WO2019150777A1 - 監視装置および判定方法 - Google Patents

監視装置および判定方法 Download PDF

Info

Publication number
WO2019150777A1
WO2019150777A1 PCT/JP2018/045592 JP2018045592W WO2019150777A1 WO 2019150777 A1 WO2019150777 A1 WO 2019150777A1 JP 2018045592 W JP2018045592 W JP 2018045592W WO 2019150777 A1 WO2019150777 A1 WO 2019150777A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
unit
current
measurement result
generation unit
Prior art date
Application number
PCT/JP2018/045592
Other languages
English (en)
French (fr)
Inventor
谷村晃太郎
近藤麻由
池上洋行
下口剛史
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2019568910A priority Critical patent/JP7226338B2/ja
Priority to DE112018007008.5T priority patent/DE112018007008T5/de
Publication of WO2019150777A1 publication Critical patent/WO2019150777A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/548Systems for transmission via power distribution lines the power on the line being DC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation

Definitions

  • the present invention relates to a monitoring device and a determination method.
  • This application claims priority based on Japanese Patent Application No. 2018-16842 filed on Feb. 2, 2018, the entire disclosure of which is incorporated herein.
  • Patent Document 1 JP 2012-205078 A discloses a monitoring system for photovoltaic power generation as follows. That is, the photovoltaic power generation monitoring system is a photovoltaic power generation monitoring system that monitors the power generation status of the solar cell panel for a photovoltaic power generation system that aggregates outputs from a plurality of solar cell panels and sends them to a power converter.
  • the management device determines the presence or absence of abnormality based on the difference in power generation amount at the same time for each solar cell panel, or the maximum value or integration of the power generation amount for a predetermined period for each solar cell panel The presence or absence of abnormality is determined based on the value.
  • the monitoring device of the present disclosure is a monitoring device used in a solar power generation system in which an output line from a power generation unit including a solar battery panel is electrically connected to a power conversion device, and the current of the power generation unit
  • An acquisition unit that acquires the measurement result of the power converter, and a determination unit that determines an operation state of the power converter based on the measurement result and determines an abnormality based on the determined operation state and the measurement result.
  • the determination method of the present disclosure is a determination method in a monitoring device used in a solar power generation system in which an output line from a power generation unit including a solar battery panel is electrically connected to a power conversion device. Obtaining a current measurement result of the unit; determining an operation state of the power converter based on the measurement result; determining an abnormality based on the determined operation state and the measurement result; including.
  • One aspect of the present disclosure can be realized not only as a monitoring apparatus including such a characteristic processing unit, but also as a program for causing a computer to execute such characteristic processing.
  • one embodiment of the present disclosure can be realized as a semiconductor integrated circuit that realizes part or all of the monitoring device, or can be realized as a system including the monitoring device.
  • FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of the PCS unit according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing a configuration of the current collecting unit according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing a configuration of the solar cell unit according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing a configuration of the power generation state determination system according to the embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a configuration of a monitoring device in the power generation state determination system according to the embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of the PCS unit according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing a configuration of the current collecting unit according to
  • FIG. 7 is a diagram showing an example of normal string current data in the power generation state determination system according to the embodiment of the present invention.
  • FIG. 8 is a diagram illustrating an example of a state in which an output line from the power generation unit in the photovoltaic power generation system according to the embodiment of the present invention is short-circuited between positive and negative electrodes.
  • FIG. 9 is a diagram showing an example of string current data in the output line short-circuited between the positive and negative electrodes in the power generation state determination system according to the embodiment of the present invention.
  • FIG. 10 is a diagram showing a short-circuit failure state of the backflow prevention diode in the power generation state determination system according to the embodiment of the present invention.
  • FIG. 11 is a diagram illustrating an example of string current data of the power generation unit corresponding to the backflow prevention diode having a short circuit failure in the power generation state determination system according to the embodiment of the present invention.
  • FIG. 12 is a diagram illustrating another example in which the output line from the power generation unit in the solar power generation system according to the embodiment of the present invention is short-circuited between the positive and negative electrodes.
  • FIG. 13 is a diagram showing another example of string current data in the output line in which the positive and negative electrodes are short-circuited in the power generation state determination system according to the embodiment of the present invention.
  • FIG. 14 is a diagram showing the relationship between the output current and the output voltage of the power generation unit in the power generation state determination system according to the embodiment of the present invention.
  • FIG. 15 is a flowchart that defines an operation procedure when the monitoring apparatus according to the embodiment of the present invention performs abnormality determination.
  • FIG. 16 is a flowchart defining an operation procedure when the monitoring apparatus according to the embodiment of the present invention performs abnormality determination in the PCS stop state.
  • FIG. 17 is a flowchart that defines an operation procedure when the monitoring apparatus according to the embodiment of the present invention performs abnormality determination in the operating state of the PCS.
  • the present disclosure has been made to solve the above-described problem, and an object thereof is to provide a monitoring device and a determination method capable of improving the abnormality determination of the photovoltaic power generation system.
  • a monitoring device is a monitoring device used in a photovoltaic power generation system in which an output line from a power generation unit including a solar battery panel is electrically connected to a power conversion device, An acquisition unit that acquires a measurement result of the current of the power generation unit, a determination that determines an operation state of the power converter based on the measurement result, and determines an abnormality based on the determined operation state and the measurement result A part.
  • the operation state of the power conversion device is determined using the current measurement result of the power generation unit, and the abnormality determination is performed using the current measurement result of the power generation unit and according to the determination result. be able to.
  • the abnormality in a solar power generation system can be determined favorable. Therefore, the abnormality determination of the solar power generation system can be improved.
  • the determination unit determines that the operating state of the power converter is in a stopped state, and determines an abnormality based on the measurement result in the stopped state.
  • the configuration for determining the abnormality using the measurement result of the output current of the power generation unit makes a good determination of the abnormality in the photovoltaic power generation system can do.
  • a measurement unit that measures a current of the power generation unit is connected between the power generation unit and the power conversion device, and the determination unit indicates the measurement result indicating an output current of the power generation unit. Based on the above, a circuit abnormality between the measurement unit and the power converter is determined.
  • output lines from the plurality of power generation units are aggregated in the aggregation unit and electrically connected to the power converter, and a backflow prevention diode is connected to the plurality of power generation units.
  • a measuring unit that is connected between a part or all of the power generation units and the aggregation unit and measures a current of the corresponding power generation unit is a counter current corresponding to the part or all of the power generation units.
  • the determination unit is connected to a prevention diode, and the determination unit determines an abnormality of the backflow prevention diode based on the measurement result indicating a backflow current to the part or all of the power generation units.
  • the measurement part which measures the electric current of the said electric power generation part is connected between the said electric power generation part and the said power converter device, and the said determination part is an operation state for the said power converter device. And determining an abnormality in the circuit between the power generation unit and the measurement unit based on the measurement result indicating the output current of the power generation unit in the operating state of the power converter.
  • the configuration for determining the abnormality using the measurement result of the output current of the power generation unit, the circuit abnormality between the power generation unit and the measurement unit can be determined satisfactorily.
  • output lines from a plurality of the power generation units are aggregated in the aggregation unit and electrically connected to the power conversion device, and current of the corresponding power generation unit is measured.
  • a measuring unit is connected between a part or all of the plurality of power generation units among the plurality of power generation units and the power conversion device, and the determination unit is configured to operate the one of the plurality of power generation units in an operating state of the power conversion device.
  • An abnormality in a circuit between the measurement unit and the aggregation unit is determined on the basis of the measurement result indicating the output current of a part or all of the plurality of power generation units.
  • the configuration of determining abnormality using the measurement result of the output current of each power generation unit, the circuit between the measurement unit and the aggregation unit Abnormality can be determined satisfactorily.
  • the determination method according to the embodiment of the present invention is a determination method in a monitoring device used in a photovoltaic power generation system in which an output line from a power generation unit including a solar battery panel is electrically connected to a power conversion device.
  • the operation state of the power conversion device is determined using the current measurement result of the power generation unit, and the abnormality determination is performed using the current measurement result of the power generation unit and according to the determination result. be able to.
  • the abnormality in a solar power generation system can be determined favorable. Therefore, the abnormality determination of the solar power generation system can be improved.
  • FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention.
  • solar power generation system 401 includes four PCS (Power Conditioning Subsystem) units 80 and cubicle 6.
  • the cubicle 6 includes a copper bar 73.
  • FIG. 1 representatively shows four PCS units 80, but a larger or smaller number of PCS units 80 may be provided.
  • FIG. 2 is a diagram showing a configuration of the PCS unit according to the embodiment of the present invention.
  • the PCS unit 80 includes four current collecting units 60 and a PCS (power conversion device) 8.
  • the PCS 8 includes a copper bar 7 and a power conversion unit 9.
  • FIG. 2 four current collecting units 60 are representatively shown, but a larger or smaller number of current collecting units 60 may be provided.
  • FIG. 3 is a diagram showing a configuration of the current collecting unit according to the embodiment of the present invention.
  • the current collecting unit 60 includes four solar cell units 74 and a current collecting box 71.
  • the current collection box 71 has a copper bar 72.
  • FIG. 3 four solar cell units 74 are representatively shown, but a larger number or a smaller number of solar cell units 74 may be provided.
  • FIG. 4 is a diagram showing the configuration of the solar cell unit according to the embodiment of the present invention.
  • solar cell unit 74 includes four power generation units 78 ⁇ / b> A, 78 ⁇ / b> B, 78 ⁇ / b> C, 78 ⁇ / b> D and connection box 76.
  • the power generation unit 78 includes a solar cell panel 79.
  • the connection box 76 has a copper bar 77.
  • each of the power generation units 78A, 78B, 78C, and 78D is also referred to as a power generation unit 78.
  • FIG. 4 representatively shows four power generation units 78, but a larger or smaller number of power generation units 78 may be provided.
  • the power generation unit 78 is a string in which four solar cell panels 79 are connected in series in this example.
  • FIG. 4 representatively shows four solar cell panels 79, but a larger or smaller number of solar cell panels may be provided.
  • output lines and aggregated lines that is, power lines from the plurality of power generation units 78 are electrically connected to the cubicles 6, respectively.
  • the output line 1 of the power generation unit 78 has a first end connected to the power generation unit 78 and a second end connected to the copper bar 77.
  • Each output line 1 is aggregated into an aggregation line 5 via a copper bar 77.
  • the copper bar 77 is provided, for example, inside the connection box 76.
  • the power generation unit 78 When the power generation unit 78 receives sunlight, the power generation unit 78 converts the received solar energy into DC power, and outputs the converted DC power to the output line 1.
  • aggregation line 5 has a first end connected to copper bar 77 and a second end connected to copper bar 72 in corresponding solar cell unit 74. Each aggregation line 5 is aggregated into the aggregation line 2 via the copper bar 72.
  • the copper bar 72 is provided, for example, inside the current collection box 71.
  • the output lines 1 from the plurality of power generation units 78 are aggregated into the aggregation line 5, and the aggregation lines 5 are aggregated into the aggregation line 2. Then, each aggregation line 2 is aggregated to the aggregation line 4, and each aggregation line 4 is electrically connected to the cubicle 6.
  • each aggregation line 2 has a first end connected to the copper bar 72 in the corresponding current collecting unit 60 and a second end connected to the copper bar 7.
  • the internal line 3 has a first end connected to the copper bar 7 and a second end connected to the power conversion unit 9.
  • the power conversion unit 9 uses, for example, the DC power generated in each power generation unit 78 via the output line 1, the copper bar 77, the aggregation line 5, the copper bar 72, the aggregation line 2, the copper bar 7 and the internal line 3. Is received, the received DC power is converted into AC power and output to the aggregation line 4.
  • the aggregation line 4 has a first end connected to the power conversion unit 9 and a second end connected to the copper bar 73.
  • FIG. 5 is a diagram showing a configuration of the power generation state determination system according to the embodiment of the present invention.
  • the solar power generation system 401 includes a power generation state determination system 301.
  • the power generation state determination system 301 includes a management device 101, a plurality of monitoring devices 111, and a collection device 151.
  • FIG. 5 representatively shows four monitoring devices 111 provided corresponding to one current collecting unit 60, but a larger or smaller number of monitoring devices 111 may be provided.
  • the power generation state determination system 301 includes one collection device 151, but may include a plurality of collection devices 151.
  • sensor information in the monitoring device 111 as a slave is transmitted to the collection device 151 regularly or irregularly.
  • the monitoring device 111 is provided in the current collecting unit 60, for example. More specifically, four monitoring devices 111 are provided corresponding to the four solar cell units 74, respectively. Each monitoring device 111 is electrically connected to the corresponding output line 1 and aggregation line 5, for example.
  • the monitoring device 111 measures the current of each output line 1 in the corresponding solar cell unit 74 with a sensor. Moreover, the monitoring apparatus 111 measures the voltage of each output line 1 in the corresponding solar cell unit 74 with a sensor.
  • the collection device 151 collects the measurement results of each monitoring device 111.
  • the collection device 151 is provided in the vicinity of the PCS 8, for example. More specifically, the collection device 151 is provided corresponding to the PCS 8 and is electrically connected to the copper bar 7 via the signal line 46.
  • the monitoring device 111 and the collection device 151 perform transmission and reception of information by performing power line communication (PLC: Power Line Communication) via the aggregation lines 2 and 5.
  • PLC Power Line Communication
  • each monitoring device 111 transmits monitoring information indicating the current and voltage measurement results and abnormality determination results of the corresponding output line.
  • the collection device 151 can send and receive information via the aggregation lines 2 and 5. Specifically, the collection device 151 performs power line communication with the monitoring device 111 via the signal line 46 and the aggregation lines 2 and 5, for example, and receives monitoring information from the monitoring device 111.
  • the collection device 151 transmits and receives information to and from other devices such as the management device 101 via the network.
  • FIG. 6 is a diagram illustrating a configuration of a monitoring device in the power generation state determination system according to the embodiment of the present invention.
  • the inside of the junction box 76 is shown in more detail.
  • connection box 76 includes an aggregation portion 91, switches 93 ⁇ / b> A, 93 ⁇ / b> B, 93 ⁇ / b> C, 93 ⁇ / b> D, backflow prevention diodes 94 ⁇ / b> A, 94 ⁇ / b> B, 94 ⁇ / b> C, 94 ⁇ / b> D, an output line 1, an aggregation line 5.
  • a copper bar 77 is aggregation portion 91, switches 93 ⁇ / b> A, 93 ⁇ / b> B, 93 ⁇ / b> C, 93 ⁇ / b> D, backflow prevention diodes 94 ⁇ / b> A, 94 ⁇ / b> B, 94 ⁇ / b> C, 94 ⁇ / b> D, an output line 1, an aggregation line 5.
  • a copper bar 77 is aggregation portion 91, switches 93 ⁇ / b> A,
  • each of the switches 93A, 93B, 93C, and 93D is also referred to as a switch 93
  • each of the backflow prevention diodes 94A, 94B, 94C, and 94D is also referred to as a backflow prevention diode 94.
  • Each of the output lines 1 includes plus side output lines 1pa, 1pb, 1pc and minus side output lines 1na, 1nb.
  • the aggregation line 5 includes a plus-side aggregation line 5p and a minus-side aggregation line 5n.
  • the aggregation unit 91 includes a copper bar 77 and aggregates the output lines 1 from the plurality of power generation units 78.
  • the copper bar 77 has a plus side copper bar 77p and a minus side copper bar 77n.
  • the copper bar 72 in the current collection box 71 shown in FIG. 3 includes a plus-side copper bar 72p and a minus-side copper bar 72n corresponding to the plus-side aggregation line 5p and the minus-side aggregation line 5n, respectively.
  • the backflow prevention diode 94 is connected between the power generation unit 78 and the aggregation unit 91.
  • the plus side output line 1pa has a first end connected to the corresponding power generation unit 78 and a second end connected to the corresponding switch 93.
  • the plus side output line 1pb has a first end connected to the corresponding switch 93 and a second end connected to the anode of the corresponding backflow prevention diode 94.
  • the positive side output line 1pc has a first end connected to the cathode of the corresponding backflow prevention diode 94 and a second end connected to the corresponding positive side copper bar 77p.
  • the negative output line 1na has a first end connected to the corresponding power generation unit 78 and a second end connected to the corresponding switch 93.
  • the minus side output line 1nb has a first end connected to the corresponding switch 93 and a second end connected to the minus side copper bar 77n.
  • the plus side aggregation line 5p has a first end connected to the plus side copper bar 77p and a second end connected to the plus side copper bar 72p in the current collection box 71.
  • the minus-side aggregate line 5n has a first end connected to the minus-side copper bar 77n and a second end connected to the minus-side copper bar 72n in the current collection box 71.
  • the monitoring device 111 includes an acquisition unit 11, a communication unit 14, a determination unit 15, a voltage sensor 17, a storage unit 18, and a measurement unit 19.
  • the measurement unit 19 includes four current sensors 16. Note that the monitoring device 111 may further include a large number or a small number of current sensors 16 depending on the number of output lines 1.
  • the monitoring device 111 is provided in the vicinity of the power generation unit 78, for example. Specifically, the monitoring device 111 is provided, for example, inside a connection box 76 provided with a copper bar 77 to which the output line 1 to be measured is connected. Note that the monitoring device 111 may be provided outside the connection box 76.
  • the monitoring device 111 is electrically connected to, for example, the plus-side aggregate line 5p and the minus-side aggregate line 5n via the plus-side power line 26p and the minus-side power line 26n, respectively.
  • each of the plus-side power line 26p and the minus-side power line 26n is also referred to as a power line 26.
  • the acquisition unit 11 acquires the current measurement result of the power generation unit 78. More specifically, the acquisition unit 11 acquires a measurement result indicating the current of the output line 1 measured by the current sensor 16.
  • the current sensor 16 is, for example, a Hall element type current probe.
  • the current sensor 16 is connected between the power generation unit 78 and the PCS 8 and uses the electric power received from the power supply circuit (not shown) of the monitoring device 111 to cause the current flowing through the corresponding positive output line 1p to be, for example, every predetermined time. Measure and output a signal indicating the measurement result to the acquisition unit 11.
  • the current sensor 16 may measure the current flowing through the negative output line 1n.
  • the voltage sensor 17 measures the voltage of the output line 1 every predetermined time, for example. More specifically, the voltage sensor 17 measures the voltage between the plus side copper bar 77p and the minus side copper bar 77n, and outputs a signal indicating the measurement result to the acquisition unit 11.
  • the acquisition unit 11 includes a measurement result included in each signal received from the current sensor 16 and the voltage sensor 17, an ID of the corresponding current sensor 16 (hereinafter also referred to as a current sensor ID), and an ID of the voltage sensor 17 (hereinafter, referred to as “current sensor ID”). Is also stored in the storage unit 18.
  • the determination unit 15 determines the operation state of the PCS 8 based on the measurement result of the power generation unit 78, and determines an abnormality based on the determined operation state and the measurement result of the power generation unit 78.
  • the determination unit 15 determines an abnormality based on the current measurement result of the power generation unit 78 when the PCS 8 is stopped.
  • the determination unit 15 determines an abnormality in the circuit between the measurement unit 19 and the PCS 8 based on a measurement result indicating the output current of the power generation unit 78.
  • the determination unit 15 acquires each measurement result of the current sensor 16 having the same current sensor ID from the storage unit 18 every day, and arranges the acquired measurement results in time series. Create string current data.
  • FIG. 7 is a diagram showing an example of normal string current data in the power generation state determination system according to the embodiment of the present invention.
  • the horizontal axis indicates time
  • the vertical axis indicates the measurement result of the current sensor 16, that is, the current value.
  • the PCS 8 is operated by the electric power generated by the power generation unit 78, for example.
  • Monitoring device 111 determines whether PCS 8 is in an operating state or a stopped state from the measurement results included in the signals received from each of current sensor 16 and voltage sensor 17.
  • the determination unit 15 in the monitoring device 111 is electrically connected to the PCS 8 measured by the current sensor 16 and the voltage measured by the voltage sensor 17 is sufficient to operate the PCS 8. When the total current flowing through the output line 1 is sufficient to operate the PCS 8, it is determined that the PCS 8 is in an operating state.
  • the determination unit 15 acquires the measurement results of the current sensor 16 and the voltage sensor 17 from the storage unit 18 every day, and arranges the acquired measurement results in time series.
  • the determination unit 15 determines that the operating state of the PCS 8 is in the operating state in a time zone in which the voltage is equal to or higher than a predetermined value and the current is equal to or higher than the predetermined value from the measurement results arranged in time series. It is determined that the operation state of the PCS 8 is the stop state in the time zone excluding the zone.
  • the determination unit 15 determines that the PCS 8 is in an operating state during a period from time t1 to time t2.
  • the PCS 8 stops power conversion until the morning time t1 because power that can operate the PCS 8 is not supplied from the power generation unit 78.
  • the PCS 8 stops power conversion because the power that can be used by the PCS 8 is not supplied from the power generation unit 78.
  • FIG. 8 is a diagram illustrating an example of a state in which the output line from the power generation unit in the solar power generation system according to the embodiment of the present invention is short-circuited between the positive and negative electrodes.
  • FIG. 9 is a diagram showing an example of string current data in the output line short-circuited between the positive and negative electrodes in the power generation state determination system according to the embodiment of the present invention.
  • the horizontal axis indicates time
  • the vertical axis indicates the measurement result of the current sensor 16, that is, the current value.
  • graph D1 is the same as the graph shown in FIG. 7, and shows an example of normal string current data.
  • Graph D2 shows an example of string current data in the output line shorted between the positive and negative electrodes.
  • the determination unit 15 includes a circuit between the measurement unit 19 including the current sensor 16 and the PCS 8. Judged to be abnormal.
  • the determination unit 15 can detect a short circuit between the positive and negative electrodes between the measurement unit 19 and the PCS 8.
  • the determination unit 15 outputs to the communication unit 14 monitoring information that associates the determination result indicating the circuit abnormality between the determined measurement unit 19 and the PCS 8, the string current data, and the measurement result of the voltage sensor 17.
  • the communication unit 14 can perform power line communication via the aggregation line with the collection device 151 that collects the measurement results of the plurality of monitoring devices 111. More specifically, the communication unit 14 can transmit and receive information via the aggregation lines 2 and 5. Specifically, the communication unit 14 performs power line communication with the collection device 151 via the power line 26 and the aggregation lines 2 and 5.
  • the communication unit 14 transmits the monitoring information received from the determination unit 15 to the collection device 151.
  • the determination unit 15 determines abnormality of the backflow prevention diode based on the measurement result indicating the backflow current to the power generation unit 78 in the stop state of the PCS 8.
  • FIG. 10 is a diagram showing a short-circuit failure state of the backflow prevention diode in the power generation state determination system according to the embodiment of the present invention.
  • the backflow prevention diode 94A is short-circuited, and the output voltage of the power generation unit 78A electrically connected to the failed backflow prevention diode 94 is affected by shadows, dirt, parallel arcs, ground faults, and the like.
  • the output current I2 of the other three power generation units 78B, 78C, 78D flows into the power generation unit 78A.
  • FIG. 11 is a diagram showing an example of string current data of the power generation unit corresponding to the backflow prevention diode having a short circuit failure in the power generation state determination system according to the embodiment of the present invention.
  • the horizontal axis indicates time
  • the vertical axis indicates the measurement result of the current sensor 16, that is, the current value.
  • graph D3 shows string current data of power generation unit 78B that is normal power generation unit 78
  • graph D4 shows power generation unit 78A that is power generation unit 78 corresponding to the short-circuit backflow prevention diode. String current data is shown.
  • the PCS 8 is stopped, that is, at time t1. Before and after time t2, the output current of the power generation unit 78B is measured.
  • a negative current value that is, a reverse current to the power generation unit 78A is measured before time t1 and after time t2.
  • the determination unit 15 determines that the reverse current prevention diode 94 corresponding to the output line 1 is abnormal.
  • the determination unit 15 can detect a short circuit failure of the backflow prevention diode 94.
  • the determination unit 15 outputs the determination result indicating the determined abnormality of the backflow prevention diode 94 and the monitoring information in which the string current data and the measurement result of the voltage sensor 17 are associated with each other to the communication unit 14.
  • the communication unit 14 transmits the monitoring information received from the determination unit 15 to the collection device 151.
  • the determination unit 15 determines, for example, an abnormality in the circuit between the power generation unit 78 and the measurement unit 19 based on a measurement result indicating the output current of the power generation unit 78 in the operating state of the PCS 8.
  • FIG. 12 is a diagram showing another example of a state in which the output line from the power generation unit in the photovoltaic power generation system according to the embodiment of the present invention is short-circuited between the positive and negative electrodes.
  • plus side output line 1pb and minus side output line 1nb are short-circuited between power generation unit 78 and measurement unit 19, plus side output line 1pa causes plus side output.
  • the current that flows to the line 1pb branches into a current I3a that flows through the short-circuited portion and a current I3b that flows to the aggregation unit 91.
  • the current I3b is much smaller than the current I3a.
  • FIG. 13 is a diagram showing another example of string current data in the output line short-circuited between the positive and negative electrodes in the power generation state determination system according to the embodiment of the present invention.
  • the horizontal axis indicates time
  • the vertical axis indicates the measurement result of the current sensor 16, that is, the current value.
  • the current flowing through output line 1 decreases after time t3 because the output line has a short circuit between positive and negative electrodes at time t3.
  • the determination unit 15 is connected between the power generation unit 78 and the measurement unit 19. Is determined to be abnormal.
  • the determination unit 15 can detect a short circuit between the positive and negative electrodes between the power generation unit 78 and the measurement unit 19.
  • the determining unit 15 outputs to the communication unit 14 monitoring information that associates the determined determination result indicating the abnormality of the circuit between the power generation unit 78 and the measuring unit 19, the string current data, and the measurement result of the voltage sensor 17.
  • the communication unit 14 transmits the monitoring information received from the determination unit 15 to the collection device 151.
  • the determination part 15 determines the abnormality of the circuit between the measurement part 19 and the aggregation part 91 based on the measurement result which shows the output current of the electric power generation part 78 in the operating state of PCS8, for example.
  • FIG. 14 is a diagram showing the relationship between the output current and the output voltage of the power generation unit in the power generation state determination system according to the embodiment of the present invention.
  • the horizontal axis represents voltage
  • the vertical axis represents current.
  • MPPT Maximum Power Point Tracking
  • the point pm shown in FIG. 14 is a point at which the generated power is maximized. At this time, the output voltage of the power generation unit 78 is Vpm, and the output current of the power generation unit 78 is Ipm.
  • the output voltage decreases to Vsc.
  • the output current at which the generated power is maximum is Isc, which is larger than Ipm.
  • the current flowing through the output line 1 short-circuited between the positive and negative electrodes is larger than the current flowing through the normal output line 1.
  • the determination unit 15 compares the current flowing through each output line 1, and the circuit corresponding to the output line 1 in which a current larger than the current flowing through the other output lines 1 flows is abnormal. Is determined.
  • the determination unit 15 creates string current data for each power generation unit 78. And the determination part 15 calculates the average value AVE of the electric current value of each electric power generation part 78 in the time t4 of the period from the time t1 to the time t2.
  • the time t4 is, for example, the time when the output current of a certain power generation unit 78 becomes maximum in one day.
  • the circuit between the measurement unit 19 and the aggregation unit 91 in the output line 1 corresponding to the power generation unit 78 is abnormal. Is determined.
  • the determination unit 15 can detect a short circuit between the positive and negative electrodes between the measurement unit 19 and the aggregation unit 91.
  • the determination unit 15 outputs to the communication unit 14 monitoring information in which the determination result indicating the abnormality of the circuit between the determined measurement unit 19 and the aggregation unit 91, the string current data, and the measurement result of the voltage sensor 17 are associated.
  • the communication unit 14 transmits the monitoring information received from the determination unit 15 to the collection device 151.
  • Each device in the power generation state determination system 301 includes a computer, and an arithmetic processing unit such as a CPU in the computer reads and executes a program including a part or all of each step of the following flowchart from a memory (not shown).
  • an arithmetic processing unit such as a CPU in the computer reads and executes a program including a part or all of each step of the following flowchart from a memory (not shown).
  • Each of the programs of the plurality of apparatuses can be installed from the outside.
  • the programs of the plurality of apparatuses are distributed while being stored in a recording medium.
  • FIG. 15 is a flowchart that defines an operation procedure when the monitoring apparatus according to the embodiment of the present invention performs abnormality determination.
  • the monitoring device 111 acquires current and voltage measurement results of the power generation units 78A, 78B, 78C, and 78D (step S101).
  • the monitoring device 111 determines the operating state of the PCS 8 based on the acquired measurement result. More specifically, the monitoring device 111 determines a time zone in which the PCS 8 is in an operating state and a time zone in which the PCS 8 is in a stopped state based on the acquired measurement result (step S102).
  • the monitoring device 111 creates string current data of each power generation unit 78 from the acquired measurement result (step S103).
  • the monitoring device 111 makes an abnormality determination based on the measurement result in the time zone in which the PCS 8 is stopped (step S104).
  • the monitoring device 111 performs abnormality determination based on the measurement result in the time zone in which the PCS 8 is in operation (step S105).
  • the monitoring device 111 acquires new measurement results of the currents and voltages of the power generation units 78A, 78B, 78C, and 78D (step S101).
  • step S102 and step S103 is not limited to the above, and the order may be changed.
  • step S104 and step S105 is not limited to the above, and the order may be changed.
  • FIG. 16 is a flowchart that defines an operation procedure when the monitoring apparatus according to the embodiment of the present invention performs abnormality determination in the PCS stop state.
  • the monitoring device 111 starts abnormality determination for a certain power generation unit 78.
  • the monitoring device 111 determines that the short circuit failure of the backflow prevention diode 94 in the corresponding output line 1 is abnormal (step S202).
  • the monitoring device 111 transmits monitoring information including the determination result, the string current data, and the measurement result of the voltage sensor 17 to the collection device 151 (step S203).
  • the monitoring device 111 measures the measurement unit 19 and the aggregation unit in the corresponding output line 1 It is determined that there is an abnormality in the short circuit between positive and negative electrodes 91 (step S205).
  • the monitoring device 111 transmits monitoring information including the determination result, the string current data, and the measurement result of the voltage sensor 17 to the collection device 151 (step S203).
  • the monitoring device 111 detects the corresponding circuit of the output line 1 Is determined to be normal (step S206).
  • the monitoring device 111 transmits monitoring information including the determination result, the string current data, and the measurement result of the voltage sensor 17 to the collection device 151 (step S203).
  • step S207 when the monitoring device 111 has not performed abnormality determination on the measurement result of the other power generation unit 78 (NO in step S207), the monitoring apparatus 111 performs abnormality determination on the measurement result of the other power generation unit 78 (step S201).
  • the abnormality determination in the PCS stop state ends.
  • FIG. 17 is a flowchart defining an operation procedure when the monitoring apparatus according to the embodiment of the present invention performs abnormality determination in the operating state of the PCS.
  • monitoring device 111 starts an abnormality determination for a certain power generation unit 78.
  • the monitoring device 111 detects a short circuit between the positive and negative electrodes between the power generation unit 78 and the measurement unit 19 in the corresponding output line 1. (Step S302).
  • the monitoring device 111 transmits the monitoring information including the determination result, the string current data, and the measurement result of the voltage sensor 17 to the collection device 151 (step S303).
  • the monitoring device 111 measures an output current greater than or equal to a predetermined value (NO in step S301) and measures an output current that is greater than a predetermined value compared to other string current data. (YES in step S304), it is determined that there is an abnormality in the short circuit between the positive and negative electrodes between the measurement unit 19 and the aggregation unit 91 in the corresponding output line 1 (step S305).
  • the monitoring device 111 transmits the monitoring information including the determination result, the string current data, and the measurement result of the voltage sensor 17 to the collection device 151 (step S303).
  • the monitoring device 111 measures a current that is equal to or greater than a predetermined output value (NO in step S301) and measures an output current that is less than a predetermined value compared to other string current data. (NO in step S304), it is determined that the corresponding circuit of the output line 1 is normal (step S306).
  • the monitoring device 111 transmits the monitoring information including the determination result, the string current data, and the measurement result of the voltage sensor 17 to the collection device 151 (step S303).
  • step S301 when the monitoring device 111 has not performed abnormality determination on the measurement result of the other power generation unit 78 (NO in step S307), the monitoring apparatus 111 performs abnormality determination on the measurement result of the other power generation unit 78 (step S301).
  • the abnormality determination in the operating state of the PCS ends.
  • the PCS 8 is configured to stop power conversion when operable power is not supplied from the power generation unit 78.
  • the present invention is not limited to this. Absent.
  • the PCS 8 may be configured to stop power conversion when the power generation unit 78 generates power exceeding the PCS 8 conversion capacity or when output to the system is suppressed.
  • the monitoring device 111 is configured to determine abnormality, but the present invention is not limited to this.
  • the monitoring device 111 transmits each measurement result, the current sensor ID and the voltage sensor ID to the collection device 151 or the management device 101, and the collection device 151 or the management device 101 is based on each measurement result transmitted from the monitoring device 111. It may be configured to determine abnormality.
  • the management device 101 includes an acquisition unit that acquires each measurement result transmitted from the monitoring device 111, and a determination unit that performs abnormality determinations 1 to 4 based on each measurement result acquired by the acquisition unit.
  • the monitoring device 111 is configured to perform the abnormality determinations 1 to 4, but the present invention is not limited to this.
  • the monitoring device 111 may be configured to perform part of the abnormality determinations 1 to 4.
  • the monitoring device 111 is configured to include the measurement unit 19, but the present invention is not limited to this.
  • the measurement unit 19 may be configured to be provided outside the monitoring device 111.
  • the backflow prevention diode 94 is provided for each power generation unit 78, but the present invention is not limited to this.
  • the solar power generation system 401 may have a configuration in which some or all of the backflow prevention diodes 94A, 94B, 94C, and 94D are not provided.
  • the current sensor 16 is provided for each power generation unit 78, but the present invention is not limited to this.
  • the power generation state determination system 301 may have a configuration in which some of the current sensors 16 are not provided.
  • the monitoring device 111 performs the abnormality determination 4 when the plurality of current sensors 16 are provided in the corresponding power generation unit 78.
  • the acquisition unit 11 acquires the current measurement result of the power generation unit 78 including the solar cell panel 79.
  • the determination unit 15 determines the operating state of the PCS 8 based on the measurement result, and determines an abnormality based on the determined operating state and the measurement result.
  • the operation state of the PCS 8 is determined using the current measurement result of the power generation unit 78, and abnormality determination using the current measurement result of the power generation unit 78 is performed according to the determination result. be able to. Thereby, the abnormality in the solar power generation system 401 can be determined satisfactorily.
  • the abnormality determination of the solar power generation system 401 can be improved.
  • the determination unit 15 determines that the operating state of the PCS 8 is a stopped state, and determines an abnormality based on the measurement result in the stopped state.
  • the configuration in which the abnormality is determined using the measurement result of the output current of the power generation unit 78 improves the abnormality in the solar power generation system 401. Can be determined.
  • the measurement unit 19 that measures the current of the power generation unit 78 is connected between the power generation unit 78 and the PCS 8, and in the monitoring device 111, the determination unit 15 is Based on the measurement result indicating the output current of the power generation unit 78, the abnormality of the circuit between the measurement unit 19 and the PCS 8 is determined.
  • output lines from the plurality of power generation units 78 are aggregated in the aggregation unit 91 and electrically connected to the PCS 8 to prevent backflow.
  • the diode 94 is connected between a part or all of the power generation units 78 and the aggregation unit 91 among the plurality of power generation units 78, and the measurement unit 19 that measures the current of the corresponding power generation unit 78 includes the part.
  • all the power generation units 78 and the corresponding backflow prevention diodes 94 are connected, and in the monitoring device 111, the determination unit 15 is based on the measurement result indicating the backflow current to the part or all of the power generation units 78.
  • the abnormality of the backflow prevention diode 94 is determined.
  • the measurement unit 19 that measures the current of the power generation unit 78 is connected between the power generation unit 78 and the PCS 8, and in the monitoring device 111, the determination unit 15 is Then, it is determined that the operating state of the PCS 8 is the operating state, and the abnormality of the circuit between the power generating unit 78 and the measuring unit 19 is determined based on the measurement result indicating the output current of the power generating unit 78 in the operating state of the PCS 8.
  • the circuit between the power generation unit 78 and the measurement unit 19 is configured to determine abnormality using the measurement result of the output current of the power generation unit 78. Can be determined satisfactorily.
  • output lines from the plurality of power generation units 78 are aggregated in the aggregation unit 91 and electrically connected to the PCS 8 for handling.
  • the measuring unit 19 that measures the current of the power generation unit 78 is connected between some or all of the plurality of power generation units 78 and the PCS 8, and in the monitoring device 111, the determination unit 15 is The abnormality of the circuit between the measurement unit 19 and the aggregation unit 91 is determined based on the measurement result indicating the output current of the plurality of power generation units 78 in the operating state of the PCS 8.
  • the current measurement result of the power generation unit 78 is acquired.
  • the operating state of the PCS 8 is determined based on the measurement result.
  • abnormality is determined based on the determined operation state and the measurement result.
  • the operation state of the PCS 8 is determined using the current measurement result of the power generation unit 78, and abnormality determination using the current measurement result of the power generation unit 78 is performed according to the determination result. be able to. Thereby, the abnormality in the solar power generation system 401 can be determined satisfactorily.
  • the abnormality determination of the solar power generation system 401 can be improved.
  • a monitoring device used in a photovoltaic power generation system in which an output line from a power generation unit including a solar battery panel is electrically connected to a power conversion device, An acquisition unit for acquiring a current measurement result of the power generation unit; A determination unit that determines an abnormality based on the measurement result in a stopped state of the power converter,
  • the power generation unit is a monitoring device that is a string in which a plurality of solar cell panels are connected in series.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

監視装置は、太陽電池パネルを含む発電部からの出力ラインが電力変換装置に電気的に接続される太陽光発電システムに用いられる監視装置であって、前記発電部の電流の計測結果を取得する取得部と、前記計測結果に基づいて前記電力変換装置の動作状態を判別し、判別した前記動作状態、および前記計測結果に基づいて異常を判定する判定部とを備える。

Description

監視装置および判定方法
 本発明は、監視装置および判定方法に関する。
 この出願は、2018年2月2日に出願された日本出願特願2018-16842号を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
 特開2012-205078号公報(特許文献1)には、以下のような太陽光発電用監視システムが開示されている。すなわち、太陽光発電用監視システムは、複数の太陽電池パネルからの出力を集約して電力変換装置に送り込む太陽光発電システムについて、前記太陽電池パネルの発電状況を監視する太陽光発電用監視システムであって、前記複数の太陽電池パネルからの出力電路が集約された場所に設けられ、各太陽電池パネルの発電量を計測する計測装置と、前記計測装置に接続され、前記計測装置による発電量の計測データを送信する機能を有する下位側通信装置と、前記下位側通信装置から送信される前記計測データを受信する機能を有する上位側通信装置と、前記上位側通信装置を介して前記太陽電池パネルごとの前記計測データを収集する機能を有する管理装置とを備える。前記管理装置は、前記各太陽電池パネルについての、同一時点における発電量の差に基づいて異常の有無を判定するか、または前記各太陽電池パネルについての、所定期間の発電量の最大値又は積算値に基づいて異常の有無を判定する。
特開2012-205078号公報
 (1)本開示の監視装置は、太陽電池パネルを含む発電部からの出力ラインが電力変換装置に電気的に接続される太陽光発電システムに用いられる監視装置であって、前記発電部の電流の計測結果を取得する取得部と、前記計測結果に基づいて前記電力変換装置の動作状態を判別し、判別した前記動作状態、および前記計測結果に基づいて異常を判定する判定部とを備える。
 (7)本開示の判定方法は、太陽電池パネルを含む発電部からの出力ラインが電力変換装置に電気的に接続される太陽光発電システムに用いられる監視装置における判定方法であって、前記発電部の電流の計測結果を取得するステップと、前記計測結果に基づいて前記電力変換装置の動作状態を判別するステップと、判別した前記動作状態、および前記計測結果に基づいて異常を判定するステップとを含む。
 本開示の一態様は、このような特徴的な処理部を備える監視装置として実現され得るだけでなく、かかる特徴的な処理をコンピュータに実行させるためのプログラムとして実現され得る。また、本開示の一態様は、監視装置の一部または全部を実現する半導体集積回路として実現され得たり、監視装置を含むシステムとして実現され得る。
図1は、本発明の実施の形態に係る太陽光発電システムの構成を示す図である。 図2は、本発明の実施の形態に係るPCSユニットの構成を示す図である。 図3は、本発明の実施の形態に係る集電ユニットの構成を示す図である。 図4は、本発明の実施の形態に係る太陽電池ユニットの構成を示す図である。 図5は、本発明の実施の形態に係る発電状態判定システムの構成を示す図である。 図6は、本発明の実施の形態に係る発電状態判定システムにおける監視装置の構成を示す図である。 図7は、本発明の実施の形態に係る発電状態判定システムにおける正常なストリング電流データの一例を示す図である。 図8は、本発明の実施の形態に係る太陽光発電システムにおける発電部からの出力ラインが正負極間短絡した様子の一例を示す図である。 図9は、本発明の実施の形態に係る発電状態判定システムにおいて、正負極間短絡した出力ラインにおけるストリング電流データの一例を示す図である。 図10は、本発明の実施の形態に係る発電状態判定システムにおける逆流防止ダイオードの短絡故障の様子を示す図である。 図11は、本発明の実施の形態に係る発電状態判定システムにおいて、短絡故障した逆流防止ダイオードに対応の発電部のストリング電流データの一例を示す図である。 図12は、本発明の実施の形態に係る太陽光発電システムにおける発電部からの出力ラインが正負極間短絡した様子の他の例を示す図である。 図13は、本発明の実施の形態に係る発電状態判定システムにおいて、正負極間短絡した出力ラインにおけるストリング電流データの他の例を示す図である。 図14は、本発明の実施の形態に係る発電状態判定システムにおける発電部の出力電流と出力電圧との関係を示す図である。 図15は、本発明の実施の形態に係る監視装置が異常判定を行う際の動作手順を定めたフローチャートである。 図16は、本発明の実施の形態に係る監視装置がPCSの停止状態における異常判定を行う際の動作手順を定めたフローチャートである。 図17は、本発明の実施の形態に係る監視装置がPCSの稼働状態における異常判定を行う際の動作手順を定めたフローチャートである。
 近年、太陽光発電システムを監視して異常を判別するための技術が開発されている。
 [本開示が解決しようとする課題]
 このような特許文献1に記載の技術を超えて、太陽光発電システムの異常判定を向上させることが可能な技術が望まれる。
 本開示は、上述の課題を解決するためになされたもので、その目的は、太陽光発電システムの異常判定を向上させることが可能な監視装置および判定方法を提供することである。
 [本開示の効果]
 本開示によれば、太陽光発電システムの異常判定を向上させることができる。
 [本願発明の実施形態の説明]
 最初に、本発明の実施形態の内容を列記して説明する。
 (1)本発明の実施の形態に係る監視装置は、太陽電池パネルを含む発電部からの出力ラインが電力変換装置に電気的に接続される太陽光発電システムに用いられる監視装置であって、前記発電部の電流の計測結果を取得する取得部と、前記計測結果に基づいて前記電力変換装置の動作状態を判別し、判別した前記動作状態、および前記計測結果に基づいて異常を判定する判定部とを備える。
 このような構成により、発電部の電流の計測結果を用いて電力変換装置の動作状態を判別し、発電部の電流の計測結果を用いた異常判定であって判別結果に応じた異常判定を行うことができる。これにより、太陽光発電システムにおける異常を良好に判定することができる。したがって、太陽光発電システムの異常判定を向上させることができる。
 (2)好ましくは、前記判定部は、前記電力変換装置の動作状態を停止状態であると判別し、前記停止状態における前記計測結果に基づいて異常を判定する。
 このように、電力変換装置の停止状態における発電部の電流の計測結果に着目し、発電部の出力電流の計測結果を用いて異常を判定する構成により、太陽光発電システムにおける異常を良好に判定することができる。
 (3)より好ましくは、前記発電部の電流を計測する計測部が、前記発電部と前記電力変換装置との間に接続され、前記判定部は、前記発電部の出力電流を示す前記計測結果に基づいて、前記計測部および前記電力変換装置間の回路の異常を判定する。
 このような構成により、発電部の出力電流の計測結果を用いて、計測部および電力変換装置間の回路の異常を良好に判定することができる。
 (4)より好ましくは、前記太陽光発電システムにおいて、複数の前記発電部からの出力ラインが集約部において集約されて前記電力変換装置に電気的に接続され、逆流防止ダイオードが、前記複数の発電部のうち、一部または全部の前記発電部と前記集約部との間に接続され、対応の前記発電部の電流を計測する計測部が、前記一部または全部の発電部と対応の前記逆流防止ダイオードとの間に接続され、前記判定部は、前記一部または全部の発電部への逆流電流を示す前記計測結果に基づいて、前記逆流防止ダイオードの異常を判定する。
 このような構成により、発電部への逆流電流の計測結果を用いて、逆流防止ダイオードの異常を良好に判定することができる。
 (5)好ましくは、前記発電部の電流を計測する計測部が、前記発電部と前記電力変換装置との間に接続され、前記判定部は、前記電力変換装置の動作状態を稼働状態であると判別し、前記電力変換装置の稼働状態における前記発電部の出力電流を示す前記計測結果に基づいて、前記発電部および前記計測部間の回路の異常を判定する。
 このように、電力変換装置の稼働状態における発電部の電流の計測結果に着目し、発電部の出力電流の計測結果を用いて異常を判定する構成により、発電部および計測部間の回路の異常を良好に判定することができる。
 (6)より好ましくは、前記太陽光発電システムにおいて、複数の前記発電部からの出力ラインが集約部において集約されて前記電力変換装置に電気的に接続され、対応の前記発電部の電流を計測する計測部が、前記複数の発電部のうち、一部または全部の複数の前記発電部と前記電力変換装置との間に接続され、前記判定部は、前記電力変換装置の稼働状態における前記一部または全部の複数の発電部の出力電流を示す前記計測結果に基づいて、前記計測部および前記集約部間の回路の異常を判定する。
 このように、電力変換装置の稼働状態における発電部の電流の計測結果に着目し、各発電部の出力電流の計測結果を用いて異常を判定する構成により、計測部および集約部間の回路の異常を良好に判定することができる。
 (7)本発明の実施の形態に係る判定方法は、太陽電池パネルを含む発電部からの出力ラインが電力変換装置に電気的に接続される太陽光発電システムに用いられる監視装置における判定方法であって、前記発電部の電流の計測結果を取得するステップと、前記計測結果に基づいて前記電力変換装置の動作状態を判別するステップと、判別した前記動作状態、および前記計測結果に基づいて異常を判定するステップとを含む。
 このような構成により、発電部の電流の計測結果を用いて電力変換装置の動作状態を判別し、発電部の電流の計測結果を用いた異常判定であって判別結果に応じた異常判定を行うことができる。これにより、太陽光発電システムにおける異常を良好に判定することができる。したがって、太陽光発電システムの異常判定を向上させることができる。
 以下、本発明の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。また、以下に記載する実施の形態の少なくとも一部を任意に組み合わせてもよい。
 [太陽光発電システムの構成]
 図1は、本発明の実施の形態に係る太陽光発電システムの構成を示す図である。
 図1を参照して、太陽光発電システム401は、4つのPCS(Power Conditioning Subsystem)ユニット80と、キュービクル6とを備える。キュービクル6は、銅バー73を含む。
 図1では、4つのPCSユニット80を代表的に示しているが、さらに多数または少数のPCSユニット80が設けられてもよい。
 図2は、本発明の実施の形態に係るPCSユニットの構成を示す図である。
 図2を参照して、PCSユニット80は、4つの集電ユニット60と、PCS(電力変換装置)8とを備える。PCS8は、銅バー7と、電力変換部9とを含む。
 図2では、4つの集電ユニット60を代表的に示しているが、さらに多数または少数の集電ユニット60が設けられてもよい。
 図3は、本発明の実施の形態に係る集電ユニットの構成を示す図である。
 図3を参照して、集電ユニット60は、4つの太陽電池ユニット74と、集電箱71とを含む。集電箱71は、銅バー72を有する。
 図3では、4つの太陽電池ユニット74を代表的に示しているが、さらに多数または少数の太陽電池ユニット74が設けられてもよい。
 図4は、本発明の実施の形態に係る太陽電池ユニットの構成を示す図である。
 図4を参照して、太陽電池ユニット74は、4つの発電部78A,78B,78C,78Dと、接続箱76とを含む。発電部78は、太陽電池パネル79を有する。接続箱76は、銅バー77を有する。以下、発電部78A,78B,78C,78Dの各々を発電部78とも称する。
 図4では、4つの発電部78を代表的に示しているが、さらに多数または少数の発電部78が設けられてもよい。
 発電部78は、この例では4つの太陽電池パネル79が直列接続されたストリングである。
 図4では、4つの太陽電池パネル79を代表的に示しているが、さらに多数または少数の太陽電池パネルが設けられてもよい。
 太陽光発電システム401では、複数の発電部78からの出力ラインおよび集約ラインすなわち電力線がそれぞれキュービクル6に電気的に接続される。
 より詳細には、発電部78の出力ライン1は、発電部78に接続された第1端と、銅バー77に接続された第2端とを有する。各出力ライン1は、銅バー77を介して集約ライン5に集約される。銅バー77は、たとえば接続箱76の内部に設けられている。
 発電部78は、太陽光を受けると、受けた太陽光のエネルギーを直流電力に変換し、変換した直流電力を出力ライン1へ出力する。
 図3および図4を参照して、集約ライン5は、対応の太陽電池ユニット74における銅バー77に接続された第1端と、銅バー72に接続された第2端とを有する。各集約ライン5は、銅バー72を介して集約ライン2に集約される。銅バー72は、たとえば集電箱71の内部に設けられている。
 図1~図4を参照して、太陽光発電システム401では、上述のように複数の発電部78からの各出力ライン1が集約ライン5に集約され、各集約ライン5が集約ライン2に集約され、各集約ライン2が集約ライン4に集約され、各集約ライン4がキュービクル6に電気的に接続される。
 より詳細には、各集約ライン2は、対応の集電ユニット60における銅バー72に接続された第1端と、銅バー7に接続された第2端とを有する。PCS8において、内部ライン3は、銅バー7に接続された第1端と、電力変換部9に接続された第2端とを有する。
 PCS8において、電力変換部9は、たとえば、各発電部78において発電された直流電力を出力ライン1、銅バー77、集約ライン5、銅バー72、集約ライン2、銅バー7および内部ライン3経由で受けると、受けた直流電力を交流電力に変換して集約ライン4へ出力する。
 集約ライン4は、電力変換部9に接続された第1端と、銅バー73に接続された第2端とを有する。
 キュービクル6において、各PCS8における電力変換部9から各集約ライン4へ出力された交流電力は、銅バー73を介して系統へ出力される。
 [発電状態判定システム301の構成]
 図5は、本発明の実施の形態に係る発電状態判定システムの構成を示す図である。
 図5を参照して、太陽光発電システム401は、発電状態判定システム301を備える。発電状態判定システム301は、管理装置101と、複数の監視装置111と、収集装置151とを含む。
 図5では、1つの集電ユニット60に対応して設けられた4つの監視装置111を代表的に示しているが、さらに多数または少数の監視装置111が設けられてもよい。また、発電状態判定システム301は、1つの収集装置151を備えているが、複数の収集装置151を備えてもよい。
 発電状態判定システム301では、子機である監視装置111におけるセンサの情報が、収集装置151へ定期的または不定期に伝送される。
 監視装置111は、たとえば集電ユニット60に設けられている。より詳細には、監視装置111は、4つの太陽電池ユニット74にそれぞれ対応して4つ設けられている。各監視装置111は、たとえば、対応の出力ライン1および集約ライン5に電気的に接続されている。
 監視装置111は、対応の太陽電池ユニット74における各出力ライン1の電流をセンサにより計測する。また、監視装置111は、対応の太陽電池ユニット74における各出力ライン1の電圧をセンサにより計測する。
 収集装置151は、各監視装置111の計測結果を収集する。収集装置151は、たとえばPCS8の近傍に設けられている。より詳細には、収集装置151は、PCS8に対応して設けられ、信号線46を介して銅バー7に電気的に接続されている。
 監視装置111および収集装置151は、集約ライン2,5を介して電力線通信(PLC:Power Line Communication)を行うことにより情報の送受信を行う。
 より詳細には、各監視装置111は、対応の出力ラインの電流および電圧の計測結果、および異常判定結果を示す監視情報を送信する。
 収集装置151は、集約ライン2,5経由で情報を送受信することが可能である。具体的には、収集装置151は、たとえば、信号線46および集約ライン2,5を介して監視装置111と電力線通信を行い、監視装置111からの監視情報を受信する。
 収集装置151は、ネットワークを介して、管理装置101等の他の装置と情報の送受信を行う。
 [監視装置111の構成]
 図6は、本発明の実施の形態に係る発電状態判定システムにおける監視装置の構成を示す図である。図6では、接続箱76の内部がより詳細に示されている。
 図6を参照して、接続箱76は、集約部91と、開閉器93A,93B,93C,93Dと、逆流防止ダイオード94A,94B,94C,94Dと、出力ライン1と、集約ライン5と、銅バー77とを含む。
 以下、開閉器93A,93B,93C,93Dの各々を、開閉器93とも称し、逆流防止ダイオード94A,94B,94C,94Dの各々を、逆流防止ダイオード94とも称する。
 出力ライン1の各々は、プラス側出力ライン1pa,1pb,1pcと、マイナス側出力ライン1na,1nbとを含む。
 集約ライン5は、プラス側集約ライン5pと、マイナス側集約ライン5nとを含む。集約部91は、銅バー77を含み、複数の発電部78からの出力ライン1を集約する。銅バー77は、プラス側銅バー77pと、マイナス側銅バー77nとを有する。
 図示しないが、図3に示す集電箱71における銅バー72は、プラス側集約ライン5pおよびマイナス側集約ライン5nにそれぞれ対応して、プラス側銅バー72pおよびマイナス側銅バー72nを含む。
 逆流防止ダイオード94は、発電部78と集約部91との間に接続されている。
 より詳細には、プラス側出力ライン1paは、対応の発電部78に接続された第1端と、対応の開閉器93に接続された第2端とを有する。プラス側出力ライン1pbは、対応の開閉器93に接続された第1端と、対応の逆流防止ダイオード94のアノードに接続された第2端とを有する。プラス側出力ライン1pcは、対応の逆流防止ダイオード94のカソードに接続された第1端と、対応のプラス側銅バー77pに接続された第2端とを有する。
 マイナス側出力ライン1naは、対応の発電部78に接続された第1端と、対応の開閉器93に接続された第2端とを有する。マイナス側出力ライン1nbは、対応の開閉器93に接続された第1端と、マイナス側銅バー77nに接続された第2端とを有する。
 プラス側集約ライン5pは、プラス側銅バー77pに接続された第1端と、集電箱71におけるプラス側銅バー72pに接続された第2端とを有する。マイナス側集約ライン5nは、マイナス側銅バー77nに接続された第1端と、集電箱71におけるマイナス側銅バー72nに接続された第2端とを有する。
 監視装置111は、取得部11と、通信部14と、判定部15と、電圧センサ17と、記憶部18と、計測部19とを備える。計測部19は、4つの電流センサ16を含む。なお、監視装置111は、出力ライン1の数に応じて、さらに多数または少数の電流センサ16を備えてもよい。
 監視装置111は、たとえば、発電部78の近傍に設けられている。具体的には、監視装置111は、たとえば、計測対象の出力ライン1が接続された銅バー77が設けられた接続箱76の内部に設けられている。なお、監視装置111は、接続箱76の外部に設けられてもよい。
 監視装置111は、たとえば、プラス側集約ライン5pおよびマイナス側集約ライン5nとそれぞれプラス側電源線26pおよびマイナス側電源線26nを介して電気的に接続されている。以下、プラス側電源線26pおよびマイナス側電源線26nの各々を、電源線26とも称する。
 取得部11は、発電部78の電流の計測結果を取得する。より詳細には、取得部11は、電流センサ16により計測された出力ライン1の電流を示す計測結果を取得する。
 具体的には、電流センサ16は、たとえば、ホール素子タイプの電流プローブである。電流センサ16は、発電部78とPCS8との間に接続され、監視装置111の図示しない電源回路から受けた電力を用いて、対応のプラス側出力ライン1pを通して流れる電流を、たとえば所定時間ごとに計測し、計測結果を示す信号を取得部11へ出力する。なお、電流センサ16は、マイナス側出力ライン1nを通して流れる電流を計測してもよい。
 電圧センサ17は、たとえば所定時間ごとに出力ライン1の電圧を計測する。より詳細には、電圧センサ17は、プラス側銅バー77pおよびマイナス側銅バー77n間の電圧を計測し、計測結果を示す信号を取得部11へ出力する。
 取得部11は、電流センサ16および電圧センサ17から受けた各々の信号に含まれる計測結果、対応の電流センサ16のID(以下、電流センサIDとも称する。)および電圧センサ17のID(以下、電圧センサIDとも称する。)を記憶部18に保存する。
 判定部15は、発電部78の計測結果に基づいてPCS8の動作状態を判別し、判別した動作状態および発電部78の計測結果に基づいて異常を判定する。
 たとえば、判定部15は、PCS8の停止状態における発電部78の電流の計測結果に基づいて異常を判定する。
 [異常判定1]
 判定部15は、たとえば、発電部78の出力電流を示す計測結果に基づいて、計測部19およびPCS8間の回路の異常を判定する。
 具体的には、判定部15は、たとえば、1日ごとに、記憶部18から電流センサIDが同一である電流センサ16の各計測結果を取得し、取得した各計測結果を時系列に並べたストリング電流データを作成する。
 図7は、本発明の実施の形態に係る発電状態判定システムにおける正常なストリング電流データの一例を示す図である。図7において、横軸は時間を示し、縦軸は電流センサ16の計測結果すなわち電流値を示す。
 図7を参照して、出力ライン1において、時刻t1までは電流が流れず、時刻t1から夕方の時刻t2までは対応の発電部78における発電電力に応じた電流が流れ、時刻t2以降は電流が流れない。
 PCS8は、たとえば、発電部78が発電した電力により動作する。監視装置111は、電流センサ16および電圧センサ17の各々から受けた信号に含まれる計測結果から、PCS8が稼働状態であるか、または停止状態であるかを判別する。
 より詳細には、監視装置111における判定部15は、電圧センサ17が計測した電圧がPCS8を稼働させるのに十分な電圧であり、かつ電流センサ16が計測したPCS8に電気的に接続されている出力ライン1を通して流れる電流の合計がPCS8を稼働させるのに十分な電流である場合、PCS8が稼働状態であると判別する。
 具体的には、判定部15は、たとえば、1日ごとに、記憶部18から電流センサ16および電圧センサ17の計測結果を取得し、取得した計測結果をそれぞれ時系列に並べる。
 そして、判定部15は、発電部78の計測結果に基づいてPCS8の動作状態を判別する。
 具体的には、判定部15は、時系列に並べた計測結果から、所定値以上の電圧かつ所定値以上の電流である時間帯においてPCS8の動作状態が稼働状態であると判別し、当該時間帯を除く時間帯においてPCS8の動作状態が停止状態であると判別する。
 図7の例では、判定部15は、時刻t1から時刻t2までの期間においてPCS8が稼働状態であると判別する。
 PCS8は、朝方の時刻t1までは、PCS8が動作可能な電力が発電部78から供給されないため、電力変換を停止する。
 このとき、PCS8が高インピーダンスとなるため、PCS8に電気的に接続されている出力ライン1を通して電流は流れない。
 朝方の時刻t1から夕方の時刻t2までは、PCS8が動作可能な電力が発電部78から供給されるため、出力ライン1を通して電流が流れる。
 夕方の時刻t2以降では、PCS8は、PCS8が動作可能な電力が発電部78から供給されないため、電力変換を停止する。
 このとき、PCS8が高インピーダンスとなるため、PCS8に電気的に接続される出力ライン1を通して電流は流れない。
 図8は、本発明の実施の形態に係る太陽光発電システムにおける発電部からの出力ラインが正負極間短絡した様子の一例を示す図である。
 図8を参照して、たとえば、朝方の時刻t1以前および夕方の時刻t2以降等のPCS8の停止状態において、プラス側出力ライン1pbとマイナス側出力ライン1nbとが電流センサ16およびPCS8間において短絡した場合、出力ライン1を通して電流I1が流れる。
 図9は、本発明の実施の形態に係る発電状態判定システムにおいて、正負極間短絡した出力ラインにおけるストリング電流データの一例を示す図である。図9において、横軸は時間を示し、縦軸は電流センサ16の計測結果すなわち電流値を示す。
 図9を参照して、グラフD1は図7に示すグラフと同一であり、正常なストリング電流データの一例を示す。グラフD2は、正負極間短絡した出力ラインにおけるストリング電流データの一例を示す。
 グラフD2では、時刻t1以前および時刻t2以降に出力ライン1を通して流れる電流を確認することができる。
 判定部15は、たとえば、PCS8が停止状態である時刻t1以前および時刻t2以降において、出力ライン1を通して流れる電流が所定値以上である場合、電流センサ16を含む計測部19およびPCS8間の回路が異常であると判定する。
 すなわち、判定部15は、計測部19およびPCS8間の正負極間短絡を検知することができる。
 判定部15は、判定した計測部19およびPCS8間の回路の異常を示す判定結果、ストリング電流データ、および電圧センサ17の計測結果を関連付けた監視情報を通信部14へ出力する。
 通信部14は、集約ラインを介した電力線通信を、複数の監視装置111の計測結果を収集する収集装置151と行うことが可能である。より詳細には、通信部14は、集約ライン2,5経由で情報を送受信することが可能である。具体的には、通信部14は、電源線26および集約ライン2,5を介して収集装置151と電力線通信を行う。
 通信部14は、判定部15から受けた監視情報を収集装置151へ送信する。
 [異常判定2]
 判定部15は、たとえば、PCS8の停止状態における発電部78への逆流電流を示す計測結果に基づいて、逆流防止ダイオードの異常を判定する。
 図10は、本発明の実施の形態に係る発電状態判定システムにおける逆流防止ダイオードの短絡故障の様子を示す図である。
 図10を参照して、たとえば逆流防止ダイオード94Aが短絡故障し、かつ故障した逆流防止ダイオード94に電気的に接続されている発電部78Aの出力電圧が、影、汚れ、並列アーク、地絡および初期不良等の要因により低下した場合、他の3つの発電部78B,78C,78Dの出力電流I2が発電部78Aへ流れ込む。
 図11は、本発明の実施の形態に係る発電状態判定システムにおいて、短絡故障した逆流防止ダイオードに対応の発電部のストリング電流データの一例を示す図である。図11において、横軸は時間を示し、縦軸は電流センサ16の計測結果すなわち電流値を示す。
 図11を参照して、グラフD3は、正常な発電部78である発電部78Bのストリング電流データを示し、グラフD4は、短絡故障した逆流防止ダイオードに対応の発電部78である発電部78Aのストリング電流データを示す。
 発電部78Bに対応する電流センサ16において、たとえば、発電部78Aに対応する逆流防止ダイオード94Aが、たとえば短絡等により故障し、かつ発電部78Aの電圧が低下した場合、PCS8の停止状態すなわち時刻t1以前および時刻t2以降において、発電部78Bの出力電流が計測される。
 また、発電部78Aに対応する電流センサ16において、時刻t1以前および時刻t2以降、マイナスの電流値すなわち発電部78Aへの逆電流が計測される。
 判定部15は、たとえば、PCS8の停止状態において、出力ライン1を通して逆電流が流れる場合、当該出力ライン1に対応する逆流防止ダイオード94を異常であると判定する。
 すなわち、判定部15は、逆流防止ダイオード94の短絡故障を検知することができる。
 判定部15は、判定した逆流防止ダイオード94の異常を示す判定結果、ストリング電流データおよび電圧センサ17の計測結果を関連付けた監視情報を通信部14へ出力する。
 通信部14は、判定部15から受けた監視情報を収集装置151へ送信する。
 [異常判定3]
 判定部15は、たとえば、PCS8の稼働状態における発電部78の出力電流を示す計測結果に基づいて、発電部78および計測部19間の回路の異常を判定する。
 図12は、本発明の実施の形態に係る太陽光発電システムにおける発電部からの出力ラインが正負極間短絡した様子の他の例を示す図である。
 図12を参照して、たとえば、PCS8の稼働状態において、プラス側出力ライン1pbとマイナス側出力ライン1nbとが発電部78および計測部19間において短絡した場合、プラス側出力ライン1paからプラス側出力ライン1pbへ流れる電流は、短絡箇所を流れる電流I3aおよび集約部91へ流れる電流I3bに分岐する。電流I3bは、電流I3aと比べて非常に小さくなる。
 図13は、本発明の実施の形態に係る発電状態判定システムにおいて、正負極間短絡した出力ラインにおけるストリング電流データの他の例を示す図である。図13において、横軸は時間を示し、縦軸は電流センサ16の計測結果すなわち電流値を示す。
 図13を参照して、グラフD5に示すように、出力ライン1を通して流れる電流は、時刻t3において出力ラインの正負極間短絡が生じたため、時刻t3以降において小さくなる。
 判定部15は、たとえば、PCS8の稼働状態である時刻t1から時刻t2までの期間の少なくとも一部において、出力ライン1等を通して流れる電流が所定値未満である場合、発電部78および計測部19間の回路が異常であると判定する。
 すなわち、判定部15は、発電部78および計測部19間の正負極間短絡を検知することができる。
 判定部15は、判定した発電部78および計測部19間の回路の異常を示す判定結果、ストリング電流データ、および電圧センサ17の計測結果を関連付けた監視情報を通信部14へ出力する。
 通信部14は、判定部15から受けた監視情報を収集装置151へ送信する。
 [異常判定4]
 判定部15は、たとえば、PCS8の稼働状態における発電部78の出力電流を示す計測結果に基づいて、計測部19および集約部91間の回路の異常を判定する。
 再び図9を参照して、グラフD1およびグラフD2に示すように、PCS8の稼働状態、すなわち時刻t1から時刻t2までの期間において、正負極間短絡した出力ライン1を通して流れる電流は、正常な出力ライン1を通して流れる電流と比べて大きくなる。
 図14は、本発明の実施の形態に係る発電状態判定システムにおける発電部の出力電流と出力電圧との関係を示す図である。図14において、横軸は電圧を示し、縦軸は電流を示す。
 図14を参照して、発電部78では、最大電力点追従(MPPT:Maximum Power Point Tracking)により、発電電力が最大になるように電流および電圧が制御されている。
 図14に示すポイントpmは、発電電力が最大となる点であり、このとき発電部78の出力電圧はVpmであり、発電部78の出力電流はIpmである。
 正負極間短絡が生じた発電部78では、たとえば、出力電圧がVscに低下する。このとき、発電電力が最大となる出力電流はIscであり、Ipmと比べて大きい。このため、図9に示すグラフD1およびグラフD2に示すように、正負極間短絡した出力ライン1を通して流れる電流は、正常な出力ライン1を通して流れる電流と比べて大きくなる。
 判定部15は、たとえば、PCS8の稼働状態において、各出力ライン1を通して流れる電流を比較し、他の出力ライン1を通して流れる電流より大きい電流が流れている出力ライン1に対応する回路が異常であると判定する。
 より詳細には、判定部15は、各発電部78のストリング電流データを作成する。そして判定部15は、時刻t1から時刻t2までの期間の時刻t4における、各発電部78の電流値の平均値AVEを算出する。時刻t4は、たとえばある発電部78の出力電流が1日のうちで最大となった時間である。
 判定部15は、発電部78の時刻t4における電流値が平均値AVEより所定値以上大きい場合、当該発電部78に対応する出力ライン1における計測部19および集約部91間の回路が異常であると判定する。
 すなわち、判定部15は、計測部19および集約部91間の正負極間短絡を検知することができる。
 判定部15は、判定した計測部19および集約部91間の回路の異常を示す判定結果、ストリング電流データ、および電圧センサ17の計測結果を関連付けた監視情報を通信部14へ出力する。
 通信部14は、判定部15から受けた監視情報を収集装置151へ送信する。
 [動作の流れ]
 発電状態判定システム301における各装置は、コンピュータを備え、当該コンピュータにおけるCPU等の演算処理部は、以下のフローチャートの各ステップの一部または全部を含むプログラムを図示しないメモリからそれぞれ読み出して実行する。これら複数の装置のプログラムは、それぞれ、外部からインストールすることができる。これら複数の装置のプログラムは、それぞれ、記録媒体に格納された状態で流通する。
 図15は、本発明の実施の形態に係る監視装置が異常判定を行う際の動作手順を定めたフローチャートである。
 図15を参照して、まず、監視装置111は、発電部78A,78B,78C,78Dの電流および電圧の計測結果を取得する(ステップS101)。
 次に、監視装置111は、取得した計測結果に基づいて、PCS8の動作状態を判別する。より詳細には、監視装置111は、取得した計測結果に基づいて、PCS8が稼働状態である時間帯および停止状態である時間帯を判別する(ステップS102)。
 次に、監視装置111は、取得した計測結果から各発電部78のストリング電流データを作成する(ステップS103)。
 次に、監視装置111は、PCS8が停止状態である時間帯における計測結果に基づいて異常判定を行う(ステップS104)。
 次に、監視装置111は、PCS8が稼働状態である時間帯における計測結果に基づいて異常判定を行う(ステップS105)。
 次に、監視装置111は、発電部78A,78B,78C,78Dの電流および電圧の新たな計測結果を取得する(ステップS101)。
 なお、ステップS102およびステップS103の順番は、上記に限らず、順番を入れ替えてもよい。
 また、ステップS104およびステップS105の順番は、上記に限らず、順番を入れ替えてもよい。
 図16は、本発明の実施の形態に係る監視装置がPCSの停止状態における異常判定を行う際の動作手順を定めたフローチャートである。
 図16を参照して、まず、監視装置111は、ある発電部78について異常判定を開始する。監視装置111は、PCS8の停止状態において逆電流が計測された場合(ステップS201でYES)、対応の出力ライン1における逆流防止ダイオード94の短絡故障の異常であると判定する(ステップS202)。
 次に、監視装置111は、判定結果、ストリング電流データ、および電圧センサ17の計測結果を含む監視情報を収集装置151へ送信する(ステップS203)。
 一方、監視装置111は、PCS8の停止状態において所定値以上の出力電流が計測された場合(ステップS201でNO、かつステップS204でYES)、対応の出力ライン1のうちの計測部19および集約部91間における正負極間短絡の異常であると判定する(ステップS205)。
 次に、監視装置111は、判定結果、ストリング電流データ、および電圧センサ17の計測結果を含む監視情報を収集装置151へ送信する(ステップS203)。
 一方、監視装置111は、PCS8の停止状態において逆電流が計測されず(ステップS201でNO)、かつ所定値未満の電流が計測された場合(ステップS204でNO)、対応する出力ライン1の回路が正常であると判定する(ステップS206)。
 次に、監視装置111は、判定結果、ストリング電流データ、および電圧センサ17の計測結果を含む監視情報を収集装置151へ送信する(ステップS203)。
 次に、監視装置111は、他の発電部78の計測結果について異常判定を行っていない場合(ステップS207でNO)、他の発電部78の計測結果について異常判定を行う(ステップS201)。
 一方、監視装置111は、すべての発電部78の計測結果について異常判定を行った場合(ステップS207でYES)、PCSの停止状態における異常判定を終了する。
 図17は、本発明の実施の形態に係る監視装置がPCSの稼働状態における異常判定を行う際の動作手順を定めたフローチャートである。
 図17を参照して、まず、監視装置111は、ある発電部78について異常判定を開始する。監視装置111は、PCS8の稼働状態において所定値未満の出力電流が計測された場合(ステップS301でYES)、対応の出力ライン1のうち発電部78および計測部19間における正負極間短絡の異常であると判定する(ステップS302)。
 次に、監視装置111は、判定結果、ストリング電流データ、および電圧センサ17の計測結果を含む監視情報を収集装置151へ送信する(ステップS303)。
 一方、監視装置111は、PCS8の稼働状態において、所定値以上の出力電流が計測され(ステップS301でNO)、かつ、他のストリング電流データと比べて所定値以上大きい出力電流が計測された場合(ステップS304でYES)、対応の出力ライン1のうちの計測部19および集約部91間における正負極間短絡の異常であると判定する(ステップS305)。
 次に、監視装置111は、判定結果、ストリング電流データ、および電圧センサ17の計測結果を含む監視情報を収集装置151へ送信する(ステップS303)。
 一方、監視装置111は、PCS8の稼働状態において、出力所定値以上の電流が計測され(ステップS301でNO)、かつ、他のストリング電流データと比べて所定値未満大きい出力電流が計測された場合(ステップS304でNO)、対応する出力ライン1の回路が正常であると判定する(ステップS306)。
 次に、監視装置111は、判定結果、ストリング電流データ、および電圧センサ17の計測結果を含む監視情報を収集装置151へ送信する(ステップS303)。
 次に、監視装置111は、他の発電部78の計測結果について異常判定を行っていない場合(ステップS307でNO)、他の発電部78の計測結果について異常判定を行う(ステップS301)。
 一方、監視装置111は、すべての発電部78の計測結果について異常判定を行った場合(ステップS307でYES)、PCSの稼働状態における異常判定を終了する。
 なお、本発明の実施の形態に係る発電状態判定システムでは、PCS8は、動作可能な電力が発電部78から供給されない場合、電力変換を停止する構成であるとしたが、これに限定するものではない。PCS8は、たとえば、発電部78がPCS8変換容量を超える電力を発電している場合、または系統への出力を抑制されている場合、電力変換を停止する構成であってもよい。
 また、本発明の実施の形態に係る発電状態判定システムでは、監視装置111が異常を判定する構成であるとしたが、これに限定するものではない。監視装置111が、各計測結果、電流センサIDおよび電圧センサIDを収集装置151または管理装置101へ送信し、収集装置151または管理装置101が、監視装置111から送信された各計測結果に基づいて、異常を判定する構成であってもよい。この場合、管理装置101は、監視装置111から送信された各計測結果を取得する取得部と、取得部によって取得された各計測結果に基づいて異常判定1~4を行う判定部とを備える。
 また、本発明の実施の形態に係る発電状態判定システムでは、監視装置111は、異常判定1~4を行う構成であるとしたが、これに限定するものではない。監視装置111は、異常判定1~4の一部を行う構成であってもよい。
 また、本発明の実施の形態に係る発電状態判定システムでは、監視装置111は、計測部19を備える構成であるとしたが、これに限定するものではない。計測部19は、監視装置111の外部に設けられる構成であってもよい。
 また、本発明の実施の形態に係る太陽光発電システムでは、逆流防止ダイオード94が発電部78ごとに設けられている構成であるとしたが、これに限定するものではない。太陽光発電システム401では、逆流防止ダイオード94A,94B,94C,94Dの一部または全部が設けられない構成であってもよい。
 また、本発明の実施の形態に係る発電状態判定システムでは、電流センサ16が発電部78ごとに設けられている構成であるとしたが、これに限定するものではない。発電状態判定システム301では、当該各電流センサ16のうちの一部が設けられない構成であってもよい。ただし、監視装置111は、複数の電流センサ16が対応の発電部78に設けられている場合に異常判定4を行う。
 ところで、特許文献1に記載の技術を超えて、太陽光発電システムの異常判定を向上させることが可能な技術が望まれる。
 本発明の実施の形態に係る監視装置では、取得部11は、太陽電池パネル79を含む発電部78の電流の計測結果を取得する。判定部15は、当該計測結果に基づいてPCS8の動作状態を判別し、判別した動作状態、および計測結果に基づいて異常を判定する。
 このような構成により、発電部78の電流の計測結果を用いてPCS8の動作状態を判別し、発電部78の電流の計測結果を用いた異常判定であって判別結果に応じた異常判定を行うことができる。これにより、太陽光発電システム401における異常を良好に判定することができる。
 したがって、本発明の実施の形態に係る監視装置では、太陽光発電システム401の異常判定を向上させることができる。
 また、本発明の実施の形態に係る監視装置では、判定部15は、PCS8の動作状態を停止状態であると判別し、停止状態における上記計測結果に基づいて異常を判定する。
 このように、PCS8の停止状態における発電部78の電流の計測結果に着目し、発電部78の出力電流の計測結果を用いて異常を判定する構成により、太陽光発電システム401における異常を良好に判定することができる。
 また、本発明の実施の形態に係る発電状態判定システムでは、発電部78の電流を計測する計測部19が、発電部78とPCS8との間に接続され、監視装置111において、判定部15は、発電部78の出力電流を示す計測結果に基づいて、計測部19およびPCS8間の回路の異常を判定する。
 このような構成により、発電部78の出力電流の計測結果を用いて、計測部19およびPCS8間の回路の異常を良好に判定することができる。
 また、本発明の実施の形態に係る発電状態判定システムでは、太陽光発電システム401において、複数の発電部78からの出力ラインが集約部91において集約されてPCS8に電気的に接続され、逆流防止ダイオード94が、当該複数の発電部78のうち、一部または全部の発電部78と集約部91との間に接続され、対応の発電部78の電流を計測する計測部19が、当該一部または全部の発電部78と対応の逆流防止ダイオード94との間に接続され、監視装置111において、判定部15は、当該一部または全部の発電部78への逆流電流を示す計測結果に基づいて、逆流防止ダイオード94の異常を判定する。
 このような構成により、発電部78への逆流電流の計測結果を用いて、逆流防止ダイオード94の異常を良好に判定することができる。
 また、本発明の実施の形態に係る発電状態判定システムでは、発電部78の電流を計測する計測部19が、発電部78とPCS8との間に接続され、監視装置111において、判定部15は、PCS8の動作状態を稼働状態であると判別し、PCS8の稼働状態における発電部78の出力電流を示す計測結果に基づいて、発電部78および計測部19間の回路の異常を判定する。
 このように、PCS8の稼働状態における発電部78の電流の計測結果に着目し、発電部78の出力電流の計測結果を用いて異常を判定する構成により、発電部78および計測部19間の回路の異常を良好に判定することができる。
 また、本発明の実施の形態に係る発電状態判定システムでは、太陽光発電システム401において、複数の発電部78からの出力ラインが集約部91において集約されて前記PCS8に電気的に接続され、対応の発電部78の電流を計測する計測部19が、複数の発電部78のうち、一部または全部の複数の発電部78とPCS8との間に接続され、監視装置111において、判定部15は、PCS8の稼働状態における当該一部または全部の複数の発電部78の出力電流を示す計測結果に基づいて、計測部19および集約部91間の回路の異常を判定する。
 このように、PCS8の稼働状態における発電部78の電流の計測結果に着目し、各発電部78の出力電流の計測結果を用いて異常を判定する構成により、計測部19および集約部91間の回路の異常を良好に判定することができる。
 また、本発明の実施の形態に係る監視装置における判定方法では、まず、発電部78の電流の計測結果を取得する。次に、当該計測結果に基づいてPCS8の動作状態を判別する。次に、判別した動作状態、および当該計測結果に基づいて異常を判定する。
 このような構成により、発電部78の電流の計測結果を用いてPCS8の動作状態を判別し、発電部78の電流の計測結果を用いた異常判定であって判別結果に応じた異常判定を行うことができる。これにより、太陽光発電システム401における異常を良好に判定することができる。
 したがって、本発明の実施の形態に係る監視装置における判定方法では、太陽光発電システム401の異常判定を向上させることができる。
 上記実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 以上の説明は、以下に付記する特徴を含む。
 [付記1]
  太陽電池パネルを含む発電部からの出力ラインが電力変換装置に電気的に接続される太陽光発電システムに用いられる監視装置であって、
 前記発電部の電流の計測結果を取得する取得部と、
 前記電力変換装置の停止状態における前記計測結果に基づいて異常を判定する判定部とを備え、
 前記発電部は、複数の太陽電池パネルが直列接続されたストリングである、監視装置。
 1 出力ライン
 2,4,5 集約ライン
 3 内部ライン
 6 キュービクル
 7 銅バー
 8 PCS
 9 電力変換部
 11 取得部
 14 通信部
 15 判定部
 16 電流センサ
 17 電圧センサ
 18 記憶部
 19 計測部
 26 電源線
 46 信号線
 60 集電ユニット
 71 集電箱
 72,73,77 銅バー
 74 太陽電池ユニット
 76 接続箱
 78 発電部
 79 太陽電池パネル
 80 PCSユニット
 81 判定部
 84 通信処理部
 85 記憶部
 86 取得部
 91 集約部
 92 計測部
 93 開閉器
 94 逆流防止ダイオード
 101 管理装置
 111 監視装置
 151 収集装置
 301 発電状態判定システム
 401 太陽光発電システム
 

Claims (7)

  1.  太陽電池パネルを含む発電部からの出力ラインが電力変換装置に電気的に接続される太陽光発電システムに用いられる監視装置であって、
     前記発電部の電流の計測結果を取得する取得部と、
     前記計測結果に基づいて前記電力変換装置の動作状態を判別し、判別した前記動作状態、および前記計測結果に基づいて異常を判定する判定部とを備える、監視装置。
  2.  前記判定部は、前記電力変換装置の動作状態を停止状態であると判別し、前記停止状態における前記計測結果に基づいて異常を判定する、請求項1に記載の監視装置。
  3.  前記発電部の電流を計測する計測部が、前記発電部と前記電力変換装置との間に接続され、
     前記判定部は、前記発電部の出力電流を示す前記計測結果に基づいて、前記計測部および前記電力変換装置間の回路の異常を判定する、請求項2に記載の監視装置。
  4.  前記太陽光発電システムにおいて、複数の前記発電部からの出力ラインが集約部において集約されて前記電力変換装置に電気的に接続され、
     逆流防止ダイオードが、前記複数の発電部のうち、一部または全部の前記発電部と前記集約部との間に接続され、
     対応の前記発電部の電流を計測する計測部が、前記一部または全部の発電部と対応の前記逆流防止ダイオードとの間に接続され、
     前記判定部は、前記一部または全部の発電部への逆流電流を示す前記計測結果に基づいて、前記逆流防止ダイオードの異常を判定する、請求項2または請求項3に記載の監視装置。
  5.  前記発電部の電流を計測する計測部が、前記発電部と前記電力変換装置との間に接続され、
     前記判定部は、前記電力変換装置の動作状態を稼働状態であると判別し、前記電力変換装置の稼働状態における前記発電部の出力電流を示す前記計測結果に基づいて、前記発電部および前記計測部間の回路の異常を判定する、請求項1に記載の監視装置。
  6.  前記太陽光発電システムにおいて、複数の前記発電部からの出力ラインが集約部において集約されて前記電力変換装置に電気的に接続され、
     対応の前記発電部の電流を計測する計測部が、前記複数の発電部のうち、一部または全部の複数の前記発電部と前記電力変換装置との間に接続され、
     前記判定部は、前記電力変換装置の稼働状態における前記一部または全部の複数の発電部の出力電流を示す前記計測結果に基づいて、前記計測部および前記集約部間の回路の異常を判定する、請求項5に記載の監視装置。
  7.  太陽電池パネルを含む発電部からの出力ラインが電力変換装置に電気的に接続される太陽光発電システムに用いられる監視装置における判定方法であって、
     前記発電部の電流の計測結果を取得するステップと、
     前記計測結果に基づいて前記電力変換装置の動作状態を判別するステップと、
     判別した前記動作状態、および前記計測結果に基づいて異常を判定するステップとを含む、判定方法。
     
PCT/JP2018/045592 2018-02-02 2018-12-12 監視装置および判定方法 WO2019150777A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019568910A JP7226338B2 (ja) 2018-02-02 2018-12-12 監視装置および判定方法
DE112018007008.5T DE112018007008T5 (de) 2018-02-02 2018-12-12 Überwachungsvorrichtung und Bestimmungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018016842 2018-02-02
JP2018-016842 2018-02-02

Publications (1)

Publication Number Publication Date
WO2019150777A1 true WO2019150777A1 (ja) 2019-08-08

Family

ID=67479244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045592 WO2019150777A1 (ja) 2018-02-02 2018-12-12 監視装置および判定方法

Country Status (3)

Country Link
JP (1) JP7226338B2 (ja)
DE (1) DE112018007008T5 (ja)
WO (1) WO2019150777A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021189083A (ja) * 2020-06-02 2021-12-13 住友電気工業株式会社 判定装置および判定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120050924A1 (en) * 2010-08-24 2012-03-01 Sanyo Electric Co., Ltd. Current collecting box for photovoltaic power generation
JP2012119382A (ja) * 2010-11-29 2012-06-21 Jx Nippon Oil & Energy Corp 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム
JP2015128335A (ja) * 2013-12-27 2015-07-09 オムロン株式会社 地絡検出装置
JP2015195694A (ja) * 2014-03-20 2015-11-05 パナソニックIpマネジメント株式会社 異常検知装置
JP2016101012A (ja) * 2014-11-21 2016-05-30 オムロン株式会社 地絡検出装置および地絡検出方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9043039B2 (en) * 2011-02-24 2015-05-26 Tigo Energy, Inc. System and method for arc detection and intervention in solar energy systems
JP5888724B2 (ja) * 2011-09-20 2016-03-22 学校法人東京理科大学 太陽電池アレイの診断装置、パワーコンディショナ、太陽電池アレイの診断方法、及びプログラム
JP2013247787A (ja) * 2012-05-25 2013-12-09 Toshiba Corp 太陽光発電システム及び短絡電流検出装置
JP2015018838A (ja) * 2013-07-08 2015-01-29 木谷電器株式会社 太陽電池用逆流防止ダイオードの故障検出装置、太陽電池用逆流防止ダイオードの故障検出システム、及び太陽電池用逆流防止ダイオードの故障検出方法
JP6040960B2 (ja) * 2014-05-29 2016-12-07 住友電気工業株式会社 異常検知装置
WO2017038144A1 (ja) * 2015-08-31 2017-03-09 住友電気工業株式会社 監視装置、収集装置、監視システムおよび監視方法
KR101776159B1 (ko) * 2015-09-07 2017-09-07 강문수 태양전지 모듈의 수명 연장이 가능한 접속반을 구비한 태양광 발전 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120050924A1 (en) * 2010-08-24 2012-03-01 Sanyo Electric Co., Ltd. Current collecting box for photovoltaic power generation
JP2012119382A (ja) * 2010-11-29 2012-06-21 Jx Nippon Oil & Energy Corp 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム
JP2015128335A (ja) * 2013-12-27 2015-07-09 オムロン株式会社 地絡検出装置
JP2015195694A (ja) * 2014-03-20 2015-11-05 パナソニックIpマネジメント株式会社 異常検知装置
JP2016101012A (ja) * 2014-11-21 2016-05-30 オムロン株式会社 地絡検出装置および地絡検出方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021189083A (ja) * 2020-06-02 2021-12-13 住友電気工業株式会社 判定装置および判定方法
JP7400631B2 (ja) 2020-06-02 2023-12-19 住友電気工業株式会社 判定装置および判定方法

Also Published As

Publication number Publication date
JP7226338B2 (ja) 2023-02-21
DE112018007008T5 (de) 2020-11-05
JPWO2019150777A1 (ja) 2021-02-12

Similar Documents

Publication Publication Date Title
US9153953B2 (en) Fault detection apparatus
CN114300760B (zh) 安全电池能量管理***、电池管理***节点和方法
TWI399899B (zh) 電池組電路、電池系統及電池組保護方法
WO2013098932A1 (ja) 電池システム、および地絡検知装置
EP3553911A1 (en) Microgrid system, and method for managing malfunction
US20100201493A1 (en) Photoelectric cell device and malfunction determining method
US20100085063A1 (en) Method of diagnosing defective elements in a standalone system, powered by an intermittent power source
JP6520771B2 (ja) 太陽電池の故障検出装置および太陽光発電システム
KR101245827B1 (ko) 마이크로 인버터 컨버터를 이용한 태양광모듈의 음영 및 고장을 감지하는 장치
US10992257B2 (en) State of health mechanisms for energy generation systems
KR102558715B1 (ko) 전기 전력 분산 마이크로-그리드를 제어하기 위한 방법
US20140354236A1 (en) Battery management system and driving method thereof
JP2021189083A (ja) 判定装置および判定方法
WO2019150777A1 (ja) 監視装置および判定方法
KR102109157B1 (ko) 신재생 에너지 모니터링 시스템
JP6611435B2 (ja) 太陽光発電設備の異常検出システム
JP7095734B2 (ja) 判定装置、太陽光発電システムおよび判定方法
WO2018066693A1 (ja) 判定装置および監視装置
WO2019216014A1 (ja) 監視システム
JP7196910B2 (ja) 監視装置および監視方法
JP7056674B2 (ja) 監視システム、解析装置および判定方法
KR20220036022A (ko) 태양광발전시스템 스트링 고장상태 진단 방법 및 시스템
CN112924855A (zh) 一种并网继电器电路
JP2023009777A (ja) 判定装置および判定方法
JP2019200075A (ja) 監視装置、判定装置、監視方法および判定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019568910

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18903666

Country of ref document: EP

Kind code of ref document: A1