WO2019143112A1 - Organic electroluminescent device - Google Patents

Organic electroluminescent device Download PDF

Info

Publication number
WO2019143112A1
WO2019143112A1 PCT/KR2019/000616 KR2019000616W WO2019143112A1 WO 2019143112 A1 WO2019143112 A1 WO 2019143112A1 KR 2019000616 W KR2019000616 W KR 2019000616W WO 2019143112 A1 WO2019143112 A1 WO 2019143112A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
aryl
bonded
light emitting
Prior art date
Application number
PCT/KR2019/000616
Other languages
French (fr)
Korean (ko)
Inventor
한송이
엄민식
홍진석
심재의
박정근
손효석
이용환
박우재
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180165054A external-priority patent/KR20190087279A/en
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Publication of WO2019143112A1 publication Critical patent/WO2019143112A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • the present invention relates to an organic electroluminescent device having improved characteristics such as high luminous efficiency, low driving voltage and long life time by using a novel compound as a host material of a light emitting layer.
  • the organic electroluminescent device when a voltage is applied between two electrodes, holes are injected into the anode, and electrons are injected into the organic layer from the cathode. When the injected holes and electrons meet, an exciton is formed. When the exciton falls to the ground state, light is emitted.
  • the material used as the organic material layer may be classified into a light emitting material, a hole injecting material, a hole transporting material, an electron transporting material, and an electron injecting material depending on its function.
  • the light emitting layer forming material of the organic electroluminescent device can be classified into blue, green and red light emitting materials according to the luminescent color.
  • yellow and orange light emitting materials are also used as light emitting materials for realizing better color.
  • a host / dopant system can be used as a light emitting material.
  • the dopant material can be divided into a fluorescent dopant using an organic material and a phosphorescent dopant using a metal complex compound containing heavy atoms such as Ir and Pt.
  • a metal complex compound containing heavy atoms such as Ir and Pt.
  • NPB, BCP, Alq 3 and the like are widely known as materials used for the hole injecting layer, the hole transporting layer, the hole blocking layer and the electron transporting layer, and the anthracene derivatives as a luminescent material have been reported as a fluorescent dopant / host material .
  • Ir as a phosphorescent material that has a great advantage in improving the efficiency aspects of the light-emitting material (ppy) 3, (acac) Ir (btp) 2
  • Ir metal complex compound is a blue, green and red host material that includes such as . So far, CBP has shown excellent properties as a phosphorescent host material.
  • Patent Document 1 Japanese Laid-Open Patent Publication No. 2001-160489
  • the present invention has been conceived to solve the above-described problems, and it is an object of the present invention to provide an organic electroluminescent device using a novel compound as a host material of a light emitting layer, exhibiting a high luminous efficiency and a low driving voltage, The purpose.
  • a negative electrode disposed opposite to the positive electrode; And a light-emitting layer interposed between the anode and the cathode, wherein the light-emitting layer comprises at least one host and a dopant, wherein the at least one host is an organo-organic compound comprising a compound represented by the following formula
  • An electroluminescent device is provided.
  • X 1 and X 2 are the same as or different from each other and each independently O or S,
  • Y 1 to Y 16 are the same as or different from each other, and each independently CR 8 or N, provided that when there are a plurality of CR 8 s , the plurality of R 8 s are the same as or different from each other,
  • Z 1 to Z 3 are the same or different and each independently CR 5 or N, at least one of them is N,
  • Ar 1 is selected from the group consisting of hydrogen, deuterium, halogen, cyano, nitro, C 1 to C 40 alkyl, C 2 to C 40 alkenyl, C 2 to C 40 alkynyl, C 3 to C 40 cycloalkyl, A C 6 to C 60 aryl group,
  • n are each an integer of 0 to 3, m + n? 1,
  • a and B are the same or different from each other and are each independently any one of substituents represented by the following formulas (2) to (4);
  • X 3 is a single bond, or O or S,
  • L is a single bond or an arylene group having 6 to 40 carbon atoms
  • Ar 2 and Ar 3 are the same or different and each independently represents a C 1 to C 40 alkyl group, a C 2 to C 40 alkenyl group, a C 2 to C 40 alkynyl group, a C 3 to C 40 cycloalkyl group, C 6 ⁇ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group, and a C 6 ⁇ , or selected from the group consisting of C 60 aryl amine, with or adjacent groups bonded may form a condensed ring,
  • a, c, and f are each an integer of 0 to 3
  • b, d and e are each an integer of 0 to 4, wherein b + m? 4, d + n? 4,
  • R 1 to R 8 are the same or different from each other and each independently represents hydrogen, deuterium, halogen, cyano, nitro, C 1 to C 40 alkyl, C 2 to C 40 alkenyl, C 2 to C 40 An alkynyl group, a C 3 to C 40 cycloalkyl group, a heteroaryl group having 3 to 40 nuclear atoms, a C 6 to C 60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, a C 1 to C 40 alkyl A C 6 to C 60 aryloxy group, a C 1 to C 40 alkylsilyl group, a C 6 to C 60 arylsilyl group, a C 1 to C 40 alkylboron group, a C 6 to C 60 aryl boron group, C 6 ⁇ C 60 aryl phosphine group, C 6 ⁇ C 60 aryl phosphine oxide group, and a C 6 ⁇ , or selected from the group consisting of an
  • An alkylboron group, an arylboron group, an arylphosphine group, an arylphosphine oxide group and an arylamine group are each independently selected from the group consisting of deuterium, halogen, cyano group, nitro group, C 2 to C 40 alkenyl group, C 2 to C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, a number of nuclear atoms of 3 to 40 heterocycloalkyl group, C 1 ⁇ C 40 alkyl group, C 6 ⁇ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group , A C
  • an organic electroluminescent device including a host and a dopant as a light emitting layer component and simultaneously controlling the LUMO energy level and the triplet energy of the host and the dopant to a specific range has high light emission characteristics, low driving voltage, . Further, a full color display panel having improved performance and lifetime can be manufactured.
  • FIG. 1 is a cross-sectional view illustrating a structure of an organic electroluminescent device according to an embodiment of the present invention.
  • organic electroluminescent device A organic layer
  • the present invention relates to a positive electrode; cathode; And at least one organic material layer interposed between the anode and the cathode and including a hole transporting region, a light emitting layer, and an electron transporting region, wherein the organic material layer includes a compound represented by Formula 1 and a dopant, Energy, triplet energy, etc.) is controlled to a specific range.
  • the light emitting layer In the light emitting layer, excitons are generated while electrons generated at the cathode and holes generated at the anode meet and recombine, and light is emitted while the exciton transitions to the ground state.
  • the light emitting layer includes a host and a dopant doped to the host. In the process of energy transfer from the host to the dopant, the luminous efficiency of the device is improved. If the physical properties of the host and the dopant are not properly configured, the luminous efficiency of the device is lowered and the lifetime is shortened .
  • a compound having a novel structure represented by the formula (1) is used as the host and a dopant as the constituent of the light emitting layer, and the properties (such as LUMO energy, triplet energy, etc.) between such a host and the dopant are optimized So that the driving voltage, luminous efficiency and lifetime characteristics of the device are simultaneously improved.
  • the difference in energy level between the lowest unoccupied molecular orbital (LUMO) between the host and the dopant is adjusted to 1.0 eV or less, preferably 0.5 eV or less.
  • the triplet energy level of the host material present in the luminescent layer must be higher than the triplet energy of the dopant material. This is because the excitons in the triplet of the dopant can be prevented from reversing to the host again, and the luminous efficiency, driving voltage and lifetime of the organic electroluminescent device can be further improved.
  • a host and a dopant of a novel structure are included as a light emitting layer component, and by controlling the physical properties between them to a predetermined range, not only the energy transfer from the host to the dopant is facilitated, but also the reversal of the exciton It can be seen that the luminous efficiency of the device is significantly improved by preventing this phenomenon, the durability and the stability of the device are improved, and the lifetime of the device can be efficiently increased. Thus, a full color display panel having improved efficiency and long life characteristics can be manufactured.
  • An organic electroluminescent device includes a light emitting layer including a compound represented by Formula 1 and a dopant and having physical properties (e.g., LUMO energy level, triplet energy) do.
  • the compound is used as a host material (phosphorescent host) of the light emitting layer.
  • FIG. 1 is a view illustrating a structure of an organic electroluminescent device according to an embodiment of the present invention.
  • the organic electroluminescent device 100 includes an anode 10; A cathode 20; And a light emitting layer 40 positioned between the anode 10 and the cathode 20.
  • the organic electroluminescent device 100 includes a hole transport region 30 disposed between the anode 10 and the light emitting layer 40; And an electron transporting region 50 disposed between the light emitting layer 40 and the cathode 20 and preferably includes at least one of a hole transporting region 30 and an electron transporting region 50 .
  • the anode 10 serves to inject holes into the organic material layer A.
  • the material forming the anode 10 is not particularly limited, and those known in the art can be used.
  • Non-limiting examples thereof include metals such as vanadium, chromium, copper, zinc and gold; Alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); ZnO: Al, SnO 2: a combination of a metal and an oxide such as Sb; Conductive polymers such as polythiophene, poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole and polyaniline; And carbon black.
  • metals such as vanadium, chromium, copper, zinc and gold
  • Alloys thereof Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); ZnO: Al, SnO 2: a combination of a metal and an oxide such as S
  • the method for producing the anode 10 is not particularly limited, and can be produced according to a conventional method known in the art. For example, a method of coating a positive electrode material on a substrate made of a silicon wafer, quartz, a glass plate, a metal plate, or a plastic film can be mentioned.
  • the cathode 20 injects electrons into the organic material layer A.
  • the material forming the cathode 20 is not particularly limited, and those known in the art can be used. Non-limiting examples thereof include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead; Alloys thereof; And multilayer structured materials such as LiF / Al and LiO 2 / Al.
  • the method for producing the cathode 20 is not particularly limited, and can be produced by a method known in the art.
  • the organic layer (A) included in the organic electroluminescent device according to the present invention can be used without limitation in a conventional structure used as an organic layer of a conventional organic EL device.
  • the hole transport region 30, the light emitting layer 40, And a transport region 50 can be included in the organic electroluminescent device according to the present invention.
  • the hole transporting region 30 included in the organic material layer A of the present invention serves to move the holes injected from the anode 10 to the light emitting layer 40.
  • the hole transporting region 30 may include at least one selected from the group consisting of a hole injecting layer 31 and a hole transporting layer 32. At this time, in consideration of the characteristics of the organic electroluminescent device, it is preferable that both the hole injection layer 31 and the hole transport layer 32 are included.
  • the material forming the hole injection layer 31 and the hole transport layer 32 is not particularly limited as long as the material has a low hole injection barrier and a high hole mobility and the hole injection layer / Can be used. At this time, the materials constituting the hole injection layer (31) and the hole transport layer (32) may be the same or different.
  • the hole injecting material may be any of the hole injecting materials known in the art.
  • usable hole injection materials include phthalocyanine compounds such as copper phthalocyanine; (N, N'-diphenyl-N, N'-bis- [4- (phenyl-m-tolyl-amino) -phenyl] -biphenyl-4,4'-diamine, m- , 4 "-tris (3-methylphenylphenylamino) triphenylamine), TDATA (4,4'4" -Tris (N, N-diphenylamino) triphenylamine), 2TNATA (naphthyl) -N-phenylamino ⁇ -triphenylamine, PEDOT / PSS, poly (4-styrenesulfonate), PANI / DBSA sulfonicacid, PANI / PSS (polyaniline) / poly (4-styrenesulfonate), etc.
  • the hole transporting material may be any one of known hole transporting materials.
  • usable hole transport materials include carbazole-based derivatives such as phenylcarbazole and polyvinylcarbazole, fluorene-based derivatives, N, N'-bis (3-methylphenyl) Triphenylamine derivatives such as N'-diphenyl- [1,1-biphenyl] -4,4'-diamine and TCTA (4,4 ', 4 "-tris (N-carbazolyl) triphenylamine) , N'-di (1-naphthyl) -N, N'-diphenylbenzidine) and TAPC (4,4'-Cyclohexylidene bis [N, Or two or more of them may be mixed.
  • the hole transporting region 30 may be manufactured by a conventional method known in the art. For example, a vacuum deposition method, a spin coating method, a casting method, an LB method (Langmuir-Blodgett), an inkjet printing method, a laser printing method, a laser induced thermal imaging method (LITI)
  • a vacuum deposition method for example, a vacuum deposition method, a spin coating method, a casting method, an LB method (Langmuir-Blodgett), an inkjet printing method, a laser printing method, a laser induced thermal imaging method (LITI)
  • the light emitting layer 40 included in the organic material layer A of the present invention is a layer in which excitons are formed by the combination of holes and electrons and the color of the light emitted by the organic electroluminescent device depends on the material constituting the light emitting layer 40 It can be different.
  • the light emitting layer (40) is made of a compound represented by the general formula (1) and a dopant.
  • the compound of Formula 1 is used as a phosphorescent host material (e.g., a first host) of the light emitting layer.
  • the compound represented by Formula 1 is a bipolar host material having both electronic characteristics and hole characteristics. More specifically a core having a nitrogen heteroaromatic ring (e.g., azine) and two dibenzo-based moieties (e.g., dibenzofuran or dibenzothiophene) bonded on both sides thereof, Has a basic skeleton in which at least one phenyl group of two dibenzo-based moieties is connected to an electron donating group (EDG) having a conventional electron donor in the art.
  • EDG electron donating group
  • the compound of the formula (1) has a dibenzo-type moiety (e.g., dibenzofuran (DBF), dibenzothiophene (DBT)) having both physicochemical properties for holes and electrons and an electron attracting moiety Pyrazine, triazine), which is a kind of azo group in the EWG group (e.g., pyridine, pyrazine, and triazine), and the dibenzo series moietiesecabazole, indolocarbazole, phenoxazine, phenoxathiazine, aryl An electron donor group such as amine is connected.
  • a dibenzo-type moiety e.g., dibenzofuran (DBF), dibenzothiophene (DBT) having both physicochemical properties for holes and electrons and an electron attracting moiety Pyrazine, triazine
  • EWG group e.g., pyridine, pyrazine, and triazine
  • the compound of Formula 1 is a bipolar compound, the recombination of holes and electrons is high, so that the hole injecting / transporting ability, luminous efficiency, driving voltage, lifetime characteristics, durability and the like can be improved. Accordingly, when the compound of Chemical Formula 1 is applied as a green phosphorescent material, not only can it have excellent luminous efficiency characteristics, but also can be driven at a low voltage and exhibit lifetime increasing effect, and can exhibit thermal stability, high glass transition temperature characteristics, (morphology). Since the organic EL device is also effective in inhibiting crystallization of the organic material layer, the performance and lifetime characteristics of the organic EL device including the compound can be greatly improved.
  • the planarity and stereoscopic property of the compound can be realized according to the bonding positions of two dibenzofurans or dibenzothiophene moieties bonded to azine groups.
  • the electron transporting ability is improved, and the driving and efficiency of the device to which these compounds are applied can be expected to be increased.
  • the dibenzofuran moiety or the dibenzothiophene moiety is more excellent in electron and hole stability than an aryl group, lifetime characteristics of a device to which such a compound is applied can be further improved.
  • EDG electron donor groups
  • carbazole groups indolocarbazoles, phenoxazines, phenoxathiazines, arylamine groups and the like
  • the HOMO level of the compound can be freely controlled.
  • the carbazole group is electrochemically stable and has a deep HOMO level by conjugation with other amines EDG.
  • the polycyclic electron donor (EDG) having a condensed ring and / or fused ring form has excellent thermal stability and electrochemical stability, has a high glass transition temperature (Tg) and excellent carrier transporting ability.
  • Tg glass transition temperature
  • the electron and hole transport mobility is very excellent, and the balance of the carriers in the light emitting layer is very excellent.
  • the host material should have a triplet energy gap higher than the dopant of the host. That is, in order to effectively provide phosphorescent emission from the dopant, the lowest excitation state of the host must be higher energy than the lowest emission state of the dopant.
  • the compound represented by Formula 1 has a high triplet energy and can be used as a host material because the energy level can be controlled higher than that of the dopant.
  • the compound represented by the formula (1) can prevent the excitons generated in the light emitting layer from diffusing into the electron transporting layer or the hole transporting layer adjacent to the light emitting layer. Accordingly, the luminous efficiency of the device can be improved by increasing the number of the excitons contributing to the light emission in the light emitting layer, the durability and stability of the device can be improved, and the lifetime of the device can be efficiently increased.
  • the compound represented by the general formula (1) of the present invention has a core comprising an azine group and two dibenzo-based moieties (dibenzofuran or dibenzothiophene moiety) connected to both sides thereof, An aryl group and / or a heteroaryl group in which at least one electron donor group (EDG) is bonded to any one of six-membered rings in the core and substituted with at least one, specifically four or more deuterium (D)
  • EDG electron donor group
  • X 1 and X 2 are the same as or different from each other and each independently O or S. At this time, when d is 0, dibenzofuran moiety is formed, and in case of S, dibenzothiophene moiety can be formed.
  • Y 1 to Y 16 are the same as or different from each other, and each independently CR 8 or N; In this case, when there are a plurality of CR 8 s , the plurality of R 8 s may be the same or different.
  • the remaining is CR 8 ;
  • At least one of Y 13 to Y 16 is N, the remaining is CR 8 ;
  • At least one of Y 1 to Y 4 is N, and at least one of Y 9 to Y 12 is N, the remainder is CR 8 ;
  • At least one of Y 5 to Y 8 is N, and at least one of Y 13 to Y 16 is N, the remainder is CR 8 ;
  • At least one of Y 1 to Y 4 is N, and when one of Y 13 to Y 16 is N, the remaining is CR 8 ;
  • Y 1 to Y 16 may all be CR 8 (see the following formulas 13 to 17).
  • R 8 is hydrogen, heavy hydrogen, a halogen group, a cyano group, a nitro group, an amino group, an alkynyl group of C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 of, C 3 ⁇ C 40 cycloalkyl group, the number of nuclear atoms of 3 to 40 heterocycloalkyl group, C 6 ⁇ C 60 aryl group, nuclear atoms aryl of from 5 to 60 heteroaryl group, a C 1 ⁇ alkyloxy group of C 40, C 6 ⁇ C 60 aryloxy group, C group 1 ⁇ C 40 alkyl silyl, C 6 ⁇ C 60 aryl silyl group, a alkyl boronic of C 1 ⁇ C 40, an aryl boronic a C 6 ⁇ C 60, C 1 ⁇ C 40 phosphine groups, C 1 to C 40 phosphine oxide groups, and C 6 to C 60
  • R 8 is a hydrogen, a deuterium, a halogen, a cyano group, a nitro group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 of the A cycloalkyl group, and a C 6 to C 60 aryl group.
  • Z 1 to Z 3 are the same or different and are each independently CR 5 or N, and at least one of them is N. In one preferred embodiment, from 1 to 3 of Z 1 to Z 3 may be N, for example, pyridine, pyrimidine, triazine. More preferably, all of Z 1 to Z 3 are N and triazine is electron-withdrawing.
  • Ar 1 is selected from the group consisting of hydrogen, deuterium, halogen, cyano, nitro, C 1 to C 40 alkyl, C 2 to C 40 alkenyl, C 2 to C 40 alkynyl, C 3 to C 40 cycloalkyl, A C 6 to C 60 aryl group, and the like.
  • Ar 1 is preferably an aryl group of C 6 to C 60 , and may be, for example, a phenyl group, a biphenyl group, a naphthyl group, a triphenyl group, an anthryl group, a phenanthryl group and the like.
  • Ar 1 can be selected from the group of substituents represented by the following structural formulas. At this time, any hydrogen included in the following substituents may be substituted with at least one or more deuterium (D), or may be unsubstituted.
  • D deuterium
  • Ar 1 may be substituted with at least one substituent group known in the art (for example, the same definition as R 6 ).
  • a and c are each an integer of 0 to 3
  • b and d are an integer of 0 to 4, respectively.
  • hydrogen means not substituted with R 1 to R 4
  • a to d are each an integer of 1 or more, one or more hydrogen atoms are substituted with R 1 to R 4 . it means.
  • R 1 to R 5 are the same or different, each independently represent hydrogen, deuterium, a halogen, a cyano group, a nitro group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 of the An alkynyl group, a C 3 to C 40 cycloalkyl group, a heteroaryl group having 3 to 40 nuclear atoms, a C 6 to C 60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, a C 1 to C 40 alkyl A C 6 to C 60 aryloxy group, a C 1 to C 40 alkylsilyl group, a C 6 to C 60 arylsilyl group, a C 1 to C 40 alkylboron group, a C 6 to C 60 aryl boron group, C 6 ⁇ C 60 aryl phosphine group, C 6 ⁇ C 60 aryl phosphine oxide group, and a C 6
  • R 1 to R 5 each are plural, they are the same as or different from each other. Specifically, R 1 to R 5 are the same or different and each independently represents hydrogen, deuterium, halogen, cyano, nitro, C 1 to C 40 alkyl, C 2 to C 40 alkenyl, C 2 An alkynyl group of C 40 to C 40 , a cycloalkyl group of C 3 to C 40 , and an aryl group of C 6 to C 60 .
  • m and n are each an integer of 0 to 3, and m + n? 1.
  • m or n 0, it means that hydrogen is not substituted with A or B.
  • m and n are each an integer of 1 or more, it means that at least one hydrogen is substituted with A and B, respectively.
  • m and n may each be an integer of 0 to 2.
  • b + m and d + n may be an integer of 0 to 4, respectively.
  • a and B are electron donating substituents each of which serves to provide electrons.
  • an electron donating group (EDG) known in the art can be used without limitation.
  • a and B are each a carbazole group, a condensed ring or a fused ring-type polycyclic carbazole-based moiety (e.g., a condensed carbazole, an indolocarbazole, a biscarbazole), phenoxazine, phenoxathiazine, Amine group, and the like.
  • a and B are the same as or different from each other, and each independently may be any of the substituents represented by the above formulas (2) to (4).
  • X 3 is a single bond or may be selected from the group consisting of O, or S.
  • X 3 may be a carbazole group, a condensed ring and / or a polycyclic carbazole-based moiety in the form of a fused ring (for example, a condensed carbazole, an indolocarbazole, or the like) Of a bis-carbazole.
  • X < 3 > is O or S, phenoxazine or phenoxythiazine can be formed.
  • e is an integer of 0 to 4
  • f is an integer of 0 to 3.
  • hydrogen means not substituted by R 6 and R 7
  • e and f are each an integer of 1 or more, at least one hydrogen is substituted with R 6 and R 7 respectively .
  • R 6 and R 7 are the same or different, each independently represent hydrogen, deuterium, a halogen, a cyano group, a nitro group, C 1 ⁇ alkenyl group of the C 40 alkyl group, C 2 ⁇ C 40 of, C 2 ⁇ C A C 3 to C 40 cycloalkyl group, a heteroaryl group having 3 to 40 nuclear atoms, a C 6 to C 60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, a C 1 to C 40 alkenyl group, C 6 -C 60 aryloxy groups, C 1 -C 40 alkylsilyl groups, C 6 -C 60 arylsilyl groups, C 1 -C 40 alkylboron groups, C 6 -C 60 a group of the arylboronic, C 6 ⁇ C 60 aryl phosphine group, C 6 ⁇ C 60 aryl phosphine oxide group, and a C 6 ⁇ selected from the
  • R 6 and R 7 are each independently hydrogen, deuterium, a halogen, a cyano group, a nitro group, C 1 ⁇ alkenyl group of the C 40 alkyl group, C 2 ⁇ C 40 of, C 2 ⁇ C 40 A C 3 to C 40 cycloalkyl group, and a C 6 to C 60 aryl group, or may be bonded to adjacent groups to form a condensed ring.
  • adjacent groups may be one R 6 and one R 6 , one R 6 and one Ar 2 , one R 7 and another R 7 , one R 7, and one Ar 2 .
  • L may be a divalent group linker known in the art. Specifically, L is a single bond or an arylene group having 6 to 40 carbon atoms. When L is a C 6 to C 40 arylene group, it may be a phenylene group, a biphenylene group, a naphthylene group, a triphenylene group or the like, preferably a phenylene group or a biphenylene group.
  • Ar 2 and Ar 3 are the same or different and each independently represents a C 1 to C 40 alkyl group, a C 2 to C 40 alkenyl group, a C 2 to C 40 alkenyl group, group, C 3 ⁇ C 40 cycloalkyl group, C 6 ⁇ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group, and a C 6 ⁇ , or selected from the group consisting of an aryl amine of the C 60, or adjacent groups combined To form a condensed ring.
  • said Ar 2 and Ar 3 are the same or different from each other, and each independently C 6 ⁇ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group, and a C 6 ⁇ the group consisting of an aryl amine of the C 60 . ≪ / RTI >
  • a and B are the same as or different from each other, and each independently can be any one selected from the group of substituents represented by the following structural formulas.
  • any hydrogen contained in the following substituents may be substituted with at least one deuterium (D) or may be unsubstituted.
  • E is selected from the group consisting of O, S, NR 11 , CR 12 R 13 , and SiR 14 R 15 ,
  • a halogen atom, a cyano group, a nitro group, a C 1 to C 40 alkyl group, a C 6 to C 60 aryl group, and a substituted or unsubstituted alkyl group having 5 to 5 nucleus atoms, wherein R 11 to R 15 are the same or different and each independently represents hydrogen, deuterium, Lt; / RTI > to 60, and < RTI ID 0.0 >
  • Ar 11 is hydrogen or a C 6 to C 60 aryl group
  • the compound represented by Formula 1 may include an aryl group and / or a heteroaryl group substituted by at least one deuterium (D) in the molecular structure.
  • at least one of Ar 1 , A, and B in Formula 1 is a C 6 to C 60 aryl group substituted with at least one deuterium (D), or a heteroaryl group having 5 to 50 nucleus atoms Group.
  • the number of deuterium (D) substituted in the compound is not particularly limited, and may be, for example, at least 1, preferably 4 or more. Specifically, it may be 1 to 18.
  • the compound containing a plurality of deuterium (D) can maximize the color purity of green more than the compounds having the same structure without deuterium, and further increase the intramolecular bonding force between the weakened carbon- Can be significantly improved.
  • the nitrogen-containing heterocycle having an EWG properties such as, Z 1 ⁇ Z 3 containing ring
  • EWG properties such as, Z 1 ⁇ Z 3 containing ring
  • X 1 hamyuhwan and X Symmetry or asymmetry structure depending on the carbon bond positions of the carbon-carbon double bonds.
  • the bonding position of one of Y 1 to Y 4 of the X 1 containing ring connected to the Z 1 to Z 3 containing ring and the bonding position of one of Y 9 to Y 12 of the X 2 containing ring are symmetrical or asymmetric Structure.
  • the carbon position of the X 1 -containing ring bonded to the azine group is Y 1
  • the X 2 -containing The carbon position of the ring may be any of Y 10 to Y 12 except Y 9 (see Chemical Formula 5 below).
  • the asymmetric structure of two dibenzo-based moieties respectively linked to the nitrogen-containing heterocycle may be represented by any one of the following formulas (5) to (8).
  • the ring containing Z 1 to Z 3 in Formula 5 is bonded to any one of Y 10 to Y 12 (provided that the ring containing Z 1 to Z 3 is not bonded to Y 9 )
  • the ring containing Z 1 to Z 3 in Formula 6 is bonded to any one of Y 9 and Y 11 to Y 12 (provided that the ring containing Z 1 to Z 3 is not bonded to Y 10 )
  • the Z 1 to Z 3 -containing ring of formula (7) is bonded to any one of Y 9 , Y 10 and Y 12 (provided that the Z 1 to Z 3 containing ring is not bonded to Y 11 )
  • the ring containing Z 1 to Z 3 in the above formula (8) is bonded to any one of Y 9 to Y 11 (provided that the ring containing Z 1 to Z 3 is not bonded to Y 12 ).
  • X 1 , X 2 , Y 1 to Y 16 , Z 1 to Z 3 , Ar 1 , m, n, A, B, a to d and R 1 to R 4 are as defined in Formula 1, respectively.
  • asymmetric compound In the case of the above-mentioned asymmetric compound, it is relatively easy to control the intermolecular distance as compared with the compound having a symmetric structure. That is, due to the nature of the dibenzo-based moiety capable of bonding at the 1,2,3,4-position, a structural disorder between the hydrogen of triazine and the dibenzo-based moiety occurs at the 1,4-bond, The distance will be farther away, which will also increase the T1 value. By using the above-mentioned characteristics, it is possible to adjust the HOMO-LUMO and T1 and S1 values of the organic material layer through the asymmetry of the chemical structure.
  • the compound represented by Formula 5 may be further represented by any one of Formulas 5a to 5c.
  • the compound represented by Formula 6 may be further represented by any one of Formulas 6a to 6c.
  • the compound represented by the above formula (7) may be further represented by any one of formulas (7a) to (7c).
  • the compound represented by the formula (8) may be further represented by any one of formulas (8a) to (8c).
  • X 1 , X 2 , Y 1 to Y 16 , Z 1 to Z 3 , Ar 1 , m, n, A, B, a to d and R 1 to R 4 are as defined in claim 1, respectively.
  • X 2- containing ring when the carbon position of the X 1 -containing ring bonded to the azine group (for example, a ring containing Z 1 to Z 3 ) is Y 1 , X 2- containing ring may be Y 9 (see Chemical Formula 9 below).
  • the symmetric structure of two dibenzo-based moieties respectively linked to the nitrogen-containing heterocycle may be represented by any one of the following formulas (9) to (12).
  • X 1 , X 2 , Y 1 to Y 16 , Z 1 to Z 3 , Ar 1 , m, n, A, B, a to d and R 1 to R 4 are as defined in Formula 1, respectively.
  • the degree of symmetry affects the HOMO-LUMO overlap. This can affect the T1 and S1 values, and if this difference is large, it also affects the TTA and singlet fission, so it is important to adjust it appropriately.
  • dibenzo-based moieties such as dibenzofurane or dibenzothiophene moiety may be further represented by any one of the following formulas (13) to (17).
  • X 1 , X 2 , Z 1 to Z 3 , Ar 1 , n, A and B are as defined in the above formula (1).
  • each of X 1 and X 2 is independently O or S, and Z 1 to Z 3 are each independently CR 5 or N, Is N.
  • Ar 1 is a C 6 to C 60 aryl group, and at least one of A and B may be selected from the substituent groups of A and B exemplified above.
  • the compounds represented by the formula (1) according to the present invention may be further represented by the following formulas (1) to (336). However, the compounds represented by formula (1) of the present invention are not limited by the following examples.
  • alkyl means a monovalent substituent derived from a straight or branched saturated hydrocarbon having 1 to 40 carbon atoms.
  • alkyl include, but are not limited to, methyl, ethyl, propyl, isobutyl, sec-butyl, pentyl, iso-amyl and hexyl.
  • alkenyl in the present invention means a monovalent substituent derived from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms and having at least one carbon-carbon double bond.
  • alkenyl include, but are not limited to, vinyl, allyl, isopropenyl, 2-butenyl, and the like.
  • alkynyl in the present invention means a monovalent substituent derived from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms and having at least one carbon-carbon triple bond.
  • alkynyls include, but are not limited to, ethynyl, 2-propynyl, and the like.
  • Cycloalkyl in the present invention means a monovalent substituent derived from a monocyclic or polycyclic non-aromatic hydrocarbon having 3 to 40 carbon atoms.
  • Examples of such cycloalkyls include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, adamantine, and the like.
  • Aryl in the present invention means a monovalent substituent derived from a C6-C60 aromatic hydrocarbon having a single ring or a combination of two or more rings. Also, a form in which two or more rings are pendant or condensed with each other may be included. Examples of such aryl include, but are not limited to, phenyl, naphthyl, phenanthryl, anthryl, and the like.
  • Heteroaryl in the present invention means a monovalent substituent derived from a monoheterocyclic or polyheterocyclic aromatic hydrocarbon having 5 to 60 nuclear atoms. Wherein at least one of the carbons, preferably one to three carbons, is replaced by a heteroatom such as N, O, S or Se.
  • a form in which two or more rings are pendant or condensed with each other may be included, and further, a condensed form with an aryl group may be included.
  • heteroaryls include 6-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, phenoxathienyl, indolizinyl, indolyl indolyl), purinyl, quinolyl, benzothiazole, carbazolyl, and heterocyclic rings such as 2-furanyl, N-imidazolyl, 2- , 2-pyridinyl, 2-pyrimidinyl, and the like, but are not limited thereto.
  • alkyloxy means a monovalent substituent group represented by R'O-, and R 'means alkyl having 1 to 40 carbon atoms.
  • alkyloxy may include linear, branched or cyclic structures. Examples of such alkyloxy include, but are not limited to, methoxy, ethoxy, n-propoxy, 1-propoxy, t-butoxy, n-butoxy and pentoxy.
  • aryloxy means a monovalent substituent represented by RO-, and R means aryl having 6 to 60 carbon atoms. Examples of such aryloxy include, but are not limited to, phenyloxy, naphthyloxy, diphenyloxy, and the like.
  • Alkylsilyl in the present invention refers to silyl substituted with alkyl having 1 to 40 carbon atoms
  • arylsilyl means silyl substituted with aryl having 6 to 60 carbon atoms.
  • alkyl boron is boron substituted with alkyl having 1 to 40 carbon atoms
  • aryl boron means boron substituted with aryl having 6 to 60 carbon atoms.
  • arylphosphine means a phosphine substituted with aryl having 6 to 60 carbon atoms
  • arylphosphine oxide group means that phosphine substituted with aryl having 6 to 60 carbon atoms includes O do.
  • condensed rings means condensed aliphatic rings, condensed aromatic rings, condensed heteroaliphatic rings, condensed heteroaromatic rings, or a combination thereof.
  • Arylamine in the present invention means an amine substituted with aryl having 6 to 60 carbon atoms.
  • the compounds represented by formula (1) of the present invention can be prepared without limitation by methods known in the art. For example, various syntheses can be carried out by referring to the synthesis process of the following examples.
  • the at least one host constituting the light emitting layer 40 according to the present invention may further include a compound having a carbazole moiety.
  • the carbazole skeleton has electron donating group characteristics, which are electron donating and hole transporting properties.
  • Such a compound having a carbazole moiety can be used as a host material having a hole property (e.g., a second host), and can be mixed with a compound of the formula (1) having the above-described electronic characteristics as a light emitting layer component.
  • the compound having a carbazole moiety is not particularly limited as long as it has at least one carbazole moiety in the molecular structure.
  • the compound may be a carbazole in the non-condensed ring form, an indolocarbazole, a condensed carbazole, or a bis-carbazole in the form of two carbazoles linked.
  • the above-exemplified carbazole basic skeleton may be in a form in which at least one of various types of alkyl groups, aryl groups and / or heteroaryl groups is substituted.
  • carbazole skeletons when two or more carbazole skeletons are contained in the molecule, they have high hole transportability, and the molecular weight of the carbazole skeleton is significantly higher than that of one carbazole skeleton, so that it can have high thermal stability.
  • the thermal and electrical stability of the molecule itself can be enhanced through a rigid bonding structure.
  • the light emitting layer 40 of the present invention includes a host and a dopant doped in the host. . In this way, the energy efficiency can be improved in the process of energy transfer from the host to the dopant.
  • the at least one host includes a first host represented by Formula 1; And a second host having a carbazole moiety.
  • the mixing ratio between the first host and the second host is not particularly limited, and can be appropriately adjusted within the range known in the art. In one embodiment, the mixing ratio of the first host to the second host may be 20-80: 80-20, preferably 30-70: 70-30.
  • the light emitting layer 40 of the present invention may further include a host material known in the art.
  • a host material known in the art.
  • usable host materials include alkali metal complexes; Alkaline earth metal complex compounds; Or condensed aromatic ring derivatives.
  • the host material may be at least one selected from the group consisting of an aluminum complex compound, a beryllium complex compound, an anthracene derivative, a pyrene derivative, a triphenylene derivative, a carbazole derivative, a dibenzofuran derivative, Thiophene derivatives, or a combination of at least two of them.
  • the dopant contained in the light emitting layer 40 of the present invention can be any of those known in the art without limitation, and specifically, the LUMO energy level and / or the triplet energy level, as compared with the host material of the above- Is not particularly limited as long as it is a substance falling within a specific range as described above.
  • Nonlimiting examples of usable dopants include metal complex compounds including anthracene derivatives, pyrene derivatives, arylamine derivatives, iridium (Ir), and platinum (Pt).
  • An example of the dopant according to the present invention may be an iridium (Ir) complex having a LUMO energy level of 2.4 to 2.8 eV and a triplet energy (T1) of 2.3 to 2.45 eV.
  • the present invention is not particularly limited thereto.
  • the light emitting layer 40 of the present invention can prevent electrons from being reversely transferred to the host by the triplet energy (T1) level while being able to be smoothly supplied from the host to the dopant through the LUMO level,
  • the luminous efficiency and lifetime characteristics of the device can be improved at the same time. Accordingly, in the present invention, it is necessary to control the physical properties (for example, LUMO, triplet energy (T1)) of the host and the dopant mixed as the light emitting layer material respectively as follows.
  • the difference (LUMO H - LUMO D ) between the LUMO energy level (LUMO H ) of the compound represented by Formula 1 and the LUMO energy level (LUMO D ) of the dopant is 1.0 eV ≪ / RTI > Preferably greater than 0 and less than or equal to 0.65 eV, more preferably greater than 0 and less than or equal to 0.5 eV.
  • the triplet energy level of the compound represented by Formula 1 is higher than the triplet energy level of the dopant.
  • the triplet energy level (T1 H) of the compound represented by the formula (1) the difference between the triplet energy level (T1 D) of the dopant (T1 H - T1 D) may be in the range of 0.1 to 0.5 eV, Preferably 0.2 to 0.4 eV.
  • the triplet energy level of the compound represented by Formula 1 may be 2.5 eV or more, specifically 2.5 to 3.0 eV, and preferably 2.6 to 2.85 eV.
  • the dopant may be classified into a red dopant, a green dopant, and a blue dopant.
  • the red dopant, the green dopant, and the blue dopant commonly known in the art can be used without particular limitation.
  • red dopant examples include PtOEP (Pt (II) octaethylporphine: Pt (II) octaethylporphine), Ir (piq) 3 (tris (2-phenylisoquinoline) iridium: (2'-benzothienyl) -pyridinato-N, C3 ') iridium (acetylacetonate): Bis (2- N, C3 ') iridium (acetylacetonate)), or a mixture of two or more thereof.
  • PtOEP Pt (II) octaethylporphine
  • Ir (piq) 3 tris (2-phenylisoquinoline) iridium: (2'-benzothienyl) -pyridinato-N, C3 ') iridium (acet
  • green dopant examples include Ir (ppy) 3 (tris (2-phenylpyridine) iridium: tris (2-phenylpyridine) iridium), Ir (ppy) (Acetylacetonato) iridium (III): bis (2-phenylpyridine) (acetylacetato) iridium (III)), Ir (mppy) (2-benzothiazolyl) -1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H, 5H, 11H- [1] benzopyrano [ 6,7,8-ij] -quinolizin-11-one: 10- (2-benzothiazolyl) -1,1,7,7-tetramethyl-2,3,6,7, -tetrahydro- 5H, 11H- [1] benzopyrano [6,7,8-ij] -quinolizine-11-one), or a mixture of two or more thereof.
  • Nonlimiting examples of the blue dopant include bis [3,5-difluoro-2- (2-pyridyl) phenyl] (picolinato) iridium (III) (2-pyridyl) phenyl (picolinato) iridium (III)), (F2ppy) 2Ir (tmd), Ir (dfppz) 3, DPVBi (4,4'- yl) biphenyl: 4,4'-bis (2,2'-diphenylethen-1-yl) biphenyl), DPAVBi (4,4'-Bis [4- (diphenylamino) styryl] biphenyl: Bis (4-diphenylaminostyryl) biphenyl), TBPe (2,5,8,11-tetra-tert-butyl perylene: 2,5,8,11-tetra- Or a mixture of two or more of these.
  • the mixing ratio between the host and the dopant is not particularly limited and can be appropriately adjusted within the range known in the art.
  • the host may be included in the range of 70 to 99.9 wt%, and the dopant may be included in the range of 0.1 to 30 wt%. More specifically, when the light emitting layer 40 is blue fluorescence, green fluorescence, or red fluorescence, the host may be contained in the range of 80 to 99.9 wt%, and the dopant may be included in the range of 0.1 to 20 wt%.
  • the host may be included in the range of 70 to 99 wt% and the dopant may be included in the range of 1 to 30 wt%.
  • the light emitting layer 40 includes a red light emitting layer including a red phosphorescent material; A green light emitting layer including a green phosphorescent material; Or a blue light-emitting layer containing a blue phosphor or a blue phosphor.
  • a light emitting layer containing a green phosphorescent material Preferably a light emitting layer containing a green phosphorescent material.
  • the above-described light emitting layer 40 may be a single layer or a plurality of layers of two or more layers.
  • the organic electroluminescent device can emit light of various colors.
  • the present invention can provide an organic electroluminescent device having a plurality of luminescent layers made of different materials in series to form a mixed color.
  • the driving voltage of the device is increased, while the current value in the organic light emitting device is constant, thereby providing an organic electroluminescent device having improved luminous efficiency by the number of light emitting layers.
  • the electron transporting region 50 included in the organic material layer A serves to move electrons injected from the cathode 20 to the light emitting layer 40.
  • the electron transport region 50 may include at least one selected from the group consisting of the electron transport layer 51 and the electron injection layer 52. In consideration of the characteristics of the organic electroluminescent device, it is preferable to include both the electron transport layer 51 and the electron injection layer 52 described above.
  • the electron injection layer 52 can use an electron injection material which is easy to inject electrons and has a high electron mobility, without limitation.
  • usable electron injecting materials include the above-mentioned bipolar compounds, anthracene derivatives, heteroaromatic compounds, alkali metal complexes and the like. Specifically, LiF, Li2O, BaO, NaCl, CsF; Lanthanum metals such as Yb and the like; Or metal halides such as RbCl, RbI and the like, which may be used alone or in combination of two or more.
  • the electron transporting region 50 of the present invention may be co-deposited with an n-type dopant to facilitate the injection of electrons from the cathode.
  • the n-type dopant can be used without limitation in the alkali metal complexes known in the art, and examples thereof include alkali metals, alkaline earth metals and rare earth metals.
  • the electron transport region 50 can be manufactured by a conventional method known in the art. For example, a vacuum deposition method, a spin coating method, a casting method, an LB method (Langmuir-Blodgett), an inkjet printing method, a laser printing method, a laser induced thermal imaging method (LITI)
  • a vacuum deposition method for example, a vacuum deposition method, a spin coating method, a casting method, an LB method (Langmuir-Blodgett), an inkjet printing method, a laser printing method, a laser induced thermal imaging method (LITI)
  • the organic light emitting device 100 of the present invention may further include a light emitting auxiliary layer (not shown) disposed between the hole transporting region 30 and the light emitting layer 40.
  • the light emission assisting layer serves to regulate the thickness of the organic layer (A) while serving to transport holes, which are moved from the hole transporting region (30), to the light emitting layer (40).
  • This luminescent auxiliary layer has a high LUMO value and prevents electrons from migrating to the hole transport layer 32 and has a high triplet energy to prevent the exciton of the luminescent layer 40 from diffusing into the hole transport layer 32.
  • This luminescent auxiliary layer may include a hole transporting material and may be made of the same material as the hole transporting region. Further, the light-emission-assisting layers of the red, green, and blue organic light-emitting devices may be made of the same material.
  • the light-emitting auxiliary layer material is not particularly limited, and examples thereof include carbazole derivatives and arylamine derivatives.
  • Non-limiting examples of usable luminescent auxiliary layers include NPD (N, N-dinaphthyl-N, N'-diphenyl benzidine), TPD (N, N'-bis- (3-methylphenyl) phenyl-benzidine, s-TAD, and 4,4 ', 4 "-tris (N-3-methylphenyl-Nphenyl-amino) -triphenylamine. These may be used alone or in combination of two or more.
  • the light-emitting auxiliary layer may include a p-type dopant in addition to the above-described materials. As the p-type dopant, well-known p-type dopants used in the related art can be used.
  • the organic electroluminescent device 100 of the present invention may further include an electron transporting layer (not shown) disposed between the electron transporting region 50 and the light emitting layer 40.
  • the electron transporting layer can prevent the excitons or holes generated in the light emitting layer from diffusing into the electron transporting region.
  • the electron transporting layer may include an oxadiazole derivative, a triazole derivative, a phenanthroline derivative (e.g., BCP), a heterocyclic derivative including nitrogen, and the like.
  • the electron transporting auxiliary layer may be formed by vacuum deposition, spin coating, casting, Langmuir-Blodgett, inkjet printing, laser printing, laser induced thermal imaging (LITI) ), But the present invention is not limited thereto.
  • the organic electroluminescent device 100 of the present invention may further include a capping layer (not shown) disposed on the cathode 20 described above.
  • the capping layer functions to protect the organic light emitting device and efficiently emit light generated in the organic layer to the outside.
  • the capping layer may be formed of tris-8-hydroxyquinoline aluminum (Alq3), ZnSe, 2,5-bis (6 '- (2' N'-diphenyl-N, N'-bis (3-methylphenyl) -1,1'-bis [N- (1-naphthyl) biphenyl-4,4'-diamine (TPD), 1,1'-bis (di-4-tolylaminophenyl) cyclohexane (TAPC).
  • TPD 1,1'-bis (di-4-tolylaminophenyl) cyclohexane
  • TAPC 1,1'-bis (di-4-tolylaminophenyl) cyclohexane
  • Such a capping layer may be a single layer, but may include two or more layers having different refractive indexes so that the refractive index gradually changes while passing through the two or more layers.
  • the capping layer may be formed by a conventional method known in the art. For example, various methods such as a vacuum deposition method, a spin coating method, a casting method, or a Langmuir-Blodgett (LB) method may be used.
  • various methods such as a vacuum deposition method, a spin coating method, a casting method, or a Langmuir-Blodgett (LB) method may be used.
  • the organic light emitting device of the present invention including the above-described configuration can be manufactured according to a conventional method known in the art.
  • an organic light emitting device can be manufactured by vacuum-depositing a cathode material on a substrate, then vacuum-depositing a hole transporting material, a light emitting layer material, an electron transporting material, and a cathode material on the anode in this order .
  • the organic electroluminescent device 100 has a structure in which an anode 10, an organic material layer A and a cathode 20 are sequentially laminated and a structure is formed between the anode 10 and the organic material layer A or between the anode 20 ) And the organic material layer (A).
  • lifetime characteristics can be excellent because the lifetime of the initial brightness is increased while maintaining the maximum luminous efficiency.
  • bipolar compound according to the present invention compounds represented by the following GE-01 to GE-16 and Ir (ppy) 3 were prepared, and the LUMO and triplet energy of each compound described above were measured by methods known in the art Are shown in Table 1 below. CBP compounds were also used as controls.
  • the LUMO energy level of each compound was calculated from the difference between HOMO and energy gap.
  • the ionization potential was measured using a cyclic voltammetry (CV) method and the energy gap was measured with a UV spectrophotometer.
  • the triplet energies were prepared by dissolving the sample in a concentration of 10 -4 M in a 2-methylTHF solvent and measuring the phosphorescence spectrum at 77 K low temperature using liquid nitrogen.
  • the glass substrate coated with ITO (Indium tin oxide) thin film with thickness of 1500 ⁇ was washed with distilled water ultrasonic wave. After the distilled water was washed, the substrate was ultrasonically washed with a solvent such as isopropyl alcohol, acetone, or methanol, dried and transferred to a UV OZONE cleaner (Power Sonic 405, Hoshin Tech), the substrate was cleaned using UV for 5 minutes, The substrate was transferred.
  • a solvent such as isopropyl alcohol, acetone, or methanol
  • a green organic EL device was fabricated in the same manner as in Example 1 except that CBP was used instead of the compound GE-1 as a luminescent host material in forming the light emitting layer.
  • Example 1 GE-1 0.53 0.33 5.21 515 52.1
  • Example 2 GE-2 0.54 0.36 5.43 516 51.8
  • Example 3 GE-3 0.12 0.31 5.17 515 54.3
  • Example 4 GE-4 0.14 0.29 5.24 515 53.8
  • Example 5 GE-5 0.46 0.28 4.62 516 55.5
  • Example 6 GE-6 0.54 0.25 4.72 517 58.7
  • Example 7 GE-7 0.25 0.26 4.55 516 62.1
  • Example 8 GE-8 0.32 0.24 4.56 515 61.8
  • Example 9 GE-9 0.33 0.24 5.64 516 56.6
  • Example 10 GE-10 0.39 0.32 5.51 516 51.1
  • Example 12 GE-12 0.42 0.29 5.43 518 52.7
  • Example 13 GE-13 0.22 0.26 4.57 517 60.7
  • Example 14 GE-14 0.30 0.28 5.12 515 57.1
  • Example 15 GE-15 0.22
  • the green organic EL devices of Examples 1 to 16 using the compound according to the present invention as a light emitting layer compared with the green organic EL device of Comparative Example 1 using conventional CBP, which is superior to the conventional method.
  • the CBP used in Comparative Example 1 is not smooth in the movement of electrons through the LUMO because the LUMO value difference with the dopant is larger than that of the present embodiments, and the CBP and dopant triplet energy (T1) Since the difference is insignificant compared to the compounds of the present embodiments, energy transfer from the dopant to CBP can be facilitated. As a result, it was found that the performance evaluation result of the green organic EL device of Comparative Example 1 including CBP as a light emitting layer material was not good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention may provide an organic electroluminescent device in which a novel compound is used as a host material for a light-emitting layer, and thus the organic electroluminescent device has improved properties such as high light-emitting efficiency, low driving voltage and long lifespan.

Description

유기 전계 발광 소자 Organic electroluminescent device
본 발명은 신규 화합물을 발광층의 호스트 재료로 사용함으로써, 높은 발광효율, 낮은 구동전압, 및 장수명 등의 특성이 향상된 유기 전계 발광 소자에 관한 것이다.The present invention relates to an organic electroluminescent device having improved characteristics such as high luminous efficiency, low driving voltage and long life time by using a novel compound as a host material of a light emitting layer.
1950년대 Bernanose의 유기 박막 발광 관측을 시점으로 1965년 안트라센 단결정을 이용한 청색 전기발광으로 이어진 유기 전계 발광(electroluminescent) 소자에 대한 연구는 1987년 탕(Tang)에 의하여 정공층과 발광층의 기능층으로 나눈 적층구조의 유기 전계 발광 소자가 제시되었다. 이후 고효율, 고수명의 유기 전계 발광 소자를 만들기 위하여, 소자 내 각각의 특징적인 유기물 층을 도입하는 형태로 발전하여 왔으며, 이에 사용되는 특화된 물질의 개발로 이어졌다. A study on organic electroluminescent devices that resulted in blue electroluminescence using anthracene single crystals in 1965 based on observation of organic thin film emission of Bernanose in the 1950s was conducted by Tang in 1987 divided by the functional layer of the hole layer and the light emitting layer An organic electroluminescent device having a laminated structure has been proposed. Since then, in order to make high efficiency and high number of organic electroluminescent devices, each organic material layer has been developed into a form of introducing a characteristic organic material layer in the device, leading to the development of specialized materials used therefor.
유기 전계 발광 소자는 두 전극 사이에 전압을 걸어 주면 양극에서는 정공이 주입되고, 음극에서는 전자가 유기물층으로 주입된다. 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥상태로 떨어질 때 빛이 나게 된다. 이때 유기물층으로 사용되는 물질은 그 기능에 따라, 발광 물질, 정공 주입 물질, 정공 수송 물질, 전자 수송 물질, 전자 주입 물질 등으로 분류될 수 있다. In the organic electroluminescent device, when a voltage is applied between two electrodes, holes are injected into the anode, and electrons are injected into the organic layer from the cathode. When the injected holes and electrons meet, an exciton is formed. When the exciton falls to the ground state, light is emitted. The material used as the organic material layer may be classified into a light emitting material, a hole injecting material, a hole transporting material, an electron transporting material, and an electron injecting material depending on its function.
유기 전계 발광 소자의 발광층 형성재료는 발광색에 따라 청색, 녹색, 적색 발광 재료로 구분될 수 있다. 그밖에, 보다 나은 천연색을 구현하기 위한 발광재료로 노란색 및 주황색 발광재료도 사용된다. 또한, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여, 발광 재료로서 호스트/도펀트 계를 사용할 수 있다. The light emitting layer forming material of the organic electroluminescent device can be classified into blue, green and red light emitting materials according to the luminescent color. In addition, yellow and orange light emitting materials are also used as light emitting materials for realizing better color. Further, in order to increase the color purity and increase the luminous efficiency through energy transfer, a host / dopant system can be used as a light emitting material.
도판트 물질은 유기 물질을 사용하는 형광 도판트와 Ir, Pt 등의 중원자(heavy atoms)가 포함된 금속 착체 화합물을 사용하는 인광 도판트로 나눌 수 있다. 이러한 인광 재료의 개발은 이론적으로 형광에 비해 4배까지의 발광 효율을 향상시킬 수 있어 인광 도판트 뿐만 아니라 인광 호스트 재료들에 대해 관심이 집중되고 있다. The dopant material can be divided into a fluorescent dopant using an organic material and a phosphorescent dopant using a metal complex compound containing heavy atoms such as Ir and Pt. The development of such a phosphorescent material can theoretically improve the luminous efficiency up to 4 times as compared with that of fluorescence, and attention is focused on phosphorescent host materials as well as phosphorescent dopants.
현재까지 정공 주입층, 정공 수송층, 정공 차단층, 전자 수송층에 사용되는 물질로는 NPB, BCP, Alq3 등이 널리 알려져 있고, 발광 물질로는 안트라센 유도체들이 형광 도판트/호스트 재료로서 보고되고 있다. 특히 발광재료 중 효율 향상 측면에서 큰 장점을 가지고 있는 인광 재료로서는 Firpic, Ir(ppy)3, (acac)Ir(btp)2 등과 같은 Ir을 포함하는 금속 착체 화합물이 청색, 녹색, 적색 도판트 재료로 사용되고 있다. 현재까지는 CBP가 인광 호스트 재료로 우수한 특성을 나타내고 있다. NPB, BCP, Alq 3 and the like are widely known as materials used for the hole injecting layer, the hole transporting layer, the hole blocking layer and the electron transporting layer, and the anthracene derivatives as a luminescent material have been reported as a fluorescent dopant / host material . In particular Firpic, Ir as a phosphorescent material that has a great advantage in improving the efficiency aspects of the light-emitting material (ppy) 3, (acac) Ir (btp) 2 Ir metal complex compound is a blue, green and red host material that includes such as . So far, CBP has shown excellent properties as a phosphorescent host material.
그러나 종래 발광 물질들은 발광 특성 측면에서 유리한 면이 있으나, 유리전이온도가 낮고 열적 안정성이 매우 좋지 않기 때문에, 유기 전계 발광 소자에서의 수명 측면에서 만족할만한 수준이 되지 못하고 있다. 따라서, 우수한 성능을 가지는 발광 물질의 개발이 요구되고 있다.However, conventional luminescent materials are advantageous in terms of luminescence properties, but they are not satisfactory in terms of lifetime in an organic electroluminescent device because the glass transition temperature is low and the thermal stability is not very good. Therefore, development of a luminescent material having excellent performance is required.
[선행기술문헌][Prior Art Literature]
[특허문헌][Patent Literature]
(특허문헌 1) 일본공개특허공보 제2001-160489호(Patent Document 1) Japanese Laid-Open Patent Publication No. 2001-160489
본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서, 보다 구체적으로 신규 화합물을 발광층의 호스트 재료로 사용하여, 높은 발광효율과 낮은 구동전압을 나타내며, 수명이 향상되는 유기 전계 발광 소자를 제공하는 것을 목적으로 한다.Disclosure of the Invention The present invention has been conceived to solve the above-described problems, and it is an object of the present invention to provide an organic electroluminescent device using a novel compound as a host material of a light emitting layer, exhibiting a high luminous efficiency and a low driving voltage, The purpose.
상기 목적을 달성하기 위하여, 본 발명은 양극; 상기 양극과 대향 배치된 음극; 및 상기 양극과 음극 사이에 개재(介在)되는 발광층을 포함하고, 상기 발광층은, 적어도 1종의 호스트 및 도펀트를 포함하되, 상기 적어도 1종의 호스트는 하기 화학식 1로 표시되는 화합물을 포함하는 유기 전계 발광 소자를 제공한다. According to an aspect of the present invention, A negative electrode disposed opposite to the positive electrode; And a light-emitting layer interposed between the anode and the cathode, wherein the light-emitting layer comprises at least one host and a dopant, wherein the at least one host is an organo-organic compound comprising a compound represented by the following formula An electroluminescent device is provided.
Figure PCTKR2019000616-appb-C000001
Figure PCTKR2019000616-appb-C000001
상기 화학식 1에서,In Formula 1,
X1 및 X2는 서로 동일하거나 상이하며, 각각 독립적으로 O 또는 S이고,X 1 and X 2 are the same as or different from each other and each independently O or S,
Y1 내지 Y16은 서로 동일하거나 상이하며, 각각 독립적으로 CR8 또는 N이고, 이때 CR8이 복수 개인 경우 복수의 R8은 서로 동일하거나 또는 상이하며, Y 1 to Y 16 are the same as or different from each other, and each independently CR 8 or N, provided that when there are a plurality of CR 8 s , the plurality of R 8 s are the same as or different from each other,
Z1 내지 Z3는 서로 동일하거나 상이하며, 각각 독립적으로 CR5 또는 N이고, 이들 중 적어도 하나는 N이고,Z 1 to Z 3 are the same or different and each independently CR 5 or N, at least one of them is N,
Ar1은 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기 및 C6~C60의 아릴기로 이루어진 군에서 선택되고,Ar 1 is selected from the group consisting of hydrogen, deuterium, halogen, cyano, nitro, C 1 to C 40 alkyl, C 2 to C 40 alkenyl, C 2 to C 40 alkynyl, C 3 to C 40 cycloalkyl, A C 6 to C 60 aryl group,
m 및 n은 각각 0 내지 3의 정수이며, m+n ≥ 1이고,m and n are each an integer of 0 to 3, m + n? 1,
A 및 B는 서로 동일하거나 상이하며, 각각 독립적으로 하기 화학식 2 내지 4로 표시되는 치환체 중 어느 하나이며;A and B are the same or different from each other and are each independently any one of substituents represented by the following formulas (2) to (4);
Figure PCTKR2019000616-appb-C000002
Figure PCTKR2019000616-appb-C000002
Figure PCTKR2019000616-appb-C000003
Figure PCTKR2019000616-appb-C000003
Figure PCTKR2019000616-appb-C000004
Figure PCTKR2019000616-appb-C000004
상기 화학식 2 내지 4에서,In the above Chemical Formulas 2 to 4,
*은 상기 화학식 1에 결합되는 부위를 의미하고,* Represents a moiety bonded to Formula 1,
X3는 단일결합이거나, 혹은 O 또는 S이고,X 3 is a single bond, or O or S,
L은 단일결합이거나, 혹은 C6~C40의 아릴렌기이고,L is a single bond or an arylene group having 6 to 40 carbon atoms,
Ar2 및 Ar3은 서로 동일하거나 상이하며, 각각 독립적으로 C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 혹은 인접한 기와 결합하여 축합 고리를 형성할 수 있고,Ar 2 and Ar 3 are the same or different and each independently represents a C 1 to C 40 alkyl group, a C 2 to C 40 alkenyl group, a C 2 to C 40 alkynyl group, a C 3 to C 40 cycloalkyl group, C 6 ~ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group, and a C 6 ~, or selected from the group consisting of C 60 aryl amine, with or adjacent groups bonded may form a condensed ring,
a, c 및 f는 각각 0 내지 3의 정수이고,a, c, and f are each an integer of 0 to 3,
b, d 및 e는 각각 0 내지 4의 정수이며, 이때 b+m≤4, d+n≤4이고,b, d and e are each an integer of 0 to 4, wherein b + m? 4, d + n? 4,
R1 내지 R8은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 혹은 인접한 기와 결합하여 축합 고리를 형성할 수 있고, 이때 상기 R1 내지 R7이 각각 복수인 경우, 이들은 서로 동일하거나 상이하고,R 1 to R 8 are the same or different from each other and each independently represents hydrogen, deuterium, halogen, cyano, nitro, C 1 to C 40 alkyl, C 2 to C 40 alkenyl, C 2 to C 40 An alkynyl group, a C 3 to C 40 cycloalkyl group, a heteroaryl group having 3 to 40 nuclear atoms, a C 6 to C 60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, a C 1 to C 40 alkyl A C 6 to C 60 aryloxy group, a C 1 to C 40 alkylsilyl group, a C 6 to C 60 arylsilyl group, a C 1 to C 40 alkylboron group, a C 6 to C 60 aryl boron group, C 6 ~ C 60 aryl phosphine group, C 6 ~ C 60 aryl phosphine oxide group, and a C 6 ~, or selected from the group consisting of an aryl amine of the C 60 of, or adjacent groups combine to form a condensed ring And when R 1 to R 7 are each plural, they may be the same or different from each other,
상기 Ar1 내지 Ar3, R1 내지 R8의 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 아릴포스핀옥사이드기 및 아릴아민기는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환될 수 있으며, 이때 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이할 수 있다. The alkyl group, alkenyl group, alkynyl group, cycloalkyl group, heterocycloalkyl group, aryl group, heteroaryl group, alkyloxy group, aryloxy group, alkylsilyl group and arylsilyl group of Ar 1 to Ar 3 and R 1 to R 8 , An alkylboron group, an arylboron group, an arylphosphine group, an arylphosphine oxide group and an arylamine group are each independently selected from the group consisting of deuterium, halogen, cyano group, nitro group, C 2 to C 40 alkenyl group, C 2 to C 40 alkynyl group, C 3 ~ C 40 cycloalkyl group, a number of nuclear atoms of 3 to 40 heterocycloalkyl group, C 1 ~ C 40 alkyl group, C 6 ~ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group , A C 1 to C 40 alkyloxy group, a C 6 to C 60 aryloxy group, a C 1 to C 40 alkylsilyl group, a C 6 to C 60 arylsilyl group, a C 1 to C 40 alkylboron group , C group 6 to C 60 aryl boron, C 6 to C 60 aryl phosphine of pingi, C 6 to C 60 aryl phosphine oxide group, and a C 6 to C 60 aryl amine group selected from the group consisting of 1 And when the substituent is plural, they may be the same as or different from each other.
본 발명에서는 발광층 성분으로 호스트와 도펀트를 포함하되, 상기 호스트와 도펀트의 LUMO 에너지 준위 및 삼중항 에너지를 특정 범위로 조절함으로써, 높은 발광 특성, 낮은 구동전압 및 장수명 특성을 동시에 갖는 유기 전계 발광 소자를 제공할 수 있다. 나아가 성능 및 수명이 향상된 풀 칼라 디스플레이 패널도 제조할 수 있다.In the present invention, an organic electroluminescent device including a host and a dopant as a light emitting layer component and simultaneously controlling the LUMO energy level and the triplet energy of the host and the dopant to a specific range has high light emission characteristics, low driving voltage, . Further, a full color display panel having improved performance and lifetime can be manufactured.
도 1은 본 발명의 일 실시예에 따른 유기 전계 발광 소자의 구조를 나타낸 단면도이다.1 is a cross-sectional view illustrating a structure of an organic electroluminescent device according to an embodiment of the present invention.
<부호의 간단한 설명><Brief Description of Symbols>
100: 유기 전계 발광 소자 A: 유기층100: organic electroluminescent device A: organic layer
10: 양극 20: 음극10: anode 20: cathode
30: 정공 수송 영역 31: 정공주입층30: Hole transporting region 31: Hole injection layer
32: 정공수송층 40: 발광층32: hole transport layer 40: light emitting layer
50: 전자 수송 영역 51: 전자수송층50: electron transporting region 51: electron transporting layer
52: 전자주입층52: electron injection layer
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 양극; 음극; 및 상기 양극과 음극 사이에 개재되고, 정공 수송 영역, 발광층 및 전자 수송 영역을 포함하는 1층 이상의 유기물층을 구비하되, 상기 화학식 1로 표시되는 화합물과 도펀트를 포함하고, 이들 간의 물성(예, LUMO 에너지, 삼중항 에너지 등)이 특정 범위로 조절된 발광층을 포함하는 유기 전계 발광 소자에 관한 것이다. The present invention relates to a positive electrode; cathode; And at least one organic material layer interposed between the anode and the cathode and including a hole transporting region, a light emitting layer, and an electron transporting region, wherein the organic material layer includes a compound represented by Formula 1 and a dopant, Energy, triplet energy, etc.) is controlled to a specific range.
발광층에서는 음극에서 발생한 전자와 양극에서 발생한 정공이 만나 재결합하면서 엑시톤(exciton)이 생성되고, 이러한 엑시톤이 기저상태(ground state)로 전이하면서 발광이 이루어지게 된다. 상기 발광층의 성분으로 단일 물질만을 사용하는 경우, 생성된 엑시톤 간의 상호작용에 의해 발광 효율이 감소되는 문제가 초래된다. 이러한 문제점을 해결하고자, 일반적으로 발광층은 호스트(host) 및 상기 호스트에 도핑된 도펀트(dopant)를 포함한다. 이와 같이 호스트에서 도펀트로 에너지 전이(energy transfer)가 일어나는 과정에서 소자의 발광 효율이 향상되는데, 상기 호스트와 도펀트의 물성이 적절하게 구성되지 못할 경우, 오히려 소자의 발광 효율이 저하되고 수명이 단축될 수 있다. In the light emitting layer, excitons are generated while electrons generated at the cathode and holes generated at the anode meet and recombine, and light is emitted while the exciton transitions to the ground state. When only a single material is used as a component of the light emitting layer, there arises a problem that luminous efficiency is reduced due to the interaction between the generated excitons. In order to solve this problem, generally, the light emitting layer includes a host and a dopant doped to the host. In the process of energy transfer from the host to the dopant, the luminous efficiency of the device is improved. If the physical properties of the host and the dopant are not properly configured, the luminous efficiency of the device is lowered and the lifetime is shortened .
본 발명에서는 발광층의 구성 성분으로 호스트와 도펀트를 포함하되, 상기 호스트로서 화학식 1로 표시되는 신규 구조의 화합물을 사용하고, 이러한 호스트와 도펀트 간의 물성(예, LUMO 에너지, 삼중항 에너지 등)을 최적화하여 소자의 구동전압, 발광효율 및 수명 특성을 동시에 향상시키고자 한다. In the present invention, a compound having a novel structure represented by the formula (1) is used as the host and a dopant as the constituent of the light emitting layer, and the properties (such as LUMO energy, triplet energy, etc.) between such a host and the dopant are optimized So that the driving voltage, luminous efficiency and lifetime characteristics of the device are simultaneously improved.
구체적으로, 본 발명에서는 호스트와 도펀트 간의 최저 비점유 분자궤도 (LUMO)의 에너지 준위 차이를 1.0 eV 이하, 바람직하게는 0.5 eV 이하로 조절한다. 이와 같이 호스트와 도펀트의 LUMO 차이가 작을수록, 호스트에서 도펀트로의 에너지 전달이 용이하다. Specifically, in the present invention, the difference in energy level between the lowest unoccupied molecular orbital (LUMO) between the host and the dopant is adjusted to 1.0 eV or less, preferably 0.5 eV or less. The smaller the LUMO difference between the host and the dopant, the easier is the energy transfer from the host to the dopant.
또한 상기 호스트에서 도펀트로의 에너지 전이가 용이하게 이루어지기 위해서는, 발광층에 존재하는 호스트 물질의 삼중항 에너지 레벨이 도펀트 물질의 삼중항 에너지보다 높아야 한다. 이는 도펀트의 삼중항에 있는 엑시톤이 다시 호스트로 역전이되는 현상을 막고, 유기 전계 발광 소자의 발광 효율, 구동 전압 및 수명 등을 더 향상시킬 수 있기 때문이다. Further, in order to facilitate the energy transfer from the host to the dopant, the triplet energy level of the host material present in the luminescent layer must be higher than the triplet energy of the dopant material. This is because the excitons in the triplet of the dopant can be prevented from reversing to the host again, and the luminous efficiency, driving voltage and lifetime of the organic electroluminescent device can be further improved.
실제로, 본 발명에서는 신규 구조의 호스트와 도펀트를 발광층 성분으로 포함하되, 이들 간의 물성을 소정 범위로 조절함으로써, 호스트에서 도펀트로의 에너지 전이가 용이하게 이루어질 뿐만 아니라 도펀트의 삼중항에 있는 엑시톤의 역전이 현상을 막아 소자의 발광 효율이 유의적으로 개선되고, 소자의 내구성 및 안정성이 향상되어 소자의 수명 또한 효율적으로 증가될 수 있음을 확인할 수 있다. 이를 통해 고효율 및 장수명 특성이 향상된 풀 칼라 디스플레이 패널도 제조할 수 있다.Actually, in the present invention, a host and a dopant of a novel structure are included as a light emitting layer component, and by controlling the physical properties between them to a predetermined range, not only the energy transfer from the host to the dopant is facilitated, but also the reversal of the exciton It can be seen that the luminous efficiency of the device is significantly improved by preventing this phenomenon, the durability and the stability of the device are improved, and the lifetime of the device can be efficiently increased. Thus, a full color display panel having improved efficiency and long life characteristics can be manufactured.
<유기 전계 발광 소자>&Lt; Organic electroluminescent device &
본 발명에 따른 일 실시형태의 유기 전계 발광소자는, 상기 화학식 1로 표시되는 화합물과 도펀트를 포함하되, 이들 간의 물성(예, LUMO 에너지 준위, 삼중항 에너지)이 특정 범위로 조절된 발광층을 구비한다. 바람직한 일 실시형태를 들면, 상기 화합물을 발광층의 호스트 재료(인광 호스트)로 사용한다. An organic electroluminescent device according to an embodiment of the present invention includes a light emitting layer including a compound represented by Formula 1 and a dopant and having physical properties (e.g., LUMO energy level, triplet energy) do. In one preferred embodiment, the compound is used as a host material (phosphorescent host) of the light emitting layer.
이하, 첨부된 도면을 참조하여 본 발명에 따른 유기 전계 발광 소자의 바람직한 실시형태들을 설명한다. 그러나 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 설명되는 실시형태로 한정되는 것은 아니다. Hereinafter, preferred embodiments of the organic electroluminescent device according to the present invention will be described with reference to the accompanying drawings. However, the embodiments of the present invention can be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below.
도 1은 본 발명의 일 실시예에 따른 유기 전계 발광 소자의 구조를 나타내는 도면이다. 1 is a view illustrating a structure of an organic electroluminescent device according to an embodiment of the present invention.
상기 도 1을 참조하여 설명하면, 유기 전계 발광 소자(100)는, 양극(10); 음극(20); 상기 양극(10)과 음극(20) 사이에 위치한 발광층(40)을 포함한다. Referring to FIG. 1, the organic electroluminescent device 100 includes an anode 10; A cathode 20; And a light emitting layer 40 positioned between the anode 10 and the cathode 20.
이때, 상기 유기 전계 발광 소자(100)는, 상기 양극(10)과 상기 발광층(40) 사이에 배치된 정공 수송 영역(30); 및 상기 발광층(40)과 상기 음극(20) 사이에 배치된 전자 수송 영역(50) 중 적어도 하나를 포함하며, 바람직하게는 정공 수송 영역(30)과 전자 수송 영역(50)을 모두 포함하는 구조를 갖는다. Here, the organic electroluminescent device 100 includes a hole transport region 30 disposed between the anode 10 and the light emitting layer 40; And an electron transporting region 50 disposed between the light emitting layer 40 and the cathode 20 and preferably includes at least one of a hole transporting region 30 and an electron transporting region 50 .
양극anode
본 발명에 따른 유기 전계 발광 소자(100)에 있어서, 양극(10)은 정공을 유기물층(A)으로 주입하는 역할을 한다. In the organic electroluminescent device 100 according to the present invention, the anode 10 serves to inject holes into the organic material layer A.
상기 양극(10)을 이루는 물질은 특별히 한정되지 않으며, 당 업계에 알려진 통상적인 것을 사용할 수 있다. 이의 비제한적인 예로는, 바나듐, 크롬, 구리, 아연, 금 등의 금속; 이들의 합금; 아연 산화물, 인듐 산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물(IZO) 등의 금속 산화물; ZnO:Al, SnO2:Sb 등의 금속과 산화물의 조합; 폴리티오펜, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤, 폴리아닐린 등의 전도성 고분자; 및 카본블랙 등이 있다. The material forming the anode 10 is not particularly limited, and those known in the art can be used. Non-limiting examples thereof include metals such as vanadium, chromium, copper, zinc and gold; Alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); ZnO: Al, SnO 2: a combination of a metal and an oxide such as Sb; Conductive polymers such as polythiophene, poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole and polyaniline; And carbon black.
상기 양극(10)을 제조하는 방법도 특별히 한정되지 않으며, 당 업계에 알려진 통상적인 방법에 따라 제조될 수 있다. 일례로, 실리콘 웨이퍼, 석영, 유리판, 금속판 또는 플라스틱 필름으로 이루어진 기판 상에 양극 물질을 코팅하는 방법을 들 수 있다.The method for producing the anode 10 is not particularly limited, and can be produced according to a conventional method known in the art. For example, a method of coating a positive electrode material on a substrate made of a silicon wafer, quartz, a glass plate, a metal plate, or a plastic film can be mentioned.
음극cathode
본 발명에 따른 유기 전계 발광 소자(100)에 있어서, 음극(20)은 전자를 유기물층(A)으로 주입하는 역할을 한다. In the organic electroluminescent device 100 according to the present invention, the cathode 20 injects electrons into the organic material layer A.
상기 음극(20)을 이루는 물질은 특별히 한정되지 않으며, 당 업계에 알려진 통상적인 것을 사용할 수 있다. 이의 비제한적인 예로, 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 납 등의 금속; 이들의 합금; 및 LiF/Al, LiO2/Al 등의 다층 구조 물질을 들 수 있다. The material forming the cathode 20 is not particularly limited, and those known in the art can be used. Non-limiting examples thereof include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead; Alloys thereof; And multilayer structured materials such as LiF / Al and LiO 2 / Al.
또한 상기 음극(20)을 제조하는 방법 역시 특별히 한정되지 않으며, 당 업계에 공지된 방법에 따라 제조될 수 있다.Also, the method for producing the cathode 20 is not particularly limited, and can be produced by a method known in the art.
유기물층Organic layer
본 발명에 따른 유기 전계 발광 소자에 포함되는 유기물층(A)은 기존 유기 EL 소자의 유기물층으로 사용되는 통상적인 구성을 제한 없이 사용할 수 있으며, 일례로 정공 수송 영역(30), 발광층(40), 전자 수송 영역(50)으로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다. 이때 유기 전계 발광 소자의 특성을 고려할 때, 전술한 유기물 층들을 모두 포함하는 것이 바람직하다.The organic layer (A) included in the organic electroluminescent device according to the present invention can be used without limitation in a conventional structure used as an organic layer of a conventional organic EL device. For example, the hole transport region 30, the light emitting layer 40, And a transport region 50. [0033] In this case, in consideration of the characteristics of the organic electroluminescent device, it is preferable to include all of the organic layers described above.
정공 수송 영역Hole transport region
본 발명의 유기물층(A)에 포함되는 정공 수송 영역(30)은, 양극(10)에서 주입된 정공을 발광층(40)으로 이동시키는 역할을 한다. 이러한 정공 수송 영역(30)은, 정공주입층(31), 및 정공수송층(32)로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다. 이때 유기 전계 발광 소자의 특성을 고려할 때, 전술한 정공주입층(31)과 정공수송층(32)을 모두 포함하는 것이 바람직하다.The hole transporting region 30 included in the organic material layer A of the present invention serves to move the holes injected from the anode 10 to the light emitting layer 40. The hole transporting region 30 may include at least one selected from the group consisting of a hole injecting layer 31 and a hole transporting layer 32. At this time, in consideration of the characteristics of the organic electroluminescent device, it is preferable that both the hole injection layer 31 and the hole transport layer 32 are included.
전술한 정공주입층(31)과 정공수송층(32)을 이루는 물질은, 정공 주입 장벽이 낮고 정공 이동도가 큰 물질이라면 특별히 한정되지 않으며, 당 업계에 사용되는 정공 주입층/수송층 물질을 제한없이 사용할 수 있다. 이때 상기 정공주입층(31)과 정공수송층(32)을 이루는 물질은 서로 동일하거나 또는 상이할 수 있다. The material forming the hole injection layer 31 and the hole transport layer 32 is not particularly limited as long as the material has a low hole injection barrier and a high hole mobility and the hole injection layer / Can be used. At this time, the materials constituting the hole injection layer (31) and the hole transport layer (32) may be the same or different.
상기 정공 주입 물질은 당 분야에 공지된 정공 주입 물질을 제한 없이 사용할 수 있다. 사용 가능한 정공 주입 물질의 비제한적인 예로는 구리프탈로시아닌(copper phthalocyanine) 등의 프탈로시아닌(phthalocyanine) 화합물; DNTPD (N,N'-diphenyl-N,N'-bis-[4-(phenyl-m-tolyl-amino)-phenyl]-biphenyl-4,4'-diamine), m-MTDATA(4,4',4"-tris(3-methylphenylphenylamino) triphenylamine), TDATA(4,4'4"-Tris(N,N-diphenylamino)triphenylamine), 2TNATA(4,4',4"-tris{N,-(2-naphthyl)-N-phenylamino}-triphenylamine), PEDOT/PSS(Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate)), PANI/DBSA(Polyaniline/Dodecylbenzenesulfonic acid), PANI/CSA(Polyaniline/Camphor sulfonicacid), PANI/PSS((Polyaniline)/Poly(4-styrenesulfonate)) 등이 있다. 이들을 각각 단독으로 사용하거나, 또는 2종 이상 혼용할 수 있다.The hole injecting material may be any of the hole injecting materials known in the art. Non-limiting examples of usable hole injection materials include phthalocyanine compounds such as copper phthalocyanine; (N, N'-diphenyl-N, N'-bis- [4- (phenyl-m-tolyl-amino) -phenyl] -biphenyl-4,4'-diamine, m- , 4 "-tris (3-methylphenylphenylamino) triphenylamine), TDATA (4,4'4" -Tris (N, N-diphenylamino) triphenylamine), 2TNATA (naphthyl) -N-phenylamino} -triphenylamine, PEDOT / PSS, poly (4-styrenesulfonate), PANI / DBSA sulfonicacid, PANI / PSS (polyaniline) / poly (4-styrenesulfonate), etc. These may be used alone or in combination of two or more.
또한 상기 정공 수송 물질은 당 분야에 공지된 정공 수송 물질을 제한 없이 사용할 수 있다. 사용 가능한 정공 수송 물질의 비제한적인 예로는, 페닐카바졸, 폴리비닐카바졸 등의 카바졸계 유도체, 플루오렌(fluorene)계 유도체, TPD(N,N'-bis(3-methylphenyl)-N,N'-diphenyl-[1,1-biphenyl]-4,4'-diamine), TCTA(4,4',4"-tris(N-carbazolyl)triphenylamine) 등과 같은 트리페닐아민계 유도체, NPB(N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine), TAPC(4,4'-Cyclohexylidene bis[N,N-bis(4-methylphenyl)benzenamine]) 등이 있다. 이들을 단독으로 사용되거나, 또는 2종 이상 혼용할 수 있다.Also, the hole transporting material may be any one of known hole transporting materials. Non-limiting examples of usable hole transport materials include carbazole-based derivatives such as phenylcarbazole and polyvinylcarbazole, fluorene-based derivatives, N, N'-bis (3-methylphenyl) Triphenylamine derivatives such as N'-diphenyl- [1,1-biphenyl] -4,4'-diamine and TCTA (4,4 ', 4 "-tris (N-carbazolyl) triphenylamine) , N'-di (1-naphthyl) -N, N'-diphenylbenzidine) and TAPC (4,4'-Cyclohexylidene bis [N, Or two or more of them may be mixed.
상기 정공 수송 영역(30)은 당해 기술분야에서 알려진 통상적인 방법을 통해 제조될 수 있다. 예컨대, 진공 증착법, 스핀 코팅법, 캐스트법, LB법(Langmuir-Blodgett), 잉크젯 프린팅법, 레이저 프린팅법, 레이저 열전사법(Laser Induced Thermal Imaging, LITI) 등이 있는데, 이에 한정되지 않는다.The hole transporting region 30 may be manufactured by a conventional method known in the art. For example, a vacuum deposition method, a spin coating method, a casting method, an LB method (Langmuir-Blodgett), an inkjet printing method, a laser printing method, a laser induced thermal imaging method (LITI)
발광층The light-
본 발명의 유기물층(A)에 포함되는 발광층(40)은, 정공과 전자가 만나 엑시톤(exciton)이 형성되는 층으로, 발광층(40)을 이루는 물질에 따라 유기 전계 발광 소자가 내는 빛의 색이 달라질 수 있다. The light emitting layer 40 included in the organic material layer A of the present invention is a layer in which excitons are formed by the combination of holes and electrons and the color of the light emitted by the organic electroluminescent device depends on the material constituting the light emitting layer 40 It can be different.
본 발명에서는 발광층(40)을 이루는 재료로서, 상기 화학식 1로 표시되는 화합물과 도펀트를 포함한다. 이때, 상기 화학식 1의 화합물은 발광층의 인광 호스트 재료(예, 제1 호스트)로 사용된다.In the present invention, the light emitting layer (40) is made of a compound represented by the general formula (1) and a dopant. At this time, the compound of Formula 1 is used as a phosphorescent host material (e.g., a first host) of the light emitting layer.
상기 화학식 1로 표시되는 화합물은 전자 특성과 정공 특성을 동시에 갖는 양극성(bipolar) 호스트 재료이다. 보다 구체적으로 함질소 헤테로방향족환(예, azine)과, 이의 양측에 결합된 2개의 디벤조계 모이어티(예, 디벤조퓨란 또는 디벤조티오펜)를 갖는 코어(core)를 포함하며, 상기 2개의 디벤조계 모이어티 중 적어도 하나의 페닐기에 당 분야의 통상적인 전자공여성을 갖는 전자주게기(electron donating group, EDG)가 연결되는 기본 골격을 갖는다.The compound represented by Formula 1 is a bipolar host material having both electronic characteristics and hole characteristics. More specifically a core having a nitrogen heteroaromatic ring (e.g., azine) and two dibenzo-based moieties (e.g., dibenzofuran or dibenzothiophene) bonded on both sides thereof, Has a basic skeleton in which at least one phenyl group of two dibenzo-based moieties is connected to an electron donating group (EDG) having a conventional electron donor in the art.
이러한 화학식 1의 화합물은 정공(hole)과 전자(electron)에 대한 양쪽성의 물리화학적 성질을 가진 디벤조계 모이어티[예, dibenzofuran (DBF), dibenzothiophene (DBT)]와, 전자흡수성이 큰 전자끌게기(EWG)인 아진기의 일종인 함질소 헤테로방향족환(예, pyridine, pyrazine, triazine)을 포함하며, 상기 디벤조계 모이어티에 카바졸, 인돌로카바졸, 페녹싸진, 페녹싸이아진, 아릴아민 등의 전자주게기가 연결된다. 상기 화학식 1의 화합물은 양극성(bipolar) 화합물이기 때문에, 정공과 전자의 재결합이 높아 정공 주입/수송 능력, 발광 효율, 구동 전압, 수명 특성, 내구성 등을 향상시킬 수 있다. 이에 따라, 상기 화학식 1의 화합물을 그린 인광재료로서 적용할 경우, 우수한 발광효율 특성을 가질 뿐만 아니라 저전압 구동이 가능하여 수명 상승 효과를 나타낼 수 있으며, 열적 안정성, 높은 유리전이온도 특성 및 균일한 모폴로지(morphology)를 가져 소자 특성이 우수하다. 그리고 유기물층의 결정화 억제에도 효과가 있으므로, 상기 화합물을 포함하는 유기 전계 발광 소자의 성능 및 수명 특성이 크게 향상될 수 있다. The compound of the formula (1) has a dibenzo-type moiety (e.g., dibenzofuran (DBF), dibenzothiophene (DBT)) having both physicochemical properties for holes and electrons and an electron attracting moiety Pyrazine, triazine), which is a kind of azo group in the EWG group (e.g., pyridine, pyrazine, and triazine), and the dibenzo series moietiesecabazole, indolocarbazole, phenoxazine, phenoxathiazine, aryl An electron donor group such as amine is connected. Since the compound of Formula 1 is a bipolar compound, the recombination of holes and electrons is high, so that the hole injecting / transporting ability, luminous efficiency, driving voltage, lifetime characteristics, durability and the like can be improved. Accordingly, when the compound of Chemical Formula 1 is applied as a green phosphorescent material, not only can it have excellent luminous efficiency characteristics, but also can be driven at a low voltage and exhibit lifetime increasing effect, and can exhibit thermal stability, high glass transition temperature characteristics, (morphology). Since the organic EL device is also effective in inhibiting crystallization of the organic material layer, the performance and lifetime characteristics of the organic EL device including the compound can be greatly improved.
또한 본 발명에서는 아진기에 결합되는 2개의 디벤조퓨란 또는 디벤조티오펜 모이어티의 결합 위치에 따라, 화합물의 평면성 및 입체성이 구현될 수 있다. 이로 인해 전자의 전달 능력이 향상되어 이러한 화합물이 적용된 소자의 구동 및 효율 증가 효과를 기대할 수 있다. 더욱이, 상기 디벤조퓨란 모이어티 또는 디벤조티오펜 모이어티는 아릴기에 비해 전자 및 정공 안정성이 뛰어나므로, 이러한 화합물이 적용된 소자의 수명 특성을 보다 향상시킬 수 있다. In the present invention, the planarity and stereoscopic property of the compound can be realized according to the bonding positions of two dibenzofurans or dibenzothiophene moieties bonded to azine groups. As a result, the electron transporting ability is improved, and the driving and efficiency of the device to which these compounds are applied can be expected to be increased. Furthermore, since the dibenzofuran moiety or the dibenzothiophene moiety is more excellent in electron and hole stability than an aryl group, lifetime characteristics of a device to which such a compound is applied can be further improved.
아울러, 본 발명에서는 카바졸기, 인돌로카바졸, 페녹싸진, 페녹싸이아진, 아릴아민기 등을 비롯한 다양한 형태의 전자주게기(EDG)가 도입될 수 있다. 이와 같이 다양한 EDG가 도입됨에 따라 화합물의 HOMO Level을 자유롭게 조절 가능하다. 일례로, 카바졸기는 다른 아민류 EDG에 비해 conjugation을 이루어 전기화학적으로 안정하며 deep HOMO level을 가진다. 또한 축합환 및/또는 융합환 형태의 다환 전자주게기(EDG)는 열적 안정성과 전기화학적 안정성이 매우 우수하고, 높은 유리전이온도(Tg)와 우수한 캐리어 수송 능력을 갖는다. 특히 전자 및 정공 수송 이동성이 매우 우수하여, 발광층 내에서의 캐리어들의 밸런스가 매우 우수한 특성들을 나타낼 수 있다.In the present invention, various types of electron donor groups (EDG) including carbazole groups, indolocarbazoles, phenoxazines, phenoxathiazines, arylamine groups and the like can be introduced. As the various EDGs are introduced, the HOMO level of the compound can be freely controlled. For example, the carbazole group is electrochemically stable and has a deep HOMO level by conjugation with other amines EDG. Also, the polycyclic electron donor (EDG) having a condensed ring and / or fused ring form has excellent thermal stability and electrochemical stability, has a high glass transition temperature (Tg) and excellent carrier transporting ability. Particularly, the electron and hole transport mobility is very excellent, and the balance of the carriers in the light emitting layer is very excellent.
한편 유기 전계 발광 소자의 인광 발광층에서, 호스트 물질은 호스트의 삼중항 에너지 갭이 도펀트보다 높아야 한다. 즉, 도펀트로부터 효과적으로 인광 발광을 제공하기 위해서는 호스트의 가장 낮은 여기 상태가 도펀트의 가장 낮은 방출 상태보다 에너지가 더 높아야 한다. 상기 화학식 1로 표시되는 화합물은 높은 삼중항 에너지를 가지며, 에너지 준위가 도펀트에 비해 높게 조절될 수 있어 호스트 물질로 사용될 수 있다. 이러한 화학식 1로 표시되는 화합물은 발광층에서 생성된 엑시톤이 발광층에 인접하는 전자 수송층 또는 정공 수송층으로 확산되는 것을 방지할 수 있다. 이로 인해, 발광층 내 발광에 기여하는 엑시톤의 수가 증가됨으로써 소자의 발광 효율이 개선될 수 있고, 소자의 내구성 및 안정성이 향상되어 소자의 수명 또한 효율적으로 증가될 수 있다.On the other hand, in the phosphorescent light emitting layer of the organic electroluminescent device, the host material should have a triplet energy gap higher than the dopant of the host. That is, in order to effectively provide phosphorescent emission from the dopant, the lowest excitation state of the host must be higher energy than the lowest emission state of the dopant. The compound represented by Formula 1 has a high triplet energy and can be used as a host material because the energy level can be controlled higher than that of the dopant. The compound represented by the formula (1) can prevent the excitons generated in the light emitting layer from diffusing into the electron transporting layer or the hole transporting layer adjacent to the light emitting layer. Accordingly, the luminous efficiency of the device can be improved by increasing the number of the excitons contributing to the light emission in the light emitting layer, the durability and stability of the device can be improved, and the lifetime of the device can be efficiently increased.
구체적으로, 본 발명의 화학식 1로 표시되는 화합물은, 아진기와 이의 양측에 연결된 2개의 디벤조계 모이어티(디벤조퓨란 또는 디벤조티오펜 모이어티)를 포함하는 코어(core)를 가지며, 상기 코어 내 어느 하나의 6원 고리에 적어도 하나의 전자주게기(EDG)가 결합되고, 적어도 1개, 구체적으로 4개 이상의 중수소(D)로 치환된 아릴기 및/또는 헤테로아릴기를 포함한다Specifically, the compound represented by the general formula (1) of the present invention has a core comprising an azine group and two dibenzo-based moieties (dibenzofuran or dibenzothiophene moiety) connected to both sides thereof, An aryl group and / or a heteroaryl group in which at least one electron donor group (EDG) is bonded to any one of six-membered rings in the core and substituted with at least one, specifically four or more deuterium (D)
상기 화학식 1로 표시되는 화합물에서, X1 및 X2는 서로 동일하거나 상이하며, 각각 독립적으로 O 또는 S이다. 이때, O일 경우에는 디벤조퓨란 모이어티를 형성하며, S일 경우에는 디벤조티오펜 모이어티를 형성할 수 있다.In the compound represented by the general formula (1), X 1 and X 2 are the same as or different from each other and each independently O or S. At this time, when d is 0, dibenzofuran moiety is formed, and in case of S, dibenzothiophene moiety can be formed.
Y1 내지 Y16은 서로 동일하거나 상이하며, 각각 독립적으로 CR8 또는 N이다. 이때 CR8이 복수 개인 경우 복수의 R8은 서로 동일하거나 또는 상이할 수 있다. 예를 들면, Y1 내지 Y4 중 하나 이상이 N일 경우, 나머지는 CR8이고; Y13 내지 Y16 중 하나 이상이 N일 경우, 나머지는 CR8이고; Y1 내지 Y4 중 하나 이상이 N이며, Y9 내지 Y12 중 하나 이상이 N일 경우, 나머지는 CR8이고; Y5 내지 Y8 중 하나 이상이 N이며, Y13 내지 Y16 중 하나 이상이 N일 경우, 나머지는 CR8이고; Y1 내지 Y4 중 하나 이상이 N이며, Y13 내지 Y16 중 하나가 N일 경우, 나머지는 CR8이고; Y1 내지 Y16가 모두 CR8일 수 있다(하기 화학식 13 내지 17 참조). Y 1 to Y 16 are the same as or different from each other, and each independently CR 8 or N; In this case, when there are a plurality of CR 8 s , the plurality of R 8 s may be the same or different. For example, when at least one of Y 1 to Y 4 is N, the remaining is CR 8 ; When at least one of Y 13 to Y 16 is N, the remaining is CR 8 ; At least one of Y 1 to Y 4 is N, and at least one of Y 9 to Y 12 is N, the remainder is CR 8 ; At least one of Y 5 to Y 8 is N, and at least one of Y 13 to Y 16 is N, the remainder is CR 8 ; At least one of Y 1 to Y 4 is N, and when one of Y 13 to Y 16 is N, the remaining is CR 8 ; Y 1 to Y 16 may all be CR 8 (see the following formulas 13 to 17).
여기서, R8은 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C1~C40의 포스핀기, C1~C40의 포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택될 수 있다. 구체적으로, R8은 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 및 C6~C60의 아릴기로 이루어진 군에서 선택되는 것이 바람직하다.Wherein, R 8 is hydrogen, heavy hydrogen, a halogen group, a cyano group, a nitro group, an amino group, an alkynyl group of C 1 ~ C 40 alkyl group, C 2 ~ C 40 alkenyl group, C 2 ~ C 40 of, C 3 ~ C 40 cycloalkyl group, the number of nuclear atoms of 3 to 40 heterocycloalkyl group, C 6 ~ C 60 aryl group, nuclear atoms aryl of from 5 to 60 heteroaryl group, a C 1 ~ alkyloxy group of C 40, C 6 ~ C 60 aryloxy group, C group 1 ~ C 40 alkyl silyl, C 6 ~ C 60 aryl silyl group, a alkyl boronic of C 1 ~ C 40, an aryl boronic a C 6 ~ C 60, C 1 ~ C 40 phosphine groups, C 1 to C 40 phosphine oxide groups, and C 6 to C 60 arylamine groups. Specifically, R 8 is a hydrogen, a deuterium, a halogen, a cyano group, a nitro group, C 1 ~ C 40 alkyl group, C 2 ~ C 40 alkenyl group, C 2 ~ C 40 alkynyl group, C 3 ~ C 40 of the A cycloalkyl group, and a C 6 to C 60 aryl group.
Z1 내지 Z3는 서로 동일하거나 상이하며, 각각 독립적으로 CR5 또는 N이고, 이들 중 적어도 하나는 N이다. 바람직한 일 실시예를 들면, Z1 내지 Z3는 중 1~3개가 N일 수 있으며, 예를 들면, 피리딘, 피리미딘, 트리아진일 수 있다. 보다 바람직하게는Z1 내지 Z3가 모두 N으로, 전자 끄는 특성이 큰 트리아진이다.Z 1 to Z 3 are the same or different and are each independently CR 5 or N, and at least one of them is N. In one preferred embodiment, from 1 to 3 of Z 1 to Z 3 may be N, for example, pyridine, pyrimidine, triazine. More preferably, all of Z 1 to Z 3 are N and triazine is electron-withdrawing.
Ar1은 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기 및 C6~C60의 아릴기로 이루어진 군에서 선택될 수 있다. 구체적으로, Ar1은 C6~C60의 아릴기인 것이 바람직하며, 예컨대 페닐기, 비페닐기, 나프틸기, 트리페닐기, 안트릴기, 페난트릴기 등일 수 있다.Ar 1 is selected from the group consisting of hydrogen, deuterium, halogen, cyano, nitro, C 1 to C 40 alkyl, C 2 to C 40 alkenyl, C 2 to C 40 alkynyl, C 3 to C 40 cycloalkyl, A C 6 to C 60 aryl group, and the like. Specifically, Ar 1 is preferably an aryl group of C 6 to C 60 , and may be, for example, a phenyl group, a biphenyl group, a naphthyl group, a triphenyl group, an anthryl group, a phenanthryl group and the like.
본 발명의 일 구체예를 들면, Ar1는 하기 구조식으로 표시된 치환체 군에서 선택될 수 있다. 이때, 하기 각 치환체에 포함된 임의의 수소는 적어도 1개 이상의 중수소(D)로 치환되거나 또는 비치환되어 있을 수 있다.In one embodiment of the present invention, Ar 1 can be selected from the group of substituents represented by the following structural formulas. At this time, any hydrogen included in the following substituents may be substituted with at least one or more deuterium (D), or may be unsubstituted.
Figure PCTKR2019000616-appb-I000001
Figure PCTKR2019000616-appb-I000001
또한 전술한 구조식에 표시되지 않았으나, 상기 Ar1은 당 분야에 공지된 치환기(예컨대, R6의 정의부와 동일)가 적어도 하나 이상 치환될 수 있다.Also, although not shown in the above-mentioned structural formula, Ar 1 may be substituted with at least one substituent group known in the art (for example, the same definition as R 6 ).
a 및 c는 각각 0 내지 3의 정수이고, b 및 d는 각각 0 내지 4의 정수이다. 이때, a 내지 d가 0일 경우에는 수소가 각각 R1 내지 R4로 치환되지 않은 것을 의미하고, a 내지 d가 각각 1 이상의 정수일 경우에는 하나 이상의 수소가 각각 R1 내지 R4로 치환되는 것을 의미한다.a and c are each an integer of 0 to 3, and b and d are an integer of 0 to 4, respectively. When a to d are 0, hydrogen means not substituted with R 1 to R 4 , and when a to d are each an integer of 1 or more, one or more hydrogen atoms are substituted with R 1 to R 4 . it means.
R1 내지 R5는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 혹은 인접한 기와 결합하여 축합 고리를 형성할 수 있다. 이때 R1 내지 R5가 각각 복수인 경우, 이들은 서로 동일하거나 상이하다. 구체적으로, 상기 R1 내지 R5는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기 및 C6~C60의 아릴기로 이루어진 군에서 선택되는 것이 바람직하다.R 1 to R 5 are the same or different, each independently represent hydrogen, deuterium, a halogen, a cyano group, a nitro group, C 1 ~ C 40 alkyl group, C 2 ~ C 40 alkenyl group, C 2 ~ C 40 of the An alkynyl group, a C 3 to C 40 cycloalkyl group, a heteroaryl group having 3 to 40 nuclear atoms, a C 6 to C 60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, a C 1 to C 40 alkyl A C 6 to C 60 aryloxy group, a C 1 to C 40 alkylsilyl group, a C 6 to C 60 arylsilyl group, a C 1 to C 40 alkylboron group, a C 6 to C 60 aryl boron group, C 6 ~ C 60 aryl phosphine group, C 6 ~ C 60 aryl phosphine oxide group, and a C 6 ~, or selected from the group consisting of an aryl amine of the C 60 of, or adjacent groups combine to form a condensed ring . Here, when R 1 to R 5 each are plural, they are the same as or different from each other. Specifically, R 1 to R 5 are the same or different and each independently represents hydrogen, deuterium, halogen, cyano, nitro, C 1 to C 40 alkyl, C 2 to C 40 alkenyl, C 2 An alkynyl group of C 40 to C 40 , a cycloalkyl group of C 3 to C 40 , and an aryl group of C 6 to C 60 .
m 및 n은 각각 0 내지 3의 정수이며, m+n≥1이다. 이때, m 또는 n이 0일 경우에는 수소가 A 또는 B로 치환되지 않은 것을 의미하고, m 및 n이 각각 1 이상의 정수일 경우에는 하나 이상의 수소가 각각 A 및 B로 치환되는 것을 의미한다. 바람직하게는, m 및 n은 각각 0 내지 2의 정수일 수 있다. 예를 들면, m=1, n=0; m=0, n=1; m=1, n=1; m=2, n=0; m=0, n=2일 수 있다. 더욱 바람직하게는, m=1, n=0 또는 m=1, n=1일 수 있다. 즉, 후술되는 A와 B 는 적어도 하나 이상 존재할 수 있다. m and n are each an integer of 0 to 3, and m + n? 1. When m or n is 0, it means that hydrogen is not substituted with A or B. When m and n are each an integer of 1 or more, it means that at least one hydrogen is substituted with A and B, respectively. Preferably, m and n may each be an integer of 0 to 2. For example, m = 1, n = 0; m = 0, n = 1; m = 1, n = 1; m = 2, n = 0; m = 0, n = 2. More preferably, m = 1, n = 0 or m = 1 and n = 1. That is, at least one of A and B described later may exist.
또한 상기 b+m, d+n은 각각 0 내지 4의 정수일 수 있다. 바람직하게는, b+m=1일 경우, d+n=0 또는 d+n=1일 수 있다.And b + m and d + n may be an integer of 0 to 4, respectively. Preferably, when b + m = 1, d + n = 0 or d + n = 1.
본 발명의 화학식 1에서, A 및 B는 각각 전자를 제공하는 역할을 하는 전자공여성 치환체이다. 본 발명에서는, 당 분야의 공지된 통상의 전자주게기(electron donating group, EDG)가 제한 없이 사용될 수 있다. 일례로, 상기 A와 B는 각각 카바졸기, 축합환 또는 융합환 형태의 다환의 카바졸계 모이어티(예, 축합카바졸, 인돌로카바졸, 비스카바졸), 페녹사진, 페녹싸이아진, 아릴아민기 등일 수 있다. 구체적으로, A 및 B는 서로 동일하거나 상이하며, 각각 독립적으로 상기 화학식 2 내지 4로 표시되는 치환체 중 어느 하나일 수 있다. In the formula (1) of the present invention, A and B are electron donating substituents each of which serves to provide electrons. In the present invention, an electron donating group (EDG) known in the art can be used without limitation. For example, A and B are each a carbazole group, a condensed ring or a fused ring-type polycyclic carbazole-based moiety (e.g., a condensed carbazole, an indolocarbazole, a biscarbazole), phenoxazine, phenoxathiazine, Amine group, and the like. Specifically, A and B are the same as or different from each other, and each independently may be any of the substituents represented by the above formulas (2) to (4).
상기 화학식 2 및 3으로 표시되는 치환체에서, X3는 단일결합이거나, 혹은 O, 또는 S로 이루어진 군에서 선택될 수 있다. 이때, X3이 단일결합일 경우에는 카바졸기, 축합환 및/또는 융합환 형태의 다환 카바졸계 모이어티(예, 축합 카바졸, 인돌로카바졸 등)이거나, 또는 2개의 카바졸이 연결된 형태의 비스카바졸(bis-carbazole)을 형성할 수 있다. 또한, X3이 O 또는 S일 경우에는 페녹사진 또는 페녹싸이아진을 형성할 수 있다.In the substituents represented by formulas (2) and (3), X 3 is a single bond or may be selected from the group consisting of O, or S. When X 3 is a single bond, it may be a carbazole group, a condensed ring and / or a polycyclic carbazole-based moiety in the form of a fused ring (for example, a condensed carbazole, an indolocarbazole, or the like) Of a bis-carbazole. When X &lt; 3 &gt; is O or S, phenoxazine or phenoxythiazine can be formed.
e는 0 내지 4의 정수이고, f는 0 내지 3의 정수이다. 이때, e 및 f가 각각 0일 경우에는 수소가 각각 R6 및 R7으로 치환되지 않은 것을 의미하고, e 및 f 가 각각 1 이상의 정수일 경우에는 하나 이상의 수소가 각각 R6 및 R7으로 치환되는 것을 의미한다.e is an integer of 0 to 4, and f is an integer of 0 to 3. When e and f are each 0, hydrogen means not substituted by R 6 and R 7 , and when e and f are each an integer of 1 or more, at least one hydrogen is substituted with R 6 and R 7 respectively .
여기서, R6 및 R7는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 혹은 인접한 기와 결합하여 축합 고리를 형성할 수 있다. 이때 R6 및 R7이 복수인 경우, 이들은 서로 동일하거나 상이할 수 있다. Wherein, R 6 and R 7 are the same or different, each independently represent hydrogen, deuterium, a halogen, a cyano group, a nitro group, C 1 ~ alkenyl group of the C 40 alkyl group, C 2 ~ C 40 of, C 2 ~ C A C 3 to C 40 cycloalkyl group, a heteroaryl group having 3 to 40 nuclear atoms, a C 6 to C 60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, a C 1 to C 40 alkenyl group, C 6 -C 60 aryloxy groups, C 1 -C 40 alkylsilyl groups, C 6 -C 60 arylsilyl groups, C 1 -C 40 alkylboron groups, C 6 -C 60 a group of the arylboronic, C 6 ~ C 60 aryl phosphine group, C 6 ~ C 60 aryl phosphine oxide group, and a C 6 ~ selected from the group consisting of an aryl amine of the C 60 or, or in adjacent groups combine a condensed ring . When R 6 and R 7 are plural, they may be the same as or different from each other.
바람직한 일 구체예를 들면, R6 및 R7는 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기 및 C6~C60의 아릴기로 이루어진 군에서 선택되거나, 혹은 인접한 기와 결합하여 축합 고리를 형성할 수 있다. 이때, 인접한 기로는 하나의 R6와 다른 하나의 R6, 하나의 R6와 하나의 Ar2, 하나의 R7과 다른 하나의 R7, 하나의 R7과 하나의 Ar2일 수 있다.One preferred example embodiment, R 6 and R 7 are each independently hydrogen, deuterium, a halogen, a cyano group, a nitro group, C 1 ~ alkenyl group of the C 40 alkyl group, C 2 ~ C 40 of, C 2 ~ C 40 A C 3 to C 40 cycloalkyl group, and a C 6 to C 60 aryl group, or may be bonded to adjacent groups to form a condensed ring. At this time, adjacent groups may be one R 6 and one R 6 , one R 6 and one Ar 2 , one R 7 and another R 7 , one R 7, and one Ar 2 .
상기 화학식 4로 표시되는 치환체에서, L은 당 분야에 알려진 통상적인 2가(divalent) 그룹의 연결기(Linker)일 수 있다. 구체적으로, L은 단일결합이거나, 혹은 C6~C40의 아릴렌기이다. 이때 L이 C6~C40의 아릴렌기일 경우, 페닐렌기, 비페닐렌기, 나프틸렌기, 트리페닐렌기 등일 수 있으며, 바람직하게는 페닐렌기, 비페닐렌기일 수 있다.In the substituent represented by Formula 4, L may be a divalent group linker known in the art. Specifically, L is a single bond or an arylene group having 6 to 40 carbon atoms. When L is a C 6 to C 40 arylene group, it may be a phenylene group, a biphenylene group, a naphthylene group, a triphenylene group or the like, preferably a phenylene group or a biphenylene group.
상기 화학식 2 내지 4로 표시되는 치환체에서, Ar2 및 Ar3은 서로 동일하거나 상이하며, 각각 독립적으로 C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 혹은 인접한 기와 결합하여 축합 고리를 형성할 수 있다. 구체적으로, 상기 Ar2 및 Ar3은 서로 동일하거나 상이하며, 각각 독립적으로 C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되는 것이 바람직하다.Wherein Ar 2 and Ar 3 are the same or different and each independently represents a C 1 to C 40 alkyl group, a C 2 to C 40 alkenyl group, a C 2 to C 40 alkenyl group, group, C 3 ~ C 40 cycloalkyl group, C 6 ~ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group, and a C 6 ~, or selected from the group consisting of an aryl amine of the C 60, or adjacent groups combined To form a condensed ring. Specifically, said Ar 2 and Ar 3 are the same or different from each other, and each independently C 6 ~ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group, and a C 6 ~ the group consisting of an aryl amine of the C 60 . &Lt; / RTI &gt;
본 발명의 일 구체예를 들면, A 및 B는 서로 동일하거나 또는 상이하며, 각각 독립적으로 하기 구조식으로 표시되는 치환체 군 중에서 선택된 어느 하나일 수 있다. 이때 하기 각 치환체에 포함된 임의의 수소는 적어도 1개 이상의 중수소(D)로 치환되거나 또는 비치환되어 있을 수 있다.In an embodiment of the present invention, A and B are the same as or different from each other, and each independently can be any one selected from the group of substituents represented by the following structural formulas. In this case, any hydrogen contained in the following substituents may be substituted with at least one deuterium (D) or may be unsubstituted.
Figure PCTKR2019000616-appb-I000002
Figure PCTKR2019000616-appb-I000002
상기 화학식에서,In the above formulas,
*은 상기 화학식 1에 결합되는 부위를 의미하고,* Represents a moiety bonded to Formula 1,
E는 O, S, NR11, CR12R13, 및 SiR14R15로 구성된 군에서 선택되며, E is selected from the group consisting of O, S, NR 11 , CR 12 R 13 , and SiR 14 R 15 ,
상기 R11 내지 R15는 서로 동일하거나 또는 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C6~C60의 아릴기 및 핵원자수 5 내지 60의 헤테로아릴기로 구성된 군에서 선택되고, A halogen atom, a cyano group, a nitro group, a C 1 to C 40 alkyl group, a C 6 to C 60 aryl group, and a substituted or unsubstituted alkyl group having 5 to 5 nucleus atoms, wherein R 11 to R 15 are the same or different and each independently represents hydrogen, deuterium, Lt; / RTI &gt; to 60, and &lt; RTI ID = 0.0 &gt;
Ar11는 수소 또는 C6~C60의 아릴기이며, Ar 11 is hydrogen or a C 6 to C 60 aryl group,
Ar2 및 Ar3는 화학식 1에서 정의한 바와 같다. 또한 구체적으로 표시되지 않았으나, 전술한 구조식은 당 분야에 공지된 치환기(예컨대, R6의 정의부와 동일)가 적어도 하나 이상 치환될 수 있다.Ar &lt; 2 &gt; and Ar &lt; 3 &gt; Although not specifically shown, the above-mentioned structural formula may be substituted with at least one substituent group known in the art (for example, the same definition as R 6 ).
본 발명의 일 실시예를 들면, 상기 화학식 1로 표시되는 화합물은 분자 구조 내에 적어도 1개 이상의 중수소(D)로 치환된 아릴기 및/또는 헤테로아릴기를 포함할 수 있다. 바람직한 일 실시예를 들면, 상기 화학식 1의 Ar1, A 및 B 중 적어도 하나는, 1개 이상의 중수소(D)로 치환된 C6~C60의 아릴기 또는 핵원자수 5 내지 50개의 헤테로아릴기를 포함할 수 있다. In one embodiment of the present invention, the compound represented by Formula 1 may include an aryl group and / or a heteroaryl group substituted by at least one deuterium (D) in the molecular structure. In one preferred embodiment, at least one of Ar 1 , A, and B in Formula 1 is a C 6 to C 60 aryl group substituted with at least one deuterium (D), or a heteroaryl group having 5 to 50 nucleus atoms Group.
이때 상기 화합물 내 치환되는 중수소(D)의 개수는 특별히 제한되지 않으며, 일례로 적어도 1개, 바람직하게는 4개 이상일 수 있다. 구체적으로 1개 내지 18개일 수 있다. 이와 같이 복수 개의 중수소(D)를 포함하는 화합물은, 중수소가 비포함된 동일 구조의 화합물에 비해 녹색의 색순도가 보다 극대화될 수 있으며, 약화된 탄소-수소 간의 분자 내 결합력을 더 증가시켜 수명 특성을 유의적으로 향상시킬 수 있다.At this time, the number of deuterium (D) substituted in the compound is not particularly limited, and may be, for example, at least 1, preferably 4 or more. Specifically, it may be 1 to 18. As described above, the compound containing a plurality of deuterium (D) can maximize the color purity of green more than the compounds having the same structure without deuterium, and further increase the intramolecular bonding force between the weakened carbon- Can be significantly improved.
전술한 화학식 1에서, L의 아릴렌기와, Ar1 내지 Ar3, R1 내지 R8의 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 아릴포스핀옥사이드기 및 아릴아민기는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환될 수 있으며, 이때 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이할 수 있다.In the above-described formula (1), an arylene group, Ar 1 to Ar 3, R 1 to the alkyl group of R 8, an alkenyl group, an alkynyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, an alkyloxy group of L, an aryloxy group, an alkylsilyl group, an arylsilyl group, an alkyl boron group, an aryl boron group, an aryl phosphine group, aryl phosphine oxide group and an arylamine group each independently selected from deuterium, halogen, a cyano group, a nitro group, a C 2 ~ C A C 2 to C 40 alkynyl group, a C 3 to C 40 cycloalkyl group, a heteroarylcycloalkyl group having 3 to 40 nuclear atoms, a C 1 to C 40 alkyl group, a C 6 to C 60 aryl group , A heteroaryl group having 5 to 60 nuclear atoms, a C 1 to C 40 alkyloxy group, a C 6 to C 60 aryloxy group, a C 1 to C 40 alkylsilyl group, a C 6 to C 60 arylsilyl group of the group, C 1 ~ C 40 group of an alkyl boron, C 6 ~ C 60 aryl boron group, C 6 ~ C 60 aryl phosphine group, C 6 ~ C 60 aryl phosphine oxide group, and a C 6 ~ C 60 of the Arilea And the substituent may be the same or different from each other when the substituent is plural.
한편 본 발명에 따라 화학식 1로 표시되는 화합물은, EWG 특성을 갖는 함질소 헤테로환(예, Z1~Z3 함유 환)에 결합되는 2개의 디벤조계 모이어티(예, X1 함유환 및 X2 함유환)의 탄소 결합위치에 따라 서로 대칭(Symmetry) 또는 비대칭(Asymmetry) 구조를 이루게 된다. 구체적으로, Z1 내지 Z3 함유 환에 연결되는 상기 X1 함유 환의 Y1~Y4 중 하나의 결합위치와, 상기 X2 함유 환의 Y9~Y12 중 하나의 결합위치가 서로 대칭 또는 비대칭 구조를 나타낸다. In accordance with the present invention compound represented by the formula (1), the nitrogen-containing heterocycle having an EWG properties (such as, Z 1 ~ Z 3 containing ring) 2 dibenzo-based moiety that is bonded to (for example, X 1 hamyuhwan and X Symmetry or asymmetry structure depending on the carbon bond positions of the carbon-carbon double bonds. Specifically, the bonding position of one of Y 1 to Y 4 of the X 1 containing ring connected to the Z 1 to Z 3 containing ring and the bonding position of one of Y 9 to Y 12 of the X 2 containing ring are symmetrical or asymmetric Structure.
본 발명의 일 실시예에 따라 비대칭 구조를 설명하면, 아진기(예, Z1~Z3 함유 환)에 결합되는 X1 함유 환의 탄소위치가 Y1 일 경우, 상기 아진기에 결합되는 X2 함유 환의 탄소위치는 Y9을 제외한 Y10 내지 Y12 중 어느 하나일 수 있다(하기 화학식 5 참조). 이와 같이 함질소 헤테로환에 각각 연결되는 2개의 디벤조계 모이어티의 비대칭 구조를 보다 구체화하면, 하기 화학식 5 내지 화학식 8 중 어느 하나로 표시될 수 있다. In the asymmetric structure according to one embodiment of the present invention, when the carbon position of the X 1 -containing ring bonded to the azine group (for example, the Z 1 to Z 3 -containing ring) is Y 1 , the X 2 -containing The carbon position of the ring may be any of Y 10 to Y 12 except Y 9 (see Chemical Formula 5 below). The asymmetric structure of two dibenzo-based moieties respectively linked to the nitrogen-containing heterocycle may be represented by any one of the following formulas (5) to (8).
Figure PCTKR2019000616-appb-C000005
Figure PCTKR2019000616-appb-C000005
Figure PCTKR2019000616-appb-C000006
Figure PCTKR2019000616-appb-C000006
Figure PCTKR2019000616-appb-C000007
Figure PCTKR2019000616-appb-C000007
Figure PCTKR2019000616-appb-C000008
Figure PCTKR2019000616-appb-C000008
상기 화학식 5 내지 8에서, In the above formulas 5 to 8,
상기 화학식 5의 Z1 내지 Z3 함유환은 Y10 내지 Y12 중 어느 하나와 결합되며(단, Z1 내지 Z3 함유환이 Y9과 결합되는 것은 제외됨), The ring containing Z 1 to Z 3 in Formula 5 is bonded to any one of Y 10 to Y 12 (provided that the ring containing Z 1 to Z 3 is not bonded to Y 9 )
상기 화학식 6의 Z1 내지 Z3 함유환은 Y9, Y11 내지 Y12 중 어느 하나와 결합되며(단, Z1 내지 Z3 함유환이 Y10과 결합되는 것은 제외됨), The ring containing Z 1 to Z 3 in Formula 6 is bonded to any one of Y 9 and Y 11 to Y 12 (provided that the ring containing Z 1 to Z 3 is not bonded to Y 10 )
상기 화학식 7의 Z1 내지 Z3 함유환은 Y9, Y10 및 Y12 중 어느 하나와 결합되며(단, Z1 내지 Z3 함유환이 Y11과 결합되는 것은 제외됨), The Z 1 to Z 3 -containing ring of formula (7) is bonded to any one of Y 9 , Y 10 and Y 12 (provided that the Z 1 to Z 3 containing ring is not bonded to Y 11 )
상기 화학식 8의 Z1 내지 Z3 함유환은 Y9 내지 Y11 중 어느 하나와 결합되며(단, Z1 내지 Z3 함유환이 Y12와 결합되는 것은 제외됨).The ring containing Z 1 to Z 3 in the above formula (8) is bonded to any one of Y 9 to Y 11 (provided that the ring containing Z 1 to Z 3 is not bonded to Y 12 ).
X1, X2, Y1 내지 Y16, Z1 내지 Z3, Ar1, m, n, A, B, a 내지 d, R1 내지 R4는 각각 상기 화학식 1에서 정의한 바와 같다. X 1 , X 2 , Y 1 to Y 16 , Z 1 to Z 3 , Ar 1 , m, n, A, B, a to d and R 1 to R 4 are as defined in Formula 1, respectively.
전술한 비대칭 구조의 화합물의 경우, 대칭 구조를 갖는 화합물에 비해 분자간 거리의 조절이 상대적으로 용이하다. 즉, 1,2,3,4 번 위치에 결합이 가능한 디벤조계 모이어티의 특성상 1,4번 결합에서의 트리아진의 수소와 디벤조계 모이어티 간의 구조적 장애(Steric hindrance)가 발생하여 분자간 거리가 멀어지게 되며, 이로 인해 T1 값 또한 높아지게 된다. 전술한 특성을 이용할 경우 화학 구조의 비대칭성(Asymmetry)을 통해 유기물층 재료의 HOMO-LUMO 및 T1, S1 값의 튜닝이 가능하다.In the case of the above-mentioned asymmetric compound, it is relatively easy to control the intermolecular distance as compared with the compound having a symmetric structure. That is, due to the nature of the dibenzo-based moiety capable of bonding at the 1,2,3,4-position, a structural disorder between the hydrogen of triazine and the dibenzo-based moiety occurs at the 1,4-bond, The distance will be farther away, which will also increase the T1 value. By using the above-mentioned characteristics, it is possible to adjust the HOMO-LUMO and T1 and S1 values of the organic material layer through the asymmetry of the chemical structure.
본 발명의 일 구체예를 들면, 상기 화학식 5로 표시되는 화합물은 각각 화학식 5a 내지 화학식 5c 중 어느 하나로 보다 구체화될 수 있다. In one embodiment of the present invention, the compound represented by Formula 5 may be further represented by any one of Formulas 5a to 5c.
[화학식 5a][Chemical Formula 5a]
Figure PCTKR2019000616-appb-I000003
Figure PCTKR2019000616-appb-I000003
[화학식 5b][Chemical Formula 5b]
Figure PCTKR2019000616-appb-I000004
Figure PCTKR2019000616-appb-I000004
[화학식 5c][Chemical Formula 5c]
Figure PCTKR2019000616-appb-I000005
Figure PCTKR2019000616-appb-I000005
본 발명의 다른 일 구체예를 들면, 상기 화학식 6으로 표시되는 화합물은 각각 화학식 6a 내지 화학식 6c 중 어느 하나로 보다 구체화될 수 있다. In another embodiment of the present invention, the compound represented by Formula 6 may be further represented by any one of Formulas 6a to 6c.
[화학식 6a][Chemical Formula 6a]
Figure PCTKR2019000616-appb-I000006
Figure PCTKR2019000616-appb-I000006
[화학식 6b][Formula 6b]
Figure PCTKR2019000616-appb-I000007
Figure PCTKR2019000616-appb-I000007
[화학식 6c][Chemical Formula 6c]
Figure PCTKR2019000616-appb-I000008
Figure PCTKR2019000616-appb-I000008
본 발명의 또 다른 일 구체예를 들면, 상기 화학식 7로 표시되는 화합물은 각각 화학식 7a 내지 화학식 7c 중 어느 하나로 보다 구체화될 수 있다.In another embodiment of the present invention, the compound represented by the above formula (7) may be further represented by any one of formulas (7a) to (7c).
[화학식 7a][Formula 7a]
Figure PCTKR2019000616-appb-I000009
Figure PCTKR2019000616-appb-I000009
[화학식 7b][Formula 7b]
Figure PCTKR2019000616-appb-I000010
Figure PCTKR2019000616-appb-I000010
[화학식 7c][Formula 7c]
Figure PCTKR2019000616-appb-I000011
Figure PCTKR2019000616-appb-I000011
본 발명의 또 다른 일 구체예를 들면, 상기 화학식 8로 표시되는 화합물은 각각 화학식 8a 내지 화학식 8c 중 어느 하나로 보다 구체화될 수 있다.In another embodiment of the present invention, the compound represented by the formula (8) may be further represented by any one of formulas (8a) to (8c).
[화학식 8a][Chemical Formula 8a]
Figure PCTKR2019000616-appb-I000012
Figure PCTKR2019000616-appb-I000012
[화학식 8b][Formula 8b]
Figure PCTKR2019000616-appb-I000013
Figure PCTKR2019000616-appb-I000013
[화학식 8c][Chemical Formula 8c]
Figure PCTKR2019000616-appb-I000014
Figure PCTKR2019000616-appb-I000014
상기 화학식 5a 내지 8c에서, In the above general formulas (5a) to (8c)
X1, X2, Y1 내지 Y16, Z1 내지 Z3, Ar1, m, n, A, B, a 내지 d, R1 내지 R4는 각각 제1항에서 정의한 바와 같다.X 1 , X 2 , Y 1 to Y 16 , Z 1 to Z 3 , Ar 1 , m, n, A, B, a to d and R 1 to R 4 are as defined in claim 1, respectively.
또한 본 발명의 다른 일 실시예에 따라 대칭 구조를 설명하면, 아진기(예, Z1~Z3 함유 환)에 결합되는 X1 함유 환의 탄소위치가 Y1 일 경우, 상기 아진기에 결합되는 X2 함유 환의 탄소위치는 Y9가 될 수 있다(하기 화학식 9 참조). 이와 같이 함질소 헤테로환에 각각 연결되는 2개의 디벤조계 모이어티의 대칭 구조를 보다 구체화하면, 하기 화학식 9 내지 화학식 12 중 어느 하나로 표시될 수 있다.In another embodiment of the present invention, when the carbon position of the X 1 -containing ring bonded to the azine group (for example, a ring containing Z 1 to Z 3 ) is Y 1 , X 2- containing ring may be Y 9 (see Chemical Formula 9 below). The symmetric structure of two dibenzo-based moieties respectively linked to the nitrogen-containing heterocycle may be represented by any one of the following formulas (9) to (12).
Figure PCTKR2019000616-appb-C000009
Figure PCTKR2019000616-appb-C000009
Figure PCTKR2019000616-appb-C000010
Figure PCTKR2019000616-appb-C000010
Figure PCTKR2019000616-appb-C000011
Figure PCTKR2019000616-appb-C000011
Figure PCTKR2019000616-appb-C000012
Figure PCTKR2019000616-appb-C000012
상기 화학식 9 내지 12에서, In the above formulas (9) to (12)
X1, X2, Y1 내지 Y16, Z1 내지 Z3, Ar1, m, n, A, B, a 내지 d, R1 내지 R4는 각각 상기 화학식 1에서 정의한 바와 같다. X 1 , X 2 , Y 1 to Y 16 , Z 1 to Z 3 , Ar 1 , m, n, A, B, a to d and R 1 to R 4 are as defined in Formula 1, respectively.
전술한 대칭 구조를 갖는 화합물에서, 대칭 정도는 HOMO-LUMO 중첩 (overlap)에 영향을 주게 된다. 이는 T1, S1 값에 영향을 줄 수 있고 이러한 차이가 커지면 TTA, singlet fission에도 영향을 주므로 적절히 조절해 주는 것이 중요하다.In the compounds having the above-mentioned symmetric structure, the degree of symmetry affects the HOMO-LUMO overlap. This can affect the T1 and S1 values, and if this difference is large, it also affects the TTA and singlet fission, so it is important to adjust it appropriately.
한편 상기 화학식 1로 표시되는 화합물에서, 디벤조계 모이어티, 일례로 디벤조퓨란 또는 디벤조티오펜 모이어티를 보다 구체화하면, 하기 화학식 13 내지 17 중 어느 하나로 표시될 수 있다.In the compound represented by Formula 1, dibenzo-based moieties such as dibenzofurane or dibenzothiophene moiety may be further represented by any one of the following formulas (13) to (17).
Figure PCTKR2019000616-appb-C000013
Figure PCTKR2019000616-appb-C000013
Figure PCTKR2019000616-appb-C000014
Figure PCTKR2019000616-appb-C000014
Figure PCTKR2019000616-appb-C000015
Figure PCTKR2019000616-appb-C000015
Figure PCTKR2019000616-appb-C000016
Figure PCTKR2019000616-appb-C000016
Figure PCTKR2019000616-appb-C000017
Figure PCTKR2019000616-appb-C000017
상기 화학식 13 내지 17에서, In the above formulas 13 to 17,
X1, X2, Z1 내지 Z3, Ar1, n, A, B는 각각 상기 화학식 1에서 정의한 바와 같다.X 1 , X 2 , Z 1 to Z 3 , Ar 1 , n, A and B are as defined in the above formula (1).
상기 화학식 5 및 화학식 17 중 어느 하나로 표시되는 화합물의 보다 구체적인 일례를 들면, X1 및 X2는 각각 독립적으로 O 또는 S이고, Z1 내지 Z3는 각각 독립적으로 CR5 또는 N이되, 이들 모두는 N이다. More specifically, each of X 1 and X 2 is independently O or S, and Z 1 to Z 3 are each independently CR 5 or N, Is N.
또한 Ar1은 C6~C60의 아릴기이며, 상기 A와 B 중 적어도 하나는, 상기 예시된 A와 B의 치환체 군 중에서 선택될 수 있다. Ar 1 is a C 6 to C 60 aryl group, and at least one of A and B may be selected from the substituent groups of A and B exemplified above.
이상에서 설명한 본 발명에 따른 화학식 1로 표시되는 화합물은 하기 예시되는 화학식 1 내지 336 중 어느 하나로 표시되는 화합물로 보다 구체화될 수 있다. 그러나, 본 발명의 화학식 1로 표시되는 화합물이 하기 예시된 것들에 의해 한정되는 것은 아니다.The compounds represented by the formula (1) according to the present invention may be further represented by the following formulas (1) to (336). However, the compounds represented by formula (1) of the present invention are not limited by the following examples.
[규칙 제91조에 의한 정정 22.03.2019] 
Figure WO-DOC-FIGURE-184
[Amended by Rule 91, 22.03.2019]
Figure WO-DOC-FIGURE-184
[규칙 제91조에 의한 정정 22.03.2019] 
Figure WO-DOC-FIGURE-185
[Amended by Rule 91, 22.03.2019]
Figure WO-DOC-FIGURE-185
[규칙 제91조에 의한 정정 22.03.2019] 
Figure WO-DOC-FIGURE-186
[Amended by Rule 91, 22.03.2019]
Figure WO-DOC-FIGURE-186
[규칙 제91조에 의한 정정 22.03.2019] 
Figure WO-DOC-FIGURE-187
[Amended by Rule 91, 22.03.2019]
Figure WO-DOC-FIGURE-187
[규칙 제91조에 의한 정정 22.03.2019] 
Figure WO-DOC-FIGURE-188
[Amended by Rule 91, 22.03.2019]
Figure WO-DOC-FIGURE-188
[규칙 제91조에 의한 정정 22.03.2019] 
Figure WO-DOC-FIGURE-189
[Amended by Rule 91, 22.03.2019]
Figure WO-DOC-FIGURE-189
[규칙 제91조에 의한 정정 22.03.2019] 
Figure WO-DOC-FIGURE-190
[Amended by Rule 91, 22.03.2019]
Figure WO-DOC-FIGURE-190
[규칙 제91조에 의한 정정 22.03.2019] 
Figure WO-DOC-FIGURE-191
[Amended by Rule 91, 22.03.2019]
Figure WO-DOC-FIGURE-191
[규칙 제91조에 의한 정정 22.03.2019] 
Figure WO-DOC-FIGURE-192
[Amended by Rule 91, 22.03.2019]
Figure WO-DOC-FIGURE-192
[규칙 제91조에 의한 정정 22.03.2019] 
Figure WO-DOC-FIGURE-193
[Amended by Rule 91, 22.03.2019]
Figure WO-DOC-FIGURE-193
[규칙 제91조에 의한 정정 22.03.2019] 
Figure WO-DOC-FIGURE-194
[Amended by Rule 91, 22.03.2019]
Figure WO-DOC-FIGURE-194
본 발명에서 "알킬"은 탄소수 1 내지 40개의 직쇄 또는 측쇄의 포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이러한 알킬의 예로는 메틸, 에틸, 프로필, 이소부틸, sec-부틸, 펜틸, iso-아밀, 헥실 등을 들 수 있으나, 이에 한정되지는 않는다.In the present invention, "alkyl" means a monovalent substituent derived from a straight or branched saturated hydrocarbon having 1 to 40 carbon atoms. Examples of such alkyl include, but are not limited to, methyl, ethyl, propyl, isobutyl, sec-butyl, pentyl, iso-amyl and hexyl.
본 발명에서 "알케닐(alkenyl)"은 탄소-탄소 이중 결합을 1개 이상 가진 탄소수 2 내지 40개의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이러한 알케닐의 예로는 비닐(vinyl), 알릴(allyl), 이소프로펜일(isopropenyl), 2-부텐일(2-butenyl) 등을 들 수 있으나, 이에 한정되지는 않는다."Alkenyl" in the present invention means a monovalent substituent derived from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms and having at least one carbon-carbon double bond. Examples of such alkenyl include, but are not limited to, vinyl, allyl, isopropenyl, 2-butenyl, and the like.
본 발명에서 "알키닐(alkynyl)"은 탄소-탄소 삼중 결합을 1개 이상 가진 탄소수 2 내지 40개의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이러한 알키닐의 예로는 에티닐(ethynyl), 2-프로파닐(2-propynyl) 등을 들 수 있으나, 이에 한정되지는 않는다.The term "alkynyl" in the present invention means a monovalent substituent derived from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms and having at least one carbon-carbon triple bond. Examples of such alkynyls include, but are not limited to, ethynyl, 2-propynyl, and the like.
본 발명에서 "시클로알킬"은 탄소수 3 내지 40개의 모노사이클릭 또는 폴리사이클릭 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이러한 사이클로알킬의 예로는 사이클로프로필, 사이클로펜틸, 사이클로헥실, 노르보닐(norbornyl), 아다만틴(adamantine) 등을 들 수 있으나, 이에 한정되지는 않는다."Cycloalkyl" in the present invention means a monovalent substituent derived from a monocyclic or polycyclic non-aromatic hydrocarbon having 3 to 40 carbon atoms. Examples of such cycloalkyls include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, adamantine, and the like.
본 발명에서 "헤테로시클로알킬"은 핵원자수 3 내지 40개의 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미하며, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로 원자로 치환된다. 이러한 헤테로시클로알킬의 예로는 모르폴린, 피페라진 등을 들 수 있으나, 이에 한정되지는 않는다."Heterocycloalkyl" in the present invention means a monovalent substituent derived from a non-aromatic hydrocarbon having 3 to 40 nuclear atoms, wherein at least one carbon of the ring, preferably 1 to 3 carbons, Or &lt; RTI ID = 0.0 &gt; Se. &Lt; / RTI &gt; Examples of such heterocycloalkyl include, but are not limited to, morpholine, piperazine, and the like.
본 발명에서 "아릴"은 단독 고리 또는 2 이상의 고리가 조합된 탄소수 6 내지 60개의 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있다. 이러한 아릴의 예로는 페닐, 나프틸, 페난트릴, 안트릴 등을 들 수 있으나, 이에 한정되지는 않는다."Aryl" in the present invention means a monovalent substituent derived from a C6-C60 aromatic hydrocarbon having a single ring or a combination of two or more rings. Also, a form in which two or more rings are pendant or condensed with each other may be included. Examples of such aryl include, but are not limited to, phenyl, naphthyl, phenanthryl, anthryl, and the like.
본 발명에서 "헤테로아릴"은 핵원자수 5 내지 60개의 모노헤테로사이클릭 또는 폴리헤테로사이클릭 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이때, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로원자로 치환된다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있고, 나아가 아릴기와의 축합된 형태도 포함될 수 있다. 이러한 헤테로아릴의 예로는 피리딜, 피라지닐, 피리미디닐, 피리다지닐, 트리아지닐과 같은 6-원 모노사이클릭 고리, 페녹사티에닐(phenoxathienyl), 인돌리지닐(indolizinyl), 인돌릴(indolyl), 퓨리닐(purinyl), 퀴놀릴(quinolyl), 벤조티아졸(benzothiazole), 카바졸릴(carbazolyl)과 같은 폴리사이클릭 고리 및 2-퓨라닐, N-이미다졸릴, 2-이속사졸릴, 2-피리디닐, 2-피리미디닐 등을 들 수 있으나, 이에 한정되지는 않는다."Heteroaryl" in the present invention means a monovalent substituent derived from a monoheterocyclic or polyheterocyclic aromatic hydrocarbon having 5 to 60 nuclear atoms. Wherein at least one of the carbons, preferably one to three carbons, is replaced by a heteroatom such as N, O, S or Se. In addition, a form in which two or more rings are pendant or condensed with each other may be included, and further, a condensed form with an aryl group may be included. Examples of such heteroaryls include 6-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, phenoxathienyl, indolizinyl, indolyl indolyl), purinyl, quinolyl, benzothiazole, carbazolyl, and heterocyclic rings such as 2-furanyl, N-imidazolyl, 2- , 2-pyridinyl, 2-pyrimidinyl, and the like, but are not limited thereto.
본 발명에서 "알킬옥시"는 R'O-로 표시되는 1가의 치환기로, 상기 R'는 탄소수 1 내지 40개의 알킬을 의미한다. 이러한 알킬옥시는 직쇄(linear), 측쇄(branched) 또는 사이클릭(cyclic) 구조를 포함할 수 있다. 이러한 알킬옥시의 예로는 메톡시, 에톡시, n-프로폭시, 1-프로폭시, t-부톡시, n-부톡시, 펜톡시 등을 들 수 있으나, 이에 한정되지는 않는다.In the present invention, "alkyloxy" means a monovalent substituent group represented by R'O-, and R 'means alkyl having 1 to 40 carbon atoms. Such alkyloxy may include linear, branched or cyclic structures. Examples of such alkyloxy include, but are not limited to, methoxy, ethoxy, n-propoxy, 1-propoxy, t-butoxy, n-butoxy and pentoxy.
본 발명에서 "아릴옥시"는 RO-로 표시되는 1가의 치환기로, 상기 R은 탄소수 6 내지 60개의 아릴을 의미한다. 이러한 아릴옥시의 예로는 페닐옥시, 나프틸옥시, 디페닐옥시 등을 들 수 있으나, 이에 한정되지는 않는다.In the present invention, "aryloxy" means a monovalent substituent represented by RO-, and R means aryl having 6 to 60 carbon atoms. Examples of such aryloxy include, but are not limited to, phenyloxy, naphthyloxy, diphenyloxy, and the like.
본 발명에서 "알킬실릴"은 탄소수 1 내지 40개의 알킬로 치환된 실릴이고, "아릴실릴"은 탄소수 6 내지 60개의 아릴로 치환된 실릴을 의미한다."Alkylsilyl" in the present invention refers to silyl substituted with alkyl having 1 to 40 carbon atoms, and "arylsilyl" means silyl substituted with aryl having 6 to 60 carbon atoms.
본 발명에서 "알킬보론"은 탄소수 1 내지 40개의 알킬로 치환된 보론이고, "아릴보론"은 탄소수 6 내지 60개의 아릴로 치환된 보론을 의미한다.In the present invention, "alkyl boron" is boron substituted with alkyl having 1 to 40 carbon atoms, and "aryl boron" means boron substituted with aryl having 6 to 60 carbon atoms.
본 발명에서 "아릴포스핀"은 탄소수 6 내지 60개의 아릴로 치환된 포스핀을 의미하고, "아릴포스핀옥사이드기"는 탄소수 6 내지 60개의 아릴로 치환된 포스핀이 O를 포함하는 것을 의미한다.In the present invention, "arylphosphine" means a phosphine substituted with aryl having 6 to 60 carbon atoms, and "arylphosphine oxide group" means that phosphine substituted with aryl having 6 to 60 carbon atoms includes O do.
본 발명에서 "축합 고리"는 축합 지방족 고리, 축합 방향족 고리, 축합 헤테로지방족 고리, 축합 헤테로방향족 고리 또는 이들의 조합된 형태를 의미한다.In the present invention, the term "condensed rings" means condensed aliphatic rings, condensed aromatic rings, condensed heteroaliphatic rings, condensed heteroaromatic rings, or a combination thereof.
본 발명에서 "아릴아민"은 탄소수 6 내지 60개의 아릴로 치환된 아민을 의미한다."Arylamine" in the present invention means an amine substituted with aryl having 6 to 60 carbon atoms.
이와 같은 본 발명의 화학식 1로 표시되는 화합물은 당 분야에 공지된 방법에 따라 제한 없이 제조될 수 있다. 일례로, 하기 실시예의 합성과정을 참고하여 다양하게 합성할 수 있다.The compounds represented by formula (1) of the present invention can be prepared without limitation by methods known in the art. For example, various syntheses can be carried out by referring to the synthesis process of the following examples.
본 발명에 따른 발광층(40)을 구성하는 적어도 1종의 호스트는, 카바졸 모이어티를 갖는 화합물을 더 포함할 수 있다. The at least one host constituting the light emitting layer 40 according to the present invention may further include a compound having a carbazole moiety.
일반적으로 카바졸(carbazole) 골격은 전자 공여성 및 정공 수송성이 큰 전자주게기(Electron Donating Group) 특성을 가진다. 이러한 카바졸 모이어티를 갖는 화합물은 정공 특성을 갖는 호스트 재료(예, 제2 호스트)로 사용될 수 있으며, 상술한 전자 특성을 갖는 화학식 1의 화합물과 함께 발광층 성분으로 혼용될 수 있다. In general, the carbazole skeleton has electron donating group characteristics, which are electron donating and hole transporting properties. Such a compound having a carbazole moiety can be used as a host material having a hole property (e.g., a second host), and can be mixed with a compound of the formula (1) having the above-described electronic characteristics as a light emitting layer component.
상기 카바졸 모이어티를 갖는 화합물은, 분자 구조 내 적어도 하나의 카바졸 모이어티를 갖는다면, 특별히 제한되지 않는다. 일례로, 상기 화합물은 비축합환 형태의 카바졸, 인돌로카바졸, 축합카바졸, 또는 2개의 카바졸이 연결된 형태의 비스카바졸(bis-carbazole) 등일 수 있다. 상기 예시된 카바졸 기본 골격에, 다양한 형태의 알킬기, 아릴기 및/또는 헤테로아릴기가 적어도 1개 이상 치환되는 형태일 수 있다. 특히, 카바졸 골격이 분자 내에 2개 이상 포함될 경우 높은 정공 수송성을 가지게 되며, 또한 카바졸 골격이 1개일 때 보다 분자량이 유의적으로 증가하여 높은 열안정성을 가질 수 있다. 그리고, 2개의 카바졸이 연결되는 주요 결합 부위로서 3,3' 결합된 비스카바졸(biscarbazole)의 경우, 견고한 결합 구조를 통해 분자 자체의 열적, 전기적 안정성을 강화시킬 수 있다. The compound having a carbazole moiety is not particularly limited as long as it has at least one carbazole moiety in the molecular structure. In one example, the compound may be a carbazole in the non-condensed ring form, an indolocarbazole, a condensed carbazole, or a bis-carbazole in the form of two carbazoles linked. The above-exemplified carbazole basic skeleton may be in a form in which at least one of various types of alkyl groups, aryl groups and / or heteroaryl groups is substituted. Particularly, when two or more carbazole skeletons are contained in the molecule, they have high hole transportability, and the molecular weight of the carbazole skeleton is significantly higher than that of one carbazole skeleton, so that it can have high thermal stability. In the case of 3,3 'bonded biscarbazole as a main bonding site to which two carbazoles are connected, the thermal and electrical stability of the molecule itself can be enhanced through a rigid bonding structure.
종래 발광층 성분으로 단일 물질만을 사용하는 경우, 형성된 엑시톤 간의 상호작용에 의해 발광 효율이 감소하는 문제가 초래되므로, 본 발명의 발광층(40)은 호스트(host) 및 상기 호스트에 도핑된 도펀트(dopant)를 포함한다. 이와 같이 호스트에서 도펀트로 에너지 전이(energy transfer)가 일어나는 과정에서 발광 효율이 향상될 수 있다.In the case of using only a single material as the light emitting layer component in the related art, the luminous efficiency is decreased due to the interaction between the formed excitons. Therefore, the light emitting layer 40 of the present invention includes a host and a dopant doped in the host. . In this way, the energy efficiency can be improved in the process of energy transfer from the host to the dopant.
본 발명의 일 구체예를 들면, 상기 적어도 1종의 호스트는 상기 화학식 1로 표시되는 제1호스트; 및 카바졸 모이어티를 갖는 제2호스트를 포함할 수 있다. 이때, 전술한 제1호스트 및 제2호스트 간의 혼합 비율은 특별히 제한되지 않으며, 당 분야에 공지된 범위 내에서 적절히 조절할 수 있다. 일 구체예를 들면, 상기 제1호스트와 제2호스트의 혼합 비율은 20~80 : 80~20 중량비일 수 있으며, 바람직하게는 30~70 : 70~30 중량비일 수 있다. In one embodiment of the present invention, the at least one host includes a first host represented by Formula 1; And a second host having a carbazole moiety. At this time, the mixing ratio between the first host and the second host is not particularly limited, and can be appropriately adjusted within the range known in the art. In one embodiment, the mixing ratio of the first host to the second host may be 20-80: 80-20, preferably 30-70: 70-30.
그 외에, 본 발명의 발광층(40)은 당 업계에 공지된 호스트 재료를 더 포함할 수 있다. 사용 가능한 호스트 재료의 비제한적인 예로는, 알칼리 금속 착화합물; 알칼리토금속 착화합물; 또는 축합 방향족환 유도체 등이 있다. 구체적으로, 상기 호스트 재료로는 유기 전계 발광 소자의 발광효율 및 수명을 높일 수 있는 알루미늄 착화합물, 베릴륨 착화합물, 안트라센 유도체, 파이렌 유도체, 트리페닐렌 유도체, 카바졸 유도체, 디벤조퓨란 유도체, 디벤조싸이오펜 유도체, 또는 이들의 1종 이상의 조합을 사용할 수 있다.In addition, the light emitting layer 40 of the present invention may further include a host material known in the art. Non-limiting examples of usable host materials include alkali metal complexes; Alkaline earth metal complex compounds; Or condensed aromatic ring derivatives. Specifically, the host material may be at least one selected from the group consisting of an aluminum complex compound, a beryllium complex compound, an anthracene derivative, a pyrene derivative, a triphenylene derivative, a carbazole derivative, a dibenzofuran derivative, Thiophene derivatives, or a combination of at least two of them.
또한 본 발명의 발광층(40)에 포함되는 도펀트는, 당 업계에 공지된 것을 제한 없이 사용할 수 있으며, 구체적으로 전술한 화학식 1의 호스트 재료와 대비하여 LUMO 에너지 준위 및/또는 삼중항 에너지 준위가 후술되는 특정 범위에 해당되는 물질이라면, 특별히 한정되지 않는다. 사용 가능한 도펀트의 비제한적인 예로는, 안트라센 유도체, 파이렌 유도체, 아릴아민 유도체, 이리듐(Ir) 또는 백금(Pt)을 포함하는 금속 착체 화합물 등을 들 수 있다. 본 발명에 따른 도펀트의 일례를 들면, LUMO 에너지 준위가 2.4 내지 2.8 eV이며, 삼중항 에너지(T1)는 2.3 내지 2.45 eV인 이리듐(Ir) 착체일 수 있다. 그러나 이에 특별히 제한되는 것은 아니다. The dopant contained in the light emitting layer 40 of the present invention can be any of those known in the art without limitation, and specifically, the LUMO energy level and / or the triplet energy level, as compared with the host material of the above- Is not particularly limited as long as it is a substance falling within a specific range as described above. Nonlimiting examples of usable dopants include metal complex compounds including anthracene derivatives, pyrene derivatives, arylamine derivatives, iridium (Ir), and platinum (Pt). An example of the dopant according to the present invention may be an iridium (Ir) complex having a LUMO energy level of 2.4 to 2.8 eV and a triplet energy (T1) of 2.3 to 2.45 eV. However, the present invention is not particularly limited thereto.
한편 본 발명의 발광층(40)은, 전자가 LUMO 준위를 통해 호스트에서 도펀트로 원활히 공급될 수 있으면서, 삼중항 에너지(T1) 준위에 의해 도펀트의 에너지가 호스트로 역전이되는 것을 방지함으로써, 유기 EL 소자의 발광효율과 수명 특성을 동시에 향상시킬 수 있다. 이에 따라, 본 발명에서는 발광층 재료로서 혼용되는 호스트와 도펀트의 물성[예, LUMO, 삼중항 에너지(T1)]을 각각 하기와 같이 조절해야 할 필요성이 있다. Meanwhile, the light emitting layer 40 of the present invention can prevent electrons from being reversely transferred to the host by the triplet energy (T1) level while being able to be smoothly supplied from the host to the dopant through the LUMO level, The luminous efficiency and lifetime characteristics of the device can be improved at the same time. Accordingly, in the present invention, it is necessary to control the physical properties (for example, LUMO, triplet energy (T1)) of the host and the dopant mixed as the light emitting layer material respectively as follows.
본 발명의 일 구체예를 들면, 상기 화학식 1로 표시되는 화합물의 LUMO 에너지 준위(LUMOH)와, 상기 도펀트의 LUMO 에너지 준위(LUMOD)의 차이(|LUMOH - LUMOD|)는 1.0 eV 이하일 수 있다. 바람직하게는 0 초과, 0.65 eV 이하일 수 있으며, 보다 바람직하게는 0초과, 0.5 eV 이하일 수 있다.In one embodiment of the present invention, the difference (LUMO H - LUMO D ) between the LUMO energy level (LUMO H ) of the compound represented by Formula 1 and the LUMO energy level (LUMO D ) of the dopant is 1.0 eV &Lt; / RTI &gt; Preferably greater than 0 and less than or equal to 0.65 eV, more preferably greater than 0 and less than or equal to 0.5 eV.
또한 본 발명의 다른 일 구체예를 들면, 상기 화학식 1로 표시되는 화합물의 삼중항 에너지 준위는 상기 도펀트의 삼중항 에너지 준위보다 높다. 구체적으로, 상기 화학식 1로 표시되는 화합물의 삼중항 에너지 준위(T1H)와, 상기 도펀트의 삼중항 에너지 준위(T1D)의 차이(T1H - T1D)는 0.1 내지 0.5 eV 일 수 있으며, 바람직하게는 0.2 내지 0.4 eV 일 수 있다. In another embodiment of the present invention, the triplet energy level of the compound represented by Formula 1 is higher than the triplet energy level of the dopant. Specifically, the triplet energy level (T1 H) of the compound represented by the formula (1), the difference between the triplet energy level (T1 D) of the dopant (T1 H - T1 D) may be in the range of 0.1 to 0.5 eV, Preferably 0.2 to 0.4 eV.
본 발명의 또 다른 구체예를 들면, 상기 화학식 1로 표시되는 화합물의 삼중항 에너지 준위는 2.5 eV 이상일 수 있으며, 구체적으로 2.5 내지 3.0 eV 일 수 있으며, 바람직하게는 2.6 내지 2.85 eV 일 수 있다. In another embodiment of the present invention, the triplet energy level of the compound represented by Formula 1 may be 2.5 eV or more, specifically 2.5 to 3.0 eV, and preferably 2.6 to 2.85 eV.
상기 도펀트는 적색 도펀트, 녹색 도펀트 및 청색 도펀트로 분류될 수 있는데, 당해 기술 분야에 통상적으로 공지된 적색 도펀트, 녹색 도펀트 및 청색 도펀트는 특별히 제한 없이 사용될 수 있다.The dopant may be classified into a red dopant, a green dopant, and a blue dopant. The red dopant, the green dopant, and the blue dopant commonly known in the art can be used without particular limitation.
구체적으로, 상기 적색 도펀트의 비제한적인 예로는 PtOEP(Pt(II) octaethylporphine: Pt(II) 옥타에틸포르핀), Ir(piq)3 (tris(2-phenylisoquinoline)iridium: 트리스(2-페닐이소퀴놀린)이리듐), Btp2Ir(acac) (bis(2-(2'-benzothienyl)-pyridinato-N,C3')iridium(acetylacetonate): 비스(2-(2'-벤조티에닐)-피리디나토-N,C3')이리듐(아세틸아세토네이트)), 또는 이들의 2종 이상 혼합물 등이 있다. Specifically, non-limiting examples of the red dopant include PtOEP (Pt (II) octaethylporphine: Pt (II) octaethylporphine), Ir (piq) 3 (tris (2-phenylisoquinoline) iridium: (2'-benzothienyl) -pyridinato-N, C3 ') iridium (acetylacetonate): Bis (2- N, C3 ') iridium (acetylacetonate)), or a mixture of two or more thereof.
또한, 상기 녹색 도펀트의 비제한적인 예로는 Ir(ppy)3 (tris(2-phenylpyridine) iridium: 트리스(2-페닐피리딘) 이리듐), Ir(ppy)2(acac) (Bis(2-phenylpyridine)(Acetylacetonato)iridium(III): 비스(2-페닐피리딘)(아세틸아세토) 이리듐(III)), Ir(mppy)3 (tris(2-(4-tolyl)phenylpiridine)iridium: 트리스(2-(4-톨일)페닐피리딘) 이리듐), C545T (10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1]benzopyrano [6,7,8-ij]-quinolizin-11-one: 10-(2-벤조티아졸일)-1,1,7,7-테트라메틸-2,3,6,7,-테트라하이드로-1H,5H,11H-[1]벤조피라노 [6,7,8-ij]-퀴놀리진-11-온), 또는 이들의 2종 이상 혼합물 등이 있다. Specific examples of the green dopant include Ir (ppy) 3 (tris (2-phenylpyridine) iridium: tris (2-phenylpyridine) iridium), Ir (ppy) (Acetylacetonato) iridium (III): bis (2-phenylpyridine) (acetylacetato) iridium (III)), Ir (mppy) (2-benzothiazolyl) -1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H, 5H, 11H- [1] benzopyrano [ 6,7,8-ij] -quinolizin-11-one: 10- (2-benzothiazolyl) -1,1,7,7-tetramethyl-2,3,6,7, -tetrahydro- 5H, 11H- [1] benzopyrano [6,7,8-ij] -quinolizine-11-one), or a mixture of two or more thereof.
또한, 상기 청색 도펀트의 비제한적인 예로는 F2Irpic (Bis[3,5-difluoro-2-(2-pyridyl)phenyl](picolinato)iridium(III): 비스[3,5-디플루오로-2-(2-피리딜)페닐(피콜리나토) 이리듐(III)), (F2ppy)2Ir(tmd), Ir(dfppz)3, DPVBi (4,4'-bis(2,2'-diphenylethen-1-yl)biphenyl: 4,4'-비스(2,2'-디페닐에텐-1-일)비페닐), DPAVBi (4,4'-Bis[4-(diphenylamino)styryl]biphenyl: 4,4'-비스(4-디페닐아미노스티릴)비페닐), TBPe (2,5,8,11-tetra-tert-butyl perylene: 2,5,8,11-테트라-터트-부틸 페릴렌), 또는 이들의 2종 이상 혼합물 등이 있다. Nonlimiting examples of the blue dopant include bis [3,5-difluoro-2- (2-pyridyl) phenyl] (picolinato) iridium (III) (2-pyridyl) phenyl (picolinato) iridium (III)), (F2ppy) 2Ir (tmd), Ir (dfppz) 3, DPVBi (4,4'- yl) biphenyl: 4,4'-bis (2,2'-diphenylethen-1-yl) biphenyl), DPAVBi (4,4'-Bis [4- (diphenylamino) styryl] biphenyl: Bis (4-diphenylaminostyryl) biphenyl), TBPe (2,5,8,11-tetra-tert-butyl perylene: 2,5,8,11-tetra- Or a mixture of two or more of these.
본 발명에 따른 발광층(40)에서, 호스트와 도펀트 간의 혼합 비율은 특별히 제한되지 않으며, 당 분야에 공지된 범위 내에서 적절히 조절할 수 있다. 일례로, 상기 호스트를 70 내지 99.9 중량% 범위로 포함하고, 상기 도펀트를 0.1 내지 30 중량% 범위로 포함할 수 있다. 보다 구체적으로, 상기 발광층(40)이 청색 형광, 녹색 형광 또는 적색 형광일 경우, 상기 호스트를 80 내지 99.9 중량% 범위로 포함하고, 상기 도펀트를 0.1 내지 20 중량% 범위로 포함할 수 있다. 또한 상기 발광층(40)이 청색 형광, 녹색 형광 또는 적색 인광일 경우 상기 호스트를 70 내지 99 중량% 범위로 포함하고 상기 도펀트를 1 내지 30 중량% 범위로 포함할 수 있다.In the light emitting layer 40 according to the present invention, the mixing ratio between the host and the dopant is not particularly limited and can be appropriately adjusted within the range known in the art. For example, the host may be included in the range of 70 to 99.9 wt%, and the dopant may be included in the range of 0.1 to 30 wt%. More specifically, when the light emitting layer 40 is blue fluorescence, green fluorescence, or red fluorescence, the host may be contained in the range of 80 to 99.9 wt%, and the dopant may be included in the range of 0.1 to 20 wt%. When the light emitting layer 40 is a blue fluorescent light, a green fluorescent light, or a red phosphorescent light, the host may be included in the range of 70 to 99 wt% and the dopant may be included in the range of 1 to 30 wt%.
본 발명에 따른 발광층(40)은 적색 인광 재료를 포함하는 적색 발광층; 녹색 인광 재료를 포함하는 녹색 발광층; 또는 청색 인광 재료 또는 청색 형광 물질을 포함하는 청색 발광층일 수 있다. 바람직하게는 녹색 인광 재료를 포함하는 발광층일 수 있다. The light emitting layer 40 according to the present invention includes a red light emitting layer including a red phosphorescent material; A green light emitting layer including a green phosphorescent material; Or a blue light-emitting layer containing a blue phosphor or a blue phosphor. Preferably a light emitting layer containing a green phosphorescent material.
전술한 발광층(40)은 단일층이거나, 또는 2층 이상의 복수층으로 이루어질 수 있다. 여기서 발광층(40)이 복수 개의 층일 경우, 유기 전계 발광 소자는 다양한 색의 빛을 낼 수 있다. 구체적으로, 본 발명은 이종(異種) 재료로 이루어진 발광층을 직렬로 복수 개 구비하여 혼합색을 띠는 유기 전계 발광 소자를 제공할 수 있다. 또한 복수 개의 발광층을 포함할 경우 소자의 구동전압은 커지는 반면, 유기 전계 발광 소자 내의 전류 값은 일정하게 되어 발광층의 수만큼 발광 효율이 향상된 유기 전계 발광 소자를 제공할 수 있다.The above-described light emitting layer 40 may be a single layer or a plurality of layers of two or more layers. Here, when the light emitting layer 40 is a plurality of layers, the organic electroluminescent device can emit light of various colors. Specifically, the present invention can provide an organic electroluminescent device having a plurality of luminescent layers made of different materials in series to form a mixed color. In addition, when a plurality of light emitting layers is included, the driving voltage of the device is increased, while the current value in the organic light emitting device is constant, thereby providing an organic electroluminescent device having improved luminous efficiency by the number of light emitting layers.
전자 수송 영역Electron transport area
본 발명에 따른 유기 전계 발광 소자(100)에 있어서, 상기 유기물층(A)에 포함되는 전자 수송 영역(50)은 음극(20)에서 주입된 전자를 발광층(40)으로 이동시키는 역할을 한다. In the organic electroluminescent device 100 according to the present invention, the electron transporting region 50 included in the organic material layer A serves to move electrons injected from the cathode 20 to the light emitting layer 40.
이러한 전자 수송 영역(50)은, 전자수송층(51) 및 전자주입층(52)으로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다. 이때 유기 전계 발광 소자의 특성을 고려할 때, 전술한 전자수송층(51) 및 전자주입층(52)을 모두 포함하는 것이 바람직하다. The electron transport region 50 may include at least one selected from the group consisting of the electron transport layer 51 and the electron injection layer 52. In consideration of the characteristics of the organic electroluminescent device, it is preferable to include both the electron transport layer 51 and the electron injection layer 52 described above.
본 발명의 전자 수송 영역(50)에서, 전자주입층(52)은 전자 주입이 용이하고 전자 이동도가 큰 전자 주입 물질을 제한 없이 사용할 수 있다. 사용 가능한 전자 주입 물질의 비제한적인 예로, 상기 양극성 화합물, 안트라센 유도체, 헤테로방향족 화합물, 알칼리 금속 착화합물 등이 있다. 구체적으로, LiF, Li2O, BaO, NaCl, CsF; Yb 등과 같은 란타넘족 금속; 또는 RbCl, RbI 등과 같은 할로겐화 금속 등이 있는데, 이들은 단독으로 사용되거나 2종 이상이 혼합되어 사용될 수 있다.In the electron transport region 50 of the present invention, the electron injection layer 52 can use an electron injection material which is easy to inject electrons and has a high electron mobility, without limitation. Non-limiting examples of usable electron injecting materials include the above-mentioned bipolar compounds, anthracene derivatives, heteroaromatic compounds, alkali metal complexes and the like. Specifically, LiF, Li2O, BaO, NaCl, CsF; Lanthanum metals such as Yb and the like; Or metal halides such as RbCl, RbI and the like, which may be used alone or in combination of two or more.
본 발명의 전자 수송 영역(50), 보다 구체적으로 상기 전자수송층(51) 및/또는 전자 주입층(52)은 음극으로부터 전자의 주입이 용이하도록 n형 도펀트와 공증착된 것을 사용할 수도 있다. 이때, 상기 n형 도펀트는 당 분야에 공지된 알칼리 금속 착화합물을 제한없이 사용할 수 있으며, 일례로 알칼리 금속, 알칼리 토금속 또는 희토류 금속 등을 들 수 있다.The electron transporting region 50 of the present invention, more specifically, the electron transporting layer 51 and / or the electron injecting layer 52, may be co-deposited with an n-type dopant to facilitate the injection of electrons from the cathode. At this time, the n-type dopant can be used without limitation in the alkali metal complexes known in the art, and examples thereof include alkali metals, alkaline earth metals and rare earth metals.
상기 전자 수송 영역(50)은 당해 기술분야에서 알려진 통상적인 방법을 통해 제조될 수 있다. 예컨대, 진공 증착법, 스핀 코팅법, 캐스트법, LB법(Langmuir-Blodgett), 잉크젯 프린팅법, 레이저 프린팅법, 레이저 열전사법(Laser Induced Thermal Imaging, LITI) 등이 있는데, 이에 한정되지 않는다.The electron transport region 50 can be manufactured by a conventional method known in the art. For example, a vacuum deposition method, a spin coating method, a casting method, an LB method (Langmuir-Blodgett), an inkjet printing method, a laser printing method, a laser induced thermal imaging method (LITI)
발광보조층The light-
선택적으로, 본 발명의 유기 발광 소자(100)는 상기 정공 수송 영역(30)과 발광층(40) 사이에 배치된 발광보조층(미도시)을 더 포함할 수 있다. Alternatively, the organic light emitting device 100 of the present invention may further include a light emitting auxiliary layer (not shown) disposed between the hole transporting region 30 and the light emitting layer 40.
발광 보조층은 정공 수송 영역(30)으로부터 이동되는 정공을 발광층(40)으로 수송하는 역할을 하면서, 유기층(A)의 두께를 조절하는 역할을 한다. 이러한 발광보조층은 높은 LUMO 값을 가져 전자가 정공 수송층(32)으로 이동하는 것을 막고, 높은 삼중항 에너지를 가져 발광층(40)의 엑시톤이 정공 수송층(32)으로 확산되는 것을 방지한다. The light emission assisting layer serves to regulate the thickness of the organic layer (A) while serving to transport holes, which are moved from the hole transporting region (30), to the light emitting layer (40). This luminescent auxiliary layer has a high LUMO value and prevents electrons from migrating to the hole transport layer 32 and has a high triplet energy to prevent the exciton of the luminescent layer 40 from diffusing into the hole transport layer 32.
이러한 발광 보조층은 정공 수송 물질을 포함할 수 있고, 정공 수송 영역과 동일한 물질로 만들어질 수 있다. 또한 적색, 녹색 및 청색 유기 발광 소자의 발광 보조층은 서로 동일한 재료로 만들어질 수 있다. This luminescent auxiliary layer may include a hole transporting material and may be made of the same material as the hole transporting region. Further, the light-emission-assisting layers of the red, green, and blue organic light-emitting devices may be made of the same material.
발광보조층 재료로는 특별히 제한되지 않으며, 일례로 카바졸 유도체 또는 아릴아민 유도체 등을 들 수 있다. 사용 가능한 발광 보조층의 비제한적인 예로는 NPD(N, N-dinaphthyl-N, N'-diphenyl benzidine), TPD(N, N'-bis-(3-methylphenyl)-N, N'-bis(phenyl)- benzidine), s-TAD, MTDATA(4, 4', 4″-Tris(N-3-methylphenyl-Nphenyl-amino)- triphenylamine) 등이 있다. 이들은 단독으로 사용되거나 또는 2종 이상이 혼합되어 사용될 수 있다. 또한, 상기 발광 보조층은 전술한 물질 이외에, p형 도펀트를 포함할 수 있다. 상기 p형 도펀트로는 당해 기술분야에서 사용되는 공지의 p형 도펀트가 사용될 수 있다.The light-emitting auxiliary layer material is not particularly limited, and examples thereof include carbazole derivatives and arylamine derivatives. Non-limiting examples of usable luminescent auxiliary layers include NPD (N, N-dinaphthyl-N, N'-diphenyl benzidine), TPD (N, N'-bis- (3-methylphenyl) phenyl-benzidine, s-TAD, and 4,4 ', 4 "-tris (N-3-methylphenyl-Nphenyl-amino) -triphenylamine. These may be used alone or in combination of two or more. The light-emitting auxiliary layer may include a p-type dopant in addition to the above-described materials. As the p-type dopant, well-known p-type dopants used in the related art can be used.
전자수송 보조층Electron transporting auxiliary layer
선택적으로, 본 발명의 유기 전계 발광 소자(100)는 상기 전자 수송 영역(50)과 발광층(40) 사이에 배치된 전자수송 보조층(미도시)을 더 포함할 수 있다. 상기 전자수송 보조층은 발광층에서 생성된 엑시톤 또는 정공이 전자 수송 영역으로 확산되는 것을 방지할 수 있다. Alternatively, the organic electroluminescent device 100 of the present invention may further include an electron transporting layer (not shown) disposed between the electron transporting region 50 and the light emitting layer 40. The electron transporting layer can prevent the excitons or holes generated in the light emitting layer from diffusing into the electron transporting region.
상기 전자수송 보조층은 옥사디아졸 유도체, 트리아졸 유도체, 페난트롤린 유도체(예, BCP), 질소를 포함하는 헤테로환 유도체 등을 포함할 수 있다. The electron transporting layer may include an oxadiazole derivative, a triazole derivative, a phenanthroline derivative (e.g., BCP), a heterocyclic derivative including nitrogen, and the like.
상기 전자수송 보조층은 당해 기술분야에서 알려진 바와 같이, 진공 증착법, 스핀 코팅법, 캐스트법, LB법(Langmuir-Blodgett), 잉크젯 프린팅법, 레이저 프린팅법, 레이저 열전사법(Laser Induced Thermal Imaging, LITI) 등에 의해 형성될 수 있는데, 이에 한정되지 않는다.The electron transporting auxiliary layer may be formed by vacuum deposition, spin coating, casting, Langmuir-Blodgett, inkjet printing, laser printing, laser induced thermal imaging (LITI) ), But the present invention is not limited thereto.
캡핑층The capping layer
선택적으로, 본 발명의 유기 전계 발광 소자(100)는 전술한 음극(20) 상에 배치되는 캡핑층(미도시)을 더 포함할 수 있다. 상기 캡핑층은 유기 발광 소자를 보호하면서, 유기층에서 발생된 빛이 효율적으로 외부로 방출될 수 있도록 돕는 역할을 한다.Alternatively, the organic electroluminescent device 100 of the present invention may further include a capping layer (not shown) disposed on the cathode 20 described above. The capping layer functions to protect the organic light emitting device and efficiently emit light generated in the organic layer to the outside.
상기 캡핑층은 트리스-8-하이드록시퀴놀린알루미늄(Alq3), ZnSe, 2,5-bis(6′-(2′,2″-bipyridyl))-1,1-dimethyl-3,4-diphenylsilole, 4′-bis[N-(1-napthyl)-N- phenyl-amion] biphenyl (α-NPD), N,N′-diphenyl-N,N′-bis(3-methylphenyl) -1,1′-biphenyl-4,4′-diamine (TPD), 1,1′-bis(di-4-tolylaminophenyl) cyclohexane (TAPC) 로 이루어진 군에서 선택된 적어도 하나를 포함할 수 있다. 이러한 캡핑층을 형성하는 물질은 유기발광소자의 다른 층의 재료들에 비하여 저렴하다. The capping layer may be formed of tris-8-hydroxyquinoline aluminum (Alq3), ZnSe, 2,5-bis (6 '- (2' N'-diphenyl-N, N'-bis (3-methylphenyl) -1,1'-bis [N- (1-naphthyl) biphenyl-4,4'-diamine (TPD), 1,1'-bis (di-4-tolylaminophenyl) cyclohexane (TAPC). The material forming such a capping layer is inexpensive as compared with the materials of other layers of the organic light emitting device.
이러한 캡핑층은 단일층일 수도 있으나, 서로 다른 굴절률을 갖는 2 이상의 층을 포함하여, 상기 2 이상의 층을 통과하면서 점점 굴절률이 변화하도록 할 수 있다. Such a capping layer may be a single layer, but may include two or more layers having different refractive indexes so that the refractive index gradually changes while passing through the two or more layers.
상기 캡핑층은 당 기술분야에서 알려진 통상적인 방법을 통해 제조될 수 있으며, 일례로 진공증착법, 스핀코팅법, 캐스트법 또는 LB(Langmuir-Blodgett)법 등과 같은 다양한 방법을 이용할 수 있다.The capping layer may be formed by a conventional method known in the art. For example, various methods such as a vacuum deposition method, a spin coating method, a casting method, or a Langmuir-Blodgett (LB) method may be used.
전술한 구성을 포함하는 본 발명의 유기 발광 소자는 당 분야에 알려진 통상적인 방법에 따라 제조될 수 있다. 일례로, 기판 상에 양극 물질을 진공 증착한 다음, 상기 양극 상에 정공 수송 영역 물질, 발광층 물질, 전자 수송 영역 물질, 및 음극 물질의 재료를 순서로 진공 증착하여 유기 발광 소자를 제조할 수 있다.The organic light emitting device of the present invention including the above-described configuration can be manufactured according to a conventional method known in the art. For example, an organic light emitting device can be manufactured by vacuum-depositing a cathode material on a substrate, then vacuum-depositing a hole transporting material, a light emitting layer material, an electron transporting material, and a cathode material on the anode in this order .
본 발명에 따른 유기 전계 발광 소자(100)는 양극(10), 유기물층(A) 및 음극(20)이 순차적으로 적층된 구조를 가지되, 양극(10)과 유기물층(A) 사이 또는 음극(20)과 유기물층(A) 사이에 절연층 또는 접착층을 더 포함할 수도 있다. 이러한 본 발명의 유기 전계 발광 소자는 전압, 전류, 또는 이들 모두를 인가하는 경우 최대 발광효율을 유지하면서 초기 밝기의 반감시간(Life time)이 증가되기 때문에 수명 특성이 우수할 수 있다.The organic electroluminescent device 100 according to the present invention has a structure in which an anode 10, an organic material layer A and a cathode 20 are sequentially laminated and a structure is formed between the anode 10 and the organic material layer A or between the anode 20 ) And the organic material layer (A). In the organic electroluminescent device of the present invention, when the voltage, the current, or both of them are applied, lifetime characteristics can be excellent because the lifetime of the initial brightness is increased while maintaining the maximum luminous efficiency.
이하 본 발명을 실시예를 통하여 상세히 설명하나, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples. However, the present invention is not limited by the following Examples.
[준비예 1 내지 16] 화합물 GE-01 내지 GE-16 준비Preparation Examples 1 to 16 Preparation of compounds GE-01 to GE-16
본 발명에 따른 양극성 화합물로서, 하기 GE-01 내지 GE-16 및 Ir(ppy)3 로 표시되는 화합물을 준비하였으며, 전술한 각 화합물의 LUMO, 삼중항 에너지는 당 업계에 공지된 방법으로 각각 측정하여 하기 표 1에 나타내었다. 또한 대조군으로 CBP 화합물을 사용하였다.As the bipolar compound according to the present invention, compounds represented by the following GE-01 to GE-16 and Ir (ppy) 3 were prepared, and the LUMO and triplet energy of each compound described above were measured by methods known in the art Are shown in Table 1 below. CBP compounds were also used as controls.
구체적으로, 각 화합물의 LUMO 에너지 준위는 HOMO와 에너지갭의 차이로부터 산출하였다. 이온화포텐셜은 CV (cyclic voltammetry) 방법을 이용하여 측정하였고, 에너지갭은 UV Visspectrophotometer로 측정하였다. Specifically, the LUMO energy level of each compound was calculated from the difference between HOMO and energy gap. The ionization potential was measured using a cyclic voltammetry (CV) method and the energy gap was measured with a UV spectrophotometer.
또한 삼중항에너지는 시료를 2-methylTHF 용매에 10-4 M 농도로 녹여 준비한 후, 액체질소를 이용하여 77K 저온에서 인광 스펙트럼을 측정하였다.The triplet energies were prepared by dissolving the sample in a concentration of 10 -4 M in a 2-methylTHF solvent and measuring the phosphorescence spectrum at 77 K low temperature using liquid nitrogen.
화합물compound LUMO (eV)LUMO (eV) 삼중항 에너지 (eV)Triplet energy (eV)
GE-1GE-1 2.142.14 2.732.73
GE-2GE-2 2.132.13 2.762.76
GE-3GE-3 2.552.55 2.712.71
GE-4GE-4 2.532.53 2.692.69
GE-5GE-5 2.212.21 2.682.68
GE-6GE-6 2.132.13 2.652.65
GE-7GE-7 2.422.42 2.662.66
GE-8GE-8 2.352.35 2.642.64
GE-9GE-9 2.342.34 2.642.64
GE-10GE-10 2.282.28 2.722.72
GE-11GE-11 2.312.31 2.702.70
GE-12GE-12 2.252.25 2.692.69
GE-13GE-13 2.452.45 2.662.66
GE-14GE-14 2.372.37 2.682.68
GE-15GE-15 2.452.45 2.662.66
GE-16GE-16 2.272.27 2.712.71
Ir(ppy)3 Ir (ppy) 3 2.672.67 2.402.40
CBPCBP 1.981.98 2.442.44
Figure PCTKR2019000616-appb-I000026
Figure PCTKR2019000616-appb-I000026
Figure PCTKR2019000616-appb-I000027
Figure PCTKR2019000616-appb-I000027
[실시예 1 ~ 16] 녹색 유기 EL 소자의 제작[Examples 1 to 16] Fabrication of green organic EL device
ITO (Indium tin oxide)가 1500Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV OZONE 세정기 (Power sonic 405, 화신테크)로 이송시킨 다음 UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.The glass substrate coated with ITO (Indium tin oxide) thin film with thickness of 1500 Å was washed with distilled water ultrasonic wave. After the distilled water was washed, the substrate was ultrasonically washed with a solvent such as isopropyl alcohol, acetone, or methanol, dried and transferred to a UV OZONE cleaner (Power Sonic 405, Hoshin Tech), the substrate was cleaned using UV for 5 minutes, The substrate was transferred.
이렇게 준비된 ITO 투명 전극 위에 m-MTDATA (60 nm)/TCTA (80 nm)/ 90% 각각의 화합물 + 10 % Ir(ppy)3 (30nm)/BCP (10 nm)/Alq3 (30 nm)/LiF (1 nm)/Al (200 nm) 순으로 적층하여 유기 EL 소자를 제작하였다. (60 nm) / TCTA (80 nm) / 90% of each compound + 10% Ir (ppy) 3 (30 nm) / BCP (10 nm) / Alq3 (30 nm) / LiF (1 nm) / Al (200 nm) in this order to form an organic EL device.
참고로, 본원 실시예 및 비교예에서 사용된 m-MTDATA, TCTA, Ir(ppy)3, CBP, BCP 의 구조는 각각 하기와 같다.For reference, the structures of m-MTDATA, TCTA, Ir (ppy) 3, CBP and BCP used in Examples and Comparative Examples are as follows.
Figure PCTKR2019000616-appb-I000028
Figure PCTKR2019000616-appb-I000028
Figure PCTKR2019000616-appb-I000029
Figure PCTKR2019000616-appb-I000029
[비교예 1] 녹색 유기 EL 소자의 제작[Comparative Example 1] Production of green organic EL device
발광층 형성시 발광 호스트 물질로서 화합물 GE-1 대신 CBP를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 과정으로 녹색 유기 EL 소자를 제작하였다.A green organic EL device was fabricated in the same manner as in Example 1 except that CBP was used instead of the compound GE-1 as a luminescent host material in forming the light emitting layer.
[평가예][Evaluation example]
실시예 1 내지 16 및 비교예 1에서 제작된 각각의 녹색 유기 EL 소자에 대하여 전류밀도 10 mA/㎠에서의 구동전압, 전류효율 및 발광 피크를 측정하고, 그 결과를 하기 표 2에 나타내었다.The driving voltage, current efficiency and emission peak at current densities of 10 mA / cm 2 were measured for each of the green organic EL devices manufactured in Examples 1 to 16 and Comparative Example 1, and the results are shown in Table 2 below.
샘플Sample 호스트Host 1) LUMO 차이 1) LUMO difference 2) 삼중항 에너지 차이 2) Triplet energy difference 구동 전압(V)The driving voltage (V) EL 피크(nm)EL peak (nm) 전류효율(cd/A)Current efficiency (cd / A)
실시예 1Example 1 GE-1GE-1 0.530.53 0.330.33 5.215.21 515515 52.152.1
실시예 2Example 2 GE-2GE-2 0.540.54 0.360.36 5.435.43 516516 51.851.8
실시예 3Example 3 GE-3GE-3 0.120.12 0.310.31 5.175.17 515515 54.354.3
실시예 4Example 4 GE-4GE-4 0.140.14 0.290.29 5.245.24 515515 53.853.8
실시예 5Example 5 GE-5GE-5 0.460.46 0.280.28 4.624.62 516516 55.555.5
실시예 6Example 6 GE-6GE-6 0.540.54 0.250.25 4.724.72 517517 58.758.7
실시예 7Example 7 GE-7GE-7 0.250.25 0.260.26 4.554.55 516516 62.162.1
실시예 8Example 8 GE-8GE-8 0.320.32 0.240.24 4.564.56 515515 61.861.8
실시예 9Example 9 GE-9GE-9 0.330.33 0.240.24 5.645.64 516516 56.656.6
실시예 10Example 10 GE-10GE-10 0.390.39 0.320.32 5.515.51 516516 51.151.1
실시예 11Example 11 GE-11GE-11 0.360.36 0.300.30 5.265.26 518518 52.252.2
실시예 12Example 12 GE-12GE-12 0.420.42 0.290.29 5.435.43 518518 52.752.7
실시예 13Example 13 GE-13GE-13 0.220.22 0.260.26 4.574.57 517517 60.760.7
실시예 14Example 14 GE-14GE-14 0.300.30 0.280.28 5.125.12 515515 57.157.1
실시예 15Example 15 GE-15GE-15 0.220.22 0.260.26 5.235.23 515515 56.856.8
실시예 16Example 16 GE-16GE-16 0.400.40 0.310.31 5.075.07 517517 53.453.4
비교예 1Comparative Example 1 CBPCBP 0.690.69 0.040.04 6.936.93 516516 38.238.2
1) LUMO 차이: 호스트의 LUMO 에너지 준위(LUMOH) - 도펀트의 LUMO 에너지 준위(LUMOD)의 절대값2) 삼중항 에너지 차이: 호스트의 삼중항 에너지(T1H) - 도펀트의 삼중항 에너지(T1D)1) LUMO difference: LUMO energy level of host (LUMO H ) - absolute value of LUMO energy level of dopant (LUMO D ) 2) Triplet energy difference: triplet energy of host (T1 H ) - triplet energy of dopant T1 D )
상기 표 2에 나타낸 바와 같이, 본 발명에 따른 화합물을 발광층으로 사용하는 실시예 1 내지 16의 녹색 유기 EL 소자는, 종래 CBP를 사용한 비교예 1의 녹색 유기 EL 소자와 비교해 볼 때 효율 및 구동전압 면에서 보다 우수한 성능을 나타내는 것을 알 수 있었다.As shown in Table 2 above, the green organic EL devices of Examples 1 to 16 using the compound according to the present invention as a light emitting layer, compared with the green organic EL device of Comparative Example 1 using conventional CBP, Which is superior to the conventional method.
구체적으로 비교예 1에서 사용된 CBP는, 도펀트와의 LUMO값 차이가 본원 실시예들의 화합물보다 더 크기 때문에, LUMO를 통한 전자의 이동이 원활하지 않으며, 또한 CBP와 도펀트의 삼중항 에너지(T1) 차이가 본원 실시예들의 화합물에 비해 미미하기 때문에, 도펀트에서 CBP로의 에너지 전달이 용이하게 이루어질 수 있다. 이에 따라, CBP를 발광층 재료로 포함하는 비교예 1의 녹색 유기 EL 소자의 성능 평가 결과가 좋지 않다는 것을 알 수 있었다.Specifically, the CBP used in Comparative Example 1 is not smooth in the movement of electrons through the LUMO because the LUMO value difference with the dopant is larger than that of the present embodiments, and the CBP and dopant triplet energy (T1) Since the difference is insignificant compared to the compounds of the present embodiments, energy transfer from the dopant to CBP can be facilitated. As a result, it was found that the performance evaluation result of the green organic EL device of Comparative Example 1 including CBP as a light emitting layer material was not good.
이에 비해, 본 발명에서는 발광층 성분으로 신규 호스트 재료를 사용하였을 뿐만 아니라, 이러한 신규 호스트와 도펀트와의 물성이 최적으로 조절됨에 따라 유기 EL 소자의 발광효율, 구동전압 및 장수명 특성이 동시에 향상된다는 것을 확인할 수 있었다. In contrast, in the present invention, not only a novel host material was used as a light emitting layer component, but the properties of the novel host and the dopant were optimally controlled, confirming that the luminous efficiency, the driving voltage and the longevity characteristics of the organic EL device were simultaneously improved I could.

Claims (15)

  1. 양극; 상기 양극과 대향 배치된 음극; 및 상기 양극과 음극 사이에 개재(介在)되는 발광층을 포함하고, anode; A negative electrode disposed opposite to the positive electrode; And a light emitting layer interposed between the anode and the cathode,
    상기 발광층은, 적어도 1종의 호스트 및 도펀트를 포함하되, Wherein the light emitting layer includes at least one host and a dopant,
    상기 적어도 1종의 호스트는 하기 화학식 1로 표시되는 화합물을 포함하는 유기 전계 발광 소자: Wherein the at least one host comprises a compound represented by the following Formula 1:
    [화학식 1][Chemical Formula 1]
    Figure PCTKR2019000616-appb-I000030
    Figure PCTKR2019000616-appb-I000030
    상기 화학식 1에서,In Formula 1,
    X1 및 X2는 서로 동일하거나 상이하며, 각각 독립적으로 O 또는 S이고,X 1 and X 2 are the same as or different from each other and each independently O or S,
    Y1 내지 Y16은 서로 동일하거나 상이하며, 각각 독립적으로 CR8 또는 N이고, 이때 CR8이 복수 개인 경우 복수의 R8은 서로 동일하거나 또는 상이하며, Y 1 to Y 16 are the same as or different from each other, and each independently CR 8 or N, provided that when there are a plurality of CR 8 s , the plurality of R 8 s are the same as or different from each other,
    Z1 내지 Z3는 서로 동일하거나 상이하며, 각각 독립적으로 CR5 또는 N이고, 이들 중 적어도 하나는 N이고,Z 1 to Z 3 are the same or different and each independently CR 5 or N, at least one of them is N,
    Ar1은 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기 및 C6~C60의 아릴기로 이루어진 군에서 선택되고,Ar 1 is selected from the group consisting of hydrogen, deuterium, halogen, cyano, nitro, C 1 to C 40 alkyl, C 2 to C 40 alkenyl, C 2 to C 40 alkynyl, C 3 to C 40 cycloalkyl, A C 6 to C 60 aryl group,
    m 및 n은 각각 0 내지 3의 정수이며, m+n ≥ 1이고,m and n are each an integer of 0 to 3, m + n? 1,
    A 및 B는 서로 동일하거나 상이하며, 각각 독립적으로 하기 화학식 2 내지 4로 표시되는 치환체 중 어느 하나이며;A and B are the same or different from each other and are each independently any one of substituents represented by the following formulas (2) to (4);
    [화학식 2](2)
    Figure PCTKR2019000616-appb-I000031
    Figure PCTKR2019000616-appb-I000031
    [화학식 3](3)
    Figure PCTKR2019000616-appb-I000032
    Figure PCTKR2019000616-appb-I000032
    [화학식 4][Chemical Formula 4]
    Figure PCTKR2019000616-appb-I000033
    Figure PCTKR2019000616-appb-I000033
    상기 화학식 2 내지 4에서,In the above Chemical Formulas 2 to 4,
    *은 상기 화학식 1에 결합되는 부위를 의미하고,* Represents a moiety bonded to Formula 1,
    X3는 단일결합이거나, 혹은 O 또는 S이고,X 3 is a single bond, or O or S,
    L은 단일결합이거나, 혹은 C6~C40의 아릴렌기이고,L is a single bond or an arylene group having 6 to 40 carbon atoms,
    Ar2 및 Ar3은 서로 동일하거나 상이하며, 각각 독립적으로 C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 혹은 인접한 기와 결합하여 축합 고리를 형성할 수 있고,Ar 2 and Ar 3 are the same or different and each independently represents a C 1 to C 40 alkyl group, a C 2 to C 40 alkenyl group, a C 2 to C 40 alkynyl group, a C 3 to C 40 cycloalkyl group, C 6 ~ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group, and a C 6 ~, or selected from the group consisting of C 60 aryl amine, with or adjacent groups bonded may form a condensed ring,
    a, c 및 f는 각각 0 내지 3의 정수이고,a, c, and f are each an integer of 0 to 3,
    b, d 및 e는 각각 0 내지 4의 정수이며, 이때 b+m≤4, d+n≤4이고,b, d and e are each an integer of 0 to 4, wherein b + m? 4, d + n? 4,
    R1 내지 R8은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 혹은 인접한 기와 결합하여 축합 고리를 형성할 수 있고, 이때 상기 R1 내지 R7이 각각 복수인 경우, 이들은 서로 동일하거나 상이하고,R 1 to R 8 are the same or different from each other and each independently represents hydrogen, deuterium, halogen, cyano, nitro, C 1 to C 40 alkyl, C 2 to C 40 alkenyl, C 2 to C 40 An alkynyl group, a C 3 to C 40 cycloalkyl group, a heteroaryl group having 3 to 40 nuclear atoms, a C 6 to C 60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, a C 1 to C 40 alkyl A C 6 to C 60 aryloxy group, a C 1 to C 40 alkylsilyl group, a C 6 to C 60 arylsilyl group, a C 1 to C 40 alkylboron group, a C 6 to C 60 aryl boron group, C 6 ~ C 60 aryl phosphine group, C 6 ~ C 60 aryl phosphine oxide group, and a C 6 ~, or selected from the group consisting of an aryl amine of the C 60 of, or adjacent groups combine to form a condensed ring And when R 1 to R 7 are each plural, they may be the same or different from each other,
    상기 Ar1 내지 Ar3, R1 내지 R8의 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 아릴포스핀옥사이드기 및 아릴아민기는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환될 수 있으며, 이때 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이할 수 있다. The alkyl group, alkenyl group, alkynyl group, cycloalkyl group, heterocycloalkyl group, aryl group, heteroaryl group, alkyloxy group, aryloxy group, alkylsilyl group and arylsilyl group of Ar 1 to Ar 3 and R 1 to R 8 , An alkylboron group, an arylboron group, an arylphosphine group, an arylphosphine oxide group and an arylamine group are each independently selected from the group consisting of deuterium, halogen, cyano group, nitro group, C 2 to C 40 alkenyl group, C 2 to C 40 alkynyl group, C 3 ~ C 40 cycloalkyl group, a number of nuclear atoms of 3 to 40 heterocycloalkyl group, C 1 ~ C 40 alkyl group, C 6 ~ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group , A C 1 to C 40 alkyloxy group, a C 6 to C 60 aryloxy group, a C 1 to C 40 alkylsilyl group, a C 6 to C 60 arylsilyl group, a C 1 to C 40 alkylboron group , C group 6 to C 60 aryl boron, C 6 to C 60 aryl phosphine of pingi, C 6 to C 60 aryl phosphine oxide group, and a C 6 to C 60 aryl amine group selected from the group consisting of 1 And when the substituent is plural, they may be the same as or different from each other.
  2. 제1항에 있어서, The method according to claim 1,
    상기 화학식 1로 표시되는 화합물의 LUMO 에너지 준위와, 상기 도펀트의 LUMO 에너지 준위의 차이는 1.0 eV 이하인 유기 전계 발광 소자. Wherein the difference between the LUMO energy level of the compound represented by Formula 1 and the LUMO energy level of the dopant is 1.0 eV or less.
  3. 제1항에 있어서, The method according to claim 1,
    상기 화학식 1로 표시되는 화합물의 삼중항 에너지 준위는 상기 도펀트의 삼중항 에너지 준위보다 높은, 유기 전계 발광 소자. Wherein the triplet energy level of the compound represented by Formula 1 is higher than the triplet energy level of the dopant.
  4. 제1항에 있어서, The method according to claim 1,
    상기 화학식 1로 표시되는 화합물의 삼중항 에너지 준위는 2.5 eV 이상인, 유기 전계 발광 소자. Wherein the triplet energy level of the compound represented by Formula 1 is 2.5 eV or more.
  5. 제1항에 있어서,The method according to claim 1,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 5 내지 화학식 8 중 어느 하나로 표시되는 유기 전계 발광 소자:Wherein the compound represented by Formula 1 is represented by any one of the following Chemical Formulas 5 to 8:
    [화학식 5] [Chemical Formula 5]
    Figure PCTKR2019000616-appb-I000034
    Figure PCTKR2019000616-appb-I000034
    [화학식 6] [Chemical Formula 6]
    Figure PCTKR2019000616-appb-I000035
    Figure PCTKR2019000616-appb-I000035
    [화학식 7] (7)
    Figure PCTKR2019000616-appb-I000036
    Figure PCTKR2019000616-appb-I000036
    [화학식 8] [Chemical Formula 8]
    Figure PCTKR2019000616-appb-I000037
    Figure PCTKR2019000616-appb-I000037
    상기 화학식 5 내지 8에서, In the above formulas 5 to 8,
    상기 화학식 5의 Z1 내지 Z3 함유환은 Y10 내지 Y12 중 어느 하나와 결합되며(단, Z1 내지 Z3 함유환이 Y9과 결합되는 것은 제외됨), The ring containing Z 1 to Z 3 in Formula 5 is bonded to any one of Y 10 to Y 12 (provided that the ring containing Z 1 to Z 3 is not bonded to Y 9 )
    상기 화학식 6의 Z1 내지 Z3 함유환은 Y9, Y11 내지 Y12 중 어느 하나와 결합되며(단, Z1 내지 Z3 함유환이 Y10과 결합되는 것은 제외됨), The ring containing Z 1 to Z 3 in Formula 6 is bonded to any one of Y 9 and Y 11 to Y 12 (provided that the ring containing Z 1 to Z 3 is not bonded to Y 10 )
    상기 화학식 7의 Z1 내지 Z3 함유환은 Y9, Y10 및 Y12 중 어느 하나와 결합되며(단, Z1 내지 Z3 함유환이 Y11과 결합되는 것은 제외됨), The Z 1 to Z 3 -containing ring of formula (7) is bonded to any one of Y 9 , Y 10 and Y 12 (provided that the Z 1 to Z 3 containing ring is not bonded to Y 11 )
    상기 화학식 8의 Z1 내지 Z3 함유환은 Y9 내지 Y11 중 어느 하나와 결합되며(단, Z1 내지 Z3 함유환이 Y12와 결합되는 것은 제외됨), The ring containing Z 1 to Z 3 in Formula 8 is bonded to any one of Y 9 to Y 11 (provided that the ring containing Z 1 to Z 3 is not bonded to Y 12 )
    X1, X2, Y1 내지 Y16, Z1 내지 Z3, Ar1, m, n, A, B, a 내지 d, R1 내지 R4는 각각 제1항에서 정의한 바와 같다.X 1 , X 2 , Y 1 to Y 16 , Z 1 to Z 3 , Ar 1 , m, n, A, B, a to d and R 1 to R 4 are as defined in claim 1, respectively.
  6. 제1항에 있어서,The method according to claim 1,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 9 내지 화학식 12 중 어느 하나로 표시되는 유기 전계 발광 소자:Wherein the compound represented by Formula 1 is represented by any one of the following Chemical Formulas 9 to 12:
    [화학식 9] [Chemical Formula 9]
    Figure PCTKR2019000616-appb-I000038
    Figure PCTKR2019000616-appb-I000038
    [화학식 10] [Chemical formula 10]
    Figure PCTKR2019000616-appb-I000039
    Figure PCTKR2019000616-appb-I000039
    [화학식 11] (11)
    Figure PCTKR2019000616-appb-I000040
    Figure PCTKR2019000616-appb-I000040
    [화학식 12] [Chemical Formula 12]
    Figure PCTKR2019000616-appb-I000041
    Figure PCTKR2019000616-appb-I000041
    상기 화학식 9 내지 12에서, In the above formulas (9) to (12)
    X1, X2, Y1 내지 Y16, Z1 내지 Z3, Ar1, m, n, A, B, a 내지 d, R1 내지 R4는 각각 제1항에서 정의한 바와 같다.X 1 , X 2 , Y 1 to Y 16 , Z 1 to Z 3 , Ar 1 , m, n, A, B, a to d and R 1 to R 4 are as defined in claim 1, respectively.
  7. 제1항에 있어서,The method according to claim 1,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 13 내지 17 중 어느 하나로 표시되는 유기 전계 발광 소자.Wherein the compound represented by the formula (1) is represented by any one of the following formulas (13) to (17).
    [화학식 13][Chemical Formula 13]
    Figure PCTKR2019000616-appb-I000042
    Figure PCTKR2019000616-appb-I000042
    [화학식 14][Chemical Formula 14]
    Figure PCTKR2019000616-appb-I000043
    Figure PCTKR2019000616-appb-I000043
    [화학식 15][Chemical Formula 15]
    Figure PCTKR2019000616-appb-I000044
    Figure PCTKR2019000616-appb-I000044
    [화학식 16][Chemical Formula 16]
    Figure PCTKR2019000616-appb-I000045
    Figure PCTKR2019000616-appb-I000045
    [화학식 17][Chemical Formula 17]
    Figure PCTKR2019000616-appb-I000046
    Figure PCTKR2019000616-appb-I000046
    상기 화학식 13 내지 17에서,In the above formulas 13 to 17,
    X1, X2, Z1 내지 Z3, Ar1, n, A, B는 각각 제1항에서 정의한 바와 같다.X 1 , X 2 , Z 1 to Z 3 , Ar 1 , n, A and B are as defined in claim 1, respectively.
  8. 제1항에 있어서,The method according to claim 1,
    상기 Z1 내지 Z3는 모두 N인 유기 전계 발광 소자.Wherein all of Z 1 to Z 3 are N.
  9. 제1항에 있어서,The method according to claim 1,
    상기 A 및 B는 서로 동일하거나 상이하며, 각각 독립적으로 하기 구조식으로 표시되는 치환체 군에서 선택되는 유기 전계 발광 소자.Wherein A and B are the same or different from each other and independently selected from the group of substituents represented by the following structural formulas.
    Figure PCTKR2019000616-appb-I000047
    Figure PCTKR2019000616-appb-I000047
    상기 화학식에서,In the above formulas,
    *은 상기 화학식 1에 결합되는 부위를 의미하고,* Represents a moiety bonded to Formula 1,
    E는 O, S, NR11, CR12R13, 및 SiR14R15로 구성된 군에서 선택되며, E is selected from the group consisting of O, S, NR 11 , CR 12 R 13 , and SiR 14 R 15 ,
    상기 R11 내지 R15는 서로 동일하거나 또는 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C6~C60의 아릴기 및 핵원자수 5 내지 60의 헤테로아릴기로 구성된 군에서 선택되고, A halogen atom, a cyano group, a nitro group, a C 1 to C 40 alkyl group, a C 6 to C 60 aryl group, and a substituted or unsubstituted alkyl group having 5 to 5 nucleus atoms, wherein R 11 to R 15 are the same or different and each independently represents hydrogen, deuterium, Lt; / RTI &gt; to 60, and &lt; RTI ID = 0.0 &gt;
    Ar11는 수소 또는 C6~C60의 아릴기이며, Ar 11 is hydrogen or a C 6 to C 60 aryl group,
    Ar2 및 Ar3는 각각 제1항에서 정의한 바와 같다.Ar &lt; 2 &gt; and Ar &lt; 3 &gt; are as defined in claim 1, respectively.
  10. 제1항에 있어서,The method according to claim 1,
    상기 Ar1는 하기 구조식으로 표시된 치환체 군에서 선택되는 유기 전계 발광 소자.Wherein Ar &lt; 1 &gt; is selected from the group of substituents represented by the following structural formula.
    Figure PCTKR2019000616-appb-I000048
    Figure PCTKR2019000616-appb-I000048
  11. 제1항에 있어서,The method according to claim 1,
    상기 Ar1, A 및 B 중 적어도 하나는, 1개 이상의 중수소(D)로 치환된 C6~C60의 아릴기 또는 핵원자수 5 내지 60개의 헤테로아릴기를 포함하는 유기 전계 발광 소자. At least one of Ar 1 , A, and B includes a C 6 to C 60 aryl group substituted with at least one deuterium (D), or a heteroaryl group having 5 to 60 nucleus atoms.
  12. 제1항에 있어서,The method according to claim 1,
    상기 R1 내지 R5 및 R8는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기 및 C6~C60의 아릴기로 이루어진 군에서 선택되고,R 1 to R 5 and R 8 are the same or different and each independently represents hydrogen, deuterium, halogen, cyano, nitro, C 1 to C 40 alkyl, C 2 to C 40 alkenyl, C 2 An alkynyl group of C 40 to C 40 , a cycloalkyl group of C 3 to C 40 , and an aryl group of C 6 to C 60 ,
    상기 R6 및 R7은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, C6~C60의 아릴기 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택되거나, 혹은 인접한 기와 결합하여 축합 고리를 형성하는 유기 전계 발광 소자.Wherein R 6 and R 7 are the same or different, each independently represent hydrogen, deuterium, a halogen, a cyano group, a nitro group, C 1 ~ alkenyl group of the C 40 alkyl group, C 2 ~ C 40 of, C 2 ~ C 40 the alkynyl group, the organic to the groups bonded C 3 ~ C 40 cycloalkyl group, C 6 ~ C 60 aryl group and a nuclear atoms selected from the group consisting of a heteroaryl group of from 5 to 60 or, or adjacent to form a condensed ring field Light emitting element.
  13. 제1항에 있어서, The method according to claim 1,
    상기 적어도 1종의 호스트는, 카바졸 모이어티를 갖는 화합물을 더 포함하는 유기 전계 발광 소자. Wherein the at least one host further comprises a compound having a carbazole moiety.
  14. 제1항에 있어서, The method according to claim 1,
    상기 도펀트는 인광 도펀트인 유기 전계 발광 소자. Wherein the dopant is a phosphorescent dopant.
  15. 제1항에 있어서,The method according to claim 1,
    상기 유기 전계 발광 소자는, Wherein the organic electroluminescent device comprises:
    상기 양극과 상기 발광층 사이에 배치된 정공 수송 영역; 및 A hole transporting region disposed between the anode and the light emitting layer; And
    상기 발광층과 상기 음극 사이에 배치된 전자 수송 영역 중 적어도 하나를 더 포함하는 유기 전계 발광 소자. And an electron transporting region disposed between the light emitting layer and the cathode.
PCT/KR2019/000616 2018-01-16 2019-01-15 Organic electroluminescent device WO2019143112A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0005765 2018-01-16
KR20180005765 2018-01-16
KR10-2018-0165054 2018-12-19
KR1020180165054A KR20190087279A (en) 2018-01-16 2018-12-19 Organic electroluminescent device

Publications (1)

Publication Number Publication Date
WO2019143112A1 true WO2019143112A1 (en) 2019-07-25

Family

ID=67302262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000616 WO2019143112A1 (en) 2018-01-16 2019-01-15 Organic electroluminescent device

Country Status (1)

Country Link
WO (1) WO2019143112A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072596A1 (en) * 2006-12-13 2008-06-19 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
WO2013102992A1 (en) * 2012-01-05 2013-07-11 出光興産株式会社 Material for organic electroluminescence element and element using same
KR20160028524A (en) * 2014-05-05 2016-03-11 메르크 파텐트 게엠베하 Materials for organic light emitting devices
KR20170053590A (en) * 2015-11-06 2017-05-16 희성소재 (주) Hetero-cyclic compound and organic light emitting device using the same
KR20170067671A (en) * 2015-12-08 2017-06-16 희성소재 (주) Hetero-cyclic compound and organic light emitting device using the same
KR20170113321A (en) * 2016-03-28 2017-10-12 주식회사 엘지화학 Novel compound and organic light emitting device comprising the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072596A1 (en) * 2006-12-13 2008-06-19 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
WO2013102992A1 (en) * 2012-01-05 2013-07-11 出光興産株式会社 Material for organic electroluminescence element and element using same
KR20160028524A (en) * 2014-05-05 2016-03-11 메르크 파텐트 게엠베하 Materials for organic light emitting devices
KR20170053590A (en) * 2015-11-06 2017-05-16 희성소재 (주) Hetero-cyclic compound and organic light emitting device using the same
KR20170067671A (en) * 2015-12-08 2017-06-16 희성소재 (주) Hetero-cyclic compound and organic light emitting device using the same
KR20170113321A (en) * 2016-03-28 2017-10-12 주식회사 엘지화학 Novel compound and organic light emitting device comprising the same

Similar Documents

Publication Publication Date Title
WO2018038463A1 (en) Organic compound and organic electroluminescent device comprising same
WO2014081168A1 (en) Fluoranthene compound, and organic electronic device comprising same
WO2020251180A1 (en) Tertiary amine derivative and organic electroluminescent device comprising same
WO2010131930A2 (en) Compound for organic photoelectric device and organic photoelectric device comprising same
WO2018230969A1 (en) Organic compound and organic electroluminescent element comprising same
WO2013089424A1 (en) Compound for an organic optoelectric device, organic light-emitting diode including same, and display device including the organic light-emitting diode
WO2016108596A2 (en) Novel compound and organic light-emitting device comprising same
WO2015053524A1 (en) Organic compound and organic electroluminescent device including same
WO2019009591A1 (en) Organic compound and organic electroluminescent device using same
WO2021230451A1 (en) Organic electroluminescent device
WO2018174678A1 (en) Heterocyclic compound and organic light emitting element comprising same
WO2020122327A1 (en) Organic electroluminescent element and spiro compound for organic electroluminescent element
WO2021033970A1 (en) Compound for organic electronic element, organic electronic element using same, and electronic device thereof
WO2020045822A1 (en) Organic compound and organic electroluminescent diode using same
WO2011081449A2 (en) Triphenylene-based compound and organic electro-luminescence device including same
WO2010128745A1 (en) Compound for an organic photoelectric element, and an organic photoelectric element comprising the same
WO2015099453A1 (en) Organic light-emitting compound and organic light-emitting diode device using same
WO2015076601A1 (en) Novel light emission compound and organic light emitting device comprising same
WO2022108222A1 (en) Organic light-emitting material and device which comprise dibenzo derivative
WO2020256431A1 (en) Organic electroluminescent element
WO2021054640A1 (en) Organic electroluminescent device
WO2021162293A1 (en) Organic light-emitting device
WO2021177634A2 (en) Compound for organic electronic element, organic electronic element using same and electronic device thereof
WO2021132800A1 (en) Organic electroluminescent device
WO2020262884A1 (en) Organic electroluminescent device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19741555

Country of ref document: EP

Kind code of ref document: A1