WO2019148773A1 - 非金属植入物螺钉锁定结构 - Google Patents

非金属植入物螺钉锁定结构 Download PDF

Info

Publication number
WO2019148773A1
WO2019148773A1 PCT/CN2018/095399 CN2018095399W WO2019148773A1 WO 2019148773 A1 WO2019148773 A1 WO 2019148773A1 CN 2018095399 W CN2018095399 W CN 2018095399W WO 2019148773 A1 WO2019148773 A1 WO 2019148773A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
implant
thread
metallic implant
metal
Prior art date
Application number
PCT/CN2018/095399
Other languages
English (en)
French (fr)
Inventor
黄孝敏
Original Assignee
上海锐植医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海锐植医疗器械有限公司 filed Critical 上海锐植医疗器械有限公司
Priority to EP18903437.4A priority Critical patent/EP3705070B1/en
Priority to US16/627,329 priority patent/US11510716B2/en
Publication of WO2019148773A1 publication Critical patent/WO2019148773A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/866Material or manufacture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8052Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates immobilised relative to screws by interlocking form of the heads and plate holes, e.g. conical or threaded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8052Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates immobilised relative to screws by interlocking form of the heads and plate holes, e.g. conical or threaded
    • A61B17/8057Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates immobilised relative to screws by interlocking form of the heads and plate holes, e.g. conical or threaded the interlocking form comprising a thread
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8085Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with pliable or malleable elements or having a mesh-like structure, e.g. small strips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/8605Heads, i.e. proximal ends projecting from bone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/8625Shanks, i.e. parts contacting bone tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/8625Shanks, i.e. parts contacting bone tissue
    • A61B17/8635Tips of screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7059Cortical plates

Definitions

  • the present invention relates to the field of orthopedic medical device technology, and more particularly to a non-metallic implant screw locking structure.
  • the implant can be removed, and some metal implants are allowed to remain in the body, requiring re-operation when removed, which will obviously eliminate a series of two Subsurgical risk: alleviate the patient's pain, discomfort, and reduce the chance of infection.
  • the new wound caused by re-treatment needs to be recovered, and the implant is also taken out, which also stimulates the surrounding tissue.
  • non-metallic implants that have been used to treat a variety of fractures, bone defects and promote bone fusion.
  • These non-metallic implants can remain in the body for long periods of time, and some implants or parts of the implant are absorbed after a certain period of time and have new bone ingrowth.
  • the elastic modulus of the bone is very close, eliminating the stress shielding of the new bone growth, promoting, accelerating the bone fusion and healing, and retaining the long-term in vivo without stress shielding and causing osteoporosis. More suitable for the treatment of fracture, bone defect and degeneration fusion.
  • non-metallic materials have a more significant advantage over metal materials, and there are of course areas for further improvement.
  • the low mechanical strength of non-metallic materials, the weak grip of non-metallic screws on the bone, and the lack of locking force of screws and plate products can not meet the complete installation of the product structure, so that the bone reaches a stable fixation.
  • the present invention is based on previous research, through the combination of different non-metallic materials, to improve the mechanical strength of materials, through metal screws and non-metallic materials. Different combinations, with special design and surgical methods to meet the complete installation of non-metallic materials, improve their fixation strength to the bone. Thereby broadening the application prospect of non-metallic materials in orthopedics.
  • Locking of non-metallic implants on the market today is primarily through expansion locks, snap locks or partial metal closure.
  • expansion locks snap locks or partial metal closure.
  • such products are complicated to process, increase costs, and increase the economic burden of patients; and the operation is cumbersome, prolonging the operation time, and increasing the risk of various complications of surgery.
  • the invention relates to methods of treating orthopedic implants and bone defects.
  • the present invention is an orthopedic implant produced using new non-metallic materials and modified in its design to promote bone growth at the treatment site.
  • the non-metallic implant screw locking structure is designed to automatically utilize the self-tapping function of the metal screw on the non-metallic implant during the installation process, and overcome the advantages of the looseness and withdrawal of the screw by the elastic property of the non-metallic implant itself.
  • the locking between the screw and the non-metallic implant is simple in surgical installation and reliable in structure.
  • a non-metallic implant screw locking structure provided by the present invention is implemented by the following solutions: including a non-metal implant and a metal screw; wherein the non-metal implant is provided with a fixing hole
  • the front of the metal screw is a bone thread, and the tail is provided with a pointed thread or a spike.
  • the fixing hole is a straight hole or a vertebra hole or a threaded hole.
  • the metal screw rotates the non-metallic implant into the bone structure along the fixing hole, and the sharp thread or spike of the metal screw tail produces tapping on the non-metal implant The cutting, sharp threads or spikes are all snapped into the non-metallic implant to secure the non-metallic implant to the bone structure.
  • the outer diameter of the screw of the metal screw is larger than the diameter of the fixing hole, and the inner diameter of the screw end of the metal screw is closed.
  • the metal screw rotates the non-metal implant into the bone structure along the fixing hole, and the thread of the metal screw taps and cuts the fixing hole to form a threaded hole and lock Immediately, the metal screws are all snapped into the non-metallic implant to secure the non-metallic implant to the bone structure.
  • the metal screw is a full bone thread;
  • the non-metal implant material comprises PEEK, PEEK+carbon fiber, PEEK+calcium silicate, PEEK+HA, PEKK, PEKK+carbon fiber, PEKK+calcium silicate, high molecular polyethylene, etc.
  • Absorbable biomaterials and absorbable biomaterials such as L-lactic acid, meso-lactic acid, glycolic acid and trimethylene carbonate.
  • the non-metal implant is composed of the following raw materials by weight: 40-70 parts of polyetheretherketone, 30-40 parts of calcium silicate and/or high molecular polyethylene.
  • a preferred composition is 50-70 parts of polyetheretherketone, 30-40 parts of calcium silicate and high molecular polyethylene, wherein the weight percentage of calcium silicate and high molecular polyethylene is 3:1.
  • the non-metallic implant further comprises 10-15 parts of artificial bone powder. Preferably, it is 11-12 parts; the artificial bone powder is nano-sized bone powder.
  • non-metallic implant further comprises 0.1-0.5 parts of microcapsules.
  • the microcapsule is a core-shell structure, the core layer is sodium carbonate, the shell layer is chitosan, and the surface of the shell layer is further covered with calcium chloride.
  • the microcapsules have a sustained release effect, and if the screws are cracked, the microcapsules are broken, thereby generating calcium carbonate, filling the generated cracks, and restoring the strength of the non-metallic implant.
  • the microcapsules on the surface of the non-metallic implant are broken at the beginning of use to form calcium carbonate, which is filled with the gap between the screw and the plate, thereby improving the bonding effect between the screw and the plate.
  • the structure is simple, the design is novel, the production and processing are simple, and the clinical operation is very convenient.
  • the structure of the invention can be applied to a traumatic bone plate, a spinal fusion device, a spinal fixation plate, a posterior cervical posterior open door panel, a cervical posterior lumbar plate, a lumbar anterior plate, a lumbosacral plate and other orthopedic non-metallic implants, which will be gradually Produce good economic and social benefits.
  • Non-metallic implants with light weight and elastic modulus approximating the cortical bone of the human body can significantly reduce stress shielding after implantation, avoid stress concentration and delay degeneration of adjacent vertebral bodies.
  • the products are light and flexible, and the surgical adaptability is better.
  • Figure 1 is a schematic view of the structure of the present invention.
  • FIGS. 2a to 2f are schematic views showing a hole pattern of a non-metal implant according to Embodiment 1 of the present invention.
  • 3a and 3b are schematic views showing the structure of a screw according to Embodiment 1 of the present invention.
  • 4a to 4f are schematic views of the screw removing the tip thread or the spike after the embodiment 1 of the present invention.
  • 5a to 5b are schematic views of the locking of the embodiment 1 of the present invention.
  • Figure 6 is a schematic view showing the structure of a second embodiment of the present invention.
  • FIG. 7a and 7b are schematic views of the pore shape of the non-metal implant of Example 2 of the present invention.
  • 8a and 8b are schematic views of the locking of the embodiment 2 of the present invention.
  • Figure 9 is a schematic illustration of the application of the present invention to a spinal plate.
  • Figure 10 is a schematic illustration of the application of the present invention to a bone plate.
  • Figure 11 is a schematic illustration of the application of the present invention to a cage.
  • Figure 12 is a schematic illustration of the application of the present invention to a strip plate fuser.
  • Figure 13 is a schematic view of the application of the present invention to a single open door panel of the posterior cervical spine.
  • Figure 14 is a schematic view of the application of the present invention on the posterior cervical plate.
  • Figure 15 is a schematic illustration of the application of the present invention to a lumbar anterior plate.
  • Figure 16 is a schematic illustration of the application of the present invention on a lumbosacral plate.
  • a non-metallic implant screw locking structure including a non-metal implant 1 and a metal screw 2; wherein the non-metal implant 1 is provided a plurality of fixing holes 11; the front part of the metal screw 2 is a bone thread, and the tail portion is provided with a pointed thread or a spike.
  • the hole shape of the fixing hole 11 on the non-metal implant 1 is a straight hole or a vertebra hole or a shallow thread hole.
  • the metal screw 2 has a bone thread 21 at the front and a pointed thread 22 or a spike 23 at the tail.
  • the pitch of the pointed thread 22 should be the same as that of the bone thread 21, and the tip is pointed.
  • the thread 22 can be a multi-start thread.
  • the shape of the tail of the metal screw 2 after removing the sharp thread 22 or the spike 23 should match the shape of the hole of the fixing hole 11 on the non-metal implant 1 or slightly larger; As shown in FIG. 5b, the shape of the tip thread 22 or the spike 23 of the tail of the metal screw 2 should be slightly larger than the hole of the fixing hole 11, to ensure that the tail screw 22 or the tip of the metal screw 2 is screwed onto the bone.
  • the thorn 23 tapped the non-metallic implant 1 and ate the non-metallic implant 1.
  • the generated chip breaking will hold the sharp thread 22 or the spike 23 on the metal screw 2, so that the metal screw 2 is firmly locked to the non-metal implant 1, thereby The function of locking and anti-retracting is achieved.
  • the non-metallic implant is composed of the following raw materials by weight: 40-70 parts of polyetheretherketone, 30-40 parts of calcium silicate and/or high molecular polyethylene.
  • the non-metal implant 2 can be prepared by using 60 parts of polyetheretherketone, 30 parts of calcium silicate, and 10 parts of high molecular polyethylene.
  • the non-metal implant 1 can avoid stress concentration by using the above materials.
  • the structure proposed in this embodiment can avoid the weak grip of the non-metallic screws on the bone and the lock of the screws and the plate products. The lack of tightness can not meet the purpose of completely installing the product structure and making the bone stable and fixed.
  • the non-metallic implant screw locking structure is composed of a non-metallic implant 3 and a metal screw 4.
  • the non-metallic implant 3 has a plurality of fixing holes 31.
  • the metal screw 4 is a full bone thread 41, and the material of the non-metal implant 3 includes but is not limited to PEEK (polyether ether ketone), PEEK + carbon fiber, PEEK + calcium silicate, PEEK + HA (hydroxyapatite), PEKK ( Polyether ketone ketone), high molecular weight polyethylene, PEKK + carbon fiber, PEKK + calcium silicate and L-lactic acid, meso-lactic acid, glycolic acid and trimethylene carbonate are human absorbable materials.
  • PEEK polyether ether ketone
  • PEEK + carbon fiber PEEK + calcium silicate
  • PEEK + HA hydroxyapatite
  • PEKK Polyether ketone ketone
  • high molecular weight polyethylene PEKK + carbon fiber, PEKK + calcium silicate and L-lactic
  • the apertures of the fixation holes 31 in the non-metallic implant 3 are straight or shallow threaded holes.
  • the inner diameter of the metal screw 4 thread should match or be slightly smaller than the diameter of the fixing hole 31 on the implant 3.
  • the outer diameter of the metal screw 4 thread is larger than the diameter of the fixing hole 31 on the implant 3, so that the metal screw 4 is screwed into the bone, and the full bone thread 41 taps the non-metal implant 3 to eat non-metal implants.
  • the inner diameter is thickened and the tooth shape is thickened, and the non-metallic implant 3 of the front tapping is pressed, so that the metal screw 4 is firmly locked to the non-metal implant. 3, so as to achieve the function of locking anti-loose and anti-back.
  • non-metallic materials such as PEEK + CF (carbon fiber) different proportion structure, etc.
  • PEEK + CF carbon fiber
  • non-metallic implant screw locking structure is designed to automatically utilize the self-tapping function of the metal screw on the non-metallic implant during the installation process, and overcome the advantages of the looseness and withdrawal of the screw by the elastic properties of the non-metallic implant itself.
  • the locking between the screw and the non-metallic implant is achieved, the surgical installation is simple, and the structure is reliable.
  • this product uses PEEK carbon fiber implantable material to meet the industry standard and biomechanical requirements of cervical lamina. It has light weight and elastic modulus similar to human cortical bone. After implantation, stress relief is obviously reduced, stress concentration is avoided, and delay is avoided. Adjacent vertebral bodies degenerate. Compared with the current titanium alloy products, the products are light and flexible, and the surgical adaptability is better.
  • non-metallic implant screw locking structure is the same as that of the embodiment 2, and details are not described herein. For details, refer to the second embodiment.
  • the non-metal implant is composed of the following raw materials by weight: 40-70 parts of polyetheretherketone, calcium silicate and/or high molecular weight polyethylene 30- 40 copies.
  • the non-metallic implant also includes 10-15 parts of artificial bone meal.
  • the non-metallic implant further comprises 0.1-0.5 parts of microcapsules.
  • the microcapsule is a core-shell structure, the core layer is sodium carbonate, the shell layer is chitosan, and the surface of the shell layer is further covered with calcium chloride.
  • the non-metallic implant is prepared by using 50 parts of polyetheretherketone, 30 parts of calcium silicate, 12 parts of artificial bone powder, and 0.3 parts of microcapsules.
  • Incorporating an appropriate amount of artificial bone powder into a non-metallic implant can not only improve the strength of the non-metallic implant, but also improve the surgical adaptability and meet the requirements of clinical quickness and safety.
  • the microcapsules have a sustained release effect, and if the screws are cracked, the microcapsules are broken, thereby generating calcium carbonate, filling the generated cracks, and restoring the strength of the non-metallic implant.
  • the microcapsules on the surface of the non-metallic implant are broken at the beginning of use to form calcium carbonate, which is filled with the gap between the screw and the plate, thereby improving the bonding effect between the screw and the plate.
  • the non-metallic implant screw locking structure proposed by the present invention is composed of an implant and a screw.
  • the implant is non-metallic and the screw is a metal screw.
  • the implant has a fixing hole which is a straight hole or a threaded hole.
  • the metal screw is basically full threaded, close to the tail end portion, and the thread has a cuff.
  • the metal screw is screwed into the bone structure along the implant fixing hole. Since the outer diameter of the metal screw is larger than the diameter of the fixing hole, the thread will tap and cut the hole to form a threaded hole. Due to the inner diameter of the screw end of the metal screw, the thread is thickened.
  • the metal screw completely eats the implant to achieve the locking function, and the implant and the bone structure are firmly fixed.
  • the new material has a pre-bent structure, a large bone-growth window, an innovative and reliable locking mechanism, and a self-tapping/self-drilling screw with a fixed/adjustable angle to meet the limitations of the operation and the semi-restriction.
  • the fixed function has the excellent characteristics of the high-quality neck anterior steel plate on the market.
  • the use of disposable sterilization and sterilization packaging can reduce the increase of surgical infection rate caused by repeated disinfection of plants in titanium alloys, and also help the needs of emergency cervical vertebrae trauma surgery, save surgery and disinfection time, save dealers Labor and financial costs of disinfection and sterilization in hospitals.
  • To achieve the purpose of timely, accurate and first-aid to meet the requirements of clinical fast, safe and effective fixation. Equipped with the development of one-time use tools, changing the surgical distribution model to meet the needs of domestic and foreign markets.
  • the non-metallic implant screw locking structure proposed by the invention can also be applied to the spinal plate (as shown in Fig. 9), the bone plate (as shown in Fig. 10), the cage (shown in Fig. 11), and the plate fusion. (as shown in Figure 12), posterior cervical opener (as shown in Figure 13), posterior cervical plate (as shown in Figure 14), lumbar anterior plate (as shown in Figure 15) and lumbosacral plate (as shown in Figure 16).

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Neurology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)
  • Surgical Instruments (AREA)

Abstract

一种非金属植入物螺钉锁定结构,包括非金属植入物(1)及金属螺钉(2)。该非金属植入物(1)上设有固定孔(11)。该金属螺钉(2)前部为接骨螺纹(21),尾部设有尖螺纹(22)或尖刺(23)。该锁定结构具有生产加工简单的优点。该锁定结构可应用到创伤接骨板、脊柱融合器等非金属植入物上。

Description

非金属植入物螺钉锁定结构 技术领域
本发明涉及骨外科医疗器械技术领域,尤其涉及非金属植入物螺钉锁定结构。
背景技术
众所周知,治疗各种骨折、骨缺损或骨组织退变应促进骨生长融合,需要使用骨科植入物,如接骨板,连接棒和螺钉***,以往很多骨科植入物都是由金属材料制作而成。这些材料有很多优势:容易消毒,生物相容性好,提供必要的固定强度来支撑或固定骨组织。但金属材料也存在不足,它的压缩模量大大高于皮质骨,产生应力遮挡减少新骨形成,导致骨质稀少或骨质疏松,有再骨折的可能。骨修复后,这些植入物在病人活动时不再需要保留,植入物可被取出,也有一些金属植入物允许保留在体内,取出时需要再手术,这将明显应该消除一系列的二次手术风险:减轻病人疼痛、不适,减少感染机会,再次治疗导致的新创伤需要恢复,而在取出植入物的同时,也对周围组织的产生刺激。
目前,新的研究推出了更新的方法和改进的新材料,包括非金属材料植入物,已经用于治疗各种骨折,骨缺损和促进骨融合。这些非金属植入物可以长期保留在身体里,有些植入物或植入物的部分在一定时间后被吸收,并有新骨长入。同时由于非金属材料的产品,与骨的弹性模量极其接近,消除了对新骨生长的应力遮挡,促进,加快了骨融合和愈合,长期体内保留也不会应力遮挡而导致骨质疏松,更适合用于骨折,骨缺损和退变融合的治疗。这些新的非金属材料有着比 金属材料更显著的优势,当然也有需要更进一步改善的方面。如非金属材料较低的力学强度,非金属螺钉对骨的抓持力较弱,以及螺钉和板类产品的锁紧力欠缺,都不能满足把产品结构完整安装,使骨达到稳定的固定。
由于上述问题,目前对非金属材料在骨科的应用非常局限,本发明就是在以往的研究基础上,经过不同的非金属材料的组合,提高材料的力学强度,通过金属螺钉与非金属材料的产品不同的组合,并以特殊的设计和手术方法,来满足非金属材料装置的完整安装,提高其对骨的固定强度。从而拓宽了非金属材料在骨科的应用前景。
目前市场上非金属植入物的锁定主要是通过膨胀锁定、卡簧锁定或采用一部分金属材料锁定。但此类产品加工复杂,增加成本,加重病人的经济负担;而且操作繁琐,延长手术时间,增加手术各种并发症发生的风险。
发明内容
本发明与骨科植入物和骨缺损的治疗方法相关。具体地说,本发明是应用新的非金属材料生产的骨科植入物,并且对其设计的进行改进,以促进治疗部位的骨生长。设计非金属植入物螺钉锁定结构,能在安装过程中自动在非金属植入物上利用金属螺钉的自攻功能,靠非金属植入物自身的弹性属性克服螺钉松动和退出的优点,达到螺钉与非金属植入物之间的锁定,手术安装简单,结构可靠。
为实现上述目的,本发明提供的一种非金属植入物螺钉锁定结构,采用了以下方案实现:包括非金属植入物及金属螺钉;其中,所述非金属植入物上设有固定孔;所述金属螺钉前部为接骨螺纹,尾部设有尖螺纹或尖刺。
进一步的,所述固定孔为直孔或椎度孔或螺纹孔。
进一步的,在安装时,所述金属螺钉沿固定孔将所述非金属植入 物拧入骨结构的过程中,所述金属螺钉尾部的尖螺纹或尖刺在非金属植入物上产生攻牙切割,尖螺纹或尖刺全部卡入所述非金属植入物中将非金属植入物与骨结构固定。
进一步的,所述金属螺钉的螺纹外径大于所述固定孔的孔径,且所述金属螺钉尾部螺纹内径收口。
进一步的,在安装时,所述金属螺钉沿固定孔将所述非金属植入物拧入骨结构的过程中,所述金属螺钉的螺纹对所述固定孔进行攻牙切割,形成螺纹孔道,锁紧时,所述金属螺钉全部卡入所述非金属植入物中将非金属植入物与骨结构固定。
进一步的,所述金属螺钉为全接骨螺纹;所述非金属植入物材料包括PEEK、PEEK+碳纤维、PEEK+硅酸钙、PEEK+HA、PEKK、PEKK+碳纤维、PEKK+硅酸钙、高分子聚乙烯等不可吸收生物材料和左旋乳酸、内消旋乳酸、乙醇酸及三亚甲基碳酸酯等可吸收生物材料。
进一步的,所述非金属植入物由以下重量份的原料组成:聚醚醚酮40-70份,硅酸钙和/或高分子聚乙烯30-40份。优选的组成为聚醚醚酮50-70份,硅酸钙和高分子聚乙烯30-40份,其中硅酸钙与高分子聚乙烯的重量百分比为3∶1。
进一步的,所述非金属植入物还包括人造骨粉10-15份。优选的为11-12份;所述人造骨粉为纳米级骨粉。
进一步的,所述非金属植入物还包括微胶囊0.1-0.5份。
进一步的,所述微胶囊为核壳结构,核层为碳酸钠,壳层为壳聚糖,壳层表面还覆有氯化钙。微胶囊具有缓释效果,如果螺钉发生裂纹,则会使得微胶囊破裂,从而生成碳酸钙,将产生的裂缝填充,并恢复非金属植入物的强度。非金属植入物表面的微胶囊则在使用之初即破裂,生成碳酸钙,填充与螺钉与板的缝隙中,进而提高螺钉与板的结合效果。
与现有技术相比,本发明的有益效果主要体现在:
(1)结构简单、设计新颖、生产加工简单、临床操作十分方便。另本发明结构可应用到创伤接骨板,脊柱融合器、脊柱固定板、颈椎 后路单开门板、颈椎后路板、腰椎前路板、腰骶板等骨科非金属植入物上,将逐步产生良好的经济和社会效益。
(2)采用轻质化及弹性模量近似于人体皮质骨的非金属植入物,植入后明显减少应力遮挡,避免应力集中,延缓相邻椎体退变。相对于目前钛合金材质的产品透光、有弹性,手术适应性更好。
(3)术后,通过X射线可清晰观察骨愈合进展情况。
(4)在非金属植入物中掺入适量的人造骨粉,不仅可以提高非金属植入物的强度,还能提高手术适应性,满足临床的快捷、安全的要求。
(5)在非金属植入物中掺入适量微胶囊,从而使得非金属植入物具有自修复功能,也提高了螺钉与板的结合效果。且加入量较低,成本也较低,取得了预料不到的效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明结构示意图。
图2a至图2f是本发明实施例1的非金属植入物孔型示意图。
图3a和图3b是本发明实施例1的螺钉结构示意图。
图4a至图4f是本发明实施例1的螺钉去除尖螺纹或尖刺后配合示意图。
图5a至图5b是本发明实施例1的锁定示意图。
图6是本发明实施例2的结构示意图。
图7a和图7b是本发明实施例2的非金属植入物的孔型示意图。
图8a和图8b是本发明实施例2的锁定示意图。
图9是本发明在脊柱板上应用示意图。
图10是本发明在接骨板上应用示意图。
图11是本发明在融合器上的应用示意图。
图12是本发明在带板融合器上的应用示意图。
图13是本发明在颈椎后路单开门板上的应用示意图。
图14是本发明在颈椎后路板上的应用示意图。
图15是本发明在腰椎前路板上的应用示意图。
图16是本发明在腰骶板上的应用示意图。
具体实施方式
为了达到本发明的目的,以下结合实施例1对本发明作进一步的描述。
如图1所示,在本实施例中,提出了一种非金属植入物螺钉锁定结构,包括非金属植入物1及金属螺钉2;其中,所述非金属植入物1上设有多个固定孔11;所述金属螺钉2前部为接骨螺纹,尾部设有尖螺纹或尖刺。
如图2a至图2f所示,所述非金属植入物1上的固定孔11的孔型为直孔或椎度孔或浅螺纹孔。
如图3a和图3b所示,所述金属螺钉2前部有接骨螺纹21,尾部有尖螺纹22或尖刺23,所述尖螺纹22的牙距应和接骨螺纹21的牙距相同,尖螺纹22可为多头螺纹线。
如图4a至图4f所示,所述金属螺钉2尾部的去除尖螺纹22或尖刺23后的外形应与非金属植入物1上的固定孔11孔形匹配或略大;结合图5a至图5b所示,所述金属螺钉2尾部的尖螺纹22或尖刺23的外形应比所述固定孔11孔外略大,保证金属螺钉2旋入骨头上后, 尾部尖螺纹22或尖刺23对非金属植入物1进行攻牙,吃入非金属植入物1。由于金属对非金属的挤压,产生的断屑会对金属螺钉2上的尖螺纹22或尖刺23进行抱紧,会使金属螺钉2牢牢的锁定在非金属植入物1上,从而达到锁定防松防退的功能。
其中,所述非金属植入物由以下重量份的原料组成:聚醚醚酮40-70份,硅酸钙和/或高分子聚乙烯30-40份。具体的,所述非金属植入物2可以用采用聚醚醚酮60份,硅酸钙30份,高分子聚乙烯10份制备而成。
所述非金属植入物1采用上述材质能够很好的避免应力集中,此外,采用本实施例提出的结构,能够避免非金属螺钉对骨的抓持力较弱以及螺钉和板类产品的锁紧力欠缺,不能满足将产品结构完整安装,使骨达到稳定固定的目的。
以下结合实施例2对本发明作进一步的描述。
如图6所示,非金属植入物螺钉锁定结构由非金属植入物3、金属螺钉4组成。非金属植入物3上有多个固定孔31。金属螺钉4为全接骨螺纹41,所述非金属植入物3材料包括但不限于PEEK(聚醚醚酮)、PEEK+碳纤维、PEEK+硅酸钙、PEEK+HA(羟基磷灰石)、PEKK(聚醚酮酮)、高分子聚乙烯、PEKK+碳纤维、PEKK+硅酸钙和左旋乳酸、内消旋乳酸、乙醇酸及三亚甲基碳酸酯等人体可吸收材料。
如图7a和7b所示,非金属植入物3上的固定孔31的孔型为直孔或浅螺纹孔。
如图8a和8b所示,金属螺钉4螺纹内径应与植入物3上的固定孔31孔径匹配或略小。金属螺钉4螺纹外径比植入物3上的固定孔31孔径大,这样保证金属螺钉4旋入骨头过程中,全接骨螺纹41对非金属植入物3进行攻牙,吃入非金属植入物3。由于金属螺钉尾部 螺纹41为收口状态,内径增粗,牙型变厚,会对前段攻牙的非金属植入物3进行挤压,会使金属螺钉4牢牢的锁定在非金属植入物3上,从而达到锁定防松防退的功能。
在本实施例中,经过不同的非金属材料的组合:如PEEK+CF(碳纤维)不同比例结构等,提高材料的力学强度,通过金属螺钉与非金属材料的产品不同的组合,并以特殊的设计和手术方法,来满足非金属材料装置的完整安装,提高其对骨的固定强度。
此外,设计非金属植入物螺钉锁定结构,能在安装过程中自动在非金属植入物上利用金属螺钉的自攻功能,靠非金属植入物自身的弹性属性克服螺钉松动和退出的优点,达到螺钉与非金属植入物之间的锁定,手术安装简单,结构可靠。
可见,本产品采用PEEK碳纤维植入级材料,满足颈椎板的行业标准及生物力学要求,具备轻质化及弹性模量近似于人体皮质骨,植入后明显减少应力遮挡,避免应力集中,延缓相邻椎体退变。相对于目前钛合金材质的产品透光、有弹性,手术适应性更好。
以下结合实施例3对本发明作进一步的描述。
在本实施例中,所述非金属植入物螺钉锁定结构与实施例2相同,在此不做赘述,具体可以参考实施例2。
与实施例2不同的是,在本实施例中,所述非金属植入物由以下重量份的原料组成:聚醚醚酮40-70份,硅酸钙和/或高分子聚乙烯30-40份。所述非金属植入物还包括人造骨粉10-15份。所述非金属植入物还包括微胶囊0.1-0.5份。所述微胶囊为核壳结构,核层为碳酸钠,壳层为壳聚糖,壳层表面还覆有氯化钙。
具体的,所述非金属植入物采用非金属植入物2采用聚醚醚酮50份,硅酸钙30份,人造骨粉12份,微胶囊0.3份制备而成。
在非金属植入物中掺入适量的人造骨粉,不仅可以提高非金属植入物的强度,还能提高手术适应性,满足临床的快捷、安全的要求。微胶囊具有缓释效果,如果螺钉发生裂纹,则会使得微胶囊破裂,从 而生成碳酸钙,将产生的裂缝填充,并恢复非金属植入物的强度。非金属植入物表面的微胶囊则在使用之初即破裂,生成碳酸钙,填充与螺钉与板的缝隙中,进而提高螺钉与板的结合效果。
综上,本发明提出的非金属植入物螺钉锁定结构由植入物和螺钉组成。其中植入物为非金属,螺钉为金属螺钉。植入物上有固定孔,此孔型为直孔或螺纹孔。金属螺钉基本为全螺纹,靠近钉尾部分,螺纹有收口。在安装时,金属螺钉沿植入物固定孔拧入骨结构的过程种,由于金属螺钉的螺纹外径大于固定孔的孔径,螺纹会对孔进行攻牙切割,形成螺纹孔道。由于金属螺钉尾部螺纹内径收口,螺牙增厚,最终锁紧时,金属螺钉完全吃住植入物,达到锁定功能,同时将植入物与骨结构牢牢固定。
此外,新材料的钢板形态结构上有预弯,超大植骨视窗,创新的可靠锁紧机制,而且有自攻/自钻螺钉,具备固定/可调角度,可满足手术中的限制、半限制等混合固定配置。固定功能上具备了目前市场上优质颈前路钢板的优良特性。并且采用了一次性消毒灭菌的包装,可减少因以前钛合金内植物的反复消毒使用,造成的手术感染率增加,同时也有利于急诊颈椎创伤手术需求,节约手术消毒时间,节省了经销商和医院消毒灭菌之人力及财务成本。达到及时、准确、急救之目的,满足临床的快捷、安全、有效固定的要求。配备开发一次性使用配套工具,改变手术配送模式,迎合国内外市场需求。
本发明提出了的非金属植入物螺钉锁定结构还可以运用至脊柱板(如图9所示)、接骨板(如图10所示)、融合器(如图11所示)、带板融合器(如图12所示)、颈椎后路单开门板(如图13所示)、颈椎后路板(如图14所示)、腰椎前路板(如图15所示)及腰骶板(如图16所示)上。
尽管以上附图和说明已经详细地描述了本发明,但这些附图和说明应被认为是用来说明的而不是在特征方面作限制的。应予理解的是,这仅表示出并说明了较佳的实施方案,因此要求保护落入本发明 保护范围内的所有变化和修改。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本实用新型。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本实用新型的精神或范围的情况下,在其它实施例中实现。因此,本实用新型将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种非金属植入物螺钉锁定结构,其特征在于,包括非金属植入物及金属螺钉。
  2. 根据权利要求1所述的非金属植入物螺钉锁定结构,其特征在于,所述非金属植入物上设有固定孔;所述金属螺钉前部为接骨螺纹,尾部设有尖螺纹或尖刺,所述尖螺纹的牙距和接骨螺纹的牙距相同;所述尖螺纹为多头螺纹线;所述金属螺钉尾部的尖螺纹或尖刺与所述固定孔的孔形相匹配;所述固定孔为直孔或椎度孔或螺纹孔。
  3. 根据权利要求2所述的非金属植入物螺钉锁定结构,其特征在于,在安装时,所述金属螺钉沿固定孔将所述非金属植入物拧入骨结构的过程中,所述金属螺钉尾部的尖螺纹或尖刺在非金属植入物上产生攻牙切割,尖螺纹或尖刺全部卡入所述非金属植入物中将非金属植入物与骨结构固定。
  4. 根据权利要求1所述的非金属植入物螺钉锁定结构,其特征在于,所述金属螺钉的螺纹外径大于所述固定孔的孔径,且所述金属螺钉尾部螺纹内径收口。
  5. 根据权利要求4所述的非金属植入物螺钉锁定结构,其特征在于,在安装时,所述金属螺钉沿固定孔将所述非金属植入物拧入骨结构的过程中,所述金属螺钉的螺纹对所述固定孔进行攻牙切割,形成螺纹孔道,锁紧时,所述金属螺钉全部卡入所述非金属植入物中将非金属植入物与骨结构固定。
  6. 根据权利要求4所述的非金属植入物螺钉锁定结构,其特征在于,所述金属螺钉为全接骨螺纹;所述非金属植入物材料包括PEEK(聚醚醚酮)、PEEK+碳纤维、PEEK+硅酸钙、PEEK+HA(羟基磷灰石)、PEKK(聚醚酮酮)、PEKK+碳纤维、PEKK+硅酸钙、高分子聚乙烯等不可吸收生物材料和左旋乳酸、内消旋乳酸、乙醇酸及三亚甲基碳酸酯等可吸收生物材料。
  7. 根据权利要求1所述的非金属植入物螺钉锁定结构,其特征在于,所述非金属植入物由以下重量份的原料组成:聚醚醚酮40-70份,硅酸钙和/或高分子聚乙烯30-40份。
  8. 根据权利要求7所述的非金属植入物螺钉锁定结构,所述非金属植入物还包括人造骨粉10-15份。
  9. 根据权利要求7所述的非金属植入物螺钉锁定结构,所述非金属植入物还包括微胶囊0.1-0.5份。
  10. 根据权利要求9所述的非金属植入物螺钉锁定结构,所述微胶囊为核壳结构,核层为碳酸钠,壳层为壳聚糖,壳层表面还覆有氯化钙。
PCT/CN2018/095399 2018-02-05 2018-07-12 非金属植入物螺钉锁定结构 WO2019148773A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18903437.4A EP3705070B1 (en) 2018-02-05 2018-07-12 Nonmetal implant screw locking structure
US16/627,329 US11510716B2 (en) 2018-02-05 2018-07-12 Nonmetallic implant screw locking structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810111346.7 2018-02-05
CN201810111346.7A CN108186102B (zh) 2018-02-05 2018-02-05 非金属植入物螺钉锁定结构

Publications (1)

Publication Number Publication Date
WO2019148773A1 true WO2019148773A1 (zh) 2019-08-08

Family

ID=62592685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095399 WO2019148773A1 (zh) 2018-02-05 2018-07-12 非金属植入物螺钉锁定结构

Country Status (4)

Country Link
US (1) US11510716B2 (zh)
EP (1) EP3705070B1 (zh)
CN (1) CN108186102B (zh)
WO (1) WO2019148773A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108186102B (zh) 2018-02-05 2023-12-05 上海锐植医疗器械有限公司 非金属植入物螺钉锁定结构
CN113813033A (zh) * 2021-09-24 2021-12-21 浙江省立同德医院 可调角度自锁式腰骶前路经椎弓固定钉板固定方法及***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321094A (zh) * 1998-09-30 2001-11-07 武田药品工业株式会社 骨修复材料和人造骨组合物
GB2405342A (en) * 2003-08-28 2005-03-02 Biomet Merck Ltd Bone plate
CN1835718A (zh) * 2003-06-20 2006-09-20 精密医疗责任有限公司 有手术中攻螺纹孔的接骨板
CN201624766U (zh) * 2009-12-29 2010-11-10 杨宁 接骨器件
CN103491989A (zh) * 2011-02-14 2014-01-01 拜欧米特制造有限责任公司 不可吸收的聚合物-陶瓷复合物植入物材料
CN104725771A (zh) * 2013-12-24 2015-06-24 上海交通大学医学院附属第九人民医院 一种纳米硅酸钙-聚醚醚酮复合材料及其制备方法
CN206761800U (zh) * 2016-12-08 2017-12-19 西安康拓医疗技术有限公司 一种人体颅骨缺损修复用骨板
CN108186102A (zh) * 2018-02-05 2018-06-22 上海锐植医疗器械有限公司 非金属植入物螺钉锁定结构

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868749A (en) * 1996-04-05 1999-02-09 Reed; Thomas M. Fixation devices
US7717945B2 (en) * 2002-07-22 2010-05-18 Acumed Llc Orthopedic systems
US20050234458A1 (en) * 2004-04-19 2005-10-20 Huebner Randall J Expanded stabilization of bones
US8152838B2 (en) * 2005-02-18 2012-04-10 Alphatec Spine, Inc. Orthopedic plate system and method for using the same
US20090157194A1 (en) * 2006-03-10 2009-06-18 Takiron Co., Ltd. Implant composite material
US20090299369A1 (en) * 2008-06-02 2009-12-03 Skeletal Dynamics Llc Hybrid Orthopedic Implant
US20100057114A1 (en) * 2008-09-02 2010-03-04 Butler Michael S PEEK Spinal Mesh and PEEK Spinal Mesh Applicator
US8579947B2 (en) * 2009-09-14 2013-11-12 Yangguan Wu Polyporous hollow bone screw
EP2380523B1 (de) * 2010-04-20 2017-11-08 ZL Microdent-Attachment GmbH & Co. KG Schraube für ein zahnmedizinisches Implantat
EP2768413B1 (en) * 2011-10-17 2016-05-18 Biomet Trauma, LLC Variable locking bone plating system
CN103371857A (zh) * 2012-04-12 2013-10-30 北京汇福康医疗技术有限公司 复合型生物套管及其制备方法和应用
EP2916755A4 (en) * 2012-11-11 2015-12-02 Carbofix Orthopedics Ltd COATING FOR COMPOSITE IMPLANT
US9370385B2 (en) * 2014-08-21 2016-06-21 Jeffrey Weinzweig Bone fixation methods and devices
US10154865B2 (en) * 2015-03-24 2018-12-18 Biotronik Ag Orthopedic implants, particularly bone screws, and methods for producing same
CN104962723B (zh) * 2015-05-29 2017-03-08 江苏大学 一种修复金属裂纹的方法
ES2772325T3 (es) * 2015-11-18 2020-07-07 Stryker European Holdings I Llc Tornillo de fijación ortopédico para un sistema de sujeción ortopédico
CN206792444U (zh) * 2017-01-06 2017-12-26 南京市六合区人民医院 前交叉韧带重建中移植物的固定***
CN209107550U (zh) * 2018-02-05 2019-07-16 上海锐植医疗器械有限公司 非金属植入物螺钉锁定结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321094A (zh) * 1998-09-30 2001-11-07 武田药品工业株式会社 骨修复材料和人造骨组合物
CN1835718A (zh) * 2003-06-20 2006-09-20 精密医疗责任有限公司 有手术中攻螺纹孔的接骨板
GB2405342A (en) * 2003-08-28 2005-03-02 Biomet Merck Ltd Bone plate
CN201624766U (zh) * 2009-12-29 2010-11-10 杨宁 接骨器件
CN103491989A (zh) * 2011-02-14 2014-01-01 拜欧米特制造有限责任公司 不可吸收的聚合物-陶瓷复合物植入物材料
CN104725771A (zh) * 2013-12-24 2015-06-24 上海交通大学医学院附属第九人民医院 一种纳米硅酸钙-聚醚醚酮复合材料及其制备方法
CN206761800U (zh) * 2016-12-08 2017-12-19 西安康拓医疗技术有限公司 一种人体颅骨缺损修复用骨板
CN108186102A (zh) * 2018-02-05 2018-06-22 上海锐植医疗器械有限公司 非金属植入物螺钉锁定结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3705070A4 *

Also Published As

Publication number Publication date
US20200138496A1 (en) 2020-05-07
CN108186102A (zh) 2018-06-22
EP3705070A1 (en) 2020-09-09
CN108186102B (zh) 2023-12-05
US11510716B2 (en) 2022-11-29
EP3705070B1 (en) 2023-07-12
EP3705070A4 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
Ridwan-Pramana et al. Porous polyethylene implants in facial reconstruction: Outcome and complications
Pina et al. Bioresorbable plates and screws for clinical applications: a review
Suuronen et al. Update on bioresorbable plates in maxillofacial surgery
Park Bioabsorbable osteofixation for orthognathic surgery
JP2018503492A (ja) 骨片の可変固定のための装置
US20130090696A1 (en) Multi-tapered implant screw
Kim et al. Bioabsorbable plates versus metal miniplate systems for use in endoscope-assisted open reduction and internal fixation of mandibular subcondylar fractures
Landes et al. Resorbable plate osteosynthesis of dislocated or pathological mandibular fractures: a prospective clinical trial of two amorphous L-/DL-lactide copolymer 2-mm miniplate systems
WO2019148773A1 (zh) 非金属植入物螺钉锁定结构
Assael et al. Scientific and technical background
Crist et al. Biomaterials in craniomaxillofacial reconstruction: past, present, and future
Kukk et al. A retrospective follow-up of ankle fracture patients treated with a biodegradable plate and screws
Yadav Principles of internal fixation in maxillofacial surgery
CN209107550U (zh) 非金属植入物螺钉锁定结构
Son et al. Are biodegradable plates applicable in endoscope-assisted open reduction and internal fixation of mandibular subcondyle fractures?
Hardt et al. Osteosynthesis in Craniofacial Fractures
CN204562353U (zh) 一种非降解型生物螺钉
CN106725788A (zh) 一种用于腰椎峡部裂的翼状曲面钢板内固定***
Sengezer et al. Reconstruction of midface bone defects with vitallium micromesh
CN1640368A (zh) 椎间融合装置
RU98901U1 (ru) Устройство для армирования шейки бедренной кости и превентивной профилактики переломов
Seebauer et al. Tibia fracture following removal of the ETN®(Expert Tibia Nail): a case report
RU2743267C1 (ru) Регенеративный способ лечения импрессионного перелома проксимального метаэпифиза большеберцовой кости
Nayak et al. Management of both forearm bone diaphyseal fractures-ORIF v/s CRIF v/s hybrid fixation: An operative dilemma
Zwahlen Internal fixation in oral and maxillofacial surgery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903437

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018903437

Country of ref document: EP

Effective date: 20200604

NENP Non-entry into the national phase

Ref country code: DE