WO2019149299A1 - Lageranordnung mit integrierter sensoreinrichtung zur erfassung von relativbewegungen - Google Patents

Lageranordnung mit integrierter sensoreinrichtung zur erfassung von relativbewegungen Download PDF

Info

Publication number
WO2019149299A1
WO2019149299A1 PCT/DE2018/101016 DE2018101016W WO2019149299A1 WO 2019149299 A1 WO2019149299 A1 WO 2019149299A1 DE 2018101016 W DE2018101016 W DE 2018101016W WO 2019149299 A1 WO2019149299 A1 WO 2019149299A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
encoder
track
sensor
sensor device
Prior art date
Application number
PCT/DE2018/101016
Other languages
English (en)
French (fr)
Inventor
Judith Wolf
Christian Mock
Florian Koeniger
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Publication of WO2019149299A1 publication Critical patent/WO2019149299A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/443Devices characterised by the use of electric or magnetic means for measuring angular speed mounted in bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/02Bearings or suspensions for moving parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • G01D5/2452Incremental encoders incorporating two or more tracks having an (n, n+1, ...) relationship
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/586Details of specific parts of races outside the space between the races, e.g. end faces or bore of inner ring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/80Manufacturing details of magnetic targets for magnetic encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders

Definitions

  • the present invention relates to a bearing assembly with integrated
  • Sensor device for detecting relative movements is suitable for use on wheel bearings.
  • DE 10 2006 032 159 A1 shows a bearing arrangement of a wheel hub of a motor vehicle which can be driven via a rotary joint, in which the wheel hub connected to a wheel flange and the rotary joint connected to a drive shaft are connected to one another in a rotationally fixed manner by means of a tooth system.
  • On the wheel hub is a double-row roller bearing with at least one separate, axially arranged outside and directed to the rotary inner ring.
  • the inner ring is arranged with an axially outer end face in the region of one end of a stub axle of the wheel hub and axially biased by a force acting on the end face of the separate inner ring radial surface of the wheel hub.
  • Outer ring and inner ring are provided with a seal which at least one connected to the inner ring
  • Sealing ring having in cross-section each have a radial leg and an axial leg.
  • the axial leg is rotatably connected to the inner ring and directed axially inward.
  • the axial leg of the sealing ring is bent radially inward and axially outward, wherein a free end of the axial leg projects axially outwardly beyond the end face of the bearing inner ring.
  • the free end of the axial leg can be used for an integrated encoder function.
  • a speed signal can be tapped for example in the radial direction by means of a sensor.
  • the disadvantage is that only one Encoderlesespur is integrated into the camp. Errors in the encoder or in the sensor lead to a faulty signal and, as a result, in the application of wheel bearings to a shutdown of the building on the driver assistance systems.
  • the object of the present invention is therefore to provide an improved
  • the bearing arrangement initially comprises a bearing with a first bearing part, a second bearing part which is movable relative to the first bearing part and a plurality of bearings between the first bearing part and the second bearing part
  • Another component of the bearing arrangement is a sensor device which comprises an encoder integrated in the bearing.
  • the encoder is rotatable with the
  • the sensor device further includes a first sensor unit for measuring a magnetic field generated by the first track. It is essential to the invention that the encoder has a second magnetically coded track. A second sensor unit is used to measure a magnetic field generated by the second track.
  • An essential advantage of the bearing assembly according to the invention is that by equipping the encoder with a second magnetically coded track whose magnetic field is detected by means of a separate second sensor unit, a
  • redundant measurement data acquisition is realized. This provides two parallel signals. If there is an error in one of the two signals, the other signal can be used.
  • the bearing can be designed both as a linear bearing and as a rotary bearing.
  • the rotary bearing may be formed, for example, as a wheel bearing.
  • the encoder is preferably designed as an encoder ring.
  • the encoder ring has a double-L-shaped cross-section.
  • the encoder ring may in this case comprise a first axial limb extending in the axial direction, which with respect to the
  • Encoder ring have a radially extending over the WälzMechraum at least partially extending first radial leg.
  • the first track is formed on the first axial leg, while on the first radial leg, the second track is formed.
  • both tracks may be formed on the first axial leg or both tracks on the first radial leg.
  • the encoder ring may have an L-shaped, an S-shaped, a C-shaped or a U-shaped cross section. Other suitable embodiments of the encoder ring are possible.
  • the sensor units are in all embodiments in a suitable manner opposite to the tracks to position in order to detect the magnetic fields generated by the tracks can.
  • the magnetization of the first track may, according to a preferred embodiment, have a phase offset to the second track.
  • the first and the second sensor unit may be within a common
  • Sensor housing can be arranged.
  • the first sensor unit and the second sensor unit may each be within a separate one
  • the magnetically coded tracks may be in the form of alternately arranged north and south magnetic poles. In this context has It has proven to be advantageous if all poles of the encoder each have a same pole angle. Differently magnetically encoded tracks are also possible.
  • the sensor device may be connected to an evaluation unit.
  • an evaluation unit it has proven expedient to equip the sensor device with a connecting cable for connection to an evaluation unit.
  • the data transmission to the evaluation unit does not take place via cable but wirelessly, preferably by means of a radio signal.
  • FIG. 1 shows a cross-sectional view of a bearing arrangement according to the invention according to a first embodiment
  • Fig. 2 is a cross-sectional view of the bearing assembly according to a second
  • Fig. 3 shows several cross-sectional views of various embodiments of
  • FIG. 4 is a cross-sectional view of the bearing assembly according to a third
  • Fig. 5 is a cross-sectional view of the bearing assembly according to a fourth
  • Fig. 6 is a cross-sectional view of the bearing assembly according to a fifth
  • Fig. 7 is a cross-sectional view of the bearing assembly according to a sixth
  • Fig. 8 is a cross-sectional view of the bearing assembly according to a seventh
  • FIG. 9 is a cross-sectional view of the bearing assembly according to an eighth
  • Fig. 13 is a cross-sectional view of the bearing assembly according to a twelfth
  • Fig. 14 is a cross-sectional view of the bearing assembly according to a thirteenth
  • the bearing assembly 01 comprises first a bearing 02, which in the embodiment shown as a rotary bearing for passenger cars, d. H. is designed as a wheel bearing.
  • the bearing 02 is designed in two rows and is located on a wheel hub 03. It includes an outer ring 04 and a first and a second inner ring 05, 07.
  • the first inner ring 05 is formed integrally with the wheel hub 03.
  • the formed as a separate component second inner ring 07 is rotatably connected to the wheel hub 03.
  • outer ring 04 and inner rings 05, 07 are within one
  • a further component of the bearing arrangement 01 is a sensor device 10.
  • the sensor device 10 initially has an encoder ring 12, which is secured in a rotationally fixed manner via an interference fit on an outer surface of the second inner ring 07.
  • the encoder ring 12 has in the embodiment shown a double-L-shaped
  • the encoder ring 12 includes one in the axial direction
  • the encoder ring 12 further includes a first radial leg 17 which is axially inwardly disposed with respect to the Wälzoasaraum 08. Between the first radial leg 17 and the first axial leg 15, a second axial leg 18 and a second radial leg 19 extend. The second axial leg 18 and the second radial leg 19 abut against the second inner race 07. The first axial leg 15 protrudes over a
  • the first axial leg 15 and the second radial leg 19 are within a circumferential
  • a first magnetically encoded track 22 is formed on the first axial leg 15 of the encoder ring 12.
  • the first radial leg 17 of the encoder ring 12 has a second magnetically coded track 23.
  • the magnetically coded tracks 22, 23 may be considered as alternating
  • Sensor unit 24 is disposed opposite the first track 22.
  • a second sensor unit 25 is arranged opposite the second track 23.
  • the first and second sensor units 24, 25 detect a magnetic field generated by the first and second tracks 22, 23, respectively.
  • the sensor units 24, 25 are arranged in the embodiment shown within a common sensor housing 27.
  • the sensor housing 27 may be rotatably connected, for example, with a wheel carrier (not shown).
  • Fig. 2 shows a cross-sectional view of the bearing assembly 01 according to a second embodiment. This embodiment differs from that shown in FIG. 1 only in that the sensor units 24, 25 are each arranged in a separate sensor housing 27.
  • FIG. 3 shows cross-sectional views of various embodiments of FIG. 3
  • Encoder rings which can be used in rotary bearings.
  • the possible areas for mounting the magnetically coded tracks are shown with dotted lines. With dotted lines are the possible
  • Each encoder ring 12 comprises a carrier 29 a ferromagnetic or non-ferromagnetic material, depending on whether it is arranged between a magnetic track and the sensor. On the carrier 29, the magnetically encoded tracks 22, 23 are applied.
  • Fig. 3a shows embodiments of the encoder ring 12 with L-shaped cross-section.
  • Fig. 3b shows embodiments of the encoder ring 12 with S-shaped cross-section.
  • Fig. 3c shows an embodiment of the encoder ring 12 with a double L-shaped cross-section.
  • Fig. 3d shows embodiments of the encoder ring 12 with C-shaped cross-section.
  • 3e shows an embodiment of the encoder ring 12 with a U-shaped cross section.
  • the bearing 02 which is designed as a wheel bearing.
  • only the or the sensor housing 27 are shown.
  • the sensor units, which are located within the sensor housing (s), are not explicitly shown.
  • FIGS. 4 to 12 relate to wheel bearings with rotating inner rings 05, 07.
  • the encoder ring 12 is non-rotatable via a
  • Figures 4 to 7 show embodiments of the bearing assembly 01, each of which use an encoder ring 12 with an L-shaped cross section.
  • Embodiments differ by the respective arrangement of the magnetically coded tracks 22, 23 or by the design of the inner rings 05, 07.
  • Fig. 8 shows a seventh embodiment of the bearing assembly 01, which uses an encoder ring 12 with C-shaped cross-section.
  • the encoder ring 12 extends from the second inner ring 07 beyond the outer ring 04, wherein the Encoder ring 12 partially surrounds the outer ring 04.
  • the open side of the encoder ring 12 extends from the second inner ring 07 beyond the outer ring 04, wherein the Encoder ring 12 partially surrounds the outer ring 04.
  • Encoder ring 12 faces the WälzConsequentlyraum 08.
  • the sensor device 10 comprises two sensor housings 27, in each of which a sensor unit (not shown) is arranged.
  • Fig. 9 shows an eighth embodiment of the bearing assembly 01.
  • the encoder ring 12 in turn has a C-shaped cross-section.
  • the encoder ring 12 is located completely within the rolling body space 08.
  • the open side of the encoder ring 12 is directed outwards.
  • the embodiments of the bearing arrangement 01 shown in FIGS. 10 and 11 use an encoder ring 12 with a double L-shaped cross section.
  • the two embodiments differ in the arrangement of the magnetically coded tracks 22, 23.
  • the embodiment shown in FIG. 10 uses two sensor housings 27, while the one shown in FIG. 11 uses a sensor housing 27.
  • Fig. 12 shows an eleventh embodiment of the bearing assembly 01.
  • the encoder ring 12 here has an L-shaped cross-section.
  • the embodiments of the bearing arrangement 01 shown in FIGS. 13 and 14 differ from the previously described embodiments, initially in that the outer ring 04 rotates.
  • the encoder ring 12 is non-rotatably attached via a press fit on the outer surface of the outer ring 04.
  • the embodiment shown in FIG. 13 uses an encoder ring 12 with an S-shaped cross section and two sensor housings 27.
  • the embodiment according to FIG. 14 uses an encoder ring 12 with a C-shaped cross section and a sensor housing 27.
  • the open side of the encoder ring 12 is behind directed outside.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Lageranordnung (01) umfassend ein Lager (02) mit einem ersten Lagerteil (04), einem relativ zu dem ersten Lagerteil (04) drehbaren zweiten Lagerteil (07) und mehreren zwischen dem ersten Lagerteil (04) und dem zweiten Lagerteil Innenring (07) in einem Wälzkörperraum (08) angeordneten Wälzkörpern (09). Die Lageranordnung (01 ) umfasst weiterhin eine Sensoreinrichtung (10) mit einem Encoder (12), welcher drehfest mit dem beweglichen zweiten Lagerteil (07) verbunden ist und eine erste magnetisch kodierte Spur (22) aufweist, und eine erste Sensoreinheit (24) zur Messung eines von der ersten Spur (22) erzeugten Magnetfeldes. Erfindungswesentlich ist, dass der Encoder (12) darüber hinaus eine zweite magnetisch kodierte Spur (23) aufweist, und dass die Sensoreinrichtung (10) eine zweite Sensoreinheit (25) zur Messung eines von der zweiten Spur (23) erzeugten Magnetfeldes aufweist.

Description

Laqeranordnunq mit integrierter Sensoreinrichtunq zur Erfassung von
Relativbewequnqen
Die vorliegende Erfindung betrifft eine Lageranordnung mit integrierter
Sensoreinrichtung zur Erfassung von Relativbewegungen. Insbesondere eignet sich die Erfindung für die Verwendung an Radlagern.
Sensoreinrichtungen mit Encodern als Signalgeber werden zur Erfassung der
Drehzahl oder der Winkellage zueinander beweglicher Maschinenteile eingesetzt. In der Kraftfahrzeugtechnik erfolgt mittels Encodern beispielsweise eine
Drehzahlmessung bei Radlagern.
Die DE 10 2006 032 159 A1 zeigt eine Lageranordnung einer über ein Drehgelenk antreibbaren Radnabe eines Kraftfahrzeuges, bei der die mit einem Radflansch verbundene Radnabe und das mit einer Antriebswelle verbundene Drehgelenk mittels einer Verzahnung drehfest miteinander verbunden sind. Auf der Radnabe befindet sich ein zweireihiges Wälzlager mit zumindest einem separaten, axial außen angeordneten und zum Drehgelenk gerichteten Innenring. Der Innenring ist mit einer axial äußeren Stirnfläche im Bereich eines Endes eines Achsstumpfes der Radnabe angeordnet und durch eine auf die Stirnfläche des separaten Innenringes einwirkende Radialfläche der Radnabe axial vorgespannt. Außenring und Innenring sind mit einer Dichtung versehen, welche wenigstens einen mit dem Innenring verbundenen
Dichtring mit im Querschnitt jeweils einem radialen Schenkel und einem axialen Schenkel aufweist. Der axiale Schenkel ist drehfest mit dem Innenring verbunden und nach axial innen gerichtet. Weiterhin ist der axiale Schenkel des Dichtrings nach radial innen und nach axial außen umgebogen, wobei ein freies Ende des axialen Schenkels axial nach außen die Stirnfläche des Lagerinnenrings überragt. Das freie Ende des axialen Schenkels kann für eine integrierte Encoder-Funktion genutzt werden. Ein Drehzahlsignal kann beispielsweise in radialer Richtung mittels Sensor abgegriffen werden. Nachteilig ist, dass lediglich eine Encoderlesespur in das Lager integriert ist. Fehler im Encoder bzw. im Sensor führen zu einem fehlerhaften Signal und in Folge dessen im Anwendungsfall Radlager zu einer Abschaltung der darauf aufbauenden Fahrerassistenzsysteme. Die Aufgabe der vorliegenden Erfindung besteht somit darin, eine verbesserte
Lageranordnung mit integrierter Sensoreinrichtung zur Verfügung zu stellen, welche auch bei Ausfall einzelner Komponenten der Sensoreinrichtung eine zuverlässige Erfassung von Relativbewegungen ermöglicht.
Zur Lösung dieser Aufgabe dient eine Lageranordnung gemäß dem beigefügten Anspruch 1.
Die erfindungsgemäße Lageranordnung umfasst zunächst ein Lager mit einem ersten Lagerteil, einem relativ zu dem ersten Lagerteil beweglichen zweiten Lagerteil und mehreren zwischen dem ersten Lagerteil und dem zweiten Lagerteil in einem
Wälzkörperraum angeordneten Wälzkörpern.
Ein weiterer Bestandteil der Lageranordnung ist eine Sensoreinrichtung, welche einen in das Lager integrierten Encoder umfasst. Der Encoder ist drehfest mit dem
beweglichen Lagerteil verbunden und weist eine erste magnetisch kodierte Spur auf. Die Sensoreinrichtung beinhaltet weiterhin eine erste Sensoreinheit zur Messung eines von der ersten Spur erzeugten Magnetfeldes. Erfindungswesentlich ist, dass der Encoder eine zweite magnetisch kodierte Spur aufweist. Eine zweite Sensoreinheit dient zur Messung eines von der zweiten Spur erzeugten Magnetfeldes.
Ein wesentlicher Vorteil der erfindungsgemäßen Lageranordnung besteht darin, dass durch Ausstattung des Encoders mit einer zweiten magnetisch kodierten Spur, deren Magnetfeld mittels einer separaten zweiten Sensoreinheit erfasst wird, eine
redundante Messdatenerfassung realisiert wird. Damit stehen zwei parallele Signale zur Verfügung. Falls bei einem der beiden Signale ein Fehler vorliegt, kann auf das andere Signal zurückgegriffen werden. Durch die Verwendung von zwei
Sensoreinheiten kann auch bei einem kompletten Ausfall einer Sensoreinheit die Messdatenerfassung sichergestellt werden. Auf diese Weise erhöht sich die
Zuverlässigkeit der Sensoreinrichtung. Das Lager kann sowohl als Linearlager als auch als Rotationslager ausgebildet sein. Das Rotationslager kann beispielsweise als ein Radlager ausgebildet sein.
Bei Rotationslagern ist der Encoder vorzugsweise als Encoderring ausgebildet.
Gemäß einer Ausführungsform weist der Encoderring einen Doppel-L-förmigen Querschnitt auf. Der Encoderring kann hierbei einen sich in axialer Richtung erstreckenden ersten axialen Schenkel umfassen, welcher in Bezug zu dem
Wälzkörperraum axial außenliegend angeordnet ist. Des Weiteren kann der
Encoderring einen sich in radialer Richtung über den Wälzkörperraum zumindest teilweise erstreckenden ersten radialen Schenkel aufweisen. Der erste radiale
Schenkel ist in Bezug zu dem Wälzkörperraum axial innenliegend angeordnet. Nach einer bevorzugten Ausführungsform ist auf dem ersten axialen Schenkel die erste Spur ausgebildet, während auf dem ersten radialen Schenkel die zweite Spur ausgebildet ist. Bei alternativen Ausführungsformen können auf dem ersten axialen Schenkel beide Spuren oder auf dem ersten radialen Schenkel beide Spuren ausgebildet sein. Bei alternativen Ausführungsformen kann der Encoderring einen L- förmigen, einen S-förmigen, einen C-förmigen oder einen U-förmigen Querschnitt aufweisen. Weitere geeignete Ausführungsformen des Encoderrings sind möglich.
Die Sensoreinheiten sind bei sämtlichen Ausführungsformen auf geeignete Art und Weise den Spuren gegenüberliegend zu positionieren, um die von den Spuren erzeugten Magnetfelder erfassen zu können.
Die Magnetisierung der ersten Spur kann gemäß einer bevorzugten Ausführungsform einen Phasenversatz zu der zweiten Spur aufweisen.
Die erste und die zweite Sensoreinheit können innerhalb eines gemeinsamen
Sensorgehäuses angeordnet sein. Bei abgewandelten Ausführungsformen können die erste Sensoreinheit und die zweite Sensoreinheit jeweils innerhalb separater
Sensorgehäuse angeordnet sein.
Die magnetisch kodierten Spuren können in Form von abwechselnd angeordneten magnetischen Nord- und Südpolen ausgebildet sein. In diesem Zusammenhang hat es sich als vorteilhaft erwiesen, wenn alle Pole des Encoders jeweils einen gleichen Polwinkel aufweisen. Andersartig magnetisch kodierte Spuren sind ebenso möglich.
Gemäß einer vorteilhaften Ausführungsform kann die Sensoreinrichtung mit einer Auswerteeinheit verbunden sein. In diesem Zusammenhang hat es sich als zweckmäßig erwiesen, die Sensoreinrichtung mit einem Anschlusskabel zum Anschluss an eine Auswerteeinheit auszustatten. Es sind jedoch auch alternative Ausführungsformen möglich, bei denen die Datenübertragung zur Auswerteeinheit nicht über Kabel sondern drahtlos, vorzugsweise mittels Funksignal erfolgt.
Bevorzugte Ausführungsformen der Erfindung werden nachfolgend anhand der beigefügten Figuren näher erläutert. Es zeigen:
Fig. 1 eine Querschnittsansicht einer erfindungsgemäßen Lageranordnung gemäß einer ersten Ausführungsform;
Fig. 2 eine Querschnittsansicht der Lageranordnung gemäß einer zweiten
Ausführungsform;
Fig. 3 mehrere Querschnittsansichten verschiedener Ausführungsformen von
Encoderringen; Fig. 4 eine Querschnittsansicht der Lageranordnung gemäß einer dritten
Ausführungsform;
Fig. 5 eine Querschnittsansicht der Lageranordnung gemäß einer vierten
Ausführungsform;
Fig. 6 eine Querschnittsansicht der Lageranordnung gemäß einer fünften
Ausführungsform;
Fig. 7 eine Querschnittsansicht der Lageranordnung gemäß einer sechsten
Ausführungsform;
Fig. 8 eine Querschnittsansicht der Lageranordnung gemäß einer siebenten
Ausführungsform; Fig. 9 eine Querschnittsansicht der Lageranordnung gemäß einer achten
Ausführungsform;
Fig. 10 eine Querschnittsansicht der Lageranordnung gemäß einer neunten
Ausführungsform;
Fig. 11 eine Querschnittsansicht der Lageranordnung gemäß einer zehnten
Ausführungsform;
Fig. 12 eine Querschnittsansicht der Lageranordnung gemäß einer elften
Ausführungsform;
Fig. 13 eine Querschnittsansicht der Lageranordnung gemäß einer zwölften
Ausführungsform;
Fig. 14 eine Querschnittsansicht der Lageranordnung gemäß einer dreizehnten
Ausführungsform.
Fig. 1 zeigt eine Querschnittsansicht einer erfindungsgemäßen Lageranordnung 01 gemäß einer ersten Ausführungsform. Die Lageranordnung 01 umfasst zunächst ein Lager 02, welches in der gezeigten Ausführungsform als ein Rotationslager für Personenkraftwagen, d. h. als ein Radlager ausgebildet ist. Das Lager 02 ist zweireihig ausgeführt und befindet sich auf einer Radnabe 03. Es beinhaltet einen Außenring 04 sowie einen ersten und einen zweiten Innenring 05, 07. Der erste Innenring 05 ist einteilig mit der Radnabe 03 ausgebildet. Der als separates Bauteil ausgebildete zweite Innenring 07 ist drehfest mit der Radnabe 03 verbunden.
Zwischen Außenring 04 und Innenringen 05, 07 befinden sich innerhalb eines
Wälzkörperraumes 08 Wälzkörper 09.
Ein weiterer Bestandteil der Lageranordnung 01 ist eine Sensoreinrichtung 10. Die Sensoreinrichtung 10 weist zunächst einen Encoderring 12 auf, welcher drehfest über eine Presspassung an einer Außenfläche des zweiten Innenrings 07 befestigt ist. Der Encoderring 12 weist in der gezeigten Ausführung einen Doppel-L-förmigen
Querschnitt auf. Der Encoderring 12 umfasst einen sich in axialer Richtung
erstreckenden ersten axialen Schenkel 15, welcher in Bezug zu dem Wälzkörperraum 08 axial außenliegend angeordnet ist. Der Encoderring 12 weist weiterhin einen ersten radialen Schenkel 17 auf, der in Bezug zu dem Wälzkörperraum 08 axial innenliegend angeordnet ist. Zwischen dem ersten radialen Schenkel 17 und dem ersten axialen Schenkel 15 erstrecken sich ein zweiter axialer Schenkel 18 und ein zweiter radialer Schenkel 19. Der zweite axiale Schenkel 18 und der zweite radiale Schenkel 19 liegen an dem zweiten Innenring 07 an. Der erste axiale Schenkel 15 ragt über eine
Stirnfläche 13 des zweiten Innenrings 07 hinaus. Der erste axiale Schenkel 15 und der zweite radiale Schenkel 19 befinden sich innerhalb eines umlaufenden
Einstichbereichs 20 des zweiten Innenrings 07. Auf dem ersten axialen Schenkel 15 des Encoderrings 12 ist eine erste magnetisch kodierte Spur 22 ausgebildet. Der erste radiale Schenkel 17 des Encoderrings 12 weist eine zweite magnetisch kodierte Spur 23 auf. Die magnetisch kodierten Spuren 22, 23 können als abwechselnd
angeordnete magnetische Nord- und Südpole ausgebildet sein. Eine erste
Sensoreinheit 24 ist der ersten Spur 22 gegenüberliegend angeordnet. Eine zweite Sensoreinheit 25 ist der zweiten Spur 23 gegenüberliegend angeordnet. Die erste und die zweite Sensoreinheit 24, 25 erfassen ein von der ersten bzw. zweiten Spur 22, 23 erzeugtes Magnetfeld. Die Sensoreinheiten 24, 25 sind in der gezeigten Ausführung innerhalb eines gemeinsamen Sensorgehäuses 27 angeordnet. Das Sensorgehäuse 27 kann beispielsweise mit einem Radträger (nicht dargestellt) drehfest verbunden sein.
Fig. 2 zeigt eine Querschnittsansicht der Lageranordnung 01 gemäß einer zweiten Ausführungsform. Diese Ausführungsform unterscheidet sich von der in Fig. 1 gezeigten lediglich dadurch, dass die Sensoreinheiten 24, 25 jeweils in einem separaten Sensorgehäuse 27 angeordnet sind.
Fig. 3 zeigt Querschnittsansichten verschiedener Ausführungsformen von
Encoderringen, welche bei Rotationslagern zum Einsatz kommen können. Die möglichen Bereiche zur Anbringung der magnetisch kodierten Spuren sind mit gepunkteten Linien dargestellt. Mit Strichpunktlinien sind die möglichen
Montagebereiche zum Aufpressen auf das rotierende Maschinenteil (Innen- oder Außenring) des Rotationslagers dargestellt. Zur Orientierung ist jeweils eine
Rotationsachse 28 eingezeichnet. Jeder Encoderring 12 umfasst einen Träger 29 aus einem ferro- bzw. nicht-ferromagnetischen Material, abhängig davon, ob er zwischen einer magnetischen Spur und dem Sensor angeordnet ist. Auf dem Träger 29 sind die magnetisch kodierten Spuren 22, 23 aufgebracht.
Fig. 3a zeigt Ausführungsformen des Encoderrings 12 mit L-förmigem Querschnitt.
Fig. 3b zeigt Ausführungsformen des Encoderrings 12 mit S-förmigem Querschnitt.
Fig. 3c zeigt eine Ausführungsform des Encoderrings 12 mit Doppel-L-förmigem Querschnitt. Fig. 3d zeigt Ausführungsformen des Encoderrings 12 mit C-förmigem Querschnitt. Fig. 3e zeigt eine Ausführungsform des Encoderrings 12 mit U-förmigem Querschnitt.
Die gezeigten Ausführungsformen des Encoderrings 12 besitzen lediglich
beispielhaften und keinen einschränkenden Charakter. Weitere geeignete
Querschnittsformen sind durchaus möglich.
Die in den Figuren 4 bis 14 gezeigten Ausführungsformen der Lageranordnung 01 umfassen wie die in den Figuren 1 und 2 gezeigten Ausführungsformen jeweils das Lager 02, welches als Radlager ausgebildet ist. In den Figuren sind lediglich das bzw. die Sensorgehäuse 27 dargestellt. Die Sensoreinheiten, welche sich innerhalb des bzw. der Sensorgehäuse befinden, sind nicht explizit dargestellt.
Die in den Figuren 4 bis 12 dargestellten Ausführungen betreffen Radlager mit rotierenden Innenringen 05, 07. Der Encoderring 12 ist drehfest über eine
Presspassung an der Außenfläche des zweiten Innenrings 07 befestigt.
Die Figuren 4 bis 7 zeigen Ausführungsformen der Lageranordnung 01 , welche jeweils einen Encoderring 12 mit L-förmigem Querschnitt nutzen. Die
Ausführungsformen unterscheiden sich durch die jeweilige Anordnung der magnetisch kodierten Spuren 22, 23 bzw. durch die Gestaltung der Innenringe 05, 07.
Fig. 8 zeigt eine siebte Ausführungsform der Lageranordnung 01 , welche einen Encoderring 12 mit C-förmigem Querschnitt verwendet. Der Encoderring 12 erstreckt sich von dem zweiten Innenring 07 über den Außenring 04 hinaus, wobei der Encoderring 12 den Außenring 04 teilweise umschließt. Die offene Seite des
Encoderrings 12 ist dem Wälzkörperraum 08 zugewandt. Die Sensoreinrichtung 10 umfasst zwei Sensorgehäuse 27, in welchen jeweils eine Sensoreinheit (nicht dargestellt) angeordnet ist.
Fig. 9 zeigt eine achte Ausführungsform der Lageranordnung 01. Der Encoderring 12 besitzt wiederum einen C-förmigen Querschnitt. Im Unterschied zu der in Fig. 8 gezeigten Ausführung befindet sich der Encoderring 12 vollständig innerhalb des Wälzkörperraums 08. Die offene Seite des Encoderrings 12 ist nach außen gerichtet.
Die in den Figuren 10 und 11 gezeigten Ausführungsformen der Lageranordnung 01 nutzen einen Encoderring 12 mit einem Doppel-L-förmigen Querschnitt. Die beiden Ausführungen unterscheiden sich durch die Anordnung der magnetisch kodierten Spuren 22, 23. Die in Fig. 10 gezeigte Ausführungsform nutzt zwei Sensorgehäuse 27, während die in Fig. 11 gezeigte ein Sensorgehäuse 27 verwendet.
Fig. 12 zeigt eine elfte Ausführungsform der Lageranordnung 01. Der Encoderring 12 besitzt hier einen L-förmigen Querschnitt. Die in den Figuren 13 und 14 gezeigten Ausführungsformen der Lageranordnung 01 unterscheiden sich von den bislang beschriebenen Ausführungsformen zunächst dadurch, dass der Außenring 04 rotiert. Der Encoderring 12 ist drehfest über eine Presspassung an der Außenfläche des Außenrings 04 befestigt. Die in Fig. 13 gezeigte Ausführungsform nutzt einen Encoderring 12 mit S-förmigem Querschnitt sowie zwei Sensorgehäuse 27. Die Ausführungsform gemäß Fig. 14 verwendet einen Encoderring 12 mit einem C-förmigen Querschnitt sowie ein Sensorgehäuse 27. Die offene Seite des Encoderrings 12 ist nach außen gerichtet. Bezuqszeichenliste Lageranordnung
Lager
Radnabe
Außenring
erster Innenring
- zweiter Innenring
Wälzkörperraum
Wälzkörper
Sensoreinrichtung Encoderring
Stirnfläche
- erster axialer Schenkel
- erster radialer Schenkel
zweiter axialer Schenkel
zweiter radialer Schenkel
Einstichbereich erste Spur
zweite Spur
erste Sensoreinheit
zweite Sensoreinheit - Sensogehäuse Rotationsachse Träger

Claims

Patentansprüche
1. Lageranordnung (01 ) umfassend:
• ein Lager (02) mit einem ersten Lagerteil (04), einem relativ zu dem
ersten Lagerteil (04) beweglichen zweiten Lagerteil (07) und mehreren zwischen dem ersten Lagerteil (04) und dem zweiten Lagerteil (07) in einem Wälzkörperraum (08) angeordneten Wälzkörpern (09),
• eine Sensoreinrichtung (10) mit
i. einem Encoder (12), welcher drehtest mit dem beweglichen zweiten Lagerteil (07) verbunden ist und eine erste magnetisch kodierte Spur (22) aufweist, und
ii. einer ersten Sensoreinheit (24) zur Messung eines von der ersten Spur (22) erzeugten Magnetfeldes,
dadurch gekennzeichnet, dass der Encoder (12) eine zweite magnetisch kodierte Spur (23) aufweist, und dass die Sensoreinrichtung (10) eine zweite Sensoreinheit (25) zur Messung eines von der zweiten Spur (23) erzeugten Magnetfeldes aufweist.
2. Lageranordnung (01 ) nach Anspruch 1 , dadurch gekennzeichnet, dass das
Lager ein Linearlager ist.
3. Lageranordnung (01 ) nach Anspruch 1 , dadurch gekennzeichnet, dass das
Lager ein Rotationslager ist, wobei der Encoder ein Encoderring (12) ist.
4. Lageranordnung (01 ) nach einem der Ansprüche 1 bis 3, dadurch
gekennzeichnet, dass der Encoder (12) in einem Einstichbereich (20) des zweiten Lagerteils (07) angeordnet ist.
5. Lageranordnung (01 ) nach einem der Ansprüche 1 bis 4, dadurch
gekennzeichnet, dass die Magnetisierung der ersten Spur (22) einen
Phasenversatz zu der Magnetisierung der zweiten Spur (23) aufweist.
6. Lageranordnung (01 ) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die erste und die zweite Sensoreinheit (25) innerhalb eines gemeinsamen Sensorgehäuses (27) angeordnet sind.
7. Lageranordnung (01 ) nach einem der Ansprüche 1 bis 5, dadurch
gekennzeichnet, dass die Sensoreinheiten (24, 25) jeweils in einem separaten Sensorgehäuse (27) angeordnet sind.
8. Lageranordnung (01 ) nach einem der Ansprüche 1 bis 7, dadurch
gekennzeichnet, dass die Sensoreinrichtung (24, 25) mit einer Auswerteeinheit verbindbar ist.
9. Lageranordnung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die magnetisch kodierten Spuren durch abwechselnd angeordnete magnetische Nord- und Südpole ausgebildet sind.
10. Lageranordnung (01 ) nach einem der Ansprüche 3 bis 9, dadurch
gekennzeichnet, dass das Lager (02) als Radlager ausgebildet ist.
PCT/DE2018/101016 2018-02-01 2018-12-13 Lageranordnung mit integrierter sensoreinrichtung zur erfassung von relativbewegungen WO2019149299A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018102203.4 2018-02-01
DE102018102203.4A DE102018102203A1 (de) 2018-02-01 2018-02-01 Lageranordnung mit integrierter Sensoreinrichtung zur Erfassung von Relativbewegungen

Publications (1)

Publication Number Publication Date
WO2019149299A1 true WO2019149299A1 (de) 2019-08-08

Family

ID=65278095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2018/101016 WO2019149299A1 (de) 2018-02-01 2018-12-13 Lageranordnung mit integrierter sensoreinrichtung zur erfassung von relativbewegungen

Country Status (2)

Country Link
DE (1) DE102018102203A1 (de)
WO (1) WO2019149299A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11731456B2 (en) * 2019-05-24 2023-08-22 Aktiebolaget Skf Wheel hub bearing with radial stiffening

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT522787B1 (de) * 2019-11-26 2021-02-15 Miba Gleitlager Austria Gmbh Lageranordnung
DE102022107234B3 (de) 2022-03-28 2023-08-31 Schaeffler Technologies AG & Co. KG Dichtungsanordnung für Radlager und Radlager mit Dichtungsanordnung
DE102024106310A1 (de) 2024-03-05 2024-05-29 Audi Aktiengesellschaft Radträgeranordnung für ein Kraftfahrzeug

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2558223A1 (fr) * 1984-01-17 1985-07-19 Roulements Soc Nouvelle Roulement a capteur d'informations
DE10318168A1 (de) * 2002-04-17 2003-11-13 Continental Teves Ag & Co Ohg Einrichtung zum Erfassen von Verformungen an magnetisch kodierten Fahrzeugreifen
DE102006001599A1 (de) * 2005-01-12 2006-10-05 Electricfil Automotive S.A.S. Positionsfühler mit unausgewogenem zyklischem Verhältnis
DE112005001493T5 (de) * 2004-06-25 2007-08-30 Ntn Corp. Radhalterungslagerbaugruppe mit eingebautem Lastsensor
DE102006032159A1 (de) 2006-07-12 2008-01-24 Schaeffler Kg Lageranordnung einer über ein Drehgelenk antreibbaren Radnabe eines Kraftfahrzeuges
DE102008008727A1 (de) * 2008-02-12 2009-08-13 Schaeffler Kg Lager mit Positionsgeber

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2845212B1 (fr) * 2002-09-27 2005-03-18 Roulements Soc Nouvelle Dispositif de pilotage d'un moteur a commutation electronique au moyen d'un signal de position
US7537388B2 (en) * 2003-10-22 2009-05-26 Ntn Corporation Bearing assembly with built-in absolute encoder
JP5450948B2 (ja) * 2007-02-23 2014-03-26 Ntn株式会社 回転検出装置付き車輪用軸受
DE102007042796A1 (de) * 2007-09-07 2009-03-12 Robert Bosch Gmbh Führungsschiene mit absoluter Maßverkörperung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2558223A1 (fr) * 1984-01-17 1985-07-19 Roulements Soc Nouvelle Roulement a capteur d'informations
DE10318168A1 (de) * 2002-04-17 2003-11-13 Continental Teves Ag & Co Ohg Einrichtung zum Erfassen von Verformungen an magnetisch kodierten Fahrzeugreifen
DE112005001493T5 (de) * 2004-06-25 2007-08-30 Ntn Corp. Radhalterungslagerbaugruppe mit eingebautem Lastsensor
DE102006001599A1 (de) * 2005-01-12 2006-10-05 Electricfil Automotive S.A.S. Positionsfühler mit unausgewogenem zyklischem Verhältnis
DE102006032159A1 (de) 2006-07-12 2008-01-24 Schaeffler Kg Lageranordnung einer über ein Drehgelenk antreibbaren Radnabe eines Kraftfahrzeuges
DE102008008727A1 (de) * 2008-02-12 2009-08-13 Schaeffler Kg Lager mit Positionsgeber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11731456B2 (en) * 2019-05-24 2023-08-22 Aktiebolaget Skf Wheel hub bearing with radial stiffening

Also Published As

Publication number Publication date
DE102018102203A1 (de) 2019-08-01

Similar Documents

Publication Publication Date Title
WO2019149299A1 (de) Lageranordnung mit integrierter sensoreinrichtung zur erfassung von relativbewegungen
EP3265830B1 (de) Sensoreinrichtung für ein wälzlager sowie wälzlageranordnung mit einer derartigen sensoreinrichtung
EP2043880B3 (de) Lageranordnung einer über ein drehgelenk antreibbaren radnabe eines kraftfahrzeuges
EP2748053B1 (de) Kombinierter lenkmoment-lenkwinkelsensor
DE112007002698T5 (de) Vorrichtung zum Erfassen des von einer Welle übertragenen Drehmoments
DE102009047222A1 (de) Sensoranordnung zum Ermitteln eines Drehmoments und zur Indexerkennung
DE4143205A1 (de) In eine waelzlagernabe integrierte drehgeschwindigkeits-aufnehmervorrichtung
DE102007050256A1 (de) Encoderelement zur Anzeige einer Stellung oder Bewegung eines Lagerbestandteils
DE102014208422B4 (de) Radlagereinheit
DE112008001276T5 (de) Radlagervorrichtung mit eingebauter Radgeschwindigkeitserkennungsvorrichtung
DE69117619T2 (de) Rotierende Kodierhülse für Abtastvorrichtung
EP2553474B1 (de) Radlageranordung mit sensoranschlag
DE60008474T2 (de) Lager mit integriertem kodierer
DE10149642A1 (de) Kreisringförmiges Sensorgehäuse
DE102005055995A1 (de) Lageranordnung und Verfahren zur Einstellung der Vorspannung in der Lageranordnung
WO2015124125A1 (de) Wälzgenietete radlageranordnung mit gestuftem innenring
DE102006031718A1 (de) Wälzlager mit integriertem Drehwinkelgeber
DE112007003082T5 (de) Sensorhalter und mit einer Radgeschwindigkeitsfeststellvorrichtung vereinigte Radlagervorrichtung
EP3391059A2 (de) Vorrichtung zum erfassen der drehzahl einer radsatzwelle für schienenfahrzeuge
DE102007055037A1 (de) Radlageranordnung mit einer Rad-Drehzahlsensorvorrichtung
DE102015220368A1 (de) Schutzelement für eine Radlagereinheit
DE102017110116A1 (de) Radlager
DE102022107234B3 (de) Dichtungsanordnung für Radlager und Radlager mit Dichtungsanordnung
WO2011085854A2 (de) Sensoranordnung mit einstellhilfe
WO2022127973A1 (de) Sensorlager mit abschirmring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18842769

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18842769

Country of ref document: EP

Kind code of ref document: A1