WO2019148689A1 - 一种微电网并网联络线功率的控制***及其方法 - Google Patents

一种微电网并网联络线功率的控制***及其方法 Download PDF

Info

Publication number
WO2019148689A1
WO2019148689A1 PCT/CN2018/086243 CN2018086243W WO2019148689A1 WO 2019148689 A1 WO2019148689 A1 WO 2019148689A1 CN 2018086243 W CN2018086243 W CN 2018086243W WO 2019148689 A1 WO2019148689 A1 WO 2019148689A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
power
energy storage
net
load
Prior art date
Application number
PCT/CN2018/086243
Other languages
English (en)
French (fr)
Inventor
徐运兵
盛德刚
戴罡
裴军
徐大可
Original Assignee
大全集团有限公司
南京大全电气研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大全集团有限公司, 南京大全电气研究院有限公司 filed Critical 大全集团有限公司
Publication of WO2019148689A1 publication Critical patent/WO2019148689A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers

Definitions

  • the invention relates to the field of micro grid technology, in particular to a microgrid grid-connected line power control system and method thereof.
  • Microgrid has received similar attention as its technical support.
  • the microgrid system combines distributed power, load, energy storage, and control systems to form a small power system.
  • the microgrid and the large grid can support each other.
  • the grid operation can ensure the safe operation of the microgrid to a large extent, but it is compatible with the distribution network.
  • the tie line power is usually limited by certain constraints.
  • the output power of distributed power sources such as wind power and solar photovoltaics is intermittent and random.
  • the load changes often reflect certain volatility, which brings great challenges to the stable operation of the microgrid.
  • the microgrid is running in the grid, the peak-to-valley difference characteristics of the load and the volatility of the distributed power supply often coexist. Therefore, after the power grid is connected to the distributed power supply on a large scale, large power fluctuations will have a serious impact on the regional distribution network, and even cause the regional distribution network to oscillate. If we can not effectively solve the series of problems caused by the above-mentioned micro-grid grid connection, it will hinder the rapid development and efficient use of the micro-grid. In the prior art, there are also related related schemes for grid connection of the micro grid, but the scheme is complicated and the stability is insufficient.
  • Chinese patent application, application No. 201610246209.5, published on July 27, 2016, discloses a method for power smoothing of grid-connected microgrid tie line, adopting double-layer optimization scheduling; the double-layer optimization scheduling includes based on prediction data Optimization of the upper layer of the scheduling, and the underlying optimization of real-time control based on the collected real-time data.
  • the invention adopts the optimized scheduling mode of the double-layer control, can realize the control of the grid-connected micro-grid tie line power, and the fluctuation of the control tie line power does not exceed the specified range, thereby preventing the tie line power from appearing due to the instability of the photovoltaic power generation.
  • the fluctuations reduce the impact of the microgrid on the stability of the large grid after it is connected to the large grid.
  • the capacity of the large grid to access the photovoltaic can be increased, and the utilization rate of the clean energy can be improved.
  • By controlling the storage battery power it can prevent the battery from overcharging or over-discharging, which can prolong the service life of the energy storage battery.
  • the response speed of this scheme is slow, and the fluctuations reached will reach a certain value. In the high standard power grid, the impact is large.
  • China Patent Application, Application No. 201310234708.9, published on September 25, 2013, discloses a method and device for smoothing the power of the grid connection line of new energy, judging the fluctuation frequency band when the power grid fluctuates, and utilizing the energy storage battery Coordination with the gas turbine to compensate for the fluctuation components of different energy sources in the new energy output, make full use of the existing new energy forms, avoid investing more equipment, improve energy utilization, and meet the power supply needs of users. Reducing the re-construction of large power grids; the cold/heat/electrical combined system with optical storage system is simple and easy to implement; and the operation modes are diverse, which can comprehensively control the power quality, especially for power quality improvement in remote areas. It is obvious.
  • the energy storage system adopts the basic filtering control method, and does not consider the state of charge of the battery, which on the one hand may affect the service life of the battery, and on the other hand, the power injected into the power grid may fluctuate drastically, affecting the stability of the power grid.
  • the present invention provides a control system and method for the power grid connection line power of a micro grid with fast response, simple scheme and good stability.
  • a microgrid grid-connected line power control system includes a distributed power source, a load, and an energy storage unit, wherein the distributed power source, load, and energy storage unit are respectively connected to a control unit, the distributed power source, load, and storage
  • the energy unit is connected to the external power grid through a common connection point, and the interface of the distributed power source and the energy storage unit is an inverter, and the common connection point and the inverter are controlled to open and close by a control unit, and the energy storage unit is connected Battery management unit.
  • the load controller, the power controller, and the energy storage controller upload the electrical information of the load, the distributed power source, and the energy storage unit to the central controller of the micro grid through the communication bus; the central controller of the micro grid passes the communication bus
  • the lower layer controller issues corresponding commands to control the operation of the load, distributed power supply, and energy storage unit.
  • the distributed power source includes a photovoltaic power source and a wind power generation power source.
  • a method for controlling power of a grid connection line of a micro grid system comprising:
  • the micro-grid central controller collects the electrical quantities of the micro-grid and the tie line, and then performs step 2);
  • the micro-grid central controller issues a command to the battery management system to stop the output of the energy storage unit, and the energy storage unit starts charging, and then returns to step 1).
  • the micro-grid central controller collects the electrical quantities of the micro-grid and the tie line, including the total active power P DG from the distributed power source, the local load active power P Load , and the net load power of the micro-grid. P Net ;
  • P Grid P Load -P DG -P B .
  • the charging and discharging time of the energy storage system in the step 2) is positively correlated with the value of the energy storage system, and the charging and discharging frequency of the energy storage system is negatively correlated with the value of the distributed power supply. Negative correlation.
  • the present invention relates to a smooth control method for power of a tie line in a grid-connected operation of a microgrid containing wind, light, storage, etc., according to the distributed power output of the microgrid, local load power,
  • the power of the tie line, real-time calculation of the fluctuation rate of the power of the tie-line power during the grid-connected operation, and the charging and discharging strategy of the energy storage system is developed according to this, the control method can stabilize the fluctuation of the distributed power supply when the micro-grid is connected to the grid, and ensure the micro-grid Reliability and stability;
  • the tie line plan power P Agr is introduced, and the energy management system (EMS) gives the predicted value. If the energy management system (EMS) does not give the value, the value is the micro grid.
  • the distributed power supply of this solution can be various, including but not limited to wind power generation, photovoltaic power generation, etc., which can achieve complementary wind and light, improve the economical, environmentally friendly and reliable power supply;
  • the inverter is used as the interface of the distributed power supply and the energy storage system, which effectively improves the flexibility and dynamic performance of the microgrid; involves multiple operating modes, modes are diverse, and compatibility is good;
  • the planned power P Agr is greater than the net load power of the micro grid, and the energy storage device is discharged; during the power trough period, the planned power P Agr is less than the net load power of the micro grid, and the energy storage device is fully charged. It is the role of cutting the peaks and filling the valley.
  • FIG. 1 is a schematic structural view of a microgrid according to the present invention.
  • FIG. 2 is a schematic diagram of a central controller of a microgrid
  • Figure 3 is a flow chart of the microgrid control strategy
  • Figure 4 is a graph of load before and after optimization with electrical load.
  • the invention relates to a smooth control method for the power of the tie line in the grid-connected operation of the micro-grid containing wind, light and storage, and the control method is based on the distributed power output, local load power and tie line of the collected micro-grid Power, real-time calculation of the fluctuation rate of the tie line power during grid-connected operation, according to which the charge and discharge strategy of the energy storage system is formulated.
  • the control method can stabilize the volatility of the distributed power supply when the micro-grid is connected to the grid, and ensures the reliability and stability of the micro-grid.
  • the object of the present invention is to provide a smooth variation of the exchange power between the micro grid and the main network under the condition of grid-connected operation, and to stabilize the fluctuation of the distributed power source in the micro grid.
  • the purpose of cutting peaks and filling valleys is realized.
  • the microgrid system includes distributed power supplies, energy storage systems, and related load components such as wind turbines, solar panels, and batteries.
  • the switch is controlled by a PCC (Common Connection Point) and connected to the outside. In the grid.
  • PCC Common Connection Point
  • a grid-connected microgrid system includes a control layer, a monitoring layer, and a communication layer.
  • the control layer is composed of a microgrid central controller (MGCC) and each lower layer controller, and the lower layer controller includes a load.
  • MGCC microgrid central controller
  • the monitoring layer is composed of a current transformer, a voltage transformer, a power meter, and the like
  • the monitoring layer is connected to the control layer, and the lower layer controller communicates with the MGCC through the communication layer.
  • the MGCC is connected to the load controller, the power controller, and the energy storage controller through a communication bus; the load controller, the power controller, and the energy storage controller upload the electrical information of the load, the distributed power source, and the energy storage system to the MGCC through the communication bus.
  • the MGCC issues corresponding commands to the lower layer controller through the communication bus to control the operating status of the load, distributed power supply, and energy storage system.
  • step 2) According to the electrical quantity collected in step 1), the relationship between the planned power P Agr and the microgrid net load P Net is judged by the MGCC.
  • the MGCC issues a command to the battery management system (BMS) to adjust the output of the energy storage system.
  • BMS battery management system
  • the MGCC issues a command to the battery management system (BMS) to stop the energy storage system output, and the energy storage system starts charging.
  • BMS battery management system
  • the charging and discharging time of the energy storage system is positively correlated with the value of ⁇ t
  • the charging and discharging frequency of the energy storage system is negatively correlated with the value of ⁇ t
  • the fluctuation rate of the distributed power supply output and the value of ⁇ t Negative correlation The value of ⁇ t affects the charge and discharge time, charge and discharge frequency of the energy storage system, and its value should be considered according to the fluctuation rate of the distributed power output.
  • the value of ⁇ t can be selected according to the following table.
  • a method for smooth control of tie line power during grid-connected operation of a micro grid includes the following steps:
  • the microgrid central controller collects the electrical quantities of the microgrid and the tie line, and obtains the total active power P DG , the local load active power P Load , and the net load power P Net of the microgrid;
  • the microgrid central controller communicates with the battery management system (BMS) to obtain the total active power P B of the energy storage system;
  • the original curve and the optimization curve are taken separately.
  • the method of taking the point is: starting from 0 o'clock, taking a point every 15 min, and taking 96 points of data respectively.
  • the discrete variance and standard deviation are evaluated for each set of discrete data. The results are shown in the following table:
  • the variance and standard deviation of the optimized daily load curve are smaller than the original daily load curve. It can be seen that the degree of dispersion and fluctuation of the optimized daily load curve is smaller than the original daily load curve.
  • a control method for the smooth control method of the power of the tie line power when the micro grid is connected to the grid is to compensate the tie line power P Grid from the net load P Net of the micro grid system before the energy storage to the preset planned power P Agr .
  • the microgrid in the step 1) includes photovoltaic (PV), wind turbine (Wind Turbine Generation, WG), and energy storage device (SB), as shown in FIG. 1 , which can realize wind and solar complementation and improve Economical, environmentally friendly and reliable power supply.
  • the inverter is used as the interface between distributed power supply and energy storage system, which effectively improves the flexibility and dynamic performance of the microgrid. It involves multiple operating modes, including grid-connected operation mode. , island operation mode, grid-connected island mode, island-to-network mode.
  • the microgrid central controller can perform multi-channel analog quantity and switch quantity acquisition, and communicate with an energy management system (EMS) and a battery management system (BMS), and can perform remote operation of the switch.
  • EMS energy management system
  • BMS battery management system
  • Built-in expert system program to receive, process and forward data in real time, as shown in Figure 2.
  • the peak value of the electric power is about 30 min
  • the volatility is less than 10%
  • the value of P Agr is the average value of 30 min of P Net .
  • the state of charge and discharge and the output of the energy storage system are calculated by the microgrid central controller (MGCC), and are issued by the battery management system (BMS) after being delivered to the battery management system (BMS).
  • the device can be controlled.
  • the invention uses the average value of the microgrid net load power P Net for a certain period of time and the planned value given by the energy management system (EMS) to effectively stabilize the intermittent power supply of the micro grid by controlling the output of the energy storage device. Sex and volatility improve the reliability of the microgrid and reduce the impact of the microgrid on the grid.
  • the planned power P Agr is greater than the net load power of the micro grid, and the energy storage device is discharged; during the power low period, the planned power P Agr is less than the net load power of the micro grid, and the energy storage device is charged. It is the role of cutting the peaks and filling the valley. Complete grid-connected smooth control of the microgrid system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种微电网并网联络线功率的控制***及其方法,方法步骤包括:微电网中央控制器对微电网及联络线各电气量采集;判断协议功率P Agr与微电网净负荷P Net的关系;协议功率P Agr由能量管理***给出预测值,若能量管理***未给定取值,则协议功率P Agr取值为微电网净负荷功率P Net的Δt时间内的平均值,当P Agr>P Net,则由微电网中央控制器下发命令至电池管理***,调节储能单元出力,储能单元出力值为P B=P Agr-P Net;当P Agr≤P Net,则由微电网中央控制器下发命令至电池管理***停止储能单元出力,储能单元开始充电。该方法响应快,方案简单,稳定性好。

Description

一种微电网并网联络线功率的控制***及其方法 技术领域
本发明涉及微电网技术领域,特别是一种微电网并网联络线功率的控制***及其方法。
背景技术
近些年来,随着经济的快速发展,能源的需求急剧增加,而分布式发电技术以其能源利用率高、污染小等特点受到了广泛关注,微电网作为其技术支持也受到了同样关注。微电网***将分布式电源、负荷、储能装置以及控制***结合在一起,形成一个小型的电力***。微电网和大电网可以互为支撑,同时微电网的灵活性使其既能并网运行又可以孤岛运行,并网运行可在很大程度上保证微电网安全运行,但其与配电网的联络线功率通常有一定约束限制。
微电网中,风电和太阳能光伏等分布式电源的输出功率具有间歇性和随机性的特点,负荷变化往往也体现出一定的波动性,这给微电网的稳定运行带来了较大挑战。微电网在并网运行时,负荷的峰谷差特性以及分布式电源的波动性常常是并存的。所以电网大规模接入分布式电源后,较大的功率波动将对区域配电网产生严重的冲击,甚至造成区域配电网的震荡。如不能有效地解决上述微电网并网后带来的一系列问题,将阻碍微电网的快速发展和高效利用。现有技术中也有相关的一些对于微电网并网的相关方案,但方案复杂,稳定性不足。
中国专利申请,申请号201610246209.5,公开日2016年7月27日,公开了一种并网型微电网联络线功率平滑的方法,采用双层优化调度;所述双层优化调度包括基于预测数据进行优化调度的上层优化,以及根据采集到的实时数据进行实时控制的下层优化。此发明应用双层控制的优化调度方式,能够实现并网型微电网联络线功率的控制,控制联络线功率的波动不超过指定的范围,防止联络线功率因光伏发电的不稳定性出现较大的波动,减小微电网接入大电网后对大电网稳定性的影响。通过减小联络线的波动,可以提高大电网接入光伏的容量,提高清洁能源的利用率。通过对储能电池电量的控制,可以防止电池过充或者过放,能够延长储能电池的使用寿命。但此方案响应速度变慢,达到的波动到达一定值才会启动,在高标准电网中,影响大。
中国专利申请,申请号201310234708.9,公开日2013年9月25日,公开了一种新能源并网联络线功率的平滑控制方法及装置,在电网出现波动时对波动频段进行判断,利用储能电池与燃机之间的协调配合,对新能源输出功率中不同频段的波动成分进行补偿,充分利用了已有新能源形式,避免投入更多设备,提高能源的利用率,在满足用户供电需求同时减少大电网的再建设;包含光储***的冷/热/电联供***结构简单,易实现;并且运行模式多样, 能对电能质量起到综合治理效果,尤其对于偏远地区的电能质量改善更为明显。但此方案中,储能***采用基本滤波控制方法,未考虑电池的荷电状态,这样一方面会影响电池的使用寿命,另一方面会导致注入电网的功率出现剧烈波动,影响电网稳定性。
发明内容
针对现有技术中存在的问题,本发明提供了一种具有响应快,方案简单,稳定性好的效果微电网并网联络线功率的控制***及其方法。
本发明的目的通过以下技术方案实现。
一种微电网并网联络线功率的控制***,包括分布式电源、负荷和储能单元,所述分布式电源、负荷和储能单元分别与控制单元连接,所述分布式电源、负荷和储能单元通过公共连接点与外部电网连接,所述分布式电源和储能单元的接口为逆变器,所述公共连接点和逆变器通过控制单元控制开合,所述储能单元连接有电池管理单元。
进一步的,所述负荷控制器、电源控制器、储能控制器通过通信总线上传负荷、分布式电源、储能单元的电气信息给微电网中央控制器;所述微电网中央控制器通过通信总线向下层控制器下达相应指令,控制负荷、分布式电源、储能单元的运行。
进一步的,所述分布式电源包括光伏电源和风力发电电源。
进一步的,所述公共连接点和逆变器通过遥控进行开合。
一种微电网***并网联络线功率的控制方法,步骤包括:
1)微电网中央控制器对微电网及联络线各电气量采集,之后执行步骤2);
2)根据步骤1)采集到的电气量,判断协议功率P Agr与微电网净负荷P Net的关系;协议功率P Agr由能量管理***给出预测值,若能量管理***未给定取值,则协议功率P Agr取值为微电网净负荷功率P Net的Δt时间内的平均值,即
Figure PCTCN2018086243-appb-000001
Δt=t-t 0
当P Agr>P Net,则由微电网中央控制器下发命令至电池管理***,调节储能单元出力,储能单元出力值为P B=P Agr-P Net
当P Agr≤P Net,则由微电网中央控制器下发命令至电池管理***停止储能单元出力,储能单元开始充电,之后返回步骤1)。
进一步的,所述步骤1)中,微电网中央控制器采集微电网及联络线各电气量,包括分布式电源发出的总有功功率P DG,本地负荷有功功率P Load,微电网的净负荷功率P Net
P Net=P Load-P DG
储能第一的总有功功率P B;微电网的联络线功率P Grid
P Grid=P Load-P DG-P B
进一步的,所述步骤2)中储能***的充放电时间与的取值呈正相关,储能***的充放电频率与的取值呈负相关,分布式电源出力的波动率与的取值呈负相关。
相比于现有技术,本发明的优点在于:
1)本发明涉及含风、光、储等分布式电源的微电网在并网运行时联络线功率的平滑控制方法,该控制方法根据采集到的微电网各分布式电源出力、本地负荷功率、联络线功率,实时计算并网运行时联络线功率的波动率,据此制定储能***的充放电策略,该控制方法能够平抑微电网并网运行时分布式电源的波动性,保证了微电网的可靠性、稳定性;
2)一种在并网运行情况下,引入联络线计划功率P Agr,由能量管理***(EMS)给出预测值,若能量管理***(EMS)未给定取值,则取值为微电网净负荷功率P Net在Δt时间内的平均值,根据联络线计划功率对于电网总体实现补偿,进行充电和放电,实现微电网与主网之间交换功率的平滑变动,平抑微电网内分布式电源的波动,同时实现削峰填谷的目的;
3)本方案分布式电源可以有多种、包括但不限于风力发电、光伏发电等,可以实现风光互补,提高供电的经济性、环保性和可靠性;
4)采用逆变器作为分布式电源和储能***的接口,有效提高了微电网的柔性和动态性能;涉及多种运行模式,模式运行多样,兼容性好;
5)在用电高峰期,计划功率P Agr大于微电网的净负荷功率,储能装置放电;在用电低谷期,计划功率P Agr小于微电网的净负荷功率,储能装置充电,充分起到了削峰填谷的作用。
附图说明
图1为本发明的微电网结构示意图;
图2为微电网中央控制器示意图;
图3为微电网控制策略流程图;
图4为用电负荷优化前后负荷曲线图。
具体实施方式
下面结合说明书附图和具体的实施例,对本发明作详细描述。
本发明涉及含风、光、储等分布式电源的微电网在并网运行时联络线功率的平滑控制方法,该控制方法根据采集到的微电网各分布式电源出力、本地负荷功率、联络线功率,实时计算并网运行时联络线功率的波动率,据此制定储能***的充放电策略。该控制方法能够平 抑微电网并网运行时分布式电源的波动性,保证了微电网的可靠性、稳定性。
针对现有微电网并网存在的问题,本发明的目的是提供一种在并网运行情况下,实现微电网与主网之间交换功率的平滑变动,平抑微电网内分布式电源的波动,同时实现削峰填谷的目的。如图1所示,微电网***包括若干风力发电机、太阳能电池板、蓄电池等分布式的电源、储能***,以及相关的负荷构成,通过PCC(公共连接点)控制开关,并连接至外部的电网中。
如图2所示,一种并网运行时的微电网***,包括控制层、监测层、通信层,控制层由微电网中央控制器(MGCC)和各下层控制器组成,下层控制器包括负荷控制器、电源控制器、储能控制器;监测层由电流互感器、电压互感器、功率计等监测装置组成;监测层与控制层连接,下层控制器与MGCC通过通信层通信。MGCC与负荷控制器、电源控制器、储能控制器通过通信总线进行连接;负荷控制器、电源控制器、储能控制器通过通信总线上传负荷、分布式电源、储能***的电气信息给MGCC;MGCC通过通信总线向下层控制器下达相应指令,以控制负荷、分布式电源、储能***的运行状态。
如图3所示,联络线功率平滑控制方法的主流程图,具体流程分析如下所示:
1)微电网及联络线各电气量采集。具体包括:
①联络线上的电流;
②微电网的母线电压;
③各电源线路的电流;
④各负荷线路的电流。
2)根据步骤1)采集到的电气量,由MGCC判断计划功率P Agr与微电网净负荷P Net的关系。
①如果P Agr>P Net,则由MGCC下发命令至电池管理***(BMS),调节储能***出力,储能***出力值为P B=P Agr-P Net
②如果P Agr≤P Net,则由MGCC下发命令至电池管理***(BMS)停止储能***出力,储能***开始充电。
3)返回步骤1)。
所述步骤2)中,储能***的充放电时间与Δt的取值呈正相关,储能***的充放电频率与Δt的取值呈负相关,分布式电源出力的波动率与Δt的取值呈负相关。Δt的取值影响到储能 ***的充放电时间、充放电频率,其值应根据分布式电源出力的波动率考虑。一般地,Δt的取值可根据下表选取。
表1 Δt取值表
分布式电源波动率 η<10% 10%≤η<30% 30%≤η
Δt/分钟 30 20 10
一种微电网并网运行时联络线功率的平滑控制方法包括以下步骤:
1)微电网中央控制器(MGCC)采集微电网及联络线各电气量,得到分布式电源发出的总有功功率P DG,本地负荷有功功率P Load,微电网的净负荷功率P Net
P Net=P Load-P DG                    (1)
2)微电网中央控制器(MGCC)与电池管理***(BMS)通信,得到储能***的总有功功率P B
3)从而,得到微电网***与外部电网的交换功率,即微电网的联络线功率P Grid
P Grid=P Load-P DG-P B                  (2)
4)由于分布式电源的间歇性和波动性,以及微电网本地负荷具有较大的峰谷差特性,导致微电网并网联络线存在较大功率波动。为了平抑波动,引入联络线计划功率P Agr,由能量管理***(EMS)给出预测值,若能量管理***(EMS)未给定取值,则取值为微电网净负荷功率P Net一定时间内的平均值;
以某处2013年7月1日用电负荷为例,如图4所示,图中实线为当日实际负荷曲线,虚线为使用策略后的优化负荷曲线。由图可知,在下午的用电高峰时,负荷波动性较大,引用本策略后,有效地降低了负荷高峰,并且平抑了电网波动。
为了进一步描述本策略对原日负荷曲线的优化,对原曲线和优化曲线分别取点,取点方法为:从0点开始,每隔15min取一点,共分别取96点数据。对每组离散数据进行离散方差及标准差求值,结果见下表:
曲线类型 方差 标准差
原曲线 97.44 9.87
优化曲线 96.15 9.55
表1
优化后的日负荷曲线的方差和标准差皆小于原日负荷曲线,由此可知,优化后的日负荷曲线的离散程度和波动程度较原日负荷曲线更小。
5)一种微电网并网运行时联络线功率的平滑控制方法的控制目标即为将联络线功率P Grid由引入储能前的微电网***的净负荷P Net补偿为预先设定的计划功率P Agr
P Agr=P B+P Net            (3)
6)由式(3)可知,当计划功率P Agr大于微电网***的净负荷P Net时,储能***调整出力为P B,当计划功率P Agr小于微电网***的净负荷P Net时,储能***进行充电。
所述步骤1)中的微电网包含光伏(Solar Photovoltaic,PV)、风力发电(Wind Turbine Generation,WG)、储能装置(Storage Battery,SB),如图1所示,可以实现风光互补,提高供电的经济性、环保性和可靠性,同时,采用逆变器作为分布式电源和储能***的接口,有效提高了微电网的柔性和动态性能;涉及多种运行模式,包括并网运行模式、孤岛运行模式、并网转孤岛模式、孤岛转并网模式等。
所述步骤1)中微电网中央控制器(MGCC)可进行多路模拟量、开关量的采集,并与能量管理***(EMS)、电池管理***(BMS)进行通信,能进行开关的遥控操作;内置专家***程序,对数据进行实时接收、处理、转发,如图2所示。
所述步骤4)中,考虑到用电负荷的特性,用电峰值持续时间约为30min,波动率小于10%,P Agr取值为P Net的30min平均值。
所述步骤6)中,储能***的充放电状态及出力情况由微电网中央控制器(MGCC)计算得出,下发到电池管理***(BMS)后,由电池管理***(BMS)对储能装置进行控制。
本发明以微电网净负荷功率P Net一定时间内的平均值及能量管理***(EMS)给定的计划值为依据,通过控制储能装置的出力,有效地平抑微电网的分布式电源的间歇性和波动性,提高了微电网的可靠性,减少了微电网对电网的冲击。同时,在用电高峰期,计划功率P Agr大于微电网的净负荷功率,储能装置放电;在用电低谷期,计划功率P Agr小于微电网的净负荷功率,储能装置充电,充分起到了削峰填谷的作用。完成对微电网***的并网平滑控制。

Claims (7)

  1. 一种微电网并网联络线功率的控制***,包括分布式电源、负荷和储能单元,其特征在于所述分布式电源、负荷和储能单元分别与控制单元连接,所述分布式电源、负荷和储能单元通过公共连接点与外部电网连接,所述分布式电源和储能单元的接口为逆变器,所述公共连接点和逆变器通过控制单元控制开合,所述储能单元连接有电池管理单元。
  2. 根据权利要求1所述的一种微电网并网联络线功率的控制***,其特征在于所述负荷控制器、电源控制器、储能控制器通过通信总线上传负荷、分布式电源、储能单元的电气信息给微电网中央控制器;所述微电网中央控制器通过通信总线向下层控制器下达相应指令,控制负荷、分布式电源、储能单元的运行。
  3. 根据权利要求1所述的一种微电网并网联络线功率的控制***,其特征在于所述分布式电源包括光伏电源和风力发电电源。
  4. 根据权利要求1所述的一种微电网并网联络线功率的控制***,其特征在于所述公共连接点和逆变器通过遥控进行开合。
  5. 一种微电网***并网联络线功率的控制方法,其特征在于步骤包括:
    1)微电网中央控制器对微电网及联络线各电气量采集,之后执行步骤2);
    2)根据步骤1)采集到的电气量,判断协议功率P Agr与微电网净负荷P Net的关系;协议功率P Agr由能量管理***给出预测值,若能量管理***未给定取值,则协议功率P Agr取值为微电网净负荷功率P Net的Δt时间内的平均值,即
    Figure PCTCN2018086243-appb-100001
    Δt=t-t 0
    当P Agr>P Net,则由微电网中央控制器下发命令至电池管理***,调节储能单元出力,储能单元出力值为P B=P Agr-P Net
    当P Agr≤P Net,则由微电网中央控制器下发命令至电池管理***停止储能单元出力,储能单元开始充电,之后返回步骤1)。
  6. 根据权利要求5一种微电网***并网联络线功率的控制方法,其特征在于所述步骤1)中,微电网中央控制器采集微电网及联络线各电气量,包括分布式电源发出的总有功功率P DG,本地负荷有功功率P Load,微电网的净负荷功率P Net
    P Net=P Load-P DG
    储能***的总有功功率P B;微电网的联络线功率P Grid
    P Grid=P Load-P DG-P B
  7. 根据权利要求5一种微电网***并网联络线功率的控制方法,其特征在于所述步骤2)中储能***的充放电时间与的取值呈正相关,储能***的充放电频率与的取值呈负相关,分布式电源出力的每分钟波动率与的取值呈负相关。
PCT/CN2018/086243 2018-02-01 2018-05-10 一种微电网并网联络线功率的控制***及其方法 WO2019148689A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810105872.2A CN109842147A (zh) 2018-02-01 2018-02-01 一种微电网并网联络线功率的控制***及其方法
CN201810105872.2 2018-02-01

Publications (1)

Publication Number Publication Date
WO2019148689A1 true WO2019148689A1 (zh) 2019-08-08

Family

ID=66882928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086243 WO2019148689A1 (zh) 2018-02-01 2018-05-10 一种微电网并网联络线功率的控制***及其方法

Country Status (3)

Country Link
CN (1) CN109842147A (zh)
AU (1) AU2018102183A4 (zh)
WO (1) WO2019148689A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110601229A (zh) * 2019-09-19 2019-12-20 国网河北省电力有限公司电力科学研究院 一种微电网分层分区的储能控制***及控制方法
CN112182945A (zh) * 2020-09-17 2021-01-05 国网辽宁省电力有限公司电力科学研究院 可用于各种微电网结构验证的试验微电网构建与控制方法
CN113078648A (zh) * 2021-03-31 2021-07-06 安徽天能清洁能源科技有限公司 一种基于微网控制器的***能量调度优化方法及***
CN113363962A (zh) * 2021-05-07 2021-09-07 国家电网有限公司 微电网联络线功率分层控制方法、***、终端及介质
CN113659619A (zh) * 2021-08-04 2021-11-16 江苏阿诗特能源科技有限公司 储能***及电流检测模块自识别方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110581544A (zh) * 2019-07-26 2019-12-17 西安华海众和电力科技有限公司 一种ai人工智能交直流微电网暂态、动态、稳定态控制方法
CN110601260B (zh) * 2019-09-11 2021-05-14 电子科技大学 一种限定联络线上功率波动的光-蓄***容量优化方法
CN110516982B (zh) * 2019-09-20 2022-05-31 中国电力工程顾问集团西北电力设计院有限公司 一种省间电网多能互补能力指标的计算方法
CN110601223B (zh) * 2019-09-30 2021-08-10 西安特锐德领充新能源科技有限公司 功率调节方法、装置、电子设备及存储介质
CN115395570A (zh) * 2022-09-20 2022-11-25 国网浙江省电力有限公司嘉兴供电公司 一种泛微网区域自治-协同控制***及控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103326391A (zh) * 2013-06-14 2013-09-25 深圳供电局有限公司 一种新能源并网联络线功率的平滑控制方法及装置
WO2015021603A1 (en) * 2013-08-13 2015-02-19 Accenture Global Services Limited System, method and apparatus for integrated multi-energy scheduling in a micro-grid and a tangible computer readable medium
CN105262135A (zh) * 2015-11-11 2016-01-20 广东电网有限责任公司电力科学研究院 含复合储能的风光柴储微电网***及并网时协调控制方法
CN105356505A (zh) * 2015-11-20 2016-02-24 沈阳工业大学 适用于微电网的多源分布式发电***及控制方法
CN105811457A (zh) * 2016-04-19 2016-07-27 天津天大求实电力新技术股份有限公司 一种并网型微电网联络线功率平滑的方法
CN206099356U (zh) * 2016-06-30 2017-04-12 深圳市科陆电子科技股份有限公司 一种智能电网功率控制装置及***
CN107017661A (zh) * 2017-04-25 2017-08-04 西安石油大学 一种模态依赖的微网多态运行切换控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102545250B (zh) * 2011-11-16 2014-05-07 河海大学 锂电池储能的风电场功率平滑控制方法及装置和工作方法
US10962941B2 (en) * 2014-10-29 2021-03-30 Solarcity Corporation Controlling a distributed generation management system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103326391A (zh) * 2013-06-14 2013-09-25 深圳供电局有限公司 一种新能源并网联络线功率的平滑控制方法及装置
WO2015021603A1 (en) * 2013-08-13 2015-02-19 Accenture Global Services Limited System, method and apparatus for integrated multi-energy scheduling in a micro-grid and a tangible computer readable medium
CN105262135A (zh) * 2015-11-11 2016-01-20 广东电网有限责任公司电力科学研究院 含复合储能的风光柴储微电网***及并网时协调控制方法
CN105356505A (zh) * 2015-11-20 2016-02-24 沈阳工业大学 适用于微电网的多源分布式发电***及控制方法
CN105811457A (zh) * 2016-04-19 2016-07-27 天津天大求实电力新技术股份有限公司 一种并网型微电网联络线功率平滑的方法
CN206099356U (zh) * 2016-06-30 2017-04-12 深圳市科陆电子科技股份有限公司 一种智能电网功率控制装置及***
CN107017661A (zh) * 2017-04-25 2017-08-04 西安石油大学 一种模态依赖的微网多态运行切换控制方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110601229A (zh) * 2019-09-19 2019-12-20 国网河北省电力有限公司电力科学研究院 一种微电网分层分区的储能控制***及控制方法
CN110601229B (zh) * 2019-09-19 2023-02-21 国网河北省电力有限公司电力科学研究院 一种微电网分层分区的储能控制***及控制方法
CN112182945A (zh) * 2020-09-17 2021-01-05 国网辽宁省电力有限公司电力科学研究院 可用于各种微电网结构验证的试验微电网构建与控制方法
CN113078648A (zh) * 2021-03-31 2021-07-06 安徽天能清洁能源科技有限公司 一种基于微网控制器的***能量调度优化方法及***
CN113078648B (zh) * 2021-03-31 2024-02-09 安徽尚特杰电力技术有限公司 一种基于微网控制器的***能量调度优化方法及***
CN113363962A (zh) * 2021-05-07 2021-09-07 国家电网有限公司 微电网联络线功率分层控制方法、***、终端及介质
CN113363962B (zh) * 2021-05-07 2023-03-07 国家电网有限公司 微电网联络线功率分层控制方法、***、终端及介质
CN113659619A (zh) * 2021-08-04 2021-11-16 江苏阿诗特能源科技有限公司 储能***及电流检测模块自识别方法

Also Published As

Publication number Publication date
AU2018102183A4 (en) 2020-10-08
CN109842147A (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
WO2019148689A1 (zh) 一种微电网并网联络线功率的控制***及其方法
CN109301849B (zh) 一种用户侧电池储能电站的能量管理组合控制策略
CN107508303B (zh) 一种面向微电网的模块化储能装置优化配置及控制方法
WO2018129829A1 (zh) 一种新型微网***以及基于该***的组网调度方法
CN102856930B (zh) 微网经济调度控制方法
CN108832646B (zh) 一种适用于可动态重构电池储能***的管理***及其方法
CN109103939B (zh) 一种降低光伏电站损耗的储能***智能控制装置及方法
CN104767224A (zh) 一种含多类储能的并网型风光储微电网的能量管理方法
Lin et al. Long-term stable operation control method of dual-battery energy storage system for smoothing wind power fluctuations
CN113765130A (zh) 一种微电网的运行控制方法
CN103178533A (zh) 温控负荷的变参与度频率控制方法及控制器
Sanjareh et al. Optimal scheduling of HVACs in islanded residential microgrids to reduce BESS size considering effect of discharge duration on voltage and capacity of battery cells
CN111555366B (zh) 一种基于多时间尺度的微网三层能量优化管理方法
CN111384719A (zh) 一种光伏并网时的分布式储能电站削峰填谷优化调度方法
CN114123280B (zh) 一种考虑***效率的电池储能电站能量管理方法
CN111030150A (zh) 一种微电网***负荷可靠供电的混合储能容量确定方法
Li et al. Coordinated control and energy management strategies for hundred megawatt-level battery energy storage stations based on multi-agent theory
CN111313444A (zh) 一种面向高密度光伏配网台区侧的储能***优化配置方法
CN112260324A (zh) 利用储能消弭新能源并网风险的调频方法
CN109936151B (zh) 一种由微电网***参与火电机组一次调频的控制方法
CN108321916B (zh) 一种具有能量协作功能的基站及能量协作方法
Li et al. Micro-grid resource allocation based on multi-objective optimization in cloud platform
CN110165692B (zh) 基于光伏-蓄电池-温控负荷的虚拟储能调峰***与方法
CN110676846B (zh) 电力调峰方法、调度中心及电力调峰***
CN113742933B (zh) 一种家庭能量管理优化方法、***及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904158

Country of ref document: EP

Kind code of ref document: A1