WO2019146947A1 - 전극 조립체 제조방법 및 이차전지 제조방법 - Google Patents

전극 조립체 제조방법 및 이차전지 제조방법 Download PDF

Info

Publication number
WO2019146947A1
WO2019146947A1 PCT/KR2019/000555 KR2019000555W WO2019146947A1 WO 2019146947 A1 WO2019146947 A1 WO 2019146947A1 KR 2019000555 W KR2019000555 W KR 2019000555W WO 2019146947 A1 WO2019146947 A1 WO 2019146947A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit cell
unit cells
unit
moving
separation film
Prior art date
Application number
PCT/KR2019/000555
Other languages
English (en)
French (fr)
Inventor
김현태
이신화
이우용
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/964,455 priority Critical patent/US11749841B2/en
Priority to CN201980007615.8A priority patent/CN111566862B/zh
Priority to EP19743569.6A priority patent/EP3731322A4/en
Publication of WO2019146947A1 publication Critical patent/WO2019146947A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method of manufacturing an electrode assembly and a method of manufacturing a secondary battery.
  • rechargeable secondary batteries can be recharged, and they are being researched and developed recently due to their small size and high capacity.
  • technology development and demand for mobile devices increase, the demand for secondary batteries as energy sources is rapidly increasing.
  • the secondary battery is classified into a coin type battery, a cylindrical type battery, a square type battery, and a pouch type battery depending on the shape of the battery case.
  • An electrode assembly mounted in a battery case of a secondary battery is a chargeable and dischargeable power generation device having a stacked structure of an electrode and a separation membrane.
  • the electrode assembly includes a jelly-roll type in which a separator is interposed between a positive electrode 11 having a sheet shape coated with an active material and a negative electrode, and a plurality of positive electrodes 11 and a negative electrode, Stacked stacked type stacked unit cells can be roughly classified into a stacked / folded type in which the stacked unit cells are wound in a long length separating film.
  • One aspect of the present invention is to provide an electrode assembly manufacturing method capable of charging unit cells by reflecting an actual full width value of a unit cell so as to prevent a folding gap tolerance between unit cells, And a method for manufacturing the same.
  • a method of manufacturing an electrode assembly is a method of manufacturing an electrode assembly by placing unit cells including electrodes and a separation membrane on a separation film at predetermined intervals and then folding the assembly, A unit cell holding step of holding the unit cell, a vision measuring step of measuring a full width of the unit cell, and a step of measuring a width of the unit cell measured by the moving gripper, And moving the unit cell to place it on the separation film.
  • unit cells including electrodes and a separation membrane are placed on a separation film at predetermined intervals, and then folded to manufacture an electrode assembly.
  • a unit cell grasping step of moving the moving gripper to grip the unit cell a vision measurement step of measuring a full width of the unit cell, and a step of moving the gripper in the unit cell, Moving the unit cell so as to correspond to the full width value of the unit cell measured through the vision measuring step after the gripping and placing the unit cell on the separation film;
  • the separation film is positioned between the unit cells It may include a receiving step for receiving the folding steps and folding the electrode assembly to be laminated by folding the unit cells in a battery case.
  • the actual insertion tolerance of the unit cells can be measured and corrected through the vision device.
  • FIG. 1 is a flowchart illustrating a method of manufacturing an electrode assembly according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating an electrode assembly manufacturing method according to an embodiment of the present invention.
  • FIG. 3 is a plan view illustrating a method of manufacturing an electrode assembly according to an embodiment of the present invention.
  • FIG. 4 is a side view illustrating an example of a unit cell in an electrode assembly manufacturing method according to an embodiment of the present invention.
  • FIG. 5 is a side view illustrating another example of a unit cell in the method of manufacturing an electrode assembly according to an embodiment of the present invention.
  • FIG. 6 is a side view illustrating an exemplary filling step in an electrode assembly manufacturing method according to an embodiment of the present invention.
  • FIG. 7 is a plan view illustrating a method of manufacturing an electrode assembly according to another embodiment of the present invention.
  • FIG. 8 is a side view illustrating a lamination step in an electrode assembly manufacturing method according to another embodiment of the present invention.
  • FIG. 9 is a side view illustrating a folding step in an electrode assembly manufacturing method according to another embodiment of the present invention.
  • FIG. 10 is a side view showing a receiving step in a method of manufacturing a secondary battery according to an embodiment of the present invention.
  • FIG. It should be noted that, in the present specification, the reference numerals are added to the constituent elements of the drawings, and the same constituent elements are assigned the same number as much as possible even if they are displayed on different drawings. Furthermore, the present invention can be embodied in various different forms and is not limited to the embodiments described herein. In the following description of the present invention, a detailed description of related arts which may unnecessarily obscure the gist of the present invention will be omitted.
  • FIG. 1 is a flowchart illustrating a method of manufacturing an electrode assembly according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a method of manufacturing an electrode assembly according to an embodiment of the present invention.
  • Fig. 7 is a plan view exemplarily showing a method of manufacturing an electrode assembly.
  • an electrode assembly manufacturing method includes placing a unit cell 110, 120, 130, 140, 150 including an electrode 113 and a separation membrane 114 on a separation film R at a predetermined interval
  • FIG. 4 is a side view illustrating an example of a unit cell in a method of manufacturing an electrode assembly according to an embodiment of the present invention
  • FIG. 5 is a cross-sectional view illustrating another example of a unit cell in the method of manufacturing an electrode assembly according to an embodiment of the present invention. Is an exemplary side view.
  • FIG. 1 A method of manufacturing an electrode assembly according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 7.
  • FIG. 1 A method of manufacturing an electrode assembly according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 7.
  • the moving grippers 50 and 60 move to grip the unit cells 110, 120, 130, 140 and 150.
  • the unit cells 110, 120, 130, 140 and 150 when the unit cells 110, 120, 130, 140 and 150 are supplied through the conveyor belt 10, the unit cells 110, 120, 130, 140 and 150 to which the moving grippers 50 and 60 are supplied can be gripped. At this time, the moving grippers 50 and 60 can be moved to grip the unit cells 110, 120, 130, 140 and 150 that are seated on the upper surface of the end portion of the conveyor belt 10 that moves and supplies the unit cells 110, 120, 130, 140 and 150, for example.
  • the unit cells 110, 120, 130, 140 and 150 are chargeable and dischargeable power generating elements, and the electrodes 113 and the separator 114 may be alternately stacked.
  • the electrode 113 may include an anode 111 and a cathode 112.
  • the separator 114 separates the anode 111 and the cathode 112 and electrically isolates them.
  • One unit cell 110, 120, 130, 140 and 150 of the unit cells 110, 120, 130, 140 and 150 may include at least one anode 111, at least one cathode 112, and at least one separator 114.
  • the positive electrode 111 may include a positive electrode collector 111a and a positive electrode active material 11b.11c applied to the positive electrode collector 111a.
  • the cathode current collector 111a may be made of, for example, a foil of aluminum, and the cathode active material 111b.111c may be made of lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron phosphate, Compounds and mixtures containing more than one species, and the like.
  • the cathode 112 may include a cathode current collector 112a and anode active materials 112b and 112c coated on the anode current collector 112a.
  • the anode current collector 112a may be made of a foil made of, for example, copper (Cu) or nickel (Ni).
  • the anode active materials 112b and 112c may be made of, for example, artificial graphite, lithium metal, lithium alloy, carbon, petroleum coke, activated carbon, graphite, silicone compound, tin compound, titanium compound or an alloy thereof.
  • the negative electrode active materials 112b and 112c may further include, for example, SiO2 (silica) or SiC (silicon carbide).
  • the separator 114 is made of an insulating material and alternately stacked with the anode 111 and the cathode 112. In addition, the separator 114 may be positioned between the anode 111 and the cathode 112, for example. In addition, the separator 114 may be located between the anode 111 and the cathode 112 and may be located on the outer surface of the anode 111 and the cathode 112 as another example.
  • the separation membrane 114 may be formed of, for example, a multilayer film produced by microporous polyethylene, polypropylene, or a combination thereof, or a multilayer film made of polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile or polyvinylidene fluoride hexa
  • a polymer film for a solid polymer electrolyte such as a fluoropropylene copolymer or a polymer film for a gel polymer electrolyte.
  • the unit cells 110, 120, 130, 140, and 150 may include Bi-cells in which electrodes 113 of the same kind are located on both sides of the cell, or full-cells in which other types of electrodes 113 are located on both sides of the cell. ≪ / RTI >
  • the unit cells 110, 120, 130, 140, and 150 may include an A type unit cell in which an anode 111, a separator 114, a cathode 112, a separator 114, and an anode 111 are sequentially stacked.
  • the unit cells 110, 120, 130, 140 and 150 may be seated in the separation film R in the order of A, C, C, A, A, C,
  • the configuration in which the unit cells 110, 120, 130, 140 and 150 are mounted on the separation film R in the manufacturing method is not necessarily limited to this but the unit cells 110, 120, 130, 140 and 150 composed of various types of bi- Of course.
  • the unit cells 110, 120, 130, 140 and 150 form gaps g spaced apart from each other by a predetermined distance and may be positioned on the separation film R.
  • the electrode tab 115 is provided on one side of the electrode 113 and is electrically connected to the electrode 113.
  • the vision measurement step S20 may measure the full width a of the unit cells 110, 120, 130, 140, and 150 through a vision device 40.
  • the vision device 40 may be any one of, for example, a camera, an X-ray, or a CT (Computer Tomography).
  • the vision device 40 may be positioned in any one of the lateral direction, the upward direction, and the diagonal direction of the unit cells 110, 120, 130, 140, and 150 to measure the full width a of the unit cells 110, 120, 130, 140,
  • the vision measuring step S20 may detect the end position of the outermost electrode 113 in the full width direction of the unit cells 110, 120, 130, 140,
  • the vision measurement step S20 may measure the end position of the outermost electrode 113 and the angles of the unit cells 110, 120, 130, 140 and 150 in the full width direction of the unit cells 110, 120,
  • the vision measurement step S20 may measure the angle between the end line of the electrode 113 and the axis perpendicular to the folding progress direction in the full width direction of the unit cells 110, 120, 130, 140, and 150, for example. More specifically, for example, when the folding progression direction is the X axis, the angle of the end line of the electrode 113 in the full width direction of the unit cells 110, 120, 130, 140, Can be measured.
  • the vision measurement step S20 may be performed, for example, between the X axis and the full width direction electrode end lines of the unit cells 110, 120, Can be detected by measuring the formed angle [alpha].
  • the unit cells 110, 120, 130, 140, and 150 held by the moving grippers 50 and 60 are moved by the moving grippers 50 and 60 to the viewing angle of the vision measuring device, The unit cells 110, 120, 130, 140 and 150 can be visually measured.
  • FIG. 6 is a side view illustrating an exemplary filling step in an electrode assembly manufacturing method according to an embodiment of the present invention.
  • the inputting step S30 is performed in such a manner that the moving grippers 50 and 60 hold the unit cells 110, 120, 130, 140, and 150 measured through the vision measuring step S20 after gripping the unit cells 110, 120,
  • the unit cells 110, 120, 130, 140, and 150 may be moved so as to correspond to the full width of the separation film R,
  • the input step S30 may control the movement of the moving grippers 50 and 60 in the control unit 70.
  • the control unit 70 may include an operation unit 71 and a memory 72.
  • the inputting step S30 is a step in which the amount of movement of the moving grippers 50 and 60 moved to place the unit cells 110, 120, 130, 140 and 150 on the separating film R through the full widths of the measured unit cells 110, 120, 70 can be calculated by the arithmetic unit 71.
  • the movement grippers 50 and 60 may be moved by reflecting the input movement amount calculated by the controller 70 to control the unit cells 110, 120, 130, 140 and 150 to be seated on the separation film R.
  • step S30 the control unit 70 receives the image signal of the vision measurement in the vision measurement step S20, extracts the full width values of the unit cells 110, 120, 130, 140 and 150, The control unit 70 may compare the set value stored in the memory 72 with the set value stored in the memory 72 to correct the amount of movement of the moving grippers 50 and 60. Then, the control unit 70 can control the movement of the moving grippers 50 and 60 in accordance with the adjusted input moving amount.
  • the control unit 70 adjusts the movement amounts of the movement grippers 50 and 60 so as to correspond to the full width values of the unit cells 110, 120, 130, 140, and 150 inserted each time the unit cells 110, 120, can do.
  • the unit cells 110, 120, 130, 140 and 150 may be placed in the separating film R so that a gap g corresponding to the gap value of the unit cells 110, 120, 130, 140 and 150 stored in the memory 72 is formed.
  • the charging unit includes a conveyor belt 20 on which the separation film R is placed to move the separation film R, and a nip roller positioned at a distance spaced apart from the end of the conveyor belt 20 by a predetermined distance. (80).
  • the applying step S30 may be carried out by placing the unit cells 110, 120, 130, 140, 150 between the conveyor belt 20 and the nip roller 80,
  • the applying step S30 is a step of moving the unit cells 110, 120, 130, 140 and 150 to the moving grippers 50 and 60 so that the unit cells 110, 120, 130, 140 and 150 are aligned with the Y axis, ). ≪ / RTI >
  • the control unit 70 adjusts the X axis movement amount, which is the folding progress direction of the unit cells 110, 120, 130, 140 and 150, and the angle of the unit cells 110, 120, And the unit cells 110, 120, 130, 140, and 150 may be charged into the charging unit.
  • the control unit 70 determines that the unit cell is deviated from the Y axis, the angle of the unit cells 110, 120, 130, 140, and 150 may be corrected to coincide with the Y axis through the movement grippers 50 and 60.
  • the amount of movement of the moving grippers 50 and 60 with respect to the folding direction PD in the inputting step S30 may be determined by the amount of movement of the unit cells 110, 120, 130, 140 and 150, 110, 120, 130, 140, and 150 may be calculated as the total distance d1 through which the unit cells 110, 120, 130, 140, and 150 are moved to the entrance of the loading unit to be loaded on the separation film R.
  • the amount of movement of the moving grippers 50 and 60 relative to the folding direction PD in the inputting step S30 may be calculated by taking the moving amount of the unit cells 110, 120, 130, 140 and 150, And the distance d3 at which the unit cells 110, 120, 130, 140, and 150 to the entrance are moved. That is, the input movement amount is set such that the unit cells 110, 120, 130, 140 and 150 are gripped by the movement grippers 50 and 60 at the entire distance d1 after the unit cells 110, 120, 130, 140 and 150 are gripped by the movement grippers 50 and 60, The remaining moving distance d3 of the unit cells 110, 120, 130, 140 and 150, excluding the distance d2 moved to the measurement position of the rear vision device.
  • the moving distance and the moving angle of the moving grippers 50 and 60 are corrected and the unit cells 110, 120, 130, (Error) between the unit cells 110, 120, 130, 140, and 150 that are seated on the separation film R according to the full width value deviation of the actual unit cells 110, 120, 130, 140, and 150 can be prevented have.
  • the controller 70 separates the unit cells 110, 120, 130, 140 and 150 into the set gap values between the unit cells 110, 120, 130, 140 and 150 stored in the memory 72 It is possible to prevent the gap tolerance between the unit cells 110, 120, 130, 140 and 150 from being generated by correcting the movement of the movement grippers 50 and 60 by the amount of tolerance of the unit cells 110, 120, As a result, when the unit cells 110, 120, 130, 140 and 150 are folded and stacked, a proper folding gap is formed between the unit cells 110, 120, 130, 140 and 150 necessary for parallel stacking to prevent or significantly reduce overhang in the X- .
  • a method of manufacturing a secondary battery includes repeating the steps of measuring a vision S20, unit cell holding step S30, and sequentially applying unit cells 110, 120, 130, 140, 150, 210, 220, 230 to a separation film R It can be seated.
  • FIG. 7 is a plan view illustrating a method of manufacturing an electrode assembly according to another embodiment of the present invention
  • FIG. 8 is a side view illustrating a lamination step in an electrode assembly manufacturing method according to another embodiment of the present invention
  • 9 is a side view illustrating the folding step in the electrode assembly manufacturing method according to another embodiment of the present invention.
  • the method for manufacturing an electrode assembly according to another embodiment of the present invention includes a step of forming a unit cell 110, 120, 130, 140, 150 including an electrode 113 and a separation membrane 114 on a separation film R,
  • a folding step of folding and laminating the unit cells 110, 120, 130, 140, and 150 includes a step of forming a unit cell 110, 120, 130, 140, 150 including an electrode 113 and a separation membrane 114 on a separation film R
  • the unit gripping step includes the step of: (S10) holding the unit cells (110,120,130,140,150)
  • the method of manufacturing an electrode assembly according to another embodiment of the present invention further includes a lamination step and a folding step as compared with the method of manufacturing an electrode assembly according to the embodiment described above and the measured values of the unit cells 110, 120, 130, 140, And the unit cells 110, 120, 130, 140, and 150 are charged. Therefore, the present embodiment will briefly describe the contents overlapping one embodiment, and focus on the differences.
  • the step of measuring a vision S20 may include the step of irradiating the entire width (a) and the total length (b) of the unit cells 110, 120, (40). ≪ / RTI > At this time, the vision device 40 may be positioned in any one of the upper direction or the diagonal direction of the unit cells 110, 120, 130, 140, and 150 to measure the full width a of the unit cells 110, 120, 130, 140,
  • the vision measuring step S20 may detect the end position of the outermost electrode 113 in the full-width direction and the total length direction of the unit cells 110, 120, 130, 140, and 150, respectively.
  • the inputting step S30 is a step in which the moving grippers 50 and 60 hold the unit cells 110, 120, 130, 140 and 150 and measure the unit cells 110, 120, 130, 140 and 150 measured through the vision measuring step S20, Can be moved and seated on the separation film (R).
  • the controller 70 controls the X-axis movement amount, the Y-axis movement amount, and the Y-axis unit cells 110,120,130,140,150
  • the unit cells 110, 120, 130, 140, and 150 may be inserted into the charging unit including the nip roller 80 and the conveyor belt 20.
  • the controller 70 calculates the total value of the unit cells 110, 120, 130, 140, and 150 stored in the memory 72,
  • the unit cells 110, 120, 130, 140 and 150 can be moved through the movement gripper so that the deviation of the full-width value of the actual unit cells 110, 120, 130, 140 and 150 and the angular value of the overall length and the Y-
  • the unit cells 110, 120, 130, 140, and 150 are manufactured to have different sizes from the predetermined set values or are supplied at different angles, the movement distances and movement angles of the X and Y axes of the moving gripper are corrected and the unit cells 110, 120, 130, 140, and 150 are separated Can be placed on the film (R).
  • the unit cells 110, 120, 130, 140, and 150 may be folded according to the overall length tolerances of the unit cells 110, 120, 130, 140, and 150 to prevent or significantly reduce overhang in the Y axis direction (total length direction).
  • the lamination step may be performed by lamination through the lamination unit cells 110, 120, 130, 140 and 150 placed in the separation film R through the charging unit through the charging step S30.
  • the lamination step the unit cells 110, 120, 130, 140 and 150 placed on the separation film R are pressed through the pressure rollers 91 and 92 to fix the unit cells 110, 120, 130, 140 and 150 to the separation film R, can do.
  • the lamination step may be performed by, for example, placing a pair of pressure rollers 91 and 92 on the upper and lower sides of the separation film R and the unit cells 110, 120, 130, 140 and 150 moved along the folding progressing direction PD, (R) and the unit cells (110, 120, 130, 140, 150) are passed between a pair of pressure rollers (91, 92).
  • the conveyor belts 20 and 30 are provided on both sides of the pressure rollers 91 and 92 to move the unit cells 110, 120, 130, 140 and 150.
  • a pair of pressure rollers 91 and 92 are connected to a heater to apply heat to the separation film R and the unit cells 110, 120, 130, 140 and 150 while heating.
  • the folding step may be performed by folding the unit cells 110, 120, 130, 140 and 150 such that the separation film R is positioned between the unit cells 110, 120, 130, 140 and 150 after the lamination process.
  • the first bi-shell 110 positioned at the beginning of the separation film R among the unit cells 110, 120, 130, 140, and 150 forming the electrode assembly 100 is gripped by a rotation gripper
  • the unit cells 110, 120, 130, 140, and 150 may be folded while rotating.
  • FIG. 10 is a side view showing a receiving step in a method of manufacturing a secondary battery according to an embodiment of the present invention.
  • a method of manufacturing a secondary battery according to an embodiment of the present invention includes an electrode assembly 100 manufactured according to the method of manufacturing an electrode assembly according to one embodiment and the method of manufacturing an electrode assembly according to another embodiment Thereby manufacturing a secondary battery (1). Therefore, the present embodiment will briefly describe the contents overlapping with the above-described embodiments, and focus on the differences.
  • a method for manufacturing a secondary battery includes placing a unit cell 110, 120, 130, 140, or 150 including an electrode 113 and a separation membrane 114 at a predetermined interval on a separation film R
  • RTI ID 0.0 > 1a < / RTI > C. (refer to FIG. 3)
  • the electrode assembly 100 may be received in a battery case 1a having a receiving portion 1b formed inside thereof to manufacture the secondary battery 1.
  • the receiving step may include a sealing step of sealing the outer circumferential surface of the battery case 1a by heat sealing after the electrode assembly 100 is received in the battery case 1a.
  • the electrode assembly 100 and the electrolyte solution may be further contained in the receiving portion 1b of the battery case 1a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 전극 조립체 제조방법 및 이차전지 제조방법에 관한 것으로, 본 발명에 따른 전극 조립체 제조방법은, 전극 및 분리막을 포함하는 단위셀들을 분리필름에 소정 간격으로 안착시킨 후, 폴딩하여 전극 조립체를 제조하는 방법으로서, 이동 그리퍼가 이동하여 상기 단위셀을 파지하는 단위셀 파지단계와, 상기 단위셀의 전폭을 비젼 측정하는 비젼측정단계 및 상기 이동 그리퍼가 상기 단위셀을 파지 후 상기 비젼측정단계를 통해 측정된 상기 단위셀의 전폭값에 대응되도록 상기 단위셀을 이동시켜 상기 분리필름에 안착시키는 투입단계를 포함한다.

Description

전극 조립체 제조방법 및 이차전지 제조방법
관련출원과의 상호인용
본 출원은 2018년 01월 29일자 한국특허출원 제10-2018-0010691호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 전극 조립체 제조방법 및 이차전지 제조방법에 관한 것이다.
이차 전지는 일차 전지와는 달리 재충전이 가능하고, 또 소형 및 대용량화 가능성으로 인해 근래에 많이 연구 개발되고 있다. 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지의 수요가 급격하게 증가하고 있다.
이차 전지는 전지 케이스의 형상에 따라, 코인형 전지, 원통형 전지, 각형 전지, 및 파우치형 전지로 분류된다. 이차 전지에서 전지 케이스 내부에 장착되는 전극 조립체는 전극 및 분리막의 적층 구조로 이루어진 충방전이 가능한 발전소자이다.
전극 조립체는 활물질이 도포된 시트형의 양극(11)과 음극 사이에 분리막을 개재(介在)하여 권취한 젤리 롤(Jelly-roll)형, 다수의 양극(11)과 음극을 분리막이 개재된 상태에서 순차적으로 적층한 스택형, 및 스택형의 단위 셀들을 긴 길이의 분리필름으로 권취한 스택/폴딩형으로 대략 분류할 수 있다.
하지만, 종래의 스택/폴딩형의 경우 언폴딩(Unfolding) 상태에서 분리필름에 위치된 단위 셀들 사이의 거리가 일정하지 않는 경우 단위 셀들을 폴딩하여 적층시 적층된 상,하 위치된 단위셀들 간에 상호 어긋난 위치 오차가 발생되어, 어긋난 오버행(Overhang) 부분 마다 미충전 또는 과량 충전에 의한 석출을 야기하는 문제가 있어왔다.
본 발명의 하나의 관점은 단위셀들 사이의 폴딩(Folding) 갭(Gap) 공차가 발생되는 것을 방지하도록 단위셀의 실제 전폭값을 반영하여 단위셀들을 투입시킬 수 있는 전극 조립체 제조방법 및 이차전지 제조방법을 제공하기 위한 것이다.
본 발명의 실시예에 따른 전극 조립체 제조방법은, 전극 및 분리막을 포함하는 단위셀들을 분리필름에 소정 간격으로 안착시킨 후, 폴딩하여 전극 조립체를 제조하는 방법으로서, 이동 그리퍼가 이동하여 상기 단위셀을 파지하는 단위셀 파지단계와, 상기 단위셀의 전폭을 비젼 측정하는 비젼측정단계 및 상기 이동 그리퍼가 상기 단위셀을 파지 후 상기 비젼측정단계를 통해 측정된 상기 단위셀의 전폭값에 대응되도록 상기 단위셀을 이동시켜 상기 분리필름에 안착시키는 투입단계를 포함할 수 있다.
한편, 본 발명의 실시예에 따른 이차전지 제조방법은, 전극 및 분리막을 포함하는 단위셀들을 분리필름에 소정 간격으로 안착시킨 후, 폴딩하여 전극 조립체를 제조하고, 제조된 상기 전극 조립체를 전지 케이스에 수용하여 이차전지를 제조하는 방법으로서, 이동 그리퍼가 이동하여 상기 단위셀을 파지하는 단위셀 파지단계와, 상기 단위셀의 전폭을 비젼 측정하는 비젼측정단계와, 상기 이동 그리퍼가 상기 단위셀을 파지 후 상기 비젼측정단계를 통해 측정된 상기 단위셀의 전폭값에 대응되도록 상기 단위셀을 이동시켜 상기 분리필름에 안착시키는 투입단계와, 상기 분리필름에 안착된 상기 단위셀들을 라미네이션을 통해 상호 부착시키는 라미네이션 단계와, 상기 라미네이션 단계를 거친 후, 상기 상기 단위셀들 사이에 상기 분리필름이 위치되도록 상기 단위셀들 폴딩하여 적층하는 폴딩단계 및 폴딩된 상기 전극 조립체를 전지 케이스에 수용하는 수용단계를 포함할 수 있다.
본 발명에 따르면, 다수개의 단위셀을 폴딩(Folding)시켜 전극 조립체 제조 시, 단위셀들의 실제 투입공차를 비젼장치를 통해 측정하여 보정할 수 있다. 특히, 미리 설정된 설계값이 아니라 비젼장치로 실시간으로 측정한 단위셀들의 실제 전폭을 반영하여 단위셀들을 투입하여 분리필름에 안착시킴으로써, 단위셀들 사이에 갭 공차가 발생되는 방지할 수 있다. 이에 따라, 단위셀들을 폴딩하며 적층 시, 기존의 폴딩 갭 공차에 따라 오버행(Overhang)이 발생되는 현상을 방지할 수 있다.
도 1은 본 발명의 실시예에 따른 전극 조립체 제조방법을 나타낸 순서도이다.
도 2는 본 발명의 실시예에 따른 전극 조립체 제조방법을 나타낸 블럭도이다.
도 3는 본 발명의 일 실시예에 따른 전극 조립체 제조방법을 예시적으로 나타낸 평면도이다.
도 4는 본 발명의 일 실시예에 따른 전극 조립체 제조방법에서 단위셀의 일례를 예시적으로 나타낸 측면도이다.
도 5는 본 발명의 일 실시예에 따른 전극 조립체 제조방법에서 단위셀의 다른 예를 예시적으로 나타낸 측면도이다.
도 6은 본 발명의 일 실시예에 따른 전극 조립체 제조방법에서 투입단계를 예시적으로 나타낸 측면도이다.
도 7은 본 발명의 다른 실시예에 따른 전극 조립체 제조방법을 예시적으로 나타낸 평면도이다.
도 8은 본 발명의 다른 실시예에 따른 전극 조립체 제조방법에서 라미네이션 단계를 예시적으로 나타낸 측면도이다.
도 9는 본 발명의 다른 실시예에 따른 전극 조립체 제조방법에서 폴딩단계를 예시적으로 나타낸 측면도이다.
도 10은 본 발명의 실시예에 따른 이차전지 제조방법에서 수용단계를 나타낸 측면도이다.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고, 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지 기술에 대한 상세한 설명은 생략하도록 한다.
도 1은 본 발명의 실시예에 따른 전극 조립체 제조방법을 나타낸 순서도이고, 도 2는 본 발명의 실시예에 따른 전극 조립체 제조방법을 나타낸 블럭도이며, 도 3는 본 발명의 일 실시예에 따른 전극 조립체 제조방법을 예시적으로 나타낸 평면도이다.
도 1 내지 도 3을 참고하면, 본 발명의 일 실시예에 따른 전극 조립체 제조방법은 전극(113) 및 분리막(114)을 포함하는 단위셀(110,120,130,140,150)들을 분리필름(R)에 소정 간격으로 안착시킨 후, 폴딩하여 전극 조립체를 제조하는 방법으로서, 이동 그리퍼(Gripper)(50,60)가 단위셀(110,120,130,140,150)을 파지하는 단위셀 파지단계(S10)와, 단위셀(110,120,130,140,150)의 전폭(a)을 비젼 측정하는 비젼측정단계(S20) 및 단위셀(110,120,130,140,150)을 이동시켜 분리필름(R)에 안착시키는 투입단계(S30)를 포함한다.
도 4는 본 발명의 일 실시예에 따른 전극 조립체 제조방법에서 단위셀의 일례를 예시적으로 나타낸 측면도이고, 도 5는 본 발명의 일 실시예에 따른 전극 조립체 제조방법에서 단위셀의 다른 예를 예시적으로 나타낸 측면도이다.
이하에서, 도 1 내지 도 7을 참조하여, 본 발명의 일 실시예인 전극 조립체 제조방법에 대해 보다 상세히 설명하기로 한다.
도 1 내지 도 4를 참고하면, 단위셀 파지단계(S10)는 이동 그리퍼(50,60)가 이동하여 단위셀(110,120,130,140,150)을 파지할 수 있다.
여기서, 컨베이어 벨트(Conveyor belt)(10)를 통해 단위셀(110,120,130,140,150)들이 공급되면, 이동 그리퍼(50,60)가 공급되는 단위셀(110,120,130,140,150)들을 파지할 수 있다. 이때, 이동 그리퍼(50,60)는 예를들어 단위셀(110,120,130,140,150)들을 이동시켜 공급하는 컨베이어 벨트(10)의 단부 상면에 안착된 단위셀(110,120,130,140,150)을 파지하러 이동될 수 있다.
단위셀(110,120,130,140,150)은 충방전이 가능한 발전소자로서, 전극(113) 및 분리막(114)이 교대로 적층된 형태로 형성될 수 있다.
전극(113)은 양극(111)과 음극(112)을 포함할 수 있다. 그리고, 분리막(114)은 양극(111)과 음극(112)을 분리하여 전기적으로 절연시킨다.
따라서, 단위셀(110,120,130,140,150)들 중에서 하나의 단위셀(110,120,130,140,150)은 적어도 하나의 양극(111)과, 적어도 하나의 음극(112), 적어도 하나의 분리막(114)을 포함할 수 있다.
양극(111)은 양극 집전체(111a) 및 양극 집전체(111a)에 도포된 양극 활물(11b.11c)을 포함할 수 있다. 양극 집전체(111a)는 예를 들어 알루미늄 재질의 포일(Foil)로 이루어질 수 있고, 양극 활물질(111b.111c)은 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물, 리튬인산철, 또는 이들 중 1종 이상이 포함된 화합물 및 혼합물 등으로 이루어질 수 있다.
음극(112)은 음극 집전체(112a) 및 음극 집전체(112a)에 도포된 음극 활물질(112b,112c)을 포함할 수 있다. 음극 집전체(112a)는 예를 들어 구리(Cu) 또는 니켈(Ni) 재질로 이루어진 포일(foil)로 이루어질 수 있다. 음극 활물질(112b,112c)은 예를 들어 인조흑연, 리튬금속, 리튬합금, 카본, 석유코크, 활성화 카본, 그래파이트, 실리콘 화합물, 주석 화합물, 티타늄 화합물 또는 이들의 합금으로 이루어질 수 있다. 이때, 음극 활물질(112b,112c)은 예를 들어 비흑연계의 SiO(silica, 실리카) 또는 SiC(silicon carbide, 실리콘카바이드) 등이 더 포함되어 이루어질 수 있다.
분리막(114)은 절연 재질로 이루어져 양극(111) 및 음극(112)과 교대로 적층된다. 또한, 분리막(114)은 일례로 양극(111) 및 음극(112) 사이에 위치될 수 있다. 아울러, 분리막(114)은 다른 예로 양극(111) 및 음극(112) 사이에 위치되고, 양극(111) 및 음극(112)의 외측면에 위치될 수 있다. 한편, 분리막(114)은 예를 들어 미다공성을 가지는 폴리에칠렌, 폴리프로필렌 또는 이들의 조합에 의해 제조되는 다층 필름이나, 폴리비닐리덴 플루오라이드, 폴리에틸렌 옥사이드, 폴리아크릴로니트릴 또는 폴리비닐리덴 플루오라이드 헥사플루오로프로필렌 공중합체와 같은 고체 고분자 전해질용 또는 겔형 고분자 전해질용 고분자 필름일 수 있다.
한편, 단위셀(110,120,130,140,150)은 같은 종류의 전극(113)이 셀의 양측에 위치하는 바이셀(Bi-cell) 또는 다른 종류의 전극(113)이 셀의 양측에 위치하는 풀셀(Full-cell)로 구성될 수 있다.
여기서, 단위셀(110,120,130,140,150)은 보다 구체적으로 예를 들어 양극(111), 분리막(114), 음극(112), 분리막(114) 및 양극(111)이 순차적으로 적층된 A 타입(type) 단위셀(110')(참고 도 5) 또는 음극(112), 분리막(114), 양극(111), 분리막(114), 음극(112)이 순차적으로 적층된 C 타입(type) 단위셀(110")(참고 도 6) 중에서 어느 하나 이상으로 구성될 수 있다.
이때, 분리필름(R)에 단위셀(110,120,130,140,150)들은 예를들어 A, C, C, A, A, C, C, A 및 A 타입 순으로 안착될 수 있지만, 본 발명의 일 실시예인 전극 조립체 제조방법에서 분리필름(R)에 단위셀(110,120,130,140,150)들이 안착된 구성이 여기에 반드시 한정되는 것은 아니며, 다양한 형태의 바이셀 및 풀셀들로 구성된 단위셀(110,120,130,140,150)들을 분리필름(R)에 안착될 수 있음은 물론이다.
이때, 단위셀(110,120,130,140,150)은 상호 소정 간격 이격된 갭(Gap)(g)을 형성하며 분리필름(R)에 위치될 수 있다.
전극탭(115)은 일측부가 전극(113)에 구비되어 전기적으로 전극(113)에 연결된다.
비젼측정단계(S20)는 단위셀(110,120,130,140,150)의 전폭(a)을 비젼장치(40)를 통해 비젼(Vision) 측정할 수 있다. 여기서, 비젼장치(40)는 예를 들어 카메라(Camera), 엑스레이(X-ray) 또는 CT(Computer Tomography)중에서 어느 하나로 이루어질 수 있다. 이때, 비젼장치(40)는 예를들어 단위셀(110,120,130,140,150)의 측면 방향, 상측 방향 또는 대각선 방향 중에서 어느 한 방향에 위치되어 단위셀(110,120,130,140,150)의 전폭(a)을 비젼 측정할 수 있다.
또한, 비젼측정단계(S20)는 단위셀(110,120,130,140,150)의 전폭방향으로 최외각 전극(113)의 끝단 위치를 검출할 수 있다.
아울러, 비젼측정단계(S20)는 단위셀(110,120,130,140,150)의 전폭방향으로 최외각 전극(113)의 끝단 위치 및 단위셀(110,120,130,140,150)의 각도를 측정할 수 있다. 여기서, 비젼측정단계(S20)는 예를들어 단위셀(110,120,130,140,150)의 전폭방향으로 전극(113)의 끝단 라인과 폴딩 진행방향에 대해 직각의 축 사이의 각도를 측정할 수 있다. 이때, 비젼측정단계(S20)는 보다 구체적으로 예를들어 폴딩 진행방향을 X축이라고할 때, Y축에 대한 단위셀(110,120,130,140,150)의 전폭방향으로 전극(113) 끝단 라인(Line)의 각도를 측정할 수 있다. 여기서, 비젼측정단계(S20)는 Y축에 대한 단위셀(110,120,130,140,150)의 전폭방향으로 전극 끝단 각도를 검출하기 위해, 예를들어 X축과, 단위셀(110,120,130,140,150)의 전폭방향 전극 끝단 라인 사이에 형성되는 각도(α)를 측정하는 것을 통해 검출할 수 도 있다.
그리고, 비젼측정단계는 단위셀 파지단계(S10)에서 이동 그리퍼(50,60)에 파지된 단위셀(110,120,130,140,150)을 비젼측정 장치의 시야각에 해당되는 곳으로 이동 그리퍼(50,60)에 의해 이동되어 단위셀(110,120,130,140,150)을 비젼 측정할 수 있다.
도 6은 본 발명의 일 실시예에 따른 전극 조립체 제조방법에서 투입단계를 예시적으로 나타낸 측면도이다.
도 1 내지 도 3 및 도 6을 참고하면, 투입단계(S30)는 이동 그리퍼(50,60)가 단위셀(110,120,130,140,150)을 파지 후 비젼측정단계(S20)를 통해 측정된 단위셀(110,120,130,140,150)의 전폭값에 대응되도록 단위셀(110,120,130,140,150)을 이동시켜 분리필름(R)에 안착시킬 수 있다.
또한, 투입단계(S30)는 제어부(70)에서 이동 그리퍼(50,60)의 이동을 제어할 수 있다. 여기서, 제어부(70)는 연산부(71) 및 메모리(memory)(72)를 포함할 수 잇다.
아울러, 투입단계(S30)는 측정된 단위셀(110,120,130,140,150)의 전폭값을 통해 단위셀(110,120,130,140,150)을 분리필름(R)에 안착시키기 위해 이동되는 이동 그리퍼(50,60)의 투입 이동량을 제어부(70)의 연산부(71)에서 연산할 수 있다. 그리고, 제어부(70)에서 연산된 투입 이동량을 반영하여 이동 그리퍼(50,60)를 이동시켜 단위셀(110,120,130,140,150)을 분리필름(R)에 안착시키도록 제어할 수 있다.
또한, 투입단계(S30)는 비젼측정단계(S20)에서 비젼 측정된 이미지 신호를 제어부(70)가 전달받아 단위셀(110,120,130,140,150)을 전폭값을 추출하고, 추출된 단위셀(110,120,130,140,150)의 전폭값을 제어부(70)가 메모리(72)에 저장된 설정값과 비교하여 이동 그리퍼(50,60)의 투입 이동량을 보정할 수 있다. 그리고, 보정된 투입 이동량에 따라 이동 그리퍼(50,60)의 이동을 제어부(70)가 제어할 수 있다.
아울러, 투입단계(S30)에서 제어부(70)는 단위셀(110,120,130,140,150)들의 투입 시 마다 투입되는 각각의 단위셀(110,120,130,140,150)의 전폭값에 대응되도록 이동 그리퍼(50,60)의 투입 이동량을 각각 보정할 수 있다. 그리고, 메모리(72)에 저장된 단위셀(110,120,130,140,150)들의 갭값과 대응되는 갭(g)이 형성되도록 단위셀(110,120,130,140,150)을 투입부에 투입시켜 분리필름(R)에 안착시킬 수 있다. 이때, 투입부는 분리필름(R)이 안착되어 분리필름(R)을 이동시키는 컨베이어 벨트(20) 및 컨베이어 벨트(20)의 단부에서 일정거리 상부로 이격된 거리에 위치된 닙 롤러(Lip roller)(80)를 포함할 수 있다. 여기서, 투입단계(S30)는 컨베이어 벨트(20) 및 닙 롤러(80) 사이로 단위셀(110,120,130,140,150)들을 투입하며 분리필름(R)에 안착시킬 수 있다.
한편, 투입단계(S30)는 비젼측정단계(S20)를 통해 측정한 Y축에 대한 단위셀(110,120,130,140,150)의 틀어진 각도를 반영하여 단위셀(110,120,130,140,150)이 Y축과 나란하도록 이동 그리퍼(50,60)를 통해 보정할 수 있다.
즉, 투입단계(S30)에서 제어부(70)는 이동 그리퍼(50,60)를 통해 단위셀(110,120,130,140,150)의 폴딩 진행방향인 X축 이동량과, Y축에 대한 단위셀(110,120,130,140,150)의 각도를 조정하며 단위셀(110,120,130,140,150)들을 투입부에 투입시킬 수 있다. 이때, 제어부(70)가 단위셀이 Y축에 대한 각도가 어긋난 것으로 판별하면, 이동 그리퍼(50,60)를 통해 단위셀(110,120,130,140,150)의 각도를 Y축과 일치되도록 보정할 수 있다.
한편, 투입단계(S30)에서 이동 그리퍼(50,60)의 폴딩 진행방향(PD)에 대한 투입 이동량은 일례로 단위셀(110,120,130,140,150)이 이동 그리퍼(50,60)에 파지되는 곳에서 단위셀(110,120,130,140,150)이 분리필름(R)에 안착되기위해 투입되는 투입부의 입구까지 단위셀(110,120,130,140,150)이 이동되는 전체 거리(d1)로 산정할 수 있다.
또한, 투입단계(S30)에서 이동 그리퍼(50,60)의 폴딩 진행방향(PD)에 대한 투입 이동량은 다른 예로 단위셀(110,120,130,140,150)을 비젼장치(40)를 통해 비젼 측정한 한 곳에서 투입부의 입구까지의 단위셀(110,120,130,140,150)이 이동되는 거리(d3)로 산정할 수 있다. 즉, 투입 이동량은 단위셀(110,120,130,140,150)이 이동 그리퍼(50,60)에 파지된 후 투입부까지 이동한 전체 거리(d1)에서, 단위셀(110,120,130,140,150)이 이동 그리퍼(50,60)에 파지된 후 비젼 장치의 측정위치까지 이동된 거리(d2)를 제외한, 단위셀(110,120,130,140,150)의 나머지 이동 거리(d3)로 산정할 수 있다.
따라서, 단위셀(110,120,130,140,150)이 미리 설정된 설정값과 다른 크기로 제조되거나 다른 각도로 공급되면, 이동 그리퍼(50,60)의 X축 이동거리 및 이동각도를 보정하며 단위셀(110,120,130,140,150)을 투입부를 통해 분리필름(R)에 안착시킴으로써, 실제 단위셀(110,120,130,140,150)의 전폭값 편차에 따라 분리필름(R)에 안착된 단위셀(110,120,130,140,150)들 사이의 갭 공차(오차)가 발생되는 것을 방지할 수 있다. 즉, 제어부(70)는 단위셀(110,120,130,140,150)의 제조과정에서 전폭(a)의 공차가 발생되면, 메모리(72)에 저장된 단위셀(110,120,130,140,150)들 사이의 설정 갭값으로 단위셀(110,120,130,140,150)들이 분리필름(R)에 안착되도록 단위셀(110,120,130,140,150)들의 공차 발생량 만큼 이동 그리퍼(50,60)의 이동을 보정하여 단위셀(110,120,130,140,150)들 사이의 갭 공차가 발생되지 않도록 할 수 있다. 결국, 단위셀(110,120,130,140,150)을 폴딩하며 적층 시, 나란한 적층을 위해 필요한 단위셀(110,120,130,140,150) 간의 적정 폴딩 갭이 형성되어 X축 방향(전폭방향)의 오버행(Overhang)을 방지 또는 현저히 감소시킬 수 있다.
한편, 본 발명의 일 실시예에 따른 이차전지 제조방법은 비젼측정단계(S20)와, 단위셀 파지 단계 및 투입단계(S30)를 반복하며 단위셀(110,120,130,140,150,210,220,230)들을 분리필름(R)에 순차적으로 안착시킬 수 있다.
이하에서 본 발명의 다른 실시예에 따른 전극 조립체 제조방법을 설명하기로 한다.
도 7은 본 발명의 다른 실시예에 따른 전극 조립체 제조방법을 예시적으로 나타낸 평면도이고, 도 8은 본 발명의 다른 실시예에 따른 전극 조립체 제조방법에서 라미네이션 단계를 예시적으로 나타낸 측면도이며, 도 9는 본 발명의 다른 실시예에 따른 전극 조립체 제조방법에서 폴딩단계를 예시적으로 나타낸 측면도이다.
도 1, 도 7 내지 도 9를 참고하면, 본 발명의 다른 실시예에 따른 전극 조립체 제조방법은 전극(113) 및 분리막(114)을 포함하는 단위셀(110,120,130,140,150)들을 분리필름(R)에 소정 간격으로 안착시킨 후, 폴딩하여 전극 조립체를 제조하는 방법으로서, 이동 그리퍼(50,60)가 단위셀(110,120,130,140,150)을 파지하는 단위셀 파지단계(S10)와, 단위셀(110,120,130,140,150)의 전폭(a)을 비젼 측정하는 비젼측정단계(S20)와, 단위셀(110,120,130,140,150)을 이동시켜 분리필름(R)에 안착시키는 투입단계(S30)와, 분리필름(R)에 안착된 단위셀(110,120,130,140,150)들을 상호 부착시키는 라미네이션 단계 및 단위셀(110,120,130,140,150)들 폴딩하여 적층하는 폴딩단계를 포함할 수 있다.
본 발명의 다른 실시예에 따른 전극 조립체 제조방법은 전술한 일 실시예에 따른 전극 조립체 제조방법과 비교할 때, 라미네이션 단계 및 폴딩단계를 더 포함하고, 단위셀(110,120,130,140,150)들의 전장 방향의 실측값을 더 반영하며 단위셀(110,120,130,140,150)들을 투입시키는 차이가 있다. 따라서, 본 실시예는 일 실시예와 중복되는 내용은 간략히 기술하고, 차이점을 중심으로 기술하도록 한다.
보다 상세히, 도 1, 도 7을 참고하면, 본 발명의 다른 실시예에 따른 전극 조립체 제조방법에서 비젼측정단계(S20)는 단위셀(110,120,130,140,150)의 전폭(a) 및 전장(b)을 비젼장치(40)를 통해 비젼 측정할 수 있다. 이때, 비젼장치(40)는 예를들어 단위셀(110,120,130,140,150)의 상측 방향 또는 대각선 방향 중에서 어느 한 방향에 위치되어 단위셀(110,120,130,140,150)의 전폭(a)을 비젼 측정할 수 있다.
또한, 비젼측정단계(S20)는 단위셀(110,120,130,140,150)의 전폭방향 및 전장방향으로 최외각 전극(113)의 끝단 위치를 각각 검출할 수 있다.
투입단계(S30)는 이동 그리퍼(50,60)가 단위셀(110,120,130,140,150)을 파지 후 비젼측정단계(S20)를 통해 측정된 단위셀(110,120,130,140,150)의 전폭값 및 전장값에 대응되도록 단위셀(110,120,130,140,150)을 이동시켜 분리필름(R)에 안착시킬 수 있다. 이때, 투입단계(S30)에서 제어부(70)는 이동 그리퍼(50,60)를 통해 단위셀(110,120,130,140,150)의 폴딩 진행방향인 X축 이동량과, Y축 이동량, 및 Y축에 대한 단위셀(110,120,130,140,150)의 각도를 조정하며 단위셀(110,120,130,140,150)들을 닙 롤러(80)와 컨베이어 벨트(20)로 구성된 투입부에 투입시킬 수 있다. 즉, 투입단계(S30)에서 제어부(70)는 메모리(72)에 저장된 단위셀(110,120,130,140,150)의 전폭값과, 전장값 및 Y축에 대한 각도값과, 비젼측정단계(S20)에 비젼측정된 실제 단위셀(110,120,130,140,150)의 전폭값과, 전장값 및 Y축에 대한 각도값의 편차를 검출하여, 편차가 보정되도록 이동 그리퍼를 통해 단위셀(110,120,130,140,150)을 이동시킬 수 있다.
따라서, 단위셀(110,120,130,140,150)이 미리 설정된 설정값과 다른 크기로 제조되거나 다른 각도로 공급되면, 이동 그리퍼의 X축, Y축 이동거리 및 이동각도를 보정하며 단위셀(110,120,130,140,150)을 투입부를 통해 분리필름(R)에 안착시킬 수 있다.
이에 따라, 실제 단위셀(110,120,130,140,150)의 전폭값 공차(오차)에 따라 분리필름(R)에 안착된 단위셀(110,120,130,140,150)들 사이의 갭 공차가 발생되는 것을 방지할 수 있어, 단위셀(110,120,130,140,150)을 폴딩하며 적층 시, 단위셀(110,120,130,140,150)의 X축 방향(전폭방향)의 오버행(Overhang)을 방지할 수 있다. 또한, 실제 단위셀(110,120,130,140,150)의 전장값 공차에 따라 단위셀(110,120,130,140,150)을 폴딩하며 적층 시, Y축 방향(전장방향)의 오버행을 방지 또는 현저히 감소시킬 수 있다.
도 7 및 도 8을 참고하면, 라미네이션 단계는 투입단계(S30)를 통해 투입부를 통해 투입되어 분리필름(R)에 안착된 단위셀(110,120,130,140,150)들을 라미네이션(Lamination)을 통해 상호 부착시킬 수 있다.
또한, 라미네이션 단계는 투입단계(S30)를 통해 분리필름(R)에 안착된 단위셀(110,120,130,140,150)들을 가압 롤러(91,92)를 통해 가압하여 분리필름(R)에 단위셀(110,120,130,140,150)들을 고정할 수 있다. 여기서, 라미네이션 단계는 예를들어 폴딩 진행방향(PD)을 따라 이동되는 분리필름(R) 및 단위셀(110,120,130,140,150)들의 상,하부에 한 쌍의 가압 롤러(91,92)를 위치시키고, 분리필름(R) 및 단위셀(110,120,130,140,150)들을 한 쌍의 가압 롤러(91,92) 사이를 통과시키며 가압하여 압착할 수 있다. 이때, 가압 롤러(91,92)의 양측에는 각각 컨베이버 벨트(20,30)가 구비되어 단위셀(110,120,130,140,150)들을 이동시킬 수 있다.
아울러, 라미네이션 단계는 한 쌍의 가압 롤러(91,92)와 히터(Heater)가 연결되어 분리필름(R) 및 단위셀(110,120,130,140,150)들에 열을 가하며 압착할 수 있다.
도 9를 참고하면, 폴딩단계는 라미네이션 단계를 거친 후, 단위셀(110,120,130,140,150)들 사이에 분리필름(R)이 위치되도록 단위셀(110,120,130,140,150)들 폴딩하여 적층할 수 있다.
또한, 폴딩단계는 하나의 전극 조립체(100)를 형성하는 단위셀(110,120,130,140,150)들 중에서 분리필름(R)의 초도에 위치되는 제1 바이셀(110)을 회전 그리퍼(미도시)가 파지한 후 회전하면서, 단위셀(110,120,130,140,150)들을 폴딩할 수 있다.
이하에서 본 발명의 실시예에 따른 이차전지 제조방법을 설명하기로 한다.
도 10은 본 발명의 실시예에 따른 이차전지 제조방법에서 수용단계를 나타낸 측면도이다.
도 10을 참고하면, 본 발명의 실시예에 따른 이차전지 제조방법은 전술한 일 실시예에 따른 전극 조립체 제조방법 및 다른 실시예에 따른 전극 조립체 제조방법에 따라 제조된 전극 조립체(100)를 포함하여 이차전지(1)를 제조하는 이차전지 제조방법에 관한 것이다. 따라서, 본 실시예는 전술한 실시예들과 중복되는 내용은 간략히 기술하고, 차이점을 중심으로 기술하도록 한다.
도 1 및 10을 참고하면, 본 발명의 실시예에 따른 이차전지 제조방법은 전극(113) 및 분리막(114)을 포함하는 단위셀(110,120,130,140,150)들을 분리필름(R)에 소정 간격으로 안착시킨 후, 폴딩하여 전극 조립체(100)를 제조하고, 제조된 전극 조립체(100)를 전지 케이스(1a)에 수용하여 이차전지(1)를 제조하는 방법으로서, 이동 그리퍼(50,60)가 단위셀(110,120,130,140,150)을 파지하는 단위셀 파지단계(S10)와, 단위셀(110,120,130,140,150)의 전폭(a)을 비젼 측정하는 비젼측정단계(S20)와, 단위셀(110,120,130,140,150)을 이동시켜 분리필름(R)에 안착시키는 투입단계(S30)와, 분리필름(R)에 안착된 단위셀(110,120,130,140,150)들을 상호 부착시키는 라미네이션 단계 및 단위셀(110,120,130,140,150)들 폴딩하여 적층하는 폴딩단계 및 전극 조립체(100)를 전지 케이스(1a)에 수용하는 수용단계를 포함할 수 있다.(참조 도 3)
본 발명의 실시예에 따른 이차전지 제조방법에서 수용단계는 수용부(1b)가 내측에 형성된 전지 케이스(1a)에 전극 조립체(100)를 수용시켜 이차전지(1)를 제조할 수 있다.
또한, 수용단계는 전지 케이스(1a)에 전극 조립체(100)를 수용시킨 후 전지 케이스(1a)의 외주면을 열융착을 통해 실링(Sealing)하여 밀봉하는 실링단계를 포함할 수 있다.
아울러, 수용단계는 전지 케이스(1a)의 수용부(1b)에 전극 조립체(100)와 함께 전해액을 더 수용시킬 수 있다.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명에 따른 전극 조립체 제조방법 및 이차전지 제조방법은 이에 한정되지 않는다. 본 발명의 기술적 사상 내에서 당해 분야의 통상의 지식을 가진 자에 의해 다양한 실시가 가능하다고 할 것이다.
또한, 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.

Claims (9)

  1. 전극 및 분리막을 포함하는 단위셀들을 분리필름에 소정 간격으로 안착시킨 후, 폴딩하여 전극 조립체를 제조하는 방법으로서,
    상기 단위셀의 전폭을 비젼 측정하는 비젼측정단계;
    이동 그리퍼가 이동하여 상기 단위셀을 파지하는 단위셀 파지단계; 및
    상기 이동 그리퍼가 상기 단위셀을 파지 후 상기 비젼측정단계를 통해 측정된 상기 단위셀의 전폭값에 대응되도록 상기 단위셀을 이동시켜 상기 분리필름에 안착시키는 투입단계를 포함하는 포함하는 전극 조립체 제조방법.
  2. 청구항 1에 있어서,
    상기 비젼측정단계는 상기 단위셀의 전폭방향으로 최외각 전극의 끝단 위치를 검출하는 전극 조립체 제조방법.
  3. 청구항 1에 있어서,
    상기 투입단계에서,
    제어부는 측정된 상기 단위셀의 전폭값을 통해 상기 단위셀을 상기 분리필름에 안착시키기 위해 이동되는 상기 이동 그리퍼의 투입 이동량을 연산하고, 연산된 상기 투입 이동량을 반영하여 상기 이동 그리퍼를 이동시켜 상기 단위셀을 상기 분리필름에 안착시키도록 제어하는 전극 조립체 제조방법.
  4. 청구항 3에 있어서,
    상기 투입단계는,
    상기 비젼측정단계에서 비젼 측정된 이미지 신호를 상기 제어부가 전달받아 상기 단위셀을 전폭값을 추출하고,
    추출된 상기 단위셀의 전폭값을 상기 제어부가 메모리에 저장된 설정값과 비교하여 상기 이동 그리퍼의 투입 이동량을 보정하며,
    보정된 상기 투입 이동량에 따라 상기 이동 그리퍼의 이동을 상기 제어부가 제어하는 전극 조립체 제조방법.
  5. 청구항 4에 있어서,
    상기 투입단계에서,
    상기 제어부는 상기 단위셀들의 투입 시 마다 투입되는 각각의 상기 단위셀의 전폭값에 대응되도록 상기 이동 그리퍼의 투입 이동량을 각각 보정하여,
    상기 메모리에 저장된 상기 단위셀들의 갭값과 대응되는 갭(Gap)이 형성되도록 상기 단위셀을 상기 분리필름에 안착시키는 전극 조립체 제조방법.
  6. 청구항 1에 있어서,
    상기 비젼측정단계와, 상기 단위셀 파지 단계 및 상기 투입단계를 반복하며 상기 단위셀들을 상기 분리필름에 순차적으로 안착시키고,
    상기 분리필름에 안착된 상기 단위셀들을 라미네이션을 통해 상호 부착시키는 라미네이션 단계; 및
    상기 라미네이션 단계를 거친 후, 상기 상기 단위셀들 사이에 상기 분리필름이 위치되도록 상기 단위셀들 폴딩하여 적층하는 폴딩단계를 더 포함하는 전극 조립체 제조방법.
  7. 청구항 1에 있어서,
    상기 단위셀 파지단계에서,
    제어부는 측정된 상기 단위셀의 전폭값을 통해 상기 단위셀을 파지하기 위해 이동되는 상기 이동 그리퍼의 파지 이동량을 연산하여, 연산된 상기 파지 이동량을 반영하여 상기 이동 그리퍼를 이동시켜 상기 단위셀을 파지하도록 제어하는 전극 조립체 제조방법.
  8. 청구항 1에 있어서,
    상기 단위셀 파지단계에서,
    제어부는 측정된 상기 단위셀의 전폭값을 통해 상기 단위셀을 파지하기 위해 이동되는 상기 이동 그리퍼의 파지 이동량을 연산하여, 연산된 상기 파지 이동량을 반영하여 상기 이동 그리퍼를 이동시켜 상기 단위셀을 파지하도록 제어하는 전극 조립체 제조방법.
  9. 전극 및 분리막을 포함하는 단위셀들을 분리필름에 소정 간격으로 안착시킨 후, 폴딩하여 전극 조립체를 제조하고, 제조된 상기 전극 조립체를 전지 케이스에 수용하여 이차전지를 제조하는 방법으로서,
    상기 단위셀의 전폭을 비젼 측정하는 비젼측정단계;
    이동 그리퍼가 이동하여 상기 단위셀을 파지하는 단위셀 파지단계;
    상기 이동 그리퍼가 상기 단위셀을 파지 후 상기 비젼측정단계를 통해 측정된 상기 단위셀의 전폭값에 대응되도록 상기 단위셀을 이동시켜 상기 분리필름에 안착시키는 투입단계;
    상기 분리필름에 안착된 상기 단위셀들을 라미네이션을 통해 상호 부착시키는 라미네이션 단계;
    상기 라미네이션 단계를 거친 후, 상기 상기 단위셀들 사이에 상기 분리필름이 위치되도록 상기 단위셀들 폴딩하여 적층하는 폴딩단계; 및
    폴딩된 상기 전극 조립체를 전지 케이스에 수용하는 수용단계를 포함하는 이차전지 제조방법.
PCT/KR2019/000555 2018-01-29 2019-01-14 전극 조립체 제조방법 및 이차전지 제조방법 WO2019146947A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/964,455 US11749841B2 (en) 2018-01-29 2019-01-14 Method for manufacturing electrode assembly and method for manufacturing secondary battery
CN201980007615.8A CN111566862B (zh) 2018-01-29 2019-01-14 制造电极组件的方法以及制造二次电池的方法
EP19743569.6A EP3731322A4 (en) 2018-01-29 2019-01-14 ELECTRODE ASSEMBLY MANUFACTURING PROCESS AND SECONDARY BATTERY MANUFACTURING PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180010691A KR102287768B1 (ko) 2018-01-29 2018-01-29 전극 조립체 제조방법 및 이차전지 제조방법
KR10-2018-0010691 2018-01-29

Publications (1)

Publication Number Publication Date
WO2019146947A1 true WO2019146947A1 (ko) 2019-08-01

Family

ID=67395513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000555 WO2019146947A1 (ko) 2018-01-29 2019-01-14 전극 조립체 제조방법 및 이차전지 제조방법

Country Status (5)

Country Link
US (1) US11749841B2 (ko)
EP (1) EP3731322A4 (ko)
KR (1) KR102287768B1 (ko)
CN (1) CN111566862B (ko)
WO (1) WO2019146947A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210041455A (ko) * 2019-10-07 2021-04-15 주식회사 엘지화학 이차전지 제조방법 및 이차전지 제조장치
KR102257083B1 (ko) * 2020-12-14 2021-05-27 주식회사 시스템알앤디 이차전지 제조장치 및 제조방법
KR20230020087A (ko) * 2021-08-03 2023-02-10 주식회사 엘지에너지솔루션 단위 셀 정렬 장치 및 정렬 방법
KR20230026649A (ko) * 2021-08-18 2023-02-27 주식회사 엘지에너지솔루션 전극 커팅장치 및 이를 포함하는 셀 제조장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060059700A (ko) * 2004-11-29 2006-06-02 삼성에스디아이 주식회사 이차 전지용 극판 권취장치
KR20120060705A (ko) * 2010-12-02 2012-06-12 주식회사 엘지화학 전극조립체의 폴딩 장치
KR20130101178A (ko) * 2012-03-05 2013-09-13 주식회사 엘지화학 전극조립체의 제조를 위한 폴딩 장치
KR20160051347A (ko) * 2014-11-03 2016-05-11 주식회사 엘지화학 스티치 커팅부를 포함하는 전극조립체 제조장치 및 이를 사용하여 제조된 전극조립체
JP2017212081A (ja) * 2016-05-24 2017-11-30 エリーパワー株式会社 電気化学セル用電極の端部位置検出システムおよび製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182658A (ja) * 1998-12-17 2000-06-30 Mitsubishi Cable Ind Ltd 電池用巻回機及び電池の製造方法
JP4716138B2 (ja) 2008-01-11 2011-07-06 トヨタ自動車株式会社 電極巻取装置、帯状電極と帯状セパレータとのずれ検知方法、当該ずれ量測定方法、当該ずれ量補正方法、および、電極巻取方法
KR101023700B1 (ko) * 2009-05-08 2011-03-25 주식회사 나래나노텍 2차 전지용 전극 조립체의 제조장치 및 그 제조방법
JP2011039014A (ja) 2009-08-06 2011-02-24 Toshiba It & Control Systems Corp 電池検査装置
JP2011129398A (ja) 2009-12-18 2011-06-30 Konica Minolta Holdings Inc シート状二次電池セルおよびその製造方法
KR101355834B1 (ko) * 2010-12-02 2014-01-28 주식회사 엘지화학 이차전지 제조용 라미네이션 장치
JP5953083B2 (ja) 2011-04-07 2016-07-13 日産自動車株式会社 積層装置および積層方法
KR101280069B1 (ko) * 2011-06-23 2013-06-28 주식회사 나래나노텍 전극 적층 시스템
KR101332282B1 (ko) 2012-03-14 2013-11-22 주식회사 엘지화학 신규한 구조의 전극조립체 및 이를 포함하는 전지셀
KR20130132230A (ko) 2012-05-25 2013-12-04 주식회사 엘지화학 단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060059700A (ko) * 2004-11-29 2006-06-02 삼성에스디아이 주식회사 이차 전지용 극판 권취장치
KR20120060705A (ko) * 2010-12-02 2012-06-12 주식회사 엘지화학 전극조립체의 폴딩 장치
KR20130101178A (ko) * 2012-03-05 2013-09-13 주식회사 엘지화학 전극조립체의 제조를 위한 폴딩 장치
KR20160051347A (ko) * 2014-11-03 2016-05-11 주식회사 엘지화학 스티치 커팅부를 포함하는 전극조립체 제조장치 및 이를 사용하여 제조된 전극조립체
JP2017212081A (ja) * 2016-05-24 2017-11-30 エリーパワー株式会社 電気化学セル用電極の端部位置検出システムおよび製造方法

Also Published As

Publication number Publication date
EP3731322A4 (en) 2021-04-07
US20210050626A1 (en) 2021-02-18
KR20190091745A (ko) 2019-08-07
CN111566862A (zh) 2020-08-21
CN111566862B (zh) 2023-10-17
KR102287768B1 (ko) 2021-08-10
EP3731322A1 (en) 2020-10-28
US11749841B2 (en) 2023-09-05

Similar Documents

Publication Publication Date Title
WO2019146947A1 (ko) 전극 조립체 제조방법 및 이차전지 제조방법
WO2020149638A1 (ko) 전극 조립체 제조장치와, 이를 통해 제조된 전극 조립체 및 이차전지
CN113785425B (zh) 制造电极组件的方法、通过该方法制造的电极组件、和二次电池
WO2020159306A1 (ko) 전극 조립체 제조방법과, 이를 통해 제조된 전극 및 이차전지
WO2022019599A1 (ko) 단위 셀 제조 장치 및 방법
WO2018088722A1 (ko) 전극 조립체 및 그 제조방법
WO2020204407A1 (ko) 이차 전지용 전지 케이스 및 파우치 형 이차 전지
WO2018216859A1 (ko) 복합 구조의 전극 조립체 및 상기 전극 조립체를 갖는 리튬이온 이차전지
WO2021194284A1 (ko) 단위 셀 제조 장치 및 방법
WO2019190054A1 (ko) 이차전지 제조장치 및 제조방법
WO2021101058A1 (ko) 전극조립체 제조장치 및 방법
WO2019132137A1 (ko) 이차전지의 제조시스템 및 제조방법
WO2021107315A1 (ko) 전극조립체 및 그 제조방법
WO2021054603A1 (ko) 이차전지 제조방법 및 이차전지
WO2020226320A1 (ko) 전극조립체 및 그의 제조방법
WO2021118197A1 (ko) 전극 조립체 제조장치와, 이를 통해 제조된 전극 조립체 및 이차전지
WO2018212466A1 (ko) 전극 조립체 제조 장치 및 전극 조립체 제조방법
WO2020231149A1 (ko) 전극 조립체 제조장치와, 이를 통해 제조된 전극 조립체 및 이차전지
KR102363977B1 (ko) 전극 조립체 제조방법
KR102445958B1 (ko) 전극 조립체 제조방법 및 이차전지 제조방법
WO2021112551A1 (ko) 전극 조립체 제조장치와, 이를 통해 제조된 전극 조립체 및 이차전지
WO2018074849A1 (ko) 2차 전지
WO2021096248A1 (ko) 배터리 모듈, 이러한 배터리 모듈의 제조 방법 및 이러한 배터리 모듈을 포함하는 배터리 팩 및 자동차
WO2013141431A1 (ko) 배터리 셀
EP3341989A1 (en) Electrode and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019743569

Country of ref document: EP

Effective date: 20200724