbing with a squeeze 5.
  • the position of the reinforcing fibers is determined one by one by the guide 30 so as to enter the pultrusion mold 6 having a desired cross-sectional shape with a good balance. Resin that cannot pass through the die together with the reinforcing fiber and eventually becomes surplus is backflowed from the mold and dropped from the entrance of the mold 6 to be removed.
  • the resin-impregnated fiber base material 7 impregnated with the thermosetting resin composition is heated while passing through the pultrusion mold 6 and the thermosetting resin composition is cured. After being discharged from the outlet of the pultrusion mold, it is wound up by the winder 8. In the preferred production method of the present invention, the film passes through the after-curing furnace 24 before being wound up.
  • the resin-impregnated fiber base material 7 is introduced from the inlet 11 of the pultrusion mold 6 and is conveyed at a constant pultrusion speed in the pultrusion mold 6 heated to a constant temperature.
  • the thermosetting resin composition contained in the resin-impregnated fiber base 7 introduced from the mold inlet 11 maintains a liquid state for a while in the liquid region 14. Thereafter, by heating from the pultrusion mold 6, gelation starts in a part of the thermosetting resin composition, and the gelled state region 15 continues. Thereafter, the thermosetting resin composition of the resin-impregnated fiber base 7 is cured to become a solid state, and is discharged from the outlet 12 of the mold.
  • FIG. 3A shows a cross-sectional view taken along the line A-A ′ of FIG. 2.
  • FIG. 3 [a] the thermosetting resin composition 20 of the gelatinization state contained in the resin impregnation fiber base material 7 in the initial stage in the gelation area
  • region 15 exists.
  • FIG. 3B is a cross-sectional view taken along the line B-B ′ of FIG.
  • FIG. 3B shows the latter half of the gelation region 15 shown in FIG. 2, and the thermosetting resin composition is becoming a cured state 21 on the surface layer of the resin-impregnated fiber base material 7. Further, FIG.
  • thermosetting resin composition is cured to the inside of the resin-impregnated fiber base material 7, and is in a state 22 in which curing shrinkage occurs.
  • a part of the resin component remains attached to the inner surface of the pultrusion mold, so that a resin residue 13 called a so-called scale is generated, the pulling force increases during the manufacturing process, and the reinforcing fiber breaks.
  • the pultrusion molding region 6 and the after cure furnace 24 are arranged in the pultrusion molding region 17.
  • the resin-impregnated fiber base material 7 is introduced from the inlet portion 11 of the pultrusion mold 6, passed through the pultrusion die 6, and led out from the outlet portion 12 of the pultrusion mold 6 without depositing the scale, and then aftercure
  • the inside of the furnace 24 is passed.
  • Reference numeral 23 denotes a portion where there is no scale accumulation.
  • the resin-impregnated fiber base material 7 is introduced from the mold inlet 11.
  • the thermosetting resin composition maintains a liquid state in the liquid region 14 inside the pultrusion mold 6. Thereafter, in the pultrusion mold 6, the thermosetting resin composition transitions from the gelled state 15 to a cured solid state.
  • the mold outlet 12 is configured to suppress the degree of cure at the mold outlet 12 so that the degree of cure of the thermosetting resin composition is 33 to 80%. Thereby, generation
  • the degree of curing can be adjusted by adjusting the temperature of the mold, the length of the mold, and the molding speed, for example.
  • thermosetting resin composition As a result, it is possible to avoid curing shrinkage of the thermosetting resin composition inside the pultrusion mold 6, and as a result, the generation of the resin residue 13 called scale on the inner surface of the pultrusion mold 6 is suppressed. can do. Further, the resin-impregnated fiber base material 7 discharged from the mold outlet 12 is introduced into an after-curing furnace 24 and heated in the furnace 24 so that the thermosetting resin composition has a curing degree of 95% or more. To produce a pultruded product.
  • thermosetting resin composition If the degree of cure of the thermosetting resin composition is less than 33% at the outlet 12 of the mold, curing failure may occur. Further, when the degree of cure of the thermosetting resin composition exceeds 80% at the mold exit portion 12, it may be difficult to suppress the generation of the resin residue 13 called scale inside the pultrusion mold 6. is there.
  • the degree of cure of the thermosetting resin composition is preferably 33 to 80%, more preferably 50 to 79%, still more preferably 60 to 79%, and particularly preferably 76 to 77%. .
  • the range which combined any of said upper limit and lower limit may be sufficient.
  • the fiber base material 2 can be satisfactorily and continuously impregnated with the thermosetting resin composition, and the liquid state of the resin-impregnated fiber base material 7 can be satisfactorily maintained inside the pultrusion mold 6.
  • it can.
  • it is 2000 mPa * s or less, More preferably, it is 1000 mPa * s or less.
  • the temperature of the pultrusion mold 6 is Tp (° C.), and the length (m) of the resin impregnated fiber base in the pultrusion mold 6 (hereinafter referred to as the mold passage length). ) Is divided by the molding speed (m / min), and the residence time in the mold is H (min), it is preferable to satisfy the relationship of the following formula. 230-100H ⁇ Tp ⁇ 252-80H 180 ⁇ Tp ⁇ 245 0.1 ⁇ H ⁇ 0.9.
  • the mold temperature Tp is the temperature of the passage of the resin-impregnated fiber substrate in the pultrusion mold. This is preferably measured by inserting a thermocouple during pultrusion. However, since it is difficult to measure while molding with this method, another method is to insert a thermocouple from the outside into the hole for measurement opened on the side of the mold, and the temperature near the fiber substrate passage. Is preferably measured. At this time, it is preferable to provide a plurality of measurement points. In this case, the mold temperature Tp takes an average value of these measurement points. The difference between the temperature at each measurement point and Tp is preferably within ⁇ 25 ° C. The relationship of the above formula shows an appropriate range of conditions for the thermosetting resin composition to maintain a gelled state with a curing degree of 33 to 80% at the mold outlet 12.
  • FIG. 5 shows the relationship between the residence time in the mold and the mold temperature in the pultrusion molding according to the present invention.
  • the vertical axis represents the mold temperature Tp (° C.), and the horizontal axis represents the residence time H (min) in the mold.
  • the region 25 of the thermosetting resin composition is a region where poor curing is likely to occur
  • the region 26 is an appropriate region
  • the region 27 is a region where scale is likely to occur.
  • the heating temperature Tp of the pultrusion mold 6 is 180 to 245 ° C. If the heating temperature Tp of the pultrusion mold 6 is less than 180 ° C., curing failure may occur. Decreasing the speed can avoid poor curing, but lowering the pultrusion speed increases the manufacturing cost.
  • the staying time H in the mold is preferably 0.1 to 0.9 min. If the staying time H in the mold is less than 0.1 min, curing failure may occur. If the residence time H in the mold exceeds 0.9 min, scale may be easily generated.
  • the molding speed is preferably 0.18 to 16 m / min. It is preferably 0.6 to 10 m / min, more preferably 1 to 8 m / min, still more preferably 1.2 to 6 m / min. The range which combined any of said upper limit and lower limit may be sufficient.
  • the glass transition point after heat curing of the thermosetting resin composition is Tg (° C.)
  • the relationship between the heating temperature Tp (° C.) of the pultrusion mold 6 and the following formula may be satisfied. preferable. Tg ⁇ 40 ° C. ⁇ Tp ⁇ Tg + 25 ° C.
  • the heating temperature Tp By setting the heating temperature Tp to Tg ⁇ 40 ° C. or higher, the heat resistance of the drawn fiber reinforced molded product can be sufficiently secured. By setting the heating temperature Tp to be “Tg + 25 ° C.” or less, it is possible to prevent the molded product from being deformed by heat or the thermosetting resin composition from being decomposed.
  • the glass transition temperature is a midpoint temperature (Tm) determined by the DSC method according to JIS K7121 (1987).
  • An example of the measuring apparatus is a differential scanning calorimeter DSC Q2000 (manufactured by TA Instruments Inc.). In this case, the measurement is performed in the Modulated mode. The DSC measurement is performed in a nitrogen gas atmosphere at a heating rate of 5 ° C./min.
  • thermosetting resin composition when the temperature in an after-curing furnace is set to Tc (degreeC), it is preferable to satisfy the relationship of the following formula with the glass transition point Tg (degreeC) after thermosetting of a thermosetting resin composition.
  • the temperature Tc in the after-curing furnace By setting the temperature Tc in the after-curing furnace to Tg or higher, it is possible to sufficiently secure the heat resistance of the obtained fiber-reinforced molded product.
  • the heating temperature Tc By setting the heating temperature Tc to Tg + 73 ° C. or less, it is possible to prevent the molded product from being deformed by heat or the thermosetting resin composition from being decomposed.
  • the region where the thermosetting resin composition transitions to a gelled state is drawn with respect to the total length of the passage of the resin-impregnated fiber base in the pultrusion mold. It is preferable that the area is 10 to 50% in length from the outlet of the molding die. Thereby, the degree of cure of the thermosetting resin composition in the vicinity of the outlet portion 12 of the mold is adjusted to be low, the curing shrinkage region can be moved toward the outlet portion 12 of the mold, and the curing shrinkage region is Shorter.
  • the range of the length of the above region is preferably 15 to 45%, more preferably 20 to 40%.
  • the range may be a combination of a preferred upper value and a preferred lower value in the two preferred ranges.
  • the resin-impregnated fiber base material 7 is preferably heated in a non-contact state with the heating element in the after-curing furnace 24.
  • the purpose of after-curing is to completely cure the resin of the resin-impregnated fiber base material 7 that has passed through the pultrusion mold 6 and, if it is in non-contact with the heating element, cure shrinkage in the after-curing furnace. Even if this occurs, no scale remains attached in the furnace.
  • the present invention can be applied to molding fiber-reinforced molded products having various shapes as long as they have the same cross-sectional shape.
  • cylindrical rod-shaped molded products, polygonal-shaped rod-shaped molded products, sheet-shaped thin molded products, rectangular-shaped thick molded products, and the like may be mentioned, and they may be hollow.
  • the thickness of the molded product thickness from the outermost surface to the hollow portion in the case of a hollow product
  • rapid curing shrinkage due to heat accumulation inside the molded product It is often suppressed and the dimensions are stable, which is favorable from the viewpoint of dimensional stability.
  • thermosetting resin composition which is the epoxy resin composition of each Example
  • the unit of the compounding amount in Table 1A and Table 1B means “part by mass” unless otherwise specified. “-” Means that the ratio is zero.
  • Examples 1 to 6 and Comparative Examples 1 to 5 In these examples and comparative examples, the following raw materials were used. The blending amounts are listed in Table 1A and Table 1B.
  • Epoxy resin "JER” (registered trademark) 630 (p-aminophenol type epoxy resin, manufactured by Mitsubishi Chemical Corporation)
  • JER registered trademark 828 (bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation) (not included in the category of [A]).
  • Acid anhydride Acid anhydride having nadic acid anhydride structure “Kayahard” (registered trademark) MCD (Methyl nadic acid anhydride, manufactured by Nippon Kayaku Co., Ltd.)
  • Component [B2] Tetrahydrophthalic anhydride or acid anhydride having a hexahydrophthalic anhydride structure.
  • HN-2000 Metaltetrahydrophthalic anhydride, manufactured by Hitachi Chemical Co., Ltd.
  • -HN-5500 methylhexahydrophthalic anhydride, manufactured by Hitachi Chemical Co., Ltd.
  • Mold release agent “Chem Lease” (registered trademark) IC-35 (oleic acid ester, manufactured by Chemtrend) (included in the category of [D]).
  • Curing catalyst DY070 (1-methylimidazole, manufactured by Huntsman Advanced Materials) "Cureazole” (registered trademark) 2E4MZ (2-ethyl-4-methylimidazole, manufactured by Shikoku Chemicals Co., Ltd.)
  • thermosetting resin compositions were prepared using the raw materials shown below.
  • Epoxy resin “jER” registered trademark) 630 (p-aminophenol type epoxy resin, manufactured by Mitsubishi Chemical Corporation): 95 parts by mass • “jER” (registered trademark) 828 (bisphenol A type epoxy resin, Mitsubishi Chemical ( Co., Ltd.): 5 parts by mass. (Not included in category [A].) 2.
  • Acid anhydride having a phthalic anhydride or hexahydrophthalic anhydride structure, HN-5500 (methyl hexahydrophthalic anhydride, manufactured by Hitachi Chemical Co., Ltd.): 51 parts by mass
  • Filler “Micron White” (registered trademark) # 5000S (talc, average particle diameter 4.75 ⁇ m, Mohs hardness 1, manufactured by Hayashi Kasei Co., Ltd.): 4 parts by mass. (Included in category [C].) 4).
  • thermosetting resin composition In Examples 1 to 6 and Comparative Examples 1 to 5, the mixing ratios shown in Table 1A and Table 1B, and in Examples 7 to 17 and Comparative Examples 6 to 10, The raw materials of the mixing
  • each resin composition was put into a resin bath 4 at 25 ° C., and the carbon fiber as the reinforcing fiber bundle 2 was passed through the resin bath 4 containing the resin composition to impregnate the resin. .
  • the enlarged portion 9 in FIG. 1 was removed by rubbing with a squeeze bar 5 to remove excess thermosetting resin composition.
  • a resin-impregnated fiber base material 7 in which the thermosetting resin composition is in a liquid state was introduced from the inlet portion 11 of the mold. At the time of introduction, the thermosetting resin composition was in a liquid state.
  • the resin-impregnated fiber base material 7 discharged from the mold outlet 12 was introduced into an after-cure furnace 24 and heated and cured in the furnace 24 to obtain a pultruded product.
  • the molding conditions shown in Table 1 are shown below.
  • the molding conditions shown in Table 2 are shown in Table 2.
  • -Heating temperature Tp (° C) of pultrusion mold 6 195 ° C -Length of pultrusion mold 6 (total length of passage of resin-impregnated fiber base material) (m): 800 mm Molding speed (m / min): 1.2 (m / min) -Dwell time in mold H (min): 0.67 (min) -Curing degree of the thermosetting resin composition at the mold outlet 12: 75% -Temperature in the after-cure furnace 24: 260 ° C -The degree of cure of the thermosetting resin composition after the after-curing furnace 24: 95% As a result of molding, a pultruded product having a diameter of 2 mm and Vf of about 70% was obtained.
  • Mold surface condition after molding The state of the mold surface after pultrusion was visually confirmed and judged according to the following criteria. No damage such as scratches or scale adhesion: Good Some scratches or scale adhesion: Slightly scratched: Bad.
  • Mold outlet deformation When the molded product is led out from the mold outlet, it can be molded without deformation, but it can be deformed but kept within ⁇ 3% of the mold cavity diameter. Those that deformed significantly, such as spreading, were considered defective.
  • the degree of cure of the thermosetting resin composition at the mold outlet During molding, an appropriate amount of the molded product coming out of the mold was sampled and cut into small pieces with scissors, and the residual heat generation was determined by DSC (differential scanning calorimetry). From the ratio of this calorific value and the calorific value of the resin composition before curing, the degree of cure ⁇ was calculated by the following equation.
  • Curing degree ⁇ 100 ⁇ (heat value of molded product) / (heat value of resin composition ⁇ molded resin mass fraction)
  • the DSC measurement was performed by raising the temperature at 30 to 250 ° C. and 10 ° C./min using a Diamond DSC manufactured by Perkin Elmer. "Generation of scale” It was marked as good if it was able to be molded smoothly without the occurrence of scale, good if it was scaled but could be molded, and bad if it could not be molded due to significant scale.
  • Example 1 As shown in Table 1A, aminophenol type epoxy resin, “jER” (registered trademark) 630, 100 parts by mass, acid anhydride having nadic anhydride structure, “Kayahard” (registered trademark) MCD, 135 parts by mass , Acid anhydride having a structure of tetrahydrophthalic anhydride, HN-2000, 45 parts by mass, 4 parts of talc as filler, 3 parts of internal release agent IC-35, 1 part of imidazole derivative, DY070
  • the resin composition was mixed and prepared. As a result of the viscosity measurement at 25 ° C. in the above (2), this resin composition was found to have a low viscosity.
  • Example 2 Except for using “jER” (registered trademark) 630, bisphenol A type epoxy resin, “jER” (registered trademark) 828, “Kayahard” (registered trademark) MCD, and HN-2000 in the proportions shown in Table 1A was carried out in the same manner as in Example 1. Although this resin composition had a slightly higher viscosity measured in (2) above, it was at a level where pultrusion molding was possible. Moreover, it showed that Tg of the resin cured product was high and had heat resistance. When pultrusion molding was performed using this resin composition, molding was possible without generation of scale. After molding, scratches and scales were not observed on the mold surface. The results are shown in Table 1A.
  • Example 3 In the proportions shown in Table 1A, "jER” (registered trademark) 630, “jER” (registered trademark) 828, “Kayahard” (registered trademark) MCD, acid anhydride having the structure of hexahydrophthalic anhydride, The same procedure as in Example 1 was performed except that HN-5500, an imidazole derivative, “CUREZOL” (registered trademark) 2E4MZ, were used. As a result of the viscosity measurement at 25 ° C. in the above (2), this resin composition was found to have a low viscosity. Moreover, it showed that Tg of the resin cured product was sufficiently high and had heat resistance. When pultrusion molding was performed using this resin composition, molding was possible without generation of scale. After molding, scratches and scales were not observed on the mold surface. The results are shown in Table 1A.
  • Example 4 The same procedure as in Example 3 was performed except that the ratio of “Kayahard” (registered trademark) MCD and HN-5500 was changed as shown in Table 1A. As a result of the viscosity measurement at 25 ° C. in the above (2), this resin composition was found to have a low viscosity. Moreover, it showed that Tg of the resin cured product was high and had heat resistance. When pultrusion molding was performed using this resin composition, molding was possible without generation of scale. After molding, scratches and scales were not observed on the mold surface. The results are shown in Table 1A.
  • Example 5 The same procedure as in Example 3 was conducted, except that the ratio of “Kayahard” (registered trademark) MCD, HN-5500 was as shown in Table 1A.
  • This resin composition had a low viscosity at 25 ° C. after mixing in the above (2), but the heat resistance of the cured resin was slightly inferior. When pultrusion molding was performed using this resin composition, it was able to be molded although some scale was generated. After molding, slight scale adhesion was observed on the mold surface. The results are shown in Table 1A.
  • Example 6 Using “jER” (registered trademark) 630, bisphenol A type epoxy resin, “jER” (registered trademark) 828, “Kayahard” (registered trademark) MCD, HN-2000 in the proportions shown in Table 1A Except for this, the same procedure as in Example 1 was performed. Although this resin composition had a slightly higher viscosity measured in (2) above, it was at a level where pultrusion molding was possible. Further, the Tg of the cured resin was high and the heat resistance was slightly inferior. When pultrusion molding was performed using this resin composition, it was able to be molded although some scale was generated. After molding, slight scale adhesion was observed on the mold surface. The results are shown in Table 1A.
  • Example 2 The ratio of “Kayahard” (registered trademark) MCD was as shown in Table 1B, and the same procedure as in Example 3 was performed except that HN-2000 and HN-5500 were not included.
  • This resin composition has a low viscosity at 25 ° C. measured in (2) above, and the Tg of the resin cured product is high and exhibits heat resistance, but its reactivity is poor, so that the resin composition is used for drawing.
  • curing did not proceed in the mold, and the dimensions of the molded product were not stable. After molding, scratches and scales were not observed on the mold surface.
  • Table 1B The results are shown in Table 1B.
  • Example 3 The same operation as in Example 3 was carried out except that the filler was silica (FB-5D).
  • This resin composition had a low viscosity at 25 ° C. measured in (2) above, and the Tg of the cured resin was sufficiently high to exhibit heat resistance.
  • pultrusion molding was performed using this resin composition, molding was possible without generation of scale and the like. However, after molding, the surface of the mold was significantly scratched. The results are shown in Table 1B.
  • Example 4 The same procedure as in Example 3 was performed except that the release agent was not included.
  • This resin composition had a low viscosity at 25 ° C. measured in (2) above, and the Tg of the cured resin was sufficiently high to exhibit heat resistance.
  • the generation of significant scales or the molded product itself adheres to the mold, making molding difficult. After molding, many scales adhered to the mold surface. The results are shown in Table 1B.
  • Example 5 The same procedure as in Example 3 was performed except that 32 parts by mass of metaxylylenediamine was used instead of the acid anhydride and the imidazole derivative.
  • This resin composition had a high viscosity at 25 ° C. measured in (2) above.
  • pultrusion molding is performed using this resin composition, the generation of significant scales or the molded product itself adheres to the mold, making molding difficult. After molding, many scales adhered to the mold surface. The results are shown in Table 1B.
  • Example 7 Using the resin composition described above, pultrusion molding was performed at a mold temperature Tp of 200 ° C., a mold passage length of 0.6 m, and a molding speed of 0.95 m / min. The molded product coming out of the mold was not deformed, and the degree of cure of the sampled molded product was 79%. Moreover, generation
  • Example 8 It implemented similarly to Example 7 except having set it as the shaping
  • the molded product coming out of the mold was not deformed, and the degree of cure of the sampled molded product was 69%. Moreover, generation
  • the results are shown in Table 2A.
  • Example 9 It implemented similarly to Example 7 except having set it as the shaping
  • the molded product coming out of the mold was not deformed, and the degree of cure of the sampled molded product was 35%. In addition, no scale was observed. The results are shown in Table 2A.
  • Example 10 The same operation as in Example 7 was performed except that the mold temperature, the mold passage length, and the molding speed shown in Table 2A were used. The molded product coming out of the mold was not deformed, and the degree of cure of the sampled molded product was 80%. Although some scale was observed, the molding was successful. The results are shown in Table 2A.
  • Example 11 It implemented similarly to Example 10 except having set it as the shaping
  • the molded product coming out of the mold was not deformed, and the degree of cure of the sampled molded product was 52%. Moreover, generation
  • the results are shown in Table 2A.
  • Example 12 The same operation as in Example 10 was performed except that the mold passage length and the molding speed shown in Table 2A were used. The molded product out of the mold was slightly deformed but could be molded, and the degree of cure of the sampled molded product was 34%. Moreover, generation
  • Example 13 The same operation as in Example 7 was performed except that the mold temperature, the mold passage length, and the molding speed shown in Table 2A were used. The molded product that came out of the mold was not deformed, and the degree of cure of the sampled molded product was 77%. Moreover, generation
  • Example 14 It implemented similarly to Example 13 except having set it as the shaping
  • the molded product coming out of the mold did not deform, and the degree of cure of the sampled molded product was 55%. Moreover, generation
  • Example 15 It implemented similarly to Example 13 except having set it as the shaping
  • the molded product out of the mold was able to be molded although some deformation was observed, and it was 34% when the degree of cure of the sampled molded product was evaluated. Moreover, generation
  • Example 16 Using a die having a 10 mm diameter circular circular cavity with a hard chrome plating treatment on the surface, the conditions shown in Table 2B were used. The molded product coming out of the mold was not deformed, and the degree of cure of the sampled molded product was 60%. Moreover, generation
  • Example 17 Using a mold having a 100 mm wide and 5 mm thick cavity with a rectangular cross section, the surface of which was hard chrome plated, the conditions shown in Table 2B were used. The molded product coming out of the mold did not deform, and the degree of cure of the sampled molded product was 55%. Moreover, generation
  • Example 6 (Comparative Example 6) It implemented similarly to Example 7 except having set it as the shaping
  • Example 7 It implemented similarly to Example 7 except having set it as the shaping
  • the degree of cure of the sampled molded product was 12%. The results are shown in Table 2B.
  • Example 8 It implemented similarly to Example 10 except having set it as the shaping
  • Example 9 It implemented similarly to Example 13 except having set it as the shaping
  • Example 10 (Comparative Example 10) It implemented similarly to Example 13 except having set it as the shaping
  • the drawn fiber reinforced molded product of the present invention is effectively used for windmill blades, building repair and reinforcement members, electrical and electronic equipment casings, bicycles, automobile members, structural materials for sports equipment, aircraft interior materials, shipping boxes, etc. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Epoxy Resins (AREA)

Abstract

引抜繊維強化成形品の製造において、金型内面に付着残留する樹脂残渣物の発生を抑制して高速で連続して引抜成形できる手段を提供する。 強化繊維束を収束させた強化繊維束集合体にエポキシ樹脂組成物を含浸させた樹脂含浸繊維基材を、引抜成形領域を通過させながら前記エポキシ樹脂組成物を加熱硬化させて、所定の形状に引抜成形される繊維強化成形品の製造方法であって、前記エポキシ樹脂組成物が少なくとも以下のA~Dの成分を含むものである、繊維強化成形品の製造方法。 A、アミノフェノール型エポキシ樹脂。B、ナジック酸無水物構造を有する酸無水物およびフタル酸無水物の水素化物構造を有する酸無水物。C、ケイ素化合物、マグネシウム化合物、カルシウム化合物、アルミニウム化合物および無機炭素から選択される少なくとも一種であり、モース硬度が3以下のフィラー。D、離型剤。

Description

繊維強化成形品およびその製造方法
 本発明は、樹脂組成物を含む繊維強化成形品とその製造方法に関する。
 炭素繊維、ガラス繊維などの強化繊維と、エポキシ樹脂、フェノール樹脂などの熱硬化性樹脂からなる繊維強化樹脂は、軽量でありながら、強度や剛性などの力学特性、耐熱性および耐食性という特性に優れているため、航空・宇宙、自動車、鉄道車両、船舶、土木建築およびスポーツ用品などの数多くの分野に応用されてきた。特に、高性能が要求される用途では、連続した強化繊維を用いた繊維強化樹脂が用いられている。強化繊維としては、比強度および比弾性率に優れた炭素繊維が、そしてマトリックス樹脂としては熱硬化性樹脂が使用されてきている。熱硬化性樹脂としては、炭素繊維との接着性に優れたエポキシ樹脂が多く用いられている。
 繊維強化樹脂の製造法としては、プリプレグ法、ハンドレイアップ法、フィラメントワインディング法、引抜成形(プルトルージョン)法、RTM(Resin Transfer Molding)法等の方法が適宜選択され適用されている。
 引抜成形法では以下の方法がよく採用される。
数千~数万本のフィラメントが一方向に配列した強化繊維束を、液状のマトリックス樹脂が入った樹脂浴に通し、マトリックス樹脂を強化繊維束に含浸させる。その後、マトリックス樹脂が含浸した強化繊維束を、スクイーズダイおよび加熱金型を通して、引張機によって、マトリックス樹脂を含浸させた強化繊維束を連続的に引抜きつつ、硬化させる。
 引抜成形を生産性よく行うために、この工程を連続的かつ定常的に経過させることが重要である。得られる成形品が、平滑な表面を有する成形品の場合、成形品をスムーズに金型内から引抜くためには、強化繊維束に含浸した樹脂が十分に硬化するまで、成形品を金型に密着させるか、或いは適当な圧力で押さえることが必要である。
 引抜成形に用いるマトリックス樹脂は、樹脂含浸槽で速やかに強化繊維へ含浸させるために十分に低粘度である必要がある、また長時間の連続生産性の観点から粘度の安定性、さらには目的とする製品によっては、硬化物の耐熱性も重要な要素である。
 しかし、マトリックス樹脂を強化繊維束に含浸させた材料(以下「樹脂含浸繊維基材」という)を引抜成形金型内で連続して引抜きをしながら熱硬化させる際に、マトリックス樹脂が液状状態から硬化して固体状態に推移するため、マトリックス樹脂の硬化収縮が生じる。その際マトリックス樹脂の一部が引抜成形金型内面に付着残留することがある。これがスケールと呼ばれる樹脂残渣物である。このスケールが生じると引抜応力が上昇することがある。また、引抜成形を途中で止めて、再度引抜成形を可動させるとそのスケールは排出されるものの、樹脂含浸繊維基材の停止した部分だけ他の部分との特性が変わってしまったりし、連続成形を行うことが困難となる場合があった。
 特に、電線ケーブルコア用途に繊維強化樹脂を採用する場合、電線ケーブルは非常に長い導電線であり、また、電線ケーブルコアは製品断面積が小さいことから、コストダウンのためには、スケールの発生を抑えて、引抜速度を高めることが重要な要素となる。そのスケール発生抑制のために、金型内での硬化条件の改良や、熱硬化性樹脂組成物の改良等が行われてきた。
 例えば、特許文献1(特許請求の範囲、明細書0055)では、エポキシ樹脂として、フェノールノボラック型エポキシ樹脂を含み、アミノフェノール型エポキシ樹脂及び/またはテトラグリシジルアミン型エポキシ樹脂を含み、酸無水物として、無水メチルナジック酸を含むエポキシ樹脂組成物、が開示されている。さらに、この樹脂組成物を25℃の原料槽に投入し、この樹脂組成物の入った原料槽に炭素繊維を引き通して樹脂を含浸させ、次いでこれを円形金型に挿通し、180℃で0.8min加熱硬化させ、210℃で3minアフターキュアを行い、成形品を作製する方法が記載されている。また、実施例(明細書0093)には、エポキシ樹脂としてアミノフェノール型エポキシ樹脂、50質量%、無水メチルナジック酸とメチルテトラヒドロ無水フタル酸とが50/50の質量比率で配合されているエポキシ樹脂組成物が記載されている。このマトリックスエポキシ樹脂組成物は低粘度であり、強化繊維へ十分含浸していき、得られた成形品は高い耐熱性を有している。
 また、特許文献2 (特許請求の範囲、明細書0018)では、[A]芳香環を含む2官能以上のエポキシ樹脂、[B]無水フタル酸、ならびに[C]テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸からなる群から選ばれる少なくとも一種の酸無水物を含むエポキシ樹脂組成物、が記載されている。そしてそれにより引張強度と耐熱性とを高いレベルで両立できる成形品が得られることが開示されている。
 また、特許文献3(特許請求の範囲)では、芳香環を含む2官能以上のエポキシ樹脂及び酸無水物系硬化剤を含むエポキシ樹脂組成物が記載されている。それにより耐熱性と引張強度を高いレベルで両立できる成形品が得られることが開示されている。
 次に引抜成形装置に注目すると、特許文献4(明細書0039、図1)では、熱硬化性樹脂組成物を含浸した繊維糸を金型内に引き込む第1の金型、第2の金型及び最終的に引抜成形品が引き出される第3の金型の3つの金型を含む成形装置であって、それぞれ硬化温度を独立して制御でき、各金型間で温度範囲に差を設けているもの、が記載されている。同文献(明細書0041)では、加熱領域を2段階以上に分割することで、入口付近のゲル化を抑制しつつ、後の加熱で繊維強化樹脂組成物の硬化度を大きくすることができる、と説明している。
 また、特許文献5(明細書0027)では、引抜成形工程が説明されている。そこでは金型温度は約100~250℃で、金型入り口では温度を低くして金型後方に向かって硬化温度まで段階的に上げるのが好ましいこと、金型を通過する間に樹脂が完全に硬化しなくとも、130~150℃でアフターキュアをすることが説明されている。そして最終製品におけるマトリックス樹脂の硬化不足を解消し、かつ、引抜成形の速度を上げることができることが説明されている。
 また、特許文献6(特許請求の範囲)では、樹脂組成物を含浸させた織物シートを熱にかけてエポキシ樹脂と硬化剤とを部分的に反応させ、樹脂組成物の粘度を増大し、さらに熱又は圧力を用いてゲル化していく連続引抜成形法、が開示されてさらに、この部分的反応を1000~10000mPa.sの範囲の粘度を達成するまで行い、ゲル化を40%~75%の硬化度まで行い、更に熱により90%以上の架橋度まで硬化する引抜成形法、が開示されている。同文献にはエポキシ樹脂組成物として、三又は四官能性エポキシ樹脂である少なくとも一種類のエポキシ樹脂、及び(ii)異なった反応性を有する少なくとも二種類の反応性基を含む硬化剤系を含むもの、が開示されている。
特開2015-3938号公報 特開2017-8317号公報 特開2017-119812号公報 特開2008-290381号公報 特開2014-201659号公報 特表2008-508113号公報
 しかし、特許文献1の構成では、得られる成形品の耐熱性に課題があった。また、金型の通過途中で固体状態に推移する際に生じる硬化収縮が発生するため、この構成ではスケールを完全に抑制することは難しかった。
また、特許文献2のエポキシ樹脂組成物は、フィラメントワインディング法などの液状プロセスで製造され、強化繊維束への含浸性を向上させることを主要観点としたものである。この構成でもスケールを完全に抑制することは難しかった。
 また、特許文献3の構成は、酸無水物系硬化剤として、無水メチルナジック酸の単独での使用では、強化繊維束への含浸性を向上させるための低粘度性に課題があった。また、ヒドロ無水フタル酸の単独での使用では耐熱性に課題があった。また、この構成もスケールを完全に抑制することは難しかった。
 特許文献4の方法は、繊維強化樹脂組成物が未硬化の状態で引き抜かれやすくなることを回避し、硬化反応が急激に起こることにより生じる成形品のクラックや反りの不良の発生を抑制することが目的であった。この構成でも、スケールの発生を完全に抑制することは難しかった。
 特許文献5の方法は、連続して引抜きをしながら熱硬化性のマトリックス樹脂を金型通過途中で硬化させることが前提とされていた。アフターキュアは完全に硬化が進行せずに不十分な硬化状態の樹脂の硬化を補強的に補う目的で使用していた。すなわちこの方法では固体状態に推移する際に生じる硬化収縮が金型の通過途中で発生するため、スケールの発生を完全に抑制することは難しかった。
 特許文献6の方法で使用されているエポキシ樹脂組成物は、異なった反応性を有する少なくとも二種類の反応性基を含む硬化剤を使用しており、硬化度のバラツキが大きく、反応の制御が複雑なものとなっていた。そのため高速で安定的に引抜成形を行うことが困難であった。また金型の通過途中で硬化収縮の発生を抑えて、スケールの発生を完全に抑制することは難しかった。
 本発明の課題は、かかる従来技術の問題点に鑑み、引抜成形における繊維強化成形品の製造工程において、熱硬化性樹脂組成物が液状状態から硬化して固体状態に推移する時に樹脂成分の一部が引抜成形金型内面に付着残留する、いわゆるスケールと呼ばれる樹脂残渣物の発生が抑制することである。これにより製造過程で引抜力が上昇することを回避でき、高速で連続して引抜成形が可能となる。
 上記課題を解決するために本発明に係る繊維強化成形品は以下の構成を有する。
 強化繊維束を複数収束させた強化繊維束集合体にエポキシ樹脂組成物が含浸され、前記エポキシ樹脂組成物が硬化した繊維強化成形品であって、
前記エポキシ樹脂組成物は少なくとも以下の成分[A]、[B]、[C]および[D]を含み、
前記エポキシ樹脂組成物に含まれる全エポキシ樹脂100質量部に対して[A]が60~100質量部であるものである、
繊維強化成形品。
[A]:アミノフェノール型エポキシ樹脂
[B]:以下の2種の酸無水物
 [B1]:ナジック酸無水物構造を有する酸無水物
 [B2]:フタル酸無水物の水素化物構造を有する酸無水物
[C]:ケイ素化合物、マグネシウム化合物、カルシウム化合物、アルミニウム化合物および無機炭素から選択される少なくとも一種であり、モース硬度が3以下のフィラー
[D]:離型剤
 また上記課題を解決するために本発明に係る繊維強化成形品の製造方法は以下の構成を有する。
強化繊維束を収束させた強化繊維束集合体にエポキシ樹脂組成物を含浸させた樹脂含浸繊維基材を、引抜成形領域を通過させながら前記エポキシ樹脂組成物を加熱硬化させて、所定の形状に引抜成形される繊維強化成形品の製造方法であって、
前記エポキシ樹脂組成物が少なくとも以下の成分[A]、[B]、[C]および[D]を含み、
前記エポキシ樹脂組成物に含まれる全エポキシ樹脂100質量部に対して[A]が60~100質量部であるものである、繊維強化成形品の製造方法。
[A]:アミノフェノール型エポキシ樹脂
[B]:以下の2種の酸無水物
 [B1]:ナジック酸無水物構造を有する酸無水物
 [B2]:フタル酸無水物の水素化物構造を有する酸無水物
[C]:ケイ素化合物、マグネシウム化合物、カルシウム化合物、アルミニウム化合物および無機炭素から選択される少なくとも一種であり、モース硬度が3以下のフィラー
[D]:離型剤。
 本発明の繊維強化成形品を得るために好適なエポキシ樹脂組成物は以下の組成である。
エポキシ樹脂を含有するエポキシ樹脂組成物である。
少なくとも以下の成分[A]、[B]、[C]および[D]を含む。
前記エポキシ樹脂組成物に含まれる全エポキシ樹脂100質量部に対して[A]が60~100質量部である。
[A]:アミノフェノール型エポキシ樹脂
[B]:以下の2種の酸無水物
 [B1]:ナジック酸無水物構造を有する酸無水物
 [B2]:フタル酸無水物の水素化物構造を有する酸無水物
[C]:ケイ素化合物、マグネシウム化合物、カルシウム化合物、アルミニウム化合物および無機炭素から選択される少なくとも一種であり、モース硬度が3以下のフィラー。
[D]:離型剤。
 本発明の好ましい態様によれば、前記成分[B]100質量部中に、成分[B1]が50~90質量部、成分[B2]が50~10質量部含まれ、前記成分[A]100質量部に対する前記成分[B]の含有量が50~200質量部である。
 本発明の好ましい態様によれば、前記成分[C]は粒子状のタルクであり、レーザー回折式粒度分布計により定義される平均粒径が2~7μmである。
 本発明の好ましい態様によれば、成分[D]が、成分[A]100質量部に対して0.1~8質量部含まれる。
 本発明の好ましい態様によれば、さらに成分[E]として、イミダゾール誘導体を、前記成分[A]100質量部に対して0.1~5質量部配合する。
 本発明ではさらに以下の製造方法を開示する。
強化繊維束を収束させた強化繊維束集合体に熱硬化性樹脂組成物を含浸させた樹脂含浸繊維基材を、引抜成形領域を通過させながら前記熱硬化性樹脂組成物を加熱硬化させて、所定の形状に引抜成形される繊維強化成形品の製造方法であって、
前記引抜成形領域には少なくとも、入口部および出口部を有する引抜成形金型と、アフターキュア炉とが配され、
前記引抜成形領域では、前記樹脂含浸繊維基材は、前記引抜成形金型の入口部から導入され、前記金型内部を通過され、前記金型の出口部から導出され、その後前記アフターキュア炉内を通過する工程が行われ、
前記引抜成形領域では以下の(i)~(v)条件を満たす繊維強化成形品の製造方法。
(i)前記引抜成形の金型温度をTp(℃)、前記金型における前記樹脂含浸繊維基材の通路長(以下、金型通路長という)(m)を成形速度(m/min)で除した金型内滞在時間をH(min)とすると、次の式(1)~(3)の関係を満たしている。
230-100H≦Tp≦252-80H ・・・式(1)
180≦Tp≦245 ・・・式(2)
0.1≦H≦0.9 ・・・式(3)
(ii)前記引抜成形金型の入口部において前記熱硬化性樹脂組成物は液体状態を保持している。
(iii)前記金型内部において前記熱硬化性樹脂組成物が液体状態からゲル化状態に推移している。
(iv)前記金型出口部において前記熱硬化性樹脂組成物が硬化度33~80%のゲル化状態を保持している。
(v)前記アフターキュア炉内において、前記熱硬化性樹脂組成物が硬化度95%以上の硬化状態となっている。
なお、ここで「基材の通路長」とは、金型において樹脂含浸繊維基材が通過する距離であり、また、「成形速度(m/min)」とは、成形における1分あたりの基材の移動速度である。
前記製造方法に係る発明の好ましい態様によれば、前記引抜成形金型内部において、前記熱硬化性のマトリックス樹脂組成物がゲル化状態に推移し始める領域は、前記金型通路長に対してその通路の出口部から10~50%の長さの領域のうちにある。
前記製造方法に係る本発明の好ましい態様によれば、前記アフターキュア炉内において、前記樹脂含浸繊維基材を発熱体と非接触の状態で加熱する。
本発明の特徴を有するエポキシ樹脂組成物により、引抜成形時の金型内部に生じるスケールの発生が抑えられる。また引抜成形時の粘度変化が小さく、長期間、低引抜力を維持でき、硬化性に優れるため、高速で連続しての引抜成形を実現することができる。また、このエポキシ樹脂組成物は、十分含浸できる粘度であると共に、硬化物の耐熱性に優れる。
また、金型温度および金型内滞在時間の関係を特徴とする製造方法に係る発明では、引抜成形金型内で熱硬化性樹脂組成物をゲル化状態で保持させ、一定範囲の硬化度とすることにより、熱硬化性マトリックス樹脂が液状状態から硬化して固体状態に推移する際に生じる硬化収縮の発生を抑えることができ、引抜成形金型内面に付着残留するいわゆるスケールの発生を抑制でき、連続して高速での引抜成形を実現することができる。
本発明の繊維強化成形品を引抜成形するための引抜成形機の概略図である。 引抜成形金型部の拡大断面図である。 引抜成形金型内部における熱硬化性樹脂組成物のゲル化状態から硬化収縮する過程を表した断面図である。 本発明に係る引抜成形において、熱硬化性樹脂組成物のゲル化状態が制御されたことを示す側面断面図である。 本発明に係る引抜成形において、熱硬化性樹脂組成物の硬化不良領域及びスケール発生領域を与える金型内滞在時間と金型温度との関係を示す図である。
 以下、実施の形態について図面を用いて説明する。なお、本発明は図や実施例に何ら限定されるものではない。
 本発明において、「エポキシ樹脂」とは1分子内に2個以上のエポキシ基を有する化合物を言う。また、ポリマー化ないし硬化反応に必要な材料が混合されたものを「エポキシ樹脂組成物」、ポリマー化または架橋による硬化がなされたものを「エポキシ樹脂硬化物」、「エポキシ樹脂組成物の硬化物」又は「硬化物」という。
 本発明の繊維強化成形品を得るために好適なエポキシ樹脂組成物は以下の組成である。
エポキシ樹脂を含有するエポキシ樹脂組成物である。
少なくとも以下の成分[A]、[B]、[C]および[D]を含む。
前記エポキシ樹脂組成物に含まれる全エポキシ樹脂100質量部に対して[A]が60~100質量部である。
[A]:アミノフェノール型エポキシ樹脂
[B]:以下の2種の酸無水物
 [B1]:ナジック酸無水物構造を有する酸無水物
 [B2]:フタル酸無水物の水素化物構造を有する酸無水物
[C]:ケイ素化合物、マグネシウム化合物、カルシウム化合物、アルミニウム化合物および無機炭素から選択される少なくとも一種であり、モース硬度が3以下のフィラー
[D]:離型剤。
 本発明に係るエポキシ樹脂組成物に含まれる全エポキシ樹脂100質量部のうち、アミノフェノール型エポキシ樹脂[A]を60~100質量部、より好ましくは80~100質量部用いることで、エポキシ樹脂組成物が低粘度となり、かつ繊維強化成形品の耐熱性が高まる。
アミノフェノール型エポキシ樹脂とはベンゼン環に直接結合した酸素原子、さらに炭素原子を介してエポキシ基を有し、ベンゼン環に直接結合した窒素原子、さらに炭素原子を介してエポキシ基を有する樹脂をいう。前者のエポキシ基は1つ、後者のエポキシ基は2つあることが一般的である。
 アミノフェノール型エポキシ樹脂の25℃での粘度は、500~7,000mPa・sであることが好ましい。
 ここで言う粘度とは、25℃において、ISO2884-1(1999)における円錐-平板型回転粘度計を使用した測定方法により求められる。
 アミノフェノール型エポキシ樹脂の25℃での粘度が500mPa・s未満であると、得られるエポキシ樹脂組成物の耐熱性が低くなる場合がある。25℃での粘度が7,000mPa・sよりも大きいと、得られるエポキシ樹脂組成物の粘度が高くなり過ぎる場合がある。
 25℃での粘度が500~7,000mPa・sのアミノフェノール型エポキシ樹脂としては、“jER”(登録商標)630(三菱ケミカル(株)製)、“アラルダイト”(登録商標)MY0500(ハンツマン・アドバンスドマテリアル社製)、同MY0510等が挙げられる。アミノフェノール型エポキシ樹脂の構造の一例を以下に示す。
Figure JPOXMLDOC01-appb-C000001
また、硬化剤として酸無水物を用いる。酸無水物はナジック酸無水物構造を有する酸無水物[B1]及びヒドロフタル酸無水物の水素化物構造を有する酸無水物[B2]の2種類からなる酸無水物[B]を含む。
 ここで、成分[B1]における「ナジック酸無水物構造」とは、ナジック酸無水物、すなわちBicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydrideそのものを含むが、これに留まらず、ナジック酸無水物に含まれる原子が官能基により置換されてなる構造を含む。例としては、炭素に結合している水素が官能基により置換されてなる化合物であり、好ましい化合物の一つとしてメチルナジック酸無水物が挙げられる。また、環構造の一部にナジック酸無水物に含まれる原子に結合する水素が官能基により置換された構造を有してなるものも、成分[A]の硬化剤として作用し得るのであれば、該当する。
具体例として、ナジック酸無水物やメチルナジック酸無水物が挙げられる、特に成分[B1]はメチルナジック酸無水物であることが好ましい。
 また、成分[B2]フタル酸無水物の水素化物構造を有する酸無水物とは、フタル酸無水物の水素化物の化学構造を有するものである。かかるフタル酸無水物の水素化物そのものを含むが、これに留まらず、フタル酸無水物の水素化物に含まれる原子が官能基により置換されてなる構造を含む。例としては炭素に結合している水素が官能基により置換されてなる化合物であり、好ましい化合物としてテトラヒドロメチルフタル酸無水物およびヘキサヒドロメチルフタル酸無水物が挙げられる。また、環構造の一部にナジック酸無水物に含まれる原子が官能基により置換された構造を有してなるものも、成分[A]の硬化剤として作用し得るのであれば、該当する。
 かかる成分[B2]の具体例として、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸等が挙げられる。特に成分[B2]はテトラヒドロメチルフタル酸無水物またはヘキサヒドロメチルフタル酸無水物であることが好ましい。また、成分[B1]及び成分[B2]の含有割合としては、酸無水物[B](すなわち[B1]および[B2])100質量部に、成分[B1]が50~90質量部、成分[B2]が50~10質量部含まれることが好ましい。
 好ましくは成分[B1]が55~85質量部かつ成分[B2]が45~15質量部である。より好ましくは成分[B1]が60~80質量部かつ成分[B2]が40~20質量部である。さらに好ましくは成分[B1]が70~75質量部かつ成分[B2]が30~25質量部である。
 酸無水物[B]100質量部中に成分[B1]を50~90質量部含むことにより、エポキシ樹脂組成物から得られる硬化物を高耐熱性とすることができる。成分[B1]の含有量が50質量部未満の場合、繊維強化成形品の耐熱性が低くなる場合がある。
 酸無水物[B]100質量部中に成分[B2]を50~10質量部含むことにより、エポキシ樹脂組成物の初期粘度を低く抑えることができ、かつ硬化速度を向上させることができる。成分[B2]の含有量が10質量部未満の場合、初期低粘度性に劣る樹脂組成物となる場合がある。
 成分[B2]の25℃での粘度は20mPa・s以上1,000mPa・s以下であることが好ましい。ここで言う粘度とは、25℃において、ISO2884-1(1999)における円錐-平板型回転粘度計を使用した測定方法により求められる。 
 メチルナジック酸無水物の市販品の例としては、“カヤハード”(登録商標)MCD(粘度:250mPa・s、日本化薬(株)製)及び“ARADUR”(登録商標)HY906(粘度:200mPa・s、ハンツマン・アドバンスドマテリアル社製)等が挙げられる。テトラヒドロメチルフタル酸無水物の市販品の例としては、HN-2000(粘度:40mPa・s、日立化成(株)製)、HN-2200(粘度:65mPa・s、日立化成(株)製)、“ARADUR”(登録商標)HY917(粘度:75mPa・s、ハンツマン・アドバンスドマテリアル社製)等が挙げられる。ヘキサヒドロメチルフタル酸無水物の市販品の例としては、HN-5500(粘度:65mPa・s、日立化成(株)製)等が挙げられる。
 酸無水物の配合量は、成分[A]を含む全エポキシ樹脂に含有されるエポキシ基のエポキシ1当量に対する酸無水物の酸無水物当量(酸無水物の分子量を酸無水物基数で除した値)の値が0.5~1.5当量の範囲になるようにすることが好ましい。さらに好ましくは、0.7~1.2当量である。好ましい範囲をふたつ示したが、好ましい上の値と好ましい下の値を組み合わせた範囲であってもよい。0.5当量より少ないと、樹脂組成物の初期粘度が高くなることや硬化が不十分になることがあり、1.5当量より多いと、硬化物の機械特性が低下することがある。
 前記成分[A]100質量部に対する前記成分[B]の含有量が50~200質量部であることが好ましく、成分[B]が50質量部を下回ると樹脂組成物の初期粘度が高くなることや硬化が不十分になることがあり、200質量部より多いと、硬化物の機械特性が低下することがある。
 また、本発明のエポキシ樹脂組成物においては、成分[C]として、それぞれモース硬度が3以上のフィラーであって、ケイ素化合物、マグネシウム化合物、カルシウム化合物、アルミニウム化合物および無機炭素から選択される少なくとも一種を成分として含有する。
 ここで無機炭素としては、グラファイトなどの単体の形で存在するものや、CaCやSiCなどカーバイドと呼ばれる炭化物が使用できる。一方、ケイ素、マグネシウム、カルシウム及びアルミニウムについては、これらの単体の形で存在するものを含め、これら原子を含む化合物も含む。フィラーが繊維基材の炭素繊維間に入り込むことから、樹脂組成物が硬化する際に、硬化収縮を抑制する効果が得られる。また、モース硬度を3以下とすると柔らかいため、金型損傷を少なくできる。例えば炭酸カルシウム、水酸化アルミニウム、タルク、カーボンブラック等を挙げることができる。この中でもタルク(含水珪酸マグネシウム(MgSi10(OH)))、特に粒子状のタルクを用いることが特に好ましい。
 また、レーザー回折式粒度分布計により測定される平均粒径が2~7μmの粒子状タルクは、小粒径粒子であることからタルクが炭素繊維間により入り込みやすく、収縮低減効果がより高くなる。平均粒径は好ましくは3~6μm、より好ましくは3.5~5.5μmである。上記の上限と下限のいずれを組み合わせた範囲であってもよい。
 本発明のエポキシ樹脂に含まれるフィラー[C]の量としては、アミノフェノール型エポキシ樹脂[A]100質量部に対し、0.5~5質量部が好ましい。
 離型剤[D]としては、グリセリン、ペンタエリスリトールなどの多価アルコールと、脂肪酸とのエステルが好ましい。脂肪酸の炭素数としては12以上であることが好ましい。また30以下であることが好ましい。例えばオレイン酸エステル又はステアリン酸エステルが好ましい。ペンタエリスリトールテトラオレイン酸エステル又はイソステアリン酸グリセリルがより好ましく使用できる。
 25℃で液状の離型剤を用いることにより、液状のエポキシ樹脂組成物中で均一に混ぜ合わせることができる。離型剤を樹脂中に混合しておくことで、熱硬化性樹脂組成物と引抜成形金型6との離型性を高めることとができ、引抜成形性が向上する。
  離型剤の配合量は、アミノフェノール型エポキシ樹脂[A]100質量部に対して、0.1~8質量部であることが好ましい。より好ましくは、0.2~6質量部である。上記の上限と下限のいずれを組み合わせた範囲であってもよい。0.1質量部未満であると、十分な離型性が得られないことがある。また、8質量部より多く添加すると、成形品自体の強度が低下したり、成形品の塗膜との密着性が低下したりすることがある。
 このような離型剤としては、樹脂組成物の粘度への影響を抑えるために、25℃での液状の離型剤の粘度が50mPa・s以上1,000mPa・s以下のものが好ましく用いられる。
 また、エポキシ樹脂の硬化のために硬化触媒[E]が含まれることが好ましい。硬化触媒としては、エポキシ樹脂と酸無水物硬化剤との化学反応を促進するものであれば特に制限はないが、粘度安定性と耐熱性とのバランスの観点から、イミダゾール誘導体が好ましい。
 イミダゾール誘導体とは、分子中にイミダゾール環を有する化合物を意味する。具体的には、イミダゾール、1-メチルイミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-イソブチル-2-メチルイミダゾール、1-アミノエチル-2-メチルイミダゾール、等が挙げられるが、これらに限定されるものではない。
 また、イミダゾール誘導体の中では、五員環の1位に置換基を有するイミダゾール誘導体が、粘度の安定性に優れ、好ましく使用される。中でも、エポキシ樹脂組成物の粘度を必要以上に上げないために、好ましくは融点が50℃以下のもの、より好ましくは、融点が25℃以下であり、かつ25℃で液状であるイミダゾール誘導体が用いられる。これらイミダゾール誘導体は、単独でも用いても、複数種組み合わせて用いてもよい。1位に置換基を有するイミダゾール誘導体の市販品としては、1,2DMZ(1,2-ジメチルイミダゾール、四国化成工業(株)製)、1B2MZ(1-ベンジル-2-メチルイミダゾール、四国化成工業(株)製)、1B2PZ(1-ベンジル―2-フェニルイミダゾール、四国化成工業(株)製)、DY070(1-メチルイミダゾール、ハンツマン・アドバンスドマテリアル社製)等が挙げられる。
 イミダゾール誘導体は、アミノフェノール型エポキシ樹脂[A]100質量部に対して、0.1~5質量部含まれることが好ましい。0.1質量部より少ないと、熱硬化性樹脂組成物の硬化速度が遅く、速硬化性に劣ることがある。また、5質量部より多いと、樹脂組成物の粘度安定性が悪化し、連続生産に適さないことがある。
 強化繊維束を構成する強化繊維としては、ガラス繊維、アラミド繊維、ポリエチレン繊維、炭化ケイ素繊維および炭素繊維が好ましく用いられる。特に軽量かつ高性能であり、優れた力学特性の成形品が得られる点で、炭素繊維が好ましく用いられる。
 炭素繊維は、ポリアクリロニトリル系炭素繊維、レーヨン系炭素繊維およびピッチ系炭素繊維等に分類される。中でも、引張強度の高いポリアクリロニトリル系炭素繊維が好ましく用いられる。ポリアクリロニトリル系炭素繊維は、例えば、次に述べる工程を経て製造することができる。アクリロニトリルを主成分とするモノマーから得られるポリアクリロニトリルを含む紡糸原液を、湿式紡糸法、乾湿式紡糸法、乾式紡糸法または溶融紡糸法により紡糸する。紡糸により得られた凝固糸は、製糸工程を経て、プリカーサーとなり、続いて耐炎化工程および炭化工程などの工程を経て炭素繊維となる。
 炭素繊維の形態としては、有撚糸、解撚糸および無撚糸等を使用することができる。有撚糸の場合は、強化繊維束を構成するフィラメントの配合が平行ではないため、繊維強化複合材料の力学特性が低下しがちである。このため、繊維強化複合材料の成形性と強度特性のバランスに優れる解撚糸または無撚糸が好ましく用いられる。
 強化繊維として炭素繊維を用いる場合、炭素繊維束が2,000~70,000フィラメントで構成され、単糸あたりの繊度が50~5000texの範囲であることが好ましく、より好ましくは10,000~60,000フィラメントで構成され、単糸あたりの繊度が100~2000texである。上記の上限と下限のいずれを組み合わせた範囲であってもよい。ここで、繊度(tex)とは単糸1000m当たりの質量(g/1000m)を指す。フィラメント数が2000~70000であり、かつ単糸繊度が50~5000texである炭素繊維へのエポキシ樹脂組成物の含浸は、従来技術においては困難であったが、本発明のエポキシ樹脂組成物は粘度が低いため、エポキシ樹脂組成物が単繊維間に容易に含浸することができる。
 かかる炭素繊維は、引張弾性率が180~400GPaの範囲であることが好ましい。引張弾性率がこの範囲であれば、得られる繊維強化複合材料に剛性を持たせることができるため、得られる成形品を軽量化することができる。また一般に、炭素繊維は弾性率が高くなるほど強度が低下する傾向があるが、この範囲であれば炭素繊維自体の強度を保つことができる。より好ましい弾性率は、200~370GPaの範囲であり、さらに好ましくは220~350GPaの範囲である。上記の上限と下限のいずれを組み合わせた範囲であってもよい。ここで、炭素繊維の引張弾性率は、JIS R7601-2006に従い測定された値である。
 炭素繊維の市販品としては、以下のものがあげられる。
“トレカ(登録商標)”T300-12000(引張強度:3.5GPa、引張弾性率:230GPa)、“トレカ(登録商標)”T300B-12000(引張強度:3.5GPa、引張弾性率:230GPa)、“トレカ(登録商標)”T400HB-6000(引張強度:4.4GPa、引張弾性率:250GPa)、“トレカ(登録商標)”T700SC-12000(引張強度:4.9GPa、引張弾性率:230GPa)、“トレカ(登録商標)”T800HB-12000(引張強度:5.5GPa、引張弾性率:294GPa)、“トレカ(登録商標)”T800SC-24000(引張強度:5.9GPa、引張弾性率:294GPa)、“トレカ(登録商標)”T830HB-6000(引張強度:5.3GPa、引張弾性率:294GPa)、“トレカ(登録商標)”T1000GB-12000(引張強度:6.4GPa、引張弾性率:294GPa)、“トレカ(登録商標)”T1100GC-12000(引張強度:7.0GPa、引張弾性率:324GPa)、“トレカ(登録商標)”M35JB-12000(引張強度:4.7GPa、引張弾性率:343GPa)、“トレカ(登録商標)”M40JB-12000(引張強度:4.4GPa、引張弾性率:377GPa)“トレカ(登録商標)”M30SC-18000(引張強度:5.5GPa、引張弾性率:294GPa)(以上、東レ(株)製)。PX35(引張強度:4.1GPa、引張弾性率:242GPa)、(Zoltek社製)。
 次に、引抜繊維強化成形品の好ましい製造方法の発明について説明する。図4を参照されたい。集束させた繊維基材に、エポキシ樹脂組成物に代表される熱硬化性樹脂組成物を含浸させた樹脂含浸繊維基材7を、引抜成形領域17の距離を通過させる。この通過時に熱硬化性樹脂組成物を加熱硬化させて所定の形状に引抜成形する。本発明での好ましい製造方法では、図4に示すとおり、引抜成形領域17には少なくとも、引抜成形金型6とアフターキュア炉24が配されている。樹脂含浸繊維基材7は引抜成形金型6の入口部11から導入され、引抜成形金型6の内部を通過し、引抜成形金型6の出口部12から導出される。その後、樹脂含浸繊維基材7はアフターキュア炉内24を通過する。金型の入口部11において熱硬化性樹脂組成物は液体状態を保持しているが、引抜成形金型6の内部において熱硬化性樹脂組成物がゲル化状態に推移していく。金型の出口部12において熱硬化性樹脂組成物が硬化度33~80%のゲル化状態となっていること、アフターキュア炉24内において、硬化度95%以上の硬化状態となっていることが好ましい。
 図1は一般的な引抜成形工程を示すものである。引抜成形工程1においては、補強繊維束2がプラー10に引かれながらクリール3から引き出される。ガイドロール(図示していない)を介して補強繊維束2を樹脂バス4に導入し、熱硬化性樹脂組成物を付着させる。そしてスクイズ5にて擦過することにより余剰な熱硬化性樹脂組成物を除去する。更にガイド30により補強繊維の位置を一本ずつ決めることにより、所望の断面形状を持つ引抜成形金型6へバランス良く進入させる。補強繊維とともにダイスを通過できない、最終的に余剰になる樹脂は金型からバックフローして金型6の入り口から垂れ落ちて除去される。
 熱硬化性樹脂組成物が含浸した樹脂含浸繊維基材7は、引抜成形金型6内で通過する間に加熱され熱硬化性樹脂組成物が硬化する。引抜成形金型の出口から排出された後、巻取機8にて巻き取られる。本発明での好ましい製造方法では巻き取られる前にアフターキュア炉24を通過している。
 次に、従来の引抜成形の製造過程での引抜力が上昇して糸切れを起こす状況を、図2の引抜成形金型部の拡大側面断面図を用いて説明する。樹脂含浸繊維基材7は引抜成形用の金型6の入口部11から導入され、一定の温度に加熱された引抜成形金型6内を一定の引抜速度で搬送される。金型入口部11から導入された樹脂含浸繊維基材7に含まれる熱硬化性樹脂組成物は液体領域14にてしばらく液体状態を維持する。その後、引抜成形金型6からの加熱により、熱硬化性樹脂組成物の一部にゲル化が始まり、ゲル化状態領域15が続く。その後、樹脂含浸繊維基材7の熱硬化性樹脂組成物の硬化が進行して固体状態となり、金型の出口部12から排出される。
 その状態の詳細を図3の樹脂含浸繊維基材7の進行方向に対する垂直断面図で示す。図3[a]は図2のA-A’断面図を示す。図3[a]ではゲル化領域15における初期の段階での樹脂含浸繊維基材7に含まれるゲル化状態の熱硬化性樹脂組成物20が存在している。図3[b]は図2のB-B’断面図を示す。図3[b]では、図2に示していたゲル化領域15における後半の段階を示し、樹脂含浸繊維基材7の表層は熱硬化性樹脂組成物が硬化状態21になりつつある。さらに、図3[c]は図2のC-C’断面図を示す。固体領域16に進んだ段階であり、樹脂含浸繊維基材7の内部にまで熱硬化性樹脂組成物の硬化が進行し、硬化収縮が生じた状態22となっている。この硬化収縮の際に、樹脂成分の一部が引抜成形金型の内面に付着残留することで、いわゆるスケールと呼ばれる樹脂残渣物13が発生し、製造過程で引抜力が上昇して強化繊維破断の原因となる。
 これに対し、本発明の繊維強化成形品の製造方法では、図4に示すように、引抜成形領域17には引抜成形金型6とアフターキュア炉24とが配されている。樹脂含浸繊維基材7を引抜成形金型6の入口部11から導入し、引抜成形金型6内部を通過させ、引抜成形金型6の出口部12からスケールの堆積なく導出した後、アフターキュア炉内24を通過させる構成としている。スケールの堆積がない箇所は符号23である。
 まず、樹脂含浸繊維基材7が金型入口部11から導入される。熱硬化性樹脂組成物は引抜成形金型6の内部において液体領域14で液体状態を保持する。その後、引抜成形金型6内部において、熱硬化性樹脂組成物がゲル化状態15から、硬化固体状態に推移する。金型出口部12において、熱硬化性樹脂組成物の硬化度が33~80%になるように金型出口部12での硬化度を抑える構成とする。これにより、引抜成形金型6内面に付着残留するいわゆるスケールと呼ばれる樹脂残渣物13の発生を抑制することができる。かかる硬化度の調整は、例えば、金型の温度、金型の長さ、成形速度の調整により行うことができる。これにより、引抜成形金型6内部で熱硬化性樹脂組成物の硬化収縮が生じることを回避することができ、結果、引抜成形金型6内面でのスケールと呼ばれる樹脂残渣物13の発生を抑制することができる。さらに、金型出口部12から排出された樹脂含浸繊維基材7はアフターキュア炉内24に導入され、その炉内24で加熱され、熱硬化性樹脂組成物が硬化度95%以上の硬化状態を形成し、引抜成形品を生成することができる。
 金型の出口部12において、熱硬化性樹脂組成物の硬化度が33%未満であると、硬化不良を生じる場合がある。また、金型出口部12において、熱硬化性樹脂組成物の硬化度が80%を越えると、引抜成形金型6内部においてスケールと呼ばれる樹脂残渣物13の発生を抑制することが困難な場合がある。
 金型の出口部12において、熱硬化性樹脂組成物の硬化度は好ましくは33~80%、より好ましくは50~79%、さらに好ましくは60~79%、特に好ましくは76~77%である。上記の上限と下限のいずれを組み合わせた範囲であってもよい。
 ここで、硬化度は、成形段階において、金型及びアフターキュア炉からそれぞれ出てきた成形品を適量サンプリングし、DSC測定(示差走査熱量測定)により得られる発熱ピークから残存発熱を求め、この発熱量と、あらかじめ未硬化の樹脂組成物をDSC測定して得られる発熱ピークから求めた樹脂組成物の発熱量との比から、以下の式により求めることができる。
硬化度=100-(成形品発熱量)/(樹脂組成物発熱量×成形品熱硬化性樹脂質量分率)
 また、本発明において、引抜成形金型入口部11での熱硬化性樹脂組成物の粘度が3000mPa・s以下であることが好ましい。これにより、熱硬化性樹脂組成物を繊維基材2に良好に連続的に含浸させることができるとともに、引抜成形金型6内部において樹脂含浸繊維基材7の液体状態を良好に保持することができる。好ましくは2000mPa・s以下、より好ましくは1000mPa・s以下である。
 また、本発明において、引抜成形金型6の温度をTp(℃)、引抜成形金型6の中における前記樹脂含浸繊維基材の通路長(以下、金型通路長という)の長さ(m)を成形速度(m/min)で除した金型内滞在時間をH(min)とすると、次式の関係を満たすことが好ましい。
230-100H≦Tp≦252-80H
180≦Tp≦245
0.1≦H≦0.9。
 ここで金型の温度Tpは、引抜成形金型における前記樹脂含浸繊維基材の通路の温度である。これは引抜成形時に熱電対を挿入して実測することが好ましい。しかし、この方法では成形しながら測定することは困難なため、他の方法としては金型の側面に開けた測定用の穴に外側から熱電対を挿入して、繊維基材通路の近傍の温度を測定することが好ましい。このとき、複数の測定点を設けることが好ましく、その場合金型温度Tpはそれら測定点の平均値を取る。なお各測定点の温度とTpの差は±25℃以内するようにするのが好ましい。
上記式の関係は金型出口部12において、熱硬化性樹脂組成物が硬化度33~80%のゲル化状態を保持するために適切な条件範囲を示したものである。
 図5に、本発明に係る引抜成形における金型内滞在時間と金型温度の関係を示す。縦軸は金型温度Tpで(℃)あり、横軸は金型内滞在時間H(min)である。そして図5では熱硬化性樹脂組成物の領域25は硬化不良を起こしやすい領域、領域26は適切な領域、領域27はスケールが発生しやすい領域を示す。
 また、特性線28は、Tp=230-100Hの関係を示したものであり、これより右側領域26が金型出口部12において、熱硬化性樹脂組成物が硬化度33%以上を保持できる領域である。
 また、特性線29は、Tp=252-80Hの関係を示したものであり、これより左側領域26が金型出口部12において、熱硬化性樹脂組成物が硬化度80%以下を保持できる領域である。
 また、引抜成形金型6の加熱温度Tpは180~245℃である。引抜成形金型6の加熱温度Tpが180℃未満であると硬化不良を生じる場合がある。速度を落とすことで硬化不良を回避することができるが、引抜成形速度が落ちることで製造コストの上昇を招くことになる。
 また、引抜成形金型6の加熱温度Tpが245℃を超えると、スケールが発生しやすくなる場合がある。そのため、速度を上げることでスケール発生抑制することができるが、糸への張力が強くなりすぎ糸切れを起こす場合がある。
 また、金型内滞在時間Hは0.1~0.9minが好ましく、金型内滞在時間Hが0.1min未満であると、硬化不良を生じる場合がある。金型内滞在時間Hが0.9minを超えると、スケールが発生しやすくなる場合がある。
 成形速度は0.18~16m/minが好ましい。好ましくは0.6~10m/min、より好ましくは1~8m/min、さらに好ましくは1.2~6m/minである。上記の上限と下限のいずれを組み合わせた範囲であってもよい。
 また、本発明において、熱硬化性樹脂組成物の加熱硬化後のガラス転移点をTg(℃)とすると、引抜成形金型6の加熱温度Tp(℃)と次式の関係を満足することが好ましい。
Tg-40℃≦Tp≦Tg+25℃ 。
 加熱温度TpをTg-40℃以上と設定することにより、引抜繊維強化成形品の耐熱性を十分に確保することができる。加熱温度Tpを「Tg+25℃」以下と設定することにより、熱により成形品が変形したり、熱硬化性樹脂組成物が分解したりすることを防ぐことができる。
 ここで、ガラス転移温度とは、JIS K7121(1987)に従い、DSC法にて求めた中間点温度(Tm)である。測定装置の一例としては示差走査熱量計DSC Q2000(ティー・エイ・インスツルメント社製)を挙げることができ、この場合、Modulatedモードで測定する。DSC測定は、窒素ガス雰囲気下、昇温速度5℃/分で行う。
 また、本発明において、アフターキュア炉内の温度をTc(℃)とすると、熱硬化性樹脂組成物の加熱硬化後のガラス転移点Tg(℃)と次式の関係を満足することが好ましい。
Tg≦Tc≦Tg+73℃   。
 アフターキュア炉内の温度TcをTg以上と設定することにより、得られる繊維強化成形品の耐熱性を十分に確保することができる。加熱温度TcをTg+73℃以下と設定することにより、熱により成形品が変形したり、熱硬化性樹脂組成物が分解したりすることを防ぐことができる。
 図4を参照されたい。本発明において、引抜成形の金型6の内部において、熱硬化性樹脂組成物がゲル化状態に推移する領域は、引抜成形金型における前記樹脂含浸繊維基材の通路の全長に対して、引抜成形金型の出口部から10~50%の長さの領域の範囲であることが好ましい。これにより、金型の出口部12付近での熱硬化性樹脂組成物の硬化度が低く調整しされ、硬化収縮領域を金型の出口部12の方へ移動させることができ、硬化収縮領域が短くなる。引抜成形金型6内部で熱硬化性樹脂組成物の硬化収縮が生じることを回避することができ、結果、引抜成形金型6内面でのスケールと呼ばれる樹脂残渣物13の発生を抑制することができる。上記の領域の長さの範囲は、好ましくは15~45%、より好ましくは20~40%である。前記好ましい二つの範囲における好ましい上の値と好ましい下の値を組み合わせた範囲であってもよい。
 また、本発明において、樹脂含浸繊維基材7はアフターキュア炉内24の発熱体と非接触の状態で加熱されることが好ましい。アフターキュアの目的は、引抜成形金型6を通過排出した樹脂含浸繊維基材7の樹脂を完全に硬化させることであり、発熱体と非接触の状態であれば、アフターキュア炉内で硬化収縮が生じたとしても、炉内にスケールが付着残留することはない。
 本発明は同一断面形状であれば様々な形状の繊維強化成形品の成形に適用可能である。例えば、円柱状の棒状成形品、多角形断面の棒状成形品、シート状の薄物成形品、長方形断面の厚物成形品などが挙げられ、それらは中空であっても良い。また、特に限定されるものではないが、成形品の厚さ(中空品であれば最表面から中空部分までの厚さ)が20mm以内であると、成形品内部の蓄熱による急な硬化収縮が抑えられ寸法が安定することが多く、寸法安定性の観点から良好である。
 次に、本発明を表1、表2に示す実施例、比較例によって説明するが、本発明はこれらの実施例に限定されるものではない。
 <原料>
 各実施例のエポキシ樹脂組成物である熱硬化性樹脂組成物を得るために、次の原料を用いた。表1Aおよび表1B中の配合量の単位は、特に断らない限り「質量部」を意味する。「-」は、割合がゼロであることを意味する。
[実施例1~6および比較例1~5]
 これら実施例、比較例では以下の原料を用いた。配合量は表1Aおよび表1Bに記載してある。
 1.エポキシ樹脂
 
・“jER”(登録商標)630(p-アミノフェノール型エポキシ樹脂、三菱ケミカル(株)製)
・“jER”(登録商標)828(ビスフェノールA型エポキシ樹脂、三菱ケミカル(株)製)([A]の範疇に含まれない。)。
 2.酸無水物
[B1]:ナジック酸無水物構造を有する酸無水物
・“カヤハード”(登録商標)MCD(メチルナジック酸無水物、日本化薬(株)製)
成分[B2]:テトラヒドロフタル酸無水物またはヘキサヒドロフタル酸無水物構造を有する酸無水物
・HN-2000(メチルテトラヒドロフタル酸無水物、日立化成(株)製)
・HN-5500(メチルヘキサヒドロフタル酸無水物、日立化成(株)製)。
 3.フィラー
・“ミクロンホワイト”(登録商標)#5000S(タルク、平均粒径4.75μm、モース硬度1、林化成(株)製)([C]の範疇に含まれる。)
・FB-5D(溶融シリカ、平均粒径4.7μm、モース硬度7、デンカ(株)製)([C]の範疇に含まれない。) 。
 4離型剤
・“ケムリース”(登録商標)IC-35(オレイン酸エステル、ケムトレンド社製)([D]の範疇に含まれる。) 。
 5.硬化触媒
・DY070(1-メチルイミダゾール、ハンツマン・アドバンスドマテリアル社製)
・“キュアゾール”(登録商標)2E4MZ(2-エチル-4-メチルイミダゾール、四国化成工業(株)製)。
 6.その他の物質
・メタキシリレンジアミン(三菱ガス化学(株)製)。
 [実施例7~17および比較例6~10]
 これらの実施例、比較例では以下に示す原料を用いて、熱硬化性樹脂組成物とした。
 1.エポキシ樹脂
・“jER”(登録商標)630(p-アミノフェノール型エポキシ樹脂、三菱ケミカル(株)製):95質量部
・“jER”(登録商標)828(ビスフェノールA型エポキシ樹脂、三菱ケミカル(株)製):5質量部。([A]の範疇に含まれない。)
 2.酸無水物
[B1]:ナジック酸無水物構造を有する酸無水物
・“カヤハード”(登録商標)MCD(メチルナジック酸無水物、日本化薬(株)製):119質量部
[B2]:テトラヒドロフタル酸無水物またはヘキサヒドロフタル酸無水物構造を有する酸無水物
・HN-5500(メチルヘキサヒドロフタル酸無水物、日立化成(株)製):51質量部
 3.フィラー
・“ミクロンホワイト”(登録商標)#5000S(タルク、平均粒径4.75μm、モース硬度1、林化成(株)製):4質量部。([C]の範疇に含まれる。)
 4.離型剤
・“ケムリース”(登録商標)IC-35(オレイン酸エステル、ケムトレンド社製):3質量部([D]の範疇に含まれる。)
 5.硬化触媒
・“キュアゾール”(登録商標)2E4MZ(2-エチル-4-メチルイミダゾール、四国化成工業(株)製):2質量部。
 <強化繊維>
・“トレカ”(登録商標)T700S-24K(炭素繊維、真円状断面、フィラメント数24,000本、東レ(株)製)。
 
 (1)熱硬化性樹脂組成物の調製
実施例1~6および比較例1~5においては表1Aおよび表1Bに示す配合割合、また実施例7~17および比較例6~10においては上で説明した配合割合の原料を、25℃で混合し、熱硬化性樹脂組成物を得た。
 (2)樹脂組成物の粘度測定
 ISO2884-1(1999)における円錐-平板型回転粘度計を使用した測定方法に従い、エポキシ樹脂組成物を調製した時点から1分後の粘度を、25℃にて測定した。装置は東機産業(株)製のTVE-30H型を用いた。ここで、ローターは1°34′×R24を用い、サンプル量は1cmとした。
 (3)樹脂硬化物のガラス転移温度Tg測定
 エポキシ樹脂組成物を調製した後、180℃にて50秒間加熱硬化して得られる樹脂硬化物及びそれをさらに210℃にて3分間後硬化した樹脂硬化物についてガラス転移温度を測定した。Perkin Elmer社製のDiamond DSCを用いて、窒素雰囲気下、温度30~200℃、40℃/minで昇温することにより測定した。中間点ガラス転移温度をガラス転移点とした。
 (4)引抜成形品の作製
 図1に示す引抜成形工程を用いて成形を行った。図1における金型6として図4に示す引抜成形金型を使用した。
 図1に示すように各樹脂組成物を25℃の樹脂バス4に投入し、この樹脂組成物の入った樹脂バス4に補強繊維束2である上記炭素繊維を引き通して樹脂を含浸させた。次いでスクイズバー5にて擦過して余剰な熱硬化性樹脂組成物を除去した、図1の拡大部9を拡大した。その後、図4に示すように、熱硬化性樹脂組成物が液体状態である樹脂含浸繊維基材7を金型の入口部11から導入した。この導入時において、熱硬化性樹脂組成物は液体状態であった。金型の出口部12から排出された樹脂含浸繊維基材7はアフターキュア炉内24に導入され、その炉内24で加熱硬化され、引抜成形品を得た。
 表1に示した成形条件は以下に示す。表2に示した成形条件は表2に示す。金型としては表面にハードクロムメッキ処理を施した直径2mmの真円断面のキャビティがあるものを用いた。
・引抜成形金型6の加熱温度Tp(℃):195℃
・引抜成形金型6の長さ(樹脂含浸繊維基材の通路の全長)(m):800mm
・成形速度(m/min):1.2(m/min)
・金型内滞在時間H(min):0.67(min)
・金型出口部12における熱硬化性樹脂組成物の硬化度:75%
・アフターキュア炉24内の温度:260℃
・アフターキュア炉24後の熱硬化性樹脂組成物硬化度:95%
成形の結果、直径2mm、Vf約70%の引抜成形品を得た。
 この際、表1Aおよび表1B中「引抜成形」「成形後の金型表面の状態」の欄に以下のとおり判定結果を示した。
 「引抜成形」
スケールの発生無く順調に成形できたもの:良
スケールが発生したが成形できたもの:可
著しくスケールが発生したもの。または十分に硬化が進まず寸法が安定せず成形できなかったもの:不良。
 「成形後の金型表面の状態」
引抜成形後の金型表面の状態を目視で確認し、以下の基準で判定した。
キズなどの損傷やスケールの付着が無いもの:良
若干のキズやスケール付着の有るもの:可
著しくキズがみられるもの:不良。
 表2Aおよび表2B中「金型後変形」「金型出口部の硬化度」「スケールの発生」の欄に以下のとおり判定結果を示した。
 「金型出口変形」
 成形品が金型の出口から導出された際に、変形なく成形できたものは良、変形したものの金型のキャビティ径に対し±3%以内の直径に抑えられたものは可、それ以上に著しく広がるなど変形したものは不良とした。
 「熱硬化性樹脂組成物の金型出口部での硬化度」
 成形中、金型から出てきた成形品を適量サンプリングし、はさみで細かく切った後に、DSC(示差走査熱量測定)により残存発熱を求めた。この発熱量と、硬化前の樹脂組成物の発熱量との比から、以下の式により硬化度αを算出した。
 硬化度α=100-(成形品発熱量)/(樹脂組成物発熱量×成形品樹脂質量分率)
 DSC測定は、Perkin Elmer社製のDiamond DSCを用いて、温度30~250℃、10℃/minで昇温することにより行った。
「スケールの発生」
 スケールの発生無く順調に成形できたものは良、スケールが発生したが成形できたものは可、著しくスケールが発生して成形できなかったものは不良と記した。
 (実施例1)
 表1Aに示したように、アミノフェノール型エポキシ樹脂、“jER”(登録商標)630、100質量部、ナジック酸無水物構造を有する酸無水物、“カヤハード”(登録商標)MCD、135質量部、テトラヒドロフタル酸無水物の構造を有する酸無水物、HN-2000、45質量部、フィラーとしてタルクを4部、内部離型剤IC-35を3部、イミダゾール誘導体、DY070、を1部からなる樹脂組成物を混合調製した。この樹脂組成物は、上記(2)における25℃での粘度測定の結果、粘度が低く抑えられていることが示された。また、樹脂硬化物のTgは十分に高く耐熱性があることを示した。この樹脂組成物を用いて引抜成形を行うと、1.2m/minの高速で引抜成形してもスケールなどの発生無く成形出来た。成形後、金型表面にキズの発生やスケールの付着は見られなかった。結果を表1Aに示す。
 (実施例2)
 表1Aに示すとおりの割合で、“jER”(登録商標)630、ビスフェノールA型エポキシ樹脂、“jER”(登録商標)828、“カヤハード”(登録商標)MCD、HN-2000を用いたこと以外は、実施例1と同様に実施した。この樹脂組成物は、上記(2)にて測定した粘度が若干高かったものの引抜成形が可能なレベルだった。また、樹脂硬化物のTgは高く耐熱性があることを示した。この樹脂組成物を用いて引抜成形を行うと、スケールの発生無く成形出来た。成形後、金型表面にキズの発生やスケールの付着は見られなかった。結果を表1Aに示す。
 (実施例3)
 表1Aに示すとおりの割合で、“jER”(登録商標)630、“jER”(登録商標)828、“カヤハード”(登録商標)MCD、ヘキサヒドロフタル酸無水物の構造を有する酸無水物、HN-5500、イミダゾール誘導体、“キュアゾール”(登録商標)2E4MZ、を用いたこと以外は、実施例1と同様に実施した。この樹脂組成物は、上記(2)における25℃での粘度測定の結果、粘度が低く抑えられていることが示された。また、樹脂硬化物のTgは十分に高く耐熱性があることを示した。この樹脂組成物を用いて引抜成形を行うと、スケールの発生無く、成形出来た。成形後、金型表面にキズの発生やスケールの付着は見られなかった。結果を表1Aに示す。
 (実施例4)
 “カヤハード”(登録商標)MCD、HN-5500の割合を表1Aに示すとおりにしたこと以外は、実施例3と同様に実施した。この樹脂組成物は、上記(2)における25℃での粘度測定の結果、粘度が低く抑えられていることが示された。また、樹脂硬化物のTgは高く耐熱性があることを示した。この樹脂組成物を用いて引抜成形を行うと、スケールの発生無く成形出来た。成形後、金型表面にキズの発生やスケールの付着は見られなかった。結果を表1Aに示す。
 (実施例5)
 “カヤハード”(登録商標)MCD、HN-5500、の割合を表1Aに示すとおりにしたこと以外は、実施例3と同様に実施した。この樹脂組成物は、上記(2)における混合後25℃での粘度が低かったが、樹脂硬化物の耐熱性は若干劣るものであった。この樹脂組成物を用いて引抜成形を行うと、若干のスケール発生があったが成形できた。成形後、金型表面に若干のスケール付着が見られた。結果を表1Aに示す。
 (実施例6)
 表1Aに示すとおりの割合で、“jER”(登録商標)630、ビスフェノールA型エポキシ樹脂、“jER”(登録商標)828、“カヤハード”(登録商標)MCD、HN-2000、を用いたこと以外は、実施例1と同様に実施した。この樹脂組成物は、上記(2)にて測定した粘度が若干高かったものの引抜成形が可能なレベルだった。また、樹脂硬化物のTgは高く耐熱性は若干劣るものであった。この樹脂組成物を用いて引抜成形を行うと、若干のスケール発生があったが成形できた。成形後、金型表面に若干のスケール付着が見られた。結果を表1Aに示す。
 (比較例1)
 表1Bに示すとおりの割合で、“jER”(登録商標)630、ビスフェノールA型エポキシ樹脂、“jER”(登録商標)828、“カヤハード”(登録商標)MCD、HN-2000、を用いたこと以外は、実施例1と同様に実施した。この樹脂組成物はアミノフェノール型エポキシ樹脂が少ないため、上記(2)にて測定した25℃での粘度が高く、樹脂硬化物のTgは十分な耐熱性を示すものではなかった。この樹脂組成物を用いて引抜成形を行うと、高粘度、低耐熱性のため金型内で硬化が進まず、成形品の寸法が安定しなかった。成形後、金型表面には多くのスケール付着が見られた。結果を表1Bに示す。
 (比較例2)
 “カヤハード”(登録商標)MCD、の割合を表1Bに示すとおりとし、HN-2000や、HN-5500、を含めなかったこと以外は、実施例3と同様に実施した。この樹脂組成物は、上記(2)にて測定した25℃で粘度が低く、また樹脂硬化物のTgは高く耐熱性を示したが、反応性が劣るため、この樹脂組成物を用いて引抜成形を行うと、金型内で硬化が進まず、成形品の寸法が安定しなかった。成形後、金型表面にキズの発生やスケールの付着は見られなかった。結果を表1Bに示す。
 (比較例3)
 フィラーをシリカ(FB-5D)にしたこと以外は、実施例3と同様に実施した。この樹脂組成物は、上記(2)にて測定した25℃で粘度が低く、また、樹脂硬化物のTgは十分に高く耐熱性を示した。この樹脂組成物を用いて引抜成形を行うと、スケールなどの発生無く成形出来た。しかし成形後、金型表面に著しくキズが発生した。結果を表1Bに示す。
 (比較例4)
 離型剤を含めなかったこと以外は、実施例3と同様に実施した。この樹脂組成物は、上記(2)にて測定した25℃で粘度が低く、また、樹脂硬化物のTgは十分に高く耐熱性を示した。この樹脂組成物を用いて引抜成形を行うと、著しいスケールの発生や、成形品自体が金型に接着し、成形が困難であった。成形後、金型表面に多くのスケールが付着した。結果を表1Bに示す。
 (比較例5)
 酸無水物とイミダゾール誘導体を用いず、代わりにメタキシリレンジアミン32質量部としたこと以外は、実施例3と同様に実施した。この樹脂組成物は、上記(2)にて測定した25℃での粘度が高かった。この樹脂組成物を用いて引抜成形を行うと、著しいスケールの発生や、成形品自体が金型に接着し、成形が困難であった。成形後、金型表面に多くのスケールが付着した。結果を表1Bに示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 (実施例7)
 上で説明した樹脂組成物を用いて、金型温度Tpを200℃、金型通路長0.6m、成形速度0.95m/分で引抜成形を行った。金型から出た成形品は変形せず、サンプリングした成形品の硬化度は79%であった。またスケールの発生は見られなかった。結果を表2Aに示す。
 (実施例8)
 表2Aに示す成形速度とした他は、実施例7と同様に実施した。金型から出た成形品は変形せず、サンプリングした成形品の硬化度は69%であった。またスケールの発生は見られなかった。結果を表2Aに示す。
 (実施例9)
 表2Aに示す成形速度とした他は、実施例7と同様に実施した。金型から出た成形品は変形せず、サンプリングした成形品の硬化度は35%であった。またスケールの発生は見られなかった。結果を表2Aに示す。
 (実施例10)
 表2Aに示す金型温度、金型通路長、成形速度とした他は、実施例7と同様に実施した。金型から出た成形品は変形せず、サンプリングした成形品の硬化度は80%であった。また若干のスケール発生が見られたが、成形は順調に出来た。結果を表2Aに示す。
 (実施例11)
 表2Aに示す成形速度とした他は、実施例10と同様に実施した。金型から出た成形品は変形せず、サンプリングした成形品の硬化度は52%であった。またスケールの発生は見られなかった。結果を表2Aに示す。
 (実施例12)
 表2Aに示す金型通路長、成形速度とした他は、実施例10と同様に実施した。金型から出た成形品は若干変形が見られたが成形でき、サンプリングした成形品の硬化度を評価すると34%であった。またスケールの発生は見られなかった。結果を表2Aに示す。
 (実施例13)
 表2Aに示す金型温度、金型通路長、成形速度とした他は、実施例7と同様に実施した。金型から出た成形品は変形せず、サンプリングした成形品の硬化度を評価すると77%であった。またスケールの発生は見られなかった。結果を表2Aに示す。
 (実施例14)
 表2Aに示す成形速度とした他は、実施例13と同様に実施した。金型から出た成形品は変形せず、サンプリングした成形品の硬化度を評価すると55%であった。またスケールの発生は見られなかった。結果を表2Aに示す。
 (実施例15)
 表2Bに示す成形速度とした他は、実施例13と同様に実施した。金型から出た成形品は若干の変形が見られたが成形でき、サンプリングした成形品の硬化度を評価すると34%であった。またスケールの発生は見られなかった。結果を表2Bに示す。
 (実施例16)
 表面にハードクロムメッキ処理を施した直径10mmの真円断面のキャビティがある金型を用い、表2Bに示す条件で実施した。金型から出た成形品は変形せず、サンプリングした成形品の硬化度を評価すると60%であった。またスケールの発生は見られなかった。結果を表2Bに示す。
 (実施例17)
 表面にハードクロムメッキ処理を施した幅100mm、厚さ5mmの長方形断面のキャビティがある金型を用い、表2Bに示す条件で実施した。金型から出た成形品は変形せず、サンプリングした成形品の硬化度を評価すると55%であった。またスケールの発生は見られなかった。結果を表2Bに示す。
 (比較例6)
 表2Bに示す成形速度とした他は、実施例7と同様に実施した。金型から出た成形品は変形しなかったものの、著しく成形品にスケールが発生し、途中で成形が継続できなくなった。サンプリングした成形品の硬化度を評価すると86%であった。結果を表2Bに示す。
 (比較例7)
 表2Bに示す成形速度とした他は、実施例7と同様に実施した。金型から出た成形品は、径が広がり変形した。サンプリングした成形品の硬化度を評価すると12%であった。結果を表2Bに示す。
 (比較例8)
表2Bに示す成形速度とした他は、実施例10と同様に実施した。金型から出た成形品は変形しなかったものの、著しく成形品にスケールが発生し、途中で成形が継続できなくなった。サンプリングした成形品の硬化度を評価すると87%であった。結果を表2Bに示す。
 (比較例9)
表2Bに示す成形速度とした他は、実施例13と同様に実施した。金型から出た成形品は変形しなかったものの、著しく成形品にスケールが発生し、途中で成形が継続できなくなった。サンプリングした成形品の硬化度を評価すると90%であった。結果を表2Bに示す。
 (比較例10)
 表2Bに示す成形速度とした他は、実施例13と同様に実施した。金型から出た成形品は、径が広がり変形した。サンプリングした成形品の硬化度を評価すると13%であった。結果を表2Bに示す
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 本発明の引抜繊維強化成形品は、風車ブレード、建造物補修補強部材、電気・電子機器筐体、自転車、自動車部材、スポーツ用品用構造材、航空機内装材、輸送用箱体等に有効に使用できる。
1 引抜成形工程
2 補強繊維束
3 クリール
4 樹脂バス
5 スクイズ
6 引抜成形金型
7 樹脂含浸繊維基材
8 巻取機
9 拡大部
10 プラー
11 金型の入口部
12 金型の出口部
13 スケール堆積箇所
14 液体領域
15 ゲル化領域
16 固体領域
17 引抜成形領域
18 引抜方向
20 ゲル化状態の熱硬化性樹脂組成物
21 熱硬化性樹脂硬化状態となりつつある表層部
22 熱硬化性樹脂が内部まで硬化し、硬化収縮が生じた状態
23 スケール堆積なしの箇所
24 アフターキュア炉
25 硬化不良領域
26 適正条件領域
27 スケール発生領域
28 硬化度33%の特性線
29 硬化度80%の特性線
30 ガイド
 

Claims (12)

  1. 強化繊維束を複数収束させた強化繊維束集合体にエポキシ樹脂組成物が含浸され、前記エポキシ樹脂組成物が硬化した繊維強化成形品であって、
    前記エポキシ樹脂組成物は少なくとも以下の成分[A]、[B]、[C]および[D]を含み、
    前記エポキシ樹脂組成物に含まれる全エポキシ樹脂100質量部に対して[A]が60~100質量部であるものである、
    繊維強化成形品。
    [A]:アミノフェノール型エポキシ樹脂
    [B]:以下の2種の酸無水物
     [B1]:ナジック酸無水物構造を有する酸無水物
     [B2]:フタル酸無水物の水素化物構造を有する酸無水物
    [C]:ケイ素化合物、マグネシウム化合物、カルシウム化合物、アルミニウム化合物および無機炭素から選択される少なくとも一種であり、モース硬度が3以下のフィラー
    [D]:離型剤
  2. 成分[B2]におけるフタル酸無水物が水素化物構造であって、テトラヒドロフタル酸無水物の構造またはヘキサヒドロフタル酸無水物の構造を有する、請求項1に記載の繊維強化成形品。
  3. 成分[B1]が、メチルナジック酸無水物であるか、
    成分[B2]が、テトラヒドロメチルフタル酸無水物またはヘキサヒドロメチルフタル酸無水物である、請求項1または2に記載の繊維強化成形品。
  4. 前記エポキシ樹脂組成物において
    成分[B]100質量部中に、成分[B1]が50~90質量部、成分[B2]が50~10質量部含まれ、
    成分[A]100質量部に対する成分[B]の含有量が50~200質量部である、請求項1~3いずれかに記載の繊維強化成形品。
  5. 前記エポキシ樹脂組成物において
    成分[C]は粒子状のタルクであり、
    レーザー回折式粒度分布計の測定結果により定義される平均粒径が2~7μmである、請求項1~4いずれかに記載の繊維強化成形品。
  6. 前記エポキシ樹脂組成物において
    成分[D]が、成分[A]100質量部に対して0.1~8質量部含まれる、請求項1~5いずれかに記載の繊維強化成形品。
  7. 前記エポキシ樹脂組成物において
    さらに、成分[E]として、イミダゾール誘導体が、前記成分[A]100質量部に対して0.1~5質量部含まれる、請求項1~6いずれかに記載の繊維強化成形品。
  8. 強化繊維束を収束させた強化繊維束集合体にエポキシ樹脂組成物を含浸させた樹脂含浸繊維基材を、引抜成形領域を通過させながら前記エポキシ樹脂組成物を加熱硬化させて、所定の形状に引抜成形される繊維強化成形品の製造方法であって、
    前記エポキシ樹脂組成物が少なくとも以下の成分[A]、[B]、[C]および[D]を含み、
    前記エポキシ樹脂組成物に含まれる全エポキシ樹脂100質量部に対して[A]が60~100質量部であるものである、繊維強化成形品の製造方法。
    [A]:アミノフェノール型エポキシ樹脂
    [B]:以下の2種の酸無水物
     [B1]:ナジック酸無水物構造を有する酸無水物
     [B2]:フタル酸無水物の水素化物構造を有する酸無水物
    [C]:ケイ素化合物、マグネシウム化合物、カルシウム化合物、アルミニウム化合物および無機炭素から選択される少なくとも一種であり、モース硬度が3以下のフィラー
    [D]:離型剤
  9. 強化繊維束を収束させた強化繊維束集合体に熱硬化性樹脂組成物を含浸させた樹脂含浸繊維基材を、引抜成形領域を通過させながら前記熱硬化性樹脂組成物を加熱硬化させて、所定の形状に引抜成形される繊維強化成形品の製造方法であって、
    前記引抜成形領域には少なくとも、入口部および出口部を有する引抜成形金型と、アフターキュア炉とが配され、
    前記引抜成形領域では、前記樹脂含浸繊維基材は、前記引抜成形金型の入口部から導入され、前記金型内部を通過させられ、前記金型の出口部から導出され、その後前記アフターキュア炉内を通過する、という工程が行われ、
    前記引抜成形領域では以下の(i)~(v)条件を満たす繊維強化成形品の製造方法。
    (i)前記引抜成形の金型温度をTp(℃)、前記金型における前記樹脂含浸繊維基材の通路長(以下、金型通路長という)(m)を成形速度(m/min)で除した金型内滞在時間をH(min)とすると、次の式(1)~(3)の関係を満たしている。
    230-100H≦Tp≦252-80H ・・・式(1)
    180≦Tp≦245 ・・・式(2)
    0.1≦H≦0.9 ・・・式(3)
    (ii)前記引抜成形金型の入口部において前記熱硬化性樹脂組成物は液体状態を保持している。
    (iii)前記金型内部において前記熱硬化性樹脂組成物が液体状態からゲル化状態に推移している。
    (iv)前記金型出口部において前記熱硬化性樹脂組成物が硬化度33~80%のゲル化状態を保持している。
    (v)前記アフターキュア炉内において、前記熱硬化性樹脂組成物が硬化度95%以上の硬化状態となっている。
  10. 前記金型内部において、前記熱硬化性樹脂組成物がゲル化状態に推移し始める領域は、前記金型通路長に対して前記金型出口部から10~50%の長さの領域のうちにある、請求項9に記載の繊維強化成形品の製造方法。
  11. 前記アフターキュア炉内において、前記樹脂含浸繊維基材を発熱体と非接触の状態で加熱する、請求項8~10に記載の繊維強化成形品の製造方法。
  12. 前記繊維強化成形品が電線ケーブルコア用途に用いられる、請求項1~11いずれか記載の繊維強化成形品の製造方法。
     
PCT/JP2019/002676 2018-01-31 2019-01-28 繊維強化成形品およびその製造方法 WO2019151174A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207017241A KR20200107936A (ko) 2018-01-31 2019-01-28 섬유 강화 성형품 및 그 제조 방법
US16/965,764 US11827759B2 (en) 2018-01-31 2019-01-28 Fiber-reinforced molded article and method of producing same
EP19747164.2A EP3747936A4 (en) 2018-01-31 2019-01-28 FIBER REINFORCED MOLDED ARTICLE AND METHOD FOR PRODUCING IT
JP2019511797A JP7205464B2 (ja) 2018-01-31 2019-01-28 繊維強化成形品およびその製造方法
CN201980010456.7A CN111655766B (zh) 2018-01-31 2019-01-28 纤维增强成型品及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-014722 2018-01-31
JP2018-014721 2018-01-31
JP2018014721 2018-01-31
JP2018014722 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019151174A1 true WO2019151174A1 (ja) 2019-08-08

Family

ID=67478165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002676 WO2019151174A1 (ja) 2018-01-31 2019-01-28 繊維強化成形品およびその製造方法

Country Status (6)

Country Link
US (1) US11827759B2 (ja)
EP (1) EP3747936A4 (ja)
JP (1) JP7205464B2 (ja)
KR (1) KR20200107936A (ja)
CN (1) CN111655766B (ja)
WO (1) WO2019151174A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071170A1 (ja) * 2018-10-01 2020-04-09 三菱ケミカル株式会社 成形材料、繊維強化複合材料、及び繊維強化複合材料の製造方法
WO2022024834A1 (ja) * 2020-07-27 2022-02-03 東レ株式会社 繊維強化成形品の製造方法
WO2022118827A1 (ja) 2020-12-02 2022-06-09 東レ株式会社 引抜繊維強化成形品

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112959751B (zh) * 2021-02-07 2023-01-20 中车青岛四方机车车辆股份有限公司 一种拉挤阻燃碳纤维板材及其应用
KR102543358B1 (ko) * 2021-04-16 2023-06-14 도레이첨단소재 주식회사 속경화 에폭시 수지 조성물 및 이를 이용한 섬유강화 플라스틱
WO2023109152A1 (zh) * 2021-12-15 2023-06-22 振石集团华智研究院(浙江)有限公司 一种模具成型件及其无脱模布生产方法
CN115044167B (zh) * 2022-06-17 2024-01-02 振石集团华智研究院(浙江)有限公司 一种树脂组合物及复合材料
KR102470252B1 (ko) 2022-07-12 2022-11-22 최동민 섬유 강화 인발 성형 시스템
CN116554646B (zh) * 2023-05-19 2024-05-14 中复碳芯电缆科技有限公司 一种免脱模布碳玻混拉挤板组合物和生产工艺及其生产装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190930A (ja) * 1992-09-28 1994-07-12 Toray Ind Inc 繊維強化フェノール樹脂成形品の引抜成形方法
JPH081804A (ja) * 1994-06-17 1996-01-09 Mitsui Toatsu Chem Inc 繊維強化フェノール樹脂の引抜成形方法
JP2008038082A (ja) * 2006-08-09 2008-02-21 Toray Ind Inc 引き抜き成形繊維強化複合材料
JP2008088342A (ja) * 2006-10-04 2008-04-17 Toray Ind Inc エポキシ樹脂組成物および繊維強化複合材料の製造方法
JP2009066912A (ja) * 2007-09-13 2009-04-02 Toray Ind Inc 引抜成形品の製造方法
JP2011089071A (ja) * 2009-10-26 2011-05-06 Toray Ind Inc エポキシ樹脂組成物、繊維強化複合材料およびそれを有してなる釣竿穂先
WO2013115152A1 (ja) * 2012-01-31 2013-08-08 東レ株式会社 エポキシ樹脂組成物および繊維強化複合材料
JP2014201659A (ja) * 2013-04-04 2014-10-27 三菱レイヨン株式会社 繊維強化プラスチックの引抜成形方法ならびに成形品
JP2015003938A (ja) * 2013-06-19 2015-01-08 東レ株式会社 エポキシ樹脂組成物及びそれを用いた繊維強化複合材料
JP2017119859A (ja) * 2015-12-25 2017-07-06 東レ株式会社 エポキシ樹脂組成物、繊維強化複合材料および成形品

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1621323A1 (en) 2004-07-27 2006-02-01 Hexcel Composites GmbH Continuous pultrusion process for producing high performance structural profiles
JP2008290381A (ja) 2007-05-25 2008-12-04 Kyocera Chemical Corp 引き抜き成形品の製造方法
WO2012039456A1 (ja) 2010-09-24 2012-03-29 東レ株式会社 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
CN103249753A (zh) * 2011-01-27 2013-08-14 东丽株式会社 纤维强化复合材料rtm成型用环氧树脂组合物、纤维强化复合材料及其制造方法
US20150210846A1 (en) * 2012-04-27 2015-07-30 Dow Global Technologies Llc Curable epoxy resin compositions and composites made therefrom
JP6961912B2 (ja) 2015-06-25 2021-11-05 東レ株式会社 エポキシ樹脂組成物、繊維強化複合材料、成形品および圧力容器
KR102625584B1 (ko) 2015-06-25 2024-01-17 도레이 카부시키가이샤 에폭시 수지 조성물, 섬유 강화 복합 재료, 성형품 및 압력 용기
WO2017033632A1 (ja) 2015-08-27 2017-03-02 Dic株式会社 エポキシ樹脂組成物及び繊維強化複合材料

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190930A (ja) * 1992-09-28 1994-07-12 Toray Ind Inc 繊維強化フェノール樹脂成形品の引抜成形方法
JPH081804A (ja) * 1994-06-17 1996-01-09 Mitsui Toatsu Chem Inc 繊維強化フェノール樹脂の引抜成形方法
JP2008038082A (ja) * 2006-08-09 2008-02-21 Toray Ind Inc 引き抜き成形繊維強化複合材料
JP2008088342A (ja) * 2006-10-04 2008-04-17 Toray Ind Inc エポキシ樹脂組成物および繊維強化複合材料の製造方法
JP2009066912A (ja) * 2007-09-13 2009-04-02 Toray Ind Inc 引抜成形品の製造方法
JP2011089071A (ja) * 2009-10-26 2011-05-06 Toray Ind Inc エポキシ樹脂組成物、繊維強化複合材料およびそれを有してなる釣竿穂先
WO2013115152A1 (ja) * 2012-01-31 2013-08-08 東レ株式会社 エポキシ樹脂組成物および繊維強化複合材料
JP2014201659A (ja) * 2013-04-04 2014-10-27 三菱レイヨン株式会社 繊維強化プラスチックの引抜成形方法ならびに成形品
JP2015003938A (ja) * 2013-06-19 2015-01-08 東レ株式会社 エポキシ樹脂組成物及びそれを用いた繊維強化複合材料
JP2017119859A (ja) * 2015-12-25 2017-07-06 東レ株式会社 エポキシ樹脂組成物、繊維強化複合材料および成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3747936A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071170A1 (ja) * 2018-10-01 2020-04-09 三菱ケミカル株式会社 成形材料、繊維強化複合材料、及び繊維強化複合材料の製造方法
EP3862383A4 (en) * 2018-10-01 2021-11-17 Mitsubishi Chemical Corporation FORMATERIAL, FIBER-REINFORCED COMPOSITE MATERIAL AND METHOD FOR MANUFACTURING FIBER-REINFORCED COMPOSITE MATERIAL
WO2022024834A1 (ja) * 2020-07-27 2022-02-03 東レ株式会社 繊維強化成形品の製造方法
WO2022118827A1 (ja) 2020-12-02 2022-06-09 東レ株式会社 引抜繊維強化成形品

Also Published As

Publication number Publication date
EP3747936A4 (en) 2022-03-16
KR20200107936A (ko) 2020-09-16
JP7205464B2 (ja) 2023-01-17
CN111655766A (zh) 2020-09-11
CN111655766B (zh) 2022-11-22
EP3747936A1 (en) 2020-12-09
US20210032419A1 (en) 2021-02-04
JPWO2019151174A1 (ja) 2020-11-26
US11827759B2 (en) 2023-11-28

Similar Documents

Publication Publication Date Title
WO2019151174A1 (ja) 繊維強化成形品およびその製造方法
JP5028903B2 (ja) 引き抜き成形繊維強化複合材料
JP5403184B1 (ja) 繊維強化複合材料
EP2841499B1 (en) Curable epoxy resin compositions and composites made therefrom
WO1997031052A1 (fr) Composition de resine epoxy pour materiau composite arme de fibres, filasse preimpregnee, et procede et dispositif de realisation
KR102021318B1 (ko) 전력 전송 및 분배를 위한 절연 복합체
JP2006321896A (ja) 繊維強化熱可塑性樹脂の引抜成形方法
TW201841970A (zh) 纖維強化複合材料用環氧樹脂組成物、纖維強化複合材料及成形體
WO2019225442A1 (ja) トウプレグおよびその製造方法、ならびに圧力容器の製造方法
US11746445B2 (en) Carbon fiber bundle, prepreg, and fiber-reinforced composite material
KR101157330B1 (ko) 가공송전선용 섬유 강화 플라스틱 중심 인장선의 제조방법
JP2015003938A (ja) エポキシ樹脂組成物及びそれを用いた繊維強化複合材料
CN116096543A (zh) 片状模塑料和成形品的制造方法
WO2022118827A1 (ja) 引抜繊維強化成形品
WO2020019546A1 (zh) 拉挤成型用环氧树脂体系及其制备的复合材料
JP4651779B2 (ja) ロービングプリプレグ及びその製造方法
KR20070082510A (ko) 가공 송전선의 인장선용 섬유 강화 고분자 복합체 제조용조성물 및 이를 이용하여 가공 송전선의 인장선용 섬유강화 고분자 복합체 제조 방법
JP2018118440A (ja) 引抜成形体及びその製造方法
JP7279868B1 (ja) エポキシ樹脂組成物及びその硬化物、プリプレグ、繊維強化複合材、高圧ガス容器
JP7398028B1 (ja) エポキシ樹脂組成物
KR102543358B1 (ko) 속경화 에폭시 수지 조성물 및 이를 이용한 섬유강화 플라스틱
JP2004043769A (ja) エポキシ樹脂組成物並びにロービングプリプレグ及びその製造方法
JP2014201659A (ja) 繊維強化プラスチックの引抜成形方法ならびに成形品
JPH05117412A (ja) 引抜き成形材料

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019511797

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019747164

Country of ref document: EP

Effective date: 20200831