WO2019144414A1 - 灯管驱动电路 - Google Patents

灯管驱动电路 Download PDF

Info

Publication number
WO2019144414A1
WO2019144414A1 PCT/CN2018/074479 CN2018074479W WO2019144414A1 WO 2019144414 A1 WO2019144414 A1 WO 2019144414A1 CN 2018074479 W CN2018074479 W CN 2018074479W WO 2019144414 A1 WO2019144414 A1 WO 2019144414A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
diode
resistor
capacitor
module
Prior art date
Application number
PCT/CN2018/074479
Other languages
English (en)
French (fr)
Inventor
李胜森
杨林
罗杨洋
杨海涛
Original Assignee
深圳市豪恩智能物联股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市豪恩智能物联股份有限公司 filed Critical 深圳市豪恩智能物联股份有限公司
Priority to PCT/CN2018/074479 priority Critical patent/WO2019144414A1/zh
Priority to CN201880000027.7A priority patent/CN108323247B/zh
Publication of WO2019144414A1 publication Critical patent/WO2019144414A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/357Driver circuits specially adapted for retrofit LED light sources
    • H05B45/3578Emulating the electrical or functional characteristics of discharge lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology

Definitions

  • the present application belongs to the field of illumination driving technologies, and in particular, to a lamp driving circuit.
  • LED light
  • LEDs emitting diodes
  • LED tubes have drive circuits to match the existing lamps and directly replace fluorescent tubes. Therefore, LED lamp tubes compatible with electronic ballasts, magnetic ballasts and AC input are available on the market, but the driving circuit can only be compatible with some electronic ballasts, the compatibility performance is poor, the circuit structure is complex, and there is a risk of electric shock.
  • the embodiment of the present application provides a lamp driving circuit to solve the problem that the lamp driving circuit of the prior art has poor compatibility, the circuit structure is complex, and there is a risk of electric shock.
  • the embodiment of the present application provides a lamp driving circuit, including: a first input circuit, a second input circuit, a frequency selection circuit, a rectification filter circuit, a step-down circuit, a rectifier circuit, a delay start circuit, a relay control circuit, and a filter.
  • a lamp driving circuit including: a first input circuit, a second input circuit, a frequency selection circuit, a rectification filter circuit, a step-down circuit, a rectifier circuit, a delay start circuit, a relay control circuit, and a filter.
  • the first input circuit inputs a first group of lamp driving currents
  • the second input circuit inputs a second group of lamp driving currents
  • the first input circuit is connected to the frequency selecting circuit, and the frequency selecting circuit and
  • the rectifying and filtering circuit is connected, the rectifying and filtering circuit is connected to the step-down circuit, the step-down circuit is connected to the filter output circuit, and the second input circuit is connected to the relay control circuit, the relay a control circuit is respectively connected to the frequency selection circuit and the rectifier circuit, the frequency selection circuit is connected to the rectifier circuit, and the rectifier circuit is respectively connected to the filter output circuit and the delay start circuit, a delay start circuit is connected to the filter output circuit;
  • the filter output circuit is connected to the lamp tube for driving the lamp to emit light.
  • the first input circuit includes a first input terminal PIN1, a second input terminal PIN2, a current fuse F1, a temperature fuse FH1, an inductor L7, an inductor L6, a common mode inductor L2, and a variable resistor R1;
  • the first input terminal PIN1 and the second input terminal PIN2 input the first group of lamp driving currents
  • the first input terminal PIN1 is connected to one end of the current fuse F1, the other end of the current fuse F1 is connected to the first end of the common mode inductor L2, and the second end of the common mode inductor L2 is connected to one end of the variable resistor R1 through the inductor L6.
  • the second input terminal PIN2 is connected to the fourth end of the common mode inductor, and the third end of the common mode inductor is sequentially connected to the other end of the variable resistor R1 through the temperature fuse FH1 and the inductor L7;
  • Both ends of the variable resistor R1 are respectively connected to the frequency selection circuit.
  • the second input circuit includes a third input terminal PIN3, a fourth input terminal PIN4, a current fuse F2, a temperature fuse FH2, an inductor L3, and an inductor L4;
  • the third input terminal PIN3 and the fourth input terminal PIN4 input the second group of lamp driving currents
  • the third input terminal PIN3 is sequentially connected to one end of the temperature fuse FH2 through the current fuse F2 and the inductor L3, and the fourth input terminal PIN4 is connected to one end of the temperature fuse FH2 through the inductor L4;
  • the other end of the thermal fuse FH2 is connected to the relay control circuit.
  • the frequency selection circuit includes a capacitor C13, a capacitor C15, and an inductor L5;
  • One end of the capacitor C13 is respectively connected to one end of the capacitor C15, one end of the inductor L5 and the relay control circuit, and the other end of the capacitor C13 is respectively connected to the first input circuit and the rectifying and filtering circuit, and the other end of the capacitor C15 is respectively Connected to the first input circuit and the rectifying filter circuit, the other end of the inductor L5 is connected to the rectifying circuit.
  • the rectifying and filtering circuit includes a first rectifying module and a filtering module, and the first rectifying module includes two alternating current input ends and two direct current output ends;
  • the two AC input ends of the first rectifier module are respectively connected to the frequency selection circuit, and the two DC output ends of the first rectifier module are respectively connected to the filter module, the filter module and the step-down Circuit connection.
  • the step-down circuit includes a buck start module and a buck control module
  • the step-down starting module is connected to the step-down control module
  • the step-down starting module is respectively connected to the rectifying filter circuit and the filter output circuit.
  • the relay control circuit includes a second rectifier module and a relay driver module
  • the second rectifier module is connected to the relay driving module
  • the second rectifier module is respectively connected to the second input circuit and the frequency selection circuit, and the relay drive module is connected to the rectifier circuit.
  • the rectifier circuit comprises a diode DB5, a diode DB6, a diode DB7 and a diode DB8;
  • the anode of the diode DB5 is respectively connected to the cathode of the diode DB7 and the frequency selection circuit, and the anode of the diode DB6 is respectively connected to the cathode of the diode DB8, the relay control circuit and the delay start circuit, and the cathode of the diode DB5 is respectively connected to the diode.
  • the cathode of DB6 is connected to the filter output circuit, and the anode of diode DB7 is connected to the anode of diode DB8 and the delay start circuit, respectively.
  • the delay start circuit includes a resistor R2, a resistor R3, a resistor R4, a capacitor C1, a capacitor C7, a diode D6, a diode D7, a trigger diode D8, and a thyristor Q2;
  • resistor R4 One end of the resistor R4 is connected to the rectifier circuit, the other end of the resistor R4 is connected to the anode of the diode D7 through the capacitor C1, the cathode of the diode D7 is connected to one end of the trigger diode D8, and the other end of the trigger diode D8 is connected to the thyristor Q2 through the resistor R3.
  • the control electrode is connected, the anode of the diode D6 is connected to the rectifier circuit, the cathode of the diode D6 is connected to the anode of the diode D7, one end of the resistor R2 is connected to the anode of the diode D6, and the other end of the resistor R2 is connected to the cathode of the diode D7.
  • the capacitor C7 is connected in parallel across the resistor R2, the anode of the thyristor Q2 is connected to the filter output circuit, and the cathode of the thyristor Q2 is connected to the anode of the diode D6.
  • the filter output circuit includes a positive output terminal LED+, a negative output terminal LED-, a capacitor C14, a capacitor C8, a polar capacitor C6, and a resistor R13;
  • the positive pole of the polar capacitor C6 is connected to the LED output of the positive output terminal, the negative pole of the polar capacitor C6 is connected to the LED output of the negative output terminal, the capacitor C14 and the resistor R13 are both connected in parallel at the two ends of the polar capacitor C6, and one end of the capacitor C8 is outputted with the negative pole.
  • the end LED is connected, and the other end of the capacitor C8 is grounded;
  • a positive output terminal LED+ is respectively connected to the step-down circuit, the rectifier circuit and the anode of the lamp tube, and the negative output terminal LED- is respectively connected to the step-down circuit, the delay start circuit and the lamp tube The negative electrode is connected.
  • the first input circuit, the frequency selection circuit, the rectification filter circuit, the step-down circuit and the filter output circuit can drive the lamp to emit light under the condition of AC input or CCG input through the first input circuit and the second input circuit.
  • the frequency selection circuit, the relay control circuit, the rectifier circuit, the delay start circuit and the filter output circuit can drive the lamp to emit light under the ECG input condition, and the circuit structure is simple. When the LED lamp is used instead of the traditional fluorescent lamp, no line change is needed.
  • Inductive reactance matching in the first input circuit and the second input circuit enhancing compatibility under the ECG input condition; using the relay control circuit for protection, effectively solving the leakage current problem and avoiding electric shock; using the rectifying and filtering circuit to reduce the electromagnetic Interference, with good electromagnetic compatibility; use delay start circuit to preheat when ECG starts, ensure ECG can start normally, extend ECG service life, and be compatible with various electronic ballasts.
  • FIG. 1 is a schematic structural diagram of a lamp driving circuit provided by an embodiment of the present application.
  • FIG. 2 is a circuit diagram of a lamp driving circuit provided by an embodiment of the present application.
  • the embodiment of the present application provides a lamp driving circuit, including: a first input circuit, a second input circuit, a frequency selection circuit, a rectification filter circuit, a step-down circuit, a rectifier circuit, Delay start circuit, relay control circuit and filter output circuit;
  • the first input circuit inputs a first group of lamp driving currents
  • the second input circuit inputs a second group of lamp driving currents
  • the first input circuit is connected to the frequency selecting circuit, and the frequency selecting circuit and
  • the rectifying and filtering circuit is connected, the rectifying and filtering circuit is connected to the step-down circuit, the step-down circuit is connected to the filter output circuit, and the second input circuit is connected to the relay control circuit, the relay a control circuit is respectively connected to the frequency selection circuit and the rectifier circuit, the frequency selection circuit is connected to the rectifier circuit, and the rectifier circuit is respectively connected to the filter output circuit and the delay start circuit, a delay start circuit is connected to the filter output circuit;
  • the filter output circuit is connected to the lamp tube for driving the lamp to emit light.
  • the ground loop in the rectifying and filtering circuit, the ground loop connected to the rectifying circuit, and the ground loop in the relay control circuit are independent ground loops, that is, the ground in the above three circuits is relatively independent.
  • the first input circuits Under AC or CCG input conditions, only one of the first input circuits has a set of lamp drive current inputs. Since the rectification filter circuit, the rectifier circuit and the relay control circuit are not common, the drive current passes through the first input circuit and the frequency selection circuit.
  • the rectifier filter circuit, the step-down circuit and the filter output circuit drive the lamp to emit light, and no current flows through the second input circuit, the relay control circuit, the rectifier circuit and the delay start circuit.
  • the first input circuit and the second input circuit Under the ECG input condition, the first input circuit and the second input circuit have drive current inputs.
  • the rectification filter circuit, the rectifier circuit and the relay control circuit are not common, the first input circuit, the second input circuit, and the frequency selection are performed.
  • the circuit, the relay control circuit, the rectifier circuit, the delay start circuit and the filter output circuit have current passing through, and the rectification filter circuit and the buck circuit do not work, and no current flows in the circuit.
  • the first input circuit has a set of lamp driving current input, wherein the driving current can be high frequency alternating current, and the high frequency alternating current sequentially passes through the frequency selecting circuit and the rectifying and filtering circuit to perform rectification and filtering, and then output direct current. And can reduce electromagnetic interference, and then adjust the output voltage through the step-down circuit, filter output circuit and lamp connection, output stable DC power, drive the lamp to emit light, and the second input circuit has no drive current input, the corresponding relay control circuit, rectifier The circuit and the delay start circuit do not constitute a complete loop and no current flows.
  • the first input circuit has a first set of lamp drive current inputs
  • the second input circuit has a second set of lamp drive current inputs, the first set of lamp drive currents and the second set of lamp drive currents It can be high-frequency alternating current, the alternating current outputted by the first input circuit, selects the required alternating current frequency through the frequency selection circuit, and then enters the rectifier circuit for rectification, and the alternating current output by the second input circuit passes through the relay control circuit to control the relay switch to be closed.
  • one current passes through the frequency selection circuit, and then enters the rectifier circuit for rectification, and the other current flows through the rectifier circuit to drive the delay start circuit to ensure the normal start of the electronic ballast, the delay start circuit and the rectifier circuit.
  • the output current enters the filter output circuit, so that the filter output circuit provides a stable voltage for the lamp, and the DC drive lamp emits light. Under the ECG input condition, no current flows through the rectification filter circuit and the buck circuit.
  • the lamp driving circuit provided by the embodiment of the present application can drive the lamp to emit light under the condition of AC input or CCG input through the first input circuit, the frequency selection circuit, the rectification filter circuit, the step-down circuit and the filter output circuit.
  • the lamp can be driven to emit light under the ECG input condition, and the circuit structure is simple, and the LED lamp is adopted.
  • the tube replaces the traditional fluorescent lamp, no circuit change is needed; the inductive reactance matching is performed in the first input circuit and the second input circuit to enhance the compatibility under the ECG input condition; and the relay control circuit is used for protection, which can effectively solve the leakage current problem.
  • use rectification and filtering circuit to reduce electromagnetic interference have good electromagnetic compatibility; use delay start circuit to preheat when ECG starts, ensure ECG can start normally, extend ECG service life, compatible with various electronic Ballast.
  • the first input circuit includes a first input terminal PIN1, a second input terminal PIN2, a current fuse F1, a temperature fuse FH1, an inductor L7, an inductor L6, a common mode inductor L2, and a variable resistor R1;
  • the first input terminal PIN1 and the second input terminal PIN2 input the first group of lamp driving currents
  • the first input terminal PIN1 is connected to one end of the current fuse F1, the other end of the current fuse F1 is connected to the first end of the common mode inductor L2, and the second end of the common mode inductor L2 is connected to one end of the variable resistor R1 through the inductor L6.
  • the second input terminal PIN2 is connected to the fourth end of the common mode inductor, and the third end of the common mode inductor is sequentially connected to the other end of the variable resistor R1 through the temperature fuse FH1 and the inductor L7;
  • Both ends of the variable resistor R1 are respectively connected to the frequency selection circuit.
  • the first input terminal PIN1 and the second input terminal PIN2 both have a high frequency alternating current input, and the high frequency alternating current input by the first input terminal PIN1 sequentially passes the current fuse F1.
  • the common mode inductor L2 and the inductor L6, the high frequency alternating current input by the second input terminal PIN2 sequentially passes through the common mode inductor L2, the temperature fuse FH1 and the inductor L7.
  • Current fuse F1 is disconnected when the current is too high, and has good overcurrent protection.
  • the temperature fuse FH1 has an over-temperature protection function to prevent the internal temperature of the lamp head from rising to 125 °C when the lamp is over-current, and the ECG, CCG and LED lamps can be protected.
  • the resistance of the variable resistor R1 increases, the impedance in the circuit changes, the current can be adjusted, and the protection circuit is not damaged.
  • the common mode inductor L2 can reduce the electromagnetic interference (EMI) and suppress the electromagnetic radiation generated by the high-speed signal line from radiating outward.
  • EMI electromagnetic interference
  • the second input circuit includes a third input terminal PIN3, a fourth input terminal PIN4, a current fuse F2, a temperature fuse FH2, an inductor L3, and an inductor L4;
  • the third input terminal PIN3 and the fourth input terminal PIN4 input the second group of lamp driving currents
  • the third input terminal PIN3 is sequentially connected to one end of the temperature fuse FH2 through the current fuse F2 and the inductor L3, and the fourth input terminal PIN4 is connected to one end of the temperature fuse FH2 through the inductor L4;
  • the other end of the thermal fuse FH2 is connected to the relay control circuit.
  • the third input terminal PIN3 and the fourth input terminal PIN4 have high frequency alternating current input, and the high frequency alternating current input by the third input terminal PIN3 sequentially passes through the current fuse F2 and the inductor L3, and the fourth input end
  • the high-frequency alternating current input by PIN4 passes through the inductor L4 and merges with the current through the inductor L3, and the combined current enters the relay control circuit through the thermal fuse FH2.
  • Current fuse F2 is disconnected when the current is too high, and has good overcurrent protection.
  • the temperature fuse FH2 has an over-temperature protection function to prevent the ECG and the LED tube from being disconnected when the internal temperature of the lamp head rises to 125 °C when the lamp is over-current.
  • Inductor L3 and inductor L4 can achieve inductive reactance matching and enhance ECG compatibility.
  • the frequency selection circuit includes a capacitor C13, a capacitor C15, and an inductor L5;
  • One end of the capacitor C13 is respectively connected to one end of the capacitor C15, one end of the inductor L5 and the relay control circuit, and the other end of the capacitor C13 is respectively connected to the first input circuit and the rectifying and filtering circuit, and the other end of the capacitor C15 is respectively Connected to the first input circuit and the rectifying filter circuit, the other end of the inductor L5 is connected to the rectifying circuit.
  • the capacitor C3, the capacitor C15 and the inductor L5 constitute a resonant frequency stabilization circuit
  • the current of the inductor is equal to the current of the capacitor
  • the voltage of the inductor leads the current by 90 ° C
  • the voltage of the capacitor lags the current by 90 ° C.
  • the capacitor is separated by straight, the inductor is separated by traffic, and the inductor and the capacitor are connected in series to form a frequency selective circuit.
  • the inductance of the inductor can select the frequency you need, and the capacitor can filter out the stable frequency formed by the direct current of the inductor. Prevents oscillation when ECG starts, avoids LED dimming, and improves ECG compatibility. After the current is selected, the current enters the rectifier circuit for rectification.
  • the current is filtered through capacitor C3 and capacitor C15 and then into the rectification filter circuit.
  • the rectifying and filtering circuit includes a first rectifying module and a filtering module, and the first rectifying module includes two alternating current input ends and two direct current output ends;
  • the two AC input ends of the first rectifier module are respectively connected to the frequency selection circuit, and the two DC output ends of the first rectifier module are respectively connected to the filter module, the filter module and the step-down Circuit connection.
  • the first rectifier module includes a diode DB1, a diode DB2, a diode DB3, and a diode DB4.
  • the anode of the diode DB1 is respectively connected to the cathode of the diode DB3 and the frequency selection circuit
  • the anode of the diode DB2 is respectively connected to the cathode of the diode DB4 and the frequency selection circuit.
  • the cathode of the diode DB1 is connected to the cathode of the diode DB2 and the filter module, respectively
  • the anode of the diode DB3 is connected to the anode of the diode DB4 and the filter module, respectively.
  • the filter module includes a capacitor C5, a capacitor C10, an inductor L1, a resistor R7, and a variable resistor R19.
  • One end of the capacitor C5 is respectively connected to one end of the variable resistor R19, one end of the capacitor C10, and a step-down circuit, and the other end of the capacitor C5 is respectively One end of the inductor L1 is connected to the rectifier module, and the other end of the inductor L1 is respectively connected to the ground, the other end of the variable resistor R19 and the other end of the capacitor C10, and the resistor R7 is connected in parallel at both ends of the inductor L1.
  • One end of the capacitor C5 is connected to the cathode of the diode DB1, and the other end of the capacitor C5 is connected to the anode of the diode DB3.
  • the diode DB1, the diode DB2, the diode DB3 and the diode DB4 form a rectifier bridge circuit
  • the capacitor C5, the capacitor C10, the resistor R7 and the inductor L1 in the filter module form a ⁇ -type filter circuit, which can effectively reduce EMI and improve the circuit. stability.
  • the step-down circuit includes a buck start module and a buck control module
  • the step-down starting module is connected to the step-down control module
  • the step-down starting module is respectively connected to the rectifying filter circuit and the filter output circuit.
  • the buck start module includes a resistor R16, a resistor R17, a resistor R18, a capacitor C9, a diode D1, a diode D2, a Zener diode D3, and a transformer T1.
  • One end of the resistor R17 is respectively connected to a cathode of the diode D1, a rectifying filter circuit, and a filter.
  • the output circuit is connected, the other end of the resistor R17 is connected to one end of the resistor R18, and the other end of the resistor R18 is respectively connected with one end of the capacitor C9, the cathode of the Zener diode D3, the cathode of the diode D2, and the step-down control module, and the capacitor C9 is another.
  • One end and the positive pole of the Zener diode D3 are grounded, the anode of the diode D1 is respectively connected with the first end of the transformer T1 and the step-down control module, the anode of the diode D2 is connected with one end of the resistor R16, and the other end of the resistor R16 is respectively connected with the transformer T1.
  • the second end is connected to the buck control module, the third end of the transformer T1 is connected to the filter output circuit, and the fourth end of the transformer T1 is grounded.
  • the step-down control module includes a resistor R9, a resistor R10, a resistor R11, a resistor R12, a resistor R14, a resistor R15, a resistor R20, a resistor R21, a resistor R8, a capacitor C11, a diode D4, a MOS transistor Q3, and a driving chip U1, and drives the chip U1.
  • the ISEN terminal is connected to one end of the resistor R9, and the other end of the resistor R9 is connected to one end of the resistor R11, one end of the resistor R12, one end of the resistor R8, and the source of the MOS transistor Q3, and the other end of the resistor R11 and the other end of the resistor R12.
  • the other end of the resistor R8 is connected to the gate of the MOS transistor Q3, the GND end of the driving chip U1 is grounded, and the COMP end of the driving chip U1 is grounded through the resistor R21 and the capacitor C11 in turn, and the VSEN terminal of the driving chip U1 is respectively connected with the resistor R14.
  • One end of the resistor is connected to one end of the resistor R15, the other end of the resistor R14 is connected to the step-down starting module, and the other end of the resistor R15 is grounded.
  • the VIN terminal of the driving chip U1 is connected with the step-down starting module, and the DRV terminals of the driving chip U1 are respectively connected with the resistor.
  • R10 One end of R10 is connected to the cathode of diode D4, the other end of resistor R10 is connected to the gate of MOS transistor Q3, the anode of diode D4 is connected to the gate of MOS transistor Q3 through resistor R20, and the drain of MOS transistor Q3 is stepped down. Module.
  • the VIN terminal of the driving chip U1 is connected to the negative terminal of the diode D2, and the VSEN terminal of the driving chip U1 is connected to the second terminal of the transformer T1 through a resistor R14, and the drain of the MOS transistor is connected to the anode of the diode D1.
  • the first end of the transformer T1 corresponds to the port 5
  • the second end corresponds to the port 7
  • the third end corresponds to the port 1
  • the fourth end corresponds to the port 8.
  • the step-down circuit adopts the BUCK common application circuit, and the circuit structure is simple.
  • the resistor R17, the resistor R18, the capacitor C9, the voltage regulator D3, the diode D2, the resistor R16 and the VIN terminal form a power start circuit.
  • the resistor R10, the diode D4, the resistor R20 and the DRV terminal form a gate driving circuit for driving the MOS transistor Q3, and the resistor R14, the resistor R15 and the VSEN terminal form an overvoltage protection circuit, which can perform voltage detection, the MOS transistor Q3, the resistor R11,
  • the resistor R12, the resistor R9 and the ISEN terminal form an output power adjustment circuit, which can perform current detection and adjust the output power.
  • the resistor R21, the capacitor C11 and the COMP end constitute a compensation circuit, and the power factor and the constant current precision can be adjusted.
  • the relay control circuit includes a second rectifier module and a relay driver module
  • the second rectifier module is connected to the relay driving module
  • the second rectifier module is respectively connected to the second input circuit and the frequency selection circuit, and the relay drive module is connected to the rectifier circuit.
  • the second rectifier module includes a diode DB9, a diode DB10, a diode DB11, a diode DB12, a capacitor C12, a capacitor C16, and a capacitor C3.
  • One end of the capacitor C12 is respectively connected to the second input circuit and the relay driving module, and the other end of the capacitor C12
  • Each is connected to the anode of the diode DB9, the cathode of the diode DB11, and one end of the capacitor C16.
  • the cathode of the diode DB9 is connected to the cathode of the diode DB10 and one end of the capacitor C3, respectively.
  • the anode of the diode DB11 is connected to the ground, the anode of the diode DB12, and the capacitor C3.
  • the other end is connected to the relay driving module, and the anode of the diode DB10 is respectively connected to the negative electrode of the diode DB12 and the frequency selective circuit.
  • the relay driving module comprises a resistor R5, a resistor R6, a capacitor C4, a MOS transistor Q1, a Zener diode D5 and a relay K1.
  • One end of the resistor R6 is respectively connected with one end of the resistor R5 and the second rectifier module, and the other end of the resistor R6 is respectively stabilized.
  • the cathode of the pressure tube D5 is connected to the gate of the MOS transistor Q1
  • the other end of the resistor R5 is connected to the drain of the MOS transistor Q1
  • the anode of the Zener diode D5 is connected to the ground, one end of the capacitor C4 and one end of the relay K1, respectively.
  • the other end of C4 and the other end of the relay K1 are connected to the source stage of the MOS transistor Q1. After the first switch and the second switch of the relay K1 are closed, the relay control module is respectively connected to the second rectifying module and the rectifying circuit.
  • the alternating current outputted by the second input circuit enters the second rectifier module for filtering and rectification, and the output direct current enters the relay drive module, and the relay drive module linearly regulates the input direct current to provide a stable direct current to the relay K1.
  • the relay drive module linearly regulates the input direct current to provide a stable direct current to the relay K1.
  • the rectifier circuit comprises a diode DB5, a diode DB6, a diode DB7 and a diode DB8;
  • the anode of the diode DB5 is respectively connected to the cathode of the diode DB7 and the frequency selection circuit, and the anode of the diode DB6 is respectively connected to the cathode of the diode DB8, the relay control circuit and the delay start circuit, and the cathode of the diode DB5 is respectively connected to the diode.
  • the cathode of DB6 is connected to the filter output circuit, and the anode of diode DB7 is connected to the anode of diode DB8 and the delay start circuit, respectively.
  • the diode DB5, the diode DB6, the diode DB7 and the diode DB8 in the rectifier circuit form a rectifier bridge circuit, which can convert the input alternating current into direct current for output, and the output two direct currents respectively enter the filter output circuit and the delay start circuit.
  • the delay start circuit includes a resistor R2, a resistor R3, a resistor R4, a capacitor C1, a capacitor C7, a diode D6, a diode D7, a trigger diode D8, and a thyristor Q2;
  • resistor R4 One end of the resistor R4 is connected to the rectifier circuit, the other end of the resistor R4 is connected to the anode of the diode D7 through the capacitor C1, the cathode of the diode D7 is connected to one end of the trigger diode D8, and the other end of the trigger diode D8 is connected to the thyristor Q2 through the resistor R3.
  • the control electrode is connected, the anode of the diode D6 is connected to the rectifier circuit, the cathode of the diode D6 is connected to the anode of the diode D7, one end of the resistor R2 is connected to the anode of the diode D6, and the other end of the resistor R2 is connected to the cathode of the diode D7.
  • the capacitor C7 is connected in parallel across the resistor R2, the anode of the thyristor Q2 is connected to the filter output circuit, and the cathode of the thyristor Q2 is connected to the anode of the diode D6.
  • the resistor R4 and the capacitor C1 are coupled at a high frequency, the diode D6 and the diode D7 are chopped, the negative half wave of the high frequency sine wave is removed, and the positive half wave is filtered by the resistor R2 and the capacitor C7.
  • the control trigger diode D8 when the voltage across the trigger diode D8 reaches a certain value, the trigger diode D8 is turned on, the control pole of the thyristor Q2 has a current, can control the on and off of the thyristor Q2, realize the function of delay start, so
  • the ECG starts there is a 200ms ⁇ 500ms startup warm-up process, which can control the ECG startup and load time, improve compatibility, ensure that each ECG can start normally and stably, and can extend the service life of the ECG.
  • the filter output circuit includes a positive output terminal LED+, a negative output terminal LED-, a capacitor C14, a capacitor C8, a polar capacitor C6, and a resistor R13;
  • the positive pole of the polar capacitor C6 is connected to the LED output of the positive output terminal, the negative pole of the polar capacitor C6 is connected to the LED output of the negative output terminal, the capacitor C14 and the resistor R13 are both connected in parallel at the two ends of the polar capacitor C6, and one end of the capacitor C8 is outputted with the negative pole.
  • the end LED is connected, and the other end of the capacitor C8 is grounded;
  • a positive output terminal LED+ is respectively connected to the step-down circuit, the rectifier circuit and the anode of the lamp tube, and the negative output terminal LED- is respectively connected to the step-down circuit, the delay start circuit and the lamp tube The negative electrode is connected.
  • the polarity capacitor C6, the capacitor C14, the capacitor C8 and the resistor R13 in the filter output circuit can filter the current to ensure the stability of the output current, ensure the normal start of the lamp, and the positive electrode LED+ and the positive electrode of the lamp.
  • the negative output LED-and the negative pole of the lamp provide stable DC power to the lamp and drive the lamp to illuminate normally.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本申请适用于照明驱动技术领域,提供了一种灯管驱动电路,包括:第一输入电路、第二输入电路、选频电路、整流滤波电路、降压电路、整流电路、延时启动电路、继电器控制电路和滤波输出电路;第一输入电路与选频电路连接,选频电路与整流滤波电路连接,整流滤波电路与降压电路连接,降压电路与滤波输出电路连接,第二输入电路与继电器控制电路连接,继电器控制电路分别与选频电路和整流电路连接,选频电路与整流电路连接,整流电路分别与滤波输出电路和延时启动电路连接,延时启动电路与滤波输出电路连接;滤波输出电路与灯管连接,用于驱动灯管发光。本申请兼容性强,电路结构简单,安全稳定。

Description

灯管驱动电路 技术领域
本申请属于照明驱动技术领域,尤其涉及一种灯管驱动电路。
背景技术
传统的日光照明是采用荧光灯管与镇流器组合的方式实现的,一般有电感镇流器(inductance ballast,CCG)加启动器,或者电子镇流器(electronic ballast,ECG)两种形式。而随着新型照明材料发光二极管(light emitting diode,LED)的普及,逐渐出现多种代替荧光灯管的LED灯管,LED灯管都带有驱动电路,以配合现有的灯具使用,直接替代荧光灯管。因此,市面上出现兼容电子镇流器、电感镇流器和交流输入的LED灯管,但是其驱动电路只能兼容部分电子镇流器,兼容性能较差,电路结构复杂,而且存在触电风险。
技术问题
有鉴于此,本申请实施例提供了一种灯管驱动电路,以解决现有技术中灯管驱动电路兼容性能较差,电路结构复杂,而且存在触电风险的问题。
技术解决方案
本申请实施例提供了一种灯管驱动电路,包括:第一输入电路、第二输入电路、选频电路、整流滤波电路、降压电路、整流电路、延时启动电路、继电器控制电路和滤波输出电路;
所述第一输入电路输入第一组灯管驱动电流,所述第二输入电路输入第二组灯管驱动电流,所述第一输入电路与所述选频电路连接,所述选频电路与所述整流滤波电路连接,所述整流滤波电路与所述降压电路连接,所述降压电路与所述滤波输出电路连接,所述第二输入电路与所述继电器控制电路连接,所述继电器控制电路分别与所述选频电路和所述整流电路连接,所述选频电路与所述整流电路连接,所述整流电路分别与所述滤波输出电路和所述延时启动电路连接,所述延时启动电路与所述滤波输出电路连接;
所述滤波输出电路与灯管连接,用于驱动灯管发光。
进一步地,所述第一输入电路包括第一输入端PIN1、第二输入端PIN2、电流保险丝F1、温度保险丝FH1、电感L7、电感L6、共模电感L2和可变电阻R1;
第一输入端PIN1和第二输入端PIN2输入所述第一组灯管驱动电流;
第一输入端PIN1与电流保险丝F1的一端连接,电流保险丝F1的另一端与共模电感L2的第一端连接,共模电感L2的第二端通过电感L6与可变电阻R1的一端连接,第二输入端PIN2与共模电感的第四端连接,共模电感的第三端依次通过温度保险丝FH1和电感L7与可变电阻R1的另一端连接;
可变电阻R1的两端分别与所述选频电路连接。
进一步地,所述第二输入电路包括第三输入端PIN3、第四输入端PIN4、电流保险丝F2、温度保险丝FH2、电感L3和电感L4;
第三输入端PIN3和第四输入端PIN4输入所述第二组灯管驱动电流;
第三输入端PIN3依次通过电流保险丝F2和电感L3与温度保险丝FH2的一端连接,第四输入端PIN4通过电感L4与温度保险丝FH2的一端连接;
温度保险丝FH2的另一端与继电器控制电路连接。
进一步地,所述选频电路包括电容C13、电容C15和电感L5;
电容C13的一端分别与电容C15的一端、电感L5的一端和所述继电器控制电路连接,电容C13的另一端分别与所述第一输入电路和所述整流滤波电路连接,电容C15的另一端分别与所述第一输入电路和所述整流滤波电路连接,电感L5的另一端与所述整流电路连接。
进一步地,所述整流滤波电路包括第一整流模块和滤波模块,所述第一整流模块包括两个交流输入端和两个直流输出端;
所述第一整流模块的两个交流输入端分别与所述选频电路连接,所述第一整流模块的两个直流输出端分别与所述滤波模块连接,所述滤波模块与所述降压电路连接。
进一步地,所述降压电路包括降压启动模块和降压控制模块;
所述降压启动模块与所述降压控制模块连接;
所述降压启动模块分别与所述整流滤波电路和所述滤波输出电路连接。
进一步地,所述继电器控制电路包括第二整流模块和继电器驱动模块;
所述第二整流模块与所述继电器驱动模块连接;
所述第二整流模块分别与所述第二输入电路和所述选频电路连接,所述继电器驱动模块与所述整流电路连接。
进一步地,所述整流电路包括二极管DB5、二极管DB6、二极管DB7和二极管DB8;
二极管DB5的正极分别与二极管DB7的负极和所述选频电路连接,二极管DB6的正极分别与二极管DB8的负极、所述继电器控制电路和所述延时启动电路连接,二极管DB5的负极分别与二极管DB6的负极和所述滤波输出电路连接,二极管DB7的正极分别与二极管DB8的正极和所述延时启动电路连接。
进一步地,所述延时启动电路包括电阻R2、电阻R3、电阻R4、电容C1、电容C7、二极管D6、二极管D7、触发二级管D8和晶闸管Q2;
电阻R4的一端与所述整流电路连接,电阻R4的另一端通过电容C1与二极管D7的正极连接,二极管D7的负极与触发二极管D8的一端连接,触发二极管D8的另一端通过电阻R3与晶闸管Q2的控制极连接,二极管D6的正极与所述整流电路连接,二极管D6的负极与二极管D7的正极连接,电阻R2的一端与二极管D6的正极连接,电阻R2的另一端与二极管D7的负极连接,电容C7并联在电阻R2的两端,晶闸管Q2的阳极与所述滤波输出电路连接,晶闸管Q2的阴极与二极管D6的正极连接。
进一步地,所述滤波输出电路包括正极输出端LED+、负极输出端LED-、电容C14、电容C8、极性电容C6和电阻R13;
极性电容C6的正极与正极输出端LED+连接,极性电容C6的负极与负极输出端LED-连接,电容C14和电阻R13均并联在极性电容C6的两端,电容C8的一端与负极输出端LED-连接,电容C8的另一端接地;
正极输出端LED+分别与所述降压电路、所述整流电路和所述灯管的正极连接,负极输出端LED-分别与所述降压电路、所述延时启动电路和所述灯管的负极连接。
有益效果
本申请实施例通过第一输入电路、选频电路、整流滤波电路、降压电路和滤波输出电路,可以在交流输入或CCG输入条件下驱动灯管发光,通过第一输入电路、第二输入电路、选频电路、继电器控制电路、整流电路、延时启动电路和滤波输出电路,可以在ECG输入条件下驱动灯管发光,电路结构简单,采用LED灯管替代传统的荧光灯时,无需进行线路更改;在第一输入电路和第二输入电路中进行感抗匹配,增强ECG输入条件下的兼容性;利用继电器控制电路进行保护,能够有效解决漏电流问题,避免发生触电;利用整流滤波电路降低电磁干扰,具有良好的电磁兼容性;采用延时启动电路,在ECG启动时进行预热,保证ECG能够正常稳定启动,延长ECG使用寿命,兼容各种电子镇流器。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种灯管驱动电路的结构示意图;
图2是本申请实施例提供的一种灯管驱动电路的电路图。
本发明的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定***结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的***、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
为了说明本申请所述的技术方案,下面通过具体实施例来进行说明。
请一并参考图1及图2,本申请实施例提供了一种灯管驱动电路,包括:第一输入电路、第二输入电路、选频电路、整流滤波电路、降压电路、整流电路、延时启动电路、继电器控制电路和滤波输出电路;
所述第一输入电路输入第一组灯管驱动电流,所述第二输入电路输入第二组灯管驱动电流,所述第一输入电路与所述选频电路连接,所述选频电路与所述整流滤波电路连接,所述整流滤波电路与所述降压电路连接,所述降压电路与所述滤波输出电路连接,所述第二输入电路与所述继电器控制电路连接,所述继电器控制电路分别与所述选频电路和所述整流电路连接,所述选频电路与所述整流电路连接,所述整流电路分别与所述滤波输出电路和所述延时启动电路连接,所述延时启动电路与所述滤波输出电路连接;
所述滤波输出电路与灯管连接,用于驱动灯管发光。
具体地,整流滤波电路中的地回路、与整流电路连接的地回路和继电器控制电路中的地回路均为独立的地回路,也就是说上述三个电路中的地是相对独立的。在交流或CCG输入条件下,只有第一输入电路中有一组灯管驱动电流输入,由于整流滤波电路、整流电路和继电器控制电路不共地,因此,驱动电流经过第一输入电路、选频电路、整流滤波电路、降压电路和滤波输出电路,驱动灯管发光,而第二输入电路、继电器控制电路、整流电路和延时启动电路中没有电流经过。在ECG输入条件下,第一输入电路和第二输入电路均有驱动电流输入,由于整流滤波电路、整流电路和继电器控制电路不共地,因此,第一输入电路、第二输入电路、选频电路、继电器控制电路、整流电路、延时启动电路和滤波输出电路中有电流经过,而整流滤波电路和降压电路不工作,电路中没有电流经过。
在交流或CCG输入条件下,第一输入电路有一组灯管驱动电流输入,这里的驱动电流可以为高频交流电,高频交流电依次通过选频电路和整流滤波电路,进行整流滤波后输出直流电,并且能够降低电磁干扰,再通过降压电路调整输出电压,滤波输出电路和灯管连接,输出稳定的直流电,驱动灯管发光,而第二输入电路没有驱动电流输入,相应的继电器控制电路、整流电路和延时启动电路不构成完整回路,没有电流经过。
在ECG输入条件下,第一输入电路有第一组灯管驱动电流输入,第二输入电路有第二组灯管驱动电流输入,第一组灯管驱动电流和第二组灯管驱动电流都可以是高频交流电,第一输入电路输出的交流电,通过选频电路,选择需要的交流电频率,再进入整流电路进行整流,第二输入电路输出的交流电,通过继电器控制电路,控制继电器开关闭合后,继电器控制电路中一路电流经过选频电路,再进入整流电路进行整流,另一路电流与经过整流电路,驱动延时启动电路,保证电子镇流器的正常启动,延时启动电路和整流电路的输出电流,进入滤波输出电路,使滤波输出电路为灯管提供稳定电压,直流驱动灯管发光。在ECG输入条件下,整流滤波电路和降压电路中没有电流通过。
由以上描述可知,本申请实施例提供的灯管驱动电路通过第一输入电路、选频电路、整流滤波电路、降压电路和滤波输出电路,可以在交流输入或CCG输入条件下驱动灯管发光,通过第一输入电路、第二输入电路、选频电路、继电器控制电路、整流电路、延时启动电路和滤波输出电路,可以在ECG输入条件下驱动灯管发光,电路结构简单,采用LED灯管替代传统的荧光灯时,无需进行线路更改;在第一输入电路和第二输入电路中进行感抗匹配,增强ECG输入条件下的兼容性;利用继电器控制电路进行保护,能够有效解决漏电流问题,避免发生触电;利用整流滤波电路降低电磁干扰,具有良好的电磁兼容性;采用延时启动电路,在ECG启动时进行预热,保证ECG能够正常稳定启动,延长ECG使用寿命,兼容各种电子镇流器。
进一步地,所述第一输入电路包括第一输入端PIN1、第二输入端PIN2、电流保险丝F1、温度保险丝FH1、电感L7、电感L6、共模电感L2和可变电阻R1;
第一输入端PIN1和第二输入端PIN2输入所述第一组灯管驱动电流;
第一输入端PIN1与电流保险丝F1的一端连接,电流保险丝F1的另一端与共模电感L2的第一端连接,共模电感L2的第二端通过电感L6与可变电阻R1的一端连接,第二输入端PIN2与共模电感的第四端连接,共模电感的第三端依次通过温度保险丝FH1和电感L7与可变电阻R1的另一端连接;
可变电阻R1的两端分别与所述选频电路连接。
具体地,在第一输入电路的电流输入为高频交流电时,第一输入端PIN1和第二输入端PIN2均有高频交流电输入,第一输入端PIN1输入的高频交流电依次通过电流保险丝F1、共模电感L2和电感L6,第二输入端PIN2输入的高频交流电依次通过共模电感L2、温度保险丝FH1和电感L7。电流保险丝F1在电流过大时断开,具有良好的过流保护作用。温度保险丝FH1具有过温保护的作用,防止灯管过流时灯头内部温度上升到125℃时断开输入,可以保护ECG、CCG与LED灯管。可变电阻R1在电路温度升高时,可变电阻R1的阻值增大,电路中的阻抗发生变化,能够调节电流,保护电路不被损坏。共模电感L2可以起到降低电磁干扰(Electromagnetic Interference,EMI)的作用,能够抑制高速信号线产生的电磁波向外辐射。电感L7和电感L6具体可以是贴片电感,可以利用X L= 2πfL可以计算感抗,匹配电路需要的感抗值,增强ECG的兼容性。
进一步地,所述第二输入电路包括第三输入端PIN3、第四输入端PIN4、电流保险丝F2、温度保险丝FH2、电感L3和电感L4;
第三输入端PIN3和第四输入端PIN4输入所述第二组灯管驱动电流;
第三输入端PIN3依次通过电流保险丝F2和电感L3与温度保险丝FH2的一端连接,第四输入端PIN4通过电感L4与温度保险丝FH2的一端连接;
温度保险丝FH2的另一端与继电器控制电路连接。
具体地,在ECG输入条件下,第三输入端PIN3和第四输入端PIN4均有高频交流电输入,第三输入端PIN3输入的高频交流电依次通过电流保险丝F2和电感L3,第四输入端PIN4输入的高频交流电通过电感L4后,与通过电感L3的电流合并,合并后的电流通过温度保险丝FH2进入继电器控制电路。电流保险丝F2在电流过大时断开,具有良好的过流保护作用。温度保险丝FH2具有过温保护的作用,防止灯管过流时灯头内部温度上升到125℃时断开输入,可以保护ECG与LED灯管。电感L3和电感L4可以实现感抗匹配,增强ECG的兼容性。
进一步地,所述选频电路包括电容C13、电容C15和电感L5;
电容C13的一端分别与电容C15的一端、电感L5的一端和所述继电器控制电路连接,电容C13的另一端分别与所述第一输入电路和所述整流滤波电路连接,电容C15的另一端分别与所述第一输入电路和所述整流滤波电路连接,电感L5的另一端与所述整流电路连接。
具体地,在ECG输入条件下,电容C3、电容C15和电感L5组成谐振稳频电路,电感的电流与电容的电流相等,电感的电压超前电流90℃,电容的电压滞后电流90℃。电容隔直通交,电感隔交通直,电感跟电容串联可以形成选频电路,电感的感量大小可以选出你所需要的频率,电容可以过滤掉通过电感的直流电形成的稳定频率。防止ECG启动时产生振荡,避免出现LED抖灯现象,提高ECG兼容性。电流经过选频后进入整流电路中进行整流。
在交流或CCG输入条件下,电流经过电容C3和电容C15进行滤波,然后进入整流滤波电路。
进一步地,所述整流滤波电路包括第一整流模块和滤波模块,所述第一整流模块包括两个交流输入端和两个直流输出端;
所述第一整流模块的两个交流输入端分别与所述选频电路连接,所述第一整流模块的两个直流输出端分别与所述滤波模块连接,所述滤波模块与所述降压电路连接。
具体地,第一整流模块包括二极管DB1、二极管DB2、二极管DB3和二极管DB4,二极管DB1的正极分别与二极管DB3的负极和选频电路连接,二极管DB2的正极分别与二极管DB4的负极和选频电路连接,二极管DB1的负极分别与二极管DB2的负极和滤波模块连接,二极管DB3的正极分别与二极管DB4的正极和滤波模块连接。
滤波模块包括电容C5、电容C10、电感L1、电阻R7和可变电阻R19,电容C5的一端分别与可变电阻R19的一端、电容C10的一端和降压电路连接,电容C5的另一端分别与电感L1的一端和整流模块连接,电感L1的另一端分别与地、可变电阻R19的另一端和电容C10的另一端连接,电阻R7并联在电感L1的两端。
电容C5的一端与二极管DB1的负极连接,电容C5的另一端与二极管DB3的正极连接。
第一整流模块中二极管DB1、二极管DB2、二极管DB3和二极管DB4组成整流桥电路,滤波模块中的电容C5、电容C10、电阻R7和电感L1组成π型滤波电路,可以有效降低EMI,提高电路的稳定性。
进一步地,所述降压电路包括降压启动模块和降压控制模块;
所述降压启动模块与所述降压控制模块连接;
所述降压启动模块分别与所述整流滤波电路和所述滤波输出电路连接。
具体地,降压启动模块包括电阻R16、电阻R17、电阻R18、电容C9、二极管D1、二极管D2、稳压管D3和变压器T1,电阻R17的一端分别与二极管D1的负极、整流滤波电路和滤波输出电路连接,电阻R17的另一端与电阻R18的一端连接,电阻R18的另一端分别与电容C9的一端、稳压管D3的负极、二极管D2的负极和降压控制模块连接,电容C9的另一端和稳压管D3的正极均接地,二极管D1的正极分别与变压器T1的第一端和降压控制模块连接,二极管D2的正极与电阻R16的一端连接,电阻R16的另一端分别与变压器T1的第二端和降压控制模块连接,变压器T1的第三端与滤波输出电路连接,变压器T1的第四端接地。
降压控制模块包括电阻R9、电阻R10、电阻R11、电阻R12、电阻R14、电阻R15、电阻R20、电阻R21、电阻R8、电容C11、二极管D4、MOS管Q3和驱动芯片U1,驱动芯片U1的ISEN端与电阻R9的一端连接,电阻R9的另一端分别与电阻R11的一端、电阻R12的一端、电阻R8的一端和MOS管Q3的源级连接,电阻R11的另一端和电阻R12的另一端均接地,电阻R8的另一端与MOS管Q3的栅极连接,驱动芯片U1的GND端接地,驱动芯片U1的COMP端依次通过电阻R21和电容C11接地,驱动芯片U1的VSEN端分别与电阻R14的一端和电阻R15的一端连接,电阻R14的另一端与降压启动模块连接,电阻R15的另一端接地,驱动芯片U1的VIN端与降压启动模块连接,驱动芯片U1的DRV端分别与电阻R10的一端和二极管D4的负极连接,电阻R10的另一端与MOS管Q3的栅极连接,二极管D4的正极通过电阻R20与MOS管Q3的栅极连接,MOS管Q3的漏极与降压启动模块连接。
驱动芯片U1的VIN端与二极管D2的负极连接,驱动芯片U1的VSEN端通过电阻R14与变压器T1的第二端连接,MOS管的漏极与二极管D1的正极连接。
变压器T1的第一端对应端口5,第二端对应端口7,第三端对应端口1,第四端对应端口8。
在交流或CCG输入条件下,降压电路采用BUCK共地典型应用电路,电路结构简单,电阻R17、电阻R18、电容C9、稳压管D3、二极管D2、电阻R16和VIN端组成电源启动电路,电阻R10、二极管D4、电阻R20和DRV端组成栅极驱动电路,用于驱动MOS管Q3,电阻R14、电阻R15和VSEN端组成过压保护电路,可以进行电压检测,MOS管Q3、电阻R11、电阻R12、电阻R9和ISEN端组成输出功率调节电路,可以进行电流检测,调节输出功率,电阻R21、电容C11和COMP端组成补偿电路,可以调节功率因数和恒流精度。
进一步地,所述继电器控制电路包括第二整流模块和继电器驱动模块;
所述第二整流模块与所述继电器驱动模块连接;
所述第二整流模块分别与所述第二输入电路和所述选频电路连接,所述继电器驱动模块与所述整流电路连接。
具体地,第二整流模块包括二极管DB9、二极管DB10、二极管DB11、二极管DB12、电容C12、电容C16和电容C3,电容C12的一端分别与第二输入电路和继电器驱动模块连接,电容C12的另一端分别与二极管DB9的正极、二极管DB11的负极和电容C16的一端连接,二极管DB9的负极分别与二极管DB10的负极和电容C3的一端连接,二极管DB11的正极分别与地、二极管DB12的正极、电容C3的另一端和继电器驱动模块连接,二极管DB10的正极分别与二极管DB12的负极和选频电路连接。
继电器驱动模块包括电阻R5、电阻R6、电容C4、MOS管Q1、稳压管D5和继电器K1,电阻R6的一端分别与电阻R5的一端和第二整流模块连接,电阻R6的另一端分别与稳压管D5的负极和MOS管Q1的栅极连接,电阻R5的另一端与MOS管Q1的漏极连接,稳压管D5的正极分别与地、电容C4的一端和继电器K1的一端连接,电容C4的另一端和继电器K1的另一端均与MOS管Q1的源级连接,继电器K1的第一开关和第二开关闭合后,继电器控制模块分别与第二整流模块和整流电路连接。
在ECG输入条件下,第二输入电路输出的交流电进入第二整流模块进行滤波整流,输出的直流电进入继电器驱动模块,继电器驱动模块对输入的直流电进行线性稳压,将稳定的直流电提供给继电器K1,在继电器K1的两个开关闭合后,两条通路的电流中一路通过选频电路进入整流电路,另一路经过整流电路进入延时启动电路,继电器K1的第一开关对应端口3和端口4,第二开关对应端口9和端口10。
进一步地,所述整流电路包括二极管DB5、二极管DB6、二极管DB7和二极管DB8;
二极管DB5的正极分别与二极管DB7的负极和所述选频电路连接,二极管DB6的正极分别与二极管DB8的负极、所述继电器控制电路和所述延时启动电路连接,二极管DB5的负极分别与二极管DB6的负极和所述滤波输出电路连接,二极管DB7的正极分别与二极管DB8的正极和所述延时启动电路连接。
具体地,整流电路中的二极管DB5、二极管DB6、二极管DB7和二极管DB8组成整流桥电路,可以将输入的交流电转换为直流电进行输出,输出的两路直流电分别进入滤波输出电路和延时启动电路。
进一步地,所述延时启动电路包括电阻R2、电阻R3、电阻R4、电容C1、电容C7、二极管D6、二极管D7、触发二级管D8和晶闸管Q2;
电阻R4的一端与所述整流电路连接,电阻R4的另一端通过电容C1与二极管D7的正极连接,二极管D7的负极与触发二极管D8的一端连接,触发二极管D8的另一端通过电阻R3与晶闸管Q2的控制极连接,二极管D6的正极与所述整流电路连接,二极管D6的负极与二极管D7的正极连接,电阻R2的一端与二极管D6的正极连接,电阻R2的另一端与二极管D7的负极连接,电容C7并联在电阻R2的两端,晶闸管Q2的阳极与所述滤波输出电路连接,晶闸管Q2的阴极与二极管D6的正极连接。
具体地,延时启动电路中电阻R4和电容C1高频耦合,二极管D6和二极管D7进行斩波,把高频正弦波的负半波斩掉,正半波在电阻R2和电容C7的滤波作用下,控制触发二极管D8,在触发二极管D8两端的电压达到一定值时,触发二极管D8导通,晶闸管Q2的控制极有电流通过,可以控制晶闸管Q2的通断,实现延时启动的功能,这样在ECG启动时有一个200ms~500ms的启动预热过程,可以很好的控制ECG启动和带载时间,提高兼容性,保证每一款ECG都能正常稳定启动,并且能够延长ECG的使用寿命。
进一步地,所述滤波输出电路包括正极输出端LED+、负极输出端LED-、电容C14、电容C8、极性电容C6和电阻R13;
极性电容C6的正极与正极输出端LED+连接,极性电容C6的负极与负极输出端LED-连接,电容C14和电阻R13均并联在极性电容C6的两端,电容C8的一端与负极输出端LED-连接,电容C8的另一端接地;
正极输出端LED+分别与所述降压电路、所述整流电路和所述灯管的正极连接,负极输出端LED-分别与所述降压电路、所述延时启动电路和所述灯管的负极连接。
具体地,滤波输出电路中的极性电容C6、电容C14、电容C8和电阻R13,可以对电流进行滤波,保证输出电流的稳定,确保灯管的正常启动,正极输出端LED+和灯管的正极连接,负极输出端LED-和灯管的负极连接,为灯管提供稳定的直流电,驱动灯管正常发光。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种灯管驱动电路,其特征在于,包括:第一输入电路、第二输入电路、选频电路、整流滤波电路、降压电路、整流电路、延时启动电路、继电器控制电路和滤波输出电路;
    所述第一输入电路输入第一组灯管驱动电流,所述第二输入电路输入第二组灯管驱动电流,所述第一输入电路与所述选频电路连接,所述选频电路与所述整流滤波电路连接,所述整流滤波电路与所述降压电路连接,所述降压电路与所述滤波输出电路连接,所述第二输入电路与所述继电器控制电路连接,所述继电器控制电路分别与所述选频电路和所述整流电路连接,所述选频电路与所述整流电路连接,所述整流电路分别与所述滤波输出电路和所述延时启动电路连接,所述延时启动电路与所述滤波输出电路连接;
    所述滤波输出电路与灯管连接,用于驱动灯管发光。
  2. 根据权利要求1所述的灯管驱动电路,其特征在于,所述第一输入电路包括第一输入端PIN1、第二输入端PIN2、电流保险丝F1、温度保险丝FH1、电感L7、电感L6、共模电感L2和可变电阻R1;
    第一输入端PIN1和第二输入端PIN2输入所述第一组灯管驱动电流;
    第一输入端PIN1与电流保险丝F1的一端连接,电流保险丝F1的另一端与共模电感L2的第一端连接,共模电感L2的第二端通过电感L6与可变电阻R1的一端连接,第二输入端PIN2与共模电感的第四端连接,共模电感的第三端依次通过温度保险丝FH1和电感L7与可变电阻R1的另一端连接;
    可变电阻R1的两端分别与所述选频电路连接。
  3. 根据权利要求1所述的灯管驱动电路,其特征在于,所述第二输入电路包括第三输入端PIN3、第四输入端PIN4、电流保险丝F2、温度保险丝FH2、电感L3和电感L4;
    第三输入端PIN3和第四输入端PIN4输入所述第二组灯管驱动电流;
    第三输入端PIN3依次通过电流保险丝F2和电感L3与温度保险丝FH2的一端连接,第四输入端PIN4通过电感L4与温度保险丝FH2的一端连接;
    温度保险丝FH2的另一端与继电器控制电路连接。
  4. 根据权利要求1所述的灯管驱动电路,其特征在于,所述选频电路包括电容C13、电容C15和电感L5;
    电容C13的一端分别与电容C15的一端、电感L5的一端和所述继电器控制电路连接,电容C13的另一端分别与所述第一输入电路和所述整流滤波电路连接,电容C15的另一端分别与所述第一输入电路和所述整流滤波电路连接,电感L5的另一端与所述整流电路连接。
  5. 根据权利要求1所述的灯管驱动电路,其特征在于,所述整流滤波电路包括第一整流模块和滤波模块,所述第一整流模块包括两个交流输入端和两个直流输出端;
    所述第一整流模块的两个交流输入端分别与所述选频电路连接,所述第一整流模块的两个直流输出端分别与所述滤波模块连接,所述滤波模块与所述降压电路连接。
  6. 根据权利要求5所述的灯管驱动电路,其特征在于,所述第一整流模块包括二极管DB1、二极管DB2、二极管DB3和二极管DB4;
    二极管DB1的正极分别与二极管DB3的负极和所述选频电路连接,二极管DB2的正极分别与二极管DB4的负极和所述选频电路连接,二极管DB1的负极分别与二极管DB2的负极和所述滤波模块连接,二极管DB3的正极分别与二极管DB4的正极和所述滤波模块连接。
  7. 根据权利要求5所述的灯管驱动电路,其特征在于,所述滤波模块包括电容C5、电容C10、电感L1、电阻R7和可变电阻R19;
    电容C5的一端分别与可变电阻R19的一端、电容C10的一端和所述降压电路连接,电容C5的另一端分别与电感L1的一端和所述整流模块连接,电感L1的另一端分别与地、可变电阻R19的另一端和电容C10的另一端连接,电阻R7并联在电感L1的两端。
  8. 根据权利要求1所述的灯管驱动电路,其特征在于,所述降压电路包括降压启动模块和降压控制模块;
    所述降压启动模块与所述降压控制模块连接;
    所述降压启动模块分别与所述整流滤波电路和所述滤波输出电路连接。
  9. 根据权利要求8所述的灯管驱动电路,其特征在于,所述降压启动模块包括电阻R16、电阻R17、电阻R18、电容C9、二极管D1、二极管D2、稳压管D3和变压器T1;
    电阻R17的一端分别与二极管D1的负极、所述整流滤波电路和所述滤波输出电路连接,电阻R17的另一端与电阻R18的一端连接,电阻R18的另一端分别与电容C9的一端、稳压管D3的负极、二极管D2的负极和所述降压控制模块连接,电容C9的另一端和稳压管D3的正极均接地,二极管D1的正极分别与变压器T1的第一端和所述降压控制模块连接,二极管D2的正极与电阻R16的一端连接,电阻R16的另一端分别与变压器T1的第二端和所述降压控制模块连接,变压器T1的第三端与所述滤波输出电路连接,变压器T1的第四端接地。
  10. 根据权利要求8所述的灯管驱动电路,其特征在于,所述降压控制模块包括电阻R9、电阻R10、电阻R11、电阻R12、电阻R14、电阻R15、电阻R20、电阻R21、电阻R8、电容C11、二极管D4、MOS管Q3和驱动芯片U1;
    驱动芯片U1的ISEN端与电阻R9的一端连接,电阻R9的另一端分别与电阻R11的一端、电阻R12的一端、电阻R8的一端和MOS管Q3的源级连接,电阻R11的另一端和电阻R12的另一端均接地,电阻R8的另一端与MOS管Q3的栅极连接,驱动芯片U1的GND端接地,驱动芯片U1的COMP端依次通过电阻R21和电容C11接地,驱动芯片U1的VSEN端分别与电阻R14的一端和电阻R15的一端连接,电阻R14的另一端与所述降压启动模块连接,电阻R15的另一端接地,驱动芯片U1的VIN端与所述降压启动模块连接,驱动芯片U1的DRV端分别与电阻R10的一端和二极管D4的负极连接,电阻R10的另一端与MOS管Q3的栅极连接,二极管D4的正极通过电阻R20与MOS管Q3的栅极连接,MOS管Q3的漏极与所述降压启动模块连接。
  11. 根据权利要求1所述的灯管驱动电路,其特征在于,所述继电器控制电路包括第二整流模块和继电器驱动模块;
    所述第二整流模块与所述继电器驱动模块连接;
    所述第二整流模块分别与所述第二输入电路和所述选频电路连接,所述继电器驱动模块与所述整流电路连接。
  12. 根据权利要求11所述的灯管驱动电路,其特征在于,所述第二整流模块包括二极管DB9、二极管DB10、二极管DB11、二极管DB12、电容C12、电容C16和电容C3;
    电容C12的一端分别与第二输入电路和所述继电器驱动模块连接,电容C12的另一端分别与二极管DB9的正极、二极管DB11的负极和电容C16的一端连接,二极管DB9的负极分别与二极管DB10的负极和电容C3的一端连接,二极管DB11的正极分别与地、二极管DB12的正极、电容C3的另一端和所述继电器驱动模块连接,二极管DB10的正极分别与二极管DB12的负极和所述选频电路连接。
  13. 根据权利要求11所述的灯管驱动电路,其特征在于,所述继电器驱动模块包括电阻R5、电阻R6、电容C4、MOS管Q1、稳压管D5和继电器K1;
    电阻R6的一端分别与电阻R5的一端和所述第二整流模块连接,电阻R6的另一端分别与稳压管D5的负极和MOS管Q1的栅极连接,电阻R5的另一端与MOS管Q1的漏极连接,稳压管D5的正极分别与地、电容C4的一端和继电器K1的一端连接,电容C4的另一端和继电器K1的另一端均与MOS管Q1的源级连接,继电器K1的第一开关和第二开关闭合后,所述继电器控制模块分别与所述第二整流模块和所述整流电路连接。
  14. 根据权利要求1所述的灯管驱动电路,其特征在于,所述整流电路包括二极管DB5、二极管DB6、二极管DB7和二极管DB8;
    二极管DB5的正极分别与二极管DB7的负极和所述选频电路连接,二极管DB6的正极分别与二极管DB8的负极、所述继电器控制电路和所述延时启动电路连接,二极管DB5的负极分别与二极管DB6的负极和所述滤波输出电路连接,二极管DB7的正极分别与二极管DB8的正极和所述延时启动电路连接。
  15. 根据权利要求1所述的灯管驱动电路,其特征在于,所述延时启动电路包括电阻R2、电阻R3、电阻R4、电容C1、电容C7、二极管D6、二极管D7、触发二级管D8和晶闸管Q2;
    电阻R4的一端与所述整流电路连接,电阻R4的另一端通过电容C1与二极管D7的正极连接,二极管D7的负极与触发二极管D8的一端连接,触发二极管D8的另一端通过电阻R3与晶闸管Q2的控制极连接,二极管D6的正极与所述整流电路连接,二极管D6的负极与二极管D7的正极连接,电阻R2的一端与二极管D6的正极连接,电阻R2的另一端与二极管D7的负极连接,电容C7并联在电阻R2的两端,晶闸管Q2的阳极与所述滤波输出电路连接,晶闸管Q2的阴极与二极管D6的正极连接。
  16. 根据权利要求1所述的灯管驱动电路,其特征在于,所述滤波输出电路包括正极输出端LED+、负极输出端LED-、电容C14、电容C8、极性电容C6和电阻R13;
    极性电容C6的正极与正极输出端LED+连接,极性电容C6的负极与负极输出端LED-连接,电容C14和电阻R13均并联在极性电容C6的两端,电容C8的一端与负极输出端LED-连接,电容C8的另一端接地;
    正极输出端LED+分别与所述降压电路、所述整流电路和所述灯管的正极连接,负极输出端LED-分别与所述降压电路、所述延时启动电路和所述灯管的负极连接。
PCT/CN2018/074479 2018-01-29 2018-01-29 灯管驱动电路 WO2019144414A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/074479 WO2019144414A1 (zh) 2018-01-29 2018-01-29 灯管驱动电路
CN201880000027.7A CN108323247B (zh) 2018-01-29 2018-01-29 灯管驱动电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/074479 WO2019144414A1 (zh) 2018-01-29 2018-01-29 灯管驱动电路

Publications (1)

Publication Number Publication Date
WO2019144414A1 true WO2019144414A1 (zh) 2019-08-01

Family

ID=62895804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074479 WO2019144414A1 (zh) 2018-01-29 2018-01-29 灯管驱动电路

Country Status (2)

Country Link
CN (1) CN108323247B (zh)
WO (1) WO2019144414A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110557868A (zh) * 2019-09-19 2019-12-10 横店集团得邦照明股份有限公司 一种可兼容高频和工频的灯管及其实现方法
CN110650568A (zh) * 2019-09-19 2020-01-03 横店集团得邦照明股份有限公司 一种兼容高频电子镇流器的驱动电路及其实现方法
CN116404864A (zh) * 2023-06-07 2023-07-07 西南交通大学 一种功率解耦升降压共地功率因数校正方法及拓扑结构

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111556636B (zh) * 2020-05-19 2024-02-09 深圳市豪恩智能物联股份有限公司 一种灯管驱动电路、灯管驱动装置及灯管
CN113056061B (zh) * 2021-02-21 2023-11-14 厦门普为光电科技有限公司 具有防触电保护及兼容多样供电模式的灯管
CN113194573B (zh) * 2021-04-20 2022-09-13 深圳市豪恩智能物联股份有限公司 光源驱动电路、光源驱动装置以及灯具

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104640322A (zh) * 2015-02-06 2015-05-20 深圳市豪恩光电照明有限公司 兼容电子镇流器的led灯管驱动器
CN204377221U (zh) * 2015-02-06 2015-06-03 深圳市豪恩光电照明有限公司 兼容电子镇流器的led灯管驱动器
US20160081147A1 (en) * 2014-09-17 2016-03-17 Greco Tech Industries Inc. Led tube driver circuitry for ballast and non-ballast fluorescent tube replacement
CN106793338A (zh) * 2017-01-25 2017-05-31 浙江东元照明有限公司 兼容多种镇流器的led驱动电路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207884939U (zh) * 2018-01-29 2018-09-18 深圳市豪恩智能物联股份有限公司 灯管驱动电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160081147A1 (en) * 2014-09-17 2016-03-17 Greco Tech Industries Inc. Led tube driver circuitry for ballast and non-ballast fluorescent tube replacement
CN104640322A (zh) * 2015-02-06 2015-05-20 深圳市豪恩光电照明有限公司 兼容电子镇流器的led灯管驱动器
CN204377221U (zh) * 2015-02-06 2015-06-03 深圳市豪恩光电照明有限公司 兼容电子镇流器的led灯管驱动器
CN106793338A (zh) * 2017-01-25 2017-05-31 浙江东元照明有限公司 兼容多种镇流器的led驱动电路

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110557868A (zh) * 2019-09-19 2019-12-10 横店集团得邦照明股份有限公司 一种可兼容高频和工频的灯管及其实现方法
CN110650568A (zh) * 2019-09-19 2020-01-03 横店集团得邦照明股份有限公司 一种兼容高频电子镇流器的驱动电路及其实现方法
CN110557868B (zh) * 2019-09-19 2024-04-05 横店集团得邦照明股份有限公司 一种可兼容高频和工频的灯管及其实现方法
CN116404864A (zh) * 2023-06-07 2023-07-07 西南交通大学 一种功率解耦升降压共地功率因数校正方法及拓扑结构
CN116404864B (zh) * 2023-06-07 2023-08-08 西南交通大学 一种功率解耦升降压共地功率因数校正方法及拓扑结构

Also Published As

Publication number Publication date
CN108323247A (zh) 2018-07-24
CN108323247B (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
WO2019144414A1 (zh) 灯管驱动电路
CN103442501B (zh) 强制恒流源调光的led灯
TW201018305A (en) LED fluorescent lamp
JP2006344919A (ja) 発光ダイオード点灯回路
CN104822216B (zh) 小功率hid灯驱动电路
TWI466592B (zh) Light-emitting element lamp circuit
CN101980587A (zh) 冷阴极荧光灯用电子镇流器及其输出电流调节方法
CN101207960A (zh) 一种气体放电灯的驱动装置
CN103687167A (zh) 照明装置
TW201313058A (zh) 一種介於直流發光元件與安定器之間的電源轉換裝置
CN207884939U (zh) 灯管驱动电路
CN105764198A (zh) 一种轨道车辆车厢led照明驱动电源
CN102149245A (zh) 一种高效可调光气体放电灯电子镇流器
TWI477189B (zh) 發光二極體調光裝置
TWI459862B (zh) Replacement electronic ballast lamp
CN201878402U (zh) 冷阴极荧光灯用电子镇流器
CN104918360B (zh) 一种led电源的全面保护电路
CN207304984U (zh) 一种基于单级pfc的可调光led驱动电路
TW201717708A (zh) 可調光式即時啓動安定器調光控制裝置
CN101753043A (zh) 单级高功因回授变频式谐振能量之控制电路
CN104853473A (zh) 用荧光灯电子镇流器驱动的led日光灯电路、led日光灯
TW201517691A (zh) 發光裝置
CN204291510U (zh) 一种用荧光灯电子镇流器驱动的led日光灯电路、led日光灯
KR102130004B1 (ko) 램프용 전자식 안정기
CN103179712B (zh) 一种负阻补偿电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902730

Country of ref document: EP

Kind code of ref document: A1