WO2019146436A1 - Photosensitive resin composition and lens - Google Patents

Photosensitive resin composition and lens Download PDF

Info

Publication number
WO2019146436A1
WO2019146436A1 PCT/JP2019/000812 JP2019000812W WO2019146436A1 WO 2019146436 A1 WO2019146436 A1 WO 2019146436A1 JP 2019000812 W JP2019000812 W JP 2019000812W WO 2019146436 A1 WO2019146436 A1 WO 2019146436A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
photosensitive resin
film
polymer
polyamideimide
Prior art date
Application number
PCT/JP2019/000812
Other languages
French (fr)
Japanese (ja)
Inventor
隆覚 櫻井
誠 藤村
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2019567000A priority Critical patent/JPWO2019146436A1/en
Publication of WO2019146436A1 publication Critical patent/WO2019146436A1/en
Priority to JP2023131503A priority patent/JP2023159232A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/22Oxygen
    • C08F12/24Phenols or alcohols
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis

Definitions

  • the present invention relates to a photosensitive resin composition and a lens.
  • Resin films having various functionalities may be provided on light receiving elements such as various sensors, light emitting elements, and electronic components such as touch panels that can include both of them.
  • Various resins can be used for micro LEDs (Light Emitting Diodes), micro OLEDs (Organic Light Emitting Diodes), and organic electroluminescent devices (hereinafter also referred to as “organic EL devices”) as an example of a light emitting device, according to the purpose.
  • a membrane may be provided.
  • a resin film for example, a protective film for preventing deterioration or damage of the element, an electrical insulating film for maintaining electrical insulation, and a passivation for protecting the inside from moisture or metal ions from the outside Membrane etc. are mentioned.
  • the resin film can be represented by various names according to the function to exhibit.
  • a resin film having a protective function and an electrical insulation function may be referred to as a "protective insulating film" or the like.
  • thermosetting resin materials such as an epoxy resin
  • an inorganic material such as silicon dioxide, aluminum oxide, and silicon nitride
  • Patent Document 1 discloses a photosensitive composition containing a polymer composed of a specific vinyl compound, a polymerizable compound, a photopolymerization initiator, and a solvent. According to such a photosensitive composition, it is possible to form a microlens excellent in refractive index, transparency in the visible region, and heat resistance. Further, in Patent Document 2, a resin obtained by hydrogenating a part of a vinylphenol-based copolymer, 1,2-naphthoquinonediazide sulfonic acid ester as a photosensitizer, and heat resistance and solvent resistance when forming a lens by heat treatment.
  • thermosetting agent capable of imparting properties and a solvent. According to such a photosensitive material, it is possible to form a lens which has a large refractive index and is excellent in transparency in the visible light range, heat resistance, light resistance and solvent resistance.
  • the resin film provided in the various electronic components mentioned above may have a pattern.
  • the resin film “has a pattern” for example, the shape corresponding to the lens shape of the lens provided in the light receiving element and the light emitting element as described above, that is, the “pattern” It may be in a state of being formed by a film.
  • the shape of the resin film itself may be a shape that can function as a lens.
  • a resin film having a pattern may optionally be a coating film made of a resin composition formed using a resin composition, After being subjected to the patterning step and the like, the film can be formed by being subjected to a heating step (hereinafter, “post-baking step”).
  • post-baking step the coating film and the resin film may be collectively referred to as a "resist film”.
  • the patterned resin film obtained through the post-baking process can be exposed to further heat treatment also in the process of forming the peripheral structure such as a wiring.
  • the resist film such as a coating film or a resin film is required to be excellent in heat-resistant shape retention.
  • the coating or resist film formed when manufacturing a microlens or a lens with the photosensitive composition described in Patent Document 1 and the photosensitive material described in Patent Document 2 has transparency and heat resistance. There is room for improvement in terms of achieving both shape retention at a high level.
  • an object of this invention is to provide the photosensitive resin composition which can form the positive resist film which can make transparency and heat-resistant shape retention compatible on a high level.
  • Another object of the present invention is to provide a lens which is excellent in transparency and heat resistance shape retention.
  • the present inventors diligently studied to achieve the above object. And this inventor is transparency when using the photosensitive resin composition containing the polymer which has a vinyl phenol type monomer unit, the polyamidoimide which has a branched structure, and a naphthyl imide group containing sulfonic acid compound. And it discovered newly that the positive resist film which is excellent in heat-resistant shape retention property can be formed, and completed this invention.
  • the present invention aims to solve the above-mentioned problems advantageously, and the photosensitive resin composition of the present invention is a polymer having a monomer unit represented by the following general formula (I) And a polyamideimide having a branched structure, and a naphthylimide group-containing sulfonic acid compound.
  • the photosensitive resin composition of such a specific composition it is possible to form a positive resist film which is excellent in transparency and heat-resistant shape retention.
  • R 1 is a single chemical bond or a divalent hydrocarbon group having 1 to 6 carbon atoms which may have a substituent
  • R 2 is a hydrogen atom, Or a monovalent hydrocarbon group having 1 to 6 carbon atoms which may have a substituent.
  • light to which the “photosensitive resin composition” can exhibit sensitivity is not limited to so-called visible light and the like, and, for example, a wide range which can be generally referred to as “radiation”. Active energy rays in the wavelength range may be included.
  • the number average molecular weight of the polyamideimide having the branched structure is preferably 2,000 or more and 30,000 or less.
  • the number average molecular weight of the polyamideimide having a branched structure is 2000 or more, the heat resistant shape retention of the positive resist film can be further improved, and the formation of the positive resist film using the photosensitive resin composition The ease can be enhanced.
  • the number average molecular weight of the polyamideimide having a branched structure is 30,000 or less, the compatibility with the polymer having a monomer unit represented by General Formula (I) can be improved.
  • the polymer is a copolymer further having a (meth) acrylate monomer unit. If the polymer is a copolymer further having a (meth) acrylate monomer unit, the sensitivity of the photosensitive resin composition can be improved, and a positive resist film excellent in transparency can be formed. .
  • (meth) acrylate means “acrylate and / or methacrylate”.
  • the content ratio of the polymer to the polyamideimide having the branched structure is 90:10 to 70 on a mass basis. It is preferable that it is: 30. If the content ratio of the polymer to the polyamideimide having a branched structure (polymer: polyamideimide having a branched structure) is 90:10 to 70:30 on a mass basis, the transparency of the obtained positive resist film is obtained It is possible to suppress the decrease in the property, to prevent the decrease in the residual film ratio after development, to improve the heat-resistant shape retention, and to prevent the decrease in the sensitivity.
  • the amount of the naphthylimide group-containing sulfonic acid compound is 0.1 parts by mass or more per 100 parts by mass of the polymer and the polyamideimide having the branched structure. It is preferable to contain in the ratio of 0 mass part or less. If the content of the naphthylimide group-containing sulfonic acid compound is within the above range, the resulting positive resist film can be further enhanced in chemical resistance, heat-resistant shape retention, sensitivity, and resolution in a thick film. it can.
  • the photosensitive resin composition of the present invention further comprises a photosensitizer and a crosslinking agent. If the photosensitive resin composition further contains a photosensitizer and a crosslinking agent, a positive resist film can be easily formed.
  • a lens formed from any of the above photosensitive resin compositions is excellent in transparency and heat-resistant shape retention.
  • the photosensitive resin composition of the present invention it is possible to form a positive resist film and a lens which are excellent in transparency and heat-resistant shape retention.
  • the photosensitive resin composition of the present invention can be used, for example, as a protective film for a micro LED, a micro OLED, an organic EL element, and a touch panel, an electrical insulating film, a passivation film, and the like.
  • the photosensitive resin composition of this invention can be used, for example, when forming a resist pattern in manufacturing processes, such as a micro LED array.
  • the photosensitive resin composition of the present invention contains a predetermined polymer, a polyamideimide having a branched structure, and a naphthylimide group-containing sulfonic acid compound, and optionally, a photosensitizer, a crosslinking agent, and a solvent, It further contains known additives that can be incorporated into the photosensitive resin composition. And since the photosensitive resin composition of the present invention contains, in addition to a predetermined polymer, a polyamideimide having a branched structure and a naphthylimide group-containing sulfonic acid compound, the transparency and the heat-resistant shape retention are maintained.
  • a positive resist film (hereinafter, also simply referred to as a "resist film”) having excellent properties can be formed.
  • the resin film provided in various light emitting elements, light receiving elements and the like it is preferable when using the resist film to form a resin film provided in various light emitting elements, light receiving elements and the like. If the transparency of the resist film is high, the amount of attenuation of light in the resin film can be reduced when a light emitting element or a light receiving element is formed using the resist film.
  • the resin film provided in the light emitting element may function as a lens.
  • a coating film formed using a resin composition is subjected to a patterning step, and for example, a pattern having an angular cross section such as a cylindrical shape
  • a pattern having an angular cross section such as a cylindrical shape
  • the patterned coating film containing each of the cylindrical patterns is heated to be in a fluidized state, and the cross-sectional shape of each pattern is obtained by surface tension.
  • a process may be performed, which may be referred to as a "melt flow process", which has a gentle shape.
  • the pattern having a gentle cross-sectional shape functions as a so-called "lens” and can exhibit a light collecting function and / or a light diffusing function. Even in such a case, if the transparency of the resist film and the heat resistance shape retention property are high, a resin film that can function as a lens can be formed well.
  • the gap between each pattern in the patterned coating film may be a melt flow process, a post baking process for forming a resin film from the coating film, and wiring etc. Excessive change can be suppressed by heat treatment that can be performed in the formation process of the peripheral structure and the like.
  • a dome-like (hemispherical) pattern which is separated from each other and dispersed as if it is “island-like”. For this reason, according to the photosensitive resin composition of the present invention which is excellent in transparency and heat-resistant shape retention, a pattern or a lens with high transparency formed at desired intervals can be favorably provided.
  • the polymer used for the photosensitive resin composition of the present invention has a predetermined monomer unit.
  • the monomer unit represented by following General formula (I) Preferably, a vinyl phenol monomer unit is mentioned. Furthermore, as the predetermined monomer units, optionally, (meth) acrylate monomer units, aromatic vinyl monomer units (excluding vinyl phenol monomer units), and other monomer units It can be mentioned.
  • R 1 is a single chemical bond or a divalent hydrocarbon group having 1 to 6 carbon atoms which may have a substituent
  • R 2 is a hydrogen atom, Or a monovalent hydrocarbon group having 1 to 6 carbon atoms which may have a substituent.
  • R 1 is a chemical single bond or a divalent hydrocarbon group having 1 to 6 carbon atoms which may have a substituent, preferably a chemical single bond. It is a bond or an alkylene group having 1 to 4 carbon atoms (branched or linear), more preferably a single chemical bond or an alkylene group having 1 to 2 carbon atoms.
  • R 2 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms which may have a substituent, preferably a hydrogen atom or a carbon number It is a 1-4 alkyl group, more preferably a hydrogen atom or a 1-2 carbon alkyl group.
  • substituents include halogen atoms such as fluorine atom, chlorine atom and bromine atom; alkoxy groups having 1 to 10 carbon atoms such as methoxy group, ethoxy group and isopropoxy group; nitro group; cyano group; Examples thereof include a phenyl group which may have a substituent such as 4-methylphenyl group and 2-chlorophenyl group; a hydroxyl group; and the like.
  • Examples of the monomer unit represented by the general formula (I) include (i) vinylphenol monomer units described later, (ii) ⁇ -methyl-4-hydroxystyrene, ⁇ -methyl-3-hydroxyl Monomer units derived from monomers such as styrene, ⁇ -methyl-2-hydroxystyrene, 4-hydroxyallylbenzene, 3-hydroxyallylbenzene, 2-hydroxyallylbenzene, and the like. Among these, vinyl phenol monomer units described later are preferable.
  • the vinyl phenol monomer unit is a structural unit represented by the following structural formula (I).
  • the structural unit represented by the above structural formula (I) is not only a structural unit derived from a vinylphenol monomer, but, for example, as shown in Synthesis Example 1 described later, it may be phenolic with any protecting group. It also includes a structural unit obtained by deprotecting a structural unit derived from a compound in which a hydroxyl group is protected (eg, p-tert-butoxystyrene).
  • Specific examples of the vinylphenol monomer include 4-hydroxystyrene (p-vinylphenol), 3-hydroxystyrene (m-vinylphenol), p-isopropenylphenol and the like.
  • 4-hydroxystyrene p-vinylphenol
  • the vinyl phenol monomer and the compound in which the phenolic hydroxyl group is protected with an optional protecting group may be used alone or in combination of two or more.
  • the content of the structural unit represented by the structural formula (I) in the polymer is not particularly limited, but is preferably 30% by mass or more and 80% by mass or less.
  • the content of the structural unit represented by the structural formula (I) in the polymer is 30% by mass or more, the solubility in an alkali developer can be enhanced.
  • the content of vinylphenol monomer units in the polymer is 80% by mass or less, the transparency of the obtained resist film can be further enhanced.
  • the (meth) acrylate monomer unit is a structural unit derived from a (meth) acrylate monomer. It is preferable that the said polymer is a copolymer which further has a (meth) acrylate monomer unit.
  • the polymer is a copolymer further having (meth) acrylate monomer units, the sensitivity of the photosensitive resin composition can be improved, and the transparency of the resist film can be further enhanced.
  • the (meth) acrylate monomer is not particularly limited.
  • (Meth) acrylic acid alkyl ester 2-methoxyethyl acrylate, 3-methoxypropyl acrylate, 3-methoxybutyl acrylate, ethoxymethyl acrylate, 2-methoxyethyl methacrylate, 3-methoxypropyl methacrylate, methacrylic Acid 3-Methoxybutyl , Such as methacrylic acid ethoxymethyl (meth) acrylic acid alkoxyalkyl ester; and the like.
  • (meth) acrylic acid alkyl esters are preferable, and methyl methacrylate is more preferable.
  • These (meth) acrylate monomers may be used alone or in combination of two or more.
  • the content of the (meth) acrylate monomer unit in the copolymer is not particularly limited, but is preferably 20% by mass or more, and more preferably 70% by mass or less.
  • the content of the (meth) acrylate monomer unit in the copolymer is 20% by mass or more, the transparency of the obtained resist film can be further enhanced.
  • the content of the (meth) acrylate monomer unit in the copolymer is 70% by mass or less, the solubility in an alkali developer can be enhanced.
  • the aromatic vinyl monomer unit is a structural unit derived from an aromatic vinyl monomer unit.
  • the aromatic vinyl monomer unit is not particularly limited, and examples thereof include styrene, o, m, p-methylstyrene, p-tert-butylstyrene, ethylstyrene, 2,4-dimethylstyrene, ⁇ -methylstyrene, And the like. Among these, styrene is preferable in terms of availability and cost.
  • These aromatic vinyl monomer units may be used alone or in combination of two or more.
  • the content of the aromatic vinyl monomer unit in the copolymer is not particularly limited, but is preferably 30% by mass or more, and more preferably 80% by mass or less.
  • the content of the aromatic vinyl monomer unit in the copolymer is 30% by mass or more, the solubility in an alkali developer can be enhanced.
  • the content of the aromatic vinyl monomer unit in the copolymer is 80% by mass or less, the transparency of the obtained resist film can be further enhanced.
  • the other monomer unit is a structural unit derived from another monomer copolymerizable with the above-mentioned monomer, and examples thereof include N-phenylmaleimide, acrylonitrile and the like.
  • the other monomers are not particularly limited as long as they do not inhibit the effects of the present invention.
  • vinylphenol / methyl methacrylate copolymer vinylphenol / styrene copolymer, vinylphenol homopolymer, etc.
  • vinylphenol / methyl methacrylate copolymer is preferable.
  • these polymers may be used individually by 1 type, and may use 2 or more types together.
  • the weight average molecular weight (Mw) is preferably 12000 or less, and more preferably 8000 or more. If the weight average molecular weight (Mw) of the vinylphenol / methyl methacrylate copolymer is 12000 or less, the solubility in a solvent can be improved. Moreover, if the weight average molecular weight (Mw) of the vinyl phenol / methyl methacrylate copolymer is 8000 or more, it is preferable from the viewpoint of the formation of a coating film, the curability after curing, and the mechanical strength. The above values are in terms of polystyrene.
  • the photosensitive resin composition of the present invention contains a polyamideimide having a branched structure, a resist film excellent in transparency can be formed.
  • the polyamideimide having a branched structure used in the photosensitive resin composition of the present invention can enhance the solubility and sensitivity of the photosensitive resin composition in the solvent.
  • the photosensitive resin composition contains a polyamideimide having a branched structure, for example, even when a thick resist film having a thickness of 10 ⁇ m is formed, the exposure amount is not excessively increased and resolution is high. It can be patterned.
  • the photosensitive resin composition contains a polyamideimide having a branched structure
  • the resist film (coating film) having a high "resolution in a thick film” a patterned coating film is obtained, and the lens forming ability in the case of obtaining a lens shape by performing a melt flow process is excellent.
  • the polyamideimide having the branched structure has, for example, a structural unit represented by the following general formula (1) and a structural unit represented by the following general formula (2), and the following structural formula (1) And a compound having any one or more of terminal structures represented by (2) and (3), a compound represented by the following general formula (3), a polyamideimide resin having a branched structure (manufactured by DIC, Uni Dick EMG-793), polyamide-imide resin having a branched structure (manufactured by DIC, Unidic EMG-1015), and the like.
  • R 11 represents an organic group having a cyclic aliphatic structure having 6 to 13 carbon atoms.
  • R 12 represents an organic group having a cyclic aliphatic structure having 6 to 13 carbon atoms
  • R 13 represents a linear hydrocarbon structure having a number average molecular weight of 700 to 4500.
  • n is 2 or more and 200 or less.
  • the compound represented by the said General formula (3) is obtained by making an isophorone diisocyanate isocyanurate body and trimenic acid anhydride react (refer the following reaction formula (1)).
  • n is 2 or more and 200 or less.
  • a polyfunctional polyol containing two or more hydroxyl groups is added as a chain transfer agent to introduce a portion having a urethane structure in a partial structure of the above general formula (3) It is also good.
  • the physical properties of the polyamideimide having a branched structure can be controlled by introducing the site having the urethane structure into a partial structure of the general formula (3).
  • the part represented by following General formula (4) is mentioned, for example.
  • R 14 represents an organic group having a cyclic aliphatic structure having 6 to 13 carbon atoms
  • R 15 represents a linear hydrocarbon structure having a number average molecular weight of 700 to 4500.
  • the number average molecular weight (Mn) of the polyamideimide having the branched structure described above is preferably 30,000 or less, and more preferably 2,000 or more.
  • the compatibility with the polymer having a vinylphenol monomer unit can be improved, and the solubility in a solvent is improved.
  • the number average molecular weight (Mn) of the polyamideimide having a branched structure is 2,000 or more, the heat resistant shape retention of the resist film obtained can be further improved, and the positive resin using the photosensitive resin composition The easiness of forming the mold resist film can be enhanced. Furthermore, if the number average molecular weight (Mn) of the polyamideimide having a branched structure is 2000 or more, the heat resistance of the obtained resist film and the mechanical strength after curing can be enhanced.
  • the value of the number average molecular weight (Mn) of polyamideimide can be determined as a polystyrene equivalent according to the gel permeation chromatography (GPC) method.
  • the weight average molecular weight (Mw) of the polyamideimide having the branched structure is preferably 100,000 or less, and more preferably 3,000 or more.
  • the weight average molecular weight (Mw) of the polyamideimide having a branched structure is 100,000 or less, the compatibility with the polymer having a vinylphenol monomer unit can be further improved, and the solubility in the solvent is further enhanced. It can be improved.
  • the weight average molecular weight (Mw) of the polyamideimide having a branched structure is 3,000 or more, the heat resistance of the obtained resist film and the mechanical strength after curing can be further enhanced.
  • the proportion of the polymer in the total (100% by mass) of the polymer and the polyamideimide having the branched structure is preferably 70% by mass or more, and more preferably 80% by mass or more And 90% by mass or less, and more preferably 85% by mass or less. If the proportion of the polymer in the total (100% by mass) of the polymer and the polyamideimide having a branched structure is 70% by mass or more and 90% by mass or less, the transparency and heat-resistant shape retention of the resist film obtained Can be further enhanced, and the residual film rate after development and the sensitivity can be prevented from decreasing.
  • the naphthylimide group-containing sulfonic acid compound is a compound that decomposes to generate a sulfonic acid when irradiated with radiation.
  • the photosensitive resin composition of the present invention is excellent in heat-resistant shape retention because it contains a naphthylimide group-containing sulfonic acid compound. Furthermore, the naphthylimide group-containing sulfonic acid compound can improve the sensitivity, the chemical resistance, and the resolution in a thick film of a resist film obtained using the photosensitive resin composition.
  • the radiation is not particularly limited.
  • visible light ultraviolet light
  • X-ray light of a single wavelength such as g-ray, h-ray, i-ray, etc .
  • KrF excimer laser light ArF excimer laser light, etc.
  • Laser beam particle beam such as electron beam;
  • these radiation can be used individually by 1 type or in mixture of 2 or more types.
  • the naphthylimide group-containing sulfonic acid compound is not particularly limited, and examples thereof include 1,8-naphthalimidyl triflate (manufactured by Midori Kagaku Co., Ltd., product name “NAI-105”), 1, 8- Naphthalimidyl butane sulfonate (Midori Chemical Co., product name "NAI-1004"), 1, 8- Naphthalimidyl tosylate (Midori Chemical company, product name "NAI-101"), 1, 8- Naphthali Midyl nona fluorobutane sulfonate (Midori Chemical Co., Ltd., product name "NAI-109”), 1,8- naphthalimidyl 9-camphorsulfonate (Midori Chemical Co., product name "NAI-106”), 1, 8-naphtha Ruimidyl ethane sulfonate (Midori Chemical Co., Ltd., product name "NA
  • a naphthylimide group-containing sulfonic acid compound 1,8-naphthalimidyl triflate (manufactured by Midori Kagaku Co., Ltd., product name "NAI-105") Is preferred.
  • the content of the naphthylimide group-containing sulfonic acid compound is preferably 0.1 parts by mass or more, and more preferably 0.3 parts by mass or more, per 100 parts by mass in total of the polymer and the polyamideimide having a branched structure.
  • the amount is more preferably 2.0 parts by mass or less, and more preferably 1.0 parts by mass or less.
  • the heat resistant shape retention can be sufficiently enhanced for the obtained resist film.
  • the content of the naphthylimide group-containing sulfonic acid compound is within the above range, the heat resistant shape retention can be sufficiently enhanced for the obtained resist film.
  • the heat resistant shape retention property and chemical resistance of the obtained resist film can be enhanced.
  • the resolution of the obtained resist film in a thick film and the storage stability of the photosensitive resin composition can be enhanced. it can.
  • a naphthylimide group containing sulfonic acid compound can be used individually by 1 type or in mixture of 2 or more types.
  • a photosensitizer is a compound capable of causing a chemical reaction when irradiated with radiation.
  • the compound which can control the alkali solubility of the resist film formed of the photosensitive resin composition except the above-mentioned naphthyl imide group containing sulfonic acid compound can be used.
  • the photosensitizer it is preferable to use a compound which is decomposed to generate a carboxylic acid when irradiated with radiation.
  • the photosensitive resin composition further includes a photosensitizer, the easiness of forming a resist film can be enhanced.
  • a photosensitizer used for the photosensitive resin composition of the present invention for example, 4,4 '-[1- [4- [1- (4-hydroxyphenyl) -1-methylethyl] phenyl] ethylidene
  • An ester of bisphenol and 6-diazo-5,6-dihydro-5-oxo-naphthalene-1-sulfonic acid 4,4 '-[1- [4- [1-hydroxyphenyl) -1-] [Methylethyl] phenyl] ethylidene bisphenol (compound represented by the following structural formula (4)) and ester of 6-diazo-5,6-dihydro-5-oxo-naphthalene-1-sulfonic acid, 1,1, Esters of 1-tris (4-hydroxyphenyl) ethane (compound represented by the following structural formula (5)) with 6-diazo-5,6-dihydro-5-oxo-naphthalene-1-
  • the content of the photosensitizer is preferably, for example, less than 30 parts by mass per 100 parts by mass in total of the polymer and the polyamideimide having a branched structure.
  • the content of the photosensitizer is less than 30 parts by mass, the sensitivity of the obtained resist film and the resolution in a thick film are further enhanced, and bubbles in the coating film are generated when the resist film is exposed in a bleaching process or the like. Can be effectively suppressed.
  • the dissolution of the polymer containing the vinylphenol monomer unit in the solvent tends to be higher than that of the polymer.
  • the carboxylic acid may be preferentially dissolved in the solvent, and the solubility of the polymer may be insufficient. Therefore, by setting the content of the photosensitizer below the above upper limit, the sensitivity of the resist film and the resolution in a thick film can be further enhanced.
  • crosslinking agent used for the photosensitive resin composition of the present invention for example, butanetetracarboxylic acid tetra (3,4-epoxycyclohexylmethyl) modified ⁇ -caprolactone (manufactured by Daicel, Epolide GT401) and the like can be used.
  • Functional epoxy compounds, methylol compounds such as melamine / formaldehyde / alkyl monoalcohol polycondensate (manufactured by Sanwa Chemical Co., Ltd., Nikalac Mw-100LM), triglycidyls such as triglycidyl isocyanurate (manufactured by Nissan Chemical Industries, Ltd.
  • TEPIC-VL Alicyclic epoxy resins such as isocyanurate compounds, 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexane carboxylate (manufactured by Daicel, Celoxide 2021 P), etc. Described as ")" Known compound, and the like.
  • isocyanurate compounds 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexane carboxylate (manufactured by Daicel, Celoxide 2021 P), etc. Described as ”)
  • butanetetracarboxylic acid tetra (3,4-epoxycyclohexylmethyl) -modified ⁇ -caprolactone manufactured by Daicel, Epolide GT 401
  • crosslinking agents may be used alone, or two or more thereof may be used in combination.
  • a methylol compound in combination with the polyfunctional epoxy compound the chemical resistance of the obtained resist film can be enhanced.
  • a triglycidyl isocyanurate and / or an alicyclic epoxy resin in combination with a polyfunctional epoxy compound while maintaining the heat-resistant shape retention property of the resist film obtained, the resolution in a thick film and The sensitivity can be further improved.
  • content of a crosslinking agent can be made into a general range.
  • a solvent used for the photosensitive resin composition of this invention an ether type solvent, an amide type solvent, and mixtures thereof are used normally.
  • the ether solvents include diethylene glycol ethyl methyl ether (manufactured by Toho Chemical Industry Co., Ltd., Hysorb EDM), propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), and ⁇ -butyl lactone.
  • the amide solvents include 1-methyl-2-pyrrolidone, N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMA) and the like.
  • the solvent may be a mixture, but is preferably a single solvent consisting of a single substance from the viewpoint of ease of recovery and reuse of the solvent.
  • additive used for the photosensitive resin composition of the present invention for example, a dissolution accelerator, an antiaging agent, a silane coupling agent, a surfactant, an ultraviolet light absorber, a dye, a sensitizer and the like It can be mentioned.
  • a dissolution accelerator for example, a dissolution accelerator, an antiaging agent, a silane coupling agent, a surfactant, an ultraviolet light absorber, a dye, a sensitizer and the like It can be mentioned.
  • One of these additives may be used alone, or two or more thereof may be used in combination, in a general compounding amount depending on the desired attribute.
  • dissolution accelerator examples include 5,5 ′-[2,2,2-trifluoro-1- (trifluoromethyl) ethylidene] bis [2-hydroxy-1,3-benzenedimethanol] (Honshu Chem. Manufactured by Kogyo Co., Ltd., TML-BPAF-MF), 3,3 ', 5,5'-tetramethoxymethyl-4,4'-bisphenol (manufactured by Honshu Chemical Industry Co., Ltd., TMOM-BP), and other known dissolution accelerators Agents, and the like.
  • anti-aging agent examples include pentaerythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (compound represented by the following structural formula (6), manufactured by BASF Corp. , Irganox 1010), etc., 2,4-bis [(dodecylthio) methyl] -6-methylphenol (compound represented by the following structural formula (7), manufactured by BASF, Irganox 1726), etc. Sulfur based antioxidants, other known antioxidants, etc. may be mentioned.
  • pentaerythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (manufactured by BASF, Irganox 1010) is preferable from the viewpoint of transparency.
  • These anti-aging agents may be used alone or in combination of two or more.
  • silane coupling agent is not particularly limited, and any known one can be used (see, for example, JP-A-2015-94910). Among these, 3- (phenylamino) from the viewpoint of adhesion between the coating film or resin film obtained using the photosensitive resin composition of the present invention and the substrate on which the coating film or resin film is formed. 2.) Propyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-573) and glycidoxypropyltrimethoxysilane (manufactured by XIAMETER, OFS-6040) are preferable. One of these silane coupling agents may be used alone, or two or more thereof may be used in combination.
  • organosiloxane polymer Shin-Etsu Chemical Co., Ltd. make, KP341
  • other well-known surfactant, etc. are mentioned, for example.
  • organosiloxane polymers are preferable from the viewpoint of coatability to a substrate.
  • One of these surfactants may be used alone, or two or more thereof may be used in combination.
  • the photosensitive resin composition of the present invention can be prepared by mixing the above-mentioned components by a known method and optionally filtering.
  • known mixers such as a stirrer, a ball mill, a sand mill, a bead mill, a pigment disperser, a leash, an ultrasonic disperser, a homogenizer, a planetary mixer, and a film mix can be used.
  • the common filtration method using filter media, such as a filter can be employ
  • the resin film using the photosensitive resin composition of the present invention is not particularly limited, and for example, after providing a coating film using the photosensitive resin composition of the present invention on a substrate on which a resin film is formed It can form by irradiating a radiation to a coating film, and also heating the coating film after radiation irradiation.
  • the coating film provided on the substrate may be patterned. Furthermore, if necessary, the coating may be subjected to a bleaching step.
  • the arrangement of the coating film on the substrate on which the resin film is formed is not particularly limited, and after forming the coating film on the substrate using a method such as a coating method or a film laminating method, the coating is optionally coated. It can be done by patterning the film.
  • the formation of the coating film by the application method can be performed by applying a photosensitive resin composition to a substrate and then heating and drying (pre-baking).
  • coating the photosensitive resin composition various methods, such as a spray coat method, a spin coat method, a roll coat method, a die coat method, a doctor blade method, a bar coating method, a screen printing method, an inkjet method, are mentioned, for example. Can be adopted.
  • the heating and drying conditions vary depending on the type and the mixing ratio of the components contained in the photosensitive resin composition, but the heating temperature is usually 30 to 150 ° C., preferably 60 to 130 ° C., and the heating time is It is usually 0.5 to 90 minutes, preferably 1 to 60 minutes, more preferably 1 to 30 minutes.
  • formation of the coating film by a film lamination method is B-stage film by heat-drying (prebaking process), after apply
  • the coating of the photosensitive resin composition on the B-stage film forming substrate and the heating and drying of the photosensitive resin composition are performed in the same manner as the coating and the heating and drying of the photosensitive resin composition in the coating method described above. be able to.
  • the lamination can be performed using a pressure bonding machine such as a pressure laminator, a press, a vacuum laminator, a vacuum press, or a roll laminator.
  • the optional patterning step that can be applied to the coating provided on the substrate may be, for example, irradiating the above-described radiation on the coating before patterning to form a latent image pattern, and then forming a latent image. It can carry out using well-known patterning methods, such as the photolithographic method which makes a developing solution contact the coating film which has a pattern, and makes a pattern explicit.
  • a known method such as a method of irradiating radiation through a desired mask pattern using a reduction projection exposure apparatus can be used.
  • the irradiation conditions of radiation are suitably selected according to the radiation to be used, For example, the wavelength of a radiation can be in the range of 365 nm or more and 436 nm or less, and the irradiation amount is 900 mJ / cm 2 or less, for example. It can be done.
  • the developing solution is not particularly limited, and a known alkali developing solution such as 2.38 mass% tetramethylammonium hydroxide aqueous solution can be used.
  • the method for bringing the developer into contact with the coating film and the development conditions are not particularly limited, and can be appropriately set so as to obtain a resist pattern of desired quality.
  • the development time can be appropriately determined by the method of determining the development conditions described above.
  • the patterned coating film obtained as mentioned above can be rinsed by rinse agent, in order to remove a development residue as needed.
  • the remaining rinse solution may be further removed by compressed air or compressed nitrogen.
  • the patterned coating film is subjected to a melt flow process to change the cross-sectional shape of each pattern contained in the patterned coating film into a gentle shape.
  • a patterned coating may be obtained.
  • the cross-sectional shape changes the shape of a square-shaped pattern into a pattern with a gentle, non-cornered shape.
  • the patterned coating film is subjected to a melt flow step of holding for a predetermined time in a predetermined temperature range to form a cylindrical or substantially circular pattern.
  • the shape from a columnar dot shape to a hemispherical shape it is possible to form a lens pattern having a diameter of about 2 to 20 ⁇ m.
  • a heating method in a melt flow process For example, the method of heating in a hot plate or oven is mentioned.
  • the heating temperature in the melt flow process is any temperature above the melting point of the coating, for example, 100 to 170 ° C., preferably 120 to 150 ° C., and the heating time is usually 2 to 15 minutes, preferably Is 5 to 10 minutes.
  • the coating film subjected to the patterning process may be subjected to a bleaching process prior to the melt flow process.
  • the coating film is irradiated with radiation as described above to decompose the naphthylimide group-containing sulfonic acid compound to form a sulfonic acid, thereby enhancing the chemical resistance and the transparency of the coating film. be able to.
  • the irradiation conditions of radiation are suitably selected according to the radiation to be used,
  • the wavelength of a radiation can be in the range of 365 nm or more and 436 nm or less, and the irradiation amount is, for example, 750 mJ / cm 2 It is the above, It can be set as the irradiation amount larger than a patterning process.
  • a lens-like resin film (that is, a lens made of the photosensitive resin composition of the present invention) can be formed by heating (post-baking) and curing the coating film obtained as described above.
  • the heating of the coating film in the post-baking step is not particularly limited, and can be performed using, for example, a hot plate, an oven, or the like.
  • the heating may be performed under an inert gas atmosphere as required.
  • the inert gas include nitrogen, argon, helium, neon, xenon, krypton and the like. Among these, nitrogen and argon are preferable, and nitrogen is particularly preferable.
  • the temperature at the time of heating the coating can be, for example, 100 to 300.degree.
  • the time for heating the coating can be appropriately selected according to the area and thickness of the coating, the equipment used, etc., and can be, for example, 10 to 60 minutes.
  • FIG. 1 is a schematic cross-sectional view showing an example of a micro LED provided with a protective insulating film and a lens, which is formed using a photosensitive resin composition according to an embodiment of the present invention.
  • the micro LED 10 includes an epitaxial wafer 20, a plurality of n dot electrodes 30 formed on one main surface of the epitaxial wafer 20, and a p pad electrode 40 formed on the other main surface of the epitaxial wafer 20.
  • the micro LED 10 is provided with a protective insulating film 50 and a lens 60 formed on the protective insulating film 50 on the main surface on which the p pad electrode 40 is formed.
  • the photosensitive resin composition of the present invention can be used to produce a micro LED of the above-described structure.
  • a resin film corresponding to the protective insulating film 50 is obtained by performing coating, a pre-baking step, a post-baking step, and the like.
  • a resin film corresponding to the lens 60 is obtained by performing a pre-baking process, a patterning process, a melt flow process, a post-baking process, and the like.
  • the formation location of the protective insulating film 50 and the lens 60 can be arbitrarily determined as needed. Since the patterning step which can be carried out when forming the lens 60 using the photosensitive resin composition of the present invention can be carried out according to the known photolithography method as described above, the pattern accuracy is obtained with high accuracy. It is easy to make the lens 60 into a minute structure.
  • an array sheet in which a plurality of micro LEDs are arrayed on a wafer is used instead of manufacturing only one such micro LED. It is common to obtain one micro LED as shown in FIG. 1 by dicing the array sheet after obtaining it. Therefore, when forming a patterned coating film and forming a lens, after forming a dot pattern corresponding to each of a plurality of micro LEDs included in the array sheet in the patterning step, the melt flow step is performed. Thus, the shape of each pattern is changed to a lens shape.
  • Synthesis Examples 1 and 2 Preparation Examples of (co) polymers are shown in Synthesis Examples 1 and 2.
  • Synthesis Example 1 ⁇ Preparation of copolymer (A-1) having p-vinylphenol monomer unit and methyl methacrylate monomer unit> 50 parts of p-tert-butoxystyrene as a compound in which a phenolic hydroxyl group is protected by a protecting group, 50 parts of methyl methacrylate as a (meth) acrylate monomer, and azobisisobutyronitrile as a polymerization initiator Four parts were dissolved in 150 parts of propylene glycol monomethyl ether as a solvent, and polymerization was performed for 10 hours under a nitrogen atmosphere while maintaining the reaction temperature at 70 ° C.
  • the weight average molecular weight (Mw) was 9600 in terms of polystyrene.
  • composition example 2 ⁇ Preparation of Cyclic Olefin Polymer (A-2)> 40 mol% of N-phenyl-bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide (NBPI), and 4-hydroxycarbonyltetracyclo [6.2.1.13,6. 02, 7] 100 parts of a monomer mixture consisting of 60 mol% of dodec-9-ene (TCDC), 2.0 parts of 1,5-hexadiene, (1,3-dimesitylimidazolin-2-ylidene) (tril Cyclohexylphosphine) benzylidene ruthenium dichloride (synthesized by the method described in Org. Lett., Vol.
  • Example 1 85 parts of the copolymer (A-1) having the p-vinylphenol monomer unit and the methyl methacrylate monomer unit obtained in Synthesis Example 1 as a polymer, (ii) a branched structure Polyamideimide resin (manufactured by DIC, Unidic EMG-793, solid content 43.7% (solvent is propylene glycol monomethyl ether acetate), acid value 65.6 mg (KOH) / g, viscosity (25 ° C., type E) Viscosity meter) 1.04 Pa ⁇ s, number average molecular weight (polystyrene equivalent according to gel permeation chromatography (GPC) method: 2,000 or more and 30,000 or less), 15 parts, (iii) 1 as a naphthylimide group-containing sulfonic acid compound , 8-Naphthalimidyl triflate (Midori Kagaku Co., Ltd., product name “NAI-105”) 0.5
  • a photosensitive resin composition was applied on a silicon wafer substrate by a spin coating method, and dried by heating (pre-baking) at 120 ° C. for 2 minutes using a hot plate to form a coating film having a thickness of 10 ⁇ m.
  • pre-baking heating at 120 ° C. for 2 minutes using a hot plate to form a coating film having a thickness of 10 ⁇ m.
  • a mask capable of forming a dot pattern having a diameter of 20 ⁇ m and a distance between dots of 10 ⁇ m as shown in FIG.
  • the process was done.
  • development is performed at 25 ° C. for 90 seconds using a 2.38 mass% tetramethylammonium hydroxide aqueous solution, and rinsing is performed with ultrapure water for 20 seconds, so that a plurality of portions obtained at different exposure amounts are obtained.
  • a laminate comprising a coating film having an extending dot pattern and a silicon wafer substrate was obtained.
  • the dot pattern formation part of the obtained laminated body was observed using the optical microscope, and the diameter of the dot pattern contained in the part exposed by each exposure amount was measured, respectively. Then, an approximate curve is created from the relationship between each exposure amount and the diameter of the dot pattern formed at the corresponding exposure amount, and the exposure amount when the diameter of the dot pattern becomes 20 ⁇ m is calculated. It was determined simply as "sensitivity". The lower the exposure amount when the diameter of the dot pattern is 20 ⁇ m, the higher the exposure sensitivity is, because the pattern can be formed with low energy or in a short time.
  • ⁇ Development residual film rate> In the same manner as in the above-described ⁇ exposure sensitivity> measurement, a coating film having a thickness of 10 ⁇ m was formed on a silicon wafer substrate. Then, after performing processing for imitating "development processing" in the case of performing a patterning step in which a 2.38 mass% tetramethylammonium hydroxide aqueous solution is immersed at 25 ° C for 90 seconds, it is treated with ultrapure water. By rinsing for 20 seconds, a laminate of the coating film and the silicon wafer was obtained.
  • the film thickness of the obtained coating film is measured with a light interference type film thickness measuring device (lambda Ace VM-1200, manufactured by SCREEN Semiconductor Solutions), and the film thickness after development / film thickness before development is a development residue.
  • the film rate (%) was calculated. It is preferable that the development residual film ratio is high because the varnish loss amount and the unevenness at the time of development can be reduced.
  • a photosensitive resin composition is applied by spin coating on a glass substrate (Corning 1737, Corning) and dried by heating (pre-baking) at 120 ° C. for 2 minutes using a hot plate to give a coating having a thickness of 10 ⁇ m. It formed.
  • the coated film is immersed in a 2.38 mass% tetramethylammonium hydroxide aqueous solution at 25 ° C. for 90 seconds, and a process simulating “development processing” in the case of performing a patterning step is performed, and ultrapure water Rinse for 20 seconds. Then, using an oven, post-baking was performed in an oxidizing atmosphere heated at 200 ° C.
  • the obtained laminate was measured at a wavelength of 400 nm to 800 nm using a spectrophotometer V-560 (manufactured by JASCO Corporation). From the measurement results, the average light transmittance (%) at 400 to 800 nm was calculated and calculated as the heat resistant transparency. In addition, the light transmittance (%) of the resin film was computed by the conversion value in case the thickness of a resin film is 10 micrometers by using as a blank the glass substrate to which the resin film is not attached. The higher the light transmittance (heat-resistant transparency), the smaller the amount of light attenuation by the resin film.
  • a laminate having high luminance of reflected light can be suitably used in various applications because the appearance of the laminate is clear.
  • ⁇ Chemical resistance> In the same manner as in the above-described ⁇ exposure sensitivity> measurement, a coating film having a thickness of 10 ⁇ m was formed on a silicon wafer substrate. Then, after performing processing for imitating "development processing" in the case of performing a patterning step in which a 2.38 mass% tetramethylammonium hydroxide aqueous solution is immersed at 25 ° C for 90 seconds, it is treated with ultrapure water. Rinsed for 20 seconds. Then, using an oven, post-baking was performed in an oxidizing atmosphere heated at 130 ° C. or 150 ° C. for 60 minutes in an air atmosphere to obtain a laminate of a resin film and a silicon wafer substrate.
  • the obtained laminate was immersed in 200 mL of NMP (N-methyl-2-pyrrolidone), which is a resist stripping solution maintained at 80 ° C. in a thermostat, for 15 minutes.
  • NMP N-methyl-2-pyrrolidone
  • the film thickness of the resin film before and after immersion is measured by an optical interference type film thickness measurement device (lambda Ace VM-1200, manufactured by SCREEN Semiconductor Solutions), and the formula: [film thickness of resin film after immersion (T BI )
  • the ratio (T BI / T AI ) [%] of the film thickness after immersion to the film thickness before immersion is calculated from the film thickness of the resin film before immersion (T AI ) ⁇ 100], and the ratio
  • the film thickness change rate [%] of the resin film was calculated by subtracting 100% from the above, and the chemical resistance was evaluated according to the following evaluation criteria.
  • a material having lower heat resistance Is also preferable because it can be used as a substrate.
  • ⁇ Heat resistant shape retention> In the same manner as in the above-described ⁇ exposure sensitivity> measurement, a coating film having a thickness of 10 ⁇ m was formed on a silicon wafer substrate. This coating film was exposed to light with an exposure amount corresponding to the exposure sensitivity obtained by the measurement of ⁇ exposure sensitivity> in the patterning step using the same mask as the measurement of the ⁇ exposure sensitivity>. Next, after development was performed at 25 ° C. for 90 seconds using a 2.38 mass% tetramethylammonium hydroxide aqueous solution, rinsing was performed with ultrapure water for 20 seconds to obtain a positive type 20 ⁇ m dot patterned coating film. It formed.
  • the cross-sectional shape of the obtained patterned coating film was observed with the scanning electron microscope (SEM), and the width
  • SEM scanning electron microscope
  • the entire surface of the patterned resin film was subjected to a bleaching step in which a mixed ghi ray was irradiated so that the irradiation amount was 2000 mJ / cm 2 .
  • the substrate on which this pattern was formed using a hot plate was subjected to a heat treatment at 120 ° C. for 10 minutes to carry out a melt flow process. In the melt flow process, the patterned coating film was melted to change the pattern from a substantially cylindrical shape to a hemispherical shape (lens shape).
  • the substrate which has undergone the melt flow process is heated at 200 ° C. for 30 minutes using a hot plate to perform a post-baking process, thereby having a pattern which is a hemispherical body (lens) having a thickness of 10 ⁇ m at the top.
  • a resin film was formed.
  • the cross-sectional shape of the pattern obtained through the post-baking process was observed by SEM similarly to the above, and the width b between the patterns was measured based on the SEM image.
  • the difference (ab) between the width a between the dot patterns after the formation of the patterned coating film and the width b between the patterns after the post-baking step is determined, and patterning is performed according to the following evaluation criteria
  • the lens shape (heat-resistant shape retention) of the resin film was evaluated.
  • the value of the difference (ab) was calculated at 10 points, and the number average value of the values of 10 points was used for the evaluation.
  • C The value of the difference (ab) is more than 4 ⁇ m, or the pattern is completely melted in the post-baking step and fused with the adjacent pattern.
  • ⁇ Bubble at the time of exposure> In the same manner as in the above-described ⁇ exposure sensitivity> measurement, a coating film having a thickness of 10 ⁇ m was formed on a silicon wafer substrate. Next, the entire surface of the coating film is subjected to a bleaching step of irradiating a mixed line of gh i so that the irradiation dose becomes 2000 mJ / cm 2, and a laminate having the coating film bleached on a silicon wafer substrate I got Then, the laminate was heated at 200 ° C. for 30 minutes using a hot plate to carry out a post-baking step.
  • the laminated body which passed through the post-baking process was observed using the optical microscope, and the presence or absence of the bubble in the laminated body was confirmed. Those in which no bubble was observed were evaluated as "A”, and those in which a bubble was observed were evaluated as "B".
  • Example 2 The same as Example 1, except that the blending amounts of the copolymer (A-1) and the polyamideimide resin having a branched structure (UNIDIC EMG-793 manufactured by DIC Corporation) are changed as shown in Table 1, respectively.
  • the photosensitive resin composition was prepared, and each evaluation was performed using the prepared photosensitive resin composition. The results are shown in Table 1.
  • Example 3 In Example 1, (v) triglycidyl isocyanurate (Nissan) instead of using 10 parts of (v) melamine formaldehyde alkyl monoalcohol polycondensate (manufactured by Sanwa Chemical Co., Ltd., Nikalac Mw-100 LM) as a crosslinking agent A photosensitive resin composition was prepared in the same manner as in Example 1 except that 10 parts of TEPIC-VL, manufactured by CHEMICAL CO., LTD., Was used, and each evaluation was performed using the prepared photosensitive resin composition. The results are shown in Table 1.
  • Example 4 In Example 1, (v) 3,4-epoxycyclohexyl instead of using 10 parts of (v) melamine formaldehyde alkyl monoalcohol polycondensate (manufactured by Sanwa Chemical Co., Ltd., Nikalac Mw-100 LM) as a crosslinking agent
  • a photosensitive resin composition was prepared and prepared in the same manner as in Example 1 except that 10 parts of methyl (3,4-epoxy) cyclohexane carboxylate (made by Daicel, Celoxide 2021 P) was used. Each evaluation was performed using the composition. The results are shown in Table 1.
  • Example 5 In Example 1, 0.5 parts of a compounding amount of (iii) 1,8-naphthalimidyl triflate (manufactured by Midori Kagaku, product name “NAI-105”) as a naphthylimide group-containing sulfonic acid compound A photosensitive resin composition was prepared in the same manner as in Example 1 except that the above was changed to 1.0 part, and each evaluation was performed using the prepared photosensitive resin composition. The results are shown in Table 1.
  • Example 6 In Example 1, 0.5 parts of a compounding amount of (iii) 1,8-naphthalimidyl triflate (manufactured by Midori Kagaku, product name “NAI-105”) as a naphthylimide group-containing sulfonic acid compound A photosensitive resin composition was prepared in the same manner as in Example 1 except that the above was changed to 3.0 parts, and each evaluation was performed using the prepared photosensitive resin composition. The results are shown in Table 1.
  • Example 1 (Comparative example 1) In Example 1, (iii) 1,8-naphthalimidyl triflate (product name “NAI-105” manufactured by Midori Kagaku Co., Ltd.) as the naphthylimide group-containing sulfonic acid compound was not blended. In the same manner as Example 1, a photosensitive resin composition was prepared, and each evaluation was performed using the prepared photosensitive resin composition. The results are shown in Table 1.
  • Comparative example 2 A photosensitive material was prepared in the same manner as in Comparative Example 1 except that 10 parts of (v) melamine / formaldehyde / alkyl monoalcohol polycondensate (manufactured by Sanwa Chemical Co., Ltd., Nikalac Mw-100 LM) was not blended in Comparative Example 1 Resin compositions were prepared, and each evaluation was performed using the prepared photosensitive resin compositions. The results are shown in Table 1.
  • esters with 2-Dihydro-5-oxo-Naphthalene-1-Sulphonic Acid (2.5 Molars) (manufactured by Bigen Shoji Co., Ltd., TPA-525), and 1,1,1-tris (4-hydroxyphenyl) 12.5 parts each of the compounding amount of ester (2 molar) of ethane and 6-diazo-5,6-dihydro-5-oxo-naphthalene-1-sulfonic acid (manufactured by Toyo Gosei Co., Ltd., HP-200)
  • a photosensitive resin composition was prepared in the same manner as in Comparative Example 3 except that the above was changed to 15 parts, and each evaluation was performed using the prepared photosensitive resin composition. The results are shown in Table 1.
  • Example 5 In Example 1, as the polymer (i), 100 parts of the cyclic olefin polymer (A-2) obtained in Synthesis Example 2 is used in place of the copolymer (A-1) obtained in Synthesis Example 1 (Iv) 4,4 '-[1- [4- [1- (4-hydroxyphenyl) -1-methylethyl] phenyl] ethylidene bisphenol and 6-diazo-5,6-dihydro as photosensitizers used The compounding amount of an ester form (2.5 molar) with 5-oxo-naphthalen-1-sulfonic acid (TPA-525, manufactured by Bigen Shoji Co., Ltd.) was changed from 10 parts to 36.3 parts, and the same as in photosensitization.
  • TPA-525 5-oxo-naphthalen-1-sulfonic acid
  • Example 7 In Example 1, (i) changing the blending amount of the copolymer (A-1) to 100 parts, (ii) not blending the polyamideimide resin having a branched structure, (v) epoxy as a crosslinking agent The compounding amount of fluorinated butane tetracarboxylic acid tetrakis (3-cyclohexenylmethyl) modified ⁇ -caprolactone (Eporide GT 401, manufactured by Daicel) is changed from 40 parts to 60 parts, and (v) melamine formaldehyde formaldehyde as a crosslinking agent as well (Vi) 5,5 '-[2,2,2-trifluoro-1- (trifluoromethyl) ethylidene] not containing an alkyl monoalcohol polycondensate (manufactured by Sanwa Chemical Co., Ltd., nicalac Mw-100LM) The blending amount of bis [2-hydroxy-1,3-benzenedimethanol] (Eporide
  • Examples 1 to 5 containing the copolymer (A-1) obtained in Synthesis Example 1, a polyamideimide resin having a branched structure, and a naphthylimide group-containing sulfonic acid compound According to the photosensitive resin composition of No. 6, it can be seen that it is possible to form a positive resist film having high transmittance, excellent in transparency, and excellent in heat-resistant shape retention. Furthermore, when the photosensitive resin compositions of Examples 1 to 5 are used, the sensitivity of the obtained coating film is high, the resolution in a thick film is high, the development residual film ratio is high, and the chemical resistance is high. Excellent, furthermore, it can be seen that no bubble was generated during exposure.
  • the content of the naphthylimide group-containing sulfonic acid compound is 0.1 parts by mass or more per 100 parts by mass in total of the polymer and the polyamideimide having a branched structure. It is understood that the chemical resistance and the heat resistant shape retention can be further enhanced by containing it in a proportion of not more than 0 parts by mass.
  • Comparative Example 7 which does not contain the imide resin and Comparative Example 8 which does not contain the copolymer (A-1) it can be seen that the transparency and the heat-resistant shape retention can not be compatible.
  • Comparative Examples 3 and 4 it is understood that the resolution with a thick film is also insufficient.
  • Comparative Example 5 in which only the cyclic olefin polymer (A-2) was used instead of the predetermined polymer and the polyamideimide resin having a branched structure, the transmittance of the obtained resist film was obtained. It is found that the sensitivity is low, the resolution in a thick film is inferior, and furthermore, bubbles occur at the time of exposure. In Comparative Example 5, the blending amount of the photosensitizer is larger than that in the other examples, and as a result, bubbles are generated at the time of exposure.
  • Comparative Example 6 in the case of using a cyclic olefin polymer (A-2) which is an alicyclic olefin polymer containing an acidic group (carboxyl group), which has conventionally been widely used in positive resist compositions
  • A-2 cyclic olefin polymer
  • carboxyl group an acidic group
  • Comparative Example 7 which does not contain a polyamideimide resin having a branched structure, it is understood that the sensitivity, the transmittance, the chemical resistance, and the resolution with a thick film of the obtained resist film are also insufficient. .
  • Comparative Example 8 in which only the polyamideimide resin having a branched structure is contained without containing the copolymer (A-1), the solubility in the developing solution is high, and the residual film ratio significantly decreases, and patterning is performed. It can be seen that no coating can be obtained.
  • the photosensitive resin composition of the present invention it is possible to form a positive resist film and a lens capable of achieving both transparency and heat-resistant shape retention at a high level.
  • the photosensitive resin composition of this invention can be used suitably, when manufacturing micro LED, micro OLED, an organic EL element, a touch panel etc.
  • micro LED 20 epitaxial wafer 30 n dot electrode 40 p pad electrode 50 protective insulating film 60 lens

Abstract

A photosensitive resin composition which comprises a polymer having a monomer unit represented by general formula (I), a polyamide-imide having a branched structure, and a sulfonic acid compound containing a naphthylimide group. In general formula (I), R1 is a chemical single bond or an optionally substituted, C1-6 divalent hydrocarbon group and R2 is a hydrogen atom or an optionally substituted, C1-6 monovalent hydrocarbon group.

Description

感光性樹脂組成物及びレンズPhotosensitive resin composition and lens
 本発明は、感光性樹脂組成物及びレンズに関するものである。 The present invention relates to a photosensitive resin composition and a lens.
 各種センサ等の受光素子、及び発光素子、並びにこれらの双方を備え得るタッチパネル等の電子部品には、種々の機能性を有する樹脂膜が設けられうる。発光素子の一例としてのマイクロLED(Light Emitting Diode)、マイクロOLED(Organic Light Emitting Diode)、及び有機エレクトロルミネッセンス素子(以下、「有機EL素子」とも称する。)には、目的に応じて様々な樹脂膜が設けられうる。そのような樹脂膜としては、例えば、素子の劣化や損傷を防止するための保護膜、電気絶縁性を保つための電気絶縁膜、及び外部からの水分や金属イオンから内部を保護するためのパッシベーション膜などが挙げられる。なお、樹脂膜は、発揮する機能に応じて種々の名称にて表されうる。例えば、保護機能及び電気絶縁機能を奏する樹脂膜は、「保護絶縁膜」等と称されうる。 Resin films having various functionalities may be provided on light receiving elements such as various sensors, light emitting elements, and electronic components such as touch panels that can include both of them. Various resins can be used for micro LEDs (Light Emitting Diodes), micro OLEDs (Organic Light Emitting Diodes), and organic electroluminescent devices (hereinafter also referred to as “organic EL devices”) as an example of a light emitting device, according to the purpose. A membrane may be provided. As such a resin film, for example, a protective film for preventing deterioration or damage of the element, an electrical insulating film for maintaining electrical insulation, and a passivation for protecting the inside from moisture or metal ions from the outside Membrane etc. are mentioned. In addition, the resin film can be represented by various names according to the function to exhibit. For example, a resin film having a protective function and an electrical insulation function may be referred to as a "protective insulating film" or the like.
 従来、これらの樹脂膜を形成するための樹脂材料としては、エポキシ樹脂等の熱硬化性樹脂材料が一般的に用いられてきた。なお、保護膜、電気絶縁膜、及びパッシベーション膜を形成するにあたり、樹脂材料ではなく、二酸化ケイ素、酸化アルミニウム、及び窒化ケイ素などの無機材料を用いることも一般的に行われてきた。近年、配線の高密度化、及び発光素子の高輝度化への要求が高まってきていることに伴い、樹脂膜を形成するための樹脂材料については、高い透明性を有することが求められてきた。 Conventionally, as a resin material for forming these resin films, thermosetting resin materials, such as an epoxy resin, have been generally used. In forming the protective film, the electrical insulating film, and the passivation film, it has also generally been performed to use an inorganic material such as silicon dioxide, aluminum oxide, and silicon nitride instead of a resin material. In recent years, with the increasing demand for higher density of wiring and higher luminance of light emitting elements, it has been required that resin materials for forming resin films have high transparency. .
 このような要求に応えるべく、各種樹脂材料を用いた感光性樹脂組成物が提案されてきた。例えば、特許文献1では、特定のビニル化合物からなる重合体、重合性化合物、光重合開始剤、及び溶剤を含有する感光性組成物が開示されている。かかる感光性組成物によれば、屈折率、可視領域での透明性、及び耐熱性に優れるマイクロレンズを形成することができる。また、特許文献2では、ビニルフェノール系共重合体の一部を水素添加した樹脂、感光剤としての1,2-ナフトキノンジアジドスルホン酸エステル、加熱処理によりレンズを形成する際に耐熱性及び耐溶剤性を付与できる熱硬化剤、並びに溶剤からなる感光材料が開示されている。かかる感光材料によれば、屈折率が大きく、可視光域での透明性、耐熱性、耐光性、耐溶剤性に優れるレンズを形成することができる。 In order to meet such requirements, photosensitive resin compositions using various resin materials have been proposed. For example, Patent Document 1 discloses a photosensitive composition containing a polymer composed of a specific vinyl compound, a polymerizable compound, a photopolymerization initiator, and a solvent. According to such a photosensitive composition, it is possible to form a microlens excellent in refractive index, transparency in the visible region, and heat resistance. Further, in Patent Document 2, a resin obtained by hydrogenating a part of a vinylphenol-based copolymer, 1,2-naphthoquinonediazide sulfonic acid ester as a photosensitizer, and heat resistance and solvent resistance when forming a lens by heat treatment. There is disclosed a photosensitive material comprising a thermosetting agent capable of imparting properties and a solvent. According to such a photosensitive material, it is possible to form a lens which has a large refractive index and is excellent in transparency in the visible light range, heat resistance, light resistance and solvent resistance.
特開2009-216727号公報JP, 2009-216727, A 特開平7-168359号公報JP-A-7-168359
 ここで、上述した各種電子部品に設けられる樹脂膜は、パターンを有してなることがある。ここで、樹脂膜が「パターンを有してなる」場合には、例えば、上記したような受光素子及び発光素子等に備えられたレンズのレンズ形状に相当する形状、即ち「パターン」を、樹脂膜により形成した状態となっていることがある。換言すれば、パターンを有してなる樹脂膜では、樹脂膜自体の形状が、レンズとして機能し得るような形状となっている場合がある。なお、一般的に、「パターンを有してなる樹脂膜(以下、「パターン化樹脂膜」とも称する)」は、樹脂組成物を用いて形成した樹脂組成物よりなる塗膜を、任意で、パターン化工程等に供した後に、加熱工程(以下、「ポストベーク工程」)に供することで、形成することができる。以下、塗膜及び樹脂膜を併せて「レジスト膜」と称することがある。なお、ポストベーク工程を経て得られたパターン化樹脂膜は、配線等の周辺構造の形成工程においても更なる加熱処理に曝されうる。ここで、ポストベーク工程及びその他の加熱工程において、パターン化工程により得られた形状が、過度に変形してしまえば、樹脂膜に所望の機能を付与することができなくなる虞がある。従って、塗膜や樹脂膜等のレジスト膜には、透明性に優れていることに加えて、耐熱形状保持性に優れていることが求められている。 Here, the resin film provided in the various electronic components mentioned above may have a pattern. Here, when the resin film “has a pattern”, for example, the shape corresponding to the lens shape of the lens provided in the light receiving element and the light emitting element as described above, that is, the “pattern” It may be in a state of being formed by a film. In other words, in the resin film having a pattern, the shape of the resin film itself may be a shape that can function as a lens. In general, “a resin film having a pattern (hereinafter also referred to as“ patterned resin film ”)” may optionally be a coating film made of a resin composition formed using a resin composition, After being subjected to the patterning step and the like, the film can be formed by being subjected to a heating step (hereinafter, “post-baking step”). Hereinafter, the coating film and the resin film may be collectively referred to as a "resist film". The patterned resin film obtained through the post-baking process can be exposed to further heat treatment also in the process of forming the peripheral structure such as a wiring. Here, in the post-baking step and other heating steps, if the shape obtained by the patterning step is excessively deformed, there is a possibility that the resin film can not be provided with a desired function. Therefore, in addition to being excellent in transparency, the resist film such as a coating film or a resin film is required to be excellent in heat-resistant shape retention.
 しかしながら、上記特許文献1に記載された感光性組成物、及び特許文献2に記載された感光材料によりマイクロレンズ又はレンズ等を製造する際に形成する塗膜又はレジスト膜には、透明性及び耐熱形状保持性を高いレベルで両立するという点で改善の余地があった。 However, the coating or resist film formed when manufacturing a microlens or a lens with the photosensitive composition described in Patent Document 1 and the photosensitive material described in Patent Document 2 has transparency and heat resistance. There is room for improvement in terms of achieving both shape retention at a high level.
 そこで、本発明は、透明性及び耐熱形状保持性を高いレベルで両立することができるポジ型レジスト膜を形成可能な感光性樹脂組成物を提供することを目的とする。また、本発明は、透明性及び耐熱形状保持性に優れるレンズを提供することを目的とする。 Then, an object of this invention is to provide the photosensitive resin composition which can form the positive resist film which can make transparency and heat-resistant shape retention compatible on a high level. Another object of the present invention is to provide a lens which is excellent in transparency and heat resistance shape retention.
 本発明者は、上記目的を達成するために鋭意検討を行った。そして、本発明者は、ビニルフェノール系単量体単位を有する重合体と、分岐型構造を有するポリアミドイミドと、ナフチルイミド基含有スルホン酸化合物とを含む感光性樹脂組成物を使用すると、透明性及び耐熱形状保持性に優れるポジ型レジスト膜を形成することができることを新たに見出し、本発明を完成させた。 The present inventors diligently studied to achieve the above object. And this inventor is transparency when using the photosensitive resin composition containing the polymer which has a vinyl phenol type monomer unit, the polyamidoimide which has a branched structure, and a naphthyl imide group containing sulfonic acid compound. And it discovered newly that the positive resist film which is excellent in heat-resistant shape retention property can be formed, and completed this invention.
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の感光性樹脂組成物は、下記一般式(I)で表される単量体単位を有する重合体と、分岐型構造を有するポリアミドイミドと、ナフチルイミド基含有スルホン酸化合物とを含むことを特徴とする。このような特定の組成の感光性樹脂組成物によれば、透明性及び耐熱形状保持性に優れるポジ型レジスト膜を形成することができる。
Figure JPOXMLDOC01-appb-C000002
(一般式(I)中、Rは、化学的な単結合、又は置換基を有していてもよい炭素数1~6の2価の炭化水素基であり、Rは、水素原子、又は置換基を有していてもよい炭素数1~6の1価の炭化水素基である。)
 なお、本明細書において、「感光性樹脂組成物」が感受性を呈し得る「光」には、所謂可視光等に限定されるものではなく、例えば、一般的に「放射線」と称されうる幅広い波長域の活性エネルギー線が含まれうる。
That is, the present invention aims to solve the above-mentioned problems advantageously, and the photosensitive resin composition of the present invention is a polymer having a monomer unit represented by the following general formula (I) And a polyamideimide having a branched structure, and a naphthylimide group-containing sulfonic acid compound. According to the photosensitive resin composition of such a specific composition, it is possible to form a positive resist film which is excellent in transparency and heat-resistant shape retention.
Figure JPOXMLDOC01-appb-C000002
(In the general formula (I), R 1 is a single chemical bond or a divalent hydrocarbon group having 1 to 6 carbon atoms which may have a substituent, R 2 is a hydrogen atom, Or a monovalent hydrocarbon group having 1 to 6 carbon atoms which may have a substituent.)
In the present specification, “light” to which the “photosensitive resin composition” can exhibit sensitivity is not limited to so-called visible light and the like, and, for example, a wide range which can be generally referred to as “radiation”. Active energy rays in the wavelength range may be included.
 ここで、本発明の感光性樹脂組成物では、前記分岐型構造を有するポリアミドイミドの数平均分子量が2000以上30000以下であることが好ましい。分岐型構造を有するポリアミドイミドの数平均分子量が2000以上であれば、ポジ型レジスト膜の耐熱形状保持性を一層向上することができるとともに、感光性樹脂組成物を用いたポジ型レジスト膜の形成容易性を高めることができる。また、分岐型構造を有するポリアミドイミドの数平均分子量が30000以下であれば、一般式(I)で表される単量体単位を有する重合体との相溶性を向上させることができる。 Here, in the photosensitive resin composition of the present invention, the number average molecular weight of the polyamideimide having the branched structure is preferably 2,000 or more and 30,000 or less. When the number average molecular weight of the polyamideimide having a branched structure is 2000 or more, the heat resistant shape retention of the positive resist film can be further improved, and the formation of the positive resist film using the photosensitive resin composition The ease can be enhanced. In addition, when the number average molecular weight of the polyamideimide having a branched structure is 30,000 or less, the compatibility with the polymer having a monomer unit represented by General Formula (I) can be improved.
 さらに、本発明の感光性樹脂組成物では、前記重合体が(メタ)アクリレート単量体単位をさらに有する共重合体であることが好ましい。重合体が(メタ)アクリレート単量体単位をさらに有する共重合体であれば、感光性樹脂組成物の感度を向上させることができると共に、透明性に優れるポジ型レジスト膜を形成することができる。
 なお、本明細書中において「(メタ)アクリレート」とは、「アクリレート、及び/又は、メタクリレート」を意味する。
Furthermore, in the photosensitive resin composition of the present invention, it is preferable that the polymer is a copolymer further having a (meth) acrylate monomer unit. If the polymer is a copolymer further having a (meth) acrylate monomer unit, the sensitivity of the photosensitive resin composition can be improved, and a positive resist film excellent in transparency can be formed. .
In the present specification, “(meth) acrylate” means “acrylate and / or methacrylate”.
 さらに、本発明の感光性樹脂組成物では、前記重合体と前記分岐型構造を有するポリアミドイミドとの含有量比(重合体:分岐型構造を有するポリアミドイミド)が質量基準で90:10~70:30であることが好ましい。重合体と分岐型構造を有するポリアミドイミドとの含有量比(重合体:分岐型構造を有するポリアミドイミド)が質量基準で90:10~70:30であれば、得られるポジ型レジスト膜の透明性が低下するのを抑制し、現像後の残膜率が低下するのを防止し、耐熱形状保持性を改善し、且つ、感度が低下するのを防止することができる。 Furthermore, in the photosensitive resin composition of the present invention, the content ratio of the polymer to the polyamideimide having the branched structure (polymer: polyamideimide having a branched structure) is 90:10 to 70 on a mass basis. It is preferable that it is: 30. If the content ratio of the polymer to the polyamideimide having a branched structure (polymer: polyamideimide having a branched structure) is 90:10 to 70:30 on a mass basis, the transparency of the obtained positive resist film is obtained It is possible to suppress the decrease in the property, to prevent the decrease in the residual film ratio after development, to improve the heat-resistant shape retention, and to prevent the decrease in the sensitivity.
 さらに、本発明の感光性樹脂組成物では、前記ナフチルイミド基含有スルホン酸化合物を、前記重合体と前記分岐型構造を有するポリアミドイミドとの合計100質量部当たり、0.1質量部以上2.0質量部以下の割合で含有することが好ましい。ナフチルイミド基含有スルホン酸化合物の含有量が上記範囲内であれば、得られるポジ型レジスト膜について、耐薬品性、耐熱形状保持性、感度、及び厚膜での解像性を一層高めることができる。 Furthermore, in the photosensitive resin composition of the present invention, the amount of the naphthylimide group-containing sulfonic acid compound is 0.1 parts by mass or more per 100 parts by mass of the polymer and the polyamideimide having the branched structure. It is preferable to contain in the ratio of 0 mass part or less. If the content of the naphthylimide group-containing sulfonic acid compound is within the above range, the resulting positive resist film can be further enhanced in chemical resistance, heat-resistant shape retention, sensitivity, and resolution in a thick film. it can.
 さらに、本発明の感光性樹脂組成物が、感光剤と、架橋剤とをさらに含むことが好ましい。感光性樹脂組成物が、感光剤と、架橋剤とをさらに含んでいれば、ポジ型レジスト膜を容易に形成することができる。 Furthermore, it is preferable that the photosensitive resin composition of the present invention further comprises a photosensitizer and a crosslinking agent. If the photosensitive resin composition further contains a photosensitizer and a crosslinking agent, a positive resist film can be easily formed.
 また、本発明によれば、上記いずれかの感光性樹脂組成物から形成されるレンズが提供される。かかるレンズは、透明性及び耐熱形状保持性に優れる。 Further, according to the present invention, there is provided a lens formed from any of the above photosensitive resin compositions. Such a lens is excellent in transparency and heat-resistant shape retention.
 本発明の感光性樹脂組成物によれば、透明性及び耐熱形状保持性に優れるポジ型レジスト膜及びレンズを形成することができる。 According to the photosensitive resin composition of the present invention, it is possible to form a positive resist film and a lens which are excellent in transparency and heat-resistant shape retention.
本発明の一実施形態に従う感光性樹脂組成物を用いて形成した、保護絶縁膜及びレンズを備えるマイクロLEDの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of micro LED provided with a protective insulation film and a lens which were formed using the photosensitive resin composition according to one Embodiment of this invention. 本発明の一実施形態に従う感光性樹脂組成物を用いて形成したドットパターンの一例を示す図である。It is a figure which shows an example of the dot pattern formed using the photosensitive resin composition according to one Embodiment of this invention.
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の感光性樹脂組成物は、例えば、マイクロLED、マイクロOLED、有機EL素子、及びタッチパネル用の保護膜、電気絶縁膜、及びパッシベーション膜などに用いることができる。また、本発明の感光性樹脂組成物は、例えば、マイクロLEDアレイなどの製造プロセスにおいてレジストパターンを形成する際に用いることができる。
Hereinafter, embodiments of the present invention will be described in detail.
Here, the photosensitive resin composition of the present invention can be used, for example, as a protective film for a micro LED, a micro OLED, an organic EL element, and a touch panel, an electrical insulating film, a passivation film, and the like. Moreover, the photosensitive resin composition of this invention can be used, for example, when forming a resist pattern in manufacturing processes, such as a micro LED array.
(感光性樹脂組成物)
 本発明の感光性樹脂組成物は、所定の重合体と、分岐型構造を有するポリアミドイミドと、ナフチルイミド基含有スルホン酸化合物とを含み、任意に、感光剤と、架橋剤と、溶剤と、感光性樹脂組成物に配合され得る既知の添加剤とを更に含有する。そして、本発明の感光性樹脂組成物は、所定の重合体に加えて、分岐型構造を有するポリアミドイミドと、ナフチルイミド基含有スルホン酸化合物とを含有しているので、透明性及び耐熱形状保持性に優れるポジ型レジスト膜(以下、単に「レジスト膜」とも称する。)を形成することができる。
(Photosensitive resin composition)
The photosensitive resin composition of the present invention contains a predetermined polymer, a polyamideimide having a branched structure, and a naphthylimide group-containing sulfonic acid compound, and optionally, a photosensitizer, a crosslinking agent, and a solvent, It further contains known additives that can be incorporated into the photosensitive resin composition. And since the photosensitive resin composition of the present invention contains, in addition to a predetermined polymer, a polyamideimide having a branched structure and a naphthylimide group-containing sulfonic acid compound, the transparency and the heat-resistant shape retention are maintained. A positive resist film (hereinafter, also simply referred to as a "resist film") having excellent properties can be formed.
 レジスト膜の透明性及び耐熱形状保持性が高ければ、レジスト膜を用いて各種発光素子及び受光素子等に備えられた樹脂膜を形成する際に好適である。レジスト膜の透明性が高ければ、かかるレジスト膜を用いて発光素子又は受光素子を形成した場合に、樹脂膜における光の減衰量を低減することができる。
 特に、発光素子に備えられた樹脂膜をレンズとして機能させる場合がある。より具体的には、発光素子の樹脂膜を形成するにあたり、樹脂組成物を用いて形成した塗膜を、パターン化工程に供して、例えば、円柱形状等の断面形状が角ばった形状であるパターンが所定間隔で複数配置してなるドットパターンを有するパターン化塗膜を得た後に、円柱形状の各パターンを含むパターン化塗膜を加熱して流動状態として、表面張力により、各パターンの断面形状をなだらかな形状とする「メルトフロー工程」と称されうる工程が行われることがある。断面形状がなだらかな形状となったパターンは、所謂「レンズ」として機能し、集光機能及び/又は光拡散機能等を発揮し得る。このような場合にも、レジスト膜の透明性及び耐熱形状保持性が高ければ、レンズとして機能し得る樹脂膜を良好に形成することができる。特に、レジスト膜の耐熱形状保持性が高ければ、パターン化塗膜における各パターン間の間隙が、メルトフロー工程や、塗膜から樹脂膜を形成する際のポストベーク工程、さらには、配線等の周辺構造の形成工程等において実施されうる加熱処理によって、過度に変化することを抑制することができる。従って、基板上に、相互に離隔している、あたかも「島状」に分散した、ドーム状(半球状)パターンを良好に形成することができる。このため、透明性及び耐熱形状保持性に優れる本発明の感光性樹脂組成物によれば、所望の間隔で形成された透明度の高いパターン又はレンズを良好に提供することができる。
If the transparency of the resist film and the heat resistance shape retention property are high, it is preferable when using the resist film to form a resin film provided in various light emitting elements, light receiving elements and the like. If the transparency of the resist film is high, the amount of attenuation of light in the resin film can be reduced when a light emitting element or a light receiving element is formed using the resist film.
In particular, the resin film provided in the light emitting element may function as a lens. More specifically, in forming a resin film of a light emitting element, a coating film formed using a resin composition is subjected to a patterning step, and for example, a pattern having an angular cross section such as a cylindrical shape After obtaining a patterned coating film having a dot pattern in which a plurality of dots are arranged at predetermined intervals, the patterned coating film containing each of the cylindrical patterns is heated to be in a fluidized state, and the cross-sectional shape of each pattern is obtained by surface tension. A process may be performed, which may be referred to as a "melt flow process", which has a gentle shape. The pattern having a gentle cross-sectional shape functions as a so-called "lens" and can exhibit a light collecting function and / or a light diffusing function. Even in such a case, if the transparency of the resist film and the heat resistance shape retention property are high, a resin film that can function as a lens can be formed well. In particular, if the heat resistance shape retention of the resist film is high, the gap between each pattern in the patterned coating film may be a melt flow process, a post baking process for forming a resin film from the coating film, and wiring etc. Excessive change can be suppressed by heat treatment that can be performed in the formation process of the peripheral structure and the like. Therefore, it is possible to well form on the substrate a dome-like (hemispherical) pattern which is separated from each other and dispersed as if it is “island-like”. For this reason, according to the photosensitive resin composition of the present invention which is excellent in transparency and heat-resistant shape retention, a pattern or a lens with high transparency formed at desired intervals can be favorably provided.
<重合体>
 ここで、本発明の感光性樹脂組成物に用いられる重合体は、所定の単量体単位を有する。
<Polymer>
Here, the polymer used for the photosensitive resin composition of the present invention has a predetermined monomer unit.
[単量体単位〕
 前記所定の単量体単位としては、下記一般式(I)で表される単量体単位、好ましくは、ビニルフェノール単量体単位が挙げられる。さらに、前記所定の単量体単位としては、任意に、(メタ)アクリレート単量体単位、芳香族ビニル単量体単位(ビニルフェノール単量体単位を除く)、及びその他の単量体単位が挙げられる。
Figure JPOXMLDOC01-appb-C000003
(一般式(I)中、Rは、化学的な単結合、又は置換基を有していてもよい炭素数1~6の2価の炭化水素基であり、Rは、水素原子、又は置換基を有していてもよい炭素数1~6の1価の炭化水素基である。)
[Monomer unit]
As said predetermined monomer unit, the monomer unit represented by following General formula (I), Preferably, a vinyl phenol monomer unit is mentioned. Furthermore, as the predetermined monomer units, optionally, (meth) acrylate monomer units, aromatic vinyl monomer units (excluding vinyl phenol monomer units), and other monomer units It can be mentioned.
Figure JPOXMLDOC01-appb-C000003
(In the general formula (I), R 1 is a single chemical bond or a divalent hydrocarbon group having 1 to 6 carbon atoms which may have a substituent, R 2 is a hydrogen atom, Or a monovalent hydrocarbon group having 1 to 6 carbon atoms which may have a substituent.)
-一般式(I)で表される単量体単位-
 前記一般式(I)で表される単量体単位は、下記一般式(I)で表される構造単位である。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(I)中、Rは、化学的な単結合、又は置換基を有していてもよい炭素数1~6の2価の炭化水素基であり、好ましくは、化学的な単結合、又は炭素数1~4のアルキレン基(分岐型又は直鎖型)であり、より好ましくは、化学的な単結合、又は炭素数1~2のアルキレン基である。また、上記一般式(I)中、Rは、水素原子、又は置換基を有していてもよい炭素数1~6の1価の炭化水素基であり、好ましくは、水素原子、炭素数1~4のアルキル基、より好ましくは、水素原子、炭素1~2のアルキル基である。
-Monomer unit represented by formula (I)-
The monomer unit represented by the general formula (I) is a structural unit represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000004
In the above general formula (I), R 1 is a chemical single bond or a divalent hydrocarbon group having 1 to 6 carbon atoms which may have a substituent, preferably a chemical single bond. It is a bond or an alkylene group having 1 to 4 carbon atoms (branched or linear), more preferably a single chemical bond or an alkylene group having 1 to 2 carbon atoms. Further, in the above general formula (I), R 2 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms which may have a substituent, preferably a hydrogen atom or a carbon number It is a 1-4 alkyl group, more preferably a hydrogen atom or a 1-2 carbon alkyl group.
 前記置換基としては、例えば、フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~10のアルコキシ基;ニトロ基;シアノ基;フェニル基、4-メチルフェニル基、2-クロロフェニル基などの置換基を有していてもよいフェニル基;ヒドロキシル基;などが挙げられる。 Examples of the substituent include halogen atoms such as fluorine atom, chlorine atom and bromine atom; alkoxy groups having 1 to 10 carbon atoms such as methoxy group, ethoxy group and isopropoxy group; nitro group; cyano group; Examples thereof include a phenyl group which may have a substituent such as 4-methylphenyl group and 2-chlorophenyl group; a hydroxyl group; and the like.
 前記一般式(I)で表される単量体単位としては、例えば、(i)後述するビニルフェノール単量体単位、(ii)α-メチル-4-ヒドロキシスチレン、α-メチル-3-ヒドロキシスチレン、α-メチル-2-ヒドロキシスチレン、4-ヒドロキシアリルベンゼン、3-ヒドロキシアリルベンゼン、2-ヒドロキシアリルベンゼン、などの単量体に由来する単量体単位、などが挙げられる。これらの中でも後述するビニルフェノール単量体単位が好ましい。 Examples of the monomer unit represented by the general formula (I) include (i) vinylphenol monomer units described later, (ii) α-methyl-4-hydroxystyrene, α-methyl-3-hydroxyl Monomer units derived from monomers such as styrene, α-methyl-2-hydroxystyrene, 4-hydroxyallylbenzene, 3-hydroxyallylbenzene, 2-hydroxyallylbenzene, and the like. Among these, vinyl phenol monomer units described later are preferable.
-ビニルフェノール単量体単位-
 前記ビニルフェノール単量体単位は、下記構造式(I)で表される構造単位である。
Figure JPOXMLDOC01-appb-C000005
 ここで、上記構造式(I)で表される構造単位は、ビニルフェノール単量体に由来する構造単位のみならず、例えば、後述する合成例1で示すように、任意の保護基でフェノール性水酸基が保護された化合物(例えば、p‐tert‐ブトキシスチレン)に由来する構造単位を脱保護して得られた構造単位をも含む。
 前記ビニルフェノール単量体の具体例としては、例えば、4-ヒドロキシスチレン(p-ビニルフェノール)、3-ヒドロキシスチレン(m-ビニルフェノール)、p-イソプロペニルフェノール、などを挙げることができる。これらの中でも、入手容易性及びコストの観点で、4-ヒドロキシスチレン(p-ビニルフェノール)が、好ましい。
 これらのビニルフェノール単量体、及び任意の保護基でフェノール性水酸基が保護された化合物は、一種を単独で使用してもよく、二種以上を併用してもよい。
-Vinylphenol monomer unit-
The vinyl phenol monomer unit is a structural unit represented by the following structural formula (I).
Figure JPOXMLDOC01-appb-C000005
Here, the structural unit represented by the above structural formula (I) is not only a structural unit derived from a vinylphenol monomer, but, for example, as shown in Synthesis Example 1 described later, it may be phenolic with any protecting group. It also includes a structural unit obtained by deprotecting a structural unit derived from a compound in which a hydroxyl group is protected (eg, p-tert-butoxystyrene).
Specific examples of the vinylphenol monomer include 4-hydroxystyrene (p-vinylphenol), 3-hydroxystyrene (m-vinylphenol), p-isopropenylphenol and the like. Among these, 4-hydroxystyrene (p-vinylphenol) is preferable in terms of availability and cost.
The vinyl phenol monomer and the compound in which the phenolic hydroxyl group is protected with an optional protecting group may be used alone or in combination of two or more.
 前記重合体中における構造式(I)で表される構造単位の含有量は、特に限定されないが、30質量%以上であることが好ましく、80質量%以下であることが好ましい。
 前記重合体中における構造式(I)で表される構造単位の含有量が、30質量%以上であることにより、アルカリ現像液に対する溶解性を高めることができる。一方、前記重合体中におけるビニルフェノール単量体単位の含有量が、80質量%以下であることにより、得られるレジスト膜の透明性を一層高めることができる。
The content of the structural unit represented by the structural formula (I) in the polymer is not particularly limited, but is preferably 30% by mass or more and 80% by mass or less.
When the content of the structural unit represented by the structural formula (I) in the polymer is 30% by mass or more, the solubility in an alkali developer can be enhanced. On the other hand, when the content of vinylphenol monomer units in the polymer is 80% by mass or less, the transparency of the obtained resist film can be further enhanced.
-(メタ)アクリレート単量体単位-
 前記(メタ)アクリレート単量体単位は、(メタ)アクリレート単量体に由来する構造単位である。前記重合体が(メタ)アクリレート単量体単位をさらに有する共重合体であることが好ましい。重合体が(メタ)アクリレート単量体単位をさらに有する共重合体であれば、感光性樹脂組成物の感度を向上させることができると共に、レジスト膜の透明性を一層高めることができる。
-(Meth) acrylate monomer unit-
The (meth) acrylate monomer unit is a structural unit derived from a (meth) acrylate monomer. It is preferable that the said polymer is a copolymer which further has a (meth) acrylate monomer unit. When the polymer is a copolymer further having (meth) acrylate monomer units, the sensitivity of the photosensitive resin composition can be improved, and the transparency of the resist film can be further enhanced.
 前記(メタ)アクリレート単量体としては、特に限定されないが、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸n-ブチル、アクリル酸sec-ブチル、アクリル酸n-ヘプチル、アクリル酸n-ヘキシル、アクリル酸n-オクチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸n-ブチル、メタクリル酸n-オクチル、メタクリル酸n-デシル等の(メタ)アクリル酸アルキルエステル;アクリル酸2-メトキシエチル、アクリル酸3-メトキシプロピル、アクリル酸3-メトキシブチル、アクリル酸エトキシメチル、メタクリル酸2-メトキシエチル、メタクリル酸3-メトキシプロピル、メタクリル酸3-メトキシブチル、メタクリル酸エトキシメチル等の(メタ)アクリル酸アルコキシアルキルエステル;などを挙げることができる。これらの中でも、得られるレジスト膜の感度及び透明性を高めるという観点で、(メタ)アクリル酸アルキルエステルが好ましく、メタクリル酸メチルが、さらに好ましい。
 これらの(メタ)アクリレート単量体は、一種を単独で使用してもよく、二種以上を併用してもよい。
The (meth) acrylate monomer is not particularly limited. For example, methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, sec-butyl acrylate, n-heptyl acrylate, N-hexyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, n-octyl methacrylate, n-decyl methacrylate, etc. (Meth) acrylic acid alkyl ester; 2-methoxyethyl acrylate, 3-methoxypropyl acrylate, 3-methoxybutyl acrylate, ethoxymethyl acrylate, 2-methoxyethyl methacrylate, 3-methoxypropyl methacrylate, methacrylic Acid 3-Methoxybutyl , Such as methacrylic acid ethoxymethyl (meth) acrylic acid alkoxyalkyl ester; and the like. Among these, from the viewpoint of enhancing the sensitivity and transparency of the resist film to be obtained, (meth) acrylic acid alkyl esters are preferable, and methyl methacrylate is more preferable.
These (meth) acrylate monomers may be used alone or in combination of two or more.
 前記共重合体中における(メタ)アクリレート単量体単位の含有量は、特に限定されないが、20質量%以上であることが好ましく、70質量%以下であることが好ましい。
 前記共重合体中における(メタ)アクリレート単量体単位の含有量が、20質量%以上であることにより、得られるレジスト膜の透明性を一層高めることができる。一方、前記共重合体中における(メタ)アクリレート単量体単位の含有量が、70質量%以下であることにより、アルカリ現像液に対する溶解性を高めることができる。
The content of the (meth) acrylate monomer unit in the copolymer is not particularly limited, but is preferably 20% by mass or more, and more preferably 70% by mass or less.
When the content of the (meth) acrylate monomer unit in the copolymer is 20% by mass or more, the transparency of the obtained resist film can be further enhanced. On the other hand, when the content of the (meth) acrylate monomer unit in the copolymer is 70% by mass or less, the solubility in an alkali developer can be enhanced.
-芳香族ビニル単量体単位(ビニルフェノール単量体単位を除く)-
 前記芳香族ビニル単量体単位は、芳香族ビニル単量体単位に由来する構造単位である。芳香族ビニル単量体単位としては、特に限定されないが、例えば、スチレン、o,m,p-メチルスチレン、p-tert-ブチルスチレン、エチルスチレン、2,4-ジメチルスチレン、α-メチルスチレン、などを挙げることができる。これらの中でも、入手容易性及びコストの観点で、スチレンが、好ましい。これらの芳香族ビニル単量体単位は、一種を単独で使用してもよく、二種以上を併用してもよい。
-Aromatic vinyl monomer unit (except for vinyl phenol monomer unit)-
The aromatic vinyl monomer unit is a structural unit derived from an aromatic vinyl monomer unit. The aromatic vinyl monomer unit is not particularly limited, and examples thereof include styrene, o, m, p-methylstyrene, p-tert-butylstyrene, ethylstyrene, 2,4-dimethylstyrene, α-methylstyrene, And the like. Among these, styrene is preferable in terms of availability and cost. These aromatic vinyl monomer units may be used alone or in combination of two or more.
 前記共重合体中における芳香族ビニル単量体単位の含有量は、特に限定されないが、30質量%以上であることが好ましく、80質量%以下であることが好ましい。前記共重合体中における芳香族ビニル単量体単位の含有量が、30質量%以上であることにより、アルカリ現像液に対する溶解性を高めることができる。一方、前記共重合体中における芳香族ビニル単量体単位の含有量が、80質量%以下であることにより、得られるレジスト膜の透明性を一層高めることができる。 The content of the aromatic vinyl monomer unit in the copolymer is not particularly limited, but is preferably 30% by mass or more, and more preferably 80% by mass or less. When the content of the aromatic vinyl monomer unit in the copolymer is 30% by mass or more, the solubility in an alkali developer can be enhanced. On the other hand, when the content of the aromatic vinyl monomer unit in the copolymer is 80% by mass or less, the transparency of the obtained resist film can be further enhanced.
-その他の単量体単位-
 前記その他の単量体単位は、上述した単量体と共重合可能なその他の単量体に由来する構造単位であり、例えば、N-フェニルマレイミド、アクリロニトリル、などが挙げられる。その他の単量体は、本願発明の効果を阻害しないものであれば、特に限定されない。
-Other monomer units-
The other monomer unit is a structural unit derived from another monomer copolymerizable with the above-mentioned monomer, and examples thereof include N-phenylmaleimide, acrylonitrile and the like. The other monomers are not particularly limited as long as they do not inhibit the effects of the present invention.
 そして、本発明の感光性樹脂組成物に含有されうる重合体の具体例としては、ビニルフェノール/メタクリル酸メチル共重合体、ビニルフェノール/スチレン共重合体、ビニルフェノール単独重合体、などを挙げることができる。これらの中でも、ビニルフェノール/メタクリル酸メチル共重合体が、好ましい。
 なお、これらの重合体は、一種を単独で使用してもよく、二種以上を併用してもよい。
And as specific examples of the polymer that can be contained in the photosensitive resin composition of the present invention, vinylphenol / methyl methacrylate copolymer, vinylphenol / styrene copolymer, vinylphenol homopolymer, etc. may be mentioned. Can. Among these, vinylphenol / methyl methacrylate copolymer is preferable.
In addition, these polymers may be used individually by 1 type, and may use 2 or more types together.
〔重合体の性状〕
-重量平均分子量-
 前記重合体がビニルフェノール/メタクリル酸メチル共重合体である場合、重量平均分子量(Mw)は、12000以下であることが好ましく、8000以上であることが好ましい。ビニルフェノール/メタクリル酸メチル共重合体の重量平均分子量(Mw)が12000以下であれば、溶剤に対する溶解性を向上させることができる。また、ビニルフェノール/メタクリル酸メチル共重合体の重量平均分子量(Mw)が8000以上であれば、塗膜の形成、硬化後の硬化性、及び機械強度の観点で好ましい。
 なお、上記値は、ポリスチレン換算である。
[Properties of the polymer]
-Weight average molecular weight-
When the polymer is a vinylphenol / methyl methacrylate copolymer, the weight average molecular weight (Mw) is preferably 12000 or less, and more preferably 8000 or more. If the weight average molecular weight (Mw) of the vinylphenol / methyl methacrylate copolymer is 12000 or less, the solubility in a solvent can be improved. Moreover, if the weight average molecular weight (Mw) of the vinyl phenol / methyl methacrylate copolymer is 8000 or more, it is preferable from the viewpoint of the formation of a coating film, the curability after curing, and the mechanical strength.
The above values are in terms of polystyrene.
<分岐型構造を有するポリアミドイミド>
 本発明の感光性樹脂組成物は分岐型構造を有するポリアミドイミドを含有しているので、透明性に優れるレジスト膜を形成することができる。また、本発明の感光性樹脂組成物に用いられる分岐型構造を有するポリアミドイミドは、感光性樹脂組成物の溶剤に対する溶解性及び感度を高めることができる。さらに、感光性樹脂組成物が分岐型構造を有するポリアミドイミドを含有することで、例えば、厚さ10μmと厚いレジスト膜を形成した場合であっても、露光量を過剰に高めることなく、解像度良くパターニングを行うことができる。即ち、感光性樹脂組成物が分岐型構造を有するポリアミドイミドを含有することで、「厚膜での解像性」の高いレジスト膜を形成することができる。「厚膜での解像性」が高いレジスト膜(塗膜)によれば、パターン化塗膜を得て、メルトフロー工程を行ってレンズ形状を得る場合のレンズ形成能に優れる。さらにまた、感光性樹脂組成物が上記一般式(I)で表される単量体単位を有する重合体と、分岐型構造を有するポリアミドイミドとを共に含有することで、得られるレジスト膜のレジスト剥離液等の薬品に対する耐性、即ち、耐薬品性を高めることができる。
<Polyamideimide having a branched structure>
Since the photosensitive resin composition of the present invention contains a polyamideimide having a branched structure, a resist film excellent in transparency can be formed. In addition, the polyamideimide having a branched structure used in the photosensitive resin composition of the present invention can enhance the solubility and sensitivity of the photosensitive resin composition in the solvent. Furthermore, when the photosensitive resin composition contains a polyamideimide having a branched structure, for example, even when a thick resist film having a thickness of 10 μm is formed, the exposure amount is not excessively increased and resolution is high. It can be patterned. That is, when the photosensitive resin composition contains a polyamideimide having a branched structure, it is possible to form a resist film having a high "resolution with a thick film". According to the resist film (coating film) having a high "resolution in a thick film", a patterned coating film is obtained, and the lens forming ability in the case of obtaining a lens shape by performing a melt flow process is excellent. Furthermore, a resist of a resist film obtained by the photosensitive resin composition containing a polymer having a monomer unit represented by the above general formula (I) and a polyamideimide having a branched structure. Resistance to chemicals such as stripping solution, that is, chemical resistance can be enhanced.
 前記分岐型構造を有するポリアミドイミドとしては、例えば、下記一般式(1)で表される構造単位と下記一般式(2)で表される構造単位を有し、且つ、下記構造式(1)、(2)及び(3)で表される末端構造のいずれか1個以上を有する化合物、下記一般式(3)で表される化合物、分岐型構造を有するポリアミドイミド樹脂(DIC社製、ユニディックEMG‐793)、分岐型構造を有するポリアミドイミド樹脂(DIC社製、ユニディックEMG‐1015)、などが挙げられる。 The polyamideimide having the branched structure has, for example, a structural unit represented by the following general formula (1) and a structural unit represented by the following general formula (2), and the following structural formula (1) And a compound having any one or more of terminal structures represented by (2) and (3), a compound represented by the following general formula (3), a polyamideimide resin having a branched structure (manufactured by DIC, Uni Dick EMG-793), polyamide-imide resin having a branched structure (manufactured by DIC, Unidic EMG-1015), and the like.
Figure JPOXMLDOC01-appb-C000006
 但し、前記一般式(1)中、R11は炭素数6~13の環式脂肪族構造を有する有機基を表す。
Figure JPOXMLDOC01-appb-C000006
However, in the general formula (1), R 11 represents an organic group having a cyclic aliphatic structure having 6 to 13 carbon atoms.
Figure JPOXMLDOC01-appb-C000007
 但し、前記一般式(2)中、R12は炭素数6~13の環式脂肪族構造を有する有機基を表し、R13は数平均分子量が700~4500の線状炭化水素構造を表す。
Figure JPOXMLDOC01-appb-C000007
However, in the general formula (2), R 12 represents an organic group having a cyclic aliphatic structure having 6 to 13 carbon atoms, and R 13 represents a linear hydrocarbon structure having a number average molecular weight of 700 to 4500.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 但し、前記一般式(3)中、nは、2以上200以下である。
Figure JPOXMLDOC01-appb-C000011
However, in the said General formula (3), n is 2 or more and 200 or less.
 前記一般式(3)で表される化合物は、イソホロンジイソシアネートイソシアヌレート体と無水トリメット酸とを反応させることにより得られる(下記反応式(1)参照)。 The compound represented by the said General formula (3) is obtained by making an isophorone diisocyanate isocyanurate body and trimenic acid anhydride react (refer the following reaction formula (1)).
Figure JPOXMLDOC01-appb-C000012
 但し、前記反応式(1)中、nは2以上200以下である。
Figure JPOXMLDOC01-appb-C000012
However, in said Reaction formula (1), n is 2 or more and 200 or less.
 上記反応式(1)に示す反応において、水酸基を2個以上含有する多官能ポリオールを連鎖移動剤として添加して、上記一般式(3)の一部構造にウレタン構造を有する部位を導入してもよい。前記ウレタン構造を有する部位を上記一般式(3)の一部構造に導入することにより、分岐型構造を有するポリアミドイミドの物性をコントロールすることができる。前記ウレタン構造を有する部位としては、例えば、下記一般式(4)で表される部位が挙げられる。 In the reaction shown in the above reaction formula (1), a polyfunctional polyol containing two or more hydroxyl groups is added as a chain transfer agent to introduce a portion having a urethane structure in a partial structure of the above general formula (3) It is also good. The physical properties of the polyamideimide having a branched structure can be controlled by introducing the site having the urethane structure into a partial structure of the general formula (3). As a part which has the said urethane structure, the part represented by following General formula (4) is mentioned, for example.
Figure JPOXMLDOC01-appb-C000013
 但し、前記一般式(4)中、R14は炭素数6~13の環式脂肪族構造を有する有機基を表し、R15は数平均分子量が700~4500の線状炭化水素構造を表す。
〔分岐型構造を有するポリアミドイミドの性状〕
-数平均分子量-
 ここで、上述した分岐型構造を有するポリアミドイミドの数平均分子量(Mn)は、30000以下であることが好ましく、2000以上であることが好ましい。分岐型構造を有するポリアミドイミドの数平均分子量(Mn)が30000以下であれば、ビニルフェノール単量体単位を有する重合体との相溶性を向上させることができるとともに、溶剤に対する溶解性を向上させることができる。また、分岐型構造を有するポリアミドイミドの数平均分子量(Mn)が2000以上であれば、得られるレジスト膜の耐熱形状保持性を一層向上させることができるとともに、感光性樹脂組成物を用いたポジ型レジスト膜の形成容易性を高めることができる。さらに、分岐型構造を有するポリアミドイミドの数平均分子量(Mn)が2000以上であれば、得られるレジスト膜の耐熱性、及び硬化後の機械強度を高めることができる。なお、ポリアミドイミドの数平均分子量(Mn)の値は、ゲル・パーミエーション・クロマトグラフィー(GPC)法に従って、ポリスチレン換算量として求めることができる。
 また、前記分岐型構造を有するポリアミドイミドの重量平均分子量(Mw)は、100000以下であることが好ましく、3000以上であることが好ましい。分岐型構造を有するポリアミドイミドの重量平均分子量(Mw)が100000以下であれば、ビニルフェノール単量体単位を有する重合体との相溶性を一層向上させることができるとともに、溶剤に対する溶解性を一層向上させることができる。また、分岐型構造を有するポリアミドイミドの重量平均分子量(Mw)が3000以上であれば、得られるレジスト膜の耐熱性、及び硬化後の機械強度を一層高めることができる。
Figure JPOXMLDOC01-appb-C000013
However, in the general formula (4), R 14 represents an organic group having a cyclic aliphatic structure having 6 to 13 carbon atoms, and R 15 represents a linear hydrocarbon structure having a number average molecular weight of 700 to 4500.
[Properties of polyamideimide having branched structure]
-Number average molecular weight-
Here, the number average molecular weight (Mn) of the polyamideimide having the branched structure described above is preferably 30,000 or less, and more preferably 2,000 or more. When the number average molecular weight (Mn) of the polyamideimide having a branched structure is 30,000 or less, the compatibility with the polymer having a vinylphenol monomer unit can be improved, and the solubility in a solvent is improved. be able to. In addition, when the number average molecular weight (Mn) of the polyamideimide having a branched structure is 2,000 or more, the heat resistant shape retention of the resist film obtained can be further improved, and the positive resin using the photosensitive resin composition The easiness of forming the mold resist film can be enhanced. Furthermore, if the number average molecular weight (Mn) of the polyamideimide having a branched structure is 2000 or more, the heat resistance of the obtained resist film and the mechanical strength after curing can be enhanced. The value of the number average molecular weight (Mn) of polyamideimide can be determined as a polystyrene equivalent according to the gel permeation chromatography (GPC) method.
The weight average molecular weight (Mw) of the polyamideimide having the branched structure is preferably 100,000 or less, and more preferably 3,000 or more. When the weight average molecular weight (Mw) of the polyamideimide having a branched structure is 100,000 or less, the compatibility with the polymer having a vinylphenol monomer unit can be further improved, and the solubility in the solvent is further enhanced. It can be improved. In addition, when the weight average molecular weight (Mw) of the polyamideimide having a branched structure is 3,000 or more, the heat resistance of the obtained resist film and the mechanical strength after curing can be further enhanced.
 前記重合体と前記分岐型構造を有するポリアミドイミドとの合計(100質量%)中に占める前記重合体の割合は、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以下であることが好ましく、85質量%以下であることがより好ましい。重合体と分岐型構造を有するポリアミドイミドとの合計(100質量%)中に占める重合体の割合が70質量%以上90質量%以下であれば、得られるレジスト膜の透明性及び耐熱形状保持性を一層高めることができるとともに、現像後の残膜率及び感度が低下するのを防止することができる。 The proportion of the polymer in the total (100% by mass) of the polymer and the polyamideimide having the branched structure is preferably 70% by mass or more, and more preferably 80% by mass or more And 90% by mass or less, and more preferably 85% by mass or less. If the proportion of the polymer in the total (100% by mass) of the polymer and the polyamideimide having a branched structure is 70% by mass or more and 90% by mass or less, the transparency and heat-resistant shape retention of the resist film obtained Can be further enhanced, and the residual film rate after development and the sensitivity can be prevented from decreasing.
<ナフチルイミド基含有スルホン酸化合物>
 ナフチルイミド基含有スルホン酸化合物は、放射線が照射されると分解してスルホン酸を生成する化合物である。本発明の感光性樹脂組成物は、ナフチルイミド基含有スルホン酸化合物を含むため、耐熱形状保持性に優れる。さらに、ナフチルイミド基含有スルホン酸化合物は、感光性樹脂組成物を用いて得られるレジスト膜の感度、耐薬品性、及び厚膜での解像性を向上させ得る。
<Naphthyl imide group-containing sulfonic acid compound>
The naphthylimide group-containing sulfonic acid compound is a compound that decomposes to generate a sulfonic acid when irradiated with radiation. The photosensitive resin composition of the present invention is excellent in heat-resistant shape retention because it contains a naphthylimide group-containing sulfonic acid compound. Furthermore, the naphthylimide group-containing sulfonic acid compound can improve the sensitivity, the chemical resistance, and the resolution in a thick film of a resist film obtained using the photosensitive resin composition.
 ここで、放射線としては、特に限定されることなく、例えば、可視光線;紫外線;X線;g線、h線、i線等の単一波長の光線;KrFエキシマレーザー光、ArFエキシマレーザー光等のレーザー光線;電子線等の粒子線;などが挙げられる。なお、これらの放射線は、一種単独で、或いは、2種以上を混合して用いることができる。 Here, the radiation is not particularly limited. For example, visible light; ultraviolet light; X-ray; light of a single wavelength such as g-ray, h-ray, i-ray, etc .; KrF excimer laser light, ArF excimer laser light, etc. Laser beam; particle beam such as electron beam; In addition, these radiation can be used individually by 1 type or in mixture of 2 or more types.
 そして、ナフチルイミド基含有スルホン酸化合物としては、特に限定されることなく、例えば、1,8-ナフタルイミジルトリフレート(みどり化学社製、製品名「NAI-105」)、1,8-ナフタルイミジルブタンスルホネート(みどり化学社製、製品名「NAI-1004」)、1,8-ナフタルイミジルトシレート(みどり化学社製、製品名「NAI-101」)、1,8-ナフタルイミジルノナフルオロブタンスルホネート(みどり化学社製、製品名「NAI-109」)、1,8-ナフタルイミジル9-カンファースルホネート(みどり化学社製、製品名「NAI-106」)、1,8-ナフタルイミジルエタンスルホネート(みどり化学社製、製品名「NAI-1002」)、及び1,8-ナフタルイミジルプロパンスルホネート(みどり化学社製、製品名「NAI-1003」)などを用いることができる。中でも、溶剤への溶解性、耐薬品性等の観点から、ナフチルイミド基含有スルホン酸化合物としては、1,8-ナフタルイミジルトリフレート(みどり化学社製、製品名「NAI-105」)が好ましい。
 ナフチルイミド基含有スルホン酸化合物の含有量は、重合体と分岐型構造を有するポリアミドイミドとの合計100質量部当たり、0.1質量部以上であることが好ましく、0.3質量部以上であることがより好ましく、2.0質量部以下であることが好ましく、1.0質量部以下であることがより好ましい。ナフチルイミド基含有スルホン酸化合物の含有量が上記範囲内であれば、得られるレジスト膜について、耐熱形状保持性を十分に高めることができる。特に、ナフチルイミド基含有スルホン酸化合物の含有量を上記下限値以上とすることによって、得られるレジスト膜の耐熱形状保持性、及び耐薬品性を高めることができる。また、特に、ナフチルイミド基含有スルホン酸化合物の含有量を上記上限値以下とすることによって、得られるレジスト膜の厚膜での解像性及び感光性樹脂組成物の保存安定性を高めることができる。さらにまた、ナフチルイミド基含有スルホン酸化合物の含有量を上記範囲内とすることによって、得られるレジスト膜の感度を高めることができる。なお、ナフチルイミド基含有スルホン酸化合物は、一種単独で、或いは、2種以上を混合して用いることができる。
The naphthylimide group-containing sulfonic acid compound is not particularly limited, and examples thereof include 1,8-naphthalimidyl triflate (manufactured by Midori Kagaku Co., Ltd., product name “NAI-105”), 1, 8- Naphthalimidyl butane sulfonate (Midori Chemical Co., product name "NAI-1004"), 1, 8- Naphthalimidyl tosylate (Midori Chemical company, product name "NAI-101"), 1, 8- Naphthali Midyl nona fluorobutane sulfonate (Midori Chemical Co., Ltd., product name "NAI-109"), 1,8- naphthalimidyl 9-camphorsulfonate (Midori Chemical Co., product name "NAI-106"), 1, 8-naphtha Ruimidyl ethane sulfonate (Midori Chemical Co., Ltd., product name "NAI-1002"), and 1,8- naphthalimidyl propane sulfo Over door (green Chemical Co., Ltd., product name "NAI-1003"), or the like can be used. Among them, from the viewpoint of solubility in solvents, chemical resistance, etc., as a naphthylimide group-containing sulfonic acid compound, 1,8-naphthalimidyl triflate (manufactured by Midori Kagaku Co., Ltd., product name "NAI-105") Is preferred.
The content of the naphthylimide group-containing sulfonic acid compound is preferably 0.1 parts by mass or more, and more preferably 0.3 parts by mass or more, per 100 parts by mass in total of the polymer and the polyamideimide having a branched structure. The amount is more preferably 2.0 parts by mass or less, and more preferably 1.0 parts by mass or less. When the content of the naphthylimide group-containing sulfonic acid compound is within the above range, the heat resistant shape retention can be sufficiently enhanced for the obtained resist film. In particular, by setting the content of the naphthylimide group-containing sulfonic acid compound to the above lower limit value or more, the heat resistant shape retention property and chemical resistance of the obtained resist film can be enhanced. In addition, in particular, by setting the content of the naphthylimide group-containing sulfonic acid compound to the upper limit value or less, the resolution of the obtained resist film in a thick film and the storage stability of the photosensitive resin composition can be enhanced. it can. Furthermore, by setting the content of the naphthylimide group-containing sulfonic acid compound in the above range, the sensitivity of the resulting resist film can be enhanced. In addition, a naphthylimide group containing sulfonic acid compound can be used individually by 1 type or in mixture of 2 or more types.
<感光剤>
 感光剤とは、放射線が照射された場合に化学反応を引き起こすことのできる化合物である。感光剤としては、上述したナフチルイミド基含有スルホン酸化合物を除く、感光性樹脂組成物により形成されるレジスト膜のアルカリ溶解性を制御しうる化合物を用いることができる。特に、感光剤としては、放射線が照射されると分解してカルボン酸を生成する化合物を用いることが好ましい。感光性樹脂組成物が感光剤をさらに含むことで、レジスト膜の形成容易性を高めることができる。
 ここで、本発明の感光性樹脂組成物に用いられる感光剤としては、例えば、4,4’‐[1‐[4‐[1‐(4‐ヒドロキシフェニル)‐1‐メチルエチル]フェニル]エチリデンビスフェノールと6‐ジアゾ‐5,6‐ジヒドロ‐5‐オキソ‐ナフタレン‐1‐スルホン酸とのエステル体、4,4’‐[1‐[4‐[1‐(4‐ヒドロキシフェニル)‐1‐メチルエチル]フェニル]エチリデンビスフェノール(下記構造式(4)で表される化合物)と6‐ジアゾ‐5,6‐ジヒドロ‐5‐オキソ‐ナフタレン‐1‐スルホン酸とのエステル体、1,1,1‐トリス(4‐ヒドロキシフェニル)エタン(下記構造式(5)で表される化合物)と6‐ジアゾ‐5,6‐ジヒドロ‐5‐オキソ‐ナフタレン‐1‐スルホン酸とのエステル体、2‐(4‐ヒドロキシフェニル)‐2‐(2’,3’,4’‐トリヒドロキシフェニル)プロパンと6‐ジアゾ‐5,6‐ジヒドロ‐5‐オキソ‐ナフタレン‐1‐スルホン酸とのエステル体、特開2014-29766号公報に「感放射線化合物(B)」として記載された公知の化合物、などが挙げられる。これらの中でも、4,4’‐[1‐[4‐[1‐(4‐ヒドロキシフェニル)‐1‐メチルエチル]フェニル]エチリデンビスフェノールと6‐ジアゾ‐5,6‐ジヒドロ‐5‐オキソ‐ナフタレン‐1‐スルホン酸とのエステル体、及び1,1,1‐トリス(4‐ヒドロキシフェニル)エタンと6‐ジアゾ‐5,6‐ジヒドロ‐5‐オキソ‐ナフタレン‐1‐スルホン酸とのエステル体が、好ましい。
 これらの感光剤は、一種を単独で使用してもよく、二種以上を併用してもよい。
<Photosensitizer>
A photosensitizer is a compound capable of causing a chemical reaction when irradiated with radiation. As a photosensitizer, the compound which can control the alkali solubility of the resist film formed of the photosensitive resin composition except the above-mentioned naphthyl imide group containing sulfonic acid compound can be used. In particular, as the photosensitizer, it is preferable to use a compound which is decomposed to generate a carboxylic acid when irradiated with radiation. When the photosensitive resin composition further includes a photosensitizer, the easiness of forming a resist film can be enhanced.
Here, as a photosensitizer used for the photosensitive resin composition of the present invention, for example, 4,4 '-[1- [4- [1- (4-hydroxyphenyl) -1-methylethyl] phenyl] ethylidene An ester of bisphenol and 6-diazo-5,6-dihydro-5-oxo-naphthalene-1-sulfonic acid, 4,4 '-[1- [4- [1-hydroxyphenyl) -1-] [Methylethyl] phenyl] ethylidene bisphenol (compound represented by the following structural formula (4)) and ester of 6-diazo-5,6-dihydro-5-oxo-naphthalene-1-sulfonic acid, 1,1, Esters of 1-tris (4-hydroxyphenyl) ethane (compound represented by the following structural formula (5)) with 6-diazo-5,6-dihydro-5-oxo-naphthalene-1-sulfonic acid, 2 -(4- Esters of droxyphenyl) -2- (2 ', 3', 4'-trihydroxyphenyl) propane with 6-diazo-5,6-dihydro-5-oxo-naphthalene-1-sulfonic acid, JP-A Known compounds described as "the radiation sensitive compound (B)" in the 2014-29766 publication, and the like can be mentioned. Among these, 4,4 '-[1- [4- [1- (4-hydroxyphenyl) -1-methylethyl] phenyl] ethylidene bisphenol and 6-diazo-5,6-dihydro-5-oxo-naphthalene Esters with 1-sulfonic acid and esters of 1,1,1-tris (4-hydroxyphenyl) ethane with 6-diazo-5,6-dihydro-5-oxo-naphthalene-1-sulfonic acid Is preferred.
One of these photosensitizers may be used alone, or two or more thereof may be used in combination.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 なお、感光剤の含有量は、例えば、重合体と分岐型構造を有するポリアミドイミドとの合計100質量部当たり、30質量部未満であることが好ましい。感光剤の含有量が30質量部未満であれば、得られるレジスト膜の感度及び厚膜における解像性を一層高めるとともに、ブリーチング工程等におけるレジスト膜の露光時に塗膜内バブルが発生することを効果的に抑制することができる。特に、上記したような各種エステル体等の、放射線が照射されると分解してカルボン酸を生成する化合物を感光剤として用いる場合には、ビニルフェノール単量体単位を含む重合体の溶剤に対する溶解性よりも、カルボン酸の溶剤に対する溶解性の方が高くなる傾向がある。現像工程において溶剤に対してカルボン酸が優先的に溶解してしまい、重合体の溶解性が不十分となることがある。このため、感光剤の含有量を上記上限値未満とすることで、レジスト膜の感度及び厚膜における解像性を一層高めることができる。 The content of the photosensitizer is preferably, for example, less than 30 parts by mass per 100 parts by mass in total of the polymer and the polyamideimide having a branched structure. When the content of the photosensitizer is less than 30 parts by mass, the sensitivity of the obtained resist film and the resolution in a thick film are further enhanced, and bubbles in the coating film are generated when the resist film is exposed in a bleaching process or the like. Can be effectively suppressed. In particular, in the case of using a compound such as various ester forms as described above, which decomposes upon irradiation with radiation to generate a carboxylic acid as a photosensitizer, the dissolution of the polymer containing the vinylphenol monomer unit in the solvent The solubility of the carboxylic acid in the solvent tends to be higher than that of the polymer. In the development step, the carboxylic acid may be preferentially dissolved in the solvent, and the solubility of the polymer may be insufficient. Therefore, by setting the content of the photosensitizer below the above upper limit, the sensitivity of the resist film and the resolution in a thick film can be further enhanced.
<架橋剤>
 ここで、本発明の感光性樹脂組成物に用いられる架橋剤としては、例えば、ブタンテトラカルボン酸テトラ(3,4-エポキシシクロヘキシルメチル)修飾ε-カプロラクトン(ダイセル社製、エポリードGT401)等の多官能エポキシ化合物、メラミン・ホルムアルデヒド・アルキルモノアルコール重縮合物(三和ケミカル社製、ニカラックMw‐100LM)等のメチロール系化合物、トリグリシジルイソシアヌレート(日産化学社製、TEPIC-VL)等のトリグリシジルイソシアヌレート化合物、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート(ダイセル社製、セロキサイド2021P)等の脂環式エポキシ樹脂、特開2014-29766号公報に「架橋剤(C)」として記載された公知の化合物、などが挙げられる。これらの中でも、硬化後の膜の柔軟性、及び耐薬品性の観点で、ブタンテトラカルボン酸テトラ(3,4-エポキシシクロヘキシルメチル)修飾ε-カプロラクトン(ダイセル社製、エポリードGT401)等の多官能エポキシ化合物を用いることが好ましい。
 これらの架橋剤は、一種を単独で使用してもよく、二種以上を併用してもよい。
 特に、多官能エポキシ化合物に、メチロール系化合物を併用することで、得られるレジスト膜の耐薬品性を高めることができる。また、特に、多官能エポキシ化合物に、トリグリシジルイソシアヌレート及び/又は脂環式エポキシ樹脂を併用することで、得られるレジスト膜の耐熱形状保持性を維持しつつ、厚膜での解像性及び感度を一層向上させることができる。
 なお、架橋剤の含有量は、一般的な範囲とすることができる。
<Crosslinking agent>
Here, as a crosslinking agent used for the photosensitive resin composition of the present invention, for example, butanetetracarboxylic acid tetra (3,4-epoxycyclohexylmethyl) modified ε-caprolactone (manufactured by Daicel, Epolide GT401) and the like can be used. Functional epoxy compounds, methylol compounds such as melamine / formaldehyde / alkyl monoalcohol polycondensate (manufactured by Sanwa Chemical Co., Ltd., Nikalac Mw-100LM), triglycidyls such as triglycidyl isocyanurate (manufactured by Nissan Chemical Industries, Ltd. TEPIC-VL) Alicyclic epoxy resins such as isocyanurate compounds, 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexane carboxylate (manufactured by Daicel, Celoxide 2021 P), etc. Described as ")" Known compound, and the like. Among these, butanetetracarboxylic acid tetra (3,4-epoxycyclohexylmethyl) -modified ε-caprolactone (manufactured by Daicel, Epolide GT 401) and the like from the viewpoint of film flexibility and chemical resistance after curing. It is preferable to use an epoxy compound.
One of these crosslinking agents may be used alone, or two or more thereof may be used in combination.
In particular, by using a methylol compound in combination with the polyfunctional epoxy compound, the chemical resistance of the obtained resist film can be enhanced. Further, in particular, by using a triglycidyl isocyanurate and / or an alicyclic epoxy resin in combination with a polyfunctional epoxy compound, while maintaining the heat-resistant shape retention property of the resist film obtained, the resolution in a thick film and The sensitivity can be further improved.
In addition, content of a crosslinking agent can be made into a general range.
<溶剤>
 ここで、本発明の感光性樹脂組成物に用いられる溶剤としては、通常、エーテル系溶剤、アミド系溶剤、及びそれらの混合物が用いられる。前記エーテル系溶剤としては、例えば、ジエチレングリコールエチルメチルエーテル(東邦化学工業社製、ハイソルブEDM)、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、及びγ―ブチルラクトンなどが挙げられ、前記アミド系溶剤としては、1‐メチル‐2‐ピロリドン、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)などが挙げられる。
 上述したように、溶剤は、混合物でもよいが、溶剤の回収及び再利用の容易性の観点から、単一の物質からなる単一溶剤であることが好ましい。
<Solvent>
Here, as a solvent used for the photosensitive resin composition of this invention, an ether type solvent, an amide type solvent, and mixtures thereof are used normally. Examples of the ether solvents include diethylene glycol ethyl methyl ether (manufactured by Toho Chemical Industry Co., Ltd., Hysorb EDM), propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), and γ-butyl lactone. Examples of the amide solvents include 1-methyl-2-pyrrolidone, N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMA) and the like.
As described above, the solvent may be a mixture, but is preferably a single solvent consisting of a single substance from the viewpoint of ease of recovery and reuse of the solvent.
<添加剤>
 ここで、本発明の感光性樹脂組成物に用いられる添加剤としては、例えば、溶解促進剤、老化防止剤、シランカップリング剤、界面活性剤、紫外線吸収剤、色素、及び増感剤などが挙げられる。これらの添加剤は、所望の属性に応じた一般的な配合量にて、一種を単独で使用してもよく、二種以上を併用してもよい。
<Additives>
Here, as an additive used for the photosensitive resin composition of the present invention, for example, a dissolution accelerator, an antiaging agent, a silane coupling agent, a surfactant, an ultraviolet light absorber, a dye, a sensitizer and the like It can be mentioned. One of these additives may be used alone, or two or more thereof may be used in combination, in a general compounding amount depending on the desired attribute.
[溶解促進剤]
 前記溶解促進剤としては、例えば、5,5’-[2,2,2-トリフルオロ-1-(トリフルオロメチル)エチリデン]ビス[2-ヒドロキシ-1,3-ベンゼンジメタノール](本州化学工業社製、TML-BPAF-MF)、3,3’,5,5’-テトラメトキシメチル-4,4’-ビスフェノール(本州化学工業社製、TMOM‐BP)、及びその他の公知の溶解促進剤、などが挙げられる。これらの中でも、耐薬品性、及び硬化膜の機械強度の観点で、5,5’ -[2,2,2-トリフルオロ-1-(トリフルオロメチル)エチリデン]ビス[2-ヒドロキシ-1,3-ベンゼンジメタノール](本州化学工業社製、TML-BPAF-MF)を用いることが、好ましい。
 これらの溶解促進剤は、一種を単独で使用してもよく、二種以上を併用してもよい。
[Dissolution promoter]
Examples of the dissolution accelerator include 5,5 ′-[2,2,2-trifluoro-1- (trifluoromethyl) ethylidene] bis [2-hydroxy-1,3-benzenedimethanol] (Honshu Chem. Manufactured by Kogyo Co., Ltd., TML-BPAF-MF), 3,3 ', 5,5'-tetramethoxymethyl-4,4'-bisphenol (manufactured by Honshu Chemical Industry Co., Ltd., TMOM-BP), and other known dissolution accelerators Agents, and the like. Among these, in terms of chemical resistance and mechanical strength of a cured film, 5,5 ′-[2,2,2-trifluoro-1- (trifluoromethyl) ethylidene] bis [2-hydroxy-1, It is preferable to use 3-benzenedimethanol] (manufactured by Honshu Chemical Industry Co., Ltd., TML-BPAF-MF).
These dissolution promoters may be used alone or in combination of two or more.
[老化防止剤]
 前記老化防止剤としては、例えば、ペンタエリスリトール‐テトラキス[3‐(3,5‐ジ‐tert‐ブチル‐4‐ヒドロキシフェニル)プロピオナート](下記構造式(6)で表される化合物、BASF社製、Irganox1010)等のヒンダードフェノール系老化防止剤、2,4‐ビス[(ドデシルチオ)メチル]‐6‐メチルフェノール(下記構造式(7)で表される化合物、BASF社製、Irganox1726)等のイオウ系老化防止剤、その他の公知の老化防止剤、などが挙げられる。これらの中でも、透明性の観点で、ペンタエリスリトール‐テトラキス[3‐(3,5‐ジ‐tert‐ブチル‐4‐ヒドロキシフェニル)プロピオナート](BASF社製、Irganox1010)が、好ましい。
 これらの老化防止剤は、一種を単独で使用してもよく、二種以上を併用してもよい。
[Anti-aging agent]
Examples of the anti-aging agent include pentaerythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (compound represented by the following structural formula (6), manufactured by BASF Corp. , Irganox 1010), etc., 2,4-bis [(dodecylthio) methyl] -6-methylphenol (compound represented by the following structural formula (7), manufactured by BASF, Irganox 1726), etc. Sulfur based antioxidants, other known antioxidants, etc. may be mentioned. Among these, pentaerythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (manufactured by BASF, Irganox 1010) is preferable from the viewpoint of transparency.
These anti-aging agents may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
[シランカップリング剤]
 シランカップリング剤としては、特に限定されることなく、公知のものを用いることができる(例えば、特開第2015‐94910号参照)。これらの中でも、本発明の感光性樹脂組成物を用いて得られる塗膜又は樹脂膜と、塗膜又は樹脂膜が形成された基材との間の密着性の観点で、3-(フェニルアミノ)プロピルトリメトキシシラン(信越化学工業社製、KBM-573)、グリシドキシプロピルトリメトキシシラン(XIAMETER社製、OFS-6040)が、好ましい。これらのシランカップリング剤は、一種を単独で使用してもよく、二種以上を併用してもよい。
[Silane coupling agent]
The silane coupling agent is not particularly limited, and any known one can be used (see, for example, JP-A-2015-94910). Among these, 3- (phenylamino) from the viewpoint of adhesion between the coating film or resin film obtained using the photosensitive resin composition of the present invention and the substrate on which the coating film or resin film is formed. 2.) Propyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-573) and glycidoxypropyltrimethoxysilane (manufactured by XIAMETER, OFS-6040) are preferable. One of these silane coupling agents may be used alone, or two or more thereof may be used in combination.
[界面活性剤]
 前記界面活性剤としては、例えば、オルガノシロキサンポリマー(信越化学工業社製、KP341)、その他の公知の界面活性剤、などが挙げられる。これらの中でも、基板への塗工性の観点で、オルガノシロキサンポリマーが、好ましい。
 これらの界面活性剤は、一種を単独で使用してもよく、二種以上を併用してもよい。
[Surfactant]
As said surfactant, organosiloxane polymer (Shin-Etsu Chemical Co., Ltd. make, KP341), other well-known surfactant, etc. are mentioned, for example. Among these, organosiloxane polymers are preferable from the viewpoint of coatability to a substrate.
One of these surfactants may be used alone, or two or more thereof may be used in combination.
<感光性樹脂組成物の製造方法>
 本発明の感光性樹脂組成物は、上述した成分を既知の方法により混合し、任意にろ過することで、調製することができる。ここで、混合には、スターラー、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの既知の混合機を用いることができる。また、混合物のろ過には、フィルター等のろ材を用いた一般的なろ過方法を採用することができる。
<Method of producing photosensitive resin composition>
The photosensitive resin composition of the present invention can be prepared by mixing the above-mentioned components by a known method and optionally filtering. Here, for mixing, known mixers such as a stirrer, a ball mill, a sand mill, a bead mill, a pigment disperser, a leash, an ultrasonic disperser, a homogenizer, a planetary mixer, and a film mix can be used. Moreover, the common filtration method using filter media, such as a filter, can be employ | adopted for filtration of a mixture.
<塗膜及び(レンズ状)樹脂膜の形成方法>
 本発明の感光性樹脂組成物を用いた樹脂膜は、特に限定されることなく、例えば、樹脂膜を形成する基板上に本発明の感光性樹脂組成物を使用して塗膜を設けた後、塗膜に放射線を照射し、更に放射線照射後の塗膜を加熱することにより、形成することができる。なお、基板上に設ける塗膜は、パターニングされていてもよい。さらに、必要に応じて、塗膜は、ブリーチング工程に供されていても良い。
 また、樹脂膜を形成する基板上への塗膜の配設は、特に限定されることなく、塗布法やフィルム積層法等の方法を用いて基板上に塗膜を形成した後、任意に塗膜をパターニングすることにより行うことができる。
<Method of forming coating film and (lens-like) resin film>
The resin film using the photosensitive resin composition of the present invention is not particularly limited, and for example, after providing a coating film using the photosensitive resin composition of the present invention on a substrate on which a resin film is formed It can form by irradiating a radiation to a coating film, and also heating the coating film after radiation irradiation. The coating film provided on the substrate may be patterned. Furthermore, if necessary, the coating may be subjected to a bleaching step.
In addition, the arrangement of the coating film on the substrate on which the resin film is formed is not particularly limited, and after forming the coating film on the substrate using a method such as a coating method or a film laminating method, the coating is optionally coated. It can be done by patterning the film.
[塗膜の形成]
 ここで、塗布法による塗膜の形成は、感光性樹脂組成物を基板上に塗布した後、加熱乾燥(プリベーク)することにより行うことができる。なお、感光性樹脂組成物を塗布する方法としては、例えば、スプレーコート法、スピンコート法、ロールコート法、ダイコート法、ドクターブレード法、バー塗布法、スクリーン印刷法、インクジェット法等の各種の方法を採用することができる。加熱乾燥条件は、感光性樹脂組成物に含まれている成分の種類や配合割合に応じて異なるが、加熱温度は、通常、30~150℃、好ましくは60~130℃であり、加熱時間は、通常、0.5~90分間、好ましくは1~60分間、より好ましくは1~30分間である。
[Formation of coating film]
Here, the formation of the coating film by the application method can be performed by applying a photosensitive resin composition to a substrate and then heating and drying (pre-baking). In addition, as a method of apply | coating the photosensitive resin composition, various methods, such as a spray coat method, a spin coat method, a roll coat method, a die coat method, a doctor blade method, a bar coating method, a screen printing method, an inkjet method, are mentioned, for example. Can be adopted. The heating and drying conditions vary depending on the type and the mixing ratio of the components contained in the photosensitive resin composition, but the heating temperature is usually 30 to 150 ° C., preferably 60 to 130 ° C., and the heating time is It is usually 0.5 to 90 minutes, preferably 1 to 60 minutes, more preferably 1 to 30 minutes.
 また、フィルム積層法による塗膜の形成は、感光性樹脂組成物を樹脂フィルムや金属フィルム等のBステージフィルム形成用基材上に塗布した後、加熱乾燥(プリベーク工程)することによりBステージフィルムを得た後、次いで、このBステージフィルムを基板上に積層することにより行うことができる。なお、Bステージフィルム形成用基材上への感光性樹脂組成物の塗布及び感光性樹脂組成物の加熱乾燥は、上述した塗布法における感光性樹脂組成物の塗布及び加熱乾燥と同様にして行うことができる。また、積層は、加圧ラミネータ、プレス、真空ラミネータ、真空プレス、ロールラミネータ等の圧着機を用いて行なうことができる。 Moreover, formation of the coating film by a film lamination method is B-stage film by heat-drying (prebaking process), after apply | coating photosensitive resin composition on the base materials for B-stage film formation, such as a resin film and a metal film. Then, this B-stage film can be carried out by laminating on the substrate. The coating of the photosensitive resin composition on the B-stage film forming substrate and the heating and drying of the photosensitive resin composition are performed in the same manner as the coating and the heating and drying of the photosensitive resin composition in the coating method described above. be able to. The lamination can be performed using a pressure bonding machine such as a pressure laminator, a press, a vacuum laminator, a vacuum press, or a roll laminator.
 基板上に設けた塗膜に対して施されうる任意のパターン化工程は、例えば、パターニング前の塗膜に対して、上記したような放射線を照射して潜像パターンを形成した後、潜像パターンを有する塗膜に現像液を接触させてパターンを顕在化させるフォトリソグラフィー法などの公知のパターニング方法を用いて行うことができる。 The optional patterning step that can be applied to the coating provided on the substrate may be, for example, irradiating the above-described radiation on the coating before patterning to form a latent image pattern, and then forming a latent image. It can carry out using well-known patterning methods, such as the photolithographic method which makes a developing solution contact the coating film which has a pattern, and makes a pattern explicit.
 また、放射線をパターン状に照射して潜像パターンを形成する方法としては、縮小投影露光装置を使用し、所望のマスクパターンを介して放射線を照射する方法などの公知の方法を用いることができる。
 そして、放射線の照射条件は、使用する放射線に応じて適宜選択されるが、例えば、放射線の波長は365nm以上436nm以下の範囲内とすることができ、また、照射量は例えば900mJ/cm以下とすることができる。
Further, as a method of forming a latent image pattern by irradiating radiation in a pattern, a known method such as a method of irradiating radiation through a desired mask pattern using a reduction projection exposure apparatus can be used. .
And the irradiation conditions of radiation are suitably selected according to the radiation to be used, For example, the wavelength of a radiation can be in the range of 365 nm or more and 436 nm or less, and the irradiation amount is 900 mJ / cm 2 or less, for example. It can be done.
 また、現像液としては、特に限定されることなく、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液等の既知のアルカリ現像液を用いることができる。そして、塗膜に現像液を接触させる方法及び現像条件としては、特に限定されることなく、所望の品質のレジストパターンを得るように適宜設定することができる。なお、現像時間は、上述した現像条件の決定方法により適宜決定することができる。 Further, the developing solution is not particularly limited, and a known alkali developing solution such as 2.38 mass% tetramethylammonium hydroxide aqueous solution can be used. The method for bringing the developer into contact with the coating film and the development conditions are not particularly limited, and can be appropriately set so as to obtain a resist pattern of desired quality. The development time can be appropriately determined by the method of determining the development conditions described above.
 なお、上述したようにして得られたパターン化塗膜は、必要に応じて、現像残渣を除去するために、リンス液でリンスすることができる。リンス処理の後、残存しているリンス液を圧縮空気や圧縮窒素により更に除去してもよい。 In addition, the patterned coating film obtained as mentioned above can be rinsed by rinse agent, in order to remove a development residue as needed. After the rinse treatment, the remaining rinse solution may be further removed by compressed air or compressed nitrogen.
 そして、上述の方法で、パターン化塗膜を得た後に、かかるパターン化塗膜をメルトフロー工程に供して、パターン化塗膜に含まれていた各パターンの断面形状をなだらかな形状に変化させたパターン化塗膜を得てもよい。この変化により、例えば、断面形状が角張った形状のパターンを角のないなだらかな形状のパターンに形状変化させる。具体的には、例えば、パターン化塗膜にドットパターンが形成されていた場合、このパターン化塗膜を所定温度範囲にて所定時間保持するメルトフロー工程に供して、パターンを円柱状又は略円柱状のドット形状から半球体形状に形状変化させることで、直径2~20μm程度のレンズパターンを形成することができる。なお、メルトフロー工程における加熱方法としては、特に限定されることなく、例えば、ホットプレートやオーブン内で加熱する方法が挙げられる。また、メルトフロー工程における加熱温度は、塗膜の融点以上の任意の温度であり、例えば、100~170℃、好ましくは120~150℃であり、加熱時間は、通常、2~15分、好ましくは5~10分である。 Then, after the patterned coating film is obtained by the above method, the patterned coating film is subjected to a melt flow process to change the cross-sectional shape of each pattern contained in the patterned coating film into a gentle shape. A patterned coating may be obtained. As a result of this change, for example, the cross-sectional shape changes the shape of a square-shaped pattern into a pattern with a gentle, non-cornered shape. Specifically, for example, when a dot pattern is formed on a patterned coating film, the patterned coating film is subjected to a melt flow step of holding for a predetermined time in a predetermined temperature range to form a cylindrical or substantially circular pattern. By changing the shape from a columnar dot shape to a hemispherical shape, it is possible to form a lens pattern having a diameter of about 2 to 20 μm. In addition, it does not specifically limit as a heating method in a melt flow process, For example, the method of heating in a hot plate or oven is mentioned. The heating temperature in the melt flow process is any temperature above the melting point of the coating, for example, 100 to 170 ° C., preferably 120 to 150 ° C., and the heating time is usually 2 to 15 minutes, preferably Is 5 to 10 minutes.
 さらに、任意で、パターン化工程に供した塗膜に対して、メルトフロー工程に先立って、ブリーチング工程を施すことができる。ブリーチング工程では、塗膜に対して、上記したような放射線を照射して、ナフチルイミド基含有スルホン酸化合物を分解させてスルホン酸を生成させることにより、塗膜の耐薬品性及び透明度を高めることができる。そして、放射線の照射条件は、使用する放射線に応じて適宜選択されるが、例えば、放射線の波長は365nm以上436nm以下の範囲内とすることができ、また、照射量は、例えば750mJ/cm以上であって、パターン化工程よりも大きい照射量とすることができる。 Furthermore, optionally, the coating film subjected to the patterning process may be subjected to a bleaching process prior to the melt flow process. In the bleaching step, the coating film is irradiated with radiation as described above to decompose the naphthylimide group-containing sulfonic acid compound to form a sulfonic acid, thereby enhancing the chemical resistance and the transparency of the coating film. be able to. And the irradiation conditions of radiation are suitably selected according to the radiation to be used, For example, the wavelength of a radiation can be in the range of 365 nm or more and 436 nm or less, and the irradiation amount is, for example, 750 mJ / cm 2 It is the above, It can be set as the irradiation amount larger than a patterning process.
[(レンズ状)樹脂膜の形成]
 レンズ状の樹脂膜(即ち、本発明の感光性樹脂組成物よりなるレンズ)は、上記のようにして得られた塗膜を加熱(ポストベーク)して硬化させることにより形成することができる。
[Formation of (lens-like) resin film]
A lens-like resin film (that is, a lens made of the photosensitive resin composition of the present invention) can be formed by heating (post-baking) and curing the coating film obtained as described above.
 ポストベーク工程における塗膜の加熱は、特に限定されることなく、例えば、ホットプレート、オーブン等を用いて行なうことができる。なお、加熱は、必要に応じて不活性ガス雰囲気下で行ってもよい。不活性ガスとしては、例えば、窒素、アルゴン、ヘリウム、ネオン、キセノン、クリプトン等が挙げられる。これらの中でも窒素とアルゴンが好ましく、特に窒素が好ましい。 The heating of the coating film in the post-baking step is not particularly limited, and can be performed using, for example, a hot plate, an oven, or the like. The heating may be performed under an inert gas atmosphere as required. Examples of the inert gas include nitrogen, argon, helium, neon, xenon, krypton and the like. Among these, nitrogen and argon are preferable, and nitrogen is particularly preferable.
 ここで、塗膜を加熱する際の温度は、例えば、100~300℃とすることができる。なお、塗膜を加熱する時間は、塗膜の面積や厚さ、使用機器等により適宜選択することができ、例えば10~60分間とすることができる。 Here, the temperature at the time of heating the coating can be, for example, 100 to 300.degree. The time for heating the coating can be appropriately selected according to the area and thickness of the coating, the equipment used, etc., and can be, for example, 10 to 60 minutes.
(マイクロLED)
 図1は、本発明の一実施形態に従う感光性樹脂組成物を用いて形成した、保護絶縁膜及びレンズを備えるマイクロLEDの一例を示す概略断面図である。
 図1において、マイクロLED10は、エピタキシャルウエハ20と、このエピタキシャルウエハ20の一方の主面に形成された複数のnドット電極30と、エピタキシャルウエハ20の他方の主面に形成されたpパッド電極40とを、備える。さらに、マイクロLED10は、pパッド電極40が形成されている側の主面上に、保護絶縁膜50、及び保護絶縁膜50上に形成されたレンズ60を備えるものである。
(Micro LED)
FIG. 1 is a schematic cross-sectional view showing an example of a micro LED provided with a protective insulating film and a lens, which is formed using a photosensitive resin composition according to an embodiment of the present invention.
In FIG. 1, the micro LED 10 includes an epitaxial wafer 20, a plurality of n dot electrodes 30 formed on one main surface of the epitaxial wafer 20, and a p pad electrode 40 formed on the other main surface of the epitaxial wafer 20. And. Further, the micro LED 10 is provided with a protective insulating film 50 and a lens 60 formed on the protective insulating film 50 on the main surface on which the p pad electrode 40 is formed.
 例えば、以下のようにして、本発明の感光性樹脂組成物を用いて、上記のような構造のマイクロLEDを製造することができる。まず、所定の組成の本発明の感光性樹脂組成物を用いて、塗布、プリベーク工程、及びポストベーク工程等を行うことで、保護絶縁膜50に相当する樹脂膜を得る。そして、得られた保護絶縁膜50上に、保護絶縁膜50を形成する際に用いて感光性樹脂組成物と同一の、或いは異なる組成の本発明の感光性樹脂組成物を用いて、塗布、プリベーク工程、パターン化工程、メルトフロー工程、及びポストベーク工程等を行うことで、レンズ60に相当する樹脂膜を得る。なお、保護絶縁膜50及びレンズ60の形成箇所は、必要に応じて任意に決定することができる。本発明の感光性樹脂組成物を用いてレンズ60を形成する際に行われうるパターン化工程は、上述したように既知のフォトリソグラフィー法に従って実施することができるため、パターン精度が高く、得られるレンズ60を微細な構造とすることが容易である。 For example, as described below, the photosensitive resin composition of the present invention can be used to produce a micro LED of the above-described structure. First, using the photosensitive resin composition of the present invention having a predetermined composition, a resin film corresponding to the protective insulating film 50 is obtained by performing coating, a pre-baking step, a post-baking step, and the like. Then, using the photosensitive resin composition of the present invention, which has the same composition as or a different composition from the photosensitive resin composition used when forming the protective insulating film 50, on the obtained protective insulating film 50, A resin film corresponding to the lens 60 is obtained by performing a pre-baking process, a patterning process, a melt flow process, a post-baking process, and the like. In addition, the formation location of the protective insulating film 50 and the lens 60 can be arbitrarily determined as needed. Since the patterning step which can be carried out when forming the lens 60 using the photosensitive resin composition of the present invention can be carried out according to the known photolithography method as described above, the pattern accuracy is obtained with high accuracy. It is easy to make the lens 60 into a minute structure.
 なお、通常、図1に示すような構造のマイクロLEDを製造する際には、かかる構造のマイクロLEDを一つのみ製造するのではなく、マイクロLEDがウエハ上に複数配列されてなるアレイシートを得てから、かかるアレイシートをダイシングすることで、図1に示すような、一つのマイクロLEDを得ることが一般的である。そのため、パターン化塗膜を得てレンズを形成する際には、アレイシートに含まれる複数のマイクロLEDのそれぞれに対応する、ドットパターンをパターン化工程にて形成してから、メルトフロー工程を行って各パターンの形状をレンズ形状に変化させることとなる。 Generally, when manufacturing a micro LED having a structure as shown in FIG. 1, an array sheet in which a plurality of micro LEDs are arrayed on a wafer is used instead of manufacturing only one such micro LED. It is common to obtain one micro LED as shown in FIG. 1 by dicing the array sheet after obtaining it. Therefore, when forming a patterned coating film and forming a lens, after forming a dot pattern corresponding to each of a plurality of micro LEDs included in the array sheet in the patterning step, the melt flow step is performed. Thus, the shape of each pattern is changed to a lens shape.
 以下に実施例を挙げて、本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。各例中の「部」は、特に断りのない限り、質量基準である。 EXAMPLES The present invention will be more specifically described below with reference to examples, but the present invention is not limited to these examples. Unless otherwise indicated, "part" in each case is a mass reference.
 以下、合成例1~2に(共)重合体の調製例を示す。
(合成例1)
<p-ビニルフェノール単量体単位とメタクリル酸メチル単量体単位とを有する共重合体(A‐1)の調製>
 フェノール性水酸基が保護基により保護されてなる化合物としてのp‐tert‐ブトキシスチレン50部、(メタ)アクリレート単量体としてのメタクリル酸メチル50部、及び重合開始剤としてのアゾビスイソブチロニトリル4部を、溶剤としてのプロピレングリコールモノメチルエーテル150部を溶解させ、窒素雰囲気下、反応温度を70℃に保持して、10時間重合させた。そして、反応溶液に硫酸を加えて反応温度を90℃に保持して10時間反応させ、p‐tert‐ブトキシスチレン単量体単位を脱保護して、p‐ビニルフェノール単量体単位に変換した。そして、得られた共重合体に酢酸エチルを加え、水洗を5回繰り返し、酢酸エチル相を分取し、溶剤を除去することで、p-ビニルフェノール単量体単位とメタクリル酸メチル単量体単位とを有する共重合体(A‐1)を得た。得られた共重合体(A‐1)における、各単量体単位の比率は、p‐ビニルフェノール単量体単位:メタクリル酸メチル単量体単位=50:50(質量比)であった。重量平均分子量(Mw)はポリスチレン換算で9600であった。
Hereinafter, Preparation Examples of (co) polymers are shown in Synthesis Examples 1 and 2.
Synthesis Example 1
<Preparation of copolymer (A-1) having p-vinylphenol monomer unit and methyl methacrylate monomer unit>
50 parts of p-tert-butoxystyrene as a compound in which a phenolic hydroxyl group is protected by a protecting group, 50 parts of methyl methacrylate as a (meth) acrylate monomer, and azobisisobutyronitrile as a polymerization initiator Four parts were dissolved in 150 parts of propylene glycol monomethyl ether as a solvent, and polymerization was performed for 10 hours under a nitrogen atmosphere while maintaining the reaction temperature at 70 ° C. Then, sulfuric acid was added to the reaction solution and reacted for 10 hours while maintaining the reaction temperature at 90 ° C. to deprotect p-tert-butoxystyrene monomer unit and convert it to p-vinylphenol monomer unit . Then, ethyl acetate is added to the obtained copolymer, water washing is repeated 5 times, the ethyl acetate phase is separated, and the solvent is removed to obtain the p-vinylphenol monomer unit and the methyl methacrylate monomer. A copolymer (A-1) having units was obtained. The ratio of each monomer unit in the obtained copolymer (A-1) was p-vinylphenol monomer unit: methyl methacrylate monomer unit = 50: 50 (mass ratio). The weight average molecular weight (Mw) was 9600 in terms of polystyrene.
(合成例2)
<環状オレフィン重合体(A-2)の調製>
 N-フェニル-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド(NBPI)40モル%、及び4-ヒドロキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン(TCDC)60モル%からなる単量体混合物100部、1,5-ヘキサジエン2.0部、(1,3-ジメシチルイミダゾリン-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド(Org.Lett.,第1巻,953頁,1999年 に記載された方法で合成した)0.02部、及びジエチレングリコールエチルメチルエーテル200部を、窒素置換したガラス製耐圧反応器に仕込み、攪拌しつつ80℃にて4時間反応させて重合反応液を得た。得られた重合反応液をオートクレーブに入れて、150℃、水素圧4MPaで、5時間攪拌して水素化反応を行い、酸性基としてのカルボキシル基を有する環状オレフィン重合体(A-2)を含む重合体溶液を得た。得られた環状オレフィン重合体(A-2)の重合転化率は99.7%、重量平均分子量(Mw)はポリスチレン換算で7150であった。
(Composition example 2)
<Preparation of Cyclic Olefin Polymer (A-2)>
40 mol% of N-phenyl-bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide (NBPI), and 4-hydroxycarbonyltetracyclo [6.2.1.13,6. 02, 7] 100 parts of a monomer mixture consisting of 60 mol% of dodec-9-ene (TCDC), 2.0 parts of 1,5-hexadiene, (1,3-dimesitylimidazolin-2-ylidene) (tril Cyclohexylphosphine) benzylidene ruthenium dichloride (synthesized by the method described in Org. Lett., Vol. 1, page 953, 1999) 0.02 parts, and 200 parts of diethylene glycol ethyl methyl ether made of nitrogen-substituted glass The mixture was charged in a reactor and reacted at 80 ° C. for 4 hours with stirring to obtain a polymerization reaction solution. The obtained polymerization reaction solution is charged in an autoclave and stirred for 5 hours at 150 ° C. under a hydrogen pressure of 4 MPa to carry out a hydrogenation reaction to contain a cyclic olefin polymer (A-2) having a carboxyl group as an acidic group. A polymer solution was obtained. The polymerization conversion ratio of the obtained cyclic olefin polymer (A-2) was 99.7%, and the weight average molecular weight (Mw) was 7,150 in terms of polystyrene.
(実施例1)
 (i)重合体として、合成例1で得られたp‐ビニルフェノール単量体単位とメタクリル酸メチル単量体単位とを有する共重合体(A‐1)85部、(ii)分岐型構造を有するポリアミドイミド樹脂(DIC社製、ユニディックEMG‐793、固形分43.7%(溶剤はプロピレングリコールモノメチルエーテルアセテート)、酸価65.6mg(KOH)/g、粘度(25℃,E型粘度計)1.04Pa・s、数平均分子量(ゲル・パーミエーション・クロマトグラフィー(GPC)法に従うポリスチレン換算量)2000以上30000以下)15部、(iii)ナフチルイミド基含有スルホン酸化合物として、1,8-ナフタルイミジルトリフレート(みどり化学社製、製品名「NAI-105」)0.5部、(iv)感光剤(感放射線性化合物)として、4,4’‐[1‐[4‐[1‐(4‐ヒドロキシフェニル)‐1‐メチルエチル]フェニル]エチリデンビスフェノールと6‐ジアゾ‐5,6‐ジヒドロ‐5‐オキソ‐ナフタレン‐1‐スルホン酸とのエステル体(2.5モル体)(美源商事社製、TPA‐525)10部、及び1,1,1‐トリス(4‐ヒドロキシフェニル)エタンと6‐ジアゾ‐5,6‐ジヒドロ‐5‐オキソ‐ナフタレン‐1‐スルホン酸とのエステル体(2モル体)(東洋合成社製、HP‐200)10部、(v)架橋剤として、ブタンテトラカルボン酸テトラ(3,4-エポキシシクロヘキシルメチル)修飾ε-カプロラクトン(ダイセル社製、エポリードGT401)40部、及びメラミン・ホルムアルデヒド・アルキルモノアルコール重縮合物(三和ケミカル社製、ニカラックMw‐100LM)10部、(vi)溶解促進剤として、5,5′‐[2,2,2‐トリフルオロ‐1‐(トリフルオロメチル)エチリデン]ビス[2‐ヒドロキシ‐1,3‐ベンゼンジメタノール](本州化学工業社製、TML‐BPAF‐MF)10部、(vii)老化防止剤(酸化防止剤)として、ペンタエリスリトール‐テトラキス[3‐(3,5‐ジ‐tert‐ブチル‐4‐ヒドロキシフェニル)プロピオナート](BASF社製、Irganox1010)2.5部、(viii)シランカップリング剤として、3-(フェニルアミノ)プロピルトリメトキシシラン(信越化学工業社製、製品名「KBM-573」)3部、及びグリシドキシプロピルトリメトキシシラン(XIAMETER社製、OFS-6040)3部、(ix)界面活性剤として、オルガノシロキサンポリマー(信越化学工業社製、KP341)300ppm(ろ過前の混合物の全質量基準)、及び(x)溶剤として、ジエチレングリコールエチルメチルエーテル(東邦化学工業社製、ハイソルブEDM)100部を混合し、溶解させた後、孔径0.45μmのポリテトラフルオロエチレン製フィルターでろ過して感光性樹脂組成物を調製した。調製した感光性樹脂組成物について、後述する各評価(露光感度、厚膜での解像性、現像残膜率、光線透過率、耐薬品性、耐熱形状保持性、露光時のバブル)を行った。結果を表1に示す。
Example 1
(I) 85 parts of the copolymer (A-1) having the p-vinylphenol monomer unit and the methyl methacrylate monomer unit obtained in Synthesis Example 1 as a polymer, (ii) a branched structure Polyamideimide resin (manufactured by DIC, Unidic EMG-793, solid content 43.7% (solvent is propylene glycol monomethyl ether acetate), acid value 65.6 mg (KOH) / g, viscosity (25 ° C., type E) Viscosity meter) 1.04 Pa · s, number average molecular weight (polystyrene equivalent according to gel permeation chromatography (GPC) method: 2,000 or more and 30,000 or less), 15 parts, (iii) 1 as a naphthylimide group-containing sulfonic acid compound , 8-Naphthalimidyl triflate (Midori Kagaku Co., Ltd., product name “NAI-105”) 0.5 parts, (iv) Photosensitizer (sensitive 4,4 '-[1- [4- [1- (4-hydroxyphenyl) -1-methylethyl] phenyl] ethylidene bisphenol and 6-diazo-5,6-dihydro-5-oxo as radiation compounds) 10 parts of ester (2.5 molar) with N-naphthalene-1-sulfonic acid (manufactured by Bigen Shoji Co., Ltd., TPA-525), and 1,1,1-tris (4-hydroxyphenyl) ethane and 6- 10 parts of ester (2 molar) with diazo-5,6-dihydro-5-oxo-naphthalene-1-sulfonic acid (HP-200, manufactured by Toyo Gosei Co., Ltd.), (v) butanetetracarbon as a crosslinking agent Acid, tetra (3,4-epoxycyclohexylmethyl) -modified ε-caprolactone (manufactured by Daicel, EPIDEL GT 401), and melamine, formaldehyde, alkyl monoalcohol 10 parts of polycondensate (manufactured by Sanwa Chemical Co., Ltd., nicalac Mw-100 LM), (vi) as a dissolution accelerator, 5,5 ′-[2,2,2-trifluoro-1- (trifluoromethyl) ethylidene] 10 parts of bis [2-hydroxy-1,3-benzenedimethanol] (manufactured by Honshu Chemical Industry Co., Ltd., TML-BPAF-MF), (vii) pentaerythritol-tetrakis [3- as anti-aging agent (antioxidant) 2.5 parts of (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (manufactured by BASF, Irganox 1010), (viii) 3- (phenylamino) propyltrimethoxysilane (silane) as a silane coupling agent Shin-Etsu Chemical Co., Ltd. product name “KBM-573” 3 parts, and glycidoxypropyl trimethoxysilane (XIAME 3 parts of TER Co., OFS-6040), (ix) 300 ppm (based on the total mass of the mixture before filtration) of an organosiloxane polymer (KP 341, manufactured by Shin-Etsu Chemical Co., Ltd.) as a surfactant, and (x) as a solvent 100 parts of diethylene glycol ethyl methyl ether (manufactured by Toho Chemical Industry Co., Ltd., Hysorb EDM) was mixed and dissolved, followed by filtration using a polytetrafluoroethylene filter with a pore size of 0.45 μm to prepare a photosensitive resin composition. Each evaluation (exposure sensitivity, resolution with a thick film, development residual film rate, light transmittance, chemical resistance, heat-resistant shape retention, bubble during exposure) described below is performed on the prepared photosensitive resin composition. The The results are shown in Table 1.
<露光感度>
 シリコンウエハ基板上に、感光性樹脂組成物をスピンコート法により塗布し、ホットプレートを用いて120℃で2分間加熱乾燥(プリベーク)して、膜厚10μmの塗膜を形成した。次いで、パターン化工程にて塗膜をパターニングするために、図2に示すような直径20μm、ドット間距離10μmのドットパターンが形成可能なマスクを用いて、所定面積の照射部分ごとに、g-h-i混合線(波長:i線=365nm、h線=405nm、g線=436nm)を、露光量が500mJ/cm~1300mJ/cmの範囲の異なる値となるように照射し、露光工程を行った。次いで、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液を用いて、25℃で90秒間現像処理を行い、超純水で20秒間リンスをすることにより、異なる露光量で得られた複数の部分にわたって延在するドットパターンを有する塗膜とシリコンウエハ基板とからなる積層体を得た。
 得られた積層体のドットパターン形成部分を、光学顕微鏡を用いて観察し、各露光量で露光された部分に含まれるドットパターンの直径をそれぞれ測定した。そして各露光量と、対応する露光量において形成されたドットパターンの直径の関係から近似曲線を作成し、ドットパターンの直径が20μmとなる時の露光量を算出し、その露光量を露光感度(単に「感度」とも称する)として決定した。ドットパターンの直径が20μmとなる時の露光量が低いほど、低いエネルギーで、又は短時間でパターンを形成できるため、露光感度が高いことを意味する。
<Exposure sensitivity>
A photosensitive resin composition was applied on a silicon wafer substrate by a spin coating method, and dried by heating (pre-baking) at 120 ° C. for 2 minutes using a hot plate to form a coating film having a thickness of 10 μm. Next, in order to pattern the coating film in the patterning step, using a mask capable of forming a dot pattern having a diameter of 20 μm and a distance between dots of 10 μm as shown in FIG. h-i mixing line (wavelength: i line = 365 nm, h-ray = 405 nm, g line = 436 nm) and irradiated so that the exposure amount becomes different values in the range of 500mJ / cm 2 ~ 1300mJ / cm 2, exposure The process was done. Next, development is performed at 25 ° C. for 90 seconds using a 2.38 mass% tetramethylammonium hydroxide aqueous solution, and rinsing is performed with ultrapure water for 20 seconds, so that a plurality of portions obtained at different exposure amounts are obtained. A laminate comprising a coating film having an extending dot pattern and a silicon wafer substrate was obtained.
The dot pattern formation part of the obtained laminated body was observed using the optical microscope, and the diameter of the dot pattern contained in the part exposed by each exposure amount was measured, respectively. Then, an approximate curve is created from the relationship between each exposure amount and the diameter of the dot pattern formed at the corresponding exposure amount, and the exposure amount when the diameter of the dot pattern becomes 20 μm is calculated. It was determined simply as "sensitivity". The lower the exposure amount when the diameter of the dot pattern is 20 μm, the higher the exposure sensitivity is, because the pattern can be formed with low energy or in a short time.
<厚膜での解像性>
 パターン化工程にて、<露光感度>の測定により得られた露光感度に相当する露光量でg-h-i混合線を照射した以外は、上述した<露光感度>の測定時と同様にして、ドットパターンを有する塗膜とシリコンウエハとからなる積層体を得た。得られた積層体のドットパターン形成部分と、ドットパターン間部分を、光学顕微鏡を用いて観察し、解像性を以下の評価基準に従って評価した。なお、10μmの膜厚は、比較的厚膜であるため、評価結果は、「厚膜」での解像性を示す。
〔評価基準〕
A:露光量800mJ/cm未満でパターンが解像でき、ドットパターン形成部分及びドットパターン間部分に裾引きや残渣が観察されない。
B:露光量800mJ/cm以上1000mJ/cm未満でパターンが解像でき、ドットパターン形成部分及びドットパターン間部分に裾引きや残渣が観察されない。
C:露光量1000mJ/cm未満でパターンが解像できるが、ドットパターン形成部分及びドットパターン間部分に裾引きや残渣が観察される。
D:露光量1000mJ/cm未満で、パターンが解像できない。 
<Resolution on thick film>
In the patterning step, in the same manner as in the measurement of the <exposure sensitivity> described above, except that the ghi mixed line is irradiated with the exposure amount corresponding to the exposure sensitivity obtained by the measurement of the <exposure sensitivity>. , A laminate of a coating film having a dot pattern and a silicon wafer was obtained. The dot pattern formation part of the obtained laminated body and the part between dot patterns were observed using the optical microscope, and the resolution was evaluated in accordance with the following evaluation criteria. In addition, since a film thickness of 10 micrometers is a comparatively thick film, an evaluation result shows the resolution in a "thick film."
〔Evaluation criteria〕
A: The pattern can be resolved with an exposure amount of less than 800 mJ / cm 2 , and no footing or residue is observed in the dot pattern formed portion and the portion between the dot patterns.
B: an exposure amount 800 mJ / cm 2 or more 1000 mJ / cm 2 less than the pattern can be resolved, not dragging or residues are observed in a dot pattern formation portion and between the dot pattern portion.
C: Although the pattern can be resolved with an exposure dose of less than 1000 mJ / cm 2, footing and residues are observed in the dot pattern formed portion and the portion between the dot patterns.
D: The pattern can not be resolved at an exposure amount of less than 1000 mJ / cm 2 .
<現像残膜率>
 上述した<露光感度>の測定時と同様にして、シリコンウエハ基板上に膜厚10μmの塗膜を形成した。次いで、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液に対して、25℃で90秒間浸漬する、パターン化工程を実施した場合における「現像処理」を模した処理をしてから、超純水で20秒間リンスをすることにより、塗膜とシリコンウエハとからなる積層体を得た。得られた塗膜の膜厚を光干渉式膜厚測定装置(ラムダエースVM-1200、SCREENセミコンダクターソリューション社製)にて測定し、現像処理後の膜厚/現像処理前の膜厚から現像残膜率(%)を算出した。現像残膜率が高い方が、ワニスロス量及び現像時のムラ等が低減できるため好ましい。
<Development residual film rate>
In the same manner as in the above-described <exposure sensitivity> measurement, a coating film having a thickness of 10 μm was formed on a silicon wafer substrate. Then, after performing processing for imitating "development processing" in the case of performing a patterning step in which a 2.38 mass% tetramethylammonium hydroxide aqueous solution is immersed at 25 ° C for 90 seconds, it is treated with ultrapure water. By rinsing for 20 seconds, a laminate of the coating film and the silicon wafer was obtained. The film thickness of the obtained coating film is measured with a light interference type film thickness measuring device (lambda Ace VM-1200, manufactured by SCREEN Semiconductor Solutions), and the film thickness after development / film thickness before development is a development residue. The film rate (%) was calculated. It is preferable that the development residual film ratio is high because the varnish loss amount and the unevenness at the time of development can be reduced.
<光線透過率(耐熱透明性)>
 ガラス基板(コーニング社製、コーニング1737)上に感光性樹脂組成物をスピンコート法により塗布し、ホットプレートを用いて120℃で2分間加熱乾燥(プリベーク)して、膜厚10μmの塗膜を形成した。次いで、塗膜を、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液に対して25℃で90秒間浸漬する、パターン化工程を実施した場合における「現像処理」を模した処理を行い、超純水で20秒間リンスを行った。次いで、オーブンを用いて、大気雰囲気下、200℃で60分間加熱する酸化性雰囲気下でのポストベークを行うことで、樹脂膜とガラス基板とからなる積層体を得た。
 得られた積層体について、分光光度計V‐560(日本分光社製)を用いて400nmから800nmの波長で測定を行った。測定結果から、400~800nmでの平均光線透過率(%)を算出し、耐熱透明性として算出した。なお、樹脂膜の光線透過率(%)は、樹脂膜が付いていないガラス基板をブランクとして、樹脂膜の厚みを10μmとした場合の換算値で算出した。
 光線透過率(耐熱透明性)が高いほど、樹脂膜による光の減衰量が少ないことを意味する。また、樹脂膜の光線透過率が高い程、かかる樹脂膜とガラス基板等との積層体に対して光を照射した場合に生じる反射光の輝度が高くなる傾向がある。反射光の輝度が高い積層体は、積層体外観がきれいなため、各種用途にて好適に用いることができる。
<Light transmittance (heat resistant transparency)>
A photosensitive resin composition is applied by spin coating on a glass substrate (Corning 1737, Corning) and dried by heating (pre-baking) at 120 ° C. for 2 minutes using a hot plate to give a coating having a thickness of 10 μm. It formed. Next, the coated film is immersed in a 2.38 mass% tetramethylammonium hydroxide aqueous solution at 25 ° C. for 90 seconds, and a process simulating “development processing” in the case of performing a patterning step is performed, and ultrapure water Rinse for 20 seconds. Then, using an oven, post-baking was performed in an oxidizing atmosphere heated at 200 ° C. for 60 minutes in an air atmosphere to obtain a laminate of the resin film and the glass substrate.
The obtained laminate was measured at a wavelength of 400 nm to 800 nm using a spectrophotometer V-560 (manufactured by JASCO Corporation). From the measurement results, the average light transmittance (%) at 400 to 800 nm was calculated and calculated as the heat resistant transparency. In addition, the light transmittance (%) of the resin film was computed by the conversion value in case the thickness of a resin film is 10 micrometers by using as a blank the glass substrate to which the resin film is not attached.
The higher the light transmittance (heat-resistant transparency), the smaller the amount of light attenuation by the resin film. Further, the higher the light transmittance of the resin film, the higher the luminance of the reflected light generated when the laminate of the resin film and the glass substrate is irradiated with light tends to be higher. A laminate having high luminance of reflected light can be suitably used in various applications because the appearance of the laminate is clear.
<耐薬品性>
 上述した<露光感度>の測定時と同様にして、シリコンウエハ基板上に膜厚10μmの塗膜を形成した。次いで、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液に対して、25℃で90秒間浸漬する、パターン化工程を実施した場合における「現像処理」を模した処理をしてから、超純水で20秒間リンスを行った。次いで、オーブンを用いて、大気雰囲気下、130℃又は150℃で60分間加熱する酸化性雰囲気下でのポストベークを行うことで、樹脂膜とシリコンウエハ基板とからなる積層体を得た。
 得られた積層体を、恒温槽にて80℃に保持したレジスト剥離液であるNMP(N‐メチル‐2‐ピロリドン)200mLに、15分間浸漬した。浸漬前後での樹脂膜の膜厚を光干渉式膜厚測定装置(ラムダエースVM-1200、SCREENセミコンダクターソリューション社製)にて測定し、式:[浸漬後の樹脂膜の膜厚(TBI)/浸漬前の樹脂膜の膜厚(TAI)×100]から、浸漬後の膜厚が浸漬前の膜厚に対して占める割合(TBI/TAI)[%]を算出し、かかる割合を100%から減じることで、樹脂膜の膜厚変化率[%]を算出し、以下の評価基準に従って耐薬品性を評価した。なお、150℃、及び130℃といった比較的低温度領域の温度でポストベークした場合であってもレジスト剥離液に対する膜厚変化率が低い感光性樹脂組成物によれば、耐熱性の低い材料よりなる基板も、基板として使用可能となるため、好ましい。
〔評価基準〕
A:樹脂膜の膜厚変化率が、130℃でポストベークした場合と150℃でポストベークした場合ともに±10%以内
B:樹脂膜の膜厚変化率が、150℃でポストベークした場合のみ±10%以内
C:樹脂膜の膜厚変化率が、130℃でポストベークした場合と150℃でポストベークした場合ともに+10%超又は-10%未満
<Chemical resistance>
In the same manner as in the above-described <exposure sensitivity> measurement, a coating film having a thickness of 10 μm was formed on a silicon wafer substrate. Then, after performing processing for imitating "development processing" in the case of performing a patterning step in which a 2.38 mass% tetramethylammonium hydroxide aqueous solution is immersed at 25 ° C for 90 seconds, it is treated with ultrapure water. Rinsed for 20 seconds. Then, using an oven, post-baking was performed in an oxidizing atmosphere heated at 130 ° C. or 150 ° C. for 60 minutes in an air atmosphere to obtain a laminate of a resin film and a silicon wafer substrate.
The obtained laminate was immersed in 200 mL of NMP (N-methyl-2-pyrrolidone), which is a resist stripping solution maintained at 80 ° C. in a thermostat, for 15 minutes. The film thickness of the resin film before and after immersion is measured by an optical interference type film thickness measurement device (lambda Ace VM-1200, manufactured by SCREEN Semiconductor Solutions), and the formula: [film thickness of resin film after immersion (T BI ) The ratio (T BI / T AI ) [%] of the film thickness after immersion to the film thickness before immersion is calculated from the film thickness of the resin film before immersion (T AI ) × 100], and the ratio The film thickness change rate [%] of the resin film was calculated by subtracting 100% from the above, and the chemical resistance was evaluated according to the following evaluation criteria. In addition, according to a photosensitive resin composition having a low film thickness change rate with respect to the resist stripping solution even when post-baking at a temperature in a relatively low temperature region such as 150 ° C. and 130 ° C., a material having lower heat resistance Is also preferable because it can be used as a substrate.
〔Evaluation criteria〕
A: The film thickness change rate of the resin film is within ± 10% for both post-baking at 130 ° C. and 150 ° C. B: The film thickness change rate of the resin film is only post-baked at 150 ° C. ± 10% or less C: The film thickness change rate of the resin film is more than + 10% or less than −10% when post-baking at 130 ° C. and post-baking at 150 ° C.
<耐熱形状保持性>
 上述した<露光感度>の測定時と同様にして、シリコンウエハ基板上に膜厚10μmの塗膜を形成した。この塗膜に、<露光感度>の測定時と同じマスクを用いて、パターン化工程にて、<露光感度>の測定により得られた露光感度に相当する露光量で露光した。次いで、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液を用いて、25℃で90秒間現像処理を行った後、超純水で20秒間リンスを行い、ポジ型の20μmのドットパターン化塗膜を形成した。
 そして、得られたパターン化塗膜の断面形状を走査型電子顕微鏡(SEM)にて観察し、SEM像(倍率:10,000倍)に基づきドットパターン間の幅aを測定した。次にパターン化樹脂膜の全面に、g-h-i混合線を照射量が2000mJ/cmとなるように照射するブリーチング工程を実施した。次いで、ホットプレートを用いてこのパターンが形成された基板に対し、120℃で10分間にわたり加熱処理を施して、メルトフロー工程を実施した。メルトフロー工程では、パターン化塗膜を溶融させて、パターンを略円柱形状から半球体形状(レンズ形状)に変化させた。さらにメルトフロー工程を経た基板についてホットプレートを用いて200℃にて30分間加熱してポストベーク工程を施すことで、頂点部の厚みが10μmである半球体形状部(レンズ)であるパターンを有する樹脂膜を形成した。そして、ポストベーク工程を経て得られたパターンの断面形状を、上記と同様にしてSEMで観察し、SEM像に基づいてパターン間の幅bを測定した。得られた測定結果を用いて、パターン化塗膜形成後のドットパターン間の幅aとポストベーク工程後のパターン間の幅bの差(a-b)を求め、以下の評価基準に従ってパターン化樹脂膜のレンズ形状(耐熱形状保持性)を評価した。なお、差(a-b)の値は10箇所について算出し、10箇所の値の数平均値を評価に用いた。
〔評価基準〕
A:パターンが半球体形状で、差(a-b)の値が2μm以下。
B:パターンが半球体形状で、差(a-b)の値が2μm超4μm以下。
C:差(a-b)の値が4μm超、又は、ポストベーク工程にてパターンが完全に溶融し、隣接パターンと融着している。
<Heat resistant shape retention>
In the same manner as in the above-described <exposure sensitivity> measurement, a coating film having a thickness of 10 μm was formed on a silicon wafer substrate. This coating film was exposed to light with an exposure amount corresponding to the exposure sensitivity obtained by the measurement of <exposure sensitivity> in the patterning step using the same mask as the measurement of the <exposure sensitivity>. Next, after development was performed at 25 ° C. for 90 seconds using a 2.38 mass% tetramethylammonium hydroxide aqueous solution, rinsing was performed with ultrapure water for 20 seconds to obtain a positive type 20 μm dot patterned coating film. It formed.
And the cross-sectional shape of the obtained patterned coating film was observed with the scanning electron microscope (SEM), and the width | variety a between dot patterns was measured based on the SEM image (magnification: 10,000 times). Next, the entire surface of the patterned resin film was subjected to a bleaching step in which a mixed ghi ray was irradiated so that the irradiation amount was 2000 mJ / cm 2 . Next, the substrate on which this pattern was formed using a hot plate was subjected to a heat treatment at 120 ° C. for 10 minutes to carry out a melt flow process. In the melt flow process, the patterned coating film was melted to change the pattern from a substantially cylindrical shape to a hemispherical shape (lens shape). Furthermore, the substrate which has undergone the melt flow process is heated at 200 ° C. for 30 minutes using a hot plate to perform a post-baking process, thereby having a pattern which is a hemispherical body (lens) having a thickness of 10 μm at the top. A resin film was formed. And the cross-sectional shape of the pattern obtained through the post-baking process was observed by SEM similarly to the above, and the width b between the patterns was measured based on the SEM image. Using the obtained measurement results, the difference (ab) between the width a between the dot patterns after the formation of the patterned coating film and the width b between the patterns after the post-baking step is determined, and patterning is performed according to the following evaluation criteria The lens shape (heat-resistant shape retention) of the resin film was evaluated. In addition, the value of the difference (ab) was calculated at 10 points, and the number average value of the values of 10 points was used for the evaluation.
〔Evaluation criteria〕
A: The pattern is hemispherical, and the difference (ab) value is 2 μm or less.
B: The pattern is a hemispherical shape, and the difference (ab) value is more than 2 μm and 4 μm or less.
C: The value of the difference (ab) is more than 4 μm, or the pattern is completely melted in the post-baking step and fused with the adjacent pattern.
<露光時のバブル>
 上述した<露光感度>の測定時と同様にして、シリコンウエハ基板上に膜厚10μmの塗膜を形成した。次いで、塗膜の全面に、g-h-i混合線を照射量が2000mJ/cmとなるように照射するブリーチング工程を行い、シリコンウエハ基板上にブリーチングされた塗膜を有する積層体を得た。そして、かかる積層体を、ホットプレートを用いて200℃にて30分間加熱してポストベーク工程を実施した。ポストベーク工程を経た積層体を、光学顕微鏡を用いて観察し、積層体内におけるバブルの有無を確認した。バブルが観察されなかったものは「A」、バブルが観察されたものは「B」として評価した。
<Bubble at the time of exposure>
In the same manner as in the above-described <exposure sensitivity> measurement, a coating film having a thickness of 10 μm was formed on a silicon wafer substrate. Next, the entire surface of the coating film is subjected to a bleaching step of irradiating a mixed line of gh i so that the irradiation dose becomes 2000 mJ / cm 2, and a laminate having the coating film bleached on a silicon wafer substrate I got Then, the laminate was heated at 200 ° C. for 30 minutes using a hot plate to carry out a post-baking step. The laminated body which passed through the post-baking process was observed using the optical microscope, and the presence or absence of the bubble in the laminated body was confirmed. Those in which no bubble was observed were evaluated as "A", and those in which a bubble was observed were evaluated as "B".
(実施例2)
 共重合体(A‐1)、及び分岐型構造を有するポリアミドイミド樹脂(DIC社製、ユニディックEMG‐793)の配合量を表1に示す通りにそれぞれ変更した以外は、実施例1と同様にして、感光性樹脂組成物を調製し、調製した感光性樹脂組成物を用いて各評価を行った。結果を表1に示す。
(Example 2)
The same as Example 1, except that the blending amounts of the copolymer (A-1) and the polyamideimide resin having a branched structure (UNIDIC EMG-793 manufactured by DIC Corporation) are changed as shown in Table 1, respectively. The photosensitive resin composition was prepared, and each evaluation was performed using the prepared photosensitive resin composition. The results are shown in Table 1.
(実施例3)
 実施例1において、架橋剤としての、(v)メラミン・ホルムアルデヒド・アルキルモノアルコール重縮合物(三和ケミカル社製、ニカラックMw‐100LM)10部を用いる代わりに(v)トリグリシジルイソシアヌレート(日産化学社製、TEPIC-VL)10部を用いたこと以外は、実施例1と同様にして、感光性樹脂組成物を調製し、調製した感光性樹脂組成物を用いて各評価を行った。結果を表1に示す。
(Example 3)
In Example 1, (v) triglycidyl isocyanurate (Nissan) instead of using 10 parts of (v) melamine formaldehyde alkyl monoalcohol polycondensate (manufactured by Sanwa Chemical Co., Ltd., Nikalac Mw-100 LM) as a crosslinking agent A photosensitive resin composition was prepared in the same manner as in Example 1 except that 10 parts of TEPIC-VL, manufactured by CHEMICAL CO., LTD., Was used, and each evaluation was performed using the prepared photosensitive resin composition. The results are shown in Table 1.
(実施例4)
 実施例1において、架橋剤としての、(v)メラミン・ホルムアルデヒド・アルキルモノアルコール重縮合物(三和ケミカル社製、ニカラックMw‐100LM)10部を用いる代わりに(v)3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート(ダイセル社製、セロキサイド2021P)10部を用いたこと以外は、実施例1と同様にして、感光性樹脂組成物を調製し、調製した感光性樹脂組成物を用いて各評価を行った。結果を表1に示す。
(Example 4)
In Example 1, (v) 3,4-epoxycyclohexyl instead of using 10 parts of (v) melamine formaldehyde alkyl monoalcohol polycondensate (manufactured by Sanwa Chemical Co., Ltd., Nikalac Mw-100 LM) as a crosslinking agent A photosensitive resin composition was prepared and prepared in the same manner as in Example 1 except that 10 parts of methyl (3,4-epoxy) cyclohexane carboxylate (made by Daicel, Celoxide 2021 P) was used. Each evaluation was performed using the composition. The results are shown in Table 1.
(実施例5)
 実施例1において、ナフチルイミド基含有スルホン酸化合物としての、(iii)1,8-ナフタルイミジルトリフレート(みどり化学社製、製品名「NAI-105」)の配合量を0.5部から1.0部に変更したこと以外は、実施例1と同様にして、感光性樹脂組成物を調製し、調製した感光性樹脂組成物を用いて各評価を行った。結果を表1に示す。
(Example 5)
In Example 1, 0.5 parts of a compounding amount of (iii) 1,8-naphthalimidyl triflate (manufactured by Midori Kagaku, product name “NAI-105”) as a naphthylimide group-containing sulfonic acid compound A photosensitive resin composition was prepared in the same manner as in Example 1 except that the above was changed to 1.0 part, and each evaluation was performed using the prepared photosensitive resin composition. The results are shown in Table 1.
(実施例6)
 実施例1において、ナフチルイミド基含有スルホン酸化合物としての、(iii)1,8-ナフタルイミジルトリフレート(みどり化学社製、製品名「NAI-105」)の配合量を0.5部から3.0部に変更したこと以外は、実施例1と同様にして、感光性樹脂組成物を調製し、調製した感光性樹脂組成物を用いて各評価を行った。結果を表1に示す。
(Example 6)
In Example 1, 0.5 parts of a compounding amount of (iii) 1,8-naphthalimidyl triflate (manufactured by Midori Kagaku, product name “NAI-105”) as a naphthylimide group-containing sulfonic acid compound A photosensitive resin composition was prepared in the same manner as in Example 1 except that the above was changed to 3.0 parts, and each evaluation was performed using the prepared photosensitive resin composition. The results are shown in Table 1.
(比較例1)
 実施例1において、ナフチルイミド基含有スルホン酸化合物としての、(iii)1,8-ナフタルイミジルトリフレート(みどり化学社製、製品名「NAI-105」)を配合しなかったこと以外は、実施例1と同様にして、感光性樹脂組成物を調製し、調製した感光性樹脂組成物を用いて各評価を行った。結果を表1に示す。
(Comparative example 1)
In Example 1, (iii) 1,8-naphthalimidyl triflate (product name “NAI-105” manufactured by Midori Kagaku Co., Ltd.) as the naphthylimide group-containing sulfonic acid compound was not blended. In the same manner as Example 1, a photosensitive resin composition was prepared, and each evaluation was performed using the prepared photosensitive resin composition. The results are shown in Table 1.
(比較例2)
 比較例1において、(v)メラミン・ホルムアルデヒド・アルキルモノアルコール重縮合物(三和ケミカル社製、ニカラックMw‐100LM)10部を配合しなかったこと以外は、比較例1と同様にして、感光性樹脂組成物を調製し、調製した感光性樹脂組成物を用いて各評価を行った。結果を表1に示す。
(Comparative example 2)
A photosensitive material was prepared in the same manner as in Comparative Example 1 except that 10 parts of (v) melamine / formaldehyde / alkyl monoalcohol polycondensate (manufactured by Sanwa Chemical Co., Ltd., Nikalac Mw-100 LM) was not blended in Comparative Example 1 Resin compositions were prepared, and each evaluation was performed using the prepared photosensitive resin compositions. The results are shown in Table 1.
(比較例3)
 比較例2において、感光剤としての(iv)4,4’‐[1‐[4‐[1‐(4‐ヒドロキシフェニル)‐1‐メチルエチル]フェニル]エチリデンビスフェノールと6‐ジアゾ‐5,6‐ジヒドロ‐5‐オキソ‐ナフタレン‐1‐スルホン酸とのエステル体(2.5モル体)(美源商事社製、TPA‐525)、及び1,1,1‐トリス(4‐ヒドロキシフェニル)エタンと6‐ジアゾ‐5,6‐ジヒドロ‐5‐オキソ‐ナフタレン‐1‐スルホン酸とのエステル体(2モル体)(東洋合成社製、HP‐200)の配合量をそれぞれ10部から12.5部に変更し、架橋剤としての(v)エポキシ化ブタンテトラカルボン酸テトラキス(3‐シクロヘキセニルメチル)修飾ε‐カプロラクトン(ダイセル社製、エポリードGT401)の配合量を40部から33部に変更したこと以外は、比較例2と同様にして、感光性樹脂組成物を調製し、調製した感光性樹脂組成物を用いて各評価を行った。結果を表1に示す。
(Comparative example 3)
In Comparative Example 2, (iv) 4,4 '-[1- [4- [1- (4-hydroxyphenyl) -1-methylethyl] phenyl] ethylidene bisphenol and 6-diazo-5,6 as photosensitizers in Comparative Example 2 Esters with 2-Dihydro-5-oxo-Naphthalene-1-Sulphonic Acid (2.5 Molars) (manufactured by Bigen Shoji Co., Ltd., TPA-525), and 1,1,1-tris (4-hydroxyphenyl) 10 parts by weight each of an ester (2 molar) of ethane and 6-diazo-5,6-dihydro-5-oxo-naphthalene-1-sulfonic acid (HP-200 manufactured by Toyo Gosei Co., Ltd.) (V) Compounding with (v) Epoxidized Butane Tetracarboxylic Acid Tetrakis (3-cyclohexenylmethyl) -Modified .EPSILON.-caprolactone (Epolide GT 401, manufactured by Daicel Corporation) as a Crosslinking Agent Except that a it was changed to 33 parts from 40 parts, in the same manner as in Comparative Example 2, the photosensitive resin composition were prepared and each evaluated using the prepared photosensitive resin composition. The results are shown in Table 1.
(比較例4)
 比較例3において、感光剤としての(iv)4,4’‐[1‐[4‐[1‐(4‐ヒドロキシフェニル)‐1‐メチルエチル]フェニル]エチリデンビスフェノールと6‐ジアゾ‐5,6‐ジヒドロ‐5‐オキソ‐ナフタレン‐1‐スルホン酸とのエステル体(2.5モル体)(美源商事社製、TPA‐525)、及び1,1,1‐トリス(4‐ヒドロキシフェニル)エタンと6‐ジアゾ‐5,6‐ジヒドロ‐5‐オキソ‐ナフタレン‐1‐スルホン酸とのエステル体(2モル体)(東洋合成社製、HP‐200)の配合量をそれぞれ12.5部から15部に変更したこと以外は、比較例3と同様にして、感光性樹脂組成物を調製し、調製した感光性樹脂組成物を用いて各評価を行った。結果を表1に示す。
(Comparative example 4)
In Comparative Example 3, (iv) 4,4 '-[1- [4- [1- (4-hydroxyphenyl) -1-methylethyl] phenyl] ethylidene bisphenol as a photosensitizer and 6-diazo-5,6 as photosensitizers. Esters with 2-Dihydro-5-oxo-Naphthalene-1-Sulphonic Acid (2.5 Molars) (manufactured by Bigen Shoji Co., Ltd., TPA-525), and 1,1,1-tris (4-hydroxyphenyl) 12.5 parts each of the compounding amount of ester (2 molar) of ethane and 6-diazo-5,6-dihydro-5-oxo-naphthalene-1-sulfonic acid (manufactured by Toyo Gosei Co., Ltd., HP-200) A photosensitive resin composition was prepared in the same manner as in Comparative Example 3 except that the above was changed to 15 parts, and each evaluation was performed using the prepared photosensitive resin composition. The results are shown in Table 1.
(比較例5)
 実施例1において、(i)重合体として、合成例1で得られた共重合体(A-1)に代えて、合成例2で得られた環状オレフィン重合体(A‐2)100部を用い、感光剤としての、(iv)4,4’‐[1‐[4‐[1‐(4‐ヒドロキシフェニル)‐1‐メチルエチル]フェニル]エチリデンビスフェノールと6‐ジアゾ‐5,6‐ジヒドロ‐5‐オキソ‐ナフタレン‐1‐スルホン酸とのエステル体(2.5モル体)(美源商事社製、TPA‐525)の配合量を10部から36.3部に変更し、同じく感光剤としての(iv)6‐ジアゾ‐5,6‐ジヒドロ‐5‐オキソ‐ナフタレン‐1‐スルホン酸とのエステル体(2モル体)(東洋合成社製、HP‐200)を配合せず、さらに、架橋剤としての(v)エポキシ化ブタンテトラカルボン酸テトラキス(3‐シクロヘキセニルメチル)修飾ε‐カプロラクトン(ダイセル社製、エポリードGT401)の配合量を40部から60部に変更し、同じく架橋剤としての(v)メラミン・ホルムアルデヒド・アルキルモノアルコール重縮合物(三和ケミカル社製、ニカラックMw‐100LM)を配合せず、溶解促進剤としての(vi)5,5′‐[2,2,2‐トリフルオロ‐1‐(トリフルオロメチル)エチリデン]ビス[2‐ヒドロキシ‐1,3‐ベンゼンジメタノール](本州化学工業社製、TML‐BPAF‐MF)の配合量を10部から5部に変更したこと以外は、実施例1と同様にして、感光性樹脂組成物を調製し、調製した感光性樹脂組成物を用いて各評価を行った。結果を表1に示す。
(Comparative example 5)
In Example 1, as the polymer (i), 100 parts of the cyclic olefin polymer (A-2) obtained in Synthesis Example 2 is used in place of the copolymer (A-1) obtained in Synthesis Example 1 (Iv) 4,4 '-[1- [4- [1- (4-hydroxyphenyl) -1-methylethyl] phenyl] ethylidene bisphenol and 6-diazo-5,6-dihydro as photosensitizers used The compounding amount of an ester form (2.5 molar) with 5-oxo-naphthalen-1-sulfonic acid (TPA-525, manufactured by Bigen Shoji Co., Ltd.) was changed from 10 parts to 36.3 parts, and the same as in photosensitization. (Iv) 6-Diazo-5,6-dihydro-5-oxo-naphthalene-1-sulfonic acid (iv) as an agent (2 molar) (HP-200 manufactured by Toyo Gosei Co., Ltd.) Furthermore, (v) epoxidized butane tetraca as a crosslinking agent The blending amount of tetrakis (3-cyclohexenylmethyl) -modified ε-caprolactone (Epolide GT401, manufactured by Daicel) is changed from 40 parts to 60 parts, and (v) melamine formaldehyde alkyl monoalcohol as a crosslinking agent as well (Vi) 5,5 '-[2,2,2-trifluoro-1- (trifluoromethyl) as a dissolution accelerator without blending a polycondensate (manufactured by Sanwa Chemical Co., Ltd., nicalac Mw-100 LM) The same as Example 1, except that the compounding amount of ethylidene] bis [2-hydroxy-1,3-benzenedimethanol] (made by Honshu Chemical Industry Co., Ltd., TML-BPAF-MF) was changed from 10 parts to 5 parts. The photosensitive resin composition was prepared, and each evaluation was performed using the prepared photosensitive resin composition. The results are shown in Table 1.
(比較例6)
 比較例5おいて、感光剤としての、(iv)4,4’‐[1‐[4‐[1‐(4‐ヒドロキシフェニル)‐1‐メチルエチル]フェニル]エチリデンビスフェノールと6‐ジアゾ‐5,6‐ジヒドロ‐5‐オキソ‐ナフタレン‐1‐スルホン酸とのエステル体(2.5モル体)(美源商事社製、TPA‐525)の配合量を36.3部から20部に変更したこと以外は、比較例5と同様にして、感光性樹脂組成物を調製し、調製した感光性樹脂組成物を用いて各評価を行おうとしたが、現像工程にて塗膜の大部分が溶出してしまうため、一部の評価(現像残膜率、透過率、露光時のバブル)しか行うことができなかった。結果を表1に示す。
(Comparative example 6)
In Comparative Example 5, (iv) 4,4 '-[1- [4- [1- (4-hydroxyphenyl) -1-methylethyl] phenyl] ethylidene bisphenol and 6-diazo-5 as photosensitizers in Comparative Example 5 The blending amount of ester form (2.5 moles) with 6,6-dihydro-5-oxo-naphthalene-1-sulfonic acid (Bigen Shoji Co., Ltd., TPA-525) changed from 36.3 parts to 20 parts In the same manner as Comparative Example 5 except that the photosensitive resin composition was prepared and each evaluation was performed using the prepared photosensitive resin composition except for the above, most of the coating film was formed in the developing step. Since it eluted, only a part of evaluation (development residual film rate, transmittance, bubble at the time of exposure) could be performed. The results are shown in Table 1.
(比較例7)
 実施例1において、(i)共重合体(A‐1)の配合量を100部に変更し、(ii)分岐型構造を有するポリアミドイミド樹脂を配合せず、架橋剤としての(v)エポキシ化ブタンテトラカルボン酸テトラキス(3‐シクロヘキセニルメチル)修飾ε‐カプロラクトン(ダイセル社製、エポリードGT401)の配合量を40部から60部に変更し、同じく架橋剤としての(v)メラミン・ホルムアルデヒド・アルキルモノアルコール重縮合物(三和ケミカル社製、ニカラックMw‐100LM)を配合せず、(vi)5,5′‐[2,2,2‐トリフルオロ‐1‐(トリフルオロメチル)エチリデン]ビス[2‐ヒドロキシ‐1,3‐ベンゼンジメタノール](本州化学工業社製、TML‐BPAF‐MF)の配合量を10部から5部に変更したこと以外は、実施例1と同様にして、感光性樹脂組成物を調製し、調製した感光性樹脂組成物を用いて各評価を行った。結果を表1に示す。
(Comparative example 7)
In Example 1, (i) changing the blending amount of the copolymer (A-1) to 100 parts, (ii) not blending the polyamideimide resin having a branched structure, (v) epoxy as a crosslinking agent The compounding amount of fluorinated butane tetracarboxylic acid tetrakis (3-cyclohexenylmethyl) modified ε-caprolactone (Eporide GT 401, manufactured by Daicel) is changed from 40 parts to 60 parts, and (v) melamine formaldehyde formaldehyde as a crosslinking agent as well (Vi) 5,5 '-[2,2,2-trifluoro-1- (trifluoromethyl) ethylidene] not containing an alkyl monoalcohol polycondensate (manufactured by Sanwa Chemical Co., Ltd., nicalac Mw-100LM) The blending amount of bis [2-hydroxy-1,3-benzenedimethanol] (made by Honshu Chemical Industry Co., Ltd., TML-BPAF-MF) to 10 parts to 5 parts Except that further the can in the same manner as in Example 1, to prepare a photosensitive resin composition, were each evaluated using the prepared photosensitive resin composition. The results are shown in Table 1.
(比較例8)
 比較例7において、(i)合成例1で得られたp‐ビニルフェノール単量体単位とメタクリル酸メチル単量体単位とを有する共重合体(A‐1)100部を用いる代わりに、(ii)分岐型構造を有するポリアミドイミド樹脂(DIC社製、ユニディックEMG‐793)100部を用いたこと以外は、比較例7と同様にして、感光性樹脂組成物を調製し、調製した感光性樹脂組成物を用いて各評価を行おうとしたが、現像工程にて塗膜の大部分が溶出してしまうため、一部の評価(現像残膜率、透過率、露光時のバブル)しか行うことができなかった。結果を表1に示す。
(Comparative example 8)
In Comparative Example 7, (i) instead of using 100 parts of the copolymer (A-1) having the p-vinylphenol monomer unit and the methyl methacrylate monomer unit obtained in Synthesis Example 1 ((i) ii) A photosensitive resin composition was prepared and prepared in the same manner as in Comparative Example 7 except that 100 parts of a polyamideimide resin having a branched structure (manufactured by DIC, Unidic EMG-793) was used. Evaluation was conducted using the water-repellent resin composition, but most of the coating film was eluted in the development step, so only part of the evaluation (residual development film rate, transmittance, bubbles at the time of exposure) Could not do. The results are shown in Table 1.
 表1中、
 「CO」は、環状オレフィンを、
 「TBI」は、NMP浸漬後の樹脂膜の膜厚を、
 「TAI」は、NMP浸漬前の樹脂膜の膜厚を、
 「PB」は、プリベークを、
それぞれ意味する。
In Table 1,
"CO" is a cyclic olefin,
“T BI ” is the thickness of the resin film after immersion in NMP,
“T AI ” is the thickness of the resin film before immersion in NMP,
"PB" pre-bake,
Each means.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 上述の表1に示すように、合成例1で得られた共重合体(A-1)と、分岐型構造を有するポリアミドイミド樹脂、及びナフチルイミド基含有スルホン酸化合物を含有する実施例1~6の感光性樹脂組成物によれば、高透過率を有し透明性に優れ、且つ耐熱形状保持性に優れるポジ型レジスト膜を形成することができることが分かる。さらに、実施例1~5の感光性樹脂組成物を用いた場合には、得られる塗膜の感度が高く、厚膜での解像率が高く、現像残膜率が高く、耐薬品性に優れ、更に、露光時のバブルの発生も無いことが分かる。特に、実施例1、5、6、及び比較例1より、ナフチルイミド基含有スルホン酸化合物を、重合体と分岐型構造を有するポリアミドイミドとの合計100質量部当たり、0.1質量部以上2.0質量部以下の割合で含有することで、耐薬品性及び耐熱形状保持性を一層高めることができることが分かる。
 一方、ナフチルイミド基含有スルホン酸化合物を含有しない比較例1~4、共重合体(A-1)及び分岐型構造を有するポリアミドイミド樹脂を含有しない比較例5~6、分岐型構造を有するポリアミドイミド樹脂を含有しない比較例7、及び共重合体(A-1)を含有しない比較例8では、透明性及び耐熱形状保持性を両立できないことが分かる。特に、比較例3,4では、厚膜での解像性も不十分であることが分かる。
 また、所定の重合体及び分岐構造を有するポリアミドイミド樹脂を配合せず、これらに代えて環状オレフィン重合体(A-2)のみを用いた比較例5では、得られたレジスト膜の、透過率が不十分であり、感度が低く、厚膜での解像性に劣り、更に、露光時のバブルが発生したことが分かる。なお、比較例5では、感光剤の配合量が他の例に比較して多く、その結果、露光時のバブルが発生している。これは、環状オレフィン重合体(A-2)のような、従来からポジ型レジスト組成物に汎用されている、酸性基(カルボキシル基)を含む脂環状式オレフィン重合体のみを重合体として用いる場合には、パターン化塗膜を得るために感光剤の含有量を高める必要があるが、感光剤の含有量が高いことに起因して、露光時のバブルが発生するためである。
 さらにまた、比較例6より、従来からポジ型レジスト組成物に汎用されている、酸性基(カルボキシル基)を含む脂環状式オレフィン重合体である環状オレフィン重合体(A-2)を用いた場合に、感光剤の含有量を比較的低くした場合には、現像残膜率が大きく低下しパターン化塗膜を得ることができないことが分かる。
 さらにまた、分岐型構造を有するポリアミドイミド樹脂を含有しない比較例7では、得られるレジスト膜の感度、透過率、耐薬品性、及び厚膜での解像性も不十分であったことが分かる。
 そして、共重合体(A-1)を含有せず、分岐構造を有するポリアミドイミド樹脂のみを配合した比較例8では、現像液への溶解性が高く、現像残膜率が大きく低下しパターン化塗膜を得ることができないことが分かる。
As shown in Table 1 above, Examples 1 to 5 containing the copolymer (A-1) obtained in Synthesis Example 1, a polyamideimide resin having a branched structure, and a naphthylimide group-containing sulfonic acid compound According to the photosensitive resin composition of No. 6, it can be seen that it is possible to form a positive resist film having high transmittance, excellent in transparency, and excellent in heat-resistant shape retention. Furthermore, when the photosensitive resin compositions of Examples 1 to 5 are used, the sensitivity of the obtained coating film is high, the resolution in a thick film is high, the development residual film ratio is high, and the chemical resistance is high. Excellent, furthermore, it can be seen that no bubble was generated during exposure. In particular, from Examples 1, 5, 6 and Comparative Example 1, the content of the naphthylimide group-containing sulfonic acid compound is 0.1 parts by mass or more per 100 parts by mass in total of the polymer and the polyamideimide having a branched structure. It is understood that the chemical resistance and the heat resistant shape retention can be further enhanced by containing it in a proportion of not more than 0 parts by mass.
On the other hand, Comparative Examples 1 to 4 which do not contain a naphthylimide group-containing sulfonic acid compound, Comparative Examples 5 to 6 which do not contain a copolymer (A-1) and a polyamideimide resin having a branched structure, polyamides having a branched structure In Comparative Example 7 which does not contain the imide resin and Comparative Example 8 which does not contain the copolymer (A-1), it can be seen that the transparency and the heat-resistant shape retention can not be compatible. In particular, in Comparative Examples 3 and 4, it is understood that the resolution with a thick film is also insufficient.
Further, in Comparative Example 5 in which only the cyclic olefin polymer (A-2) was used instead of the predetermined polymer and the polyamideimide resin having a branched structure, the transmittance of the obtained resist film was obtained. It is found that the sensitivity is low, the resolution in a thick film is inferior, and furthermore, bubbles occur at the time of exposure. In Comparative Example 5, the blending amount of the photosensitizer is larger than that in the other examples, and as a result, bubbles are generated at the time of exposure. This is the case where only an alicyclic olefin polymer containing an acidic group (carboxyl group), which is conventionally and widely used in positive resist compositions such as cyclic olefin polymer (A-2), is used as a polymer In order to obtain a patterned coating film, it is necessary to increase the content of the photosensitizer, but bubbles are generated at the time of exposure due to the high content of the photosensitizer.
Furthermore, according to Comparative Example 6, in the case of using a cyclic olefin polymer (A-2) which is an alicyclic olefin polymer containing an acidic group (carboxyl group), which has conventionally been widely used in positive resist compositions In addition, it can be seen that when the content of the photosensitizer is relatively low, the development residual film rate is greatly reduced and a patterned coating film can not be obtained.
Furthermore, in Comparative Example 7 which does not contain a polyamideimide resin having a branched structure, it is understood that the sensitivity, the transmittance, the chemical resistance, and the resolution with a thick film of the obtained resist film are also insufficient. .
Then, in Comparative Example 8 in which only the polyamideimide resin having a branched structure is contained without containing the copolymer (A-1), the solubility in the developing solution is high, and the residual film ratio significantly decreases, and patterning is performed. It can be seen that no coating can be obtained.
 本発明の感光性樹脂組成物によれば、透明性及び耐熱形状保持性を高いレベルで両立することができるポジ型レジスト膜及びレンズを形成することができる。
 なお、本発明の感光性樹脂組成物は、マイクロLED、マイクロOLED、有機EL素子、及びタッチパネルなどを製造する際に好適に用いることができる。
According to the photosensitive resin composition of the present invention, it is possible to form a positive resist film and a lens capable of achieving both transparency and heat-resistant shape retention at a high level.
In addition, the photosensitive resin composition of this invention can be used suitably, when manufacturing micro LED, micro OLED, an organic EL element, a touch panel etc.
 10   マイクロLED
 20   エピタキシャルウエハ
 30   nドット電極
 40   pパッド電極
 50   保護絶縁膜
 60   レンズ
10 micro LED
20 epitaxial wafer 30 n dot electrode 40 p pad electrode 50 protective insulating film 60 lens

Claims (7)

  1.  下記一般式(I)で表される単量体単位を有する重合体と、分岐型構造を有するポリアミドイミドと、ナフチルイミド基含有スルホン酸化合物とを含む、感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(I)中、Rは、化学的な単結合、又は置換基を有していてもよい炭素数1~6の2価の炭化水素基であり、Rは、水素原子、又は置換基を有していてもよい炭素数1~6の1価の炭化水素基である。)
    A photosensitive resin composition comprising a polymer having a monomer unit represented by the following general formula (I), a polyamideimide having a branched structure, and a naphthylimide group-containing sulfonic acid compound.
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (I), R 1 is a single chemical bond or a divalent hydrocarbon group having 1 to 6 carbon atoms which may have a substituent, R 2 is a hydrogen atom, Or a monovalent hydrocarbon group having 1 to 6 carbon atoms which may have a substituent.)
  2.  前記分岐型構造を有するポリアミドイミドの数平均分子量が2000以上30000以下である、請求項1に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 1, wherein the number average molecular weight of the polyamideimide having a branched structure is 2,000 or more and 30,000 or less.
  3.  前記重合体が(メタ)アクリレート単量体単位をさらに有する共重合体である、請求項1又は2に記載の感光性樹脂組成物。 The photosensitive resin composition of Claim 1 or 2 which is a copolymer which the said polymer further has a (meth) acrylate monomer unit.
  4.  前記重合体と前記分岐型構造を有するポリアミドイミドとの含有量比(重合体:分岐型構造を有するポリアミドイミド)が質量基準で90:10~70:30である、請求項1から3のいずれかに記載の感光性樹脂組成物。 The content ratio of the polymer to the polyamideimide having the branched structure (polymer: polyamideimide having a branched structure) is 90:10 to 70:30 on a mass basis. The photosensitive resin composition according to claim 1.
  5.  前記ナフチルイミド基含有スルホン酸化合物を、前記重合体と前記分岐型構造を有するポリアミドイミドとの合計100質量部当たり、0.1質量部以上2.0質量部以下の割合で含有する、請求項1から4のいずれかに記載の感光性樹脂組成物。 The content of the naphthylimide group-containing sulfonic acid compound is 0.1 parts by mass or more and 2.0 parts by mass or less per 100 parts by mass in total of the polymer and the polyamideimide having the branched structure. The photosensitive resin composition in any one of 1-4.
  6.  感光剤と、架橋剤とをさらに含む、請求項1から5のいずれかに記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 5, further comprising a photosensitizer and a crosslinking agent.
  7.  請求項1から6のいずれかに記載の感光性樹脂組成物から形成されるレンズ。 A lens formed from the photosensitive resin composition according to any one of claims 1 to 6.
PCT/JP2019/000812 2018-01-26 2019-01-15 Photosensitive resin composition and lens WO2019146436A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019567000A JPWO2019146436A1 (en) 2018-01-26 2019-01-15 Photosensitive resin composition and lens
JP2023131503A JP2023159232A (en) 2018-01-26 2023-08-10 Photosensitive resin composition and lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018012057 2018-01-26
JP2018-012057 2018-01-26

Publications (1)

Publication Number Publication Date
WO2019146436A1 true WO2019146436A1 (en) 2019-08-01

Family

ID=67396023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000812 WO2019146436A1 (en) 2018-01-26 2019-01-15 Photosensitive resin composition and lens

Country Status (3)

Country Link
JP (2) JPWO2019146436A1 (en)
TW (1) TWI788506B (en)
WO (1) WO2019146436A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016154230A (en) * 2015-02-17 2016-08-25 富士フイルム株式会社 Method for manufacturing thin film transistor substrate, method for manufacturing display device, and display device
WO2016158863A1 (en) * 2015-04-01 2016-10-06 東レ株式会社 Photosensitive colored resin composition
WO2016171179A1 (en) * 2015-04-24 2016-10-27 東レ株式会社 Resin composition, method for manufacturing semiconductor element using same, and semiconductor device
WO2018155188A1 (en) * 2017-02-21 2018-08-30 日本ゼオン株式会社 Photosensitive resin composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030215736A1 (en) * 2002-01-09 2003-11-20 Oberlander Joseph E. Negative-working photoimageable bottom antireflective coating
TWI731961B (en) * 2016-04-19 2021-07-01 德商馬克專利公司 Positive working photosensitive material and method of forming a positive relief image

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016154230A (en) * 2015-02-17 2016-08-25 富士フイルム株式会社 Method for manufacturing thin film transistor substrate, method for manufacturing display device, and display device
WO2016158863A1 (en) * 2015-04-01 2016-10-06 東レ株式会社 Photosensitive colored resin composition
WO2016171179A1 (en) * 2015-04-24 2016-10-27 東レ株式会社 Resin composition, method for manufacturing semiconductor element using same, and semiconductor device
WO2018155188A1 (en) * 2017-02-21 2018-08-30 日本ゼオン株式会社 Photosensitive resin composition

Also Published As

Publication number Publication date
JP2023159232A (en) 2023-10-31
TWI788506B (en) 2023-01-01
JPWO2019146436A1 (en) 2021-01-14
TW201932498A (en) 2019-08-16

Similar Documents

Publication Publication Date Title
KR101893242B1 (en) Negative-type photosensitive resin composition, pattern forming method, cured film, insulating film, color filter, and display device
JP5803938B2 (en) Negative photosensitive resin composition, partition for optical element and method for producing the same, and method for producing optical element having the partition
JP5133658B2 (en) Photosensitive resin composition for black matrix, cured product and color filter using the same
TW200811205A (en) Curing resin composition and forming method of curing coating film
CN110888301A (en) Photosensitive resin composition for light-shielding film, light-shielding film obtained by curing the same, and color filter
CN107272341B (en) Photosensitive resin composition for light-shielding film, substrate for display, and method for producing same
TWI655501B (en) Negative photosensitive resin composition, partition and optical component
JP2011064869A (en) Photosensitive resin composition, method for forming cured film, cured film, organic el display device and liquid crystal display device
JP2016006521A (en) Manufacturing method of partition wall
JP2005266673A (en) Color filter, liquid crystal display apparatus, positive photosensitive resin composition and method for manufacturing spacer
JP2011111588A (en) Curable resin composition and cured product thereof
JP7127635B2 (en) Photosensitive resin composition
WO2019146436A1 (en) Photosensitive resin composition and lens
KR20190110019A (en) Radiation-sensitive composition, cured film and display device
TWI829905B (en) Photosensitve resin composition for black resist,light-shielding layer cured thereof,and color filter with them
WO2022092281A1 (en) Polymerizable unsaturated group-containing alkali-soluble resin, photosensitive resin composition containing same as essential component, and cured product thereof
CN111448517B (en) Adhesive resin and photosensitive resin composition or coating solution containing the same
JP7049150B2 (en) A photosensitive resin composition containing a polymerizable unsaturated group-containing alkali-soluble resin as an essential component, and a cured film thereof.
JP5839138B1 (en) Partition manufacturing method, display element, and electrowetting display
JP7089914B2 (en) A photosensitive resin composition containing an unsaturated group-containing alkali-soluble resin as an essential component and a cured product thereof.
JP2011053247A (en) Photosensitive resin composition, cured film and method for forming the same, organic el display device and liquid crystal display device
TW202202531A (en) Photosensitive resin composition for black resist, method for producing the same, light-shielding film, color filter, touch panel, and display device Capable of forming a high-definition pattern, and can suppress the generation of aggregated foreign matter
KR102001683B1 (en) Polyfunctional acrylate compounds, a photosensitive resin composition, color filter and display device comprising the same
JP2021161402A (en) Polymerizable unsaturated group-containing alkali-soluble resin, photosensitive resin composition containing the same as essential component, and cured product of the composition
CN111752102A (en) Photosensitive resin composition, cured film, substrate with cured film, and method for producing substrate with cured film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743805

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567000

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19743805

Country of ref document: EP

Kind code of ref document: A1