WO2019144964A1 - 一种上行传输方法及装置 - Google Patents

一种上行传输方法及装置 Download PDF

Info

Publication number
WO2019144964A1
WO2019144964A1 PCT/CN2019/073522 CN2019073522W WO2019144964A1 WO 2019144964 A1 WO2019144964 A1 WO 2019144964A1 CN 2019073522 W CN2019073522 W CN 2019073522W WO 2019144964 A1 WO2019144964 A1 WO 2019144964A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
reference signal
resource
communication device
Prior art date
Application number
PCT/CN2019/073522
Other languages
English (en)
French (fr)
Inventor
行双双
王磊
陈雁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19743247.9A priority Critical patent/EP3735073A4/en
Publication of WO2019144964A1 publication Critical patent/WO2019144964A1/zh
Priority to US16/938,587 priority patent/US11265903B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences

Definitions

  • the present application relates to the field of communications technologies, and in particular, to an uplink transmission method and apparatus. .
  • the enhanced mobile broadband (eMBB) service has high data rate and high density.
  • the main application scenarios include high-definition video transmission and other big data transmission.
  • the ultra-reliable and low latency communications (URLLC) service has the characteristics of occasional service and small data packets.
  • the main application scenarios include automatic driving and remote control.
  • the two services have different delays and reliability.
  • Sexual requirements, compared with eMBB services, URLLC services require low latency and high reliability.
  • the 5G transmission supports a variety of numerology.
  • the eMBB service can use a small subcarrier interval and a long slot numerology.
  • the subcarrier spacing is 15 kHz, and the corresponding time slot is 1 ms.
  • the URLLC service can use a large subcarrier interval and a short time slot.
  • the numerology for example, has a subcarrier spacing of 60 kHz and a corresponding time slot of 0.125 ms.
  • the URLLC service can further reduce the delay by using a transmission mechanism of the unlicensed transmission.
  • Different numerolgoy are used for the eMBB service and the URLLC service, and the eMBB service and the URLLC service need to be transmitted on different frequency band resources.
  • the resource needs to be pre-configured for the URLLC service. Due to the sporadic nature of the URLLC service and the small size of the data packet, the resource utilization of the frequency band resource corresponding to the URLLC service is extremely low.
  • the base station in order to improve system resource utilization, the eMBB service and the URLLC service are supported to be multiplexed and transmitted on the shared downlink resource. That is, the base station usually does not reserve resources for downlink transmission of the URLLC service.
  • the base station can directly occupy the resource allocated for the eMBB service for transmitting the URLLC service, and the base station notifies the user equipment (UE) having the eMBB service by the pre-emption indication (PI).
  • UE user equipment
  • PI pre-emption indication
  • the dynamic resource sharing manner using the PI notification in the downlink transmission may be applied to the uplink eMBB service and the uplink URLLC service to be multiplexed and transmitted on the shared resource.
  • the resource indicating that the eMBB service is occupied by the PI is required to be based on the uplink grant transmission.
  • the SR that the UE requests the transmission resource from the base station and the UL grant sent by the base station may increase the delay of the URLLC.
  • the base station cannot obtain the information of the resource occupied by the URLLC service in advance, and cannot notify the occupied resource of the eMBB service through the PI. Therefore, in the uplink transmission, how to implement the multiplexing and transmission of the eMBB service and the URLLC service on the shared resource is a technical problem that needs to be solved in the future communication system.
  • the present application provides an uplink transmission method and apparatus for improving utilization of uplink resources.
  • the present application provides an uplink transmission method, which is applied to uplink transmission of a communication device, where the method includes: the communication device acquires control information for dynamically scheduling uplink transmission, where the control information includes a first allocated for uplink transmission. The information of the time-frequency resource and the configuration information of the first reference signal transmitted in the uplink; the communication device determines to send the first according to the information of the first time-frequency resource allocated for the uplink transmission and the configuration information of the first reference signal that is transmitted in the uplink a second time-frequency resource of the reference signal; the communication device acquires first information of the semi-statically configured resource for uplink transmission, where the resource includes a time-frequency resource; and in the case that the communication device performs uplink transmission based on the control information, And not transmitting any signal on the time-frequency resource where the second time-frequency resource and the third time-frequency resource overlap, or transmitting a reference signal generated based on the configuration information of the second reference signal, where the third time-frequency resource is determined by the communication device according to the
  • the embodiment of the present application provides an uplink transmission method, where the first time-frequency resource and the second time-frequency resource are determined according to the control information, and in the case of uplink transmission based on the control information, the second time-frequency resource and the third time-frequency are used.
  • the reference frequency signal generated by the configuration information based on the second reference signal is not sent on the time-frequency resource with overlapping resources, so that the second time-frequency resource and the third time-frequency in the first time-frequency resource may be used in the uplink transmission process.
  • the signal transmitted on the time-frequency resource with overlapping resources does not transmit any signal or the reference signal generated based on the configuration information of the second reference signal, so that the uplink transmission on the first time-frequency resource and the third-time frequency resource can be performed.
  • the uplink transmission multiplexes the third time-frequency resource, thereby improving the bandwidth resource utilization of the uplink resource.
  • the method provided by the application includes: the communications apparatus transmitting the configuration according to the first reference signal on the fourth time-frequency resource in the second time-frequency resource a reference signal generated by the information, where the frequency resource of the fourth time-frequency resource and the frequency resource of the overlapping time-frequency resource do not have an intersection, and the frequency resource of the fourth time-frequency resource and the frequency resource of the overlapping time-frequency resource are combined.
  • the frequency resource of the second time-frequency resource includes: the communications apparatus transmitting the configuration according to the first reference signal on the fourth time-frequency resource in the second time-frequency resource a reference signal generated by the information, where the frequency resource of the fourth time-frequency resource and the frequency resource of the overlapping time-frequency resource do not have an intersection, and the frequency resource of the fourth time-frequency resource and the frequency resource of the overlapping time-frequency resource are combined.
  • the frequency resource of the second time-frequency resource includes: the communications apparatus transmitting the configuration according to the first reference signal on the fourth time-frequency resource in the second time-frequency resource a reference signal generated by the information,
  • the time-frequency resource and the third time-frequency resource are used to send the reference signal
  • the intersection between the frequency resources is an empty set; accordingly, the communication device does not transmit any signal on the overlapping time-frequency resources when performing uplink transmission based on the control information.
  • the method provided by the application further includes: when the communication device is in the third When the semi-statically configured reference signal is not transmitted on the time-frequency resource for transmitting the reference signal in the frequency resource, the communication device is used in the first time-frequency resource and the third time-frequency resource when performing uplink transmission based on the control information.
  • the reference signal generated based on the configuration information of the second reference signal is transmitted on the time-frequency resource on which the time-frequency resource of the reference signal is overlapped, and the semi-statically configured reference signal refers to the reference signal used for the third time-frequency resource transmission.
  • the method provided by the application further includes: the communications device is in the third time frequency When transmitting the semi-statically configured reference signal on the time-frequency resource for transmitting the reference signal in the resource, the communication device is used for transmitting the reference in the first time-frequency resource and the third time-frequency resource when performing uplink transmission based on the control information. No signal is sent on the time-frequency resource where the time-frequency resources of the signal overlap.
  • the fourth possible implementation manner of the first aspect Part or all of the time-frequency resource of the reference signal; accordingly, the communication device transmits the reference signal generated according to the configuration information of the second reference signal on the overlapping time-frequency resources when performing uplink transmission based on the control information.
  • the method provided by the application further includes: in the fifth time-frequency resource The communication device does not transmit any signal except for the time-frequency resources other than the overlapping time-frequency resources, wherein the frequency resource of the fifth time-frequency resource and the frequency resource of the overlapping time-frequency resource are the same, and the time-domain resource of the fifth time-frequency resource Same as the time domain resource of the second time-frequency resource.
  • the method provided by the application further includes: the communication device is performed based on the control information During the uplink transmission, the sixth time-frequency resource in the first time-frequency resource does not transmit any signal, wherein the sixth time-frequency resource is not overlapping with the overlapping time-frequency resource in the first time-frequency resource but is not overlapped with the third time-frequency resource.
  • the communication device is performed based on the control information During the uplink transmission, the sixth time-frequency resource in the first time-frequency resource does not transmit any signal, wherein the sixth time-frequency resource is not overlapping with the overlapping time-frequency resource in the first time-frequency resource but is not overlapped with the third time-frequency resource.
  • a time-frequency resource in which a time-frequency resource for transmitting a reference signal overlaps.
  • the eighth possible implementation manner of the first aspect when the communication device performs uplink transmission based on the control information, when overlapping The uplink resource is transmitted on the frequency resource by using the configuration parameter numerology corresponding to the third time-frequency resource.
  • the method provided by the application further includes: the communication device adopts a non-orthogonal transmission And the time-frequency resource of the time-frequency resource other than the second time-frequency resource in the first time-frequency resource and the time-frequency resource other than the time-frequency resource used for transmitting the reference signal in the third time-frequency resource Perform uplink transmission.
  • the method provided by the application further includes: On the time-frequency resource where the third time-frequency resource is overlapped, the communication device uses the frequency resource corresponding to the first time-frequency resource to send the uplink data and/or the reference signal to be sent on the frequency resource corresponding to the third time-frequency resource.
  • the third time-frequency resource and the first time-frequency resource If the intersection of the third time-frequency resource and the second time-frequency resource is an empty set, the communication device performs uplink transmission based on the control information, The time-frequency resource for transmitting the reference signal in the third time-frequency resource does not transmit any signal or the reference signal generated based on the configuration information of the second reference signal on the time-frequency resource overlapping the first time-frequency resource.
  • the present application provides a method for uplink transmission, where the method includes: acquiring, by a communication device, control information for dynamically scheduling uplink transmission, where the control information includes configuration information of a first time-frequency resource for uplink transmission;
  • the device acquires semi-statically configured resource configuration information for uplink transmission, where the resource configuration information includes configuration information of a second time-frequency resource used for uplink transmission, and when the uplink data is sent based on the resource configuration information, the second time-frequency resource is used.
  • transmitting the uplink data by using the frequency domain resource corresponding to the first time-frequency resource on the time domain resource that overlaps with the first time-frequency resource.
  • the method provided by the present application includes: when the communication device performs uplink transmission based on the control information, the second time-frequency resource and the first time-frequency resource overlap.
  • the uplink of the time domain resource is interrupted based on the uplink information performed by the control information.
  • the method provided by the present application includes: removing the overlapping time frequency in the second time-frequency resource On the time-frequency resource outside the resource, the uplink data is sent based on the resource configuration information.
  • the application provides a communication device, which can implement the uplink transmission method described in any one of the first aspect to the eleventh possible implementation manner of the first aspect.
  • the communication device may be a terminal device or a chip disposed in the terminal device.
  • the above method can be implemented by software, hardware, or by executing corresponding software through hardware.
  • the communication device is applied to the uplink transmission of the communication device, and includes: an acquiring unit, configured to acquire control information for dynamically scheduling uplink transmission, where the control information includes information of the first time-frequency resource and uplink transmission allocated for uplink transmission. And a determining unit, configured to determine, according to the information of the first time-frequency resource allocated for the uplink transmission and the configuration information of the first reference signal that is uplink-transmitted, to determine a second used to send the first reference signal a time-frequency resource; the acquiring unit is further configured to obtain first information of a semi-statically configured resource for uplink transmission, where the resource includes a time-frequency resource, and a sending unit, configured to perform uplink transmission based on the control information, Not transmitting any signal or transmitting a reference signal generated based on the configuration information of the second reference signal on the time-frequency resource where the second time-frequency resource and the third time-frequency resource overlap, wherein the third time-frequency resource is the communication device according to the first Information-determined semi-statically configured time-frequency resources for up
  • the sending unit is further configured to send, according to the configuration information of the first reference signal, the fourth time-frequency resource in the second time-frequency resource a reference signal, where the frequency resource of the fourth time-frequency resource and the frequency resource of the overlapping time-frequency resource do not have an intersection, and the union of the frequency resource of the fourth time-frequency resource and the frequency resource of the overlapping time-frequency resource is the second Frequency resource of time-frequency resources.
  • the time-frequency resource and the third time-frequency resource are used to send the reference signal
  • the intersection between the frequency resources is an empty set; correspondingly, the sending unit is further configured to not send any signal on the overlapping time-frequency resources when performing uplink transmission based on the control information.
  • the sending unit when the reference signal is used in the third time-frequency resource
  • the sending unit is further configured to: when the uplink transmission is performed based on the control information, the time frequency used for transmitting the reference signal in the first time-frequency resource and the third time-frequency resource
  • the reference signal generated based on the configuration information of the second reference signal is transmitted on the time-frequency resource where the resources overlap, and the semi-statically configured reference signal refers to the reference signal used for the third time-frequency resource transmission.
  • the sending unit is further configured to overlap the time-frequency resource used for transmitting the reference signal in the first time-frequency resource in the first time-frequency resource when performing uplink transmission based on the control information. No signal is sent on the time-frequency resource.
  • the overlapping time-frequency resource includes the third time-frequency resource for sending A part or all of the time-frequency resource of the reference signal; correspondingly, the sending unit is specifically configured to send, according to the configuration information based on the control information, the reference signal generated according to the configuration information of the second reference signal on the overlapping time-frequency resources.
  • the sending unit is further configured to perform overlap in the fifth time-frequency resource No time signal is transmitted on the time-frequency resource except the time-frequency resource, wherein the frequency resource of the fifth time-frequency resource and the frequency resource of the overlapping time-frequency resource are the same, and the time-domain resource of the fifth time-frequency resource and the second time The time domain resources of the frequency resources are the same.
  • the sending unit is further configured to perform uplink transmission based on the control information,
  • the sixth time-frequency resource in the first time-frequency resource does not send any signal, where the sixth time-frequency resource is not overlapped with the overlapping time-frequency resource in the first time-frequency resource but is used in the third time-frequency resource A time-frequency resource in which time-frequency resources of the reference signal are transmitted are overlapped.
  • the sending unit is further configured to perform uplink transmission based on the control information, The uplink transmission is performed by using the configuration parameter numerology corresponding to the third time-frequency resource on the overlapping time-frequency resources.
  • the sending unit is specifically configured to use the non-orthogonal transmission technology Performing uplink on the time-frequency resource of the time-frequency resource other than the second time-frequency resource and the time-frequency resource of the time-frequency resource other than the time-frequency resource for transmitting the reference signal in the first time-frequency resource transmission.
  • the sending unit is further configured to send the uplink data and/or the reference signal to be sent on the frequency resource corresponding to the third time-frequency resource by using the frequency resource corresponding to the first time-frequency resource.
  • the sending unit when the third time-frequency resource and the first time When the intersection of the frequency resources is not an empty set, and the intersection of the third time-frequency resource and the second time-frequency resource is an empty set, the sending unit performs uplink transmission based on the control information, The third time-frequency resource, the time-frequency resource for transmitting the reference signal and the time-frequency resource overlapping the first time-frequency resource, do not send any signal or send a reference generated based on the configuration information of the second reference signal. signal.
  • the present application further provides a communication apparatus, including: a processor and a transmitter, wherein the processor is configured to acquire control information for dynamically scheduling an uplink transmission, where the control information includes an allocation for the uplink transmission.
  • the information of the first time-frequency resource and the configuration information of the first reference signal of the uplink transmission are determined according to the information of the first time-frequency resource allocated for the uplink transmission and the configuration information of the first reference signal of the uplink transmission.
  • a second time-frequency resource for transmitting the first reference signal, and first information for acquiring a semi-statically configured resource for uplink transmission, where the resource includes a time-frequency resource; a transmitter, configured to When the uplink transmission is performed based on the control information, no signal is transmitted on the time-frequency resource where the second time-frequency resource and the third time-frequency resource overlap, or a reference signal generated based on the configuration information of the second reference signal is transmitted.
  • the third time-frequency resource is a semi-statically configured time for uplink transmission determined by the communication device according to the first information. Resources.
  • the communication device further includes a receiver, the receiver is configured to support the communication device to implement related operations of information/data reception on the communication device side, and the transmitter is further configured to support the communication device to implement the first aspect to the first aspect.
  • the related operation of performing information/data transmission on the communication device side as described in any one of the above, the processor is further configured to perform the operation of performing information/data processing on the communication device side described in any one of the above first aspect to the first aspect.
  • the communication device in this application further includes: a bus and a memory, the memory is used to store code and data, and the processor, the receiver, the transmitter, and the memory are connected by a bus.
  • the communication device may be a terminal device or a chip disposed in the terminal device, and the communication device may include at least one processor.
  • the at least one processor is configured to perform on the communication device side by executing an instruction to support the communication device to perform the method described in any one of the first aspect to the eleventh possible implementation of the first aspect Related operations for message processing or control.
  • the communication device may further comprise a memory for coupling with the at least one processor, which stores programs (instructions) and data necessary for the communication device.
  • the communication device may further include a communication interface for supporting communication between the communication device and other network elements (eg, network devices).
  • the communication interface may be a transceiver circuit, wherein the transceiver circuit is configured to support the communication device to perform the method described in any one of the first aspect to the eleventh possible implementation of the first aspect on the communication device side Related operations for message reception and transmission.
  • the communication device may further include a bus, wherein the memory, the communication interface, and the at least one processor may be interconnected by a bus.
  • the present application provides a communication apparatus, which can implement the uplink transmission method described in any one of the second aspect to the second aspect of the second aspect.
  • the communication device may be a terminal device or a chip disposed in the terminal device.
  • the above method can be implemented by software, hardware, or by executing corresponding software through hardware.
  • the communication device is applied to the uplink transmission of the communication device, and includes: an acquiring unit, configured to acquire control information for dynamically scheduling uplink transmission, where the control information includes configuration information of the first time-frequency resource used for uplink transmission; Obtaining, for a semi-static configuration, resource configuration information for uplink transmission, where the resource configuration information includes configuration information of a second time-frequency resource used for uplink transmission, and a sending unit, configured to: when sending uplink data based on the resource configuration information, The time domain resource that overlaps the second time-frequency resource and the first time-frequency resource sends the uplink data by using the frequency domain resource corresponding to the first time-frequency resource.
  • the processing unit is configured to: when the uplink transmission is performed based on the control information, the time domain resource that overlaps the second time-frequency resource and the first time-frequency resource The upper interrupt is performed based on the uplink transmission performed by the control information.
  • the sending unit is further configured to remove the overlapping time-frequency resources in the second time-frequency resource.
  • the uplink data is sent based on the resource configuration information.
  • the present application provides a computer readable storage medium having instructions stored in an eleventh possible implementation manner of the first aspect to the first aspect when the instructions are executed The described uplink transmission method is performed.
  • the present application provides a computer readable storage medium having instructions stored in a second possible implementation of the second aspect to the second aspect when the instructions are executed The described uplink transmission method is performed.
  • the present application provides a computer program product comprising instructions, wherein a computer program product stores instructions, when the instructions are executed, causing the terminal device to perform the eleventh possible aspect of the first aspect to the first aspect
  • the application provides a computer program product comprising instructions, wherein a computer program product stores instructions, when the instructions are executed, causing the terminal device to perform the second possible implementation of the second aspect to the second aspect
  • the present application provides a chip system for use in a communication device, the chip system including at least one processor and an interface circuit, the interface circuit and the at least one processor are interconnected by a line, and the processor is configured to run an instruction to perform the An uplink transmission method as described in any one of the eleventh possible implementations of the first aspect.
  • the present application provides a chip system for use in a communication device, the chip system including at least one processor and an interface circuit, the interface circuit and the at least one processor are interconnected by a line, and the processor is configured to execute an instruction to perform The uplink transmission method described in any one of the second aspect to the second possible implementation of the second aspect.
  • the chip system described above in the application further includes at least one memory, where the at least one memory stores an instruction.
  • 1 is a schematic diagram of time-frequency resources for preempting other data by URLLC service data provided in the prior art
  • FIG. 2 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a base station provided by the present application.
  • FIG. 4 is a schematic structural diagram of another base station provided by the present application.
  • FIG. 5 is a schematic flowchart 1 of an uplink transmission method provided by the present application.
  • FIG. 6 is a schematic diagram 1 of a time-frequency resource distribution provided by the present application.
  • FIG. 7 is a schematic diagram 2 of a time-frequency resource distribution provided by the present application.
  • FIG. 8 is a schematic diagram 3 of a time-frequency resource distribution provided by the present application.
  • FIG. 9 is a schematic flowchart 2 of an uplink transmission method provided by the present application.
  • FIG. 10 is a schematic diagram 4 of a time-frequency resource distribution provided by the present application.
  • FIG. 11 is a schematic flowchart 3 of an uplink transmission method provided by the present application.
  • FIG. 12 is a schematic diagram 5 of a time-frequency resource distribution provided by the present application.
  • FIG. 13 is a schematic flowchart 4 of an uplink transmission method provided by the present application.
  • FIG. 14 is a schematic flowchart 5 of an uplink transmission method provided by the present application.
  • 15 is a schematic flowchart 6 of an uplink transmission method provided by the present application.
  • 16 is a schematic diagram 6 of a time-frequency resource distribution provided by the present application.
  • 17 is a schematic flowchart 7 of an uplink transmission method provided by the present application.
  • FIG. 18 is a schematic flowchart VIII of an uplink transmission method provided by the present application.
  • FIG. 19 is a schematic flowchart nin of an uplink transmission method provided by the present application.
  • 20 is a schematic diagram 7 of a time-frequency resource distribution provided by the present application.
  • FIG. 21 is a schematic diagram 8 of a time-frequency resource distribution provided by the present application.
  • 22 is a schematic diagram IX of a time-frequency resource provided by the present application.
  • FIG. 23 is a schematic flowchart 10 of an uplink transmission method provided by the present application.
  • 24 is a schematic diagram 10 of a time-frequency resource distribution provided by the present application.
  • 25 is a schematic flowchart 11 of an uplink transmission method provided by the present application.
  • 26 is a schematic diagram 12 of a time-frequency resource distribution provided by the present application.
  • FIG. 27 is a schematic diagram showing the distribution of time-frequency resources provided by the present application.
  • 29 is a schematic diagram showing a distribution of time-frequency resources provided by the present application.
  • FIG. 30 is a schematic diagram of a distribution of time-frequency resources provided by the present application.
  • FIG. 31 is a schematic diagram showing a distribution of time-frequency resources provided by the present application.
  • 32 is a schematic diagram of a distribution of time-frequency resources provided by the present application.
  • FIG. 33 is a schematic diagram of a distribution of time-frequency resources provided by the present application.
  • FIG. 34 is a schematic diagram of a distribution of time-frequency resources provided by the present application.
  • FIG. 35 is a schematic structural diagram of a communication apparatus provided by the present application.
  • FIG. 36 is a schematic structural diagram of a terminal device provided by the present application.
  • FIG. 37 is a schematic structural diagram of a chip system provided by the present application.
  • Grant-free transmission (GF transmission) mechanism also known as transmission without dynamic scheduling or transmission without dynamic grant.
  • the terminal device needs to send uplink data, and does not need dynamic scheduling or dynamic authorization of the network device, and sends the uplink data on the pre-configured resource.
  • GF transport resources pre-configured resources are called GF transport resources.
  • RRC radio resource control
  • DCI downlink control information
  • the RRC signaling configuration resource cannot be immediately
  • the terminal is used to transmit data, and also needs to receive a DCI that activates the resource configured by the RRC signaling, so that uplink data can be transmitted.
  • the above configuration of the GF transmission resource may be referred to as a semi-static configuration.
  • GB transmission Grant-based transmission (GB transmission) mechanism: also known as dynamic scheduling uplink transmission (transmission with dynamic scheduling) or dynamic authorization uplink transmission (transmission with dynamic grant).
  • the terminal device If the terminal device has uplink data to be transmitted, it needs to wait for the dynamic scheduling/dynamic authorization of the network device for the uplink data, and the uplink data transmission is performed based on the dynamic scheduling/dynamic authorization, including initial transmission and heavy weight of the uplink data. pass.
  • GB transmission resources configured by dynamic scheduling/dynamic authorization are referred to as GB transmission resources.
  • Unlicensed service refers to data (service) transmitted by an unlicensed transmission mechanism.
  • Authorized service refers to the data (service) using the GB transmission mechanism.
  • an area in which the GB transmission resource overlaps with the GF transmission resource is referred to as an uplink resource multiplexing area, and the uplink resource multiplexing area can be used to transmit services with different delay requirements, for example, in an unlicensed service and an authorized service. At least one of the GB transmission resources and the GF transmission resources may overlap or partially overlap, which is not limited in this application.
  • the GB service and the GF service can be simultaneously transmitted, or only the GF service can be transmitted, and only the GB service can be transmitted.
  • the GB transmission resource can be used to transmit a service that is not strict with the delay requirement, and can also be understood as: the GB transmission resource is used to transmit an authorization service, for example, for transmitting an eMBB service.
  • the GF transmission resource may be used to transmit at least one of a service that requires strict delay and a service that is not strictly required for transmission delay, and may also be understood as: GF transmission resource is used to transmit authorized service and exempt At least one of the authorized businesses. Exemplarily, it is used to transmit URLLC service and eMBB service.
  • the present application provides an uplink transmission method and apparatus, which are applied to uplink transmission of a communication device, and are used for transmitting different service types (for example, an unlicensed service and an authorized service, where the unauthorized service and the authorized service have different times)
  • different service types for example, an unlicensed service and an authorized service, where the unauthorized service and the authorized service have different times
  • Deferred requirements and reliability requirements compared with the authorized service, the exempted service requires low-latency time-frequency resources for resource reuse, so that the authorized service fully utilizes the idle resources of the exempted service to improve the utilization of uplink resources in the system. rate.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and the repeated description is not repeated.
  • first, second, and the like in this application are only used to distinguish different objects, and the order is not limited.
  • first reference signal and the second reference signal are only for distinguishing different reference signals, and are not limited in their order.
  • FIG. 1 takes an authorized service as an eMBB service, and an unlicensed service is a URL LC service.
  • a time-frequency resource corresponding to area 1 and area 2 is a transmission resource area of an eMBB service.
  • the base station configured by the base station to the terminal device by using control signaling (for example, radio resource control (RRC)), so that the terminal device transmits the eMBB service in the eMBB service transmission resource region, where the eMBB service transmission resource region is
  • the eMBB service transmission resource region is
  • the GB transmission resource for example, the area 1 in Figure 1
  • the resource corresponding to the area 2 is the transmission resource area of the URLLC service
  • the base station pre-configures the transmission resource of the URLLC service, in order to meet the delay requirement of the URLLC service, the area 1 and The area 2 may be a transmission without dynamic grant/grant-free transmission (GF transmission) resource.
  • the URLLC service transmission resource area is also a transmission resource area of the eMBB service. In the URLLC service transmission resource area, the URLLC service can be multiplexed and transmitted with the eMBB service.
  • the services supporting the GB transmission in this application may be services with less strict delay requirements.
  • the eMBB service may allow multiple retransmissions.
  • the service supporting the GF transmission may be a service with strict delay requirements, such as a URLLC service.
  • the service that supports the GB transmission and the service that supports the GF transmission have different delay requirements and reliability requirements.
  • the eMBB service is used to indicate the service that supports the GB transmission
  • the terminal device that transmits the eMBB service is the eMBB terminal device.
  • the URLLC service is used to indicate the service that supports the GF transmission
  • the terminal device that transmits the URLLC service may be a URLLC terminal device.
  • a terminal device can be either an eMBB terminal device or a URLLC terminal, that is, the terminal device can support both eMBB service transmission and URLLC service transmission.
  • the services transmitted in the uplink resource multiplexing area in the present application include, but are not limited to, an authorized service and an unlicensed service, such as an eMBB service and a URLLC service, that is, in the uplink resource multiplexing area, in addition to the eMBB.
  • the other two services except the service and the URLLC service have different delay requirements and different requirements for reliability.
  • the transmission modes of the two services transmitted in the uplink resource multiplexing area include, but are not limited to, a GB transmission and a GF transmission mode.
  • the following embodiments describe the services transmitted in the uplink resource multiplexing area, including the authorized service and the unlicensed service, as an example, and do not have any indicative meaning:
  • the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • FIG. 2 shows a schematic diagram of a communication system architecture provided by the present application.
  • the communication system 100 includes: at least one network device 100 and at least one terminal device 200 (only three terminals are shown in FIG. 2).
  • a device may include more than three or less terminal devices in an actual scenario.
  • a terminal device may also be called a user equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user. Agent or user device.
  • UE user equipment
  • the terminal device may be a station (STA) in a wireless local area network (WLAN), and may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, or a wireless local loop (wireless local Loop, WLL) station, personal digital assistant (PDA) device, handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, in-vehicle device, wearable device, and next-generation communication system, For example, a terminal device in a fifth-generation (5G) communication network or a terminal device in a public land mobile network (PLMN) network that is evolving in the future.
  • 5G fifth-generation
  • PLMN public land mobile network
  • the terminal device may also be a wearable device.
  • a wearable device which can also be called a wearable smart device, is a general term for applying wearable technology to intelligently design and wear wearable devices such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are more than just a hardware device, but they also implement powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-size, non-reliable smartphones for full or partial functions, such as smart watches or smart glasses, and focus on only one type of application, and need to work with other devices such as smartphones. Use, such as various smart bracelets for smart signs monitoring, smart jewelry, etc.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (AP) in the WLAN, a global system for mobile communication (GSM) or a code division multiple access (code)
  • AP access point
  • GSM global system for mobile communication
  • code code division multiple access
  • AP access point
  • GSM global system for mobile communication
  • code division multiple access code division multiple access
  • CDMA code division multiple access
  • NodeB, NB
  • the network device provides a service for the cell
  • the terminal device communicates with the network device by using a transmission resource (for example, a frequency domain resource or a time-frequency resource) used by the cell.
  • the cell may be a cell corresponding to a network device (for example, a base station), and the cell may belong to a macro base station or a base station corresponding to a small cell, where the small cell may include: a metro cell and a micro cell ( Micro cell), Pico cell, femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the method and apparatus provided by the embodiments of the present invention may be applied to a terminal device, where the terminal device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through a process, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, contacts, word processing software, and instant messaging software.
  • the specific structure of the executor of the uplink transmission method is not limited in the embodiment of the present invention, as long as the program for recording the code of the uplink transmission method according to the embodiment of the present invention can be executed according to the present invention.
  • the uplink transmission method of the embodiment of the invention may be used for communication.
  • the execution body of the method for wireless communication according to the embodiment of the present invention may be a terminal device or a functional module of the terminal device that can call a program and execute the program.
  • a computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disc (CD), a digital versatile disc (DVD). Etc.), smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), cards, sticks or key drivers, etc.).
  • a magnetic storage device eg, a hard disk, a floppy disk, or a magnetic tape, etc.
  • CD compact disc
  • DVD digital versatile disc
  • Etc. smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • the future access network can be implemented by a cloud radio access network (C-RAN) architecture
  • C-RAN cloud radio access network
  • concentration A central unit (CU)
  • DU distributed unit
  • the actual deployment mode of CU and DU is flexible.
  • the CU parts of multiple base stations are integrated to form a large-scale function. entity.
  • FIG. 3 it is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • the network architecture includes a core network (CN) device and an access network (taking a radio access network (RAN) as an example).
  • CN core network
  • RAN radio access network
  • the RAN device includes a baseband device and a radio frequency device, wherein the baseband device may be implemented by one node or multiple nodes, and the radio frequency device may be independently implemented from the baseband device, or may be integrated into the baseband device, or partially extended. Integrated in the baseband unit.
  • a RAN device eNB
  • eNB includes a baseband device and a radio frequency device, wherein the radio frequency device can be remotely disposed relative to the baseband device (eg, a radio remote unit (RRU) relative to the baseband processing unit
  • the RAN device is implemented by a node, which is used to implement the functions of protocol layers such as RRC, PDCP, RLC, and MAC.
  • the baseband device may include a centralized unit (CU) and a distributed unit (DU), and multiple DUs may be centrally controlled by one CU.
  • the CU and the DU may be divided according to a protocol layer of the wireless network, for example, a packet data convergence protocol (PDCP) layer and a function of the above protocol layer are set in a CU, a protocol layer below the PDCP, for example, The functions of radio link control (RLC) and media access control (MAC) layer are set in the DU.
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • the division of the protocol layer is only an example, and can also be divided in other protocol layers, for example, in the RLC layer, the functions of the RLC layer and the above protocol layer are set in the CU, and the functions of the protocol layer below the RLC layer are set in the DU; Alternatively, in a certain protocol layer, for example, a part of the function of the RLC layer and a function of a protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU. In addition, it may be divided in other manners, for example, according to the delay division, the function that needs to meet the delay requirement in the processing time is set in the DU, and the function that does not need to meet the delay requirement is set in the CU.
  • the radio frequency device can be extended, not placed in the DU, or integrated in the DU, or partially extended in the DU, without any limitation.
  • control plane (CP) and the user plane (UP) of the CU may be separated and divided into different entities to implement control.
  • the signaling generated by the CU may be sent to the terminal device through the DU, or the signaling generated by the terminal device may be sent to the CU through the DU.
  • the DU may transparently transmit the signaling to the terminal device or the CU through protocol layer encapsulation without parsing the signaling.
  • the transmission or reception of the signaling by the DU includes such a scenario.
  • the signaling of the RRC or PDCP layer will eventually be processed as a physical layer (PHY) signaling to the terminal device, or by the signaling of the received PHY layer.
  • the signaling of the RRC or PDCP layer may also be considered to be sent by the DU or sent by the DU and the radio.
  • the CU is divided into network devices in the RAN.
  • the CU may be divided into network devices in the CN, which is not limited herein.
  • FIG. 5 illustrates an uplink transmission method provided by the present application, including:
  • the communication device acquires control information for dynamic scheduling (DS) uplink transmission, where the control information includes information about a first time-frequency resource allocated for uplink transmission and configuration information of a first reference signal that is uplink transmitted. .
  • DS dynamic scheduling
  • the communication device in the present application may be a terminal device in the system architecture as shown in FIG. 2 or a chip disposed in the terminal device, which is not limited in this application.
  • the dynamic scheduling in the present application may refer to that the network device indicates the time-frequency resources and related parameters required for uplink or downlink data transmission by using downlink control signaling (DCI) according to the request for uplink or downlink data transmission.
  • DCI downlink control signaling
  • the information of the first time-frequency resource in the application is used to determine a first time-frequency resource allocated to the communication device, and the first time-frequency resource may also be referred to as an authorized transmission resource, as shown in FIG.
  • One time-frequency resources are used to transmit authorization (GB) services.
  • the GB service in the present application refers to a service for data transmission according to time-frequency resources and related transmission parameters indicated by dynamic scheduling.
  • the first time-frequency resource in this application is used to transmit eMBB services.
  • the information of the first time-frequency resource may be an identifier of the first time-frequency resource, or location information, which is not limited in this application.
  • the configuration information of the first reference signal may be used to determine a first reference signal for uplink transmission of the GB service, and to determine a location of the time-frequency resource corresponding to the first reference signal in the first time-frequency resource.
  • the configuration information of the first reference signal may include: a demodulation reference signal (DMRS) type, a DMRS symbol width, an initial value used to calculate a sequence of the DMRS, an antenna port corresponding to the DMRS, and the like.
  • DMRS demodulation reference signal
  • the method provided by the application further includes: the network device sending, to the communications device, control information for dynamically scheduling the uplink transmission.
  • the communications device determines, according to the information about the first time-frequency resource allocated for the uplink transmission and the configuration information of the first reference signal that is transmitted in the uplink, the second time-frequency resource used for transmitting the first reference signal.
  • the second time-frequency resource in the present application is a time-frequency resource in which the reference signal generated according to the configuration information of the first reference signal corresponding to the uplink transmission of the terminal device on the first time-frequency resource.
  • the step S102 in the present application may be implemented by: the communication device determining, according to the information about the first time-frequency resource allocated for the uplink transmission, the first time-frequency resource allocated for the uplink transmission, according to the first reference signal of the uplink transmission.
  • the configuration information determines a second time-frequency resource for transmitting the first reference signal on the first time-frequency resource.
  • the communication device acquires first information of a semi-statically configured resource for uplink transmission.
  • resources include time-frequency resources.
  • the resource may further include: a time-frequency resource of the semi-statically configured reference signal.
  • the first information of the semi-statically configured resource for uplink transmission in the application is used by the terminal device to determine the location of the third time-frequency resource, where the third time-frequency resource is used to transmit the unlicensed service, and therefore, the A three-time frequency resource can also be referred to as an unlicensed transmission resource.
  • the unlicensed transmission resource is used to transmit a service that requires a relatively high latency, for example, for transmitting a URLLC service.
  • the communication device may determine the first time-frequency resource with the transmission authorization service according to the dynamic scheduling, or determine the third time-frequency resource with the unlicensed service according to the semi-static configuration, but the first time-frequency resource and There may be no intersection between the second time-frequency resources.
  • FIG. 6 takes the first time-frequency resource as the GB transmission resource, and the third time-frequency resource is the GF transmission resource as an example.
  • the third time-frequency resource and the first time-frequency resource that can be configured to be allocated by the communication device in the present application may overlap.
  • FIG. 7 it can be seen from FIG. 7 that there are overlapping time-frequency resources between the GB transmission resource and the GF transmission resource (for example, the GF transmission resource in the elliptical line in FIG. 7).
  • the present application may use an overlapping or partially overlapping time-frequency resource existing between the first time-frequency resource and the third time-frequency resource as an uplink multiplexing transmission resource, so that the communication device may use the uplink multiplexing transmission resource to send an authorization service and At least one of the unlicensed services, that is, the communication device may send an authorized service within the uplink multiplexed transmission resource, or send an unlicensed service, or send an authorized service and an unlicensed service.
  • the first information in this application is used to determine the location of the third time-frequency resource.
  • the network device can configure multiple GF transmission resources, as shown in FIG. 8, GF transmission resource 1, GF transmission resource 2, GF transmission resource 3, GF transmission resource 4, GF transmission resource 5, and GF transmission resource 6 .
  • the network device may notify one or more communication devices of information of M (M is an integer greater than or equal to 0) GF transmission resources in one or more GF transmission resources configured in the system.
  • M is an integer greater than or equal to 0
  • M is an integer greater than or equal to 0
  • the communication device may determine, according to the indication information corresponding to each GF transmission resource, whether the unlicensed service can be transmitted on the at least one GF transmission resource allocated for the other communication device.
  • the GF transmission resource 2, the GF transmission resource 3, the GF transmission resource 4, and the GF transmission resource 5 allocated by the GF transmission resource 1 and the GF transmission resource 6 for the communication device 1 are outside the communication device 1.
  • the remaining communication devices are assigned, for example, to the communication device 2 as an example.
  • the communication device 1 can transmit the unlicensed service on the GF transmission resource 1 and the GF transmission resource 6.
  • the communication device 1 needs to determine, according to the indication information, whether the unlicensed service can be transmitted on the GF transmission resource 2, the GF transmission resource 3, the GF transmission resource 4, and the GF transmission resource 5 allocated for the communication device 2.
  • the network device in the present application may indicate one or more thirds to the communication device during the semi-static configuration process of the communication device. Whether time-frequency resources can be used to send unlicensed services:
  • the information of one or more third time-frequency resources may be added to the RRC signaling or the DCI signaling, so that the communications device determines one or more according to the information of the one or more third time-frequency resources.
  • the location of the third time-frequency resource in the first time-frequency resource may be added to the RRC signaling or the DCI signaling, so that the communications device determines one or more according to the information of the one or more third time-frequency resources.
  • the foregoing RRC signaling or DCI signaling may further include indication information for indicating whether the one or more third time-frequency resources are available for sending an unlicensed service.
  • the network device can allocate one or more third time-frequency resources to at least one communication device, when the third time-frequency resource is allocated for two or more communication devices, there may be an allocation for the communication device A. At least one third time-frequency resource is unavailable to the communication device B, or at least one third time-frequency resource allocated to the communication device A is available to the communication device A, or at least one third time-frequency resource pair communication is allocated to the communication device A Device A is not available (ie, the communication device A is only available for transmission of authorized services). Therefore, the communication device needs to determine whether the uplink unlicensed service can be transmitted on the third time-frequency resource according to the indication information corresponding to the third time-frequency resource.
  • the first time-frequency resource and the third time-frequency resource may be used in the present application.
  • the authorized service is sent on the overlapping time-frequency resources.
  • the communication device 1 determines that the indication information corresponding to the GF transmission resource 2, the GF transmission resource 3, the GF transmission resource 4, and the GF transmission resource 5 is the first indication, and the communication device 1 determines the GF transmission resource 2
  • the GF transmission resource 3, the GF transmission resource 4, and the GF transmission resource 5 are not available for transmitting the unlicensed service.
  • the communication device 1 determines that the indication information corresponding to the GF transmission resource 1 and the GF transmission resource 6 is the second indication, and the communication device 1 determines that the GF transmission resource 1 and the GF transmission resource 6 are available for transmitting the unlicensed service.
  • the communication device 1 needs to determine the GF transmission resource according to the indication information corresponding to each GF transmission resource. Whether it can be used for the communication device to send an unauthorized service.
  • the first indication may be 0 or false, and the second indication may be 1 or true.
  • the first indication and the second indication may also be other parameters, which is not limited herein.
  • the communication device 1 determines that the GF transmission resource 2 and the GF transmission resource 3 are available.
  • the GF transmission resource 4 and the GF transmission resource 5 send an unlicensed service.
  • a communication device is only used to send an authorization service (for example, an eMBB service)
  • an authorization service for example, an eMBB service
  • the one or more third time-frequency resources may all be false, so that the communication device determines that one or more third time-frequency resources are unavailable for transmitting the unlicensed service.
  • a group-common RRC (GC RRC) format may be defined in the application, and configuration information of one or more third time-frequency resources is indicated in the GC RRC, so that the communication device is configured.
  • the configuration information of one or more third time-frequency resources indicated by the GC RRC may be obtained by monitoring the GC RRC.
  • the present application may define a Group-common DCI format, where configuration information indicating one or more third time-frequency resources is indicated in the GC DCI, so that the communication device can monitor the GC DCI to obtain the GC. Configuration information of one or more third time-frequency resources indicated by the DCI.
  • the configuration information of one or more third time-frequency resources in the GC RRC or the GC DCI may be configuration information of a third time-frequency resource allocated for different communication devices. This application does not limit the format of the GC RRC or the format of the GC DCI.
  • the communication device sends no signal on the time-frequency resource where the second time-frequency resource and the third time-frequency resource overlap, or sends a reference generated by the configuration information based on the second reference signal, when the uplink information is transmitted by using the control information. And a signal, where the third time-frequency resource is a semi-statically configured time-frequency resource for uplink transmission determined by the communications device according to the first information.
  • the non-transmitting any signal involved in the embodiment of the present application may be: not transmitting any signal corresponding to the dynamic scheduling uplink transmission.
  • the time-frequency resource in which the second time-frequency resource and the third time-frequency resource overlap in the present application can be understood as: the second time-frequency resource and the third time-frequency resource partially overlap, or the second time-frequency resource and the third time-frequency resource are all overlapping.
  • the partially overlapping the second time-frequency resource and the third time-frequency resource may include: a part of the time-frequency resource of the second time-frequency resource is located in a range of the third time-frequency resource. Or a part of the time-frequency resource of the third time-frequency resource is located in the range of the second time-frequency resource.
  • the part time-frequency resource of the second time-frequency resource and some or all of the time-frequency resources of the third time-frequency resource overlap may also be referred to as existence intersection).
  • part of the time-frequency resource of the third time-frequency resource and a part of the time-frequency resource of the second time-frequency resource or all time-frequency resources overlap.
  • the overlapping of the second time-frequency resource and the third time-frequency resource may include: the third time-frequency resource is located in the range of the second time-frequency resource; or the second time-frequency resource is located in the range of the third time-frequency resource.
  • time-frequency resources in which the two or more time-frequency resources are overlapped in the following embodiments may be referred to herein, and are not described herein again.
  • the configuration information of the second reference signal in the application is used to determine the second reference signal and the time-frequency resource location where the second reference signal is located.
  • the configuration information of the second reference signal includes parameters such as a DMRS type, a DMRS symbol width, and an DMRS initial value.
  • the uplink transmission on the first time-frequency resource is performed on the third time-frequency resource.
  • the uplink transmission causes interference, and the reference signal generated based on the configuration information of the second reference signal is orthogonal to the semi-statically configured reference signal.
  • the foregoing orthogonal manner may be: code domain orthogonal or resource orthogonal.
  • the configuration information of the second reference signal obtained by the communication device in the embodiment of the present application may be implemented as follows: One implementation manner: the communication device is obtained by using configuration information of the second reference signal transmitted by the base station.
  • the configuration information may be that the base station notifies the communication device by using dynamic scheduling signaling.
  • the configuration information may be notified to the communication device by the base station in a semi-static configuration manner.
  • the communication device may also obtain the second reference signal according to the information of the semi-statically configured reference signal.
  • a is the port number corresponding to the semi-statically configured reference signal (eg, the reference signal associated with the third time-frequency resource).
  • b is the port number corresponding to the second reference signal.
  • f(a) is a function describing the relationship between a and b.
  • k 1 and k 2 are coefficients describing the relationship between a and b.
  • the function of the relationship between a and b may also be a pseudo-random generation method agreed between the base station and the communication device.
  • the pseudo-random generation manner may be related to at least one of a slot number, a time domain symbol, a cell ID, an identifier of the communication device, a time-frequency resource location, and the like.
  • the identity of the communication device can be the ID of the communication device.
  • the identification of the communication device is used to identify the communication device.
  • the embodiment of the present application provides an uplink transmission method, where the first time-frequency resource and the second time-frequency resource are determined according to the control information, and in the case of uplink transmission based on the control information, the second time-frequency resource and the third time-frequency are used.
  • the reference frequency signal generated by the configuration information based on the second reference signal is not sent on the time-frequency resource with overlapping resources, so that the second time-frequency resource and the third time-frequency in the first time-frequency resource may be used in the uplink transmission process.
  • the signal transmitted on the time-frequency resource with overlapping resources does not transmit any signal or the reference signal generated based on the configuration information of the second reference signal, so that the uplink transmission on the first time-frequency resource and the third-time frequency resource can be performed.
  • the uplink transmission multiplexes the third time-frequency resource, thereby improving the bandwidth resource utilization of the uplink resource.
  • time-frequency resources that are overlapped between the second time-frequency resource and the third time-frequency resource in the foregoing embodiment may be the following: the second time-frequency resource and the third time-frequency resource are used to send data. Time-frequency resources overlap, or the second time-frequency resource overlaps with the time-frequency resource used for transmitting the reference signal in the third time-frequency resource, or when the second time-frequency resource and the third time-frequency resource are used to transmit the reference signal Both the frequency resource and the time-frequency resource used to transmit the data overlap.
  • the foregoing mainly describes the processing manner of the communication device on the overlapping time-frequency resources.
  • a part of the time-frequency resources of the second time-frequency resource may be located in the third time-frequency resource, and the second time-frequency resource may be The other part of the time-frequency resource is located outside the third time-frequency resource. Therefore, as shown in FIG. 9, as another possible embodiment of the present application, the method provided by the present application further includes:
  • the communication device sends, according to the fourth time-frequency resource in the second time-frequency resource, a reference signal generated according to the configuration information of the first reference signal, where the frequency resource of the fourth time-frequency resource and the frequency of the overlapping time-frequency resource There is no intersection of the resources, and the union of the frequency resources of the fourth time-frequency resource and the frequency resources of the overlapping time-frequency resources is the frequency resource of the second time-frequency resource.
  • the fourth time-frequency resource is a time-frequency resource that is located outside the third time-frequency resource in the second time-frequency resource.
  • the time domain resource of the fourth time-frequency resource and the time domain resource of the second time-frequency resource are the same.
  • the fourth time-frequency resource does not have an intersection with the overlapping time-frequency resources, and the union of the frequency resource of the fourth time-frequency resource and the overlapping time-frequency resource is the second time-frequency resource.
  • Frequency resources are exemplary, as shown in FIG. 10, where the fourth time-frequency resource does not have an intersection with the overlapping time-frequency resources, and the union of the frequency resource of the fourth time-frequency resource and the overlapping time-frequency resource.
  • the reference signal generated by the communication device according to the configuration information of the first reference signal transmitted on the time-frequency resource overlapped in the second time-frequency resource may not be orthogonal to the reference signal sent in the third time-frequency resource, so In order to reduce interference of the uplink transmission sent in the first time-frequency resource to the uplink transmission sent on the third time-frequency resource, the communication device does not transmit a signal on the overlapping time-frequency resource or sends configuration information based on the second reference signal. The generated reference signal.
  • the communication device still transmits the reference signal generated according to the configuration information of the first reference signal on the time-frequency resource (for example, the fourth time-frequency resource) that is not overlapped with the third time-frequency resource in the second time-frequency resource.
  • the communication device may overlap in the second time-frequency resource.
  • the reference signal generated based on the configuration information of the second reference signal is transmitted on the time-frequency resource, and the reference signal generated according to the configuration information of the first reference signal is transmitted on the fourth time-frequency resource.
  • the second time-frequency resource has two reference signals, and the second time-frequency resource is transmitted on the time-frequency resource overlapping with the third time-frequency resource.
  • the reference signal generated by the configuration information, and the reference signal generated according to the configuration information of the first reference signal is sent on the fourth time-frequency resource in the second time-frequency resource, so that the network device can obtain the GF reference signal sent according to the third time-frequency resource. And transmitting, by using the reference signal generated according to the configuration information of the first reference signal, the channel estimation on the fourth time-frequency resource.
  • the bandwidth occupied by the third time-frequency resource is smaller than the bandwidth of the second time-frequency resource, that is, the third time-frequency resource occupies part of the bandwidth.
  • the intersection between the overlapping time-frequency resources and the time-frequency resources used to transmit the reference signals in the third time-frequency resource is an empty set.
  • intersection between the overlapping time-frequency resources and the time-frequency resources used for transmitting the reference signal in the third time-frequency resource is an empty set finger: at least a part of the time-frequency resources in the second time-frequency resource are in the third time. There is no intersection or non-overlap between the at least part of the time-frequency resource and the time-frequency resource used for transmitting the reference signal in the third time-frequency resource.
  • step S104 in the present application may be specifically implemented in the following manner:
  • the communication device does not transmit any signal on the overlapping time-frequency resources when performing uplink transmission based on the control information.
  • the third time-frequency resource and the first time-frequency resource have an uplink multiplexing transmission resource, where the time-frequency resource for transmitting the reference signal and the first time-frequency in the third time-frequency resource
  • the time-frequency resources used for transmitting data overlap in the resource, and the second time-frequency resource is located in the range of the third time-frequency resource, and the time-frequency used for transmitting the data in the second time-frequency resource and the third time-frequency resource in FIG.
  • the resources overlap, at this time, the communication device may not transmit any signal at the overlapping time-frequency resources shown in FIG. 12, that is, the time-frequency of the communication device used to transmit data in the second time-frequency resource and the third time-frequency resource. No signal is sent on time-frequency resources with overlapping resources.
  • the bandwidth of the third time-frequency resource may be smaller than the bandwidth of the second time-frequency resource, or may be equal to the bandwidth of the second time-frequency resource, or may be greater than the bandwidth of the second time-frequency resource. This is not limited.
  • the bandwidth of the third time-frequency resource is smaller than the bandwidth of the second time-frequency resource in FIG. 12 as an example.
  • the communication device may transmit a semi-statically configured reference signal on a time-frequency resource for transmitting a reference signal in a third time-frequency resource, or may not transmit a semi-statically configured reference signal.
  • the semi-statically configured reference signal refers to a reference signal associated with a semi-statically configured third time-frequency resource.
  • step S104 in the present application can also be implemented in the following manner:
  • the communication device sends, according to the second reference signal, a time-frequency resource that overlaps with a time-frequency resource used for transmitting the reference signal in the third time-frequency resource, when the uplink device transmits the uplink information based on the control information.
  • the reference signal generated by the configuration information.
  • the reference signal in the present application that does not send the semi-static configuration may include the following situations: 1.
  • the third time-frequency resource is a time-frequency resource allocated by the communication device 1, but the communication device 1 has no exemption on the third time-frequency resource. Business transmission.
  • the third time-frequency resource is not a time-frequency resource allocated to the communication device 1, but a time-frequency resource allocated to other communication devices. Therefore, the communication device 1 in the present application naturally does not need to be on the third time-frequency resource. Perform an unauthorized transfer.
  • the second time-frequency resource is not in the third time-frequency.
  • the time-frequency resources for transmitting the reference signal in the resource overlap, and therefore, when the communication device does not transmit the semi-statically configured reference signal on the time-frequency resource for transmitting the reference signal in the third time-frequency resource as shown in FIG.
  • the communication device may send the reference signal generated based on the configuration information of the second reference signal on the time-frequency resource that overlaps with the time-frequency resource of the third time-frequency resource for transmitting the reference signal in the first time-frequency resource.
  • the network device can detect whether the time-frequency resource for transmitting the reference signal in the third time-frequency resource is detected to determine whether there is a reference signal corresponding to the unlicensed service, and determine whether the reference signal exists according to whether there is a reference signal corresponding to the unlicensed service. Unauthorized business. Specifically, when there is no reference signal corresponding to the unlicensed service in the time-frequency resource used for transmitting the reference signal in the third time-frequency resource, the network device determines that there is no unauthorized service.
  • step S104 in the present application can also be implemented in the following manner:
  • the communication device sends the semi-statically configured reference signal on the time-frequency resource for transmitting the reference signal in the third time-frequency resource, when the communication device performs uplink transmission based on the control information, in the first time-frequency resource. No signal is transmitted on the time-frequency resource overlapping with the time-frequency resource for transmitting the reference signal in the third time-frequency resource.
  • the reference signal for transmitting the semi-static configuration in the present application may include a case where the third time-frequency resource is a time-frequency resource allocated by the communication device 1, but the communication device 1 has an unlicensed service transmission on the third time-frequency resource.
  • the overlapping time-frequency resources in the application include part or all of the time-frequency resources used for transmitting the reference signal in the third time-frequency resource, that is, the second time-frequency resource and the third time.
  • step S104 of the present application can also be implemented in the following manner:
  • the communication device sends the reference signal generated according to the configuration information of the second reference signal on the overlapping time-frequency resources when performing uplink transmission based on the control information.
  • FIG. 16 shows the second time-frequency resource (the second time-frequency resource is not shown) and the time-frequency resource used for transmitting the reference signal in the third time-frequency resource.
  • the resource overlaps
  • FIG. 10 shows a part of the time-frequency resource overlap of the time-frequency resource used for transmitting the reference signal in the second time-frequency resource and the third time-frequency resource, and is used for transmitting the reference signal in the third time-frequency resource in FIG.
  • the time-frequency resource and the second time-frequency resource all overlap, in FIG. 10, if the time-frequency resource used for transmitting the reference signal in the third time-frequency resource partially overlaps with the second time-frequency resource, because in FIG. 10 and FIG.
  • the reference signal generated according to the configuration information of the first reference signal sent on the second time-frequency resource may not be orthogonal to the reference signal sent in the third time-frequency resource, so in order to reduce the transmission on the first time-frequency resource
  • the interference of the GB data on the GF data sent on the third time-frequency resource may be overlapped in the second time-frequency resource with the time-frequency resource used for transmitting the reference signal in the third time-frequency resource in this application. Transmitting on the frequency resource according to the second reference signal The reference signal generated by the configuration information.
  • the time-frequency resource used for transmitting the reference signal in the third time-frequency resource in FIG. 16 is the same as the bandwidth of the second time-frequency resource, that is, the time-frequency resource used for transmitting the reference signal in the third time-frequency resource The entire bandwidth.
  • the bandwidth of the time-frequency resource used for transmitting the reference signal in the third time-frequency resource in FIG. 10 is smaller than the bandwidth of the second time-frequency resource, that is, the time-frequency used for transmitting the reference signal in the third time-frequency resource. Resources occupy part of the bandwidth.
  • step S104 in the present application can also be implemented in the following manner:
  • the communication device does not send any signal on the time-frequency resource except the overlapping time-frequency resource in the fifth time-frequency resource, where the frequency resource of the fifth time-frequency resource and the frequency resource of the overlapping time-frequency resource are the same.
  • the time domain resource of the fifth time-frequency resource is the same as the time domain resource of the second time-frequency resource.
  • the communication device does not send any signal on the fifth time-frequency resource in the first time-frequency resource when performing uplink transmission based on the control information, and the fifth time-frequency resource is The time-frequency resource in the overlapped time-frequency resource and the time-frequency resource for transmitting the semi-statically configured reference signal does not overlap.
  • step S104 in the present application can also be implemented in the following manner:
  • the sixth time-frequency resource in the first time-frequency resource does not send any signal, where the sixth time-frequency resource is overlapped in the first time-frequency resource.
  • the sixth time-frequency resource in FIG. 12 is a time-frequency resource other than the overlapping time-frequency resource in the first time-frequency resource and overlapping with the candidate transmission resource.
  • the GB service and the GF service are multiplexed with the uplink multiplexing transmission.
  • the resource device of the present application uses a non-orthogonal transmission technique to transmit a reference signal in a time-frequency resource other than the second time-frequency resource and the third time-frequency resource in the first time-frequency resource. Uplink transmission is performed on overlapping time-frequency resources of time-frequency resources other than time-frequency resources.
  • intersection of the third time-frequency resource and the second time-frequency resource may be an empty set. Therefore, as another possible implementation manner, as shown in FIG. 19, the present application
  • the methods provided also include:
  • the communication device performs uplink transmission based on the control information.
  • the time-frequency resource for transmitting the reference signal in the third time-frequency resource does not transmit any signal on the time-frequency resource overlapping the first time-frequency resource or the configuration information generated based on the second reference signal is generated. Reference signal.
  • the intersection of the third time-frequency resource and the first time-frequency resource is not an empty set.
  • the third time-frequency resource and the first time-frequency resource have an uplink multiplexed transmission resource as shown in FIG. 7 . . That is, a part of the time-frequency resource or all the time-frequency resources of the third time-frequency resource is located in the range of the first time-frequency resource, or a part of the time-frequency resource of the first time-frequency resource and a part of the time-frequency resource of the first time-frequency resource or All time-frequency resources overlap, or all time-frequency resources of the first time-frequency resource overlap with some time-frequency resources or all time-frequency resources of the first time-frequency resource to obtain an uplink multiplexed transmission resource.
  • the third time-frequency resource and the first time-frequency resource are all overlapped, and the second time-frequency resource is located outside the range of the third time-frequency resource, and the authorized service and the unlicensed service are multiplexed and uplink multiplexed. Transfer resources.
  • the time-frequency resource that the communication device overlaps with the third time-frequency resource in the first time-frequency resource is used to transmit the reference signal generated based on the configuration information of the second reference signal at the time-frequency resource for transmitting the reference signal or does not send any information. .
  • the bandwidth of the third time-frequency resource may be equal to the bandwidth of the first time-frequency resource, or the bandwidth of the third time-frequency resource may be smaller than the bandwidth of the first time-frequency resource.
  • the bandwidth of the third time-frequency resource may also be greater than the bandwidth of the first time-frequency resource, which is not limited in this application.
  • the communication device does not transmit any signal on the overlapping time-frequency resources or sends the configuration based on the second reference signal due to whether the overlapped time-frequency resource overlaps with the time-frequency resource used for transmitting the reference signal in the third time-frequency resource
  • the reference signal generated by the information therefore, the following will combine the positional relationship between the overlapped time-frequency resource and the time-frequency resource used for transmitting the reference signal in the third time-frequency resource, and the specific scenario details the time when the communication device overlaps Specific steps on the frequency resource:
  • Scenario 1 As shown in FIG. 21, when the communication device transmits the GB service on the first time-frequency resource, at this time, if the communication device needs to send the GF service on the third time-frequency resource, that is, the communication device needs to simultaneously When the GB service and the GF service are sent, the communication device may send the GB service on the first time-frequency resource, and on the third time-frequency resource (including the time-frequency resource overlapping the uplink multiplex transmission resource in the third time-frequency resource) The GF service is sent. At this time, the GF service and the GB service multiplex the uplink multiplex transmission resources.
  • the communication device may send the GF service on the third time-frequency resource as shown in FIG. 22, and transmit the GB service on the first time-frequency resource allocated to the communication device to ensure the GF service. Sent with the GB business.
  • the existing GB service is taken as an example.
  • the first time-frequency resource does not have the GB service before the GF service is sent.
  • the communication device sends the GB service on the first time-frequency resource and the third time-frequency resource on the third time-frequency resource, that is, the GF, when the communication device needs to simultaneously send the GF service and the GB service in the uplink transmission process.
  • the service and the GB service are simultaneously transmitted on the uplink multiplexed transmission resource.
  • the uplink multiplexed transmission resource is the third time-frequency resource, and when the third time-frequency resource partially overlaps with the first time-frequency resource, The uplink multiplexed transmission resource is a time-frequency resource that overlaps with the first time-frequency resource in the third time-frequency resource.
  • the GB service and the GF service multiplex the uplink multiplex transmission resources, that is, the GB service and the GF service may exist on the uplink multiplex transmission resource. Therefore, in order to reduce the interference of the GB service on the GF service, the application may be based on a relationship between a second time-frequency resource and a third time-frequency resource, and a relationship between a second time-frequency resource and a location of a time-frequency resource for transmitting a reference signal in the third time-frequency resource, determined in the second
  • the reference signal generated by transmitting the configuration information based on the second reference signal on the time-frequency resource with the time-frequency resource and the third time-frequency resource overlapping does not send any signal, as follows:
  • the first time-frequency resource is located in the third time-frequency resource, and the time-frequency resources used for transmitting the reference signal in the second time-frequency resource and the third time-frequency resource are all overlapped, or in combination with FIG. 10,
  • the second time-frequency resource is located in the third time-frequency resource, and the time-frequency resources used for transmitting the reference signal in the second time-frequency resource and the third time-frequency resource partially overlap.
  • the communication device transmits a reference signal generated based on the configuration information of the second reference signal on the time-frequency resource in which the time-frequency resource for transmitting the reference signal overlaps in the first time-frequency resource in the first time-frequency resource.
  • the communication device transmits the reference signal generated according to the configuration information of the first reference signal on the time-frequency resource that is not overlapped with the third time-frequency resource in the second time-frequency resource.
  • the communication device when the communication device does not transmit the semi-statically configured reference signal at the time-frequency resource for transmitting the reference signal in the third time-frequency resource, the communication device is in the first time-frequency resource and the third time-frequency resource.
  • a reference signal generated based on configuration information of the second reference signal is transmitted on the time-frequency resource for transmitting the time-frequency resource of the reference signal.
  • the communication device when the communication device sends the semi-statically configured reference signal on the time-frequency resource for transmitting the reference signal in the third time-frequency resource, uses the first time-frequency resource and the third time-frequency resource. No signal is transmitted on the time-frequency resource where the time-frequency resources of the reference signal are transmitted overlap.
  • the network device may perform channel estimation in association with the reference signal generated according to the configuration information of the first reference signal and the semi-statically configured reference signal transmitted on the third time-frequency resource, which are transmitted by the second time-frequency resource.
  • the communications apparatus may use a time-frequency resource other than the second time-frequency resource and a time-frequency resource for transmitting the reference signal in the third time-frequency resource in the first time-frequency resource.
  • the uplink transmission is performed on the overlapping time-frequency resources of the frequency resource. Therefore, as shown in FIG. 23, the method provided by the application further includes:
  • One mode is: S107: The communication device uses a non-orthogonal transmission technology, where the time-frequency resource other than the second time-frequency resource and the third time-frequency resource are used to send the reference signal in the first time-frequency resource Uplink transmission is performed on overlapping time-frequency resources of time-frequency resources other than frequency resources.
  • the communication device uses a non-orthogonal multiple access (Nooma) method to transmit GB data on time-frequency resources other than the second time-frequency resource in the first time-frequency resource, and
  • the GF data is transmitted on the overlapping time-frequency resources of the time-frequency resources other than the time-frequency resources for transmitting the reference signal in the third time-frequency resource.
  • Zooma non-orthogonal multiple access
  • SCMA sparse code multiple access
  • IGMA interleave-grid multiple access
  • the non-orthogonal multiple access mode is used as an example of the SCMA, and the communication device sends the GB data and the third time-frequency resource sent on the time-frequency resource other than the second time-frequency resource in the first time-frequency resource.
  • the GF data transmitted on the overlapping time-frequency resources of the time-frequency resources other than the time-frequency resources for transmitting the reference signal selects an orthogonal codebook for data transmission.
  • S108 The communication device uses a time-frequency resource other than the second time-frequency resource in the first time-frequency resource and a time-frequency resource used to send the reference signal in the third time-frequency resource in a power control manner. Uplink transmission is performed on overlapping time-frequency resources of time-frequency resources other than the time-frequency resources.
  • the communication device controls that the power of transmitting the GB data on the time-frequency resource that overlaps with the uplink multiplex transmission resource in the first time-frequency resource is lower than the time-frequency resource in the third time-frequency resource that overlaps with the uplink multiplex transmission resource.
  • the power of the transmitted GF data is lower than the time-frequency resource in the third time-frequency resource that overlaps with the uplink multiplex transmission resource.
  • the time-frequency resource that overlaps with the uplink multiplexed transmission resource in the first time-frequency resource does not include the second time-frequency resource
  • the time-frequency resource that overlaps with the uplink multiplexed transmission resource in the third time-frequency resource does not include the third.
  • the reference signal generated based on the configuration information of the first reference signal sent on the second time-frequency resource and the time-frequency resource overlapped with the time-frequency resource used for transmitting the reference signal in the third time-frequency resource in the first time-frequency resource can be any of the following:
  • the communication device interrupts the reference signal on the time-frequency resource of the second time-frequency resource and the time-frequency resource for transmitting the GF data in the third time-frequency resource, when the communication device uses the third time-frequency resource.
  • the communication device overlaps with the time-frequency resource used to transmit the reference signal in the third time-frequency resource in the first time-frequency resource.
  • a reference signal generated based on configuration information of the second reference signal is transmitted on the time-frequency resource.
  • the communication device interrupts the reference signal at the time-frequency resource for transmitting the GF data in the third time-frequency resource on the second time-frequency resource, and is used by the communication device to transmit the reference signal in the third time-frequency resource.
  • the communication device does not send any signal in the first time-frequency resource and the third time-frequency resource, that is, the communication device is only on the second time-frequency resource.
  • the reference signal generated according to the configuration information of the first reference signal is transmitted on the time-frequency resource that is not overlapped with the third time-frequency resource.
  • the network device may jointly use the reference signal generated according to the configuration information of the first reference signal and the half of the third time-frequency resource that are sent on the time-frequency resource that is not overlapped with the third time-frequency resource on the second time-frequency resource.
  • the statically configured reference signal is used for channel estimation.
  • the communication device sends the GB data at the time-frequency resource where the second time-frequency resource and the third time-frequency resource overlap, that is, the time-frequency at which the reference signal generated according to the configuration information of the first reference signal is originally transmitted in the third time-frequency resource.
  • the data of the GB can be mapped and sent.
  • the method for mapping GB data is not limited in this application.
  • the data mapping can use the existing mapping method of the pre-frequency domain and the time domain, or it will be in the third time-frequency resource.
  • the GB original data of the time-frequency resource used for transmitting the reference signal is mapped to the time-frequency resource where the original reference signal of the GB is located, or other mapping method.
  • Case 3 as shown in FIG. 20, if the time-frequency resource used for transmitting the reference signal in the third time-frequency resource overlaps with the time-frequency resource used for transmitting data in the first time-frequency resource, and the second time-frequency resource and the uplink complex There is no intersection with the transmission resource (the uplink multiplexed transmission resource, that is, the third time-frequency resource in FIG. 20).
  • the communication device is used for transmitting in the first time-frequency resource and the third time-frequency resource.
  • the reference signal generated based on the configuration information of the second reference signal is transmitted on the time-frequency resource where the time-frequency resources of the reference signal overlap.
  • the communication device does not send any signal in the first time-frequency resource and the time-frequency resource that overlaps the time-frequency resource used for transmitting the reference signal in the third time-frequency resource, and at this time, the first time-frequency No data mapping is performed on the time-frequency resources in the resource that overlap with the time-frequency resources used to transmit the reference signal in the third time-frequency resource.
  • the communication device transmits the GB data on the time-frequency resource other than the time-frequency resource other than the second time-frequency resource in the first time-frequency resource, and the time-frequency other than the time-frequency resource used for transmitting the reference signal in the third time-frequency resource
  • the non-orthogonal multiple access mode may be used for transmission.
  • the communication device sends the GB data on the time-frequency resource other than the second time-frequency resource in the first time-frequency resource and the time-frequency resource used to send the reference signal in the third time-frequency resource.
  • the communication device sends the GB data on the time-frequency resource other than the second time-frequency resource in the first time-frequency resource and the time-frequency resource used to send the reference signal in the third time-frequency resource.
  • Scenario 2 In the case where the GB service exists in the first time-frequency resource, the communication device needs to send the GF service on the third time-frequency resource. In this case, the GB service and the GF service may need to multiplex the uplink multiplex transmission resource.
  • the communication device may use a part of the time-frequency resource in the first time-frequency resource as the extended resource,
  • the extended resource is used to simultaneously send the GF service and the GB service, where the extended resource may be a time-frequency resource other than the uplink multiplexed transmission resource and only the GB time-frequency resource of the first time-frequency resource (as shown in FIG. 24).
  • the time-frequency resource located above the uplink multiplex transmission resource and the time-frequency resource located under the uplink multiplex transmission resource that is, the communication device may use a part of the resources of the GB transmission resource for transmitting the GF service.
  • scenario 2 the difference between scenario 2 and scenario 1 is that, in scenario 1, the GF service is sent on the third time-frequency resource, and in scenario two, the GF service is sent on the extended resource and the third time-frequency resource. That is, in scenario 2, the GF service can be sent using part of the first time-frequency resource.
  • the communication device may transmit the GB service on the first time-frequency resource, and simultaneously send the GF service on the extended resource and the third time-frequency resource.
  • the communication device also needs to determine parameters of the GF service transmitted on the extended resource according to the following parameters:
  • the communication device receives parameters for the GF transmission configured by the network device through RRC or DCI, such as a modulation and coding scheme (MCS), and a transport block size (transport) Block size, TBS), number of repetitions, etc.
  • MCS modulation and coding scheme
  • TBS transport block size
  • the parameters of the GF transmission configured for the communication device are unchanged, that is, the parameters of the GF transmission are obtained according to the configured GF resources, and the communication device is configured to transmit the GF service on the extended resource.
  • the communication device performs the transmission of the GF service on the extended resource, and performs data encoding according to the number of resource elements (REs) of the extended resource.
  • the TBS is unchanged during the encoding, and the MCS is variable, that is, the configured MCS value may not be used.
  • the TBS is unchanged when the data is encoded according to the RE number of the GF transmission resource, and the MCS is unchanged, that is, the configured MCS value.
  • the network device receives the GF service, the network device performs decoding according to the extended resource in the overlapping time-frequency resource region, and the GF transmission resource in the non-overlapping time-frequency resource region is decoded according to the GF transmission resource.
  • the use of the reference signal on the transmission resource for transmitting the reference signal on the second time-frequency resource or the multiplexed transmission resource of the communication device may use Case1, Case2, and Case3 in scenario one.
  • Case1 in scenario 2 further includes: when using the second time-frequency resource and the third time-frequency resource for transmitting the reference signal in conjunction with FIG. 16 and FIG.
  • the case of frequency resource alignment that is, when the second time-frequency resource and the third time-frequency resource have the same location of the time-frequency resource for transmitting the reference signal, the data sent on the first time-frequency resource and the third time The data mapping sent on the frequency resource does not need to be changed.
  • Case 2 in scenario 2 further includes: since the time-frequency resources used for transmitting the reference signal in the second time-frequency resource and the third time-frequency resource are not aligned in FIG. 12, that is, The location of the time-frequency resource used for transmitting the reference signal in the second time-frequency resource and the third time-frequency resource is different, so the data transmitted on the first time-frequency resource and the data transmitted on the third time-frequency resource need to be considered.
  • the time-frequency resource used for transmitting the reference signal in the second time-frequency resource and the third time-frequency resource that is, the time-frequency resource for transmitting the reference signal in the second time-frequency resource and the third time-frequency resource needs to be avoided during data mapping Re-mapping, the specific mapping method is not limited.
  • the case 3 in the scenario 3 further includes: when the second time-frequency resource does not exist in the extended resource, the reference sent by the GF service in the third time-frequency resource at this time
  • the Orthogonal Frequency Division Multiplexing (OFDM) symbol of the signal uses the GF reference signal of the extended resource, and the extended GF reference signal refers to the original reference signal of the GF is extended and mapped to the entire OFDM symbol.
  • the extension of the GF reference signal is not limited. Therefore, the network device can use the extended GF reference signal for channel estimation, and can also use the original reference signal of the GB service for channel estimation.
  • Scenario 3 As shown in FIG. 25, in the case where the GB service exists in the first time-frequency resource, the communication device needs to send the GF service on the third time-frequency resource, and the GB service and the GF service may share the uplink multiplexing transmission.
  • the communication device may interrupt the GB service transmitted on the time-frequency resource overlapping the uplink multiplex transmission resource in the first time-frequency resource, in the case that the priority of the GF service is higher than the priority of the GB service. And interrupting the GB service sent on the extended resource in the first time-frequency resource, and sending the GF service on the third time-frequency resource.
  • the priority of the GF service is higher than the priority of the GB service, and the communication device preferentially sends the GF service on the third time-frequency resource, and is in the first
  • the GB service is transmitted on the time-frequency resource except the extended resource and the uplink multiplexed transmission resource, that is, the GB service is interrupted on the extended resource and the uplink multiplexed transmission resource in the first time-frequency resource.
  • the communication device sends the GF service on the third time-frequency resource, and sends the GB service on the time-frequency resource except the extended resource and the uplink multiplexed transmission resource.
  • the interruption of the GB service means that the communication device completely interrupts the GB data and the first reference signal sent by the first time-frequency resource internal extended resource and the uplink multiplexed transmission resource.
  • the communication device in the first time-frequency resource, there is a GB service or the communication device needs to send the GB service in the first time-frequency resource, and the communication device needs to send the GF service on the third time-frequency resource.
  • the GW service has an GF service in the uplink multiplexed transmission resource, and the priority of the GF service is higher than the priority of the GB service, the communication device may use part of the time-frequency resource in the first time-frequency resource as the extended resource, and expand The GF service is sent on the resource and the third time-frequency resource, and the GB service is sent on the remaining time-frequency resources except the extended resource and the uplink multiplexed transmission resource in the first time-frequency resource.
  • the manner in which the communication device determines to send the GF service parameter can be referred to in the description in the scenario 2, and the details are not described herein again.
  • the difference between the scenario 4 and the scenario 2 is that the GF service and the GB service are simultaneously transmitted on the extended resource in the scenario 2, and only the GF service is sent on the extended resource in the scenario 4, that is, in the scenario.
  • the four extended resources are not available for sending GB services.
  • the communication device determines the parameters of the GF service that is transmitted on the extended resource.
  • the description is not repeated herein.
  • the data is completely interrupted on the extended resource, and the first reference signal sent on the second time-frequency resource is interrupted in the third time-frequency resource. Because only the GF service is sent in the extended resource, the relationship between the second time-frequency resource and the time-frequency resource for transmitting the reference signal in the third time-frequency resource needs to be considered, and the data mapping location is considered. Specifically, the communication device is in the second time.
  • the use of the reference signal on the transmission resource for transmitting the reference signal on the frequency resource or the multiplexed transmission resource may be described by Case 1, Case 2 and Case 3 in the scenario 1.
  • the communication device sends the time-frequency resource that is not overlapped with the third time-frequency resource by the second time-frequency resource.
  • the reference signal generated by the configuration information of the reference signal is used, the reference signal generated according to the configuration information of the first reference signal sent on the time-frequency resource where the second time-frequency resource is not overlapped with the third time-frequency resource may be mapped to the third The time domain symbol position corresponding to the reference signal transmitted in the time-frequency resource.
  • the communication device only needs to avoid the time domain symbol corresponding to the reference signal transmitted in the third time-frequency resource.
  • the above scenario 1 to scenario 4 are mainly used to multiplex the transmission resource, which is the third time-frequency resource allocated to the communication device (for example, the third time-frequency resource 6 in FIG. 26 is an example) and the first time-frequency resource is overlapped.
  • the following example will be used to combine the transmission time of the fifth time-frequency resource and the first time-frequency resource allocated to other communication devices in combination with the scenario 5 to the scenario:
  • the communication device has an uplink multiplex transmission resource, but the communication device only transmits the GB service, and when the GB service is sent, the communication device may interrupt the uplink multiplex transmission resource in the first time-frequency resource.
  • the transmitted GB service that is, the communication device sends the GB service on the time-frequency resource other than the uplink multiplexed transmission resource in the first time-frequency resource.
  • the GB service that is interrupted on the uplink multiplexed transmission resource includes GB data that should be transmitted on the uplink multiplex resource in the first time-frequency resource and a reference signal generated based on the configuration information of the first reference signal.
  • the reference signal generated according to the configuration information of the first reference signal transmitted on the time-frequency resources other than the uplink multiplexed transmission resource in the first time-frequency resource remains unchanged.
  • the communication device may interrupt the GB service transmitted by the uplink multiplexing transmission resource by rate-matching or direct interruption.
  • the third time-frequency resource overlapping with the first time-frequency resource is allocated for other communication devices, and the communication device is not sure whether the other communication device sends the uplink transmission on the third time-frequency resource 3, so the first
  • the GB data and the reference signal transmitted on the time-frequency resource overlapping with the third time-frequency resource 3 in the time-frequency resource are all interrupted, that is, the time-frequency resource of the communication device except the uplink multiplexed transmission resource in the first time-frequency resource
  • the GB data is transmitted thereon and a reference signal generated based on the configuration information of the first reference signal.
  • the communication device sends the GB data on the time-frequency resource other than the uplink multiplex transmission resource and the time-frequency resource that transmits the reference signal generated according to the configuration information of the first reference signal in the first time-frequency resource, where the communication device is And transmitting, by the second time-frequency resource, a time-frequency resource that is overlapped with the third time-frequency resource, and the reference signal generated according to the configuration information of the first reference signal, and the time-frequency overlapping with the third time-frequency resource in the second time-frequency resource
  • the reference signal generated based on the configuration information of the first reference signal transmitted on the resource is interrupted.
  • Scenario 6 The communication device has an uplink multiplexing transmission resource, and the communication device only transmits the GB service.
  • the difference between the scenario 6 and the scenario 5 is that, in the scenario 6, when the GB service is sent, the communication device can interrupt the first time-frequency resource.
  • the GB data transmitted on the time-frequency resource overlapping with the uplink multiplex transmission resource that is, the communication device transmits the GB data on the time-frequency resource that can be used to transmit the GB data in addition to the uplink multiplex transmission resource in the first time-frequency resource, and the communication device
  • the reference signal sent on the time-frequency resource that overlaps the second time-frequency resource and the uplink multiplexed transmission resource is described in the case of Case1 and Case2 in the scenario 1, and is not further described herein.
  • the communication device has an uplink multiplexed transmission resource, where the uplink multiplexed transmission resource is a first time-frequency resource and a third time-frequency resource allocated to other communication devices (for example, the first in FIG. 29)
  • the third time-frequency resource 3) is obtained by overlapping, the communication device only transmits the GB service, and the communication device does not interrupt the GB service transmitted on the uplink multiplex transmission resource in the first time-frequency resource, that is, the communication device is in the first time-frequency resource.
  • the GB service is sent, and the communication device may use the descriptions of Case1 and Case2 in the scenario 1 to process the reference signal sent on the time-frequency resource where the second time-frequency resource overlaps with the uplink multiplex transmission resource, and the application does not stop here. Narration.
  • the communication device has an uplink multiplexed transmission resource (for example, the first time-frequency resource is overlapped with the third time-frequency resource 6 in FIG. 30), and the priority of the GB service is higher than that of the GF service.
  • the communication device determines that the GF service arrives. Since the priority of the GB service is higher than the priority of the GF service, the communication device interrupts the uplink multiplexing transmission in the third time-frequency resource.
  • the GF service sent by the resource that is, the communication device sends the GB service on the first time-frequency resource, and sends the GF service on the time-frequency resource other than the uplink multiplex transmission resource in the third time-frequency resource.
  • the communication device needs to process the reference signal sent on the time-frequency resource overlapping with the uplink multiplex transmission resource in the second time-frequency resource to avoid interference of the GB service on the GF service.
  • the communication device may use the descriptions of Case1 and Case2 in the scenario 1 to process the reference signal sent on the time-frequency resource that overlaps the second time-frequency resource and the uplink multiplex transmission resource, and the details are not described herein again.
  • interrupting the GF service transmitted on the uplink multiplex transmission resource means: interrupting the GF data transmitted on the uplink multiplex transmission resource.
  • the communications device interrupts the GF data that is originally sent on the third time-frequency resource 6 in the uplink multiplexed transmission resource, and the GF in the third time-frequency resource except the uplink multiplexed transmission resource.
  • Whether the service transmission is determined according to the version (RV) and the repetition K value of the GF service.
  • the communication device has an uplink multiplex transmission resource (the uplink multiplex transmission resource in scenario 9 is obtained by overlapping the first time-frequency resource and the third time-frequency resource allocated for other communication devices),
  • the priority of the GB service is higher than the priority of the GF service.
  • the communication device only sends the GB service.
  • the communication device is not sure whether there are GF services of other communication devices on the third time-frequency resource allocated by other communication devices, so the communication device can
  • the GB service is transmitted on a third time-frequency resource allocated for other communication devices, that is, the communication device transmits the GB service on the first time-frequency resource.
  • the communication device may use the descriptions of Case1 and Case2 in the scenario 1 to process the overlap of the second time-frequency resource and the uplink multiplex transmission resource.
  • the reference signal transmitted on the frequency resource is not described herein again.
  • the reference signal generated according to the configuration information of the first reference signal and the reference signal transmitted in the third time-frequency resource are used in the above embodiment.
  • the number of OFDM symbols of the reference signal generated according to the configuration information of the first reference signal is 1 OFDM symbol
  • the number of OFDM symbols used for the reference signal transmitted in the third time-frequency resource is also 1 OFDM symbols.
  • the reference signal generated according to the configuration information of the first reference signal and the reference signal transmitted in the third time-frequency resource use different OFDM symbol numbers:
  • Case 4 in a case where the number of symbols of the reference signal generated according to the configuration information of the first reference signal is smaller than the number of symbols of the reference signal transmitted in the third time-frequency resource, the communication device interrupts the second time-frequency resource
  • the reference signal generated according to the configuration information of the first reference signal transmitted on the time-frequency resource overlapping with the uplink multiplexed transmission resource, and the time-frequency resource overlapped with the uplink multiplexed transmission resource in the second time-frequency resource are transmitted based on A reference signal generated by configuration information of the second reference signal.
  • the number of OFDM symbols of the reference signal generated based on the configuration information of the second reference signal is the same as the number of symbols of the reference signal transmitted in the third time-frequency resource.
  • the number of symbols of the reference signal generated according to the configuration information of the first reference signal is 1 symbol
  • the number of symbols of the reference signal generated according to the configuration information of the second reference signal is 2 symbols.
  • the number is an example.
  • the communication device when the communication device transmits the GB data on the uplink multiplexed transmission resource, if the time-frequency resource of the reference signal corresponding to the GF service exists in the uplink multiplexed transmission resource, the communication device will be multiplexed in the uplink.
  • the GB data transmitted at the time-frequency resource where the reference signal corresponding to the GF service exists in the transmission resource is interrupted.
  • the GB data may be mapped and transmitted in an uplink multiplexed transmission resource by a rate-matching manner.
  • FIG. 32 is only used to describe the case where the number of symbols of the reference signal generated according to the configuration information of the first reference signal is smaller than the number of symbols of the reference signal transmitted in the third time-frequency resource, and does not limit the start of the reference signal. Whether the position is aligned.
  • Case 5 when the number of OFDM symbols of the reference signal generated according to the configuration information of the first reference signal transmitted in the first time-frequency resource is greater than the number of symbols of the reference signal transmitted in the third time-frequency resource, the communication is performed.
  • the device interrupts the reference signal generated according to the configuration information of the first reference signal sent on the time-frequency resource overlapping with the uplink multiplex transmission resource in the second time-frequency resource, and the communication device transmits the second time-frequency resource and the uplink multiplexing transmission.
  • the reference signal generated based on the configuration information of the second reference signal is transmitted on the time-frequency resource with the resource overlap, the number of OFDM symbols used by the reference signal generated based on the configuration information of the second reference signal, and the reference signal sent in the third time-frequency resource The number of symbols is the same.
  • the communication device transmits data on the uplink multiplexed transmission resource
  • the vacant reference generated based on the configuration information of the first reference signal The OFDM symbol position of the signal (which is the time-frequency resource where the GF data is located) is not mapped.
  • the GB data may be mapped and transmitted on the uplink multiplexed transmission resource by rate-matching.
  • the numerology of the first time-frequency resource is consistent with the numerology of the third time-frequency resource.
  • the numerology of the first time-frequency resource is inconsistent with the numerology of the third time-frequency resource
  • the communication device determines that the numerology of the third time-frequency resource configured by the RRC is different from the numerology of the first time-frequency resource.
  • the numerology of the third time-frequency resource adopts a subcarrier spacing of 60 kHz
  • the numerology of the first time-frequency resource adopts a subcarrier spacing of 15 kHz as an example
  • the resources of the uplink multiplexed area are as shown in FIG. 34.
  • the communication device transmits a reference signal generated based on the configuration information of the second reference signal.
  • the communication device does not transmit any signal at the time-frequency resource of the reference signal transmitted in the third time-frequency resource.
  • the reference signal generated based on the configuration information of the first reference signal sent in the second time-frequency resource is interrupted at the time-frequency resource for transmitting the GF data in the third time-frequency resource, and is in the third time-frequency resource.
  • the communication device transmits a reference signal generated based on the configuration information of the second reference signal.
  • the reference signal OFDM symbol width generated based on the configuration information of the first reference signal is different from the OFDM symbol width of the reference signal transmitted in the third time-frequency resource, and the processing scheme for the data mapping may refer to the scenario 10 in the embodiment of the present invention. The manner of processing is not described herein again.
  • the communication device in the application performs uplink transmission on the overlapping time-frequency resources by using the configuration parameter numerology corresponding to the third time-frequency resource.
  • the communication device sends the frequency resource corresponding to the first time-frequency resource to be in the third Uplink data and/or reference signals transmitted on frequency resources corresponding to time-frequency resources.
  • the uplink transmission method provided by the application includes:
  • the communication device acquires control information for dynamically scheduling uplink transmission, where the control information includes configuration information of a first time-frequency resource used for uplink transmission.
  • the communication device acquires semi-statically configured resource configuration information for uplink transmission, where the resource configuration information includes configuration information of a second time-frequency resource used for uplink transmission.
  • the uplink data is sent according to the resource configuration information
  • the uplink data is sent by using the frequency domain resource corresponding to the first time-frequency resource on the time domain resource where the second time-frequency resource and the first time-frequency resource overlap.
  • the method provided by the present application includes: when the communication device performs uplink transmission based on the control information, interrupting the uplink performed based on the control information on the time domain resource where the second time-frequency resource and the first time-frequency resource overlap transmission.
  • the method provided by the present application includes: sending uplink data based on the resource configuration information on the time-frequency resource except the overlapping time-frequency resources in the second time-frequency resource.
  • each network element such as a communication device
  • each network element includes hardware structures and/or software modules corresponding to the execution of the respective functions in order to implement the above functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiment of the present application may divide the function module into the communication device according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner. The following is an example of dividing each functional module by using corresponding functions:
  • FIG. 35 shows a possible structural diagram of the communication device involved in the above embodiment.
  • the communication device includes an acquisition unit 101, a determination unit 102, and a transmission unit 103.
  • the obtaining unit 101 is configured to support the communication device to perform steps S101 and S103 in the foregoing embodiment
  • the determining unit 102 is configured to support the communication device to perform step S102 in the foregoing embodiment
  • the sending unit 103 is configured to support the communication device to execute the foregoing embodiment.
  • S104, S105, S1041, S1042, S1043, S1044, S1045, S1046, S106, S107, and S108 All the related content of the steps involved in the foregoing method embodiments may be referred to the functional description of the corresponding functional modules, and details are not described herein again.
  • each unit in the device may all be implemented by software in the form of processing component calls; or may be implemented entirely in hardware; some units may be implemented in software in the form of processing component calls, and some units may be implemented in hardware.
  • each unit may be a separately set processing element, or may be integrated in one chip of the device, or may be stored in a memory in the form of a program, which is called by a processing element of the device and executes the unit.
  • the processing element herein can be an integrated circuit with signal processing capabilities.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in the processor element or by software in the form of a processing component call.
  • the units in any of the above devices may be one or more integrated circuits configured to implement the above methods, such as: one or more application specific integrated circuits (ASICs), or one or A plurality of digital singnal processors (DSPs), or one or more field programmable gate arrays (FPGAs), and the like.
  • ASICs application specific integrated circuits
  • DSPs digital singnal processors
  • FPGAs field programmable gate arrays
  • the processing element can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke the program.
  • these units can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the above receiving unit is an interface circuit of the device for receiving signals from other devices.
  • the receiving unit is an interface circuit for the chip to receive signals from other chips or devices.
  • the above transmitting unit is an interface circuit of the device for transmitting signals to other devices.
  • the transmitting unit is an interface circuit for transmitting signals to other chips or devices.
  • FIG. 36 is a schematic structural diagram of a terminal device according to an embodiment of the present application. It may be the communication device in the above embodiment for implementing the operation of the communication device in the above embodiment.
  • the terminal device includes an antenna 310, a radio frequency device 320, and a baseband device 330.
  • the antenna 310 is connected to the radio frequency device 320.
  • the radio frequency device 320 receives the information transmitted by the network device through the antenna 310, and transmits the information sent by the network device to the baseband device 330 for processing.
  • the baseband device 330 processes the information of the terminal and sends the information to the radio frequency device 320.
  • the radio frequency device 320 processes the information of the terminal device and sends the information to the network device via the antenna 310.
  • the baseband device 330 can include a modem subsystem for effecting processing of the various communication protocol layers of the data.
  • a central processing subsystem may also be included for implementing processing of the terminal operating system and the application layer.
  • other subsystems such as a multimedia subsystem, a peripheral subsystem, etc., may be included, wherein the multimedia subsystem is used to implement control of a camera, a screen display, etc. of the terminal device, and the peripheral subsystem is used to implement connection with other devices.
  • the modem subsystem can be a separately provided chip. Alternatively, the above information communication device can be implemented on the modem subsystem.
  • the various units in the communication device shown in FIG. 36 are implemented in the form of a processing element scheduler, such as a subsystem of baseband device 330, such as a modem subsystem, including processing element 331 and storage element 332.
  • the processing component 331 calls the program stored by the storage component 332 to perform the method performed by the terminal in the above method embodiment.
  • the baseband device 330 can also include an interface 333 for interacting with the radio frequency device 320.
  • the processing component 331 is configured to perform step S102 in the foregoing embodiment; the interface 333 is configured to perform the steps of performing data/signaling reception or transmission on the communication device side in the foregoing embodiment, for example, S101, S103, S104, and S105.
  • S1041, S1042, S1043, S1044, S1045, S1046, S106, S107, and S108 for example, S101, S103, S104, and S105.
  • the various units shown in FIG. 35 may be one or more processing elements configured to implement the methods performed by the above terminal devices, the processing elements being disposed on a subsystem of the baseband device 330, such as modulation On the demodulation subsystem, the processing elements herein may be integrated circuits, such as one or more ASICs, or one or more DSPs, or one or more FPGAs, and the like. These integrated circuits can be integrated to form a chip.
  • the various units shown in FIG. 35 may be integrated together in the form of a system-on-a-chip (SOC), for example, the baseband device 330 includes a SOC chip for implementing the above method.
  • the processing element 331 and the storage element 332 may be integrated in the chip, and the method executed by the above terminal or the function of each unit shown in FIG. 35 may be implemented by the processing element 331 in the form of a stored program of the storage element 332; or, the chip may be integrated
  • At least one integrated circuit is used to implement the method performed by the above communication device or the functions of the respective units shown in FIG. 35; or, in combination with the above implementation manner, the functions of the partial units are implemented by the processing component calling program, and the functions of some units are passed.
  • the form of the integrated circuit is implemented.
  • the above communication device for a terminal device comprises at least one processing element and a storage element, wherein at least one processing element is used to perform the method performed by the communication device provided by the above method embodiments.
  • the processing element may perform some or all of the steps performed by the terminal device in the above method embodiment in a manner of executing the program stored in the storage element in a first manner; or in a second manner: by hardware in the processor element
  • the integrated logic circuit performs some or all of the steps performed by the terminal in the foregoing method embodiment in combination with the instructions.
  • some or all of the steps performed by the terminal in the foregoing method embodiment may be performed in combination with the first mode and the second mode.
  • the processing elements herein are the same as described above, and may be a general purpose processor, such as a central processing unit (CPU), or may be one or more integrated circuits configured to implement the above methods, for example: one or more specific An application specific integrated circuit (ASIC), or one or more digital singnal processors (DSPs), or one or more field programmable gate arrays (FPGAs) or the like.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • DSPs digital singnal processors
  • FPGAs field programmable gate arrays
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • FIG. 37 is a schematic structural diagram of a chip system 150 according to an embodiment of the present invention.
  • the chip system 150 can be applied to a terminal device as shown in FIG. 2.
  • the chip system 150 includes at least one processor 1510 and interface circuitry 1530.
  • the chip system 150 further includes a memory 1550, which may include a read only memory and a random access memory, and provides operating instructions and data to the processor 1510.
  • a portion of the memory 1550 may also include a non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 1550 stores elements, executable modules or data structures, or a subset thereof, or their extended set:
  • the corresponding operation is performed by calling an operation instruction stored in the memory 1550 (which can be stored in the operating system).
  • the processor 1510 controls the operation of the terminal device, and the processor 1510 may also be referred to as a central processing unit (CPU).
  • Memory 1550 can include read only memory and random access memory and provides instructions and data to processor 1510. A portion of the memory 1550 can also include an NVRAM.
  • the memory 1550, the interface circuit 1530, and the memory 1550 are coupled together by a bus system 1520.
  • the bus system 1520 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 1520 in FIG.
  • the method disclosed in the foregoing embodiments of the present invention may be applied to the processor 1510 or implemented by the processor 1510.
  • the processor 1510 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1510 or an instruction in a form of software.
  • the processor 1510 may be a general-purpose processor, a digital signal processing (DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or Other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1550, and the processor 1510 reads the information in the memory 1550 and performs the steps of the above method in combination with its hardware.
  • the interface circuit 1530 is configured to perform the receiving and transmitting of the communication device in the embodiments shown in FIG. 5, FIG. 9, FIG. 11, FIG. 13, FIG. 14, FIG. 15, FIG. 17, FIG. step.
  • the processor 1510 is configured to perform the steps of the processing of the communication device in the embodiments shown in FIGS. 5, 9, 11, 13, 14, 15, 17, 18, and 19.
  • the instructions stored by the memory for execution by the processor may be implemented in the form of a computer program product.
  • the computer program product may be written in the memory in advance, or may be downloaded in software and installed in the memory.
  • a computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, computer instructions can be wired from a website site, computer, server or data center (eg, Coaxial cable, fiber, digital subscriber line (DSL) or wireless (eg infrared, wireless, microwave, etc.) to another website, computer, server or data center.
  • a website site eg, computer, server or data center
  • DSL digital subscriber line
  • wireless eg infrared, wireless, microwave, etc.
  • the computer readable storage medium can be any available media that can be stored by the computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • Useful media can be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state disk, SSD), and the like.
  • a computer storage medium wherein instructions are stored in a computer readable storage medium, and when the instructions are executed, causing the communication device to execute S101, S2, S103, S104, S105, S1041, S1042, S1043 in the embodiment, S1044, S1045, S1046, S106, S107, and S108. And/or other processes performed by the communication device for the techniques described herein.
  • a computer program product includes instructions that store instructions in a computer program product that, when executed, cause the communication device to perform S101, S2, S103, S104, S105, S1041, S1042, S1043 in an embodiment. , S1044, S1045, S1046, S106, S107, and S108. And/or other processes performed by the communication device for the techniques described herein.
  • a chip system is provided, the chip system being applied to a terminal device, the chip system comprising at least one processor and an interface circuit, the interface circuit and the at least one processor are interconnected by a line, and the processor is configured to execute an instruction to execute the embodiment Medium S101, S2, S103, S104, S105, S1041, S1042, S1043, S1044, S1045, S1046, S106, S107, and S108. And/or other processes performed by the communication device for the techniques described herein.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of cells is only a logical function division.
  • multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种上行传输方法及装置,涉及通信技术领域,用以提高上行资源的利用率,该方案包括:获取用于动态调度上行传输的控制信息,该控制信息包括为上行传输分配的第一时频资源的信息和上行传输的第一参考信号的配置信息;根据为上行传输分配的第一时频资源的信息和上行传输的第一参考信号的配置信息,确定用于发送第一参考信号的第二时频资源;获取半静态配置的用于上行传输的资源的第一信息,该资源包括时频资源;在基于控制信息进行上行传输时,在第二时频资源和第三时频资源重叠的时频资源上不发送任何信号或发送基于第二参考信号的配置信息生成的参考信号,其中,第三时频资源为根据第一信息确定的半静态配置的用于上行传输的时频资源。

Description

一种上行传输方法及装置
本申请要求于2018年1月27日提交中国专利局、申请号为201810080499.X、申请名称为“一种上行传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种上行传输方法及装置。.
背景技术
第五代(the fifth generation,5G)移动通信***中增强移动宽带(enhanced mobile broadband,eMBB)业务具有高数据速率,高密度的特点,主要的应用场景包括高清视频传输等大数据传输。高可靠低时延通信(ultra-reliable and low latency communications,URLLC)业务具有业务偶发,数据包较小的特点,主要应用场景包括自动驾驶,远程控制等,两种业务具有不同的时延和可靠性要求,与eMBB业务相比,URLLC业务要求低时延,高可靠性。
5G传输支持多种numerology。eMBB业务可以使用小子载波间隔和长时隙的numerology,例如,子载波间隔为15KHz,对应的时隙为1ms;为了满足URLLC的低时延要求,URLLC业务可以采用大子载波间隔和短时隙的numerology,例如,如子载波间隔为60KHz,对应的时隙为0.125ms。URLLC业务可以采用免授权传输的传输机制进一步降低时延。
针对eMBB业务和URLLC业务使用了不同的numerolgoy,需要在不同的频带资源上传输eMBB业务和URLLC业务。当URLLC业务采用免授权传输时,需要为URLLC业务预配置资源。由于URLLC业务的偶发性和数据包较小的特点,URLLC业务所对应频带资源的资源利用率极低。
目前在下行传输中,为了提高***资源利用率,支持eMBB业务和URLLC业务在共享的下行资源上复用传输。即基站通常不会为URLLC业务的下行传输预留资源。当下行URLLC业务到达时,基站可以直接占用为eMBB业务分配的资源用于传输URLLC业务,基站通过先占权指示(pre-emption indication,PI)通知具有eMBB业务的用户设备(user equipment,UE)被URLLC占用的资源和被中断的eMBB业务的重传位置。
为了实现上行传输中eMBB业务和URLLC业务在共享资源上复用传输,可以将下行传输中使用PI通知的动态资源共享方式应用于上行eMBB业务和上行URLLC业务在共享资源上复用传输。
但是,通过PI来指示eMBB业务被占用的资源,就要求URLLC业务也是基于上行授权传输,在这个过程中,UE向基站请求传输资源的SR和基站下发的UL grant均可能增加URLLC的时延。当URLLC业务采用上行免授权传输时,基站无法提前获得URLLC业务占用资源的信息,就无法通过PI来通知eMBB业务被占用的资源。因此,在上行传输中,如何实现eMBB业务和URLLC业务在共享资源上复用传输是未来通信***中亟需解决的技术问题。
发明内容
本申请提供一种上行传输方法及装置,用以提高上行资源的利用率。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请提供一种上行传输方法,应用于通信装置的上行传输,该方法包括:通信装置获取用于动态调度上行传输的控制信息,其中,控制信息包括为上行传输分配的第一时频资源的信息和上行传输的第一参考信号的配置信息;通信装置根据为上行传输分配的第一时频资源的信息和上行传输的第一参考信号的配置信息,确定用于发送第一参考信号的第二时频资源;通信装置获取半静态配置的用于上行传输的资源的第一信息,其中,资源包括时频资源;通信装置在基于控制信息进行上行传输的情况下,在第二时频资源和第三时频资源重叠的时频资源上不发送任何信号或者发送基于第二参考信号的配置信息生成的参考信号,其中,第三时频资源为通信装置根据第一信息确定的半静态配置的用于上行传输的时频资源。
本申请实施例提供一种上行传输方法,通过根据控制信息确定第一时频资源、第二时频资源,在基于控制信息进行上行传输的情况下,在第二时频资源和第三时频资源重叠的时频资源上不发送任何信号或者发送基于第二参考信号的配置信息生成的参考信号,这样可以在上行传输过程中在第一时频资源中第二时频资源和第三时频资源重叠的时频资源上不发送任何信号或者发送基于第二参考信号的配置信息生成的参考信号,这样可以使得在第一时频资源上进行的上行传输和在第三时频资源上进行的上行传输复用第三时频资源,从而提高了上行资源的频带资源利用率。
结合第一方面,在第一方面的第一种可能的实现方式中,本申请提供的方法包括:通信装置在第二时频资源中的第四时频资源上发送根据第一参考信号的配置信息生成的参考信号,其中,第四时频资源的频率资源和重叠的时频资源的频率资源不存在交集,且第四时频资源的频率资源和重叠的时频资源的频率资源的并集为第二时频资源的频率资源。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,重叠的时频资源与第三时频资源中用于发送参考信号的时频资源之间的交集为空集;相应地,通信装置在基于控制信息进行上行传输时,在重叠的时频资源上不发送任何信号。
结合第一方面至第一方面的第二种可能的实现方式中任一项,在第一方面的第三种可能的实现方式中,本申请提供的方法还包括:当通信装置在第三时频资源中用于发送参考信号的时频资源上不发送半静态配置的参考信号时,通信装置在基于控制信息进行上行传输时,在第一时频资源中与第三时频资源中用于发送参考信号的时频资源重叠的时频资源上发送基于第二参考信号的配置信息生成的参考信号,所述半静态配置的参考信号是指用于第三时频资源传输的参考信号。
结合第一方面至第一方面的第三种可能的实现方式中任一项,在第一方面的第四种可能的实现方式中,本申请提供的方法还包括:通信装置在第三时频资源中用于发送参考信号的时频资源上发送半静态配置的参考信号时,通信装置在基于控制信息进行上行传输时,在第一时频资源中与第三时频资源中用于发送参考信号的时频资源重叠的时频资源上不发送任何信号。
结合第一方面至第一方面的第四种可能的实现方式中任一项,在第一方面的第五种可能的实现方式中,重叠的时频资源包括第三时频资源中用于发送参考信号的时频资源的一部分或者全部;相应地,通信装置在基于控制信息进行上行传输时在重叠的时频资源上发送根据第二参考信号的配置信息生成的参考信号。
结合第一方面至第一方面的第五种可能的实现方式中任一项,在第一方面的第六种可能的实现方式中,本申请提供的方法还包括:在第五时频资源中除重叠的时频资源以外的时频资源上,通信装置不发送任何信号,其中,第五时频资源的频率资源和重叠的时频资源的频率资源相同,第五时频资源的时域资源和第二时频资源的时域资源相同。
结合第一方面至第一方面的第六种可能的实现方式中任一项,在第一方面的第七种可能的实现方式中,本申请提供的方法还包括:通信装置在基于控制信息进行上行传输时,在第一时频资源中的第六时频资源不发送任何信号,其中,第六时频资源为第一时频资源中与重叠的时频资源不重叠但与第三时频资源中用于发送参考信号的时频资源重叠的时频资源。
结合第一方面至第一方面的第七种可能的实现方式中任一项,在第一方面的第八种可能的实现方式中,通信装置在基于控制信息进行上行传输时,在重叠的时频资源上采用第三时频资源对应的配置参数numerology进行上行传输。
结合第一方面至第一方面的第八种可能的实现方式中任一项,在第一方面的第九种可能的实现方式中,本申请提供的方法还包括:通信装置采用非正交传输技术在第一时频资源中所述第二时频资源以外的时频资源和所述第三时频资源中用于发送参考信号的时频资源以外的时频资源的重叠的时频资源上进行上行传输。
结合第一方面至第一方面的第九种可能的实现方式中任一项,在第一方面的第十种可能的实现方式中,本申请提供的方法还包括:在第一时频资源和第三时频资源重叠的时频资源上,通信装置采用第一时频资源对应的频率资源发送欲在第三时频资源对应的频率资源上发送的上行数据和/或参考信号。
结合第一方面至第一方面的第十种可能的实现方式中任一项,在第一方面的第十一种可能的实现方式中,当所述第三时频资源与第一时频资源的交集不为空集,且所述第三时频资源与所述第二时频资源的交集为空集时,所述通信装置在基于所述控制信息进行上行传输的情况下,在所述第三时频资源中用于发送参考信号的时频资源与所述第一时频资源重叠的时频资源上不发送任何信号或者发送基于所述第二参考信号的配置信息生成的参考信号。
第二方面,本申请提供一种上行传输的方法,该方法包括:通信装置获取用于动态调度上行传输的控制信息,该控制信息包括用于上行传输的第一时频资源的配置信息;通信装置获取半静态配置的用于上行传输的资源配置信息,该资源配置信息包括用于上行传输的第二时频资源的配置信息;当基于资源配置信息发送上行数据时,在第二时频资源和第一时频资源重叠的时域资源上采用第一时频资源对应的频域资源发送上行数据。
结合第二方面,在第二方面的第一种可能的实现方式中,本申请提供的方法包括:当通信装置基于控制信息进行上行传输时,在第二时频资源和第一时频资源重叠的时 域资源上中断基于所述控制信息所执行的上行传输。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,本申请提供的方法包括:在第二时频资源中除重叠的时频资源外的时频资源上,基于资源配置信息发送上行数据。
相应的,第三方面,本申请提供一种通信装置,该通信装置可以实现第一方面至第一方面的第十一种可能的实现方式中任一项所描述的上行传输方法。例如,该通信装置可以为终端设备,或者为设置在终端设备中的芯片。其可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
该通信装置,应用于通信装置的上行传输,包括:获取单元,用于获取用于动态调度上行传输的控制信息,其中,控制信息包括为上行传输分配的第一时频资源的信息和上行传输的第一参考信号的配置信息;确定单元,用于根据为上行传输分配的第一时频资源的信息和上行传输的第一参考信号的配置信息,确定用于发送第一参考信号的第二时频资源;获取单元,还用于获取半静态配置的用于上行传输的资源的第一信息,其中,资源包括时频资源;发送单元,用于在基于控制信息进行上行传输的情况下,在第二时频资源和第三时频资源重叠的时频资源上不发送任何信号或者发送基于第二参考信号的配置信息生成的参考信号,其中,第三时频资源为通信装置根据第一信息确定的半静态配置的用于上行传输的时频资源。
结合第三方面,在第三方面的第一种可能的实现方式中,发送单元,还用于在第二时频资源中的第四时频资源上发送根据第一参考信号的配置信息生成的参考信号,其中,第四时频资源的频率资源和重叠的时频资源的频率资源不存在交集,且第四时频资源的频率资源和重叠的时频资源的频率资源的并集为第二时频资源的频率资源。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,重叠的时频资源与第三时频资源中用于发送参考信号的时频资源之间的交集为空集;相应地,发送单元,还用于在基于控制信息进行上行传输时,在重叠的时频资源上不发送任何信号。
结合第三方面至第三方面的第二种可能的实现方式中任一项,在第三方面的第三种可能的实现方式中,当在第三时频资源中用于发送参考信号的时频资源上不发送半静态配置的参考信号时,发送单元,还用于在基于控制信息进行上行传输时,在第一时频资源中与第三时频资源中用于发送参考信号的时频资源重叠的时频资源上发送基于第二参考信号的配置信息生成的参考信号,所述半静态配置的参考信号是指用于第三时频资源传输的参考信号。
结合第三方面至第三方面的第三种可能的实现方式中任一项,在第三方面的第四种可能的实现方式中,在第三时频资源中用于发送参考信号的时频资源上发送半静态配置的参考信号时,发送单元,还用于在基于控制信息进行上行传输时,在第一时频资源中与第三时频资源中用于发送参考信号的时频资源重叠的时频资源上不发送任何信号。
结合第三方面至第三方面的第四种可能的实现方式中任一项,在第三方面的第五种可能的实现方式中,重叠的时频资源包括第三时频资源中用于发送参考信号的时频资源的一部分或者全部;相应地,发送单元,具体用于在基于控制信息进行上行传输 时在重叠的时频资源上发送根据第二参考信号的配置信息生成的参考信号。
结合第三方面至第三方面的第五种可能的实现方式中任一项,在第三方面的第六种可能的实现方式中,发送单元,还用于在第五时频资源中除重叠的时频资源以外的时频资源上,不发送任何信号,其中,第五时频资源的频率资源和重叠的时频资源的频率资源相同,第五时频资源的时域资源和第二时频资源的时域资源相同。
结合第三方面至第三方面的第六种可能的实现方式中任一项,在第三方面的第七种可能的实现方式中,发送单元,还用于在基于控制信息进行上行传输时,在第一时频资源中的第六时频资源不发送任何信号,其中,第六时频资源为第一时频资源中与重叠的时频资源不重叠但与第三时频资源中用于发送参考信号的时频资源重叠的时频资源。
结合第三方面至第三方面的第七种可能的实现方式中任一项,在第三方面的第八种可能的实现方式中,发送单元,还用于在基于控制信息进行上行传输时,在重叠的时频资源上采用第三时频资源对应的配置参数numerology进行上行传输。
结合第三方面至第三方面的第八种可能的实现方式中任一项,在第三方面的第九种可能的实现方式中,发送单元,具体用于采用非正交传输技术在所述第一时频资源中所述第二时频资源以外的时频资源和所述第三时频资源中用于发送参考信号的时频资源以外的时频资源的重叠的时频资源上进行上行传输。
结合第三方面至第三方面的第九种可能的实现方式中任一项,在第三方面的第十种可能的实现方式中,在第一时频资源和第三时频资源重叠的时频资源上,发送单元,还用于采用第一时频资源对应的频率资源发送欲在所述第三时频资源对应的频率资源上发送的上行数据和/或参考信号。
结合第三方面至第三方面的第十种可能的实现方式中任一项,在第三方面的第十一种可能的实现方式中,当所述第三时频资源与所述第一时频资源的交集不为空集,且所述第三时频资源与所述第二时频资源的交集为空集时,所述发送单元在基于所述控制信息进行上行传输的情况下,在所述第三时频资源中用于发送参考信号的时频资源与所述第一时频资源重叠的时频资源上不发送任何信号或者发送基于所述第二参考信号的配置信息生成的参考信号。
此外,本申请还提供一种通信装置,该通信装置包括:处理器和发射器,其中,处理器用于获取用于动态调度上行传输的控制信息,其中,控制信息包括为所述上行传输分配的第一时频资源的信息和所述上行传输的第一参考信号的配置信息,根据为上行传输分配的第一时频资源的信息和所述上行传输的第一参考信号的配置信息,确定用于发送所述第一参考信号的第二时频资源,以及用于获取半静态配置的用于上行传输的资源的第一信息,其中,所述资源包括时频资源;发射器,用于在基于所述控制信息进行上行传输的情况下,在所述第二时频资源和第三时频资源重叠的时频资源上不发送任何信号或者发送基于第二参考信号的配置信息生成的参考信号,其中,所述第三时频资源为所述通信装置根据所述第一信息确定的半静态配置的用于上行传输的时频资源。
可选的,该通信装置还包括接收器,该接收器用于支持通信装置实现在通信装置侧进行信息/数据接收的相关操作,发射器还用于支持通信装置实现第一方面至第一方 面的任一项所描述的在通信装置侧进行信息/数据发送的相关操作,处理器还用于执行上述第一方面至第一方面任一项所描述的在通信装置侧进行信息/数据处理的操作。可选的,本申请中的通信装置还包括:总线和存储器,存储器用于存储代码和数据,处理器、接收器、发射器和存储器通过总线连接。
第四方面,一种可能的设计中,该通信装置可以为终端设备或者设置在终端设备中的芯片,该通信装置可以包括至少一个处理器。该至少一个处理器被配置为通过执行指令,以支持该通信装置执行上述第一方面至第一方面的第十一种可能的实现方式中任一项所描述的方法中在该通信装置侧进行的消息处理或控制的相关操作。可选的,该通信装置还可以包括存储器,用于与至少一个处理器耦合,其保存该通信装置必要的程序(指令)和数据。此外,可选的,该通信装置还可以包括通信接口,用于支持该通信装置与其他网元(例如,网络设备)之间的通信。该通信接口可以是收发电路,其中,收发电路用于支持该通信装置执行上述第一方面至第一方面的第十一种可能的实现方式中任一项所描述的方法中在该通信装置侧进行消息接收和发送的相关操作。可选的,通信装置还可以包括总线,其中,存储器、通信接口和至少一个处理器可以通过总线互联。
第五方面,本申请提供一种通信装置,该通信装置可以实现第二方面至第二方面的第二种可能的实现方式中任一项所描述的上行传输方法。例如,该通信装置可以为终端设备,或者为设置在终端设备中的芯片。其可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
该通信装置,应用于通信装置的上行传输,包括:获取单元,用于获取用于动态调度上行传输的控制信息,该控制信息包括用于上行传输的第一时频资源的配置信息;以及用于获取半静态配置的用于上行传输的资源配置信息,该资源配置信息包括用于上行传输的第二时频资源的配置信息;发送单元,用于当基于资源配置信息发送上行数据时,在第二时频资源和第一时频资源重叠的时域资源上采用第一时频资源对应的频域资源发送上行数据。
结合第五方面,在第五方面的第一种可能的实现方式中,处理单元,用于当基于控制信息进行上行传输时,在第二时频资源和第一时频资源重叠的时域资源上中断基于所述控制信息所执行的上行传输。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,发送单元,还用于在第二时频资源中除重叠的时频资源外的时频资源上,基于资源配置信息发送上行数据。
第六方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令被运行时,使得第一方面至第一方面的第十一种可能的实现方式中所描述的上行传输方法被执行。
第七方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令被执行时,使得第二方面至第二方面的第二种可能的实现方式中所描述的上行传输方法被执行。
第八方面,本申请提供一种包含指令的计算机程序产品,计算机程序产品中存储有指令,当该指令被运行时,使得终端设备执行上述第一方面至第一方面的第十一种 可能的实现方式中任一项所描述的上行传输方法。
第九方面,本申请提供一种包含指令的计算机程序产品,计算机程序产品中存储有指令,当该指令被运行时,使得终端设备执行上述第二方面至第二方面的第二种可能的实现方式中任一项所描述的上行传输方法。
第十方面,本申请提供一种芯片***,应用于通信装置中,该芯片***包括至少一个处理器和接口电路,接口电路和至少一个处理器通过线路互联,处理器用于运行指令,以进行第一方面至第一方面的第十一种可能的实现方式中任一项所描述的上行传输方法。
第十一方面,本申请提供一种芯片***,应用于通信装置中,该芯片***包括至少一个处理器和接口电路,接口电路和至少一个处理器通过线路互联,处理器用于运行指令,以进行第二方面至第二方面的第二种可能的实现方式中任一项所描述的上行传输方法。
可选的,本申请中上述描述的芯片***还包括至少一个存储器,该至少一个存储器中存储有指令。
附图说明
图1为现有技术中提供的一种URLLC业务数据抢占其它数据的时频资源示意图;
图2为本发明实施例提供的一种通信***架构示意图;
图3为本申请提供的一种基站的结构示意图;
图4为本申请提供的另一种基站的结构示意图;
图5为本申请提供的一种上行传输方法的流程示意图一;
图6为本申请提供的一种时频资源的分布示意图一;
图7为本申请提供的一种时频资源的分布示意图二;
图8为本申请提供的一种时频资源的分布示意图三;
图9为本申请提供的一种上行传输方法的流程示意图二;
图10为本申请提供的一种时频资源的分布示意图四;
图11为本申请提供的一种上行传输方法的流程示意图三;
图12为本申请提供的一种时频资源的分布示意图五;
图13为本申请提供的一种上行传输方法的流程示意图四;
图14为本申请提供的一种上行传输方法的流程示意图五;
图15为本申请提供的一种上行传输方法的流程示意图六;
图16为本申请提供的一种时频资源的分布示意图六;
图17为本申请提供的一种上行传输方法的流程示意图七;
图18为本申请提供的一种上行传输方法的流程示意图八;
图19为本申请提供的一种上行传输方法的流程示意图九;
图20为本申请提供的一种时频资源的分布示意图七;
图21为本申请提供的一种时频资源的分布示意图八;
图22为本申请提供的一种时频资源的分布示意图九;
图23为本申请提供的一种上行传输方法的流程示意图十;
图24为本申请提供的一种时频资源的分布示意图十;
图25为本申请提供的一种上行传输方法的流程示意图十一;
图26为本申请提供的一种时频资源的分布示意图十二;
图27为本申请提供的一种时频资源的分布示意图十三;
图28为本申请提供的一种时频资源的分布示意图十四;
图29为本申请提供的一种时频资源的分布示意图十五;
图30为本申请提供的一种时频资源的分布示意图十六;
图31为本申请提供的一种时频资源的分布示意图十七;
图32为本申请提供的一种时频资源的分布示意图十八;
图33为本申请提供的一种时频资源的分布示意图十九;
图34为本申请提供的一种时频资源的分布示意图二十;
图35为本申请提供的一种通信装置的结构示意图;
图36为本申请提供的一种终端设备的结构示意图;
图37为本申请提供的一种芯片***的结构示意图。
具体实施方式
在介绍本申请之前,首先对本申请涉及到的名词进行解释:
免授权传输(Grant-free transmission,GF传输)机制:又称之为无动态调度上行传输(transmission without dynamic scheduling)或者无动态授权上行传输(transmission without dynamic grant)。在该传输机制中,终端设备一旦有上行数据需要发送,不需要网络设备的动态调度或者动态授权,在预先配置的资源上发送该上行数据。
GF传输机制中,预先配置的资源称之为GF传输资源。GF传输资源的配置方式有两种:在第一种配置方式中,只用无线资源控制(radio resource control,RRC)信令来为终端设备配置GF传输资源和传输参数,GF传输资源一直处于激活状态直到被另一条RRC信令去激活或者修改。在第二种配置方式中,使用RRC信令和下行控制信息(downlink control information,DCI)共同来为终端设备配置GF传输资源和传输参数,该配置方式中,RRC信令配置的资源并不能立即被终端用于传输数据,还需收到一个激活该RRC信令配置的资源的DCI,才可以进行上行数据的传输。GF传输资源的上述配置方式又可以被称之为半静态配置。
授权传输(Grant-based transmission,GB传输)机制:又称之为动态调度上行传输(transmission with dynamic scheduling)或者动态授权上行传输(动态调度上行传输(transmission with dynamic grant)。在GB传输机制中,如果终端设备有上行数据需要传输,需要等待网络设备针对该上行数据的动态调度/动态授权,基于该动态调度/动态授权来进行所述上行数据的传输,包括所述上行数据的初传和重传。
GB传输机制中,动态调度/动态授权所配置的资源称之为GB传输资源。
免授权业务:指采用免授权传输机制传输的数据(业务)。
授权业务:指采用GB传输机制的数据(业务)。
本申请中将GB传输资源与GF传输资源重叠的区域称为:上行资源复用区域,该上行资源复用区域可用于传输对时延要求不同的业务,例如,传输免授权业务和授权业务中的至少一项,其中,GB传输资源与GF传输资源可以全部重叠,也可以部分重叠,本申请对此不作限定。在上行资源复用区域中,既可以同时传输GB业务和GF 业务,也可以只传GF业务,还可以只传输GB业务。
具体的,GB传输资源可用于传输对时延要求不严格的业务,也可以理解为:GB传输资源用于传输授权业务,例如,用于传输eMBB业务。
具体的,GF传输资源可用于传输对时延要求比较严格的业务和用于传输对时延要求不严格的业务中的至少一项,也可以理解为:GF传输资源用于传输授权业务和免授权业务中的至少一项。示例性的,用于传输URLLC业务和eMBB业务。
需要说明的是,如何在上行资源复用区域传输eMBB业务和URLLC业务将在下述实施例中具体描述,具体可以参考下文实施例。
本申请提供一种上行传输方法及装置,应用于通信装置的上行传输中,通过对用于传输不同业务类型(例如,免授权业务和授权业务,其中,免授权业务和授权业务具有不同的时延要求和可靠性要求,与授权业务相比,免授权业务要求低时延)的时频资源进行资源复用,这样使授权业务充分利用免授权业务的空闲资源从而提高***中上行资源的利用率。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
本申请中的术语“第一”、“第二”等仅是为了区分不同的对象,并不对其顺序进行限定。例如,第一参考信号和第二参考信号仅仅是为了区分不同的参考信号,并不对其先后顺序进行限定。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
示例性的,如图1所示,图1以授权业务为eMBB业务,免授权业务为URLLC业务为例,在图1中,区域1和区域2对应的时频资源为eMBB业务的传输资源区域,由基站预先通过控制信令(例如,无线资源控制(radio resource control,RRC))配置给终端设备,以使得终端设备在eMBB业务传输资源区域内传输eMBB业务,其中,eMBB业务传输资源区域即为GB传输资源,例如,图1中的区域1,区域2对应的资源为URLLC业务的传输资源区域,由基站预先配置给URLLC业务的传输资源,为了满足URLLC业务的时延要求,区域1和区域2可以是免授权传输(transmission without dynamic grant/grant-free transmission,GF传输)资源。URLLC业务传输资源区域也是eMBB业务的传输资源区域,在该URLLC业务传输资源区域内,URLLC业务可以与eMBB业务复用传输。
本申请中支持GB传输的业务可能是对时延要求不严格的业务,比如eMBB业务,可以允许多次重传,支持GF传输的业务可能是对时延要求比较严格的业务,比如URLLC业务,支持GB传输的业务和支持GF传输的业务具有不同的时延要求和可靠性要求,本申请在下文的描述中用eMBB业务表示支持GB传输的业务,传输eMBB业务的终端设备是eMBB终端设备,用URLLC业务表示支持GF传输的业务,传输 URLLC业务的终端设备可以是URLLC终端设备。在一个具体的实施例中,一个终端设备既可以是eMBB终端设备,也可以是URLLC终端,即,该终端设备既可以支持eMBB业务传输,也可以支持URLLC业务传输。
可以理解的是,本申请中在上行资源复用区域中传输的业务包括但不限于授权业务和免授权业务,例如eMBB业务和URLLC业务,也即在上行资源复用区域内还可以是除eMBB业务和URLLC业务之外的其他两种对时延要求不同,对可靠性要求不同的业务。此外,在上行资源复用区域中传输的两种业务的传输模式包括但不限于GB传输和GF传输方式。以下实施例以在上行资源复用区域中传输的业务包括授权业务和免授权业务为例进行说明,并不具有任何指示性含义:
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
如图2所示,图2示出了本申请提供的一种通信***架构示意图,该通信***100包括:至少一个网络设备100和至少一个终端设备200(图2中仅示出了三个终端设备,在实际场景中可以包括三个以上或者三个以下的终端设备)。
终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是无线局域网(wireless local area networks,WLAN)中的站点(station,STA),可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信***,例如,第五代(fifth-generation,5G)通信网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等。
作为示例,在本发明实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(access point,AP),全球移动通信***(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(long term evolution,LTE)中的演进型基站(evolved Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、 可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
另外,在本发明实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者,时频资源)与网络设备进行通信。该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(Pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小和发射功率低的特点,适用于提供高速率的数据传输服务。
本发明实施例提供的方法和装置,可以应用于终端设备中,该终端设备包括硬件层、运行在硬件层之上的操作***层,以及运行在操作***层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作***可以是任意一种或多种通过进程(process)实现业务处理的计算机操作***,例如,Linux操作***、Unix操作***、Android操作***、iOS操作***或windows操作***等。该应用层包含浏览器、通讯录、文字处理软件、以及即时通信软件等应用。并且,在本发明实施例中,上行传输方法的执行主体的具体结构,本发明实施例并未特别限定,只要能够通过运行记录有本发明实施例的上行传输方法的代码的程序,以根据本发明实施例的上行传输方法的进行通信即可,例如,本发明实施例的无线通信的方法的执行主体可以是终端设备,或者,是终端设备中能够调用程序并执行程序的功能模块。
此外,本发明实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
由于未来接入网可以采用云无线接入网(cloud radio access network,C-RAN)架构来实现,一种可能的方式是将传统基站的协议栈架构和功能分割为两部分,一部分称为集中单元(central unit,CU),另一部分称为分布单元(distributed unit,DU),而CU和DU的实际部署方式比较灵活,例如多个基站的CU部分集成在一起,组成一个规模较大的功能实体。如图3所示,其为本申请实施例提供的一种网络架构的示意图。如图3所示,该网络架构包括核心网(core network,CN)设备和接入网(以无线接入网(radio access network,RAN)为例)设备。其中RAN设备包括基带装置和射频装置,其中基带装置可以由一个节点实现,也可以由多个节点实现,射频装置可以从基带装置拉远独立实现,也可以集成基带装置中,或者部分拉远部分集成在基带装置中。例如,在LTE通信***中,RAN设备(eNB)包括基带装置和射频装置,其中射频装置可以相对于基带装置拉远布置(例如射频拉远单元(radio remote unit, RRU)相对于基带处理单元(building base band unit,BBU)),RAN设备由一个节点实现,该节点用于实现RRC、PDCP、RLC、MAC等协议层的功能。再如,在一种演进结构中,基带装置可以包括集中单元(centralized unit,CU)和分布单元(distributed unit,DU),多个DU可以由一个CU集中控制。如图3所示,CU和DU可以根据无线网络的协议层划分,例如分组数据汇聚层协议(packet data convergence protocol,PDCP)层及以上协议层的功能设置在CU,PDCP以下的协议层,例如无线链路控制(radio link control,RLC)和媒体接入控制(media access control,MAC)层等的功能设置在DU。
这种协议层的划分仅仅是一种举例,还可以在其它协议层划分,例如在RLC层划分,将RLC层及以上协议层的功能设置在CU,RLC层以下协议层的功能设置在DU;或者,在某个协议层中划分,例如将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。此外,也可以按其它方式划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。
此外,射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,在此不作任何限制。
此外,请继续参考图4,相对于图3所示的架构,还可以将CU的控制面(control plane,CP)和用户面(user plane,UP)分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。
在以上网络架构中,CU产生的信令可以通过DU发送给终端设备,或者终端设备产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装而透传给终端设备或CU。以下实施例中如果涉及这种信令在DU和终端设备之间的传输,此时,DU对信令的发送或接收包括这种场景。例如,RRC或PDCP层的信令最终会处理为物理层(physical layer,PHY)的信令发送给终端设备,或者,由接收到的PHY层的信令转变而来。在这种架构下,该RRC或PDCP层的信令,即也可以认为是由DU发送的,或者,由DU和射频发送的。
在以上实施例中CU划分为RAN中网络设备,此外,也可以将CU划分为CN中的网络设备,在此不做限制。
如图5所示,图5示出了本申请提供的一种上行传输方法,包括:
S101、通信装置获取用于动态调度(dynamic schedule,DS)上行传输的控制信息,其中,该控制信息包括为上行传输分配的第一时频资源的信息和上行传输的第一参考信号的配置信息。
本申请中的通信装置可以为如图2所示的***架构中的终端设备,或者为设置在终端设备中的芯片,本申请对此不作限定。
本申请中的动态调度可以指网络设备根据上行或者下行数据传输的请求通过下行控制信令(downlink control information,DCI)来指示上行或者下行数据传输所需要的时频资源和相关参数。
具体的,本申请中的第一时频资源的信息用于确定为通信装置分配的第一时频资源,该第一时频资源也可以称为授权传输资源,如图1所示,该第一时频资源用于传 输授权(GB)业务。
本申请中的GB业务是指根据动态调度所指示的时频资源和相关传输参数进行的数据传输的业务。
示例性的,本申请中的第一时频资源用于传输eMBB业务。
可选的,第一时频资源的信息可以为第一时频资源的标识,或者位置信息,本申请对此不作限定。
其中,第一参考信号的配置信息可用于确定用于上行传输GB业务的第一参考信号,以及用于确定第一参考信号对应的时频资源在第一时频资源中的位置。
具体的,第一参考信号的配置信息可以包括:解调参考信号(demodulation reference signal,DMRS)类型,DMRS符号宽度,用于计算DMRS的序列的初始值、DMRS对应的天线端口等。
可选的,本申请提供的方法在步骤S101之前,还包括:网络设备向通信装置发送用于动态调度上行传输的控制信息。
S102、通信装置根据为上行传输分配的第一时频资源的信息和上行传输的第一参考信号的配置信息,确定用于发送第一参考信号的第二时频资源。
可选的,本申请中第二时频资源为终端设备在第一时频资源上进行上行传输所对应的根据第一参考信号的配置信息生成的参考信号所在的时频资源。
具体的,本申请中的步骤S102可以通过以下方式实现:通信装置根据为上行传输分配的第一时频资源的信息确定为上行传输分配的第一时频资源,根据上行传输的第一参考信号的配置信息确定在第一时频资源上用于发送第一参考信号的第二时频资源。
S103、通信装置获取半静态配置的用于上行传输的资源的第一信息。其中,资源包括时频资源。
可选的,该资源还可以包括:半静态配置的参考信号的时频资源。
具体的,本申请中半静态配置的用于上行传输的资源的第一信息用于终端设备确定第三时频资源的位置,该第三时频资源用于传输免授权业务,因此,该第三时频资源也可以称为免授权传输资源。
示例性的,免授权传输资源用于传输对时延要求比较高的业务,例如,用于传输URLLC业务。
在实际过程中,通信装置可以根据动态调度确定具有发送授权业务的第一时频资源,也可以根据半静态配置确定具有发送免授权业务的第三时频资源,但是该第一时频资源和第二时频资源之间可能不存在交集,如图6所示,图6以第一时频资源为GB传输资源,第三时频资源为GF传输资源为例。
但是,由于在实际过程中,免授权业务具有偶发性,若单独为免授权业务分配一块第三时频资源或者第一时频资源和第三时频资源之间不存在交集时,可能会造成资源浪费,因此,本申请中可以配置为通信装置分配的第三时频资源和第一时频资源之间可以重叠。示例性的,如图7所示,从图7中可以看出GB传输资源和GF传输资源之间具有重叠的时频资源(例如,图7中椭圆线条内的GF传输资源)。
本申请可以将第一时频资源和第三时频资源之间存在的重叠或者部分重叠的时频资源作为上行复用传输资源,这样,通信装置可以使用该上行复用传输资源发送授权 业务和免授权业务中的至少一项,即通信装置可以该上行复用传输资源内发送授权业务,或者发送免授权业务,或者发送授权业务和免授权业务。
可选的,本申请中的第一信息用于确定第三时频资源的位置。
示例性的,网络设备可以配置多个GF传输资源,如图8所示,GF传输资源1、GF传输资源2、GF传输资源3、GF传输资源4,GF传输资源5,以及GF传输资源6。
具体的,该网络设备可以将***中配置的一个或多个GF传输资源中的M(M为大于或等于0的整数)个GF传输资源的信息通知给一个或多个通信装置。当一个通信装置被分配的GF传输资源的数量为0时,表示该通信装置可能未被分配GF传输资源,因此该通信装置便可能无法在GB传输资源上传输免授权业务,或者当M≥1时,该通信装置可以根据每个GF传输资源对应的指示信息确定是否可以在为其他通信装置分配的至少一个GF传输资源上传输免授权业务。
继续结合图8,其中,以GF传输资源1和GF传输资源6为通信装置1分配的、GF传输资源2、GF传输资源3、GF传输资源4以及GF传输资源5是为通信装置1之外的其余通信装置分配的,例如为通信装置2分配的为例。这样,一方面,通信装置1可以在GF传输资源1和GF传输资源6上传输免授权业务。则通信装置1需要根据指示信息确定是否可以在为通信装置2分配的GF传输资源2、GF传输资源3、GF传输资源4以及GF传输资源5上传输免授权业务。
为了使得通信装置可以确定第一时频资源中第三时频资源的位置,本申请中网络设备在对通信装置进行半静态配置过程中,可以通过如下方式向通信装置指示一个或多个第三时频资源是否可用于发送免授权业务:
一种可能的实现方式,可以在RRC信令或者DCI信令中增加一个或多个第三时频资源的信息,以使得通信装置根据一个或多个第三时频资源的信息确定一个或多个第三时频资源在第一时频资源中的位置。
此外,可选的,上述RRC信令或者DCI信令中还可以包括指示信息,用于指示上述一个或多个第三时频资源是否可用于发送免授权业务。
由于网络设备可以将一个或多个第三时频资源分配给至少一个通信装置,当第三时频资源是为两个或两个以上的通信装置分配时,有可能存在为通信装置A分配的至少一个第三时频资源对通信装置B不可用,或者为通信装置A分配的至少一个第三时频资源对通信装置A可用,或者为通信装置A分配的至少一个第三时频资源对通信装置A是不可用(也即该通信装置A仅可用于传输授权业务)。因此,通信装置需要根据第三时频资源对应的指示信息确定是否可在第三时频资源上传输上行免授权业务。
可以理解的是,由于第三时频资源与第一时频资源存在重叠,因此在通信装置不发送免授权业务的情况下,本申请中可以在第一时频资源中与第三时频资源重叠的时频资源上发送授权业务。
示例性的,继续结合图8,通信装置1确定GF传输资源2、GF传输资源3、GF传输资源4以及GF传输资源5对应的指示信息为第一指示,则通信装置1确定GF传输资源2、GF传输资源3、GF传输资源4以及GF传输资源5不可用于发送免授权业务。
通信装置1确定GF传输资源1和GF传输资源6对应的指示信息为第二指示,则通信装置1确定GF传输资源1和GF传输资源6可用于发送免授权业务。
这是由于GF传输资源2、GF传输资源3、GF传输资源4以及GF传输资源5是为其他通信装置分配的,所以通信装置1需要根据每个GF传输资源对应的指示信息确定该GF传输资源是否可用于该通信装置发送免授权业务。
示例性的,第一指示可以为0或false,第二指示可以为1或true,当然该第一指示和第二指示还可以为其他参数,本申请在此不作限定。
可以理解的是,当GF传输资源2、GF传输资源3、GF传输资源4以及GF传输资源5对应的指示信息为第二指示时,通信装置1确定可在GF传输资源2、GF传输资源3、GF传输资源4以及GF传输资源5上发送免授权业务。
需要说明的是,若一个通信装置仅用于发送授权业务(例如,eMBB业务),则当通信装置的第一时频资源内存在一个或多个第三时频资源时,该一个或多个第三时频资源对应的指示信息均可以为false,以便于通信装置确定一个或多个第三时频资源不可用于发送免授权业务。
另一种可能的实现方式,本申请中还可以定义组-共用RRC(Group-common RRC,GC RRC)格式,GC RRC中指示一个或多个第三时频资源的配置信息,这样通信装置便可以通过对GC RRC进行监听,以获得GC RRC所指示的一个或多个第三时频资源的配置信息。
又一种可能的实现方式,本申请可以定义Group-common DCI格式,GC DCI中指示一个或多个第三时频资源的配置信息,这样通信装置便可以通过对GC DCI进行监听,以获得GC DCI所指示的一个或多个第三时频资源的配置信息。
其中,GC RRC或GC DCI中一个或多个第三时频资源的配置信息可以是为不同通信装置分配的第三时频资源的配置信息。本申请对GC RRC的格式或GC DCI的格式不做限定。
S104、通信装置在基于控制信息进行上行传输的情况下,在第二时频资源和第三时频资源重叠的时频资源上不发送任何信号或者发送基于第二参考信号的配置信息生成的参考信号,其中,第三时频资源为通信装置根据第一信息确定的半静态配置的用于上行传输的时频资源。
示例性的,本申请实施例中涉及到的不发送任何信号可以为:不发送动态调度上行传输对应的任何信号。
本申请中第二时频资源和第三时频资源重叠的时频资源可以理解为:第二时频资源和第三时频资源部分重叠,或者第二时频资源和第三时频资源全部重叠。
其中,第二时频资源和第三时频资源部分重叠可以包括:第二时频资源的一部分时频资源位于第三时频资源的范围内。或者第三时频资源的一部分时频资源位于第二时频资源的范围内。具体可以为:第二时频资源的一部分时频资源和第三时频资源的一部分或者全部时频资源重叠(也可以称为存在交集)。或者,第三时频资源的一部分时频资源和第二时频资源的一部分时频资源或者全部时频资源重叠。
第二时频资源和第三时频资源全部重叠可以包括:第三时频资源位于第二时频资源的范围内;或者第二时频资源位于第三时频资源的范围内。
需要说明的是,下述实施例中涉及到的两个或两个以上的时频资源重叠的时频资源的描述均可以参考此处,本申请后文不再赘述。
具体的,本申请中的第二参考信号的配置信息用于确定第二参考信号,以及第二参考信号所在的时频资源位置。其中,第二参考信号的配置信息包括DMRS类型,DMRS符号宽度,DMRS初始值等参数。
可选的,当通信装置在重叠的时频资源上发送基于第二参考信号的配置信息生成的参考信号时,为了避免第一时频资源上进行的上行传输对第三时频资源上进行的上行传输造成干扰,该基于第二参考信号的配置信息生成的参考信号与半静态配置的参考信号正交。
可选的,上述正交方式可以为:码域正交或资源正交等。
示例性的,本申请实施例中通信装置获得第二参考信号的配置信息可以有以下实现方式:一种实现方式:通信装置通过基站传输的第二参考信号的配置信息获得。其中,该配置信息可以是基站采用动态调度信令通知通信装置。另一种实现方式,配置信息可以通过半静态配置的方式由基站通知通信装置。
再一种实现方式,通信装置也可以根据半静态配置的参考信号的信息获得第二参考信号。
示例性的,第二参考信号通过半静态配置的参考信号的信息获得的公式如下:b=f(a)mod 12。其中,a为半静态配置的参考信号(例如,第三时频资源所关联的的参考信号)对应的端口号。b为第二参考信号对应的端口号。f(a)为描述a和b之间关系的函数。
示例性的,a和b之间关系的函数可以是基站和通信装置之间约定:f(a)=k 1×a+k 2
其中,k 1和k 2为描述a和b之间关系的系数。
可选的,a和b之间关系的函数还可以是基站和通信装置之间约定的伪随机生成方式。其中,该伪随机生成方式可以与时隙号,时域符号,小区ID,通信装置的标识,时频资源位置等内容中的至少一种有关。
例如,通信装置的标识可以为通信装置的ID。通信装置的标识用于识别该通信装置。
本申请实施例提供一种上行传输方法,通过根据控制信息确定第一时频资源、第二时频资源,在基于控制信息进行上行传输的情况下,在第二时频资源和第三时频资源重叠的时频资源上不发送任何信号或者发送基于第二参考信号的配置信息生成的参考信号,这样可以在上行传输过程中在第一时频资源中第二时频资源和第三时频资源重叠的时频资源上不发送任何信号或者发送基于第二参考信号的配置信息生成的参考信号,这样可以使得在第一时频资源上进行的上行传输和在第三时频资源上进行的上行传输复用第三时频资源,从而提高了上行资源的频带资源利用率。
可以理解是的,上述实施例中涉及到的第二时频资源与第三时频资源中重叠的时频资源可以存在以下情况:第二时频资源与第三时频资源中用于发送数据的时频资源重叠,或者第二时频资源与第三时频资源中用于发送参考信号的时频资源重叠,或者第二时频资源与第三时频资源中用于发送参考信号的时频资源和用于发送数据的时频资源均有重叠。
上述主要描述了通信装置在重叠的时频资源上的处理方式,但是,在实际过程中,可能存在第二时频资源的一部分时频资源可能位于第三时频资源内,第二时频资源的另一部分时频资源位于第三时频资源外,因此,如图9所示,作为本申请的另一种可能的实施例,本申请提供的方法还包括:
S105、通信装置在第二时频资源中的第四时频资源上发送根据第一参考信号的配置信息生成的参考信号,其中,第四时频资源的频率资源和重叠的时频资源的频率资源不存在交集,且第四时频资源的频率资源和重叠的时频资源的频率资源的并集为第二时频资源的频率资源。
其中,第四时频资源即为第二时频资源中位于第三时频资源之外的时频资源。
可选的,第四时频资源的时域资源和第二时频资源的时域资源相同。
示例性的,如图10所示,其中,第四时频资源与重叠的时频资源不存在交集,第四时频资源的频率资源和重叠的时频资源的并集为第二时频资源的频率资源。
示例性的,如图10所示,如果第二时频资源的一部分时频资源与第三时频资源重叠。此时,通信装置在第二时频资源中重叠的时频资源上发送的根据第一参考信号的配置信息生成的参考信号可能与第三时频资源中发送的参考信号并不正交,所以为了降低在第一时频资源中发送的上行传输对第三时频资源上发送的上行传输的干扰,所以通信装置在重叠的时频资源上不发送信号或者发送基于第二参考信号的配置信息生成的参考信号。
此外,通信装置在第二时频资源中未与第三时频资源重叠的时频资源(例如,上述第四时频资源)上仍然发送根据第一参考信号的配置信息生成的参考信号。
示例性的,如图10所示,由于第二时频资源中除第四时频资源以外的时频资源与第三时频资源重叠,因此,通信装置可以在第二时频资源中的重叠的时频资源上发送基于第二参考信号的配置信息生成的参考信号,在第四时频资源上发送根据第一参考信号的配置信息生成的参考信号。如图10所示,也即最终在第二时频资源上具有两种参考信号,具体的,第二时频资源中与第三时频资源重叠的时频资源上发送基于第二参考信号的配置信息生成的参考信号,第二时频资源中的第四时频资源上发送根据第一参考信号的配置信息生成的参考信号,这样网络设备可以根据第三时频资源中发送的GF参考信号以及第四时频资源上发送根据第一参考信号的配置信息生成的参考信号进行信道估计。
可选的,在图10所示的场景下,第三时频资源所占用的带宽小于第二时频资源的带宽,即第三时频资源占用部分带宽。
由于在实际过程中,重叠的时频资源与第三时频资源中用于发送参考信号的时频资源之间的交集是否为空集,对于通信装置而言,其执行步骤S104可能存在差异,因此,以下将结合实施例详细介绍:
一种情况:重叠的时频资源与第三时频资源中用于发送参考信号的时频资源之间的交集为空集。
可以理解的是,重叠的时频资源与第三时频资源中用于发送参考信号的时频资源之间的交集为空集指:第二时频资源中至少一部分时频资源位于第三时频资源内,且至少一部分时频资源与第三时频资源中用于发送参考信号的时频资源之间不存在交集 或者不重叠。
相应地,作为一种可能的实现方式,如图11所示,本申请中步骤S104具体可以通过以下方式实现:
S1041、通信装置在基于控制信息进行上行传输时,在重叠的时频资源上不发送任何信号。
示例性的,如图12所示,第三时频资源与第一时频资源具有上行复用传输资源,其中,第三时频资源中用于发送参考信号的时频资源与第一时频资源中用于发送数据的时频资源重叠,第二时频资源位于第三时频资源的范围内,在图12中第二时频资源与第三时频资源中用于发送数据的时频资源重叠,此时,通信装置可以在图12所示的重叠的时频资源处不发送任何信号,也即通信装置在第二时频资源与第三时频资源中用于发送数据的时频资源重叠的时频资源上不发送任何信号。
可选的,在图12中,第三时频资源的带宽可能小于第二时频资源的带宽,也可能等于第二时频资源的带宽,也可以大于第二时频资源的带宽,本申请对此不做限定,图12中以第三时频资源的带宽小于第二时频资源的带宽为例进行说明。
结合图12,在实际过程中,通信装置可能在第三时频资源中用于发送参考信号的时频资源上发送半静态配置的参考信号,也可以不发送半静态配置的参考信号。所述半静态配置的参考信号是指半静态配置的第三时频资源所关联的参考信号。
可选的,在图12所示的场景下,当通信装置在第三时频资源中用于发送参考信号的时频资源上不发送半静态配置的参考信号的情况下,如图13所示,作为一种可能的实现方式,本申请中的步骤S104还可以通过以下方式实现:
S1042、通信装置在基于控制信息进行上行传输时,在第一时频资源中与所述第三时频资源中用于发送参考信号的时频资源重叠的时频资源上发送基于第二参考信号的配置信息生成的参考信号。
本申请中的不发送半静态配置的参考信号可以包括如下情况:1、第三时频资源为通信装置1分配的时频资源,但是该通信装置1在该第三时频资源上没有免授权业务传输。2、第三时频资源不是为通信装置1分配的时频资源,而是为其他通信装置分配的时频资源,因此,本申请中的通信装置1自然也不会在第三时频资源上进行免授权传输。
示例性的,如图12所示,虽然在图12中第二时频资源与第三时频资源中用于发送数据的时频资源重叠,但是,第二时频资源未与第三时频资源中用于发送参考信号的时频资源重叠,因此,当通信装置在如图12所示的第三时频资源中用于发送参考信号的时频资源上不发送半静态配置的参考信号时,通信装置可以在第一时频资源中与第三时频资源中用于发送参考信号的时频资源重叠的时频资源上发送基于第二参考信号的配置信息生成的参考信号。由于网络设备可以通过对第三时频资源中用于发送参考信号的时频资源做检测,以确定是否存在免授权业务对应的参考信号,并根据是否存在免授权业务对应的参考信号确定是否存在免授权业务。具体的,当第三时频资源中用于发送参考信号的时频资源中不存在免授权业务对应的参考信号,则网络设备确定不存在免授权业务。
另一种情况,可选的,如图14所示,本申请中的步骤S104还可以通过以下方式 实现:
S1043、通信装置在第三时频资源中用于发送参考信号的时频资源上发送半静态配置的参考信号时,通信装置在基于控制信息进行上行传输时,在所述第一时频资源中与第三时频资源中用于发送参考信号的时频资源重叠的时频资源上不发送任何信号。
本申请中发送半静态配置的参考信号可以包括如下情况:第三时频资源为通信装置1分配的时频资源,但是该通信装置1在该第三时频资源上存在免授权业务传输。
可选的,另一种情况,本申请中的重叠的时频资源包括第三时频资源中用于发送参考信号的时频资源的一部分或者全部,也即第二时频资源和第三时频资源中用于发送参考信号的时频资源的一部分或者全部时频资源重叠。则作为另一种可能的实现方式,如图15所示,本申请的步骤S104还可以通过以下方式实现:
S1044、通信装置在基于控制信息进行上行传输时在重叠的时频资源上发送根据第二参考信号的配置信息生成的参考信号。
示例性的,结合图16和图10,图16示出了第二时频资源(未示出第二时频资源)和第三时频资源中用于发送参考信号的时频资源全部时频资源重叠,图10示出了第二时频资源和第三时频资源中用于发送参考信号的时频资源一部分时频资源重叠,在图16中第三时频资源中用于发送参考信号的时频资源与第二时频资源全部重叠,在图10中,如果第三时频资源中用于发送参考信号的时频资源与第二时频资源部分重叠,因为在图10和图16中,第二时频资源上发送的根据第一参考信号的配置信息生成的参考信号可能与第三时频资源中发送的参考信号并不正交,所以为了降低在第一时频资源上发送的GB数据对第三时频资源上发送的GF数据的带来的干扰,本申请中可以在第二时频资源中与第三时频资源中用于发送参考信号的时频资源重叠的时频资源上发送根据第二参考信号的配置信息生成的参考信号。
可选的,在图16中第三时频资源中用于发送参考信号的时频资源与第二时频资源的带宽相同,即第三时频资源中用于发送参考信号的时频资源占用整个带宽。
可选的,在图10中第三时频资源中用于发送参考信号的时频资源的带宽小于第二时频资源的带宽,也即第三时频资源中用于发送参考信号的时频资源占用部分带宽。
作为另一种可能的实现方式,如图17所示,本申请中的步骤S104还可以通过以下方式实现:
S1045、在第五时频资源中除重叠的时频资源以外的时频资源上,通信装置不发送任何信号,其中,第五时频资源的频率资源和重叠的时频资源的频率资源相同,第五时频资源的时域资源和所述第二时频资源的时域资源相同。在另一替代实施例中,所述通信装置在基于所述控制信息进行上行传输时,在所述第一时频资源中的第五时频资源上不发送任何信号,第五时频资源为所述重叠的时频资源内与所述用于发送半静态配置的参考信号的时频资源不重叠的时频资源。
作为再一种可能的实现方式,如图18所示,本申请中的步骤S104还可以通过以下方式实现:
S1046、通信装置在基于控制信息进行上行传输时,在所述第一时频资源中的第六时频资源不发送任何信号,其中,第六时频资源为第一时频资源中与重叠的时频资源不重叠但与第三时频资源中用于发送参考信号的时频资源重叠的时频资源。
示例性的,如图12所示,在图12中第六时频资源即为第一时频资源中除重叠的时频资源以外的,且与候选传输资源重叠的时频资源。
可选的,本申请中当在第一时频资源上发送的GB业务和在第三时频资源上发送的GF业务的优先级相近时,且GB业务和GF业务复用上述上行复用传输资源时,本申请中通信装置采用非正交传输技术在所述第一时频资源中所述第二时频资源以外的时频资源和所述第三时频资源中用于发送参考信号的时频资源以外的时频资源的重叠的时频资源上进行上行传输。
可选的,在实际过程中还可能存在第三时频资源与所述第二时频资源的交集为空集的情况,因此作为再一种可能的实现方式,如图19所示,本申请提供的方法还包括:
S106、当第三时频资源与第一时频资源的交集不为空集,且第三时频资源与第二时频资源的交集为空集时,通信装置在基于控制信息进行上行传输的情况下,在第三时频资源中用于发送参考信号的时频资源与所述第一时频资源重叠的时频资源上不发送任何信号或者发送基于所述第二参考信号的配置信息生成的参考信号。
其中,所述第三时频资源与所述第一时频资源的交集不为空集可以理解为:第三时频资源与第一时频资源存在如图7所示的上行复用传输资源。也即第三时频资源的一部分时频资源或者全部时频资源位于第一时频资源的范围内,或者第一时频资源的一部分时频资源与第一时频资源的一部分时频资源或者全部时频资源重叠,或者第一时频资源的全部时频资源与第一时频资源的一部分时频资源或者全部时频资源重叠,以得到上行复用传输资源。
示例性的,如图20所示,第三时频资源与第一时频资源全部重叠,第二时频资源位于第三时频资源的范围外,授权业务和免授权业务复用上行复用传输资源。此时通信装置在第一时频资源中与第三时频资源重叠的时频资源用于发送参考信号的时频资源处发送基于第二参考信号的配置信息生成的参考信号或者不发送任何信息。
可选的,在图20所示的场景下,第三时频资源的带宽可以与第一时频资源的带宽相等,或者,第三时频资源的带宽也可以小于第一时频资源的带宽,或者第三时频资源的带宽也可以大于第一时频资源的带宽,本申请对此不作限定。
由于重叠的时频资源与第三时频资源中用于发送参考信号的时频资源之间是否重叠,决定通信装置在重叠的时频资源上不发送任何信号或者发送基于第二参考信号的配置信息生成的参考信号,因此,下述将结合重叠的时频资源与第三时频资源中用于发送参考信号的时频资源之间的位置关系,以及具体场景详细介绍通信装置在重叠的时频资源上的具体步骤:
场景一、如图21所示,在通信装置在第一时频资源上发送GB业务的情况下,此时,若通信装置需要在第三时频资源上发送GF业务,也即通信装置需要同时发送GB业务和GF业务,则通信装置可以在第一时频资源上发送GB业务,并在第三时频资源(包括第三时频资源中与上行复用传输资源重叠的时频资源)上发送GF业务,此时GF业务和GB业务复用上行复用传输资源。
示例性的,如图22所示,通信装置可以在如图22所示的第三时频资源上发送GF业务,在为通信装置分配的第一时频资源上传输GB业务,以保证GF业务和GB业务同时发送。
此外,需要说明的是,上述以在发送GF业务时,已存在GB业务为例进行说明,在实际过程中可能还存在如下情况:在发送GF业务之前第一时频资源上不具有GB业务,则在通信装置需要在上行传输过程中同时发送GF业务和GB业务时,通信装置在第一时频资源上发送GB业务,以及在第三时频资源上发送第三时频资源,也即GF业务和GB业务同时在上行复用传输资源上发送。
可以理解的是,当第三时频资源与第一时频资源完全重叠时,上行复用传输资源即为第三时频资源,当第三时频资源与第一时频资源部分重叠时,上行复用传输资源为第三时频资源中与第一时频资源重叠的时频资源。
在场景一下,由于GB业务和GF业务复用上行复用传输资源,即上行复用传输资源上可能同时存在GB业务和GF业务,因此为了降低GB业务对GF业务的干扰,本申请中可以根据第二时频资源和第三时频资源之间的位置关系,以及第二时频资源和第三时频资源中用于发送参考信号的时频资源的位置之间的关系,确定在第二时频资源和第三时频资源重叠的时频资源上发送基于第二参考信号的配置信息生成的参考信号还是不发送任何信号,具体如下:
Case1、结合图16,当第二时频资源位于第三时频资源内,且第二时频资源和第三时频资源中用于发送参考信号的时频资源全部重叠,或者结合图10,当第二时频资源位于第三时频资源内,且第二时频资源和第三时频资源中用于发送参考信号的时频资源部分重叠。
一方面,通信装置在第一时频资源中与第三时频资源中用于发送参考信号的时频资源重叠的时频资源上发送基于第二参考信号的配置信息生成的参考信号。此外,通信装置在第二时频资源中未与第三时频资源重叠的时频资源上,通信装置发送根据第一参考信号的配置信息生成的参考信号。
另一方面,当通信装置在第三时频资源中用于发送参考信号的时频资源处未发送半静态配置的参考信号时,通信装置在第一时频资源中与第三时频资源中用于发送参考信号的时频资源重叠的时频资源上发送基于第二参考信号的配置信息生成的参考信号。
又一方面,当通信装置在第三时频资源中用于发送参考信号的时频资源上发送半静态配置的参考信号时,通信装置在第一时频资源中与第三时频资源中用于发送参考信号的时频资源重叠的时频资源上不发送任何信号。在这种情况下,网络设备可以联合在第二时频资源发送的根据第一参考信号的配置信息生成的参考信号和在第三时频资源上发送的半静态配置的参考信号进行信道估计。
可选的,在场景一下,通信装置可以采用如下方式在第一时频资源中第二时频资源以外的时频资源和第三时频资源中用于发送参考信号的时频资源以外的时频资源的重叠的时频资源上进行上行传输,因此,如图23所示,本申请提供的方法还包括:
一种方式为:S107、通信装置采用非正交传输技术在第一时频资源中所述第二时频资源以外的时频资源和所述第三时频资源中用于发送参考信号的时频资源以外的时频资源的重叠的时频资源上进行上行传输。
示例性的,通信装置采用非正交多址接入(non-orthogonal multiple access,NoMA)方式在第一时频资源中所述第二时频资源以外的时频资源上发送GB数据时,以及在 第三时频资源中除用于发送参考信号的时频资源以外的时频资源的重叠的时频资源上发送GF数据。
其中,非正交多址接入方式有许多种,比如稀疏码多址接入(sparse code multiple access,SCMA)和交叉网格多址接入(Interleave-Grid Multiple Access,IGMA)。
示例性的,以非正交多址接入方式为SCMA为例,则通信装置将第一时频资源中第二时频资源以外的时频资源上发送的GB数据和第三时频资源中除用于发送参考信号的时频资源以外的时频资源的重叠的时频资源上发送的GF数据选择正交的码本进行数据传输。
另一种方式为:S108、通信装置采用功率控制的方式在第一时频资源中第二时频资源以外的时频资源和所述第三时频资源中用于发送参考信号的时频资源以外的时频资源的重叠的时频资源上进行上行传输。
示例性的,通信装置控制第一时频资源中与上行复用传输资源重叠的时频资源上发送GB数据的功率低于第三时频资源中与上行复用传输资源重叠的时频资源上发送的GF数据的功率。
其中,第一时频资源中与上行复用传输资源重叠的时频资源中不包括第二时频资源,第三时频资源中与上行复用传输资源重叠的时频资源中不包括第三时频资源中用于发送参考信号的时频资源。
Case2、如图12所示,当第二时频资源位于第三时频资源内,第三时频资源中用于发送参考信号的时频资源与第一时频资源中用于发送GB数据的时频资源全部重叠或者部分重叠(图12以部分重叠为例),而第二时频资源和第三时频资源中用于发送GF数据的时频资源全部重叠或者部分重叠(图12中以部分重叠为例)。
在Case2中,第二时频资源上发送的基于第一参考信号的配置信息生成的参考信号以及第一时频资源中与第三时频资源中用于发送参考信号的时频资源重叠的时频资源上信号的处理方式可以为以下任一方面:
一方面,通信装置将第二时频资源中与第三时频资源中用于发送GF数据的时频资源重叠的时频资源上的参考信号中断,当通信装置在第三时频资源中用于发送参考信号的时频资源上不发送半静态配置的参考信号时,通信装置在所述第一时频资源中与所述第三时频资源中用于发送参考信号的时频资源重叠的时频资源上发送基于第二参考信号的配置信息生成的参考信号。
另一方面,通信装置将第二时频资源上在第三时频资源中用于发送GF数据的时频资源处的参考信号中断,当通信装置在第三时频资源中用于发送参考信号的时频资源上发送半静态配置的参考信号时,通信装置在所述第一时频资源中与所述第三时频资源中不发送任何信号,即通信装置仅在第二时频资源上未与第三时频资源重叠的时频资源上发送根据第一参考信号的配置信息生成的参考信号。因此,网络设备可以联合使用第二时频资源上未与第三时频资源重叠的时频资源上发送的根据第一参考信号的配置信息生成的参考信号和第三时频资源中发送的半静态配置的参考信号进行信道估计。
通信装置在第二时频资源和第三时频资源重叠的时频资源处发送GB数据,即在第三时频资源中原本发送根据第一参考信号的配置信息生成的参考信号所在的时频资 源处,GB的数据可以进行映射并发送,本申请对GB数据映射的方式不做限定,数据映射可以使用现有的先频域后时域的映射方法,或者将在第三时频资源中用于发送参考信号的时频资源的GB原数据映射到GB的原参考信号所在的时频资源上,或者其他映射方法。
Case3、如图20所示,如果第三时频资源中用于发送参考信号的时频资源与第一时频资源中用于发送数据的时频资源重叠,且第二时频资源与上行复用传输资源(在图20中上行复用传输资源也即第三时频资源)不存在交集,此时,一方面,通信装置在第一时频资源中与第三时频资源中用于发送参考信号的时频资源重叠的时频资源上发送基于第二参考信号的配置信息生成的参考信号。或者,另一方面,通信装置在第一时频资源中与第三时频资源中用于发送参考信号的时频资源重叠的时频资源上不发送任何信号,此时,该第一时频资源中与第三时频资源中用于发送参考信号的时频资源重叠的时频资源上也不做数据映射。
通信装置在第一时频资源中除第二时频资源以外的时频资源以外的时频资源上发送GB数据以及在第三时频资源中用于发送参考信号的时频资源以外的时频资源的重叠的时频资源上发送GF数据时,可以采用非正交多址接入方式传输。
可选的,在Case3下通信装置在第一时频资源中除第二时频资源以外的时频资源上发送GB数据以及在第三时频资源中用于发送参考信号的时频资源以外的时频资源上发送GF数据发送过程可以参见上述步骤S106和S107,本申请在此不再赘述。
场景二、在第一时频资源内存在GB业务的情况下,通信装置需要在第三时频资源上发送GF业务,此时可能会存在GB业务和GF业务需要复用上行复用传输资源,在GF业务和GB业务的优先级相近,或者通信装置需要同时发送优先级相近的GF业务和GB业务的情况下,通信装置可以将第一时频资源中的一部分时频资源作为扩展资源,该扩展资源用于同时发送GF业务以及GB业务,其中,该扩展资源可以为第一时频资源中除上行复用传输资源以及仅发送GB的时频资源以外的时频资源(如图24所示,位于上行复用传输资源上方的时频资源以及位于上行复用传输资源下方的时频资源),也即通信装置可以使用GB传输资源中的一部分资源用于传输GF业务。
综上所述,场景二与场景一的区别在于,在场景一中,GF业务在第三时频资源上发送,在场景二中,GF业务在扩展资源以及第三时频资源上发送,也即在场景二中GF业务可以使用部分第一时频资源发送。
示例性的,如图24所示,通信装置可以在第一时频资源上传输GB业务,以及同时在扩展资源以及第三时频资源上发送GF业务。
在场景二下,通信装置还需要按照可以通过如下参数确定扩展资源上传输的GF业务的参数:
对于在第三时频资源上传输的GF业务,通信装置接收网络设备通过RRC或者DCI配置的用于GF传输的参数,比如调制与编码策略(modulation and coding scheme,MCS),传输块大小(transport block size,TBS),重复(repetition)次数等。为通信装置配置的GF传输的参数不变,即GF传输的参数是根据配置的GF资源获得,同时配置通信装置可在扩展资源上传输GF业务。
通信装置在扩展资源上进行GF业务的传输,按照扩展资源的资源块(resource  element,RE)数目进行数据编码,编码时TBS不变,MCS可变,即可以不使用配置的MCS值,而在非重叠区域的GF传输资源上,按照GF传输资源的RE数进行数据编码编码时TBS不变,MCS不变,即配置的MCS值。这样网络设备在接收到GF业务时,在重叠的时频资源区域按照扩展资源进行解码,在非重叠的时频资源区域的GF传输资源按照GF传输资源进行解码。
在场景二下、通信装置在第二时频资源或者复用传输资源上的用于发送参考信号的传输资源上的参考信号的使用可以采用如场景一中的Case1、Case2以及Case3。
但是,在场景二与场景一在Case1的区别在于,在场景二中的Case1还包括:结合图16和图10,在第二时频资源和第三时频资源中用于发送参考信号的时频资源对齐的情况下,即第二时频资源和第三时频资源中用于发送参考信号的时频资源的位置相同的情况下,在第一时频资源上发送的数据和第三时频资源上发送的数据映射不需要改变。
场景二与场景一在Case2的区别在于,在场景二中的Case2还包括:由于图12中,第二时频资源和第三时频资源中用于发送参考信号的时频资源没有对齐,即第二时频资源和第三时频资源中用于发送参考信号的时频资源的位置不同,因此第一时频资源上发送的数据和第三时频资源上发送的数据映射时需要考虑第二时频资源和第三时频资源中用于发送参考信号的时频资源,即在数据映射时需要避开第二时频资源和第三时频资源中用于发送参考信号的时频资源再映射,具体的映射方法不做限定。
在场景二与场景一在Case3的区别在于,场景三中的Case3还包括:在扩展资源内不存在第二时频资源的情况下,此时GF业务在第三时频资源中所发送的参考信号的正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM)符号上使用扩展资源的GF参考信号,扩展的GF参考信号是指GF的原参考信号进行扩展,映射到整个OFDM符号上。GF参考信号的扩展方式不做限制。因此,网络设备可以使用扩展的GF参考信号进行信道估计,也可以使用GB业务的原参考信号进行信道估计。
场景三、如图25所示,在第一时频资源内存在GB业务的情况下,通信装置需要在第三时频资源上发送GF业务,则可能存在GB业务和GF业务共用上行复用传输资源的情况,因此在GF业务的优先级高于GB业务的优先级的情况下,此时通信装置可以中断第一时频资源中与上行复用传输资源重叠的时频资源上传输的GB业务以及中断第一时频资源中扩展资源上发送的GB业务,并在第三时频资源上发送GF业务。或者,通信装置需要同时发送优先级不同的GB业务和GF业务时,GF业务的优先级高于GB业务的优先级,则通信装置优先在第三时频资源上发送GF业务,以及在第一时频资源内除扩展资源以及上行复用传输资源以外的时频资源上发送GB业务,即GB业务在第一时频资源内的扩展资源以及上行复用传输资源上中断。
示例性的,如图25所示,通信装置在第三时频资源上发送GF业务,在第一时频资源除扩展资源以及上行复用传输资源以外的时频资源上发送GB业务。
具体的,在场景三下,GB业务的中断是指通信装置将第一时频资源内在扩展资源以及上行复用传输资源上发送的GB数据以及第一参考信号全部中断。
场景四、如图26所示,在第一时频资源内存在GB业务或者通信装置需要在第一 时频资源内发送GB业务,以及通信装置需要在第三时频资源上发送GF业务的情况下,由于上行复用传输资源内存在GF业务,且GF业务的优先级高于GB业务的优先级,则通信装置可以将第一时频资源中的一部分时频资源作为扩展资源,并在扩展资源以及第三时频资源上发送GF业务,在第一时频资源中除扩展资源以及上行复用传输资源以外的其余时频资源上发送GB业务。
具体的,在场景四下,通信装置确定发送GF业务参数的方式可以参见场景二中的描述,本申请在此不再赘述。
对比图24和图26可知,场景四与场景二的区别在于:在场景二中扩展资源上同时发送有GF业务和GB业务,而在场景四中扩展资源上仅发送GF业务,也即在场景四中扩展资源不可用于发送GB业务。
需要说明的是,对于GB业务,在扩展资源上全部中断,GB的参考信号在第三时频资源内中断。
可选的,场景四下,通信装置确定扩展资源上传输的GF业务的参数可以参见上述实施例中的描述,本申请在此不再赘述。
由于在场景四下,对于GB业务而言,在扩展资源上数据全部中断,第二时频资源上发送的第一参考信号在第三时频资源中断。因为在扩展资源只发送GF业务,所以需要结合第二时频资源和第三时频资源中用于发送参考信号的时频资源的关系,考虑数据映射位置,具体的,通信装置在第二时频资源或者复用传输资源上的用于发送参考信号的传输资源上的参考信号的使用可以采用如场景一中的Case1、Case2以及Case3的描述。
可选的,由于在场景四下,在扩展资源上仅发送GF业务,如图27所示,通信装置对第二时频资源未与第三时频资源重叠的时频资源上发送的根据第一参考信号的配置信息生成的参考信号时,可以将第二时频资源未与第三时频资源重叠的时频资源上发送的根据第一参考信号的配置信息生成的参考信号映射在第三时频资源中发送的参考信号所对应的时域符号位置,此时,数据映射时,通信装置只需要避开第三时频资源中发送的参考信号所对应的时域符号即可。
上述场景一至场景四主要以上行复用传输资源是为通信装置分配的第三时频资源(例如,图26中的第三时频资源6为例)和第一时频资源重叠得到的为例,下述将结合场景五至场景七以上行复用传输资源是为其他通信装置分配的第三时频资源和第一时频资源重叠得到的为例:
场景五、如图28所示,通信装置具有上行复用传输资源,但是通信装置仅发送GB业务,则在发送GB业务时,通信装置可以中断第一时频资源中在上行复用传输资源上发送的GB业务,即通信装置在第一时频资源中除上行复用传输资源以外的时频资源上发送GB业务。
此处,在上行复用传输资源上被中断的GB业务包括在第一时频资源中原本应该在上行复用资源上发送的GB数据以及基于第一参考信号的配置信息生成的参考信号。
可以理解的是,第一时频资源中在上行复用传输资源以外的其他时频资源上传输的根据第一参考信号的配置信息生成的参考信号保持不变。
此处,通信装置可以通过速率匹配(rate-matching),或者直接中断的方式中断在上 行复用传输资源发送的GB业务。
在场景五中,与第一时频资源重叠的第三时频资源是为其他通信装置分配的,由于通信装置不确定其他通信装置是否在第三时频资源3上发送上行传输,因此第一时频资源中与第三时频资源3重叠的时频资源上发送的GB数据和参考信号都中断,也即通信装置在第一时频资源中除上行复用传输资源之外的时频资源上发送GB数据以及根据第一参考信号的配置信息生成的参考信号。
具体的,通信装置在第一时频资源中除上行复用传输资源,以及发送根据第一参考信号的配置信息生成的参考信号的时频资源以外的时频资源上发送GB数据,通信装置在第二时频资源中除与第三时频资源重叠的时频资源上发送根据第一参考信号的配置信息生成的参考信号,在第二时频资源中与第三时频资源重叠的时频资源上发送的根据第一参考信号的配置信息生成的参考信号被中断。
场景六、通信装置具有上行复用传输资源,通信装置只发送GB业务,该场景六和场景五的区别在于,在场景六中,在发送GB业务时,通信装置可以中断第一时频资源中与上行复用传输资源重叠的时频资源上发送的GB数据,即通信装置在第一时频资源中除上行复用传输资源以外可用于发送GB数据的时频资源上发送GB数据,通信装置将第二时频资源与上行复用传输资源重叠的时频资源上发送的参考信号采用如场景一中的Case1和Case2的描述,本申请在此不再赘述。
场景七、如图29所示,通信装置具有上行复用传输资源,该上行复用传输资源为第一时频资源和为其他通信装置分配的第三时频资源(例如,图29中的第三时频资源3)重叠得到的,通信装置只发送GB业务,通信装置将第一时频资源中在上行复用传输资源上传输的GB业务不中断,也即通信装置在第一时频资源上发送GB业务,此时,通信装置可以采用上述场景一中Case1和Case2的描述处理第二时频资源与上行复用传输资源重叠的时频资源上发送的参考信号,本申请在此不再赘述。
场景八、如图30所示,通信装置具有上行复用传输资源(例如,第一时频资源与图30中的第三时频资源6重叠得到的),GB业务的优先级高于GF业务的优先级,在通信装置发送GB业务时,通信装置确定GF业务到达,由于GB业务的优先级高于GF业务的优先级,因此,通信装置中断在第三时频资源中在上行复用传输资源上发送的GF业务,也即通信装置在第一时频资源上发送GB业务,在第三时频资源中除上行复用传输资源以外的时频资源上发送GF业务。
基于上述描述,通信装置需要对第二时频资源中与上行复用传输资源重叠的时频资源上发送的参考信号做相应处理,以避免GB业务对GF业务的干扰。具体的,通信装置可以采用上述场景一中Case1和Case2的描述处理第二时频资源与上行复用传输资源重叠的时频资源上发送的参考信号,本申请在此不再赘述。
此处,中断上行复用传输资源上传输的GF业务是指:中断在上行复用传输资源上发送的GF数据。
可选的,通信装置将原本在第三时频资源6上发送的GF数据在上行复用传输资源处中断,在第三时频资源中除上行复用传输资源以外的其余时频资源上GF业务是否传输根据GF业务的版本(RV)和repetition K值决定。
场景九、如图31所示,通信装置具有上行复用传输资源(场景九中的上行复用传 输资源为第一时频资源和为其他通信装置分配的第三时频资源重叠得到的),GB业务的优先级高于GF业务的优先级,通信装置只发送GB业务,通信装置不确定为其他通信装置分配的第三时频资源上是否存在其他通信装置的GF业务,所以通信装置可以将GB业务在为其他通信装置分配的第三时频资源上传输,也即通信装置在第一时频资源上传输GB业务。因此,为了避免在上行复用传输资源上传输的GB业务对其他通信装置造成干扰,通信装置可以采用上述场景一中Case1和Case2的描述处理第二时频资源与上行复用传输资源重叠的时频资源上发送的参考信号,本申请在此不再赘述。
目前NR中支持一个参考信号使用1个OFDM符号和2个OFDM符号.因此,上述实施例中根据第一参考信号的配置信息生成的参考信号以及和在第三时频资源中发送的参考信号使用相同的OFDM符号数,例如,根据第一参考信号的配置信息生成的参考信号的OFDM符号数为1个OFDM符号,则在第三时频资源中发送的参考信号使用的OFDM符号数也为1个OFDM符号。
场景十、根据第一参考信号的配置信息生成的参考信号以及和在第三时频资源中发送的参考信号使用不同的OFDM符号数:
Case4、如图32所示,在根据第一参考信号的配置信息生成的参考信号的符号数小于第三时频资源中发送的参考信号的符号数的情况下,通信装置中断第二时频资源中与上行复用传输资源重叠的时频资源上发送的根据第一参考信号的配置信息生成的参考信号,以及在第二时频资源中与上行复用传输资源重叠的时频资源上发送基于第二参考信号的配置信息生成的参考信号。此时,基于第二参考信号的配置信息生成的参考信号的OFDM符号数与第三时频资源中发送的参考信号的符号数相同。
具体的,图32中以根据第一参考信号的配置信息生成的参考信号的符号数为1个符号数为例,以根据第二参考信号的配置信息生成的参考信号的符号数为2个符号数为例。
在图32所示的场景下,通信装置在上行复用传输资源上发送GB数据时,若上行复用传输资源中存在GF业务对应的参考信号所在时频资源,则通信装置将在上行复用传输资源中存在GF业务对应的参考信号所在时频资源处发送的GB数据中断。
可选的,GB数据可以通过速率匹配(rate-matching)的方式,在上行复用传输资源进行映射传输。
需要说明的是,图32仅用于描述根据第一参考信号的配置信息生成的参考信号的符号数小于第三时频资源中发送的参考信号的符号数的情况,不限制参考信号的起始位置是否对齐。
Case5、如图33所示,当第一时频资源内发送的根据第一参考信号的配置信息生成的参考信号的OFDM符号数大于第三时频资源中发送的参考信号的符号数时,通信装置将在第二时频资源中与上行复用传输资源重叠的时频资源上发送的根据第一参考信号的配置信息生成的参考信号中断,通信装置在第二时频资源与上行复用传输资源重叠的时频资源上发送基于第二参考信号的配置信息生成的参考信号,该基于第二参考信号的配置信息生成的参考信号使用的OFDM符号数与第三时频资源中发送的参考信号的符号数相同。
此时,通信装置在上行复用传输资源上发送数据时,因为基于第二参考信号的配置信息生成的参考信号使用的符号数减少,因此,空余的根据第一参考信号的配置信息生成的参考信号的OFDM符号位置(是GF数据所在的时频资源)不做映射。可选的,GB数据可以通过速率匹配(rate-matching)的方式,在上行复用传输资源上进行映射传输。
需要说明的是本申请中场景一至场景十中:第一时频资源的numerology与第三时频资源上的numerology一致。
场景十一、以第一时频资源的numerology与第三时频资源上的numerology不一致为例,通信装置确定通过RRC被配置的第三时频资源的numerology与第一时频资源的numerology不同,以第三时频资源的numerology采用子载波间隔60KHz,第一时频资源的numerology采用子载波间隔15KHz为例,上行复用区域的资源如图34所示。
如图20所示,当第二时频资源位于第三时频资源外时,此时,第二时频资源中发送的基于第一参考信号的配置信息生成的参考信号保持不变,在第三时频资源中发送参考信号的时频资源处,通信装置发送基于第二参考信号的配置信息生成的参考信号。
或者通信装置,在第三时频资源中发送参考信号的时频资源处,不发送任何信号。
如图12所示,第二时频资源中发送的基于第一参考信号的配置信息生成的参考信号在第三时频资源中发送GF数据的时频资源处中断,在第三时频资源中用于发送参考信号的时频资源处,通信装置发送基于第二参考信号的配置信息生成的参考信号。
因为基于第一参考信号的配置信息生成的参考信号OFDM符号宽度与第三时频资源中发送的参考信号的OFDM符号宽度不同,对于数据映射的处理方案可以参考本发明实施例中场景十中的处理方式,本申请在此不再赘述。
可选的,本申请中通信装置在基于控制信息进行上行传输时,在重叠的时频资源上采用第三时频资源对应的配置参数numerology进行上行传输。
可选的,在所述第一时频资源和所述第三时频资源重叠的时频资源上,所述通信装置采用所述第一时频资源对应的频率资源发送欲在所述第三时频资源对应的频率资源上发送的上行数据和/或参考信号。
作为本申请的另一种实施例,本申请提供的上行传输方法,包括:
S201、通信装置获取用于动态调度上行传输的控制信息,该控制信息包括用于上行传输的第一时频资源的配置信息。
S202、通信装置获取半静态配置的用于上行传输的资源配置信息,该资源配置信息包括用于上行传输的第二时频资源的配置信息。
S203、当基于资源配置信息发送上行数据时,在第二时频资源和第一时频资源重叠的时域资源上采用第一时频资源对应的频域资源发送上行数据。
可选的,本申请提供的方法包括:当通信装置基于控制信息进行上行传输时,在第二时频资源和第一时频资源重叠的时域资源上中断基于所述控制信息所执行的上行传输。
可选的,本申请提供的方法包括:在第二时频资源中除重叠的时频资源外的时频资源上,基于资源配置信息发送上行数据。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如通信装置,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明:
在采用集成的单元的情况下,图35示出了上述实施例中所涉及的通信装置的一种可能的结构示意图。通信装置包括:获取单元101、确定单元102以及发送单元103。其中,获取单元101用于支持通信装置执行上述实施例中的步骤S101以及S103,确定单元102用于支持通信装置执行上述实施例中的步骤S102,发送单元103用于支持通信装置执行上述实施例中的S104、S105、S1041、S1042、S1043、S1044、S1045、S1046、S106、S107以及S108。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上***(system-on-a-chip,SOC)的形式实现。
以上接收单元(或用于接收的单元)是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯 片或装置接收信号的接口电路。以上发送单元(或用于发送的单元)是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
如图36所示,其为本申请实施例提供的一种终端设备的结构示意图。其可以为以上实施例中的通信装置,用于实现以上实施例中通信装置的操作。如图35所示,该终端设备包括:天线310、射频装置320、基带装置330。天线310与射频装置320连接。在下行方向上,射频装置320通过天线310接收网络设备发送的信息,将网络设备发送的信息发送给基带装置330进行处理。在上行方向上,基带装置330对终端的信息进行处理,并发送给射频装置320,射频装置320对终端设备的信息进行处理后经过天线310发送给网络设备。
基带装置330可以包括调制解调子***,用于实现对数据各通信协议层的处理。还可以包括中央处理子***,用于实现对终端操作***以及应用层的处理。此外,还可以包括其它子***,例如多媒体子***,周边子***等,其中多媒体子***用于实现对终端设备的相机,屏幕显示等的控制,周边子***用于实现与其它设备的连接。调制解调子***可以为单独设置的芯片,可选的,以上信息通信装置可以在该调制解调子***上实现。
在一种实现中,图36所示的通信装置中的各个单元通过处理元件调度程序的形式实现,例如基带装置330的某个子***,例如调制解调子***,包括处理元件331和存储元件332,处理元件331调用存储元件332存储的程序,以执行以上方法实施例中终端执行的方法。此外,该基带装置330还可以包括接口333,用于与射频装置320交互信息。具体的,处理元件331用于执行上述实施例中的步骤S102;接口333用于执行上述实施例中在通信装置侧进行数据/信令接收或发送的步骤,例如,S101、S103、S104、S105、S1041、S1042、S1043、S1044、S1045、S1046、S106、S107以及S108。
在另一种实现中,图35所示的各个单元可以是被配置成实施以上终端设备执行的方法的一个或多个处理元件,这些处理元件设置于基带装置330的某个子***上,例如调制解调子***上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA等。这些集成电路可以集成在一起,构成芯片。
例如,图35所示的各个单元可以集成在一起,以片上***(system-on-a-chip,SOC)的形式实现,例如,基带装置330包括SOC芯片,用于实现以上方法。该芯片内可以集成处理元件331和存储元件332,由处理元件331调用存储元件332的存储的程序的形式实现以上终端执行的方法或图35所示各个单元的功能;或者,该芯片内可以集成至少一个集成电路,用于实现以上通信装置执行的方法或图35所示各个单元的功能;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
总之,以上用于终端设备的通信装置包括至少一个处理元件和存储元件,其中至少一个处理元件用于执行以上方法实施例所提供的通信装置所执行的方法。处理元件可以以第一种方式:即执行存储元件存储的程序的方式执行以上方法实施例中终端设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成 逻辑电路结合指令的方式执行以上方法实施例中终端执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上方法实施例中终端执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如中央处理器(central processing unit,CPU),还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
图37是本发明实施例提供的芯片***150的结构示意图,该芯片***150可应用于如图2所示的终端设备中。芯片***150包括至少一个处理器1510和接口电路1530。
可选的,该芯片***150还包括存储器1550,存储器1550可以包括只读存储器和随机存取存储器,并向处理器1510提供操作指令和数据。存储器1550的一部分还可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。
在一些实施方式中,存储器1550存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:
在本发明实施例中,通过调用存储器1550存储的操作指令(该操作指令可存储在操作***中),执行相应的操作。
处理器1510控制终端设备的操作,处理器1510还可以称为中央处理单元(central pocessing unit,CPU)。存储器1550可以包括只读存储器和随机存取存储器,并向处理器1510提供指令和数据。存储器1550的一部分还可以包括NVRAM。具体的应用中存储器1550、接口电路1530以及存储器1550通过总线***1520耦合在一起,其中总线***1520除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图37中将各种总线都标为总线***1520。
上述本发明实施例揭示的方法可以应用于处理器1510中,或者由处理器1510实现。处理器1510可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1510中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1510可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1550,处理器1510读取存储器1550中的信息,结合其硬件完成上述方法的步骤。
可选地,接口电路1530用于执行图5、图9、图11、图13、图14、图15、图17、图18以及图19所示的实施例中的通信装置的接收和发送的步骤。
处理器1510用于执行图5、图9、图11、图13、图14、图15、图17、图18以及图19所示的实施例中的通信装置的处理的步骤。
在上述实施例中,存储器存储的供处理器执行的指令可以以计算机程序产品的形式实现。计算机程序产品可以是事先写入在存储器中,也可以是以软件形式下载并安装在存储器中。
计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk,SSD)等。
一方面,提供一种计算机存储介质,计算机可读存储介质中存储有指令,当指令被运行时,使得通信装置执行实施例中的S101、S2、S103、S104、S105、S1041、S1042、S1043、S1044、S1045、S1046、S106、S107以及S108。和/或用于本文所描述的技术的其他由通信装置执行的过程。
一方面,提供一种包含指令的计算机程序产品,计算机程序产品中存储有指令,当指令被运行时,使得通信装置执行实施例中的S101、S2、S103、S104、S105、S1041、S1042、S1043、S1044、S1045、S1046、S106、S107以及S108。和/或用于本文所描述的技术的其他由通信装置执行的过程。
一方面,提供一种芯片***,该芯片***应用于终端设备中,芯片***包括至少一个处理器和接口电路,接口电路和至少一个处理器通过线路互联,处理器用于运行指令,以执行实施例中S101、S2、S103、S104、S105、S1041、S1042、S1043、S1044、S1045、S1046、S106、S107以及S108。和/或用于本文所描述的技术的其他由通信装置执行的过程。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个 单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (26)

  1. 一种上行传输方法,其特征在于,应用于通信装置的上行传输,所述方法包括:
    所述通信装置获取用于动态调度上行传输的控制信息,其中,所述控制信息包括为所述上行传输分配的第一时频资源的信息和所述上行传输的第一参考信号的配置信息;
    所述通信装置根据为所述上行传输分配的第一时频资源的信息和所述上行传输的第一参考信号的配置信息,确定用于发送所述第一参考信号的第二时频资源;
    所述通信装置获取半静态配置的用于上行传输的资源的第一信息,其中,所述资源包括时频资源;
    所述通信装置在基于所述控制信息进行上行传输的情况下,在所述第二时频资源和第三时频资源重叠的时频资源上不发送任何信号或者发送基于第二参考信号的配置信息生成的参考信号,其中,所述第三时频资源为所述通信装置根据所述第一信息确定的半静态配置的用于上行传输的时频资源。
  2. 根据权利要求1所述的传输方法,其特征在于,所述方法包括:
    所述通信装置在所述第二时频资源中的第四时频资源上发送根据所述第一参考信号的配置信息生成的参考信号,其中,所述第四时频资源的频率资源和所述重叠的时频资源的频率资源不存在交集,且所述第四时频资源的频率资源和所述重叠的时频资源的频率资源的并集为所述第二时频资源的频率资源。
  3. 根据权利要求1或2所述的传输方法,其特征在于,所述重叠的时频资源与所述第三时频资源中用于发送参考信号的时频资源之间的交集为空集;
    相应地,所述通信装置在基于所述控制信息进行上行传输时,在所述重叠的时频资源上不发送任何信号。
  4. 根据权利要求3所述的传输方法,其特征在于,所述方法还包括:
    当所述通信装置在所述第三时频资源中用于发送参考信号的时频资源上不发送半静态配置的参考信号时,所述通信装置在基于所述控制信息进行上行传输时,在所述第一时频资源中与所述第三时频资源中用于发送参考信号的时频资源重叠的时频资源上发送基于第二参考信号的配置信息生成的参考信号,所述半静态配置的参考信号是指用于第三时频资源传输的参考信号。
  5. 根据权利要求1-4任一项所述的传输方法,其特征在于,所述方法还包括:
    所述通信装置在所述第三时频资源中用于发送参考信号的时频资源上发送半静态配置的参考信号时,所述通信装置在基于所述控制信息进行上行传输时,在所述第一时频资源中与所述第三时频资源中用于发送参考信号的时频资源重叠的时频资源上不发送任何信号。
  6. 根据权利要求1或2所述的传输方法,其特征在于,所述重叠的时频资源包括所述第三时频资源中用于发送参考信号的时频资源的一部分或者全部;
    相应地,所述通信装置在基于所述控制信息进行上行传输时在所述重叠的时频资源上发送根据所述第二参考信号的配置信息生成的参考信号。
  7. 根据权利要求6所述的传输方法,其特征在于,所述方法还包括:所述通信装置在基于所述控制信息进行上行传输的情况下,在第五时频资源上不发送任何信号, 其中,所述第五时频资源为所述重叠的时频资源内与所述第三时频资源中用于发送参考信号的时频资源不重叠的时频资源。
  8. 根据权利要求6所述的传输方法,其特征在于,所述方法还包括:
    所述通信装置在基于所述控制信息进行上行传输时,在所述第一时频资源中的第六时频资源不发送任何信号,其中,所述第六时频资源为所述第一时频资源中与所述重叠的时频资源不重叠但与所述第三时频资源中用于发送参考信号的时频资源重叠的时频资源。
  9. 根据权利要求1-8任一项所述的传输方法,其特征在于,所述通信装置在基于所述控制信息进行上行传输时,在所述重叠的时频资源上采用所述第三时频资源对应的配置参数numerology进行上行传输。
  10. 根据权利要求1-9任一项所述的传输方法,其特征在于,所述方法还包括:
    所述通信装置采用非正交传输技术在所述第一时频资源中所述第二时频资源以外的时频资源和所述第三时频资源中用于发送参考信号的时频资源以外的时频资源的重叠的时频资源上进行上行传输。
  11. 根据权利要求1-10任一项所述的传输方法,其特征在于,所述方法还包括:
    在所述第一时频资源和所述第三时频资源重叠的时频资源上,所述通信装置采用所述第一时频资源对应的频率资源发送欲在所述第三时频资源对应的频率资源上发送的上行数据和/或参考信号。
  12. 根据权利要求1-11任一项所述的传输方法,其特征在于,所述方法还包括:
    当所述第三时频资源与所述第一时频资源的交集不为空集,且所述第三时频资源与所述第二时频资源的交集为空集时,所述通信装置在基于所述控制信息进行上行传输的情况下,在所述第三时频资源中用于发送参考信号的时频资源与所述第一时频资源重叠的时频资源上不发送任何信号或者发送基于所述第二参考信号的配置信息生成的参考信号。
  13. 一种通信装置,其特征在于,应用于通信装置的上行传输,所述通信装置包括:
    获取单元,用于获取用于动态调度上行传输的控制信息,其中,所述控制信息包括为所述上行传输分配的第一时频资源的信息和所述上行传输的第一参考信号的配置信息;
    确定单元,用于根据为所述上行传输分配的第一时频资源的信息和所述上行传输的第一参考信号的配置信息,确定用于发送所述第一参考信号的第二时频资源;
    所述获取单元,还用于获取半静态配置的用于上行传输的资源的第一信息,其中,所述资源包括时频资源;
    发送单元,用于在基于所述控制信息进行上行传输的情况下,在所述第二时频资源和第三时频资源重叠的时频资源上不发送任何信号或者发送基于第二参考信号的配置信息生成的参考信号,其中,所述第三时频资源为所述通信装置根据所述第一信息确定的半静态配置的用于上行传输的时频资源。
  14. 根据权利要求13所述的通信装置,其特征在于,所述发送单元,还用于在所述第二时频资源中的第四时频资源上发送根据所述第一参考信号的配置信息生成的参 考信号,其中,所述第四时频资源的频率资源和所述重叠的时频资源的频率资源不存在交集,且所述第四时频资源的频率资源和所述重叠的时频资源的频率资源的并集为所述第二时频资源的频率资源。
  15. 根据权利要求13或14所述的通信装置,其特征在于,所述重叠的时频资源与所述第三时频资源中用于发送参考信号的时频资源之间的交集为空集;
    相应地,所述发送单元,还用于在基于所述控制信息进行上行传输时,在所述重叠的时频资源上不发送任何信号。
  16. 根据权利要求15所述的通信装置,其特征在于,当在所述第三时频资源中用于发送参考信号的时频资源上不发送半静态配置的参考信号时,所述发送单元,还用于在基于所述控制信息进行上行传输时,在所述第一时频资源中与所述第三时频资源中用于发送参考信号的时频资源重叠的时频资源上发送基于第二参考信号的配置信息生成的参考信号,所述半静态配置的参考信号是指用于第三时频资源传输的参考信号。
  17. 根据权利要求13-16任一项所述的通信装置,其特征在于,在所述第三时频资源中用于发送参考信号的时频资源上发送半静态配置的参考信号时,所述发送单元,还用于在基于所述控制信息进行上行传输时,在所述第一时频资源中与所述第三时频资源中用于发送参考信号的时频资源重叠的时频资源上不发送任何信号。
  18. 根据权利要求13或14所述的通信装置,其特征在于,所述重叠的时频资源包括所述第三时频资源中用于发送参考信号的时频资源的一部分或者全部;
    相应地,所述发送单元,具体用于在基于所述控制信息进行上行传输时在所述重叠的时频资源上发送根据所述第二参考信号的配置信息生成的参考信号。
  19. 根据权利要求18所述的通信装置,其特征在于,所述发送单元,还用于在基于所述控制信息进行上行传输的情况下,在第五时频资源上不发送任何信号,其中,所述第五时频资源为所述重叠的时频资源内与所述第三时频资源中用于发送参考信号的时频资源不重叠的时频资源。
  20. 根据权利要求18所述的通信装置,其特征在于,所述发送单元,还用于在基于所述控制信息进行上行传输时,在所述第一时频资源中的第六时频资源不发送任何信号,其中,所述第六时频资源为所述第一时频资源中与所述重叠的时频资源不重叠但与所述第三时频资源中用于发送参考信号的时频资源重叠的时频资源。
  21. 根据权利要求13-20任一项所述的通信装置,其特征在于,所述发送单元,还用于在基于所述控制信息进行上行传输时,在所述重叠的时频资源上采用所述第三时频资源对应的配置参数numerology进行上行传输。
  22. 根据权利要求13-21任一项所述的通信装置,其特征在于,所述发送单元,具体用于采用非正交传输技术在所述第一时频资源中所述第二时频资源以外的时频资源和所述第三时频资源中用于发送参考信号的时频资源以外的时频资源的重叠的时频资源上进行上行传输。
  23. 根据权利要求13-22任一项所述的通信装置,其特征在于,在所述第一时频资源和所述第三时频资源重叠的时频资源上,所述发送单元,还用于采用所述第一时频资源对应的频率资源发送欲在所述第三时频资源对应的频率资源上发送的上行数据和/或参考信号。
  24. 根据权利要求13-23任一项所述的通信装置,其特征在于,当所述第三时频资源与所述第一时频资源的交集不为空集,且所述第三时频资源与所述第二时频资源的交集为空集时,所述发送单元在基于所述控制信息进行上行传输的情况下,在所述第三时频资源中用于发送参考信号的时频资源与所述第一时频资源重叠的时频资源上不发送任何信号或者发送基于所述第二参考信号的配置信息生成的参考信号。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令被运行时,实现上述权利要求1-12任一项所述的上行传输方法。
  26. 一种芯片***,其特征在于,应用于通信装置中,所述芯片***包括至少一个处理器和接口电路,所述接口电路和所述至少一个处理器通过线路互联,所述处理器用于运行指令,以进行权利要求1-12任一项所述的上行传输方法。
PCT/CN2019/073522 2018-01-27 2019-01-28 一种上行传输方法及装置 WO2019144964A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19743247.9A EP3735073A4 (en) 2018-01-27 2019-01-28 METHOD AND DEVICE FOR UPLINK TRANSMISSION
US16/938,587 US11265903B2 (en) 2018-01-27 2020-07-24 Uplink transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810080499.X 2018-01-27
CN201810080499.XA CN110099445B (zh) 2018-01-27 2018-01-27 一种上行传输方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/938,587 Continuation US11265903B2 (en) 2018-01-27 2020-07-24 Uplink transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2019144964A1 true WO2019144964A1 (zh) 2019-08-01

Family

ID=67395066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073522 WO2019144964A1 (zh) 2018-01-27 2019-01-28 一种上行传输方法及装置

Country Status (4)

Country Link
US (1) US11265903B2 (zh)
EP (1) EP3735073A4 (zh)
CN (1) CN110099445B (zh)
WO (1) WO2019144964A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113411890A (zh) * 2020-03-17 2021-09-17 维沃移动通信有限公司 一种传输上行控制信息的方法和通信设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111642001B (zh) * 2019-03-01 2023-11-21 中兴通讯股份有限公司 信道或信号的发送方法及装置、存储介质
WO2021062853A1 (zh) * 2019-10-01 2021-04-08 Oppo广东移动通信有限公司 信号传输方法、装置、移动终端以及存储介质
BR112022008758A2 (pt) * 2019-11-08 2022-07-26 Huawei Tech Co Ltd Método de comunicação, meio de armazenamento legível por computador e aparelho de comunicação
WO2021093144A1 (en) * 2020-01-03 2021-05-20 Zte Corporation Reference signal parameter modification for improved channel estimation in wireless communication systems
CN114885416A (zh) * 2021-02-05 2022-08-09 北京三星通信技术研究有限公司 终端及由终端执行的方法
CN113038610B (zh) * 2021-02-10 2023-06-20 展讯通信(上海)有限公司 数据传输方法、装置、设备、存储介质以及程序产品
CN113709774B (zh) * 2021-10-27 2022-02-08 鹏城实验室 免授权URLLC与动态调度eMBB的复用方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106453182A (zh) * 2015-08-07 2017-02-22 中兴通讯股份有限公司 前导发送方法和装置
CN106559844A (zh) * 2015-09-25 2017-04-05 电信科学技术研究院 一种上行传输资源调度及上行传输方法、装置
WO2017195702A1 (ja) * 2016-05-10 2017-11-16 株式会社Nttドコモ 無線通信装置及び無線通信方法
US20170359807A1 (en) * 2016-06-08 2017-12-14 Samsung Electronics Co., Ltd. Method and device for providing control information for different services
CN107637006A (zh) * 2015-11-03 2018-01-26 韩国电子通信研究院 支持非授权频带的通信网络的调度方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9198181B2 (en) * 2012-03-19 2015-11-24 Blackberry Limited Enhanced common downlink control channels
US10243715B2 (en) * 2016-04-01 2019-03-26 National Instruments Corporation Unified flexible radio access technology (RAT) for 5G mobile communication systems
WO2017204740A1 (en) * 2016-05-27 2017-11-30 Telefonaktiebolaget Lm Ericsson (Publ) Reference signal reporting in a wireless communication system
US10536314B2 (en) * 2016-06-03 2020-01-14 Centre Of Excellence In Wireless Technology OFDMA apparatus and method thereof for performing OFDM based communication in wireless communication system
WO2018004246A1 (ko) * 2016-07-01 2018-01-04 엘지전자 주식회사 무선 통신 시스템에서 기지국과 단말 간 상향링크 신호를 송수신하는 방법 및 이를 지원하는 장치
US10244399B2 (en) * 2016-09-30 2019-03-26 Qualcomm Incorporated Signature sequence-based signaling and allocation of resources of a shared spectrum
US20180338254A1 (en) * 2017-05-22 2018-11-22 Industrial Technology Research Institute Beam tracking method in multi-cell group of millimeter wave communication system and related apparatuses using the same
US11025384B2 (en) * 2017-08-04 2021-06-01 Qualcomm Incorporated Joint determination of demodulation and channel state information reference signals
WO2019139513A1 (en) * 2018-01-12 2019-07-18 Telefonaktiebolaget Lm Ericsson (Publ) Control signaling for radio access networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106453182A (zh) * 2015-08-07 2017-02-22 中兴通讯股份有限公司 前导发送方法和装置
CN106559844A (zh) * 2015-09-25 2017-04-05 电信科学技术研究院 一种上行传输资源调度及上行传输方法、装置
CN107637006A (zh) * 2015-11-03 2018-01-26 韩国电子通信研究院 支持非授权频带的通信网络的调度方法
WO2017195702A1 (ja) * 2016-05-10 2017-11-16 株式会社Nttドコモ 無線通信装置及び無線通信方法
US20170359807A1 (en) * 2016-06-08 2017-12-14 Samsung Electronics Co., Ltd. Method and device for providing control information for different services

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3735073A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113411890A (zh) * 2020-03-17 2021-09-17 维沃移动通信有限公司 一种传输上行控制信息的方法和通信设备
CN113411890B (zh) * 2020-03-17 2023-05-16 维沃移动通信有限公司 一种传输上行控制信息的方法和通信设备

Also Published As

Publication number Publication date
CN110099445B (zh) 2021-06-22
EP3735073A4 (en) 2021-01-13
CN110099445A (zh) 2019-08-06
US20200359402A1 (en) 2020-11-12
US11265903B2 (en) 2022-03-01
EP3735073A1 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
WO2019144964A1 (zh) 一种上行传输方法及装置
TWI770060B (zh) 可撓無線電服務5g nr資料傳輸
EP3372007B1 (en) Scheduling ues with mixed tti length
WO2019096206A1 (zh) 无线通信***中的装置和方法、计算机可读存储介质
US11595159B2 (en) HARQ design for wireless communications
AU2020277444B2 (en) Communication method and communication apparatus
US11647417B2 (en) Method, apparatus, computer program product and computer program
WO2019137506A1 (zh) 一种信息传输方法和装置
WO2019233398A1 (zh) 数据传输方法、通信装置及存储介质
WO2018157756A1 (zh) 数据处理方法及装置
US20220069956A1 (en) Indicating Contiguous Resource Allocation
EP4030650A1 (en) Data transmission method and apparatus
US20220377781A1 (en) Method, apparatus, computer program product and computer program
WO2019214660A1 (zh) 通信方法和通信装置
WO2019062154A1 (zh) 一种指示方法、确定方法、发送设备和接收设备
US20200137781A1 (en) Signal transmission method, related apparatus, and system
JP7440641B2 (ja) プライマリセルクロスキャリアスケジューリングの管理
WO2022032515A1 (zh) 无线通信方法、终端设备和网络设备
WO2023151030A1 (en) Base station, user equipment, and wireless communication method for extended reality traffic
US11991695B2 (en) Handlingtime-varying packet size in downlink
WO2023197309A1 (zh) 侧行通信的方法及装置
CN115190621A (zh) 上行控制信息传输方法及相关装置
CN115039477A (zh) 终端及通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019743247

Country of ref document: EP

Effective date: 20200729