WO2019148661A1 - 一种液晶显示面板及其制作方法、液晶显示装置 - Google Patents

一种液晶显示面板及其制作方法、液晶显示装置 Download PDF

Info

Publication number
WO2019148661A1
WO2019148661A1 PCT/CN2018/083310 CN2018083310W WO2019148661A1 WO 2019148661 A1 WO2019148661 A1 WO 2019148661A1 CN 2018083310 W CN2018083310 W CN 2018083310W WO 2019148661 A1 WO2019148661 A1 WO 2019148661A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealant
liquid crystal
array substrate
substrate
color filter
Prior art date
Application number
PCT/CN2018/083310
Other languages
English (en)
French (fr)
Inventor
李迁
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US16/029,676 priority Critical patent/US10656471B2/en
Publication of WO2019148661A1 publication Critical patent/WO2019148661A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present application relates to the field of liquid crystal display technology, and in particular, to a liquid crystal display panel, a method for fabricating the same, and a liquid crystal display device.
  • the liquid crystal panel is composed of one pixel, and each pixel requires a TFT (Thin Film Transistor) switch to control its picture display, and the gate circuit line for controlling these switches is usually arranged outside the liquid crystal screen.
  • TFT Thin Film Transistor
  • GOA Gate Driver on
  • Array technology which effectively reduces the width of the bezel by placing the gate drive circuit on the array substrate.
  • the border glue is usually coated on CF (color The filter side reduces the effects of backlight leakage and TFT metal reflection. Therefore, in the frame glue process, the curing of the frame glue is usually performed on the side of the array substrate, and in this illumination mode, the shielding area of the gate circuit line is used. There will be a phenomenon that the frame glue is not illuminated, thereby reducing the hardenability of the frame glue.
  • the technical problem to be solved by the present application is to provide a liquid crystal display panel, a method for fabricating the same, and a liquid crystal display device, which can solve the problem that when the frame glue is cured, the light is blocked and the frame glue can not be completely irradiated, resulting in the frame glue.
  • the problem of incomplete curing is to provide a liquid crystal display panel, a method for fabricating the same, and a liquid crystal display device, which can solve the problem that when the frame glue is cured, the light is blocked and the frame glue can not be completely irradiated, resulting in the frame glue.
  • a liquid crystal display device including a liquid crystal display panel and a backlight
  • the liquid crystal display panel includes an array substrate, a color filter substrate, and a connection.
  • the second light is emitted under the excitation of the first light, and the second light is used to cure the sealant.
  • the photoluminescent material is at least partially disposed on the light path of the first light; wherein the light-emitting substance is a quantum dot film, and the light is The luminescent material has an excitation wavelength of 300-400 nm, and the photoluminescent substance has an emission wavelength of 350-500 nm.
  • a liquid crystal display panel including an array substrate, a color filter substrate, a sealant connecting the array substrate and the color filter substrate, and an array substrate and a liquid crystal between the color filter substrates; wherein the position of the corresponding sealant on the array substrate and/or the color filter substrate is provided with a photoluminescent material, and the photoluminescent material is used to emit the second light under the excitation of the first light, The second light is used to cure the sealant, and the photoluminescent substance is at least partially disposed on the light path of the first light.
  • another technical solution adopted by the present application is to provide a method for fabricating a liquid crystal display panel, the method comprising: providing an array substrate and a color film substrate; on the array substrate and/or the color film substrate Forming a photoluminescent material corresponding to the position of the sealant region; forming a sealant on the array substrate and/or the color filter substrate corresponding to the sealant region; forming the liquid crystal display panel on the array substrate and the color filter substrate; using the first light The framed area is illuminated to cause the photoluminescent substance to excite a second light to cure the sealant.
  • the liquid crystal display panel provided by the present application includes an array substrate, a color filter substrate, a sealant connecting the array substrate and the color filter substrate, and between the array substrate and the color filter substrate.
  • the liquid crystal wherein the position of the corresponding sealant on the array substrate and/or the color filter substrate is provided with a photoluminescent material, wherein the photoluminescent material is used to emit a second light under the excitation of the first light, and the second light is used to make
  • the sealant is cured, and the photoluminescent substance is at least partially disposed on the light path of the first light.
  • the circuit line blocks the light so that the light cannot completely illuminate the sealant, and the sealant is not completely cured, and the array substrate and the color filter substrate are not bonded.
  • a solid problem Through the excitation and scattering of the photoluminescent material, the light can be irradiated to the masked portion of the masking material, so that the sealant can be completely cured, and the connection between the array substrate and the color filter substrate is ensured.
  • FIG. 1 is a schematic structural view of a liquid crystal display panel in the prior art
  • FIG. 2 is a schematic structural view of an embodiment of a liquid crystal display panel provided by the present application.
  • FIG. 3 is a schematic structural view of another embodiment of a liquid crystal display panel provided by the present application.
  • FIG. 4 is a schematic structural view of still another embodiment of a liquid crystal display panel provided by the present application.
  • FIG. 5 is a schematic structural diagram of still another embodiment of a liquid crystal display panel provided by the present application.
  • FIG. 6 is a schematic flow chart of an embodiment of a method for fabricating a liquid crystal display panel provided by the present application
  • FIG. 7 is a schematic structural view of an embodiment of a method for fabricating a liquid crystal display panel provided by the present application.
  • FIG. 8 is another schematic structural diagram of an embodiment of a method for fabricating a liquid crystal display panel provided by the present application.
  • FIG. 9 is a schematic structural view of an embodiment of a liquid crystal display device provided by the present application.
  • references to "an embodiment” herein mean that a particular feature, structure, or characteristic described in connection with the embodiments can be included in at least one embodiment of the present application.
  • the appearances of the phrases in various places in the specification are not necessarily referring to the same embodiments, and are not exclusive or alternative embodiments that are mutually exclusive. Those skilled in the art will understand and implicitly understand that the embodiments described herein can be combined with other embodiments.
  • FIG. 1 is a schematic structural diagram of a liquid crystal display panel of the prior art.
  • the liquid crystal display panel includes an array substrate 10 , a color filter substrate 20 , a sealant 30 connecting the array substrate 10 and the color filter substrate 20 , and an array substrate 10 .
  • the liquid crystal 40 is between the color filter substrate 20.
  • the general manufacturing process is: firstly fabricating the array substrate 10 and the color filter substrate 20, and then applying the sealant 30 on a specific area of the array substrate 10 and/or the color filter substrate 20; then, the array substrate 10 and the color filter substrate 20 are For the cassette, the array substrate 10 and the color filter substrate 20 are bonded by the sealant 30; then, the liquid crystal 40 is poured between the array substrate 10 and the color filter substrate 20 through a through hole (not shown) on the sealant 30; The sealant 30 is cured.
  • the sealant 30 is generally irradiated with ultraviolet light (UV) to cure the sealant 30. Since the sealant 30 is usually applied to the black matrix 21 on the side of the color filter substrate 20 in the display panel, the influence of backlight leakage and TFT metal reflection can be reduced. Therefore, UV light is generally incident from the side of the array substrate 10.
  • UV light ultraviolet light
  • the current GOA type panel is provided with the circuit line 11 at the position corresponding to the sealant 30 of the array substrate 10, and realizes a gate driving function, for example, may be a gate line.
  • the gate line generally does not use a transparent conductive line, but uses a metal such as aluminum, titanium, nickel or an alloy thereof, which does not have translucency. Therefore, when the UV light is irradiated, the circuit line 11 blocks part of the UV light, and the sealant 30 is not completely irradiated by the UV light, resulting in incomplete curing of the sealant 30, and the adhesion between the array substrate 10 and the color filter substrate 20. Not strong.
  • FIG. 2 is a schematic structural diagram of an embodiment of a liquid crystal display panel according to the present application.
  • the liquid crystal display panel includes an array substrate 10, a color filter substrate 20, a sealant 30 connecting the array substrate 10 and the color filter substrate 20, and The liquid crystal 40 between the array substrate 10 and the color filter substrate 20.
  • the position of the corresponding sealant 30 on the array substrate 10 and/or the color filter substrate 20 is provided with a photoluminescent substance 22 for emitting a second light under the excitation of the first light, and the second light is used for the second light.
  • the photoluminescent substance 22 is at least partially disposed on the light path of the first light.
  • the photoluminescent substance 22 may be disposed on the black matrix 21 on the color filter substrate 20, and the photoluminescent substance 22 at least partially corresponds to the gap between the circuit lines 11 on the array substrate 10.
  • the photoluminescent substance 22 may be a film covering the surface of the black matrix 21, the width of which is smaller than the width of the sealant 30, and at least partially corresponding to the gap between the circuit lines 11.
  • the width of the photoluminescent substance 22 is equal to the width of the gap between the circuit lines 11, and in another case, the width of the photoluminescent substance 22 may also be larger or smaller than the gap between the circuit lines 11. width.
  • the photoluminescent substance 22 is a quantum dot film.
  • the quantum dot solution may be spot-coated on the surface of the black matrix 21 by means of inkjet or the like to form a quantum dot film.
  • the photoluminescent substance 22 is a film formed using a quantum material such as ZnO (zinc oxide), CdSe (cadmium selenide), or CdS (cadmium sulfide).
  • the photoluminescent substance 22 may also be a fluorescent material.
  • the material of the quantum dot material or the fluorescent material is selected to have an excitation wavelength of 300-400 nm and an emission wavelength of 350-500 nm. That is, the first light has a wavelength of 300-400 nm, and the second light has a wavelength of 350-500 nm.
  • the photoluminescent substance 22 when the first light is incident on the photoluminescent substance 22 through the gap between the circuit lines 11, the photoluminescent substance 22 emits a second light when excited by the first light. Wherein, the emission direction of the second light is scattered, and other regions on the sealant 30 that are not irradiated with the first light may be irradiated to be cured.
  • the photoluminescent substance 22 in this embodiment may also be a reflective substance such as a diffuse reflection film.
  • the wavelength of the incident first light can be determined according to the wavelength of light required for curing of the sealant 30.
  • FIG. 3 is a schematic structural diagram of another embodiment of a liquid crystal display panel provided by the present application.
  • the liquid crystal display panel includes an array substrate 10, a color filter substrate 20, a sealant 30 connecting the array substrate 10 and the color filter substrate 20. And a liquid crystal 40 between the array substrate 10 and the color filter substrate 20.
  • the position of the corresponding sealant 30 on the array substrate 10 and/or the color filter substrate 20 is provided with a photoluminescent substance 22 for emitting a second light under the excitation of the first light, and the second light is used for the second light.
  • the photoluminescent substance 22 is at least partially disposed on the light path of the first light.
  • the photoluminescent substance 22 may be disposed at a space between the circuit lines 11 on the array substrate 10.
  • the width of the photoluminescent substance 22 may be equal to the gap between the circuit lines 11 or may be smaller than the gap between the circuit lines 11.
  • the photoluminescent substance 22 when the first light is incident on the photoluminescent substance 22, the photoluminescent substance 22 emits a second light when excited by the first light. Wherein, the emission direction of the second light is scattered, and the sealant 30 can be irradiated to be cured.
  • FIG. 4 is a schematic structural diagram of another embodiment of a liquid crystal display panel provided by the present application.
  • the liquid crystal display panel includes an array substrate 10, a color filter substrate 20, a sealant 30 connecting the array substrate 10 and the color filter substrate 20. And a liquid crystal 40 between the array substrate 10 and the color filter substrate 20.
  • circuit lines 11 disposed on the array substrate 10 are a plurality of arrays. Therefore, in the embodiment, the photoluminescent substance 22 can be disposed between every two adjacent circuit lines 11 to The curing of the sealant 30 is ensured.
  • FIG. 5 is a schematic structural diagram of a liquid crystal display panel according to another embodiment of the present disclosure.
  • the liquid crystal display panel includes an array substrate 10, a color filter substrate 20, a sealant 30 connecting the array substrate 10 and the color filter substrate 20. And a liquid crystal 40 between the array substrate 10 and the color filter substrate 20.
  • the position of the corresponding sealant 30 on the array substrate 10 and the color filter substrate 20 is provided with a photoluminescent substance 22 for emitting a second light under the excitation of the first light, and the second light is used to make The sealant 30 is cured and the photoluminescent substance 22 is at least partially disposed on the light path of the first light.
  • the photoluminescent substances 22 are disposed at the spaces between the circuit lines 11 on the array substrate 10.
  • the photoluminescent substances 22 may not be disposed corresponding to the spaces between the circuit lines 11.
  • the photoluminescent substance 22 when the first light is irradiated onto the photoluminescent substance 22 on the side of the array substrate 10, the photoluminescent substance 22 emits a second light under the excitation of the first light. Wherein, the emission direction of the second light is scattered, and then irradiated onto the photoluminescent substance 22 on the side of the color filter substrate 20, and then subjected to the second excitation and scattering, and then emits a third light, so that the second light and The third light can illuminate the sealant 30 to cure it.
  • the liquid crystal display panel includes an array substrate, a color filter substrate, a sealant connecting the array substrate and the color filter substrate, and a liquid crystal between the array substrate and the color filter substrate; wherein, the array substrate and/or Or a photoluminescent material is disposed on the color filter substrate at a position corresponding to the sealant, and the photoluminescent material is used to emit a second light under excitation of the first light, and the second light is used to cure the sealant, and the photoluminescent substance is at least Partially disposed on the light path of the first light.
  • the circuit line blocks the light so that the light cannot completely illuminate the sealant, and the sealant is not completely cured, and the array substrate and the color filter substrate are not bonded.
  • a solid problem Through the excitation and scattering of the photoluminescent material, the light can be irradiated to the masked portion of the masking material, so that the sealant can be completely cured, and the connection between the array substrate and the color filter substrate is ensured.
  • FIG. 6 is a schematic flow chart of an embodiment of a method for fabricating a liquid crystal display panel provided by the present application, where the method includes:
  • Step 61 Providing an array substrate and a color film substrate.
  • Step 62 Form a photoluminescent substance on the array substrate and/or the color film substrate at a position corresponding to the sealant region.
  • the photoluminescent material is a quantum dot film.
  • the quantum dot material may be specifically coated on the array substrate and/or the color filter substrate at a position corresponding to the sealant region.
  • the quantum dot material may be ZnO.
  • Step 63 Form a sealant on the array substrate and/or the color film substrate at a position corresponding to the sealant region.
  • the formation of the sealant can be carried out by means of spot coating, inkjet or the like.
  • Step 64 Form the liquid crystal display panel by pairing the array substrate and the color filter substrate.
  • a through hole may be reserved on the sealant, and the liquid crystal is poured into the interior after the pair of boxes.
  • Step 65 The first light is used to illuminate the sealant region, so that the photoluminescent material is excited to generate a second light to cure the sealant.
  • the light here is generally ultraviolet light.
  • the illumination wavelength is 300-400 nm
  • the photoluminescent material is excited to generate a second light having a wavelength of 350-500 nm.
  • a color film substrate is taken as an example.
  • a black matrix 21 is formed on the color filter substrate 20, and a photoluminescent material 22 is formed on the black matrix 21 at a position corresponding to the sealant region.
  • a sealant 30 covering the photoluminescent substance 21 is formed on the film substrate 20 at a position corresponding to the sealant region. Then, the array substrate 10 and the color filter substrate 20 are paired to form a liquid crystal display panel as shown in FIG.
  • the photoluminescent substance 22 is disposed on the gap between the circuit lines 11 corresponding to the sealant region on the array substrate 10. Then, as shown in FIG. 3, the array substrate 10 and the color filter substrate 20 are paired to form a liquid crystal display panel.
  • the method for fabricating the array substrate and the color filter substrate may be a manufacturing method in the prior art.
  • the array substrate may include a substrate substrate, a buffer layer, a gate electrode, a gate insulating layer, a TFT functional layer, a dielectric layer, a flat layer, and a common electrode layer;
  • the substrate may include a substrate substrate, a color filter, and a pixel electrode which are stacked in a stack.
  • COA Color Filter On
  • Array Panel
  • FIG. 9 is a schematic structural diagram of an embodiment of a liquid crystal display device provided by the present application.
  • the liquid crystal display device includes a liquid crystal display panel 91 and a backlight 92 .
  • the liquid crystal display panel 91 may be a display panel provided in any of the above embodiments of FIG. 2 to FIG. 5, or may be a display panel manufactured according to the manufacturing method of FIG. 6, and the structure and the manufacturing process are similar. Let me repeat.
  • the liquid crystal display device includes a liquid crystal display panel and a backlight, wherein the liquid crystal display panel comprises an array substrate, a color filter substrate, a sealant connecting the array substrate and the color filter substrate, and an array substrate. a liquid crystal between the substrate and the color filter substrate; wherein the position of the corresponding sealant on the array substrate and/or the color filter substrate is provided with a photoluminescent material, and the photoluminescent material is used to emit the second light under the excitation of the first light. The second light is used to cure the sealant, and the photoluminescent material is at least partially disposed on the light path of the first light.
  • the circuit line blocks the light so that the light cannot completely illuminate the sealant, and the sealant is not completely cured, and the array substrate and the color filter substrate are not bonded.
  • a solid problem Through the excitation and scattering of the photoluminescent material, the light can be irradiated to the masked portion of the masking material, so that the sealant can be completely cured, and the connection between the array substrate and the color filter substrate is ensured.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示面板及其制作方法、液晶显示装置,该液晶显示面板包括阵列基板(10)、彩膜基板(20)、连接阵列基板(10)和彩膜基板(20)的框胶(30)、以及阵列基板(10)和彩膜基板(20)之间的液晶(40);其中,阵列基板(10)和/或彩膜基板(20)上对应框胶(30)的位置设置有光致发光物质(22),光致发光物质(22)用于在第一光线的激发下发出第二光线,第二光线用于使框胶(30)固化,光致发光物质(22)至少部分设置在第一光线的光通路上。通过上述方式,能够解决现有的显示面板在框胶(30)固化时,光线被遮挡无法对框胶(30)进行完全照射,导致框胶(30)固化不完全的问题。

Description

一种液晶显示面板及其制作方法、液晶显示装置
【技术领域】
本申请涉及液晶显示技术领域,特别是涉及一种液晶显示面板及其制作方法、液晶显示装置。
【背景技术】
液晶面板是由一个个像素组成,而每个像素都需要TFT(薄膜晶体管)开关来控制其画面显示,控制这些开关的栅极电路线通常会排布在液晶屏的外部。
而随着液晶显示屏边框越来越窄的需求,通常采用GOA(Gate Driver on Array)技术,即通过将栅极驱动电路放在阵列基板上来有效的降低边框的宽度。而在显示面板中通常将边框胶涂布在CF(color filter)侧来降低背光漏光和TFT金属反射的影响,因此在边框胶制程中通常采用的是在阵列基板侧进行边框胶的固化照光,而在这种照光方式下,栅极电路线的遮挡区会有边框胶照光不达的现象发生,从而降低边框胶硬化性。
【发明内容】
本申请主要解决的技术问题是提供一种液晶显示面板及其制作方法、液晶显示装置,能够解决现有的显示面板在框胶固化时,光线被遮挡无法对框胶进行完全照射,导致框胶固化不完全的问题。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种液晶显示装置,该液晶显示装置包括液晶显示面板和背光源,其中,该液晶显示面板包括阵列基板、彩膜基板、连接阵列基板和彩膜基板的框胶、以及阵列基板和彩膜基板之间的液晶;其中,阵列基板和/或彩膜基板上对应框胶的位置设置有光致发光物质,光致发光物质用于在第一光线的激发下发出第二光线,第二光线用于使框胶固化,光致发光物质至少部分设置在第一光线的光通路上;其中,发光物质为量子点薄膜,光致发光物质的激发波长为300-400nm,光致发光物质的发光波长为350-500nm。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种液晶显示面板,该液晶显示面板包括阵列基板、彩膜基板、连接阵列基板和彩膜基板的框胶、以及阵列基板和彩膜基板之间的液晶;其中,阵列基板和/或彩膜基板上对应框胶的位置设置有光致发光物质,光致发光物质用于在第一光线的激发下发出第二光线,第二光线用于使框胶固化,光致发光物质至少部分设置在第一光线的光通路上。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种液晶显示面板的制作方法,该方法包括:提供一阵列基板和一彩膜基板;在阵列基板和/或彩膜基板上对应框胶区域的位置形成光致发光物质;在阵列基板和/或彩膜基板上对应框胶区域的位置形成框胶;将阵列基板和彩膜基板对盒形成液晶显示面板;采用第一光线对框胶区域进行光照,以使光致发光物质激发产生第二光线,以对框胶固化。
本申请的有益效果是:区别于现有技术的情况,本申请提供的液晶显示面板包括阵列基板、彩膜基板、连接阵列基板和彩膜基板的框胶、以及阵列基板和彩膜基板之间的液晶;其中,阵列基板和/或彩膜基板上对应框胶的位置设置有光致发光物质,光致发光物质用于在第一光线的激发下发出第二光线,第二光线用于使框胶固化,光致发光物质至少部分设置在第一光线的光通路上。通过上述方式,避免了在阵列基板上的框胶区域设置有电路线的情况下,电路线遮挡光线使光线无法完全照射框胶,使框胶固化不完全、阵列基板和彩膜基板粘合不牢固的问题。通过光致发光物质的激发和散射,能够使光线对被遮挡部分的框胶进行照射,以使框胶能够完全固化,保证了阵列基板和彩膜基板之间的连接。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是现有技术中液晶显示面板的结构示意图;
图2是本申请提供的液晶显示面板一实施例的结构示意图;
图3是本申请提供的液晶显示面板另一实施例的结构示意图;
图4是本申请提供的液晶显示面板又一实施例的结构示意图;
图5是本申请提供的液晶显示面板再一实施例的结构示意图;
图6是本申请提供的液晶显示面板的制作方法一实施例的流程示意图;
图7是本申请提供的液晶显示面板的制作方法一实施例的一结构示意图;
图8是本申请提供的液晶显示面板的制作方法一实施例的另一结构示意图;
图9是本申请提供的液晶显示装置一实施例的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。可以理解的是,此处所描述的具体实施例仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
参阅图1,图1是现有技术中液晶显示面板的结构示意图,该液晶显示面板包括阵列基板10、彩膜基板20、连接阵列基板10和彩膜基板20的框胶30、以及阵列基板10和彩膜基板20之间的液晶40。
其一般的制作流程是:先分别制作阵列基板10和彩膜基板20,然后在阵列基板10和/或彩膜基板20的特定区域涂覆框胶30;然后将阵列基板10和彩膜基板20对盒,使阵列基板10和彩膜基板20通过框胶30粘合;然后通过框胶30上的通孔(图未示)向阵列基板10和彩膜基板20之间灌注液晶40;最后,对框胶30进行固化。
特别的,一般采用紫外光(UV)对框胶30照射以对框胶30进行固化。因为在显示面板中通常将框胶30涂布在彩膜基板20一侧的黑矩阵21上,从而能够来降低背光漏光和TFT金属反射的影响。因此,UV光一般会从阵列基板10一侧入射。
可以理解的,为了实现显示面板的窄边框,现在的GOA型面板在阵列基板10对应框胶30的位置设置有电路线11,实现栅极驱动功能,例如,可以是栅极线。为了节省成本,栅极线一般不会采用透明的导电线,而是采用铝、钛、镍等金属或其合金,其不具有透光性。因此,在进行UV光照射时,电路线11会遮挡部分UV光,框胶30并不能完全被UV光照射到,导致框胶30固化不完全,阵列基板10和彩膜基板20之间的粘合不牢固。
参阅图2,图2是本申请提供的液晶显示面板一实施例的结构示意图,该液晶显示面板包括阵列基板10、彩膜基板20、连接阵列基板10和彩膜基板20的框胶30、以及阵列基板10和彩膜基板20之间的液晶40。
其中,阵列基板10和/或彩膜基板20上对应框胶30的位置设置有光致发光物质22,光致发光物质22用于在第一光线的激发下发出第二光线,第二光线用于使框胶30固化,光致发光物质22至少部分设置在第一光线的光通路上。
可选的,在本实施例中,光致发光物质22可以设置在彩膜基板20上的黑矩阵21上面,光致发光物质22至少部分对应阵列基板10上电路线11之间的空隙。
具体地,光致发光物质22可以是一个薄膜,其覆盖在黑矩阵21的表面,其宽度小于框胶30的宽度,并且至少部分与电路线11之间的空隙对应。
在一种情况下,光致发光物质22的宽度与电路线11之间的空隙宽度相等,在另一种情况下,光致发光物质22的宽度也可以大于或小于电路线11之间的空隙宽度。
可选的,在本实施中,该光致发光物质22为量子点薄膜。具体地,可以通过喷墨等点胶的方式将量子点溶液点涂在黑矩阵21的表面,以形成量子点薄膜。例如,该光致发光物质22是采用ZnO(氧化锌)、CdSe(硒化镉)、CdS(硫化镉)等量子材料形成的薄膜。
可选的,在另一实施例中,该光致发光物质22还可以为荧光材料。
在上述两种实施例中,量子点材料或荧光材料的材料选取,可是为激发波长为300-400nm,发光波长为350-500nm。即第一光线的波长为300-400nm,第二光线的波长为350-500nm。
具体地,当第一光线通过电路线11之间的空隙照射到光致发光物质22上时,光致发光物质22在第一光线的激发下,会发出第二光线。其中,第二光线的发射方向是散射的,可以对框胶30上其他未被第一光线照射的区域进行照射,以使其进行固化。
另外,可以理解的,本实施例中的光致发光物质22也可以是反射性的物质,例如漫反射膜。其中,由于漫反射膜吸收和反射的光的波长是相等的,因此,采用漫反射膜时,入射的第一光线的波长的选取可以根据框胶30的固化所需的光波长来确定。
参阅图3,图3是本申请提供的液晶显示面板另一实施例的结构示意图,该液晶显示面板包括阵列基板10、彩膜基板20、连接阵列基板10和彩膜基板20的框胶30、以及阵列基板10和彩膜基板20之间的液晶40。
其中,阵列基板10和/或彩膜基板20上对应框胶30的位置设置有光致发光物质22,光致发光物质22用于在第一光线的激发下发出第二光线,第二光线用于使框胶30固化,光致发光物质22至少部分设置在第一光线的光通路上。
可选的,在本实施例中,光致发光物质22可以设置在阵列基板10上的电路线11之间的空隙处。
其中,光致发光物质22的宽度可以与电路线11之间的空隙相等,也可以小于电路线11之间的空隙。
具体地,当第一光线照射到光致发光物质22上时,光致发光物质22在第一光线的激发下,会发出第二光线。其中,第二光线的发射方向是散射的,可以对框胶30进行照射,以使其进行固化。
参阅图4,图4是本申请提供的液晶显示面板又一实施例的结构示意图,该液晶显示面板包括阵列基板10、彩膜基板20、连接阵列基板10和彩膜基板20的框胶30、以及阵列基板10和彩膜基板20之间的液晶40。
可以理解的,阵列基板10上设置的电路线11是阵列设置的多条,因此,在本实施例中,可以在每两条相邻的电路线11之间均设置光致发光物质22,以保证框胶30的固化。
参阅图5,图5是本申请提供的液晶显示面板再一实施例的结构示意图,该液晶显示面板包括阵列基板10、彩膜基板20、连接阵列基板10和彩膜基板20的框胶30、以及阵列基板10和彩膜基板20之间的液晶40。
其中,阵列基板10和彩膜基板20上对应框胶30的位置设置有光致发光物质22,光致发光物质22用于在第一光线的激发下发出第二光线,第二光线用于使框胶30固化,光致发光物质22至少部分设置在第一光线的光通路上。
其中,在阵列基板10上,光致发光物质22设置在阵列基板10上的电路线11之间的空隙处。在彩膜基板20上,光致发光物质22可以不对应电路线11之间的空隙设置。
具体地,当第一光线照射到阵列基板10一侧的光致发光物质22上时,光致发光物质22在第一光线的激发下,会发出第二光线。其中,第二光线的发射方向是散射的,然后照射到彩膜基板20一侧的光致发光物质22上,再经过第二次激发和散射,再发出第三光线,这样,第二光线和第三光线可以对框胶30进行照射,以使其进行固化。
区别于现有技术,本申请提供的液晶显示面板包括阵列基板、彩膜基板、连接阵列基板和彩膜基板的框胶、以及阵列基板和彩膜基板之间的液晶;其中,阵列基板和/或彩膜基板上对应框胶的位置设置有光致发光物质,光致发光物质用于在第一光线的激发下发出第二光线,第二光线用于使框胶固化,光致发光物质至少部分设置在第一光线的光通路上。通过上述方式,避免了在阵列基板上的框胶区域设置有电路线的情况下,电路线遮挡光线使光线无法完全照射框胶,使框胶固化不完全、阵列基板和彩膜基板粘合不牢固的问题。通过光致发光物质的激发和散射,能够使光线对被遮挡部分的框胶进行照射,以使框胶能够完全固化,保证了阵列基板和彩膜基板之间的连接。
参阅图6,图6是本申请提供的液晶显示面板的制作方法一实施例的流程示意图,该方法包括:
步骤61:提供一阵列基板和一彩膜基板。
步骤62:在阵列基板和/或彩膜基板上对应框胶区域的位置形成光致发光物质。
以光致发光物质为量子点薄膜为例,步骤62可以具体为,在阵列基板和/或彩膜基板上对应框胶区域的位置点涂量子点材料。其中,该量子点材料可以为ZnO。
步骤63:在阵列基板和/或彩膜基板上对应框胶区域的位置形成框胶。
其中,形成框胶可以采用点涂、喷墨等方式进行。
步骤64:将阵列基板和彩膜基板对盒形成液晶显示面板。
具体地,可以在框胶上预留通孔,在对盒之后通过向内部灌注液晶。
步骤65:采用第一光线对框胶区域进行光照,以使光致发光物质激发产生第二光线,以对框胶固化。
这里的光线一般采用紫外光,在一实施例中,光照波长为300-400nm,光致发光物质激发产生第二光线的波长为350-500nm。
在一实施例中,以彩膜基板为例,如图7所示,在彩膜基板20上形成黑矩阵21,在黑矩阵21上对应框胶区域的位置形成光致发光物质22,在彩膜基板20上对应框胶区域的位置形成覆盖光致发光物质21的框胶30。然后如图2所示将阵列基板10和彩膜基板20对盒形成液晶显示面板。
在一实施例中,以彩膜基板为例,如图8所示,在阵列基板10上对应框胶区域的电路线11之间的空隙处设置光致发光物质22。然后如图3所示将阵列基板10和彩膜基板20对盒形成液晶显示面板。
可以理解的,在本实施例中,阵列基板和彩膜基板的制作方法可以是现有技术中的制作方法。可选的,在一种实施例中,阵列基板可以包括层叠设置的衬底基板、缓冲层、栅极、栅极绝缘层、TFT功能层、介电层、平坦层以及公共电极层;彩膜基板可以包括层叠设置的衬底基板、彩色滤光片以及像素电极。
另外,在其他实施例中,也可以采用COA(Color Filter On Array)型面板,这里不作限制。
参阅图9,图9是本申请提供的液晶显示装置一实施例的结构示意图,该液晶显示装置包括液晶显示面板91和背光源92。
其中,该液晶显示面板91可以是如上述图2-图5任一实施例提供的显示面板,也可以是如图6的制作方法制作得到的显示面板,其结构和制作流程类似,这了不再赘述。
区别于现有技术,本实施例提供的液晶显示装置包括液晶显示面板和背光源,其中,该液晶显示面板包括阵列基板、彩膜基板、连接阵列基板和彩膜基板的框胶、以及阵列基板和彩膜基板之间的液晶;其中,阵列基板和/或彩膜基板上对应框胶的位置设置有光致发光物质,光致发光物质用于在第一光线的激发下发出第二光线,第二光线用于使框胶固化,光致发光物质至少部分设置在第一光线的光通路上。通过上述方式,避免了在阵列基板上的框胶区域设置有电路线的情况下,电路线遮挡光线使光线无法完全照射框胶,使框胶固化不完全、阵列基板和彩膜基板粘合不牢固的问题。通过光致发光物质的激发和散射,能够使光线对被遮挡部分的框胶进行照射,以使框胶能够完全固化,保证了阵列基板和彩膜基板之间的连接。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (18)

  1. 一种液晶显示装置,其中,包括液晶显示面板和背光源,其中,所述液晶显示面板包括阵列基板、彩膜基板、连接所述阵列基板和所述彩膜基板的框胶、以及所述阵列基板和所述彩膜基板之间的液晶;
    其中,所述阵列基板和/或所述彩膜基板上对应所述框胶的位置设置有光致发光物质,所述光致发光物质用于在第一光线的激发下发出第二光线,所述第二光线用于使所述框胶固化,所述光致发光物质至少部分设置在所述第一光线的光通路上;
    其中,所述发光物质为量子点薄膜,所述光致发光物质的激发波长为300-400nm,所述光致发光物质的发光波长为350-500nm。
  2. 根据权利要求1所述的液晶显示装置,其中,
    所述量子点薄膜的宽度小于所述框胶的宽度。
  3. 根据权利要求1所述的液晶显示装置,其中,
    所述发光物质设置在所述阵列基板上的电路线之间的空隙处。
  4. 根据权利要求1所述的液晶显示装置,其中,
    所述发光物质至少部分设置在所述彩膜基板上对应所述阵列基板上的电路线之间的空隙的位置。
  5. 一种液晶显示面板,其中,所述液晶显示面板包括阵列基板、彩膜基板、连接所述阵列基板和所述彩膜基板的框胶、以及所述阵列基板和所述彩膜基板之间的液晶;
    其中,所述阵列基板和/或所述彩膜基板上对应所述框胶的位置设置有光致发光物质,所述光致发光物质用于在第一光线的激发下发出第二光线,所述第二光线用于使所述框胶固化,所述光致发光物质至少部分设置在所述第一光线的光通路上。
  6. 根据权利要求5所述的液晶显示面板,其中,
    所述发光物质为量子点薄膜。
  7. 根据权利要求6所述的液晶显示面板,其中,
    所述量子点薄膜的宽度小于所述框胶的宽度。
  8. 根据权利要求5所述的液晶显示面板,其中,
    所述发光物质设置在所述阵列基板上的电路线之间的空隙处。
  9. 根据权利要求5所述的液晶显示面板,其中,
    所述发光物质至少部分设置在所述彩膜基板上对应所述阵列基板上的电路线之间的空隙的位置。
  10. 根据权利要求5所述的液晶显示面板,其中,
    所述光致发光物质的激发波长为300-400nm,所述光致发光物质的发光波长为350-500nm。
  11. 一种液晶显示面板的制作方法,其中,包括:
    提供一阵列基板和一彩膜基板;
    在所述阵列基板和/或所述彩膜基板上对应框胶区域的位置形成光致发光物质;
    在所述阵列基板和/或所述彩膜基板上对应所述框胶区域的位置形成框胶;
    将所述阵列基板和所述彩膜基板对盒形成液晶显示面板;
    采用第一光线对所述框胶区域进行光照,以使所述光致发光物质激发产生第二光线,以对所述框胶固化。
  12. 根据权利要求11所述的制作方法,其中,
    所述在所述阵列基板和/或所述彩膜基板上对应框胶区域的位置形成光致发光物质的步骤,包括:
    在所述彩膜基板上对应框胶区域的位置形成光致发光物质;
    所述在所述阵列基板和/或所述彩膜基板上对应所述框胶区域的位置形成框胶的步骤,包括:
    在所述彩膜基板上对应所述框胶区域的位置形成覆盖所述光致发光物质的框胶。
  13. 根据权利要求11所述的制作方法,其中,
    所述在所述阵列基板和/或所述彩膜基板上对应框胶区域的位置形成光致发光物质的步骤,包括:
    在所述阵列基板上的电路线之间的空隙处形成光致发光物质;
    所述在所述阵列基板和/或所述彩膜基板上对应所述框胶区域的位置形成框胶的步骤,包括:
    在所述彩膜基板上对应所述框胶区域的位置形成框胶。
  14. 根据权利要求11所述的制作方法,其中,
    所述发光物质为量子点薄膜。
  15. 根据权利要求14所述的制作方法,其中,
    所述量子点薄膜的宽度小于所述框胶的宽度。
  16. 根据权利要求11所述的制作方法,其中,
    所述发光物质设置在所述阵列基板上的电路线之间的空隙处。
  17. 根据权利要求11所述的制作方法,其中,
    所述发光物质至少部分设置在所述彩膜基板上对应所述阵列基板上的电路线之间的空隙的位置。
  18. 根据权利要求11所述的制作方法,其中,
    所述光致发光物质的激发波长为300-400nm,所述光致发光物质的发光波长为350-500nm。
PCT/CN2018/083310 2018-01-30 2018-04-17 一种液晶显示面板及其制作方法、液晶显示装置 WO2019148661A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/029,676 US10656471B2 (en) 2018-01-30 2018-07-09 Liquid crystal display panel and its method of manufacture, liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810094803.6A CN107991813A (zh) 2018-01-30 2018-01-30 一种液晶显示面板及其制作方法、液晶显示装置
CN201810094803.6 2018-01-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/029,676 Continuation US10656471B2 (en) 2018-01-30 2018-07-09 Liquid crystal display panel and its method of manufacture, liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2019148661A1 true WO2019148661A1 (zh) 2019-08-08

Family

ID=62039848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083310 WO2019148661A1 (zh) 2018-01-30 2018-04-17 一种液晶显示面板及其制作方法、液晶显示装置

Country Status (2)

Country Link
CN (1) CN107991813A (zh)
WO (1) WO2019148661A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200024979A (ko) * 2018-08-28 2020-03-10 삼성디스플레이 주식회사 디스플레이 장치 및 그 제조방법
CN109343281A (zh) * 2018-11-28 2019-02-15 昆山龙腾光电有限公司 一种液晶显示面板
CN110221487B (zh) * 2019-07-15 2022-04-22 京东方科技集团股份有限公司 一种显示面板及其制作方法和显示设备
CN111352269B (zh) * 2020-04-15 2023-11-28 Tcl华星光电技术有限公司 显示面板及其制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221316A (zh) * 2008-02-02 2008-07-16 友达光电股份有限公司 显示面板
CN104297990A (zh) * 2014-10-22 2015-01-21 合肥鑫晟光电科技有限公司 彩膜基板及制作方法、显示面板及制作方法、显示装置
CN105116629A (zh) * 2015-09-16 2015-12-02 京东方科技集团股份有限公司 一种封框胶组合物、显示面板及其制备方法、显示装置
CN105511153A (zh) * 2016-02-16 2016-04-20 京东方科技集团股份有限公司 一种显示基板、显示面板和显示装置
US20170146859A1 (en) * 2015-11-20 2017-05-25 A. U. Vista, Inc. Quantum-dot embedded polarizer component and display device using same
CN206757245U (zh) * 2017-06-01 2017-12-15 厦门天马微电子有限公司 显示面板及显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6912025B2 (en) * 2003-02-26 2005-06-28 Chi Mei Optoelectronics Corp. Liquid crystal display device
CN104793408A (zh) * 2015-05-07 2015-07-22 合肥鑫晟光电科技有限公司 显示面板及显示装置
CN106681073B (zh) * 2017-02-15 2019-01-22 深圳市华星光电技术有限公司 液晶显示面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221316A (zh) * 2008-02-02 2008-07-16 友达光电股份有限公司 显示面板
CN104297990A (zh) * 2014-10-22 2015-01-21 合肥鑫晟光电科技有限公司 彩膜基板及制作方法、显示面板及制作方法、显示装置
CN105116629A (zh) * 2015-09-16 2015-12-02 京东方科技集团股份有限公司 一种封框胶组合物、显示面板及其制备方法、显示装置
US20170146859A1 (en) * 2015-11-20 2017-05-25 A. U. Vista, Inc. Quantum-dot embedded polarizer component and display device using same
CN105511153A (zh) * 2016-02-16 2016-04-20 京东方科技集团股份有限公司 一种显示基板、显示面板和显示装置
CN206757245U (zh) * 2017-06-01 2017-12-15 厦门天马微电子有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
CN107991813A (zh) 2018-05-04

Similar Documents

Publication Publication Date Title
WO2019148661A1 (zh) 一种液晶显示面板及其制作方法、液晶显示装置
KR102062587B1 (ko) 표시 장치
WO2013077568A1 (en) Display device
WO2016086416A1 (zh) 一种量子点背光模组以及显示装置
WO2013009016A2 (en) Optical member, display device having the same and method for fabricating the same
WO2013012172A2 (en) Optical member and display device having the same
WO2013085187A1 (en) Display device
WO2016054838A1 (zh) 直下式背光模组及其制造方法
WO2016011691A1 (zh) 高色域液晶显示模组结构
WO2019223203A1 (zh) 在液晶面板中内置偏光片的方法、液晶显示装置及其制作方法
CN103907190A (zh) 一种oled拼接显示屏及其制造方法
WO2017067011A1 (zh) 蓝相液晶显示器、蓝相液晶显示模组及其制作方法
WO2017166331A1 (zh) 一种石墨烯显示模组及液晶显示装置
CN103293763B (zh) 液晶显示装置
WO2016192128A1 (zh) 一种显示面板及液晶显示装置
WO2017156902A1 (zh) 量子点背光模组及液晶电视
WO2019218471A1 (zh) 一种显示面板及其制作方法、显示装置
WO2016054837A1 (zh) 一种白光oled显示器及其封装方法
WO2018090432A1 (zh) 显示器
WO2017177488A1 (zh) 双面液晶显示装置及其背光模组
WO2022021615A1 (zh) 一种显示面板和显示器
WO2012099332A2 (en) Optical member, display device including the same, and method for manufacturing the same
WO2019051968A1 (zh) 彩膜基板的制作方法
WO2016173021A1 (zh) 显示面板及显示装置
WO2014121525A1 (zh) 阵列基板、显示装置及阵列基板的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903894

Country of ref document: EP

Kind code of ref document: A1