WO2019149248A1 - 通信的方法和装置 - Google Patents

通信的方法和装置 Download PDF

Info

Publication number
WO2019149248A1
WO2019149248A1 PCT/CN2019/074195 CN2019074195W WO2019149248A1 WO 2019149248 A1 WO2019149248 A1 WO 2019149248A1 CN 2019074195 W CN2019074195 W CN 2019074195W WO 2019149248 A1 WO2019149248 A1 WO 2019149248A1
Authority
WO
WIPO (PCT)
Prior art keywords
rlc
mac
pdu
pdus
equal
Prior art date
Application number
PCT/CN2019/074195
Other languages
English (en)
French (fr)
Inventor
刘星
黄曲芳
曾清海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2020541799A priority Critical patent/JP2021513245A/ja
Priority to EP19747313.5A priority patent/EP3737183B1/en
Publication of WO2019149248A1 publication Critical patent/WO2019149248A1/zh
Priority to US16/943,646 priority patent/US11296841B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/324Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • H04W28/065Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information using assembly or disassembly of packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers

Definitions

  • the present application relates to the field of communications and, more particularly, to a method and apparatus for communication.
  • both the network device and the user device can serve as the sender device or the receiver device.
  • the device at the sending end allocates resources, it is usually allocated according to the requirements of the receiving device. For example, the transmitting device allocates a large resource according to the amount of data to be sent reported by the receiving device, and the receiving device needs to be in the same logical channel. Different data packets, even different data packets of different logical channels, are sequentially sent to the same resource to be transmitted to improve resource utilization.
  • the behavior of sending multiple data packets of the same logical channel together is called cascading, and the behavior of transmitting data packets of different logical channels together is multiplexing, and the current cascading and multiplexing functions are all in the The MAC layer is completed.
  • cascading can improve the utilization of resources, and the receiving device will fill the resources allocated by the network device as much as possible, but the problem brought by the cascading is that if two consecutive data packets of the same service are Being placed on a resource, if this resource fails to send, two consecutive packets will be lost.
  • the failure probability of each resource is guaranteed to be less than 10 -13 . Such a requirement is too strict and cannot effectively utilize frequency resources.
  • the present application provides a communication method and apparatus, which can avoid continuous data packet loss of the same service or stream, increase transmission reliability, and improve user experience.
  • a method for communication comprising: a medium access control MAC entity acquiring M radio link control RLC protocol data units RLC PDU, where M is an integer greater than or equal to 2; the MAC entity Generating N media access control MAC protocol data unit MAC PDUs according to the logical channel corresponding to each RLC PDU of the M RLC PDUs, where any two RLC PDUs corresponding to the same logical channel and consecutive RLC serial numbers are carried differently In the MAC PDU, where N is an integer greater than or equal to 2.
  • the number of bits occupied by the RLC PDU when the number of bits occupied by the RLC PDU is greater than the number of bits occupied by the payload portion of the MAC PDU to be placed, the number of bits occupied by the payload portion of the MAC PDU may be placed in the size of the number of bits occupied by the payload portion of the MAC PDU. Segmentation of the RLC PDU, the RLC sequence number of the segmented RLC PDU is unchanged, and the RLC PDU that is consecutive with the next RLC sequence number is guaranteed to be carried in different MAC PDUs.
  • the sending end device sends data to the receiving end device
  • the MAC entity receives the RLC PDUs from the RLC serial number transmitted by the RLC entity through the logical channel to generate the MAC PDU.
  • the MAC entity puts the consecutive RLC PDUs of the RLC sequence number of each logical channel into different MAC PDUs, thereby avoiding cascading two consecutive data packets of the same service to the same block resource, resulting in a data packet transmission process if one
  • the transmission block fails to transmit, causing two consecutive packets of the same service to be lost, increasing the reliability of the transmission and improving the user experience.
  • an interval between a first MAC PDU and a second MAC PDU of the N MAC PDUs is greater than or equal to k, and k is greater than or equal to An integer of 2, the first MAC PDU carries a first RLC PDU on the first logical channel, the second MAC PDU carries a second RLC PDU on the first logical channel, and the first RLC PDU and the The RLC sequence number of the second RLC PDU is continuous.
  • RLC PDUs of consecutive RLC sequence numbers of the same logical channel are placed in different MAC PDUs, and there is a certain interval between the inserted MAC PDUs, thereby further reducing two consecutive data of the same service.
  • the possibility of cascading packets to the same resource increases the reliability of the transmission.
  • the third MAC PDU of the N MAC PDUs carries T RLC PDUs corresponding to the same logical channel, where T is An integer greater than or equal to 2, and T is less than M, wherein an interval of RLC sequence numbers of any two RLC PDUs in the T RLC PDUs is greater than or equal to t, and t is an integer greater than or equal to 2.
  • the physical layer divides the transport block into code blocks, and the MAC layer needs to know the rules of the physical layer split code block.
  • the RLC PDUs of consecutive RLC sequence numbers of one logical channel are put into different code blocks, and only one RLC PDU or one code block is placed in one code block, and multiple RLC serial numbers corresponding to the same logical channel are discontinuous RLC.
  • the PDU, and in each code block includes the MAC sub-packet header corresponding to the RLC PDU, so that after receiving all the code blocks, the physical layer of the receiving end can successfully decode each code block, and can directly deliver the MAC layer to ensure the transmission. Quick response.
  • a method for communication comprising: a medium access control MAC entity acquiring M radio link control RLC protocol data units RLC PDU, where M is an integer greater than or equal to 2; the MAC entity Generating N MAC PDUs according to the flow corresponding to each RLC PDU in the M RLC PDUs, where any two RLC PDUs corresponding to the same flow and acquiring consecutive sequences are carried in different MAC PDUs, where N is An integer greater than or equal to 2.
  • the RLC PDU may be placed according to the size of the number of bits occupied by the payload portion of the MAC PDU. Segmentation, the fragmented RLC PDURLC sequence number is unchanged, and the next consecutive RLC PDU is guaranteed to be carried in different MAC PDUs.
  • the process of generating the MAC PDU by acquiring the M RLC PDUs of the same QoS flow from the MAC entity for the data packets consecutively obtained from the same quality of service flow (QoS flow)
  • the MAC entity puts the consecutive RLC PDUs of the same QoS flow into different MAC PDUs, thereby avoiding cascading two consecutive data packets belonging to the same QoS flow to the same resource, resulting in the data packet transmission process. If a transport block fails to transmit, causing two consecutive packets to be lost, the reliability of the transmission is increased, and the user experience is improved.
  • the MAC sequence number interval of the first MAC PDU and the second MAC PDU of the N MAC PDUs is greater than or equal to k, and k is greater than or equal to 2.
  • the first MAC PDU carries the first RLC PDU of the first flow
  • the second MAC PDU carries the second RLC PDU of the first flow
  • the first RLC PDU and the second RLC PDU are acquired. continuous.
  • the RLC PDUs of the same QoS flow are sequentially placed in different MAC PDUs, and there is a certain interval between the inserted MAC PDUs, further reducing the cascading of two consecutive data packets to The possibility of the same resource increases the reliability of the transmission.
  • the third MAC PDU of the N MAC PDUs carries T RLC PDUs corresponding to the same flow, where T is greater than or equal to An integer of 2, and any two RLC PDUs of the T RLC PDUs are not acquired sequentially, and t-1 RLC PDUs corresponding to the same flow are also acquired between the two RLC PDU acquisition times, where t is greater than Or an integer equal to 2.
  • the above technical solution can improve the utilization of resources and increase the reliability of transmission by placing multiple RLC PDUs in a sequence of one MAC PDU.
  • the flow that the MAC entity corresponding to each RLC PDU according to the M RLC PDUs further includes: the MAC entity according to each RLC
  • the flow identifier carried in the PDU determines a flow corresponding to each RLC PDU in the M RLC PDUs, where the flow identifier is carried in a Service Data Adaptation Protocol (SDAP) header or a Packet Data Convergence Protocol (PDCP) header.
  • SDAP Service Data Adaptation Protocol
  • PDCP Packet Data Convergence Protocol
  • the SDAP layer when the data packet is generated by the SDAP layer, the SDAP layer adds a SDAP header to the data packet, and the MAC layer determines, according to the encapsulated SDAP header, the flow identifier carried in the RLC PDU corresponding to each SDAP PDU, thereby determining The flow corresponding to the M RLC PDUs, and then the flows corresponding to the M RLC PDUs are identified, and the two consecutive data packets of the same QoS flow are successively cascaded to the same block resource to increase the reliability of the transmission.
  • adding the PDCP header to the PDCP layer adding an indication field to the data packet, indicating the flow ID, and the MAC entity reading the header of the PDCP, thereby determining the QFI indicated by the indication domain, and then identifying the flow corresponding to the M RLC PDUs.
  • a method for communication comprising: a medium access control MAC entity acquiring M radio link control RLC protocol data units RLC PDU, where M is an integer greater than or equal to 2; the MAC entity Generating N media access control MAC protocol data unit MAC PDUs according to the bearer corresponding to each RLC PDU in the M RLC PDUs, where any two RLC PDUs corresponding to the same bearer and consecutive PDCP sequence numbers are carried in different MACs.
  • N is an integer greater than or equal to 2.
  • One bearer may include M data packets, M data packets correspond to M PDCP PDUs in the PDCP layer, and PDCP entities add PDCP serial numbers in the header of each PDCP PDU in order, then each PDCP in M PDCP PDUs PDUs have different PDCP serial numbers. Then, corresponding to the RLC layer forming M RLC PDUs, the load payload of each RLC PDU includes a unique PDCP sequence number. In order to avoid the loss of continuity of the same bearer, at the MAC layer, the RLC PDUs of the same bearer PDCP sequence number are placed in different resources for transmission. To achieve the above purpose, the MAC layer needs to identify PD PD PDUs of consecutive M PDCP sequence numbers belonging to the same bearer in multiple RLC PDUs before generating N MAC PDUs.
  • the RLC PDU may be placed according to the size of the number of bits occupied by the payload portion of the MAC PDU. After segmentation, the fragmented RLC PDURLC sequence number is unchanged, and the RLC PDUs consecutive to the next RLC sequence number are guaranteed to be carried in different MAC PDUs.
  • the sending end device sends data to the receiving end device
  • the MAC layer reads the PDCP sequence number of the data packet at the PDCP layer, and obtains the M PDCP serial numbers from the same bearer in the MAC entity.
  • the MAC entity puts each RLC PDU with a consecutive PDCP sequence number into a different MAC PDU, thereby avoiding cascading two consecutive packets of the same service to the same block.
  • the resource causes the transmission of the data packet, if one transport block fails to transmit, causing two consecutive packets of the same service to be lost, increasing the reliability of the transmission and improving the user experience.
  • an interval between a first MAC PDU and a second MAC PDU of the N MAC PDUs is greater than or equal to k, and k is greater than or equal to An integer of 2, the first MAC PDU carrying the first RLC PDU of the first bearer, the second MAC PDU carrying the second RLC PDU of the first bearer, and the first RLC PDU and the second RLC PDU
  • the PDCP serial number is continuous.
  • the consecutive RLC PDUs of the same PDCP sequence number are placed in different MAC PDUs, and the MAC PDUs are placed at a certain interval to further reduce two consecutive data packets of the same service.
  • the possibility of cascading to the same resource increases the reliability of the transmission.
  • the third MAC PDU of the N MAC PDUs carries T RLC PDUs corresponding to the same bearer, where T is greater than Or an integer equal to 2, and T is less than M, wherein an interval of PDCP sequence numbers of any two RLC PDUs in the T RLC PDUs is greater than or equal to t, and t is an integer greater than or equal to 2.
  • the foregoing technical solution improves resource utilization and increases transmission reliability by placing multiple RLC PDUs with discontinuous PDCP sequence numbers in one MAC PDU.
  • a method for communication comprising: a packet data convergence layer PDCP entity acquiring P data packets, P being a positive integer greater than or equal to 2; the PDCP entity according to a PDCP serial number of each data packet And sending the P data packets to at least two RLC entities, where any two consecutive PDCP sequence number data packets of the P data packets are sent to different RLC entities.
  • the H data packets of the P data packets are sent to the first RLC entity of the at least two RLC entities, where H is greater than or equal to An integer of 2, and the PDCP sequence number interval of any two of the H data packets is greater than or equal to h, and h is an integer greater than or equal to 2.
  • the MAC layer After the PDCP layer completes the offloading, the MAC layer obtains the RLC PDUs through different logical channels to generate MAC PDUs. To avoid transmitting two consecutive packets of the same service on the same resource, you can configure the MAC address. When the layer is multiplexed, the MAC can be placed in the logical channel of the same PDCP entity. RLC PDU.
  • the receiving end device when the receiving end device is located in the coverage of one or more cells (carriers) provided by the macro base station or the small base station, and the one of the cells serving the receiving end device (for example, the UE) is one or more, the same may be used.
  • At least two logical channels mapped after traffic offloading are mapped to different cells (or groups of cells) or carriers (or groups of carriers), and data can only be used by resources of corresponding cells (or groups of cells) or carriers (or groups of carriers). The transmission of the package.
  • the consecutive data packets of the SDAP sequence number are separately offloaded to different PDCP entities, and then different logical channels are mapped corresponding to different RLC entities.
  • a communication device for performing the method of any of the first aspect and the first aspect, or for performing any of the second aspect and the second aspect a method in an implementation, or a method in any one of the possible implementations of the third aspect and the third aspect, or a method in any one of the possible implementations of the fourth aspect and the fourth aspect
  • the means for communicating may comprise means for performing the method of the first aspect and any one of the possible implementations of the first aspect, or for performing any of the possible implementations of the second aspect and the second aspect
  • a unit of a method in a method, or a unit for performing the method in any one of the third aspect and the third aspect, or in any one of the possible implementations of the fourth aspect and the fourth aspect The unit of the method.
  • a communication device comprising a memory, a processor, and a transceiver for transmitting and receiving data, the memory for storing a computer program for calling and running the computer program from the memory
  • the method of the first aspect and the first aspect of the first aspect, or the method of any of the possible implementations of the second aspect and the second aspect, or the third aspect The method of any one of the possible implementations of the third aspect, or the method of any one of the possible implementations of the fourth aspect and the fourth aspect.
  • a seventh aspect a computer readable storage medium for storing a computer program, the computer program comprising any of the possible implementations of the first to fourth aspects or the first to fourth aspects described above Methods.
  • a computer program product comprising: computer program code, when the computer program code is run by a transceiver unit, a processing unit or a transceiver of the communication device, or a processor, causing the communication device.
  • a communication system comprising the apparatus of the above fifth aspect and the apparatus of the sixth aspect.
  • FIG. 1 is a structural diagram of a wireless communication system according to an embodiment of the present application.
  • FIG. 2 is a diagram of a protocol stack architecture in a new generation wireless communication system NR.
  • FIG. 3 is a schematic diagram of a packet processing process in a new generation wireless communication system NR.
  • FIG. 4 is a schematic flowchart of an example of a communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of still another example of a communication method provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of still another example of a communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of still another example of a communication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of an example of a communication device according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of still another example of a communication apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of still another example of a communication apparatus according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of still another example of a communication apparatus according to an embodiment of the present application.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the numbers “first”, “second”, etc. appearing in the following description are only for distinguishing different description objects, for example, in order to distinguish different MAC PDU resources (for example, the first MAC PDU resource, the second.
  • the MAC PDU resource, the RLC PDUs corresponding to different data packets (for example, the first RLC PDU, the second RLC PDU), and the like, are not limited to the technical solutions of the embodiments of the present application.
  • FIG. 1 is a schematic diagram of a wireless communication system 100 to which an embodiment of the present application is applied.
  • the wireless communication system 100 can include a macro base station 110, at least two small base stations 111, and at least one user equipment UE 112.
  • the UE 112 is located within the coverage of one or more cells (carriers) provided by the macro base station 110 or the small base station 111, and the number of cells serving the UE 112 may be one or more.
  • the UE may work according to carrier aggregation (CA) or dual connectivity (DC) or coordinated multiple point transmission (CoMP) mode, where at least A cell provides more than one kind of numerology while providing wireless resources to the UE.
  • CA carrier aggregation
  • DC dual connectivity
  • CoMP coordinated multiple point transmission
  • the wireless communication system 100 can be a Global System of Mobile communication (GSM) system, a Code Division Multiple Access (CDMA) system, or a Wideband Code Division Multiple Access (WCDMA) system.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the wireless communication system 100 includes a network device such as a macro base station 110 or a small base station 111, and may be a device for communicating with the user equipment 112, which may be a Global System of Mobile communication (GSM) system or a code division.
  • GSM Global System of Mobile communication
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • NodeB, NB base station
  • WCDMA Wideband Code Division Multiple Access
  • eNB evolved base station
  • CRAN cloud radio access network
  • the sender device may be a relay station
  • AP access point
  • AP access point
  • in-vehicle device a wearable device
  • sender device in a future 5G network
  • future evolved PLMN network a sender device in a future evolved PLMN network.
  • the wireless communication system 100 further includes a UE 112, which may be, for example, an access device, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless communication.
  • a UE 112 may be, for example, an access device, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless communication.
  • Device user agent, or user device.
  • User equipment can also be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, Wireless Local Loop (WLL) stations, sensors with network access capabilities, personal digital processing (Personal Digital) Assistant, PDA), a handheld device with wireless communication capabilities, a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, a receiver device in a future 5G network, or a future evolved public land mobile communication network ( The device in the Public Land Mobile Network (PLMN) and the like are not limited in this embodiment of the present application.
  • PLMN Public Land Mobile Network
  • the sending end device and the receiving end device are devices that can be applied to the wireless communication system.
  • the sending end device may be a network device or a user device
  • the receiving end device may be a network device or
  • the sender device or the receiver device is specifically a network device or a user device.
  • the new generation wireless communication system NR needs to meet the needs of deterministic services.
  • the so-called deterministic business mainly refers to certain industrial control related services.
  • the controller sends instructions to a group of performers to perform certain actions, such as packaging and printing.
  • This type of service has higher latency requirements than ordinary broadband services, and has its own special needs for reliability.
  • 3GPP 3rd Generation Partnership Project
  • TR22.804 states that the probability of two consecutive application layer packet errors must be small enough to be ignored because it can damage the machine or cause product line downtime.
  • KUKA's heartbeat packet was transmitted twice in error, and the application layer connection was disconnected and reconnected. It can be seen that for the same service, the continuous loss of two data packets may seriously affect the quality of the service, resulting in poor user experience.
  • the probability of a single Application Layer Packet (BLER) transmission failure does not exceed 10 -5 , and the probability of failure of two consecutive packets of BLER transmission needs to be further less than 10 -13 .
  • the probability that the BLER loss of two consecutive data packets is less than 10 -13 only the failure probability of each resource is less than 10 -13 .
  • This requirement makes it impossible to meet the requirements of transmission reliability and resource utilization at the same time. Effective use of frequency resources. Therefore, there is a need for a method for ensuring transmission reliability and improving resource utilization to implement data packet transmission.
  • FIG. 2 is a protocol stack architecture in a new generation wireless communication system NR
  • FIG. 3 is a schematic diagram of a data packet processing process in a new generation wireless communication system NR.
  • This embodiment of the present application will be taken as an example, and in conjunction with FIG. 2 and FIG. 3, a series of processing procedures of a data packet when a transmitting end device sends data to a receiving end device will be described in detail.
  • the architecture includes a Service Data Adaptation Protocol (SDAP) layer, a Packet Data Convergence Protocol (PDCP) layer, and a Radio Link Control (RLC). Layer, media access control MAC (Media Access Control, MAC) layer.
  • SDAP Service Data Adaptation Protocol
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • Layer media access control MAC (Media Access Control, MAC) layer.
  • RRC Radio Resource Control
  • the PDCP layer is an RRC layer on the upper layer of the control plane, and a network layer on the upper layer of the user plane, such as an Internet Protocol (IP) layer.
  • IP Internet Protocol
  • the lower layer of the PDCP layer is the RLC layer.
  • the PDCP layer can process RRC messages on the control plane and data packets on the user plane, such as IP packets.
  • the data packets from the application layer are sequentially processed by the SDAP, the PDCP, the RLC, the MAC, and the physical layer (Phys
  • the service data adaptation layer SDAP entity receives the data packet from the application layer, where the data packet may be a data packet from a service.
  • a service On the wireless network side, a service has different manifestations, which may be a flow (Quality of Service flow).
  • the form of QoS flow can be in the form of a bearer formed by mapping to a PDCP entity, or can be embodied in the form of a logical channel.
  • the right part of FIG. 2 shows a case where one service corresponds to one logical channel, and different services may correspond to different logical channels; the left part shows that the service is embodied as QoS flow.
  • multiple QoS flows are mapped to different PDCP entities at the SDAP layer.
  • the SDAP entity encapsulates the data packet, joins the SDAP header, and maps the packet to the packet data aggregation protocol layer PDCP entity.
  • the PDCP entity receives the data packet encapsulated by the SDAP entity, performs header compression and decompression, encryption and decryption, and integrity protection, integrity check, and the underlying service data unit SDU (Service). Data Unit (SDU) repeatability detection, etc., to further complete data transmission to the radio link control layer RLC entity.
  • the main functions of the PDCP layer include security processing functions, which can include data encryption/decryption, integrity protection/checking, etc., where encryption and integrity protection are for the sender, decryption and integrity check. It is for the receiving end.
  • the PDCP layer decrypts the IP data packets from the upper layer, decrypts the IP data packets, and then delivers them to the RLC layer.
  • the PDCP layer provides signaling transmission services for the upper layer RRC, and implements encryption and integrity protection of RRC signaling.
  • the PDCP layer can encrypt the uplink data packet; on the control plane, the decryption and integrity check of the RRC signaling can be implemented.
  • the RLC entity receives the data packet from the PDCP entity and performs data transmission, and the RLC entity can complete segmentation and reassembly of the service data unit RLC SDU, and repeatability detection and protocol error detection of the RLC SDU.
  • a protocol data unit is a data unit that is transmitted between peer layers.
  • an RLC PDU refers to a data unit that interacts between an RLC layer at a transmitting end and an RLC layer at a receiving end.
  • the SDU is a service data unit, which is also a service data unit. It is a data set of the user service of the specified layer.
  • the lower layer encapsulates the SDU in the PDU.
  • the SDU is transmitted from the information unit of the upper layer protocol to the lower layer protocol, and the SDU of the Nth layer and the PDU of the upper layer are in one-to-one correspondence.
  • the SDU and the protocol control information (PCI) of the user are encapsulated into PDUs; the decapsulation of the PCI completion PDU is removed at the receiver, and the SDU is sent to the receiver user. .
  • PCI protocol control information
  • the SDU needs to be divided into multiple segments and encapsulated into PDUs, that is, segments of the SDU.
  • the receiver then decapsulates the PDUs and reassembles them into SDUs.
  • the channel between the RLC layer and the medium access control MAC layer is called a logical channel (LCH).
  • LCH logical channel
  • the logical channel type set provides different types of data transmission services for the MAC entity, and the logical channel is at the PDCP layer, the RLC layer, and the MAC layer. Can be distinguished.
  • the MAC entity provides data transmission services on the logical channel, receives data packets transmitted from the RLC entity, and implements mapping of logical channels to transport channels.
  • the MAC entity receives the serving data unit MAC SDUs from the plurality of logical channels and performs multiplexing and demultiplexing of the MAC SDUs, the protocol data unit MAC PDUs of the MAC entities being data units communicated internally by the MAC entities.
  • the MAC entity can also perform priority management LCP (Logic Channels Priority (LCP)) between different logical channels of the same receiving device, and perform priority management between different receiving devices through dynamic scheduling. And error correction function based on HARQ (Hybrid Automatic Repeat reQuest, HARQ) mechanism.
  • LCP Logic Channels Priority
  • HARQ Hybrid Automatic Repeat reQuest, HARQ
  • the so-called LCP is a process in which a MAC entity allocates resources to different logical channels according to the size of the transmission resources and the priorities of the logical channels. After the LCP process ends, each logical channel is allocated to a resource greater than or equal to 0. In the existing protocol, after each logical channel is allocated resources, the data packets are sequentially placed on the allocated resources.
  • the physical layer provides data services to the upper layer in the form of a transport channel.
  • the physical layer controls the data from the upper transport channel and the physical layer according to the cyclic redundancy. Cyclic Redundancy Check (CRC) check, code block splitting, channel coding, rate matching, and code block connection are processed, and then scrambling, modulation, layer mapping, precoding, etc. are performed, and finally transmitted through the air interface. .
  • CRC Cyclic Redundancy Check
  • the sending end device and the receiving end device are devices that can be applied to the wireless communication system.
  • the sending end device may be a network device or a user device
  • the receiving end device may be a network device or
  • the user equipment is not limited to whether the sender device or the receiver device is a network device or a user device.
  • the following embodiments of the present application will be described in detail with reference to the requirements of the UE side of the user equipment. However, the embodiments of the present application are not limited thereto.
  • the network device When allocating resources, the network device allocates a large amount of resources according to the requirements of the UE of the user equipment, for example, the amount of data to be sent reported by the UE, and the UE may categorize different ones in the same logical channel at the MAC layer. The data packets are sent together; or different data packets of different logical channels are sequentially placed on the same resource to be transmitted by multiplexing.
  • Both cascading and multiplexing can improve the utilization of resources, and ensure that the UE will fill the resources allocated by the network as much as possible. Otherwise, only one packet per logical channel can be used to form the last transport block (Transmission). Block, TB), will result in waste of resources.
  • Transport Transport
  • Block, TB transport block
  • the problem with cascading is that if two consecutive packets of the same service are placed on one resource, if the resource fails to be sent, two consecutive packets will be lost. The probability of satisfying two consecutive packet losses is less than 10 -13 , and only the failure probability of each resource is less than 10 -13 . This requirement makes it impossible to meet the requirements of transmission reliability and resource utilization at the same time, and cannot be effective. Use frequency resources.
  • one RLC PDU corresponds to a segment of a data packet or a data packet, in other words, one RLC PDU includes and only includes one application layer data packet or data packet. Segmentation, in order to avoid the loss of continuity of a service, but not to put this continuous RLC PDU into a transport block, it means that the packets of consecutive application layers cannot be put into one transport block.
  • the embodiment of the present application wants to achieve certainty by avoiding the cascading of two consecutive data packets of the same service into the same resource, and improving the reliability of the latter data packet when the packet loss is detected. Business needs.
  • the data packet shown in Figure 2 from a different embodiment of a service, to avoid the continuous packet of the same service into the same MAC PDU, it is to avoid the same logical channel or the same PDCP entity (bearer) or the same QoS.
  • the continuous packets of flow are placed in the same MAC PDU.
  • the data packet comes from a logical channel corresponding to a service, in this case, in order to avoid the continuity of packet loss of the service, for the MAC layer, the data packets of the same logical channel need to be put into different ones. Transferring resources can avoid the loss of continuity of the same service.
  • the data packet is from the QoS flow, multiple QoS flows are mapped to different PDCP entities in the SDAP layer.
  • the same QoS flow and the consecutively acquired data packets need to be transmitted in different resources. This avoids the loss of continuity of the same QoS flow.
  • the PDCP entity may send any two consecutive data packets of the PDCP sequence number to different RLC entities to prevent consecutive data packets of the same service from being put into the same MAC PDU. .
  • the three cases will be specifically described below.
  • FIG. 4 is a schematic flowchart of a communication method 400 provided by an embodiment of the present application.
  • the method 400 can be applied to the above-mentioned wireless communication system 100, and the transmitting device sends data to the receiving device as an example for detailed description. It should be understood that the embodiment of the present application is not limited thereto.
  • the method 400 includes the following.
  • the MAC entity acquires M radio link control RLC protocol data units RLC PDU, where M is an integer greater than or equal to 2.
  • the data packet from a certain deterministic service is processed by the SDAP layer, the PDCP layer, and the RLC layer, and one data packet corresponds to one RLC PDU.
  • one RLC PDU includes and only includes one application layer data packet or data packet. segment. For example, for a special deterministic service 1, including M data packets, where the RLC layer corresponds to M RLC PDUs, and the RLC entity adds RLC sequence numbers in the header of each RLC PDU in order, then M RLC PDUs Each RLC PDU in the has a different RLC sequence number.
  • the deterministic service 1 corresponds to the logical channel 1, and the RLC PDUs of the M RLC sequence numbers are mapped to the logical channel 1, and the M RLC PDUs include at least two RLC PDUs corresponding to the logical channel 1 and consecutive RLC sequence numbers. It should be understood that the continuation in the embodiment of the present application refers to that the serial numbers of the data units are consecutive in different entities.
  • the MAC entity In S420, the MAC entity generates N media access control MAC protocol data unit MAC PDUs according to the logical channel corresponding to each RLC PDU of the M RLC PDUs, where any two corresponding to the same logical channel and the RLC serial number The consecutive RLC PDUs are carried in different MAC PDUs, where N is an integer greater than or equal to two.
  • the MAC entity provides a data transmission service on the logical channel, and obtains RLC PDUs of M RLC sequence numbers transmitted from the RLC entity to implement mapping of the logical channel to the transmission channel.
  • the logical channel corresponding to each RLC PDU mentioned herein can be understood as that each RLC PDU is an RLC PDU belonging to the logical channel and is transmitted to the MAC entity through the logical channel.
  • the MAC entity acquires the RLC PDUs of the M RLC sequence numbers transmitted from the RLC entity through the logical channel 1 to generate a MAC PDU, and the MAC entity can identify the logical channel, that is, identify the logical channel 1.
  • the MAC entity divides the resources of the MAC PDU into each logical channel according to the logical channel priority LCP, and sequentially places the RLC PDU of each logical channel into the resources allocated to the logical channel by the MAC PDU until The entire resource is being used.
  • Limiting only one RLC PDU of the same logical channel in one MAC PDU For example, for the logical channel 1, the resources allocated to the logical channel 1 are limited to one of the MAC PDUs, and only the RLC PDUs with discontinuous RLC sequence numbers are placed, and the subsequent one MAC PDU corresponds to one transport block (Transport Block, TB). A MAC PDU is placed in one TB to implement data transfer between the MAC layer and the physical layer.
  • Transport Block Transport Block
  • the method of the foregoing case 1 avoids cascading two consecutive data packets of the same logical channel into the same resource by limiting only one RLC PDU that includes only the same logical channel in one MAC PDU during the process of generating the MAC PDU according to the RLC PDU. Then, in the data packet transmission process, if a transport block transmission fails, for logical channel 1, it means that a data packet transmission fails, thereby reducing the impact of TB transmission failure on a service, and reducing the probability of packet transmission failure. Thereby achieving the demand for deterministic business.
  • the resources of the MAC PDU are divided according to the size of the number of bits occupied by the RLC PDU, that is, the resource size allocated by the payload part of the MAC PDU to the logical channel 1 and the number of bits occupied by the RLC PDU currently to be placed.
  • the size is equal.
  • the RLC PDU can be directly put into the current MAC PDU without causing a problem of low resource utilization.
  • the resources allocated to the logical channel 1 in one MAC PDU may not be equal to the size of the number of bits occupied by the RLC PDU of the logical channel currently to be placed, and may be larger or smaller.
  • the RLC PDU When the number of bits that can be carried by the resources allocated to the logical channel 1 in the payload part of one MAC PDU is smaller than the number of bits occupied by the RLC PDU to be placed currently, the RLC PDU enters the MAC layer, which is the service data unit MAC SDU of the MAC layer.
  • the MAC SDU (RLC PDU) may be segmented into different MAC PDUs, and one MAC PDU is placed. Entering a TB, this does not create the problem of a continuous packet of logical channels being put into a single resource. It should be understood that for an RLC PDU, the segmented RLC PDUs have the same RLC sequence number, for example, divided into two segments, then the two segments have the same RLC sequence number of the original RLC PDU.
  • RLC PDUs (or RLC PDU segments) consecutive to the RLC sequence number may be placed into different MAC PDUs at intervals, for example, two RLC PDUs (or RLC PDUs) with consecutive RLC sequence numbers are segmented.
  • the first MAC PDU and the second MAC PDU are respectively placed, and the sequence number SN interval between the first MAC PDU and the second MAC PDU is k, and k is a positive integer greater than or equal to 2.
  • RLC PDU 1 and RLC PDU 2 are separated by 0 RLC PDUs, and the sequence number interval is 1, RLC PDU 1 and RLC PDU 3
  • the RMAC PDU is separated by one, and the sequence number interval is 2.
  • the sequence number SN interval between the first MAC PDU and the second MAC PDU is k, which may refer to the first MAC PDU and the second MAC PDU.
  • the MAC sequence number between MAC PDU 1 and MAC PDU 2 is 1, the MAC PDU1 and MAC PDU3 are separated by 1 MAC PDU, and the sequence number interval is 2.
  • Two PDUs separated by 0 PDUs are consecutive PDUs described in this application.
  • the interval k for example, when there are two MAC PDUs in one TB, the RLC PDU 1 is correspondingly placed into the MAC PDU 1, and the RLC PDU 2 is correspondingly placed into the MAC PDU 3, so that the MAC PDU 3 and the MAC PDU 1 are not placed in one TB. Further, it is further ensured that two RLC PDUs consecutive to the sequence number SN are not on one transmission resource, thereby improving transmission reliability.
  • the specific interval may be configured by the network, such as a high layer signaling configuration, a value of the RRC signaling configuration, or a UE self-selection. If it is a self-selection of the UE, it may be different every time, but the interval is at least 1 MAC PDU.
  • the physical layer After receiving the transport block TB of the MAC layer group packet, the physical layer splits the transport block TB into different code blocks (CBs). As mentioned above, the physical layer controls the data from the upper layer transmission channel and the physical layer, and then performs a series of processing such as scrambling, modulation, layer mapping, and precoding on the data packet. In the data transmission process, the coding efficiency, Considering various aspects such as encoder limitation and processing delay, the maximum code length that can be processed when determining channel coding is 6144 bits. Therefore, if the transport block sequence after CRC bit level check is greater than 6144 bits, the transport block needs to be segmented. Meet the requirements of channel coding.
  • the MAC layer needs to know the rule of the physical layer to divide the code block, and in the process of putting the RLC PDU into the MAC PDU, according to the division rule, the RLC sequence number on the logical channel 1 is consecutive RLC.
  • the PDU is placed in different code blocks, and only one RLC PDU is placed in one code block, and the MAC sub-packet header is included in each code block.
  • After such a code block is received by the physical layer of the receiving end, it can be decoded independently. If a code block is successfully decoded, it can be delivered to the MAC layer without waiting for all the code blocks of one TB to be successfully received in the delivery MAC layer. Fast response, improve transmission efficiency.
  • a TB transmission fails it may be that a certain code block in the TB fails to transmit, and does not affect the decoding of other code blocks, thereby improving transmission reliability.
  • the sequence number SN interval is greater than or equal to k, and k is an integer greater than or equal to 2.
  • k may be a set threshold.
  • the first MAC PDU carries a first RLC PDU corresponding to the first logical channel
  • the second MAC PDU carries a second RLC PDU corresponding to the first logical channel
  • the first RLC PDU and the The RLC sequence number of the second RLC PDU is continuous.
  • the first RLC PDU and the second RLC PDU of the two RLC serial numbers of the logical channel 1 are correspondingly placed in the first MAC PDU and the second MAC PDU, where the first MAC PDU and the first
  • the two MAC PDUs are discontinuous, and the RLC sequence number interval between them is greater than or equal to k, and k is an integer greater than or equal to 2.
  • the specific interval may be configured by a network, such as a high layer signaling configuration, and a value of RRC signaling configuration; or UE self-selection. If it is a self-selection of the UE, it may be different every time, but the interval is at least 1 MAC PDU.
  • the third of the N MAC PDUs The MAC PDU carries T RLC PDUs corresponding to the same logical channel, T is an integer greater than or equal to 2, and the RLC sequence number interval between any two RLC PDUs in the T RLC PDUs is greater than or equal to t , t is an integer greater than or equal to 2.
  • the specific interval may be configured by the network, such as a high layer signaling configuration, a value of the RRC signaling configuration, or a UE self-selection. If it is a self-selection of the UE, it may be different every time, but the interval is at least 1 RLC PDU.
  • the first RLC PDU and the second RLC PDU of the two RLC sequence numbers of the logical channel 1 are separated from the foregoing cases in the process of placing the RLC PDU into the MAC PDU.
  • multiple RLC PDUs, such as the first RLC PDU and the second RLC PDU, are placed, and the first RLC PDU and the second RLC PDU are guaranteed to be discontinuous for the RLC sequence number.
  • RLC PDU the RLC sequence number interval between them is greater than or equal to t, and t is an integer greater than or equal to 2, and the specific interval may be configured by a network, such as a high-level signaling configuration, a value of RRC signaling configuration; or UE self-selection . If it is a self-selection of the UE, it may be different every time, but the interval is at least 1 MAC PDU. For example, one MAC PDU is placed with RLC PDU1 and RLC PDU3, where 1 and 3 are the RLC sequence numbers of the RLC PDUs, and their RLC SN interval is 2.
  • first RLC PDU and the second RLC PDU are only an example and are not limited, and refer to the number of RLC PDUs in which at least two RLC sequence numbers of one MAC PDU are placed in the same logical channel are not consecutive to each other. It is not limited, for example, the RLC sequence numbers between the T and the two are not consecutive RLC PDUs, and the resources that utilize all the MAC PDUs are optimal.
  • the same logical channel may be placed in one code block according to the method described in the third case.
  • a code block After such a code block is received by the physical layer of the receiving end, it can be decoded independently. If a code block is successfully decoded, it can be delivered to the MAC layer without waiting for all the code blocks of one TB to be successfully received in the delivery MAC layer. Fast response, improve transmission efficiency. At the same time, if a TB transmission fails, it may be that a certain code block in the TB fails to transmit, and does not affect the decoding of other code blocks, thereby improving transmission reliability.
  • the various methods in the foregoing embodiments can avoid cascading two consecutive data packets of the same service into the same resource, and ensure that the impact of one TB transmission failure on one service is reduced during the data packet transmission process, and the data packet can be reduced. The probability of transmission failure, thereby realizing the need for deterministic business.
  • the data packet may come from a logical channel, such as the logical channel 1 described above, and may also come from the QoS flow.
  • a logical channel such as the logical channel 1 described above
  • QoS flows are service sets with the same quality of service requirements and the same rate requirements. Therefore, consecutive packets of the same QoS flow cannot be placed in the same resource.
  • QoS flow is currently only visible in the SDAP layer and PDCP layer. Multiple QoS flows may be mapped to different or identical logical channels at the SDAP layer, but QoS flows from two SDAPs may not be mapped to the same PDCP.
  • FIG. 5 is a schematic flowchart of a communication method 500 provided by an embodiment of the present application.
  • the method 500 can be applied to the above-mentioned wireless communication system 100, and the transmitting device sends data to the receiving device as an example for detailed description. It should be understood that the embodiment of the present application is not limited thereto.
  • the method 500 includes the following.
  • the medium access control MAC entity acquires M radio link control RLC protocol data units RLC PDU, where M is an integer greater than or equal to 2.
  • the data packets from one stream are processed by the SDAP layer, the PDCP layer, and the RLC layer, and one data packet corresponds to one RLC PDU.
  • one RLC PDU includes and includes only one application. Segmentation of a layer's data packets or packets. For example, for M packets of one stream, the RLC layer corresponds to M RLC PDUs, and the RLC entity adds RLC sequence numbers in the header of each RLC PDU in order, then each RLC PDU in the M RLC PDUs There are different RLC serial numbers. Multiple streams may be aggregated at the SDAP layer or the PDCP layer, and then mapped to different or identical logical channels. Multiple data packets of multiple flows correspond to multiple RLC PDUs of the RLC layer, in order to avoid continuity of the same flow. Packet loss, then at the MAC layer, the RLC PDUs of the same stream are sequentially transmitted in different resources.
  • the RLC PDUs corresponding to the first flows in the multiple flows are: RLC PDU 1, RLC PDU 2, RLC PDU 3, and RLC PDU 4
  • the RLC PDU corresponding to the second flow is: RLC PDU a , RLC PDU b, RLC PDU c and RLC PDU d.
  • the data packets of the first stream and the second stream are mapped to the plurality of RLC PDUs of the RLC layer through the aggregation of the SDAP layer or the PDCP layer.
  • the sequence may be the following: RLC PDU 1, RLC PDU 2, RLC PDU a, RLC PDU 3.
  • the RLC PDU b, the RLC PDU c, the RLC PDU 4, and the RLC PDU d are mapped to the same logical channel in this order.
  • the RLC PDUs belonging to the same flow and having consecutive acquisition order are: RLC PDU 1, RLC PDU 2, or RLC PDU b, RLC PDU c, according to the method provided in this embodiment, the RLC PDU 1 and the RLC PDU 2 are placed in different resources, RLC PDU b, RLC PDU c Put in different resources for transmission.
  • the MAC layer needs to identify the RLC PDUs of the MLC RLC sequence numbers belonging to the same flow in the multiple RLC PDUs before generating the N MAC PDUs. To determine the flow corresponding to multiple RLC PDUs.
  • the MAC layer determines, according to the data packet, the QoS flow identifier (QFI) carried in the RLC PDU corresponding to each SDAP PDU, when the SDAP PDU is generated by the SDAP layer, and determines the M RLC.
  • QFI QoS flow identifier
  • the SDAP layer adds a SDAP header to the data packet, so that the RLC PDU at the RLC layer carries the SDAP header, and the MAC needs to read the header of the SDAP, identify the flow ID, and then identify the flow corresponding to the M RLC PDUs.
  • determining the flow corresponding to multiple RLC PDUs can be understood as determining which flow belongs to the data packet included in multiple RLC PDUs, that is, the data packet processed without being encapsulated by SDAP or PDCP layer. Which stream belongs to before entering the SDAP layer, thereby judging that it is a continuous packet of the same stream.
  • the data packet is added with an indication field for the data packet, indicating QFI.
  • the header of the SDAP is not required to be read, but the MAC layer still needs to read the PDCP.
  • the packet header thereby determining the QFI indicating the domain indication, and then identifying the flows corresponding to the M RLC PDUs.
  • the payload payload portion of the RLC PDU except the RLC header carries an upper layer such as a SDAP or a PDCP header. Therefore, the QFI can be identified by the above method, and then the flows corresponding to the M RLC PDUs are identified. .
  • the MAC entity In S520, the MAC entity generates N MAC PDUs according to the QoS flow corresponding to each RLC PDU in the M RLC PDUs, so that any two RLC PDUs corresponding to the same flow and acquiring sequential consecutive are carried in different In the MAC PDU, where N is an integer greater than or equal to 2.
  • the next behavior is consistent with the behavior of the data packet of the MAC layer processing logical channel 1 in this embodiment, that is, the method as described in the method 400 is implemented to implement the same QoS flow and the acquisition order is continuous.
  • the data packets are placed in different MAC PDUs or code blocks.
  • the above special processing of the logical channel or QoS flow data packet during cascading can be configured through high-level signaling.
  • the network can configure the MAC to apply the above rules to certain logical channels or certain QoS flows, and to adopt other logical channels.
  • the prior art processes It should be understood that the embodiments of the present application are not limited thereto.
  • the transport block TB is a physical layer concept, and the MAC layer is a MAC PDU.
  • the MAC layer is a MAC PDU.
  • only one MAC PDU can be placed in one transport block. Of course, it is not excluded that there are two in the next transport block TB.
  • the scheme can be extended to be limited to one MAC PDU, similar to the above scheme.
  • An RLC PDU is placed therein, and only one RLC PDU corresponding to one service 1 is included in one transport block TB, or a plurality of RLC PDUs with a serial number SN discontinuous of one service 1 are included.
  • the RLC PDU may be an RLC PDU generated by the RLC SDU that does not have a segmentation, or may be an RLC PDU generated by the segmented RLC SDU.
  • the medium access control MAC entity acquires M RLC PDUs, where M is an integer greater than or equal to 2.
  • the MAC entity generates N media access control MAC protocol data unit MAC PDUs according to the bearer corresponding to each RLC PDU of the M RLC PDUs, where any two RLC PDUs corresponding to the same bearer and consecutive PDCP sequence numbers are carried.
  • N is an integer greater than or equal to 2.
  • one bearer may include M data packets, and the PDCP layer corresponds to M PDCP PDUs, and the PDCP entity adds PDCP serial numbers in the header of each PDCP PDU in order, then M Each PDCP PDU in a PDCP PDU has a different PDCP sequence number. Then, corresponding to the RLC layer forming M RLC PDUs, the load payload of each RLC PDU includes a unique PDCP sequence number.
  • the RLC PDUs of the same bearer PDCP sequence number are placed in different resources for transmission.
  • the MAC layer needs to identify PD PD PDUs of consecutive M PDCP sequence numbers belonging to the same bearer in multiple RLC PDUs before generating N MAC PDUs.
  • the MAC layer reads the PDCP header encapsulated in the payload part of the RLC PDU, and determines a PDCP sequence number in each RLC PDU.
  • the RLC may be placed according to the size of the number of bits occupied by the payload of the MAC PDU payload. Segmentation of the PDU, the fragmented RLC PDURLC sequence number is unchanged, and the RLC PDU that is consecutive with the next RLC sequence number is guaranteed to be carried in different MAC PDUs.
  • the sending end device sends data to the receiving end device
  • the MAC layer reads the PDCP sequence number of the data packet at the PDCP layer, and obtains the M PDCP serial numbers from the same bearer in the MAC entity.
  • the MAC entity puts each RLC PDU with a consecutive PDCP sequence number into a different MAC PDU, thereby avoiding cascading two consecutive packets of the same service to the same block.
  • the resource causes the transmission of the data packet, if one transport block fails to transmit, causing two consecutive packets of the same service to be lost, increasing the reliability of the transmission and improving the user experience.
  • the MAC sequence number interval of the first MAC PDU and the second MAC PDU of the N MAC PDUs is greater than or equal to k, and k is an integer greater than or equal to 2, where the first MAC PDU carries the first bearer.
  • the first RLC PDU carries the second RLC PDU of the first bearer, and the first RLC PDU is consecutive to the PDCP sequence number of the second RLC PDU.
  • the consecutive RLC PDUs of the same PDCP sequence number are placed in different MAC PDUs, and the MAC PDUs are placed at a certain interval to further reduce two consecutive data packets of the same service.
  • the possibility of cascading to the same resource increases the reliability of the transmission.
  • the third MAC PDU of the N MAC PDUs carries the T RLC PDUs corresponding to the same bearer, where T is an integer greater than or equal to 2, and T is less than M, where the T RLC PDUs
  • T is an integer greater than or equal to 2
  • T is less than M
  • the interval of the PDCP sequence numbers of any two RLC PDUs is greater than or equal to t, and t is an integer greater than or equal to 2.
  • the foregoing technical solution improves resource utilization and increases transmission reliability by placing multiple RLC PDUs with discontinuous PDCP sequence numbers in one MAC PDU.
  • FIG. 6 is a schematic flowchart of a communication method 600 according to an embodiment of the present application.
  • the method 600 can be applied to the above-mentioned wireless communication system 100, and the transmitting device sends data to the receiving device as an example for detailed description. It should be understood that the embodiment of the present application is not limited thereto.
  • FIG. 7 is a schematic diagram of a communication method provided by an embodiment of the present application. A detailed description will be given below with reference to FIGS. 6 and 7.
  • the method 600 includes the following.
  • the packet data convergence layer PDCP entity acquires P data packets, and P is a positive integer greater than or equal to 2.
  • the SDAP aggregates data packets of services of the same rate and the same quality requirements and transmits them to the PDCP layer.
  • the PDCP offloads the data packet to the RLC layer corresponding to two different RLC entities, and the two different RLC entities are mapped to two different logical channels and transmitted to the MAC layer. It should be understood that it is equivalent here for the PDCP entity to transmit a data packet to at least two RLC entities and to map to at least two logical channels.
  • the network can be configured to allocate high-level signaling, such as RRC (Radio Resource Control, RRC) signaling, to configure the PDCP to divide the serial number of the service SN into different RLC entities when offloading. That is, mapping to different logical channels.
  • RRC Radio Resource Control
  • the PDCP layer acquires P data packets, and in the process of adding a PDCP packet header and the like to generate a corresponding P PDCP PDUs in the PDCP layer, the PDCP layer sequentially adds a PDCP sequence number to the header of each PDCP PDU, then P Each PDCP PDU in a PDCP PDU has a different PDCP sequence number.
  • the PDCP entity sends the P data packets to at least two RLC entities according to a PDCP sequence number of each data packet, so that any two PDCP serial numbers of the P data packets are consecutive.
  • the data packet is sent to a different RLC entity.
  • the PDCP entity sends consecutive data packets of two sequence numbers PDCP SN of the same service to different RLC entities to form a bearer, for example, packet 1 2, 3, 4 consecutive, and then mapped to different logical channels, that is, packets 1 and 2 are mapped to different logical channels, packets 2 and 3 are mapped to different logical channels, and packets 3 and 4 are mapped to different logical channels.
  • Logical channel It should be understood that only two RLC entities and two logical channels are shown in the figure, but the embodiment of the present application does not exclude the case of offloading to more than two logical channels.
  • H data packets of the P data packets are sent to a first RLC entity of the at least two RLC entities, H is an integer greater than or equal to 2, and, in the H data packets The sequence number SN interval between any two data packets is greater than or equal to h, and h is an integer greater than or equal to 2.
  • the PDCP entity may extract H data packets from the P data packets of the same service, where H data packets
  • the PDCP sequence numbers are not consecutive between the two, and the H data packets are sent to an RLC entity and mapped to a logical channel.
  • the specific interval may be configured by the network. It should be understood that the embodiment of the present application is not limited to this.
  • the MAC layer After the PDCP layer completes the offloading, the MAC layer obtains the RLC PDUs through different logical channels, and generates a MAC PDU.
  • the embodiment of the present application may also be configured in the MAC.
  • the MAC can not be placed into the data of more than two logical channels at the same time in the process of generating the MAC PDU. That is, one MAC PDU can only be put into the RLC PDU on one logical channel.
  • one logical channel limited here is that the one service is offloaded to any one of the at least two logical channels, and the logical channel corresponding to other services can be reused to ensure resource utilization, etc., which is not limited in this application. . It should also be understood that, at this time, according to the size of the resource and the MAC PDU generated by the RLC PDU size on the logical channel, the number of RLC PDUs into which the MAC PDU is placed is not limited, and consecutive RLC PDUs of the same service are not generated in the same The situation of resources.
  • the receiving end device when the receiving end device is located in the coverage of one or more cells (cell groups) and/or carriers (carrier groups) provided by the macro base station or the small base station,
  • the receiving device for example, the UE
  • the UE serves one or more cells
  • at least two logical channels mapped by the same service may be mapped to different cells or carriers, and only the corresponding cell (cell group) or carrier may be used.
  • the carrier group is used for the transmission of data packets.
  • the network may further configure the MAC layer to put another logical channel of the same service that has not been released last time when the RLC PDU is put into the MAC PDU, so as to prevent the MAC layer from always putting data of one of the logical channels.
  • the restriction causes another logical channel to be completely undeliverable because of the restriction.
  • the above is a split of a bearer formed by the PDCP layer for the same service.
  • the PDCP layer can also offload the same stream and obtain sequential packets to different logical channels.
  • the MAC layer processes the data packets of the logical channel as above. No longer.
  • the foregoing method 600 performed by the PDCP layer may also be performed by the SDAP layer.
  • the SDAP layer maps a service to the PDCP layer
  • the contiguous data packets of the same service are separately streamed to different PDCP entities, and then corresponding to different RLC entities, different logical channels are mapped, and the MAC layer pairs different logics.
  • the RLC PDU processing of the channel is the same as above, and will not be described here.
  • the receiving device needs to allocate a certain resource for transmitting the data to be sent by the transmitting end device, and then the receiving device needs to know the amount of data to allocate the resource.
  • the process in which the user equipment UE sends data to the base station eNB the resource required for the uplink data transmission is obtained by using a Buffer Status Report (BSR), and the reporting BSR process is used to notify the eNB that the UE is uplinked. How much data is in the buffer that needs to be sent, and the resources needed to send it.
  • BSR Buffer Status Report
  • resources are allocated by calculating the amount of data of each logical channel, and the amount of data still located at the PDCP layer can be calculated by dividing by 2, for example, in FIG. 7, one bearer is mapped to two logical channels. Assuming that the PDCP layer has 100 bytes of data and the RLC has 50 bytes and 60 bytes of data, respectively, the two logical channels have 100 bytes and 110 bytes of data, respectively.
  • the way to offload the SDAP layer because the data of the SDAP layer is not yet calculated into the content reported by the BSR, the BSR can be used without enhancement.
  • the data packets of the two serial numbers SN of the same service are put into different resources by using the splitting of the PDCP layer or the SDAP layer, where the resources may be different code blocks, different MAC PDUs or different transmissions.
  • the blocks may be specifically limited according to different embodiments.
  • the transmission reliability can be increased and the user experience can be improved while ensuring resource utilization.
  • the RLC entity After receiving the RLC SDU of the PDCP layer, the RLC entity stores it in the transmission buffer. After receiving the transmission opportunity (ul grant) from the MAC layer, the RLC entity segments the RLC SDU according to the size it provides, and then adds The RLC header is called an RLC PDU. All RLC PDUs are handed over to the retransmission buffer for transmission, and the PDUs in the retransmission buffer are retransmitted or removed after receiving the STATUS PDU. After receiving the PDU from the peer, the receiving end first determines whether it is a control PDU or a data PDU.
  • the UE finds that a packet of the same logical channel or stream has not been successfully transmitted or the transmission fails, that is, the transmission of the data packet fails or the transmission time exceeds the set threshold, then the first packet and/or the second packet is upgraded.
  • the reliability of the package In the embodiment of the present application, the UE has autonomy, and multiple retransmission modes, such as a first retransmission mode and a second retransmission mode, may be set, where the first retransmission mode is used for the first data packet transmission failure or the transmission time is exceeded.
  • the UE actively initiates an ARQ (Automatic Repeat Request, ARQ) retransmission for the first data packet.
  • ARQ Automatic Repeat Request
  • the receiving end device when the receiving end device is located in one or more of the macro base station or the small base station.
  • the receiving device when one or more cells are served by the receiving device (for example, the UE), the resources of different cells or carriers may be used in the ARQ process for the first data packet.
  • the transmission of the data packet is done by ARQ retransmission.
  • the UE actively initiates the ARQ retransmission for the first data packet, and is not limited to the first retransmission mode or the second retransmission mode, and improves the reliability of the second data packet.
  • the receiving end device when the receiving end device is located in the coverage of one or more cells (carriers) provided by the macro base station or the small base station, serving the receiving end device (for example, the UE)
  • the RLC entity may perform ARQ retransmission on the second data by using another cell or cells.
  • the PDCP entity may be triggered to perform replication, and the second data packet is copied to a different logical channel for transmission, that is, similar to the offloading bearer in FIG. 7, and the second data packet is copied and distributed to multiple pieces.
  • the logical channel is transmitted to enhance the transmission reliability of the second data packet and avoid the impact of continuous data packet transmission failure.
  • the UE actively initiates ARQ retransmission for the first data packet, adopts a more reliable HARQ configuration, or selects more reliable semi-persistent scheduling resources or parameters.
  • the base station configures several sets of HARQ configurations or several sets of semi-static scheduling resources for the UE and Parameter, optionally, the base station may also configure the corresponding relationship between the configuration or the number of resources and the number of retransmissions. For example, when the retransmission does not exceed three times, the UE selects the HARQ configuration one, and when the number of retransmissions is greater than three times less than or equal to five times, the UE Select HARQ configuration 2. When the number of retransmissions is greater than 5, select HARQ configuration 3.
  • the foregoing cases are implementations when there are reliable resources for ARQ retransmission, but it is likely that the current UE has no resources or no more reliable resources for ARQ retransmission, and the data retransmitted at this time is currently urgent.
  • the data can be sent to the base station through the BSR or Uplink Control Information (UCI) to indicate that the UE needs more reliable resources.
  • UCI Uplink Control Information
  • the UE may directly carry the indication information, or use different time-frequency resources to indicate the reliability level of the required resource to the base station.
  • the base station may also configure the correspondence between the indication information and the reliability level in advance, and the UE issues a request, and each request corresponds to a resource of a different reliability level.
  • the base station receives the request of the UE, and allocates resources of different reliability levels according to different requests. For example, under normal circumstances, the UE requests resources of a common reliability level. When the retransmission exceeds a certain number of times, the UE requests resources of a special reliability level.
  • the more reliable resources in the embodiments of the present application are resources with higher reliability levels than the existing resources.
  • the rate of LTE and the number of resources (RB number) are related to the MCS efficiency (determined by signal quality). For example, when there are high frequency and low frequency resources simultaneously, more reliable resources may refer to low frequency resources or modulation. Lower resources such as Modulation and Coding Scheme (MCS).
  • MCS Modulation and Coding Scheme
  • the UE when the UE does not have the capability of transmitting data on both the Physical Uplink Share Channel (PUSCH) and the Physical Uplink Control Channel (PUCCH), the UE needs to be in a certain period of time.
  • the UE can only send the two data to the base station simultaneously on the PUSCH by puncturing or rate matching.
  • the rate matching means that the bits on the transmission channel are retransmitted. Or be punctured to match the carrying capacity of the physical channel, and the bit rate required for the transmission format is reached during channel mapping. Punching in rate matching is to knock out the current bit and move the following bits one bit forward. If the number of input bits is less than the number of output bits, then it is retransmission; if the number of input bits is more than the number of output bits, it is punched. This type of transmission causes the uplink data to be affected.
  • the service priority is not very high, so even if there is an impact, the problem is not big.
  • many types of services are introduced, including various types of services of different priorities.
  • the puncturing or rate matching should be avoided as much as possible to reduce the impact of uplink data.
  • the so-called air interface format includes at least one of the following parameters: subcarrier spacing, PUSCH transmission time, cyclic prefix length, etc., and high priority services are usually mapped to high priority.
  • the UE can determine whether each uplink transport block can be punctured or rate matched according to the configuration information of the base station, and the following enhancement scheme can be introduced:
  • the base station configures at least one air interface format. If the UE sends data on the PUSCH in the air interface format, if the UCI needs to be sent at the same time, the UE discards or delays the transmission of the UCI.
  • the base station configures at least one type of logical channel or bearer. If the data packet sent by the UE on the PUSCH includes the logical channel or the carried data, the UE discards or delays the transmission of the UCI.
  • the indication information is added to the DCI, and the UE determines to discard or delay the transmission of the UCI according to the indication information.
  • FIG. 8 is a schematic block diagram of a communication device 800 provided by an embodiment of the present application. As shown in FIG. 8, the communication device 800 includes a transceiving unit 810 and a processing unit 820.
  • the transceiver unit 810 is configured to acquire M radio link control RLC protocol data units RLC PDU, where M is an integer greater than or equal to 2;
  • the processing unit 820 is configured to generate, according to the logical channel corresponding to each RLC PDU of the M RLC PDUs, N media access control MAC protocol data unit MAC PDUs, where any two corresponding to the same logical channel and the RLC serial number The consecutive RLC PDUs are carried in different MAC PDUs, where N is an integer greater than or equal to two.
  • the communication device may be a network element, or may be a functional entity in a certain network element, such as an entity, a MAC entity, a DU, and a CU entity in a sender device or a receiver device that can implement a specific layer function.
  • a chip or a chip system including at least one chip may be used.
  • the communication device may be an entity corresponding to the MAC layer.
  • the sending end device or the receiving end device may be the same or different, which is not limited in this embodiment of the present application.
  • a network device for example, a network element
  • the PDCP, the RLC, and the MAC layer entity may not be in the same network element; when the CU and the DU When not separated, the PDCP, the RLC, and the MAC layer entity may be in a network element, and the three entities may use the respective processors, which may not be one.
  • the interval between the first MAC PDU and the sequence number SN of the second MAC PDU generated by the processing unit 820 is greater than or equal to k, and k is an integer greater than or equal to 2, the first MAC PDU.
  • the third MAC PDU of the N MAC PDUs generated by the processing unit carries T RLC PDUs corresponding to the same logical channel, where T is an integer greater than or equal to 2, and T is less than M, where The interval of the RLC sequence numbers of any two RLC PDUs in the T RLC PDUs is greater than or equal to t, and t is an integer greater than or equal to 2.
  • the communication device 800 can correspond to (e.g., can be configured or be itself) the MAC entity described in the method 400 above, and can be used to perform the actions performed by the MAC entity in the method 400 and enumerated above.
  • the various possible processes are not repeated here for the sake of brevity.
  • apparatus 800 for transmitting data shown in FIG. 8 is merely an example, and the communication apparatus of the embodiment of the present application may further include other modules or units, or include modules similar in function to the respective modules in FIG. 8, or To include all the modules in Figure 8.
  • FIG. 9 is a schematic block diagram of a communication device 900 provided by an embodiment of the present application. As shown in FIG. 9, the communication device 900 includes a transceiver unit 910 and a processing unit 920.
  • the transceiver unit 910 is configured to acquire M radio link control RLC protocol data units RLC PDU, where M is an integer greater than or equal to 2;
  • the processing unit 920 is configured to generate, according to the flow corresponding to each RLC PDU in the M RLC PDUs, N MAC PDUs, where any two corresponding RLC PDUs corresponding to the same flow and acquired sequentially are carried in different MAC PDUs.
  • N is an integer greater than or equal to 2.
  • the communication device may be a network element, or may be a functional entity in a certain network element, such as an entity, a MAC entity, a DU, and a CU entity in a sender device or a receiver device that can implement a specific layer function.
  • a chip or a chip system including at least one chip may be used.
  • the communication device may be an entity corresponding to the MAC layer.
  • the sending end device or the receiving end device may be the same or different, which is not limited in this embodiment of the present application.
  • the sequence number SN interval of the first MAC PDU and the second MAC PDU of the N MAC PDUs generated by the processing unit is greater than or equal to k, and k is an integer greater than or equal to 2, and the first MAC PDU carries There is a first flow of the first RLC PDU, where the second MAC PDU carries the second RLC PDU of the first flow, and the first RLC PDU is consecutive with the RLC sequence number of the second RLC PDU.
  • the third MAC PDU of the N MAC PDUs generated by the processing unit carries T RLC PDUs corresponding to the same flow, T is an integer greater than or equal to 2, and any of the T RLC PDUs
  • the RLC sequence number interval of the two RLC PDUs is greater than or equal to t, and t is an integer greater than or equal to 2.
  • the processing unit is further configured to determine, according to the flow identifier carried in each RLC PDU, a flow corresponding to the M RLC PDUs, where the flow identifier is carried in a service data adaptation protocol SDAP packet header or a packet data convergence protocol.
  • PDCP Baotou a service data adaptation protocol SDAP packet header or a packet data convergence protocol.
  • the communication device 900 can correspond to (eg, can be configured or be itself) the MAC entity described in the above method 500, and can be used to perform the actions performed by the MAC entity in the method 1000 and enumerated in the foregoing.
  • the various possible processes are not repeated here for the sake of brevity.
  • the apparatus 900 for transmitting data shown in FIG. 9 is merely an example, and the communication apparatus of the embodiment of the present application may further include other modules or units, or include modules similar to those of the modules in FIG. 9, or To include all the modules in Figure 9.
  • FIG. 10 is a schematic block diagram of a communication device 1000 provided by an embodiment of the present application. As shown in FIG. 10, the communication device 1000 includes a transceiving unit 1010 and a processing unit 1020.
  • the transceiver unit 1010 is configured to acquire P data packets, where P is a positive integer greater than or equal to 2;
  • the processing unit 1020 is configured to send, according to the PDCP sequence number of each data packet, the P data packets to at least two RLC entities, where any two of the P data packets have consecutive PDCP sequence numbers. Is sent to a different RLC entity.
  • the processing unit is further configured to send H data packets in the P data packets to a first RLC entity in the at least two RLC entities, where H is an integer greater than or equal to 2, and the H The PDCP sequence number interval of any two packets in the data packet is greater than or equal to h, and h is an integer greater than or equal to 2.
  • the communication device may be a network element, or may be a functional entity in a certain network element, for example, an entity capable of implementing a specific layer function in a transmitting end device or a receiving end device, a PDCP entity, a DU and a CU entity.
  • a chip or a chip system including at least one chip may be used.
  • the communication device may be an entity corresponding to the PDCP layer or the SDAP layer.
  • the sending end device or the receiving end device may be the same or different, which is not limited in this embodiment of the present application.
  • the communication device 1000 can correspond to (eg, can be configured or be itself) the PDCP entity described in the above method 600, and can be used to perform the actions performed by the PDCP entity in the method 1100 and enumerated in the foregoing.
  • the various possible processes are not repeated here for the sake of brevity.
  • the apparatus 1000 for transmitting data shown in FIG. 10 is merely an example, and the communication apparatus of the embodiment of the present application may further include other modules or units, or include modules similar in function to the respective modules in FIG. 10, or To include all the modules in Figure 10.
  • FIG. 11 is a schematic block diagram of a communication device 1100 provided by an embodiment of the present application.
  • the communication device 1100 can correspond to the communication device described in FIG. 8, FIG. 9 or FIG. 10, and the communication device 1100 can adopt a hardware architecture as shown in FIG.
  • the apparatus can include a processor 1110, a transceiver 1120, and a memory 1130 that communicate with one another via internal connection paths.
  • the related functions implemented by the processing unit 820 in FIG. 8, the processing unit 920 in FIG. 9, or the processing unit 1020 in FIG. 10 may be implemented by the processor 1110, the transceiver unit 820 in FIG. 8, and the transceiver unit in FIG.
  • the related functions implemented by the transceiver unit 1010 in FIG. 10 or FIG. 10 may be implemented by the processor 1110 controlling the transceiver 1120.
  • the processor 1110 may include one or more processors, for example, including one or more central processing units (CPUs).
  • processors for example, including one or more central processing units (CPUs).
  • CPUs central processing units
  • the CPU may be a single core CPU, or It is a multi-core CPU.
  • the transceiver 1120 is configured to transmit and receive data and/or signals, as well as to receive data and/or signals.
  • the transceiver can include a transmitter and a receiver for transmitting data and/or signals, and a receiver for receiving data and/or signals. It should be understood that the transceiver may be a wired connection transceiver module, a transceiver interface, and the like, which is not limited in this embodiment of the present application.
  • the memory 1130 includes, but is not limited to, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read only memory (EPROM), and a read only memory.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read only memory
  • CD-ROM compact disc read-only memory
  • the memory 1130 is used to store the program code and data of the device, and may be a separate device or integrated in the processor 1110, which is not limited in this embodiment of the present application. .
  • the processor 1110 is configured to control a transceiver to perform data transmission in the communication method 400.
  • a transceiver to perform data transmission in the communication method 400.
  • the processor 1110 is configured to control the transceiver to perform data transmission in the communication method 500.
  • the processor 1110 is configured to control the transceiver to perform data transmission in the communication method 500.
  • the processor 1110 is configured to control the transceiver to perform data transmission in the communication method 600.
  • the processor 1110 is configured to control the transceiver to perform data transmission in the communication method 600.
  • Figure 11 only shows a simplified design of the device.
  • the device may also include other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all devices that can implement the present application are within the scope of the present application.
  • device 1100 can be a chip device.
  • the chip device may comprise at least one chip, which may be a field programmable gate array for implementing related functions, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, or a microcontroller.
  • a programmable controller or other integrated chip can be used.
  • the chip may include one or more memories for storing program code that, when executed, causes the device to perform the corresponding function.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

本申请提供了一种通信的方法和装置,该方法包括:媒体接入控制MAC实体获取M个无线链路控制RLC协议数据单元RLC PDU,其中,M为大于或等于2的整数;该MAC实体根据该M个RLC PDU中每个RLC PDU对应的逻辑信道,生成N个媒体接入控制MAC协议数据单元MAC PDU,其中,任意两个对应同一逻辑信道且RLC序列号连续的RLC PDU承载于不同的MAC PDU中,N为大于或等于2的整数,通过将连续的RLC PDU放入不同的MAC PDU中,能够避免同一业务的连续性丢包,提高传输可靠性。

Description

通信的方法和装置
本申请要求于2018年01月31日提交中国专利局、申请号为201810097512.2、申请名称为“通信的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信的方法和装置。
背景技术
目前在网络设备和用户设备(user equipment,UE)的通信过程中,网络设备和用户设备都可以作为发送端设备或接收端设备。发送端设备在分配资源的时候,通常会根据接收端设备的需求进行分配,例如发送端设备根据接收端设备上报的待发送数据量,分配一大块资源,接收端设备需要将同一逻辑信道中的不同数据包,甚至不同逻辑信道的不同数据包,按序放到同一块资源上发送,来提高资源的利用率。其中,将多个同一逻辑信道的数据包放到一起发送的行为称为级联,将不同的逻辑信道的数据包放到一起发送的行为为复用,目前级联和复用功能都是在MAC层完成的。
在该现有技术中,级联可以提高资源的利用率,接收端设备会尽可能的填满网络设备分配的资源,但是级联带来的问题是,如果同一业务的两个连续数据包都被放到一块资源上,那么如果这块资源发送失败,就会出现两个连续的数据包都丢失的情况。另外,为了满足连续两个包丢失的概率小于10 -13,只能保证每块资源的失败概率都小于10 -13,这样的要求太过严格,并不能有效的利用频率资源。
因此,亟需提供一种方法,能够保证资源利用率的情况下,降低两个连续数据包都丢失的概率,减小两个连续数据包都丢失对业务的影响,提高用户体验。
发明内容
本申请提供一种通信方法和装置,能够避免同一业务或流的连续数据包丢失,增加传输的可靠性,提高用户体验。
第一方面,提供了一种通信的方法,该方法包括:媒体接入控制MAC实体获取M个无线链路控制RLC协议数据单元RLC PDU,其中,M为大于或等于2的整数;该MAC实体根据该M个RLC PDU中每个RLC PDU对应的逻辑信道,生成N个媒体接入控制MAC协议数据单元MAC PDU,其中,任意两个对应同一逻辑信道且RLC序列号连续的RLC PDU承载于不同的MAC PDU中,其中,N为大于或等于2的整数。
可选地,当RLC PDU所占用的比特数大于要放入的MAC PDU的负载(payload)部分所占用的比特数时,可以按照该MAC PDU的payload部分所占用的比特数的大小放入该RLC PDU的分段,分段后的RLC PDU的RLC序列号不变,保证和下一个RLC序列 号连续的RLC PDU承载于不同的MAC PDU中。
根据本申请实施例提供的通信方法,例如发送端设备向接收端设备发送数据,在MAC实体通过逻辑信道接收来自RLC实体传输的M个RLC序列号连续的RLC PDU,生成MAC PDU的过程中,MAC实体将每个逻辑信道的RLC序列号连续的RLC PDU放入不同的MAC PDU中,从而避免将同一业务的连续两个数据包级联到同一块资源,导致在数据包传输过程,如果一个传输块传输失败,造成同一业务的连续两个数据包都丢失的情况,增加传输的可靠性,提高用户体验。
结合第一方面,在第一方面的第一种些实现方式中,该N个MAC PDU中的第一MAC PDU和第二MAC PDU的MAC序列号的间隔大于或等于k,k为大于或等于2的整数,该第一MAC PDU中承载有第一逻辑信道上的第一RLC PDU,该第二MAC PDU中承载有第一逻辑信道上的第二RLC PDU,且该第一RLC PDU与该第二RLC PDU的RLC序列号连续。
作为一种可选的实施方式,同一逻辑信道的RLC序列号连续的RLC PDU放入不同的MAC PDU中,且放入的MAC PDU之间有一定的间隔,进一步降低同一业务的连续两个数据包级联到同一块资源的可能性,增加传输的可靠性。
结合第一方面及其上述实现方式,在第一方面的第二种可能的实现方式中,该N个MAC PDU中的第三MAC PDU中承载有对应同一逻辑信道的T个RLC PDU,T为大于或等于2的整数,且T小于M,其中,该T个RLC PDU中的任意两个RLC PDU的RLC序列号的间隔大于或等于t,t为大于或等于2的整数。
上述技术方案通过在1个MAC PDU中放入多个RLC序列号不连续的RLC PDU,能够在分给该逻辑信道的资源充足的情况下,提高资源的利用率,同时增加传输的可靠性。
可选地,物理层接收到传输块后会将传输块划分为码块,MAC层需要知道物理层分割码块的规则,在将RLC PDU放入MAC PDU的过程中,并按照该分割规则,将一个逻辑信道的RLC序列号连续的RLC PDU放入不同的码块,一个码块内只放入一个RLC PDU或者一个码块内放入多个对应同一逻辑信道的RLC序列号不连续的RLC PDU,而且在每个码块中,都包括RLC PDU对应的MAC子包头,保证接收端物理层接收到所***块后,每一个码块都可以解码成功,可以直接递交MAC层,保证传输的快速响应。
第二方面,提供了一种通信的方法,该方法包括:媒体接入控制MAC实体获取M个无线链路控制RLC协议数据单元RLC PDU,其中,M为大于或等于2的整数;该MAC实体根据该M个RLC PDU中每个RLC PDU对应的流,生成N个MAC PDU,其中,任意两个对应同一流且获取顺序连续的两个RLC PDU承载于不同的MAC PDU中,其中,N为大于或等于2的整数。
可选地,当RLC PDU所占用的比特数大于要放入的MAC PDU的payload部分所占用的比特数时,可以按照该MAC PDU的payload部分所占用的比特数的大小放入该RLC PDU的分段,分段后的RLC PDURLC序列号不变,保证和下一个连续的RLC PDU承载于不同的MAC PDU中。
根据本申请实施例提供的通信方法,对于来自于同一流(quality of service flow,QoS flow)的获取顺序连续的数据包,在MAC实体获取同一QoS flow的M个RLC PDU,生成MAC PDU的过程中,MAC实体将同一QoS flow的获取顺序连续的RLC PDU放入不 同的MAC PDU中,从而避免将属于同一QoS flow的连续两个数据包级联到同一块资源,导致在数据包传输过程,如果一个传输块传输失败,造成连续两个数据包都丢失的情况,增加传输的可靠性,提高用户体验。
结合第二方面,在第二方面的第一种些实现方式中,该N个MAC PDU中的第一MAC PDU和第二MAC PDU的MAC序列号间隔大于或等于k,k为大于或等于2的整数,该第一MAC PDU中承载有第一流的第一RLC PDU,该第二MAC PDU中承载有第一流的第二RLC PDU,且该第一RLC PDU与该第二RLC PDU的获取顺序连续。
作为一种可选的实施方式,同一QoS flow的获取顺序连续的RLC PDU放入不同的MAC PDU中,且放入的MAC PDU之间有一定的间隔,进一步降低连续两个数据包级联到同一块资源的可能性,增加传输的可靠性。
结合第二方面及其上述实现方式,在第二方面的第二种实现方式中,该N个MAC PDU中的第三MAC PDU中承载有对应同一流的T个RLC PDU,T为大于或等于2的整数,并且,该T个RLC PDU中的任意两个RLC PDU不是顺序获取的,这两个RLC PDU获取时刻之间还获取了对应同一流的t-1个的RLC PDU,t为大于或等于2的整数。
上述技术方案通过在1个MAC PDU中放入多个获取顺序不连续的RLC PDU,能够提高资源的利用率,同时增加传输的可靠性。
结合第二方面及其上述实现方式,在第二方面的第三种实现方式中,在该MAC实体根据该M个RLC PDU中每个RLC PDU对应的流还包括:该MAC实体根据每个RLC PDU中携带的流标识,确定所述M个RLC PDU中每个RLC PDU对应的流,其中,该流标识承载于业务数据适配协议SDAP包头或分组数据汇聚协议PDCP包头。
可选地,数据包在经过SDAP层生成SDAP PDU时,SDAP层在对数据包添加SDAP包头,MAC层根据封装的SDAP包头,确定每个SDAP PDU对应的RLC PDU中携带的流标识,从而确定M个RLC PDU对应的流,继而识别出M个RLC PDU对应的流,再避免将同一QoS flow的获取顺序连续的两个数据包级联到同一块资源,增加传输的可靠性。
可选地,在PDCP层添加PDCP包头过程中,为数据包添加指示域,指示流ID,MAC实体读取PDCP的包头,从而确定指示域指示的QFI,继而识别出M个RLC PDU对应的流。
第三方面,提供了一种通信的方法,该方法包括:媒体接入控制MAC实体获取M个无线链路控制RLC协议数据单元RLC PDU,其中,M为大于或等于2的整数;该MAC实体根据该M个RLC PDU中每个RLC PDU对应的承载,生成N个媒体接入控制MAC协议数据单元MAC PDU,其中,任意两个对应同一承载且PDCP序列号连续的RLC PDU承载于不同的MAC PDU中,其中,N为大于或等于2的整数。
一个承载可以包括M个数据包,M个数据包在PDCP层对应于M个PDCP PDU,PDCP实体按顺序在每个PDCP PDU的包头中添加PDCP序列号,那么M个PDCP PDU中的每个PDCP PDU都有不同的PDCP序列号。再对应到RLC层的形成M个RLC PDU,则每个RLC PDU的负载payload中包括有唯一的PDCP序列号。为了避免同一个承载的连续性丢包,那么在MAC层,使同一个承载的PDCP序列号连续的RLC PDU放入不同的资源中传输。要实现上述目的,则MAC层在生成N个MAC PDU之前,需要识别出多个RLC PDU中属于同一承载的M个PDCP序列号连续的PDCP PDU。
可选地,当RLC PDU所占用的比特数大于要放入的MAC PDU的payload部分所占用的比特数时,可以按照该MAC PDU的payload部分所占用的比特数的大小放入该RLC PDU的分段,分段后的RLC PDURLC序列号不变,保证和下一个RLC序列号连续的RLC PDU承载于不同的MAC PDU中。
根据本申请实施例提供的通信方法,例如发送端设备向接收端设备发送数据,MAC层跨层读取数据包在PDCP层的PDCP序列号,在MAC实体获取来自同一承载的M个PDCP序列号连续的RLC PDU,生成MAC PDU的过程中,MAC实体将每个承载的PDCP序列号连续的RLC PDU放入不同的MAC PDU中,从而避免将同一业务的连续两个数据包级联到同一块资源,导致在数据包传输过程,如果一个传输块传输失败,造成同一业务的连续两个数据包都丢失的情况,增加传输的可靠性,提高用户体验。
结合第三方面,在第三方面的第一种些实现方式中,该N个MAC PDU中的第一MAC PDU和第二MAC PDU的MAC序列号的间隔大于或等于k,k为大于或等于2的整数,该第一MAC PDU中承载有第一承载的第一RLC PDU,该第二MAC PDU中承载有第一承载的第二RLC PDU,且该第一RLC PDU与该第二RLC PDU的PDCP序列号连续。
作为一种可选的实施方式,同一承载的PDCP序列号连续的RLC PDU放入不同的MAC PDU中,且放入的MAC PDU之间有一定的间隔,进一步降低同一业务的连续两个数据包级联到同一块资源的可能性,增加传输的可靠性。
结合第三方面及其上述实现方式,在第三方面的第二种可能的实现方式中,该N个MAC PDU中的第三MAC PDU中承载有对应同一承载的T个RLC PDU,T为大于或等于2的整数,且T小于M,其中,该T个RLC PDU中的任意两个RLC PDU的PDCP序列号的间隔大于或等于t,t为大于或等于2的整数。
上述技术方案通过在1个MAC PDU中放入多个PDCP序列号不连续的RLC PDU,提高资源的利用率,同时增加传输的可靠性。
第四方面,提供了一种通信的方法,该方法包括:分组数据汇聚层PDCP实体获取P个数据包,P是大于或等于2的正整数;该PDCP实体根据每个数据包的PDCP序列号,将该P个数据包发送给至少两个RLC实体,其中,该P个数据包中任意两个PDCP序列号连续的数据包被发送至不同的RLC实体。
结合第四方面,在第四方面的第一种些实现方式中,该P个数据包中的H个数据包被发送到该至少两个RLC实体中的第一RLC实体,H为大于或等于2的整数,并且,该H个数据包中的任意两个数据包的PDCP序列号间隔大于或等于h,h为大于或等于2的整数。
通过上述技术方案,由PDCP层完成分流后,MAC层通过不同的逻辑信道获取RLC PDU,生成MAC PDU,为了避免将同一业务的连续两个数据包放到同一块资源上传输,可以配置在MAC层进行复用的时候,限制MAC在生成MAC PDU过程中,不能同时放入对应同一PDCP实体的两个以上逻辑信道的数据,即一个MAC PDU只能放入对应同一PDCP实体的一个逻辑信道上的RLC PDU。
可选地,当接收端设备位于宏基站或小基站提供的一个或多个小区(载波)的覆盖范围内,为接收端设备(例如UE)服务的小区为一个或多个时,可以将同一业务分流后映射的至少两个逻辑信道映射到不同的小区(或小区组)或者载波(或载波组),只能使用 对应小区(或小区组)或者载波(或载波组)的资源来进行数据包的传输。
可选地,对于同一个业务,还可以在SDAP层映射到PDCP层时,将SDAP序列号连续的数据包分别分流到不同的PDCP实体,再对应不同的RLC实体,映射不同的逻辑信道。
第五方面,提供了一种通信装置,该装置用于执行第一方面及第一方面的任一种可能实现方式中的方法,或用于执行第二方面及第二方面的任一种可能实现方式中的方法,或用于执行第三方面及第三方面的任一种可能实现方式中的方法,或用于执行第四方面及第四方面的任一种可能实现方式中的方法,具体地,该通信的装置可以包括用于执行第一方面及第一方面的任一种可能的实现方式中的方法的单元,或用于执行第二方面及第二方面的任一种可能实现方式中的方法的单元,或用于执行第三方面及第三方面的任一种可能实现方式中的方法的单元,或用于执行第四方面及第四方面的任一种可能实现方式中的方法的单元。
第六方面,提供了一种通信装置,包括存储器、处理器和收发器,该收发器用于发送和接收数据,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信装置执行第一方面及第一方面的任一种可能实现方式中的方法,或执行第二方面及第二方面的任一种可能实现方式中的方法,或执行第三方面及第三方面的任一种可能实现方式中的方法,或用于执行第四方面及第四方面的任一种可能实现方式中的方法。
第七方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行上述第一至第四方面或第一至第四方面的任一种可能的实现方式中的方法。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被通信装置的收发单元、处理单元或收发器、处理器运行时,使得通信装置执行第一至第四方面或第一至第四方面的任一种可能的实现方式中的方法。
第九方面,提供了一种通信***,所述通信***包括上述第五方面所述的装置和第六方面所述的装置。
附图说明
图1是本申请实施例的无线通信***架构图。
图2是新一代无线通信***NR中的一种协议栈架构图。
图3是新一代无线通信***NR中数据包处理过程示意图。
图4是本申请实施例提供的通信方法的一例示意性流程图。
图5是本申请实施例提供的通信方法的又一例示意性流程图。
图6是本申请实施例提供的通信方法的又一例示意性流程图。
图7是本申请实施例提供的通信方法的又一例示意图。
图8是本申请实施例提供的通信装置的一例示意性框图。
图9是本申请实施例提供的通信装置的又一例示意性框图。
图10是本申请实施例提供的通信装置的又一例示意性框图。
图11是本申请实施例提供的通信装置的又一例示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
需要说明的是,以下描述中出现的编号“第一”、“第二”等仅是为了区分不同的描述对象,例如,为了区分不同的MAC PDU资源(例如,第一MAC PDU资源、第二MAC PDU资源)、不同的数据包对应的RLC PDU(例如,第一RLC PDU、第二RLC PDU)等,不应对本申请实施例的技术方案构成限定。
图1是本申请实施例应用的无线通信***100的示意图。如图1所示,该无线通信***100可以包括一个宏基站110,至少两个小基站111,至少一个用户设备UE 112。UE 112位于宏基站110或小基站111提供的一个或多个小区(载波)的覆盖范围内,为UE 112服务的小区可以为一个或多个。当为UE 112的服务小区有多个时,UE可以按照载波聚合(carrier aggregation,CA)或双连接(dual connectivity,DC)或协作多点传输(coordinated multiple point transmission,CoMP)方式工作,其中至少一个小区提供多于一种numerology同时为UE提供无线资源。
该无线通信***100可以是全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、LTE频分双工(Frequency Division Duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信***、未来的第五代(5th Generation,5G)***或新一代无线通信***(New Radio,NR)等,本申请实施例并不限定。
该无线通信***100包括宏基站110或小基站111等网络设备,可以是用于与用户设备112通信的设备,该网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)***或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该发送端设备可以为中继站、接入点(Access Point,AP)、车载设备、可穿戴设备以及未来5G网络中的发送端设备或者未来演进的PLMN网络中的发送端设备等,本申请实施例并不限定。
该无线通信***100还包括UE 112,例如,可以指接入设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。用户设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、具有网 络接入功能的传感器、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的接收端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的设备等,本申请实施例对此并不限定。
应理解,在本申请实施例中,发送端设备和接收端设备是可以应用于无线通信***中的设备,具体地,发送端设备可以是网络设备或用户设备,接收端设备可以是网络设备或用户设备,应理解,对发送端设备或接收端设备具体是网络设备还是用户设备并不做限定。
新一代无线通信***NR需要满足确定性业务的需求。所谓确定性业务,主要指的是某些工业控制相关的业务,比如,对于运动控制这一类业务,控制器会对一组的执行者发出做某个动作的指令,例如打包、打印等。这种业务对时延的要求比普通的宽带业务要高,并且对可靠性这种业务也有自己的特殊需求。例如,第三代移动通信(The 3rd Generation Partnership Project,3GPP)TR22.804中指出,连续两个应用层数据包出错的概率必须小到可以被忽略,因为会损坏机器或者导致产品线停工。同时,在和KUKA机器人联合测试的过程中,KUKA的心跳包连续传输错误两次,则应用层连接断开重连。可见对于同一个业务而言,连续丢失两个数据包可能会严重影响到业务质量,导致用户体验差。
以上需求如果用量化的语言来描述的话,那么就是:单个应用层数据包(Block Error Ratio,BLER)传输失败的概率不超过10 -5,连续两个数据包BLER传输失败的概率则需要进一步小于10 -13。为了满足连续两个数据包BLER丢失的概率小于10 -13,只能保证每块资源的失败概率都小于10 -13,这样的要求使得不能同时满足传输可靠性和资源利用率的要求,并不能有效的利用频率资源。因此,需要既能保证传输可靠性,又能提高资源利用率的方法来实现数据包的传输。
图2是新一代无线通信***NR中的一种协议栈架构,图3是新一代无线通信***NR中数据包处理过程示意图。本申请实施例将以此为例,结合图2和图3,详细介绍当发送端设备向接收端设备发送数据时,数据包的一系列处理过程。
如图2所示,此架构包括业务数据适配SDAP(Service Data Adaptation Protocol,SDAP)层、分组数据汇聚协议PDCP(Packet Data Convergence Protocol,PDCP)层,无线链路控制RLC(Radio Link Control,RLC)层,媒体接入控制MAC(Media Access Control,MAC)层。对于控制面,还包括(Radio Resource Control,RRC)层,PDCP层在控制面的上层是RRC层,在用户面的上层是网络层,例如因特网协议(Internet Protocol,IP)层。PDCP层的下层是RLC层。PDCP层可以处理控制面上的RRC消息和用户面上的数据包,例如IP包。如图3所示,来自应用层的数据包依次经过SDAP、PDCP、RLC、MAC、物理层(Physical Layer,Phy)的处理过程,在空口进行发送到接收端设备的相应层。
其中,业务数据适配层SDAP实体接收来自应用层的数据包,其中数据包可以是来自一个业务的数据包,在无线网络侧,一个业务有不同的体现形式,可以是流(Quality of Service flow,QoS flow)的形式,可以是映射到一个PDCP实体形成的承载的形式,也可以体现为逻辑信道的形式。如图2所示的业务的不同体现形式,图2中右边部分示出了一个业务对应于一个逻辑信道的情况,不同业务可以对应不同的逻辑信道;左边部分示出了业务体现为QoS flow的情况,多个QoS flow在SDAP层映射到不同的PDCP实体。
SDAP实体对数据包进行封装,加入SDAP包头,并将数据包映射到分组数据汇聚协 议层PDCP实体。如图3所示,PDCP实体接收经过SDAP实体封装的数据包,对数据进行头压缩和解压缩,加密和解密,以及对数据的完整性保护、完整性校验、对底层服务数据单元SDU(Service Data Unit,SDU)重复性检测等,从而进一步完成数据传输到无线链路控制层RLC实体。PDCP层的主要功能包括安全处理功能,该安全处理功能可以包括数据的加/解密,完整性保护/校验等,其中加密和完整性保护是对于发送端而言的,解密和完整性校验是对于接收端而言的。以下行传输为例,在用户面上,PDCP层将来自上层的IP数据分组后,对IP数据分组进行解密,然后递交到RLC层。在控制面上,PDCP层为上层RRC提供信令传输服务,并实现RRC信令的加密和完整性保护。类似的,在上行传输中,在用户面上,PDCP层可以实现对上行数据包的加密;在控制面上,可以实现RRC信令的解密和完整性校验。
RLC实体接收来自PDCP实体的数据包,并进行数据传输,RLC实体可以完成服务数据单元RLC SDU的分段、重组,以及RLC SDU的重复性检测和协议错误检测等。另外,需要说明的是,协议数据单元PDU(Protocol Data Unit,PDU)是对等层之间传递的数据单元,例如RLC PDU就是指发送端的RLC层和接收端的RLC层之间交互的数据单元;SDU是服务数据单元,又叫业务数据单元,是指定层的用户服务的数据集,传送到接收方的同一协议层时数据没有发生变化,然后下发给下层之后,下层将SDU封装在PDU中发送出去,SDU是从高层协议来的信息单元传送到低层协议,第N层的SDU和上一层的PDU是一一对应的。一般而言,在发送方,将用户递交的SDU加上协议控制信息PCI(Protocol Control Information,PCI),封装成PDU;在接收方去掉PCI完成PDU的解封装,还原成SDU送交接收方用户。但是如果下层通道的带宽不能满足传递SDU的需要,就需要将一个SDU分成多段,分别封装成PDU发送出去,即SDU的分段,在接收方再将这些PDU解封装后重新装配成SDU。
RLC层和媒体接入控制MAC层之间的通道叫做逻辑信道(Logical Channel,LCH),逻辑信道类型集合为MAC实体提供不同类型的数据传输业务,且逻辑信道在PDCP层,RLC层,MAC层可以被分辩出来。MAC实体在逻辑信道上提供数据传送业务,接收来自RLC实体传输的数据包,实现逻辑信道到传输信道的映射。MAC实体接收来自多个逻辑信道的服务数据单元MAC SDU,并完成MAC SDU的复用和解复用,MAC实体的协议数据单元MAC PDU是MAC实体内部传递的数据单元。除此之外,MAC实体还能完成针对同一个接收端设备不同逻辑信道之间的优先级管理LCP(Logic Channels Priority,LCP),和通过动态调度进行不同接收端设备之间的优先级管理,以及基于HARQ(Hybrid Automatic Repeat reQuest,HARQ)机制的错误纠正功能等。所谓LCP,就是MAC实体根据传输资源的大小和各逻辑信道的优先级,将资源分配给不同的逻辑信道的过程。LCP过程结束后,每个逻辑信道都会被分配到大于等于0的一块资源,在现有协议中,每个逻辑信道被分配了资源后,会按序将数据包放置到被分配的资源上。
MAC层和物理层之间有传输信道,物理层以传输信道的形式向高层提供数据服务,除此之外,物理层对来自上层传输信道的数据以及物理层的控制信息,按照循环冗余校验码(Cyclic Redundancy Check,CRC)校验、码块分割、信道编码、速率匹配和码块连接等流程处理,然后在进行加扰、调制、层映射、预编码等操作,最后通过空口发送出去。
应理解,在本申请实施例中,发送端设备和接收端设备是可以应用于无线通信***中 的设备,具体地,发送端设备可以是网络设备或用户设备,接收端设备可以是网络设备或用户设备,对发送端设备或接收端设备具体是网络设备还是用户设备并不做限定。接下来的本申请实施例将以用户设备UE侧的需求为例,进行详细的说明,但是,本申请实施例并不限于此。
网络设备在分配资源的时候,通常会根据用户设备UE的需求,例如UE上报的待发送数据量,分配一大块资源,UE可以通过级联的方式,在MAC层将同一逻辑信道中的不同数据包放到一起发送;或者通过复用的方式,将不同逻辑信道的不同数据包,按序放到同一块资源上去发送。
级联和复用都可以提高资源的利用率,能够保证UE会尽可能的填满网络分配的资源,否则每一次每个逻辑信道都只有一个数据包可以被用于组成最后的传输块(Transmission Block,TB),则会造成资源的浪费。但是,级联带来的问题是,如果同一业务的两个连续数据包都被放到一块资源上,那么如果这块资源发送失败,就会出现两个连续的数据包都丢失的情况,为了满足连续两个数据包丢失的概率小于10 -13,只能保证每块资源的失败概率都小于10 -13,这样的要求使得不能同时满足传输可靠性和资源利用率的要求,并不能有效的利用频率资源。因此,需要既能保证传输可靠性,又能提高资源利用率的方法来实现数据包的传输。由于在MAC层之上都没有发生级联,所以一个RLC PDU和一个数据包或数据包的分段一一对应,换言之,一个RLC PDU就包括且仅包括一个应用层的数据包或数据包的分段,为了避免一个业务的连续性丢包,而不能将这一个业务连续的RLC PDU放入一个传输块,就意味着不能将连续的应用层的数据包放入一个传输块。
本申请实施例想要通过避免将同一业务连续两个数据包级联到同一块资源中,并且在检测到有数据包丢失的情况下,提高后一个数据包的可靠性的方式,实现确定性业务的需求。
那么对于图2所示的数据包来自一个业务的不同体现形式,要避免同一业务的连续数据包放入同一个MAC PDU,就是要避免将同一个逻辑信道或同一PDCP实体(承载)或同一QoS flow的连续的数据包放入同一个MAC PDU。当数据包来自于一个业务对应的一个逻辑信道时,这种情况下,为了避免这一个业务的连续性丢包,则对于MAC层而言,需要将同一逻辑信道连续的数据包放入不同的资源中传输即可以避免同一业务的连续性丢包。当数据包来自于QoS flow的情况,多个QoS flow在SDAP层映射到不同的PDCP实体,则对于MAC层而言,需要将同一QoS flow且获取顺序连续的数据包放入不同的资源中传输即可以避免同一QoS flow的连续性丢包。或者,当数据包来自于同一PDCP实体的承载时,PDCP实体可以将任意两个PDCP序列号连续的数据包发送至不同的RLC实体,来避免同一业务的连续数据包被放入同一个MAC PDU。下面将对三种情况具体说明。
图4是本申请实施例提供的通信方法400的示意性流程图。该方法400可以应用于上述无线通信***100,以发送端设备向接收端设备发送数据为例进行详细说明,应理解,本申请实施例并不限于此。
如图4所示,该方法400包括以下内容。
在S410中,MAC实体获取M个无线链路控制RLC协议数据单元RLC PDU,其中,M为大于或等于2的整数。
来自一个确定性业务的数据包经过SDAP层、PDCP层、RLC层的处理,一个数据包 对应一个RLC PDU,可选地,一个RLC PDU包括且仅包括一个应用层的数据包或数据包的分段。例如,对于一种特殊的确定性业务1,包括M个数据包,在RLC层对应于M个RLC PDU,RLC实体按顺序在每个RLC PDU的包头中添加RLC序列号,那么M个RLC PDU中的每个RLC PDU都有不同的RLC序列号。确定性业务1对应于逻辑信道1,该M个RLC序列号连续的RLC PDU映射到逻辑信道1上,且该M个RLC PDU中包括至少两个对应逻辑信道1且RLC序列号连续的RLC PDU,应理解,本申请实施例中所说的连续都是指不同实体中,数据单元的序列号连续。
在S420中,MAC实体根据所述M个RLC PDU中每个RLC PDU对应的逻辑信道,生成N个媒体接入控制MAC协议数据单元MAC PDU,其中,任意两个对应同一逻辑信道且RLC序列号连续的RLC PDU承载于不同的MAC PDU中,其中,N为大于或等于2的整数。
MAC实体在逻辑信道上提供数据传送业务,获取来自RLC实体传输的M个RLC序列号连续的RLC PDU,实现逻辑信道到传输信道的映射。应理解,这里所说的每个RLC PDU对应的逻辑信道,可以理解为,每个RLC PDU是属于该逻辑信道的RLC PDU,是经过该逻辑信道传输给MAC实体的。
MAC实体通过逻辑信道1获取来自RLC实体传输的M个RLC序列号连续的RLC PDU,生成MAC PDU,MAC实体能识别出逻辑信道,即识别出逻辑信道1。MAC实体在生成MAC PDU过程,会根据逻辑信道优先级LCP来划分MAC PDU的资源给每个逻辑信道,将每个逻辑信道的RLC PDU依次放入MAC PDU分给该逻辑信道的资源上,直到整个资源都被利用。为了避免将同一业务的连续两个数据包级联到同一块资源,导致在数据包传输过程,如果一个传输块传输失败,造成同一业务的连续两个数据包都丢失的情况,本申请实施例提供以下三种情况:
情况一:
限制在一个MAC PDU内只放入同一逻辑信道的一个RLC PDU。例如,对于逻辑信道1,限制在一个MAC PDU内,分给逻辑信道1的资源,只能放入RLC序列号不连续的RLC PDU,后续一个MAC PDU对应一个传输块(Transport Block,TB),一个MAC PDU被放入一个TB内,从而实现MAC层和物理层之间数据的传输。
上述情况一的方法在根据RLC PDU生成MAC PDU过程中通过限制一个MAC PDU内只包括同一逻辑信道的仅一个RLC PDU,避免将同一逻辑信道的连续两个数据包级联到同一块资源中,那么在数据包传输过程,如果一个传输块传输失败,对于逻辑信道1而言,意味着一个数据包传输失败,从而减小TB传输失败对一个业务的影响,能够降低数据包传输失败的概率,从而实现确定性业务的需求。
应理解,优选地,根据RLC PDU所占用的比特数的大小来划分MAC PDU的资源,即MAC PDU内payload部分分给逻辑信道1的资源大小与当前要放入的RLC PDU所占用的比特数的大小相等,此情况下,可以直接将RLC PDU放入当前的MAC PDU,并不会造成资源利用率低的问题。
但是,一个MAC PDU内分给逻辑信道1的资源还可能与当前要放入的该逻辑信道的RLC PDU所占用的比特数的大小不相等,可能会有大于或者小于的情况。
情况二:
当一个MAC PDU内payload部分分给逻辑信道1的资源可以承载的比特数小于当前要放入的RLC PDU所占用的比特数时,RLC PDU进入MAC层就是MAC层的业务数据单元MAC SDU,当一个MAC SDU所占用的比特数大于MAC PDU中payload部分为该逻辑信道信道分配的资源大小时,可以对MAC SDU(RLC PDU)进行分段,放入不同的MAC PDU中,一个MAC PDU被放入一个TB,这样不会产生逻辑信道的连续数据包放入一块资源的问题。应理解,对于一个RLC PDU,分段后的RLC PDU是具有相同的RLC序列号,例如分成两段,那么这两段具有相同的一个原RLC PDU的RLC序列号。
作为一种实施方式,可以将RLC序列号连续的RLC PDU(或RLC PDU分段)间隔地放入不同的MAC PDU中,例如,将RLC序列号连续的两个RLC PDU(或RLC PDU分段)分别放入第一MAC PDU和第二MAC PDU,第一MAC PDU和第二MAC PDU之间的序列号SN间隔为k,k为大于或等于2的正整数。
应理解,本申请实施例中所说的间隔,可以具体解释为以下情况:RLC PDU 1和RLC PDU 2之间间隔了0个RLC PDU,序列号的间隔是1,RLC PDU 1和RLC PDU 3之间间隔了1个RLC PDU,序列号间隔是2;同理,上述第一MAC PDU和第二MAC PDU之间的序列号SN间隔为k,可以指第一MAC PDU和第二MAC PDU之间有k-1个MAC PDU,例如MAC PDU 1和MAC PDU 2之间MAC序列号的间隔是1,MAC PDU1和MAC PDU3之间间隔了1个MAC PDU,序列号的间隔是2。间隔0个PDU的两个PDU为本申请中所述的连续的PDU。
应理解,目前一个传输块TB内仅有一个MAC PDU,但是不排除以后一个TB内有多个MAC PDU的情况,所以可以设置连续两个RLC PDU放入的两个MAC PDU之间有一定的间隔k,例如,当一个TB内有两个MAC PDU时,RLC PDU 1对应放入MAC PDU 1,RLC PDU 2对应放入MAC PDU 3,从而将MAC PDU 3和MAC PDU 1不放入一个TB,进一步保证序列号SN连续的两个RLC PDU不在一个传输资源上,提高传输可靠性。具体间隔可以由网络配置,例如高层信令配置,RRC信令配置的一个值;或者UE自助选择。如果是UE自助选择,则可以每次间隔不相同,但间隔至少为1个MAC PDU。
情况三:
当一个MAC PDU内分给逻辑信道1的资源可以承载的比特数大于当前要放入的RLC PDU所占用的比特数时,一个MAC PDU内仅放入当前逻辑信道1的一个RLC PDU,会造成资源的浪费,因此,为了提高资源的利用率,引入另一种实施方式。
物理层在收到MAC层组包完成的传输块TB后,会将该传输块TB拆分成不同的码块(Code Block,CB)。前面讲到物理层对来自上层传输信道的数据以及物理层的控制信息,然后对数据包进行加扰、调制、层映射、预编码等一系列的处理,而数据传输过程中,从编码效率、编码器限制和处理时延等各方面考虑,确定信道编码时可以处理的最大编码长度为6144bit,所以经过CRC比特级校验后的传输块序列如果大于6144bit,就需要对传输块进行分割,以满足信道编码的要求。
因此,本申请实施例中,MAC层需要知道物理层分割码块的规则,在将RLC PDU放入MAC PDU的过程中,并按照该分割规则,将逻辑信道1上的RLC序列号连续的RLC PDU放入不同的码块,一个码块内只放入一个RLC PDU,而且在每个码块中,都包括MAC子包头。这样的码块被接收端物理层接收以后,就能独立解码,一个码块解 码成功就可以向MAC层递交,而不用等一个TB的所***块都接收成功在递交MAC层,能够实现传输的快速响应,提高传输效率,同时,如果一个TB传输失败,可能是TB内的某个码块传输失败,并不影响其他码块的解码,从而提高传输可靠性。
在以上的三种情况中,在将RLC PDU放入MAC PDU过程中,可选地,作为另一种示例而非限定,N个MAC PDU中的第一MAC PDU和第二MAC PDU之间的序列号SN间隔大于或等于k,k为大于或等于2的整数,可选地,k可以是个设定的阈值。所述第一MAC PDU中承载有第一逻辑信道对应的第一RLC PDU,所述第二MAC PDU中承载有第一逻辑信道对应的第二RLC PDU,且所述第一RLC PDU与所述第二RLC PDU的RLC序列号连续。以逻辑信道1为例,逻辑信道1的两个RLC序列号连续的第一RLC PDU和第二RLC PDU,对应放入第一MAC PDU和第二MAC PDU中,其中,第一MAC PDU和第二MAC PDU不连续,它们之间的RLC序列号间隔大于或等于k,k为大于或等于2的整数,具体间隔可以由网络配置,例如高层信令配置,RRC信令配置的一个值;或者UE自助选择。如果是UE自助选择,则可以每次间隔不相同,但间隔至少为1个MAC PDU。
情况四:
除了上述三种情况外,为了保证资源的利用率,同时降低同一业务的连续两个数据包丢失造成的影响,可选地,作为另一种示例而非限定,N个MAC PDU中的第三MAC PDU中承载有对应同一逻辑信道的T个RLC PDU,T为大于或等于2的整数,并且,所述T个RLC PDU中的任意两个RLC PDU之间的RLC序列号间隔大于或等于t,t为大于或等于2的整数。具体间隔可以由网络配置,例如高层信令配置,RRC信令配置的一个值;或者UE自助选择。如果是UE自助选择,则可以每次间隔不相同,但间隔至少为1个RLC PDU。
以逻辑信道1为例,逻辑信道1的两个RLC序列号连续的第一RLC PDU和第二RLC PDU,在将RLC PDU放入MAC PDU过程中,为了和前述几种情况区分,称作第三MAC PDU。在第三MAC PDU分给逻辑信道1的资源上,放入多个RLC PDU,例如第一RLC PDU和第二RLC PDU,且保证第一RLC PDU和第二RLC PDU为RLC序列号不连续的RLC PDU,它们之间的RLC序列号间隔大于或等于t,t为大于或等于2的整数,具体间隔可以由网络配置,例如高层信令配置,RRC信令配置的一个值;或者UE自助选择。如果是UE自助选择,则可以每次间隔不相同,但间隔至少为1个MAC PDU。例如,一个MAC PDU上放RLC PDU1和RLC PDU3,其中1和3是RLC PDU的RLC序列号,它们的RLC SN间隔为2。
应理解,这里第一RLC PDU和第二RLC PDU只是一种示例而非限定,指一个MAC PDU放入同一逻辑信道的至少两个RLC序列号相互不连续的RLC PDU,对RLC PDU的数量并不限定,例如T个两两之间RLC序列号都不连续RLC PDU,以全部利用MAC PDU的资源为最优情况。
可选地,在一个MAC PDU放入同一逻辑信道的多个RLC序列号不连续的RLC PDU过程中,也可以按照情况三中所述的方法,在一个码块内放入同一逻辑信道的多个RLC序列号不连续的RLC PDU。
这样的码块被接收端物理层接收以后,就能独立解码,一个码块解码成功就可以向 MAC层递交,而不用等一个TB的所***块都接收成功在递交MAC层,能够实现传输的快速响应,提高传输效率,同时,如果一个TB传输失败,可能是TB内的某个码块传输失败,并不影响其他码块的解码,从而提高传输可靠性。
上述实施例的各种方法能够避免将同一业务的连续两个数据包级联到同一块资源中,保证在数据包传输过程,减小一个TB传输失败对一个业务造成的影响,能够降低数据包传输失败的概率,从而实现确定性业务的需求。
在实际应用中,数据包除了来自于一个逻辑信道,如上述的逻辑信道1,还可以来自QoS flow。不同业务属于不同的QoS flow,QoS flow是具有相同服务质量需求、相同速率要求的业务集合,那么同一QoS flow的连续数据包不可以放入同一块资源。QoS flow目前仅在SDAP层和PDCP层可见,多个QoS flow可能会在SDAP层被映射不同或相同的逻辑信道,但来自两个SDAP的QoS flow不可以被映射到同一个PDCP。
图5本申请实施例提供的通信方法500的示意性流程图。该方法500可以应用于上述无线通信***100,以发送端设备向接收端设备发送数据为例进行详细说明,应理解,本申请实施例并不限于此。
如图5所示,该方法500包括以下内容。
在S510中,媒体接入控制MAC实体获取M个无线链路控制RLC协议数据单元RLC PDU,其中,M为大于或等于2的整数。
结合图3所示的数据包处理过程,来自一个流的数据包经过SDAP层、PDCP层、RLC层的处理,一个数据包对应一个RLC PDU,可选地,一个RLC PDU包括且仅包括一个应用层的数据包或数据包的分段。例如,对于一个流的M个数据包,在RLC层对应于M个RLC PDU,RLC实体按顺序在每个RLC PDU的包头中添加RLC序列号,那么M个RLC PDU中的每个RLC PDU都有不同的RLC序列号。多个流可能会在SDAP层或PDCP层汇聚,之后被映射到不同或相同的逻辑信道,多个流的多个数据包对应到RLC层的多个RLC PDU,为了避免同一个流的连续性丢包,那么在MAC层,使同一个流的获取顺序连续的RLC PDU放入不同的资源中传输。
可选地,举例说明,例如当多个流中的第一流对应的RLC PDU有:RLC PDU 1、RLC PDU 2、RLC PDU 3和RLC PDU 4,第二流对应的RLC PDU有:RLC PDU a、RLC PDU b、RLC PDU c和RLC PDU d。第一流和第二流的数据包经过SDAP层或PDCP层的汇聚映射到RLC层的多个RLC PDU,例如顺序可能是以下这种情况:RLC PDU 1、RLC PDU 2、RLC PDU a、RLC PDU 3、RLC PDU b、RLC PDU c、RLC PDU 4、RLC PDU d,按照这样的顺序被映射到同一逻辑信道上,在这种情况里,属于同一流且获取顺序连续的RLC PDU比如有:RLC PDU 1、RLC PDU 2,或者RLC PDU b、RLC PDU c,则按照本申请实施例提供的方法,则要使RLC PDU 1和RLC PDU 2放入不同的资源中,RLC PDU b、RLC PDU c放入不同的资源中传输。
要实现上述目的,则MAC层在生成N个MAC PDU之前,需要识别出多个RLC PDU中属于同一流的M个RLC序列号连续的RLC PDU,由于MAC无法直接识别出流,需要通过其他层来确定多个RLC PDU对应的流。
可选地,MAC层根据数据包在经过SDAP层生成SDAP PDU时,封装的SDAP包头,确定每个SDAP PDU对应的RLC PDU中携带的流标识(QoS flow Identifier,QFI),从 而确定M个RLC PDU对应的流。首先SDAP层在对数据包添加SDAP包头,从而在RLC层的RLC PDU携带有SDAP包头,且MAC需要读取SDAP的包头,识别流ID,继而识别出M个RLC PDU对应的流。
应理解,这里所说的“确定多个RLC PDU对应的流”可以理解为,确定多个RLC PDU所包括的数据包属于哪一个流,即在没有经过SDAP或PDCP层封装等处理的数据包在进入SDAP层之前属于哪一个流,从而判断是同一流的连续数据包。
作为另一种实施方式,数据包在PDCP层添加PDCP包头过程中,为数据包添加指示域,指示QFI,这种方式就不需要读取SDAP的包头了,但MAC层还是需要读取PDCP的包头,从而确定指示域指示的QFI,继而识别出M个RLC PDU对应的流。结合图3中数据包的处理过程,可知,RLC PDU除RLC头的负载pay load部分携带有上层如SDAP或PDCP包头,因此可以通过上述方法来识别QFI,继而识别出M个RLC PDU对应的流。
在S520中,所述MAC实体根据所述M个RLC PDU中每个RLC PDU对应的QoS flow,生成N个MAC PDU,以使任意两个对应同一流且获取顺序连续的RLC PDU承载于不同的MAC PDU中,其中,N为大于或等于2的整数。
当MAC层识别出QoS flow之后,接下来的行为和本实施例中MAC层处理逻辑信道1的数据包的行为一致,即执行如方法400中所述的方法实现将同一QoS flow且获取顺序连续的数据包放入不同的MAC PDU或码块内。
以上在级联时对逻辑信道或QoS flow的数据包的特殊处理,可以通过高层信令配置,例如网络可以配置MAC对某些逻辑信道或某些QoS flow应用上述规则,对其他逻辑信道还是采用现有技术进行处理。应理解,本申请实施例并不限于此。
应理解,这里传输块TB是物理层概念,对应到MAC层就是MAC PDU,在现有技术中,一个传输块中只能放一个MAC PDU,当然,不排除以后一个传输块TB中有两个MAC PDU的情况,所以在这里出于方案保护完整性,当以后一个传输块TB中可能包括两个或两个以上MAC PDU时,可以类比上述方案,将方案扩展为,不但限制在一个MAC PDU内放入一个RLC PDU,而且限制一个传输块TB内仅包括一个业务1对应的RLC PDU,或者包括一个业务1的多个序列号SN不连续的RLC PDU。而对于RLC PDU,可以是没有发生分段的RLC SDU产生的RLC PDU,也可以是发生了分段的RLC SDU产生的RLC PDU。
作为另一种实施方式,媒体接入控制MAC实体获取M个RLC PDU,其中,M为大于或等于2的整数。该MAC实体根据该M个RLC PDU中每个RLC PDU对应的承载,生成N个媒体接入控制MAC协议数据单元MAC PDU,其中,任意两个对应同一承载且PDCP序列号连续的RLC PDU承载于不同的MAC PDU中,其中,N为大于或等于2的整数。
结合图3所示的数据包处理过程,例如一个承载可以包括M个数据包,在PDCP层对应于M个PDCP PDU,PDCP实体按顺序在每个PDCP PDU的包头中添加PDCP序列号,那么M个PDCP PDU中的每个PDCP PDU都有不同的PDCP序列号。再对应到RLC层的形成M个RLC PDU,则每个RLC PDU的负载payload中包括有唯一的PDCP序列号。
为了避免同一个承载的连续性丢包,那么在MAC层,使同一个承载的PDCP序列号连续的RLC PDU放入不同的资源中传输。要实现上述目的,则MAC层在生成N个MAC  PDU之前,需要识别出多个RLC PDU中属于同一承载的M个PDCP序列号连续的PDCP PDU。
可选地,MAC层读取RLC PDU中payload部分封装的PDCP包头,确定每个RLC PDU中的PDCP序列号。
可选地,当RLC PDU所占用的比特数大于要放入的MAC PDU的payload部分所占用的比特数的大小时,可以按照该MAC PDU负载部分payload所占用的比特数的大小放入该RLC PDU的分段,分段后的RLC PDURLC序列号不变,保证和下一个RLC序列号连续的RLC PDU承载于不同的MAC PDU中。
根据本申请实施例提供的通信方法,例如发送端设备向接收端设备发送数据,MAC层跨层读取数据包在PDCP层的PDCP序列号,在MAC实体获取来自同一承载的M个PDCP序列号连续的RLC PDU,生成MAC PDU的过程中,MAC实体将每个承载的PDCP序列号连续的RLC PDU放入不同的MAC PDU中,从而避免将同一业务的连续两个数据包级联到同一块资源,导致在数据包传输过程,如果一个传输块传输失败,造成同一业务的连续两个数据包都丢失的情况,增加传输的可靠性,提高用户体验。
可选地,该N个MAC PDU中的第一MAC PDU和第二MAC PDU的MAC序列号间隔大于或等于k,k为大于或等于2的整数,该第一MAC PDU中承载有第一承载的第一RLC PDU,该第二MAC PDU中承载有第一承载的第二RLC PDU,且该第一RLC PDU与该第二RLC PDU的PDCP序列号连续。
作为一种可选的实施方式,同一承载的PDCP序列号连续的RLC PDU放入不同的MAC PDU中,且放入的MAC PDU之间有一定的间隔,进一步降低同一业务的连续两个数据包级联到同一块资源的可能性,增加传输的可靠性。
可选地,该N个MAC PDU中的第三MAC PDU中承载有对应同一承载的T个RLC PDU,T为大于或等于2的整数,且T小于M,其中,该T个RLC PDU中的任意两个RLC PDU的PDCP序列号的间隔大于或等于t,t为大于或等于2的整数。
上述技术方案通过在1个MAC PDU中放入多个PDCP序列号不连续的RLC PDU,提高资源的利用率,同时增加传输的可靠性。
图6是根据本申请实施例提供的通信方法600的示意性流程图。该方法600可以应用于上述无线通信***100,以发送端设备向接收端设备发送数据为例进行详细说明,应理解,本申请实施例并不限于此。
图7是本申请实施例提供的通信方法的示意图。下面结合图6和图7进行详细的描述。
如图6所示,该方法600包括以下内容。
在S610中,分组数据汇聚层PDCP实体获取P个数据包,P是大于或等于2的正整数。
现有技术中,存在一种分流的现象,例如,SDAP将相同速率、相同质量需求的业务的数据包汇聚到一起,传输到PDCP层,这样会导致PDCP承载量很大,在后续资源分配的过程中会出现资源紧张或不够用的情况,因此,为了分担任务量而出现分流,对于同一个业务形成的同一个承载,PDCP负责将P个数据包分到不同的逻辑信道上去。如图7所示,以PDCP将数据包分到两个逻辑信道为例进行详细的说明。PDCP将数据包分流传输到RLC层对应两个不同的RLC实体,两个不同的RLC实体再映射到两个不同的逻辑信 道,传输到MAC层。应理解,这里PDCP实体将数据包发送给至少两个RLC实体和映射到至少两个逻辑信道是等效的。
对这种特殊的业务,网络可以通过配置高层信令,如RRC(Radio Resource Control,RRC)信令,配置PDCP在分流时将该业务的序列号SN连续的数据包分到不同的RLC实体,即映射到不同的逻辑信道上去。结合图3的示意图,PDCP层获取P个数据包,在PDCP层添加PDCP包头等生成对应的P个PDCP PDU过程中,PDCP层按顺序在每个PDCP PDU的包头中添加PDCP序列号,那么P个PDCP PDU中的每个PDCP PDU都有不同的PDCP序列号。
在S620中,所述PDCP实体根据每个数据包的PDCP序列号,将所述P个数据包发送到至少两个RLC实体,以使所述P个数据包中任意两个PDCP序列号连续的数据包被发送至不同的RLC实体。
具体地,例如在图7中所示,PDCP实体在分流的过程中,将同一个业务的两个序列号PDCP SN连续的数据包发送到不同的RLC实体而形成一个承载,例如,数据包1、2、3、4连续,再映射到不同的逻辑信道,即数据包1和2映射到不同的逻辑信道,数据包2和3映射到不同的逻辑信道,数据包3和4映射到不同的逻辑信道。应理解,图中只示出了分到两个RLC实体和两个逻辑信道,但是本申请实施例不排除分流到多于两个逻辑信道的情况。
可选地,P个数据包中的H个数据包被发送到所述至少两个RLC实体中的第一RLC实体,H为大于或等于2的整数,并且,所述H个数据包中的任意两个数据包之间的序列号SN间隔大于或等于h,h为大于或等于2的整数。
具体地,例如在图7中所示,PDCP实体在将数据包发送到不同的RLC实体过程中,可以从同一业务的P个数据包中,间隔的取出H个数据包,其中H个数据包两两之间的PDCP序列号都不连续,将这H个数据包发送到一个RLC实体,映射到一个逻辑信道上,具体的间隔可以由由网络配置,应理解,本申请实施例并不限于此。
当PDCP层完成分流以后,MAC层通过不同的逻辑信道获取RLC PDU,生成MAC PDU,为了避免将同一业务的连续两个数据包放到同一块资源上传输,本申请实施例还可以配置在MAC层进行复用的时候,限制MAC在生成MAC PDU过程中,不能同时放入两个以上逻辑信道的数据,即一个MAC PDU只能放入一个逻辑信道上的RLC PDU。应理解,这里限制的一个逻辑信道是这一个业务分流到至少两个逻辑信道中的任一逻辑信道,对于其他业务对应的逻辑信道,可以进行复用等保证资源利用率,本申请并不限制。还应理解,此时,根据资源的大小和该逻辑信道上的RLC PDU大小生成的MAC PDU,并不限制放入MAC PDU的RLC PDU的个数,不会产生同一业务的连续RLC PDU在同一资源的情况。
可选地,在如图1所示的通信***中,当接收端设备位于宏基站或小基站提供的一个或多个小区(小区组)和/或载波(载波组)的覆盖范围内,为接收端设备(例如UE)服务的小区为一个或多个时,可以将同一业务分流后映射的至少两个逻辑信道映射到不同的小区或者载波,只能使用对应小区(小区组)或者载波(载波组)的资源来进行数据包的传输。
可选地,网络可以进一步配置MAC层在将RLC PDU放入MAC PDU的时候,优先 放上次没有放过的同一业务的另一个逻辑信道,避免MAC层总是放其中一个逻辑信道的数据,导致另一个逻辑信道因为限制完全不能传输的情况。
上述是PDCP层针对同一个业务形成的一个承载的分流,PDCP层也可以将同一个流且获取顺序连续的数据包分流到不同的逻辑信道上,MAC层对逻辑信道的数据包处理同上,这里不再赘述。
同样的,PDCP层执行的上述方法600,也可以有SDAP层来完成。具体可以是SDAP层在将一个业务映射到PDCP层时,将同一个业务的连续数据包分别分流到不同的PDCP实体,再对应不同的RLC实体,映射不同的逻辑信道,MAC层对不同的逻辑信道的RLC PDU处理同上,这里不再赘述。
在上行数据的传输过程中,接收端设备需要分配一定的资源用来传输发送端端设备要发送的数据,那么接收端设备需要获知数据量来分配资源。具体地,例如用户设备UE向基站eNB发送数据的过程,上行数据传输需要的资源是通过上报缓冲区状态报告(Buffer Status Report,BSR)来获得,上报BSR过程用于通知eNB,该UE的上行缓冲区里共有多少数据需要发送,发送这些数据需要的资源。在分配资源的过程中,通过计算每个逻辑信道的数据量来分配资源,对还位于PDCP层的数据量,可以除以2来计算,例如,图7中,一个承载映射到两个逻辑信道,假设PDCP层有100byte数据,RLC分别有50byte和60byte数据,则两个逻辑信道分别有100byte和110byte数据。对SDAP层分流的方式,因为SDAP层的数据目前还不计算进BSR上报的内容里,所以BSR可以不用做增强。
上述技术方案,通过PDCP层或SDAP层的分流,实现将同一业务的两个序列号SN连续的数据包放入不同的资源,这里资源可以是不同的码块,不同的MAC PDU或者不同的传输块,具体的可以根据各个实施例的不同而进行相应的限制。避免同一业务的连续数据包丢失,造成的影响,能够在保证资源利用率的情况下增加传输可靠性,提高了用户体验。
RLC实体在收到PDCP层的RLC SDU后,将其存储在发送缓冲区内,在收到来自MAC层的发送时机(ul grant)后,根据其提供的大小对RLC SDU进行分段,然后添加RLC包头称为RLC PDU。所有的RLC PDU在发送前都要交给重传缓冲进行保存,在收到STATUS PDU后再对重传缓冲中的PDU进行重传或移除的操作。接收端在收到来自对等端的PDU后,先判断是控制PDU还是数据PDU,若是控制PDU则交给RLC控制模块,它用来判断发送端哪些PDU需要重传,若是数据PDU则送给接收缓冲,在重排序后移除RLC头,再重新组装成RLC SDU。
当UE发现同一逻辑信道或流的一个数据包迟迟没有传成功或者传输失败,即该数据包的传输失败或传输时间超过设定的门限值,那么提升第一个包和/或第二个包的可靠性。在本申请实施例中,UE具有自主性,可以设置多种重传方式,例如第一重传方式和第二重传方式,第一重传方式用于第一数据包传输失败或者传输时间超过设定的第一门限值的情况;当按照第一重传方式的重传后,重传次数或者重传时间超过第二门限值,则按照第二重传方式发起重传,主要列举以下几种可以作为第二重传方式的不同情况:
情况一:
UE主动发起针对第一数据包的ARQ(Automatic Repeat Request,ARQ)重传,可选地,在如图1所示的通信***中,当接收端设备位于宏基站或小基站提供的一个或多个小 区(载波)的覆盖范围内,为接收端设备(例如UE)服务的小区为一个或多个时,可以在针对第一数据包的ARQ过程中,利用不同的小区或者载波的资源来进行数据包的传输做ARQ重传。
情况二:
UE主动发起针对第一数据包的ARQ重传,不限于利用第一重传方式或第二重传方式,同时,提升第二数据包的可靠性。可选地,在如图1所示的通信***中,当接收端设备位于宏基站或小基站提供的一个或多个小区(载波)的覆盖范围内,为接收端设备(例如UE)服务的小区为一个或多个时,RLC实体可以通过另外一个或多个小区对第二个数据做ARQ重传。
可选地,还可以触发PDCP实体做复制,将第二个数据包复制到不同的逻辑信道上去发送,也就是类似于图7的分流承载,将第二数据包通过复制分流的方式到多条逻辑信道去传输,从而来增强第二数据包的传输可靠性,避免连续数据包传输失败所造成的影响。
情况三:
UE主动发起针对第一数据包的ARQ重传,采用更可靠的HARQ配置或者选择更可靠的半静态调度的资源或参数,例如,基站为UE配置几套HARQ配置或者几套半静态调度资源和参数,可选地,基站还可以配置这些配置或资源和重传次数的对应关系,例如,当重传不超过三次,UE选择HARQ配置一,当重传次数大于3次小于等于5次,UE选择HARQ配置二,当重传次数大于5次,则选择HARQ配置三。
情况四:
前面几种情况都是当有可靠的资源进行ARQ重传时的实施方式,但是很可能当前UE没有资源或没有更可靠的资源进行ARQ重传,而此时重传的数据为当前比较紧急的数据,则可以通过BSR或上行控制信息(Uplink Control Information,UCI)向基站发送请求,指示UE需要更可靠的资源。
可选地,UE可以直接携带指示信息,或者利用不同的时频资源,向基站表示需要的资源的可靠性等级。或者,基站也可以事先配置指示信息和可靠性等级的对应关系,UE发出请求,每一个请求对应不同可靠性等级的资源。基站收到UE的请求,根据不同的请求来分配不同可靠性等级的资源。例如,正常情况下,UE请求普通可靠性等级的资源,当重传超过一定次数,UE请求特殊可靠性等级的资源。
应理解,本申请实施例中更可靠的资源是相对于现有资源可靠性等级更高的资源。又LTE的速率与资源数量(RB数)与MCS效率(由信号质量来确定)相关,例如,当同时存在有高频、低频资源时,更可靠的资源可以是指低频资源,也可以是调制与编码策略(Modulation and Coding Scheme,MCS)更低的资源等。本申请实施例并不限制。
另外,LTE中,当UE不具备同时在物理上行共享信道(Physical Uplink Share Channel,PUSCH)和物理上行控制信道(Physical Uplink Control Channel,PUCCH)上发送数据的能力,但UE又需要在某一段时间内需要同时向基站发送来自高层的上行数据和UCI时,UE只能通过打孔或者速率匹配的方式将两种数据在PUSCH上同时发给基站,速率匹配是指传输信道上的比特被重发或者被打孔,以匹配物理信道的承载能力,信道映射时达到传输格式所要求的比特速率。速率匹配中的打孔,就是将当前的比特打掉,同时将后面的比特依次前移一位。如果输入比特数少于输出比特数,那就是用重发;如果输入比特数多 于输出比特数,那就是用打孔。这样的传输方式导致上行数据受到影响。
在LTE中,业务优先级都不是很高,所以即使有影响也问题不大。但在NR中,引入了很多的业务类型,包括不同优先级的各类业务,对于高优先级的业务,应该尽量避免被打孔或被做速率匹配,减小上行数据受到影响。
NR***中,在空口引入了多种空口格式,所谓空口格式包括以下参数至少之一:子载波间隔、PUSCH传输时间、循环前缀长度等,高优先级的业务通常也被映射到高优先级的空口格式上,因此,在本申请实施例中,UE根据基站的配置信息,确定每个上行传输块是否可以被打孔,或做速率匹配,可以引入以下的增强方案:
方案一:
基站配置至少一种空口格式,如果UE在这种空口格式的PUSCH上发送数据,如果同时需要发UCI,则UE丢弃或推迟UCI的发送。
方案二:
基站配置至少一种逻辑信道或承载,如果UE在PUSCH上发送的数据包里包含了这个逻辑信道或承载的数据,则UE丢弃或推迟UCI的发送。
方案三:
基站通过DCI对UE分配PUSCH资源时,在DCI中添加指示信息,UE根据指示信息,确定丢弃或推迟UCI的发送。
以上结合图3至图7详细说明了本申请各个实施例的通信方法。以下结合图8至图11详细说明本申请实施例的通信装置。
图8是本申请实施例提供的通信装置800的示意性框图。如图8所示,该通信装置800包括收发单元810和处理单元820。
收发单元810,用于获取M个无线链路控制RLC协议数据单元RLC PDU,其中,M为大于或等于2的整数;
处理单元820,用于根据所述M个RLC PDU中每个RLC PDU对应的逻辑信道,生成N个媒体接入控制MAC协议数据单元MAC PDU,其中,任意两个对应同一逻辑信道且RLC序列号连续的RLC PDU承载于不同的MAC PDU中,其中,N为大于或等于2的整数。
可选地,该通信装置可以是一个网元,也可以是某一个网元中的功能实体,例如发送端设备或接收端设备中能够实现特定的层功能的实体,MAC实体,DU和CU实体等,也可以是一个芯片或者包含至少一个芯片的芯片***等,可以为本申请实施例对此不作限定。
作为一个可选的实施例,该通信装置可以为MAC层对应的实体。
可选地,该发送端设备或接收端设备可以相同也可以不同,本申请实施例对此不作限定。
在一些实施例中,发送端设备或接收端设备中有网络设备(例如一个网元),当CU和DU分离的时候,PDCP、RLC和MAC层实体可以不在同一个网元;当CU和DU不分离的时候,PDCP、RLC、MAC层实体可以在一个网元中,这三个实体可以使用各自的处理器,可以不是一个,本申请实施例对此不作限定。
可选地,该处理单元820生成的N个MAC PDU中的第一MAC PDU和第二MAC PDU 的序列号SN的间隔大于或等于k,k为大于或等于2的整数,该第一MAC PDU中承载有第一逻辑信道上的第一RLC PDU,该第二MAC PDU中承载有第一逻辑信道上的第二RLC PDU,且该第一RLC PDU与该第二RLC PDU的RLC序列号连续。
可选地,该处理单元生成的N个MAC PDU中的第三MAC PDU中承载有对应同一逻辑信道的T个RLC PDU,T为大于或等于2的整数,且T小于M,其中,所述T个RLC PDU中的任意两个RLC PDU的RLC序列号的间隔大于或等于t,t为大于或等于2的整数。
应理解,该通信装置800可以对应(例如,可以配置于或本身即为)上述方法400中描述的MAC实体,并且,可以用于执行方法400中的MAC实体所执行的各动作以及在前列举的各种可能的处理过程,为了简洁,在此不再赘述。
还应理解,图8示出的传输数据的装置800仅为示例,本申请实施例的通信装置还可包括其他模块或单元,或者包括与图8中的各个模块的功能相似的模块,或者并非要包括图8中的所有模块。
图9是本申请实施例提供的通信装置900的示意性框图。如图9所示,该通信装置900包括收发单元910和处理单元920。
收发单元910,用于获取M个无线链路控制RLC协议数据单元RLC PDU,其中,M为大于或等于2的整数;
处理单元920,用于根据所述M个RLC PDU中每个RLC PDU对应的流,生成N个MAC PDU,其中,任意两个对应同一流且获取顺序连续的RLC PDU承载于不同的MAC PDU中,其中,N为大于或等于2的整数。
可选地,该通信装置可以是一个网元,也可以是某一个网元中的功能实体,例如发送端设备或接收端设备中能够实现特定的层功能的实体,MAC实体,DU和CU实体等,也可以是一个芯片或者包含至少一个芯片的芯片***等,可以为本申请实施例对此不作限定。
作为一个可选的实施例,该通信装置可以为MAC层对应的实体。
可选地,该发送端设备或接收端设备可以相同也可以不同,本申请实施例对此不作限定。
可选地,该处理单元生成的N个MAC PDU中的第一MAC PDU和第二MAC PDU的序列号SN间隔大于或等于k,k为大于或等于2的整数,该第一MAC PDU中承载有第一流的第一RLC PDU,该第二MAC PDU中承载有第一流的第二RLC PDU,且该第一RLC PDU与第二RLC PDU的RLC序列号连续。
可选地,该处理单元生成的N个MAC PDU中的第三MAC PDU中承载有对应同一流的T个RLC PDU,T为大于或等于2的整数,并且,该T个RLC PDU中的任意两个RLC PDU的RLC序列号间隔大于或等于t,t为大于或等于2的整数。
可选地,该处理单元还用于根据每个RLC PDU中携带的流标识,确定M个RLC PDU对应的流,其中,所述流标识承载于业务数据适配协议SDAP包头或分组数据汇聚协议PDCP包头。
应理解,该通信装置900可以对应(例如,可以配置于或本身即为)上述方法500中描述的MAC实体,并且,可以用于执行方法1000中的MAC实体所执行的各动作以及在 前列举的各种可能的处理过程,为了简洁,在此不再赘述。
还应理解,图9示出的传输数据的装置900仅为示例,本申请实施例的通信装置还可包括其他模块或单元,或者包括与图9中的各个模块的功能相似的模块,或者并非要包括图9中的所有模块。
图10是本申请实施例提供的通信装置1000的示意性框图。如图10所示,该通信装置1000包括收发单元1010和处理单元1020。
收发单元1010,用于获取P个数据包,P是大于或等于2的正整数;
处理单元1020,用于根据每个数据包的PDCP序列号,将所述P个数据包发送给至少两个RLC实体,其中,所述P个数据包中任意两个PDCP序列号连续的数据包被发送至不同的RLC实体。
该处理单元还用于将所述P个数据包中的H个数据包被发送到所述至少两个RLC实体中的第一RLC实体,H为大于或等于2的整数,并且,所述H个数据包中的任意两个数据包的PDCP序列号间隔大于或等于h,h为大于或等于2的整数。
可选地,该通信装置可以是一个网元,也可以是某一个网元中的功能实体,例如发送端设备或接收端设备中能够实现特定的层功能的实体,PDCP实体,DU和CU实体等,也可以是一个芯片或者包含至少一个芯片的芯片***等,可以为本申请实施例对此不作限定。
作为一个可选的实施例,该通信装置可以为PDCP层或SDAP层对应的实体。
可选地,该发送端设备或接收端设备可以相同也可以不同,本申请实施例对此不作限定。
应理解,该通信装置1000可以对应(例如,可以配置于或本身即为)上述方法600中描述的PDCP实体,并且,可以用于执行方法1100中的PDCP实体所执行的各动作以及在前列举的各种可能的处理过程,为了简洁,在此不再赘述。
还应理解,图10示出的传输数据的装置1000仅为示例,本申请实施例的通信装置还可包括其他模块或单元,或者包括与图10中的各个模块的功能相似的模块,或者并非要包括图10中的所有模块。
图11是本申请实施例提供的通信装置1100的示意性框图。该通信装置1100可以对应图8,图9或图10中所述的通信装置,该通信装置1100可以采用如图11所示的硬件架构。该装置可以包括处理器1110、收发器1120和存储器1130,该处理器1110、收发器1120和存储器1130通过内部连接通路互相通信。图8中的处理单元820、图9中的处理单元920或图10中的处理单元1020所实现的相关功能可以由处理器1110来实现,图8中的收发单元820、图9中的收发单元910或图10中的收发单元1010所实现的相关功能可以由处理器1110控制收发器1120来实现。
该处理器1110可以包括一个或多个处理器,例如包括一个或多个中央处理单元(central processing unit,CPU),在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器1120用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。应理解,该收发器,可以是有线连接的收发模块、收发接口等等,本申请实施例对此不作 限定。
该存储器1130包括但不限于是随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程存储器(erasable programmable read only memory,EPROM)、只读光盘(compact disc read-only memory,CD-ROM),该存储器1130用于存储相关指令及数据。
存储器1130用于存储装置的程序代码和数据,可以为单独的器件或集成在处理器1110中,本申请实施例对此不作限定。。
具体地,所述处理器1110用于控制收发器进行通信方法400中的数据传输。具体可参见方法400实施例中的描述,在此不再赘述。
或者,所述处理器1110用于控制收发器进行通信方法500中的数据传输。具体可参见方法1000实施例中的描述,在此不再赘述。
或者,所述处理器1110用于控制收发器进行通信方法600中的数据传输。具体可参见方法1100实施例中的描述,在此不再赘述。
可以理解的是,图11仅仅示出了装置的简化设计。在实际应用中,装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的装置都在本申请的保护范围之内。
在一种可能的设计中,装置1100可以是一种芯片装置。该芯片装置可以包含至少一个芯片,该芯片可以是为实现相关功能的现场可编程门阵列,专用集成芯片,***芯片,中央处理器,网络处理器,数字信号处理电路,或微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得所述装置实现相应的功能。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种通信的方法,其特征在于,所述方法包括:
    媒体接入控制MAC实体获取M个无线链路控制RLC协议数据单元RLC PDU,其中,M为大于或等于2的整数;
    所述MAC实体根据所述M个RLC PDU中每个RLC PDU对应的逻辑信道,生成N个媒体接入控制MAC协议数据单元MAC PDU,其中,任意两个对应同一逻辑信道且RLC序列号连续的RLC PDU承载于不同的MAC PDU中,其中,N为大于或等于2的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述N个MAC PDU中的第一MAC PDU和第二MAC PDU的MAC序列号的间隔大于或等于k,k为大于或等于2的整数,所述第一MAC PDU中承载有第一逻辑信道上的第一RLC PDU,所述第二MAC PDU中承载有第一逻辑信道上的第二RLC PDU,且所述第一RLC PDU与所述第二RLC PDU的RLC序列号连续。
  3. 根据权利要求1或2所述的方法,其特征在于,所述N个MAC PDU中的第三MAC PDU中承载有对应同一逻辑信道的T个RLC PDU,T为大于或等于2的整数,且T小于M,其中,所述T个RLC PDU中的任意两个RLC PDU的RLC序列号的间隔大于或等于t,t为大于或等于2的整数。
  4. 一种通信的方法,其特征在于,所述方法包括:
    媒体接入控制MAC实体获取M个无线链路控制RLC协议数据单元RLC PDU,其中,M为大于或等于2的整数;
    所述MAC实体根据所述M个RLC PDU中每个RLC PDU对应的流,生成N个MAC PDU,其中,任意两个对应同一流且获取顺序连续的两个RLC PDU承载于不同的MAC PDU中,其中,N为大于或等于2的整数。
  5. 根据权利要求4所述的方法,其特征在于,所述N个MAC PDU中的第一MAC PDU和第二MAC PDU的MAC序列号间隔大于或等于k,k为大于或等于2的整数,所述第一MAC PDU中承载有第一流的第一RLC PDU,所述第二MAC PDU中承载有第一流的第二RLC PDU,且所述第一RLC PDU与所述第二RLC PDU的获取顺序连续。
  6. 根据权利要求4或5所述的方法,其特征在于,所述N个MAC PDU中的第三MAC PDU中承载有对应同一流的T个RLC PDU,T为大于或等于2的整数,且T小于M,并且,所述T个RLC PDU中的任意两个RLC PDU的获取顺序不连续。
  7. 根据权利要求4至6中任一项所述的方法,其特征在于,所述MAC实体根据所述M个RLC PDU中每个RLC PDU对应的流,包括:
    所述MAC实体根据每个RLC PDU中携带的流标识,确定所述M个RLC PDU中每个RLC PDU对应的流,其中,所述流标识承载于业务数据适配协议SDAP包头或分组数据汇聚协议PDCP包头。
  8. 一种通信的方法,其特征在于,所述方法包括:
    分组数据汇聚层PDCP实体获取P个数据包,P是大于或等于2的正整数;
    所述PDCP实体根据每个数据包的PDCP序列号,将所述P个数据包发送给至少两个 RLC实体,其中,所述P个数据包中任意两个PDCP序列号连续的数据包被发送至不同的RLC实体。
  9. 根据权利要求8所述的方法,其特征在于,所述P个数据包中的H个数据包被发送到所述至少两个RLC实体中的第一RLC实体,H为大于或等于2的整数,并且,所述H个数据包中的任意两个数据包的PDCP序列号间隔大于或等于h,h为大于或等于2的整数。
  10. 一种通信的装置,其特征在于,包括:
    收发单元,用于获取M个无线链路控制RLC协议数据单元RLC PDU,其中,M为大于或等于2的整数;
    处理单元,用于根据所述M个RLC PDU中每个RLC PDU对应的逻辑信道,生成N个媒体接入控制MAC协议数据单元MAC PDU,其中,任意两个对应同一逻辑信道且RLC序列号连续的RLC PDU承载于不同的MAC PDU中,其中,N为大于或等于2的整数。
  11. 根据权利要求10所述的装置,其特征在于,所述处理单元生成的N个MAC PDU中的第一MAC PDU和第二MAC PDU的MAC序列号的间隔大于或等于k,k为大于或等于2的整数,所述第一MAC PDU中承载有第一逻辑信道上的第一RLC PDU,所述第二MAC PDU中承载有第一逻辑信道上的第二RLC PDU,且所述第一RLC PDU与所述第二RLC PDU的RLC序列号连续。
  12. 根据权利要求10或11所述的装置,其特征在于,所述处理单元生成的N个MAC PDU中的第三MAC PDU中承载有对应同一逻辑信道的T个RLC PDU,T为大于或等于2的整数,且T小于M,其中,所述T个RLC PDU中的任意两个RLC PDU的RLC序列号的间隔大于或等于t,t为大于或等于2的整数。
  13. 一种通信的装置,其特征在于,包括:
    收发单元,用于获取M个无线链路控制RLC协议数据单元RLC PDU,其中,M为大于或等于2的整数;
    处理单元,用于根据所述M个RLC PDU中每个RLC PDU对应的流,生成N个媒体接入控制MAC协议数据单元MAC PDU,其中,任意两个对应同一流且获取顺序连续的两个RLC PDU承载于不同的MAC PDU中,其中,N为大于或等于2的整数。
  14. 根据权利要求13所述的装置,其特征在于,所述处理单元生成的N个MAC PDU中的第一MAC PDU和第二MAC PDU的MAC序列号间隔大于或等于k,k为大于或等于2的整数,所述第一MAC PDU中承载有第一流的第一RLC PDU,所述第二MAC PDU中承载有第一流的第二RLC PDU,且所述第一RLC PDU与所述第二RLC PDU的获取顺序不连续。
  15. 根据权利要求10或11所述的装置,其特征在于,所述处理单元生成的N个MAC PDU中的第三MAC PDU中承载有对应同一流的T个RLC PDU,T为大于或等于2的整数,并且,所述T个RLC PDU中的任意两个RLC PDU的获取顺序不连续。
  16. 根据权利要求13至15中任一项所述的装置,其特征在于,所述处理单元还用于根据每个RLC PDU中携带的流标识,确定所述M个RLC PDU中每个RLC PDU对应的流,其中,所述流标识承载于业务数据适配协议SDAP包头或分组数据汇聚协议PDCP包头。
  17. 一种通信的装置,其特征在于,包括:
    收发单元,用于获取P个数据包,P是大于或等于2的正整数;
    处理单元,用于根据每个数据包的PDCP序列号,将所述P个数据包发送给至少两个RLC实体,其中,所述P个数据包中任意两个PDCP序列号连续的数据包被发送至不同的RLC实体。
  18. 根据权利要求17所述的装置,其特征在于,所述处理单元还用于将所述P个数据包中的H个数据包被发送到所述至少两个RLC实体中的第一RLC实体,H为大于或等于2的整数,并且,所述H个数据包中的任意两个数据包的PDCP序列号间隔大于或等于h,h为大于或等于2的整数。
  19. 一种通信的装置,其特征在于,所述装置包括收发器、存储器、处理器以及存储在所述存储器上并可被所述处理器运行的指令,所述处理器执行所述指令使得所述装置实现上述权利要求1至3中任一项所述的方法。
  20. 一种通信的装置,其特征在于,所述装置包括收发器、存储器、处理器以及存储在所述存储器上并可被所述处理器运行的指令,所述处理器执行所述指令使得所述装置实现上述权利要求4至7中任一项所述的方法。
  21. 一种通信的装置,其特征在于,所述装置包括收发器、存储器、处理器以及存储在所述存储器上并可被所述处理器运行的指令,所述处理器执行所述指令使得所述装置实现上述权利要求8至9中任一项所述的方法。
  22. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,所述计算机程序包括用于实现上述权利要求1至3中任一项所述的方法的指令。
  23. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,所述计算机程序包括用于实现上述权利要求4至7中任一项所述的方法的指令。
  24. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,所述计算机程序包括用于实现上述权利要求8至9中任一项所述的方法的指令。
  25. 一种通信***,其特征在于,所述通信***包括:
    如权利要求10至12中任意一项所述的装置;和
    如权利要求13至16中任意一项所述的装置;和
    如权利要求17至18中任意一项所述的装置。
PCT/CN2019/074195 2018-01-31 2019-01-31 通信的方法和装置 WO2019149248A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020541799A JP2021513245A (ja) 2018-01-31 2019-01-31 通信方法および装置
EP19747313.5A EP3737183B1 (en) 2018-01-31 2019-01-31 Communication methods, apparatuses and computer-readable storage medium
US16/943,646 US11296841B2 (en) 2018-01-31 2020-07-30 Communications method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810097512.2A CN110099448B (zh) 2018-01-31 2018-01-31 通信的方法和装置
CN201810097512.2 2018-01-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/943,646 Continuation US11296841B2 (en) 2018-01-31 2020-07-30 Communications method and apparatus

Publications (1)

Publication Number Publication Date
WO2019149248A1 true WO2019149248A1 (zh) 2019-08-08

Family

ID=67443008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074195 WO2019149248A1 (zh) 2018-01-31 2019-01-31 通信的方法和装置

Country Status (5)

Country Link
US (1) US11296841B2 (zh)
EP (1) EP3737183B1 (zh)
JP (1) JP2021513245A (zh)
CN (1) CN110099448B (zh)
WO (1) WO2019149248A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11452169B2 (en) * 2018-08-15 2022-09-20 Google Llc Preventing inadvertent idle mode in multi-node connectivity environments
WO2020062079A1 (zh) * 2018-09-28 2020-04-02 Oppo广东移动通信有限公司 数据传输方法、发射端设备和接收端设备
CN112118192B (zh) * 2019-06-20 2022-11-18 华为技术有限公司 一种数据量整形方法、网络设备以及计算机程序产品
US11871270B2 (en) * 2019-12-31 2024-01-09 Qualcomm Incorporated Reassembly of service data units for radio link control duplication
CN111343632B (zh) * 2020-05-21 2020-08-11 江苏大备智能科技有限公司 工业互联网隐蔽通信方法及***
CN115412969A (zh) * 2021-05-26 2022-11-29 华为技术有限公司 发送和接收数据的方法以及通信装置
CN113938431B (zh) * 2021-09-27 2023-06-23 中国联合网络通信集团有限公司 突发数据包传输方法、装置和电子设备
CN114286447A (zh) * 2021-12-27 2022-04-05 中国联合网络通信集团有限公司 调度优先级的调整方法、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1711725A (zh) * 2002-11-08 2005-12-21 皇家飞利浦电子股份有限公司 单个容器中的数据分组发射
CN101047484A (zh) * 2006-06-21 2007-10-03 华为技术有限公司 一种传输层重传方法和***
WO2008041189A2 (en) * 2006-10-04 2008-04-10 Nokia Corporation Method for transmission error control of sdu segments
CN104718716A (zh) * 2012-10-10 2015-06-17 高通股份有限公司 用于管理无线电链路控制(rlc)不确收模式(um)中的超帧号(hfn)去同步的装置和方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100926707B1 (ko) * 2002-11-05 2009-11-17 엘지전자 주식회사 이동통신 시스템의 데이터 통신방법
WO2007078156A2 (en) * 2006-01-05 2007-07-12 Lg Electronics Inc. Transmitting data in a mobile communication system
CN101166193B (zh) * 2006-10-19 2011-07-20 大唐移动通信设备有限公司 一种媒体接入控制协议数据单元的传输方法和***
EP2077687A1 (en) * 2008-01-04 2009-07-08 Samsung Electronics Co., Ltd. Method for enhancing layer 2 for a high speed packet access uplink
US9538411B2 (en) * 2012-08-06 2017-01-03 Lg Electronics Inc. Method for transferring a status report and a communication device thereof in a wireless communication system
WO2015113497A1 (en) * 2014-01-28 2015-08-06 Mediatek Singapore Pte. Ltd. Methods for re-order pdcp packets
CN107426776B (zh) * 2016-05-24 2024-06-04 华为技术有限公司 QoS控制方法及设备
CN107592329B (zh) * 2016-07-08 2021-01-22 电信科学技术研究院 一种数据处理方法及装置
WO2018053692A1 (zh) * 2016-09-20 2018-03-29 北京小米移动软件有限公司 数据传输方法、装置及***
CN108024374A (zh) * 2016-11-03 2018-05-11 电信科学技术研究院 一种进行数据发送和接收的方法及***
US10432761B2 (en) * 2017-01-18 2019-10-01 Qualcomm Incorporated Techniques for handling internet protocol flows in a layer 2 architecture of a wireless device
EP3677088A4 (en) * 2017-09-29 2020-10-14 Samsung Electronics Co., Ltd. USER PROCESS AND EQUIPMENT FOR MANAGING A DUAL CONNECTIVITY USER PLAN IN A WIRELESS COMMUNICATION SYSTEM
WO2020170043A2 (en) * 2019-02-22 2020-08-27 Lenovo (Singapore) Pte Ltd Autonomously triggering retransmission of data
US20200351040A1 (en) * 2019-04-30 2020-11-05 Qualcomm Incorporated Low latency uplink communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1711725A (zh) * 2002-11-08 2005-12-21 皇家飞利浦电子股份有限公司 单个容器中的数据分组发射
CN101047484A (zh) * 2006-06-21 2007-10-03 华为技术有限公司 一种传输层重传方法和***
WO2008041189A2 (en) * 2006-10-04 2008-04-10 Nokia Corporation Method for transmission error control of sdu segments
CN104718716A (zh) * 2012-10-10 2015-06-17 高通股份有限公司 用于管理无线电链路控制(rlc)不确收模式(um)中的超帧号(hfn)去同步的装置和方法

Also Published As

Publication number Publication date
US11296841B2 (en) 2022-04-05
EP3737183A1 (en) 2020-11-11
CN110099448B (zh) 2023-01-13
EP3737183B1 (en) 2023-08-23
CN110099448A (zh) 2019-08-06
JP2021513245A (ja) 2021-05-20
EP3737183A4 (en) 2021-01-27
US20200358570A1 (en) 2020-11-12

Similar Documents

Publication Publication Date Title
JP7321349B2 (ja) 通信システム、方法および集積回路
WO2019149248A1 (zh) 通信的方法和装置
US11445404B2 (en) Method and apparatus for wireless communication in wireless communication system
US9338690B2 (en) RLC segmentation for carrier aggregation
US20190387535A1 (en) Method and apparatus for efficient packet duplication transmission in mobile communication system
JP7376363B2 (ja) 無線リンク制御ステータスのレポーティング
CN114244480B (zh) 操作传输协议的用户装备、基站和方法
US9001654B2 (en) Enhanced multiplexing for single RLC entity
WO2018171711A1 (zh) 重传处理方法和设备
JP7053823B2 (ja) 方法、装置、コンピュータプログラム製品およびコンピュータプログラム
WO2017049647A1 (zh) 一种数据发送方法、数据接收方法和相关设备
WO2012092855A1 (zh) 一种处理业务数据流的方法和装置
JP2019514249A (ja) データユニットを送信する方法及び装置
RU2601175C2 (ru) Способ и система передачи данных от контроллера радиосети к пользовательскому устройству
WO2013155709A1 (zh) 数据分流配置方法、基站***和用户终端
CN111567095A (zh) 用于无线通信***中的无线通信的方法和装置
TW202203606A (zh) 用於跨載波harq管理的方法及使用者設備
WO2023231599A1 (zh) 一种用户数据处理方法和装置
US20240121658A1 (en) Data transmission method and apparatus, device, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747313

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020541799

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019747313

Country of ref document: EP

Effective date: 20200805