WO2019143085A1 - Black polyimide film and manufacturing method therefor - Google Patents

Black polyimide film and manufacturing method therefor Download PDF

Info

Publication number
WO2019143085A1
WO2019143085A1 PCT/KR2019/000534 KR2019000534W WO2019143085A1 WO 2019143085 A1 WO2019143085 A1 WO 2019143085A1 KR 2019000534 W KR2019000534 W KR 2019000534W WO 2019143085 A1 WO2019143085 A1 WO 2019143085A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide film
average particle
particle diameter
weight
shielding filler
Prior art date
Application number
PCT/KR2019/000534
Other languages
French (fr)
Korean (ko)
Inventor
김기훈
이길남
최정열
Original Assignee
에스케이씨코오롱피아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨코오롱피아이 주식회사 filed Critical 에스케이씨코오롱피아이 주식회사
Priority to CN201980007464.6A priority Critical patent/CN111566151B/en
Publication of WO2019143085A1 publication Critical patent/WO2019143085A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/18Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D77/00Packages formed by enclosing articles or materials in preformed containers, e.g. boxes, cartons, sacks or bags
    • B65D77/04Articles or materials enclosed in two or more containers disposed one within another
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/02Devices using other cold materials; Devices using cold-storage bodies using ice, e.g. ice-boxes

Definitions

  • the present invention relates to a black polyimide film and a method for producing the same.
  • polyimide (PI) resin refers to a high heat-resistant resin prepared by preparing a polyamic acid derivative by combining an aromatic dianhydride with an aromatic diamine or an aromatic diisocyanate in solution and then dehydrating it by ring-closure dehydration at a high temperature.
  • the polyimide resin may include aromatic dianhydride such as pyromellitic dianhydride (PMDA) or biphenyltetracarboxylic dianhydride (BPDA), 4,4'-oxydianiline (ODA), 3,4'- An aromatic diamine component such as oxydianiline, p-phenylenediamine (p-PDA), m-phenylenediamine (m-PDA), methylenedianiline (MDA), and bisaminophenylhexafluoropropane (HFDA) Is a general method.
  • aromatic dianhydride such as pyromellitic dianhydride (PMDA) or biphenyltetracarboxylic dianhydride (BPDA), 4,4'-oxydianiline (ODA), 3,4'-
  • An aromatic diamine component such as oxydianiline, p-phenylenediamine (p-PDA), m-phenylenediamine (m-PDA), methylenediani
  • Polyimide resin is an insoluble and non-fusible ultra-high temperature resistant resin. It has excellent heat resistant oxidizing property, heat resistance property, radiation resistance property, low temperature property, chemical resistance and so on. It is a high heat resistant material such as automobile material, , Insulating films, semiconductors, and electrode protective films for TFT-LCDs.
  • the coverlay is for protecting electronic parts such as a printed wiring board and a lead frame of a semiconductor integrated circuit.
  • the coverlay not only requires a certain level of insulation, but also requires mechanical properties for thinning and slimness. In recent years, Optical properties such as shielding are also required to obtain security and visual effects on the mounting components.
  • the light transmittance of the polyimide film is lowered to improve the shielding property, but the dielectric constant tends to increase due to the filler.
  • the shielding property is improved as the content of the filled filler is increased, the insulating property of the polyimide film may be lowered and the film may not be used for electronic equipment.
  • the mechanical properties of the polyimide film may deteriorate or the filming process itself may become impossible.
  • the present invention provides a black polyimide film. Specifically, the polyimide film is coated with 1 to 5 parts by weight of a first shielding filler and 0.3 to 1 part by weight of a second shielding filler based on 100 parts by weight of a polyimide resin It is an object of the present invention to provide a black polyimide film which can reduce the light transmittance and improve the shielding property even though a small amount of the filler is contained therein and can improve the modulus and ensure the mechanical stability while minimizing the dielectric constant.
  • the present invention provides a polyimide resin composition comprising 100 parts by weight of a polyimide resin
  • a second shielding filler having an average particle diameter in a horizontal direction of 5 to 15 ⁇ ⁇ and an average particle diameter in a vertical direction of 1 to 10 nm
  • a modulus measured in at least one direction of the machine direction (MD) and the transverse direction (TD) of the polyimide film is not less than 3 GPa And a polyimide film having a thickness of 8.0 m or less.
  • the polyimide film according to the present invention comprises 100 parts by weight of a polyimide resin
  • a second shielding filler having an average particle diameter in a horizontal direction of 5 to 15 ⁇ ⁇ and an average particle diameter in a vertical direction of 1 to 10 nm
  • the material of the first shielding filler may be a colored filler material to secure the shielding property of the polyimide film.
  • the first shielding filler may be a spherical filler having a sphericity of 0.8 or more, In this case, the first shielding filler may be carbon black.
  • the spherical filler means that the shape of the filler is spherical or spherical, and the ratio of the average particle diameter to the average diameter is close to 1 or 1, that is, the sphericity (the diameter of the filler particles / the particle diameter of the filler particles) Can be defined.
  • the content or the average particle diameter of the first shielding filler is in excess of the above range, the dispersity becomes low when mixed with the polyamic acid in the manufacturing process, the peeler protrudes from the film surface, The dielectric constant of the mid-film may rise, which is not preferable.
  • the material of the second shielding filler is a material for securing the shielding property of the polyimide film.
  • the material of the second shielding filler is a plate-like filler having an average particle diameter in the horizontal direction of 5 to 15 ⁇ m and an average particle diameter in the vertical direction of 1 to 10 nm
  • the second shielding filler may be a graphene.
  • the plate-like filler is a filler in which the filler shape is plate or scaly, and the average thickness is sufficiently smaller than the average particle size or the average short diameter of the surface portion, that is, the shape of the filler is spherical (the particle size or the small diameter in the vertical direction of the filler particles / The grain size or the short diameter in the horizontal direction) is 0.1 or less.
  • Such a plate-like filler may exhibit a property of blocking light more effectively in accordance with the orientation or arrangement of filler particles in the film when the polyimide film is formed, so that even when a small amount of filler material is added, the light transmittance of the polyimide film can be significantly lowered .
  • the second shielding filler has a modulus of at least 3 GPa measured in at least one direction of MD and TD, depending on the arrangement or orientation, and thus the mechanical stability is sufficiently secured.
  • the modulus measured by MD The elastic modulus can be increased to 3 GPa or more.
  • the content of the first shielding filler when the content of the first shielding filler, the average grain size in the horizontal direction or the vertical direction is less than the above-mentioned range, it is difficult to secure a desired degree of shielding.
  • the content of the second shielding filler when the content of the second shielding filler, the average particle size in the horizontal direction or the vertical direction exceeds the above-mentioned range, the dispersion degree when mixed with the polyamic acid in the manufacturing process is low as in the case of the first shielding filler It is difficult to form a film due to deterioration of mechanical properties, and even if a film is produced, a filler may protrude from the surface of the film, resulting in poor appearance.
  • the dielectric constant of the polyimide film may be abruptly increased depending on the orientation or arrangement of the filler particles in the film at the time of film formation of the polyimide film, so that the film may not function as an insulating film.
  • the polyimide film may have a dielectric constant of 5 or less measured at a frequency of 1.1 GHz.
  • the content ratio of the first shielding filler to the content of the second shielding filler may be 100% to 1600% based on the weight of the second shielding filler.
  • the content of the first shielding filler The content ratio may be from 200% to 1,000% by weight, and more specifically, from 300% to 800% by weight.
  • the product when the polyimide film is applied to a coverlay, an insulating film, a semiconductor or the like, the product can be made slimmer, the aesthetic property can be improved, and the inner shape and the charging parts can be shielded from the external view It is useful for security.
  • the polyimide film of the present invention is obtained from a solution of polyamic acid which is a precursor of polyimide.
  • the polyamic acid solution may be derived from a dianhydride monomer and a diamine monomer, wherein the dianhydride monomer is selected from the group consisting of pyromellitic dianhydride (PMDA), biphenyltetracarboxylic dianhydride (BPDA) (ODPA), benzophenone tetracarboxylic dianhydride (BTDA), and the like, but it is not limited thereto.
  • PMDA pyromellitic dianhydride
  • BPDA biphenyltetracarboxylic dianhydride
  • ODPA benzophenone tetracarboxylic dianhydride
  • BTDA benzophenone tetracarboxylic dianhydride
  • the diamine monomer may be at least one selected from the group consisting of 1,4-phenylenediamine (PPD), 4,4'-oxydianiline (ODA), 3,4'-oxydianiline, 2,2- (TPE-R) selected from the group consisting of 1-aminophenoxy) phenyl] propane (BAPP), 4,4'-methylene dianiline (MDA) and 1,3- But is not limited to this.
  • the polyamic acid solution is prepared by dissolving a monomer compound in which an aromatic diamine monomer and an aromatic dianhydride monomer are mixed so as to have a substantially equimolar amount in an organic solvent, and mixing the aromatic dianhydride monomer and the aromatic diamine And stirring until the polymerization of the monomers is completed.
  • the polyamic acid solution usually has a solid content of 5 to 35% by weight, preferably 10 to 30% by weight.
  • the polyamic acid solution obtains an appropriate molecular weight and solution viscosity.
  • the solvent for synthesizing the polyamic acid solution is not particularly limited, and any solvent which can dissolve the polyamic acid can be used, but an amide solvent is preferable.
  • the solvent may be an organic polar solvent and may be an aprotic polar solvent, for example, N, N'-dimethylformamide (DMF), N, N May be at least one selected from the group consisting of N, N'-dimethylacetamide, N-methylpyrrolidone (NMP), gammabutyrolactone (GBL), Diglyme, Or a combination of two or more.
  • NMP N-methylpyrrolidone
  • GBL gammabutyrolactone
  • Diglyme Or a combination of two or more.
  • N, N-dimethylformamide and N, N-dimethylacetamide may be particularly preferably used as the solvent.
  • the first shielding filler and the second shielding filler can control the particle diameter using a bead miller.
  • the filler having a relatively low particle diameter dispersion is mixed and dispersed with the polyamic acid solution, To keep the light transmittance uniform throughout the polyimide film as a whole, thereby further reducing the light transmittance.
  • a dispersant, a thickener, and the like may be used within a range that does not affect film physical properties.
  • the catalyst may be further added to the polyamic acid solution, the first shielding filler, and the second shielding filler, and then applied to the support.
  • a dehydration catalyst composed of an anhydrous acid such as acetic anhydride and tertiary amines such as isoquinoline, p-picoline and pyridine, and a mixture of anhydrous acid / amines or an anhydride / amine / Can be used.
  • the amount of anhydrous acid can be calculated in terms of the molar ratio of the o-carboxylic amide functional group in the polyamic acid solution and can be used in the range of 1.0 to 5.0 moles.
  • -Carboxylic amide group and may be specifically added in an amount of 0.2 to 3.0 mol.
  • the step of heat-treating the polyamic acid solution coated on the support to gelation may have a gelling temperature of 100 to 250 ° C.
  • a glass plate As the support, a glass plate, an aluminum foil, a circulating stainless belt, a stainless steel drum, or the like can be used.
  • the treatment time required for gelation may be 5 to 30 minutes, but is not limited thereto, and may vary depending on the gelation temperature, the type of support, the amount of polyamic acid solution applied, and the mixing conditions of the catalyst.
  • the gelled film is separated from the support and then heat-treated to complete drying and imidization.
  • the heat treatment temperature may be 100 to 500 ⁇ ⁇ , and the heat treatment time may be 1 to 30 minutes.
  • the gelled film can be heat-treated by being fixed to a supporting base such as a pin type frame or a clip type which can be fixed at the time of heat treatment.
  • the air can be supplied at a pressure lower than the pressure used at the time of, for example, 10 to 40 mm H 2 O.
  • the amount discharged from the T-die and the speed of the endless belt may satisfy the following equation, for example, the amount discharged from the T-die may be 150 kg / hr to 300 kg / hr, Lt; / RTI >
  • the polyimide film according to the present invention may have a thickness of 7.5 ⁇ ⁇ or less, specifically 3 to 7.5 ⁇ ⁇ , more specifically, 5 to 7.5 ⁇ ⁇ .
  • the heat treatment temperature of the yellow polyimide film Lt; 0 > C it is preferable that the heat treatment temperature of the yellow polyimide film Lt; 0 > C.
  • the imidized film may be subjected to a cooling treatment at 20 to 30 ⁇ ⁇ to form a film.
  • the present invention can also provide a coverlay including the polyimide film, and can provide an electronic device including the coverlay.
  • DMF dimethylformamide
  • the solution was stirred for 1 hour while maintaining the temperature, and the polyamic acid solution having a final viscosity of 260,000 cp was polymerized.
  • the film was peeled off from the SUS plate, fixed to the pin frame, and transferred to the hot tenter.
  • the film was heated in a hot tenter from 200 ° C to 600 ° C, cooled at 25 ° C and separated from the pin frame to obtain 100 parts by weight of polyimide resin, 3 parts by weight of carbon black as the first shielding filler and 1 part by weight of carbon black as the second shielding filler
  • a polyimide film having a thickness of 7.5 mu m including graphene in a weight part was prepared.
  • Carbon black having an average particle diameter of 1 ⁇ ⁇ was mixed in place of carbon black having an average particle diameter of 0.5 ⁇ ⁇ in Production Example 2, and graphene having an average particle diameter in the horizontal direction of 10 ⁇ ⁇ and an average particle diameter in the vertical direction of 2 nm was used instead of carbon black in the horizontal direction was prepared in the same manner as in Example 1, except that graphene having an average particle diameter of 15 m and an average particle diameter of 2 nm with respect to the vertical direction was mixed.
  • Carbon black having an average particle diameter of 0.1 ⁇ ⁇ was mixed in place of carbon black having an average particle diameter of 0.5 ⁇ ⁇ in Production Example 2 to prepare a carbon black having an average particle diameter of 10 ⁇ ⁇ in the horizontal direction and an average particle diameter of 2 nm in the vertical direction, was prepared in the same manner as in Example 1 except that graphene having an average particle diameter of 5 m and an average particle diameter of 2 nm in the vertical direction was mixed.
  • a polyimide film was produced in the same manner as in Example 1, except that 4 g of carbon black was singly mixed in Production Example 2 to contain 4 parts by weight of carbon black in the polyimide film.
  • a polyimide film was produced in the same manner as in Example 1, except that 2 g of carbon black and 2 g of graphene were mixed in Production Example 2 to contain 2 parts by weight of carbon black and 2 parts by weight of graphene in the polyimide film .
  • a polyimide film was produced in the same manner as in Example 1, except that 1 g of carbon black and 3 g of graphene were mixed in Production Example 2 to include 1 part by weight of carbon black and 3 parts by weight of graphene in the polyimide film .
  • a polyimide film was prepared in the same manner as in Example 1, except that 3.9 g of carbon black and 0.1 g of graphene were mixed in Production Example 2 to contain 3.9 parts by weight of carbon black and 0.1 part by weight of graphene in the polyimide film .
  • a polyimide film was produced in the same manner as in Example 1 except that 0.5 g of carbon black and 3.5 g of graphene were mixed in Production Example 2 to contain 0.5 part by weight of carbon black and 3.5 parts by weight of graphene in the polyimide film .
  • a polyimide film was prepared in the same manner as in Example 1, except that 8 g of carbon black and 1 g of graphene were mixed in Production Example 2 to include 8 parts by weight of carbon black and 1 part by weight of graphene in the polyimide film .
  • a polyimide film was produced in the same manner as in Example 1, except that 0.5 g of carbon black and 0.1 g of graphene were mixed in Production Example 2 to contain 0.5 part by weight of carbon black and 0.1 part by weight of graphene in the polyimide film .
  • Carbon black having an average particle diameter of 2 ⁇ ⁇ was mixed in place of carbon black having an average particle diameter of 0.5 ⁇ ⁇ in Production Example 2, and graphene having an average particle diameter in the horizontal direction of 10 ⁇ ⁇ and an average particle diameter in the vertical direction of 2 nm was used instead of carbon black in the horizontal direction was prepared in the same manner as in Example 1 except that graphene having an average particle diameter of 20 mu m and an average particle diameter of 2 nm with respect to the vertical direction was mixed.
  • Carbon black having an average particle diameter of 0.01 ⁇ ⁇ was mixed in place of carbon black having an average particle diameter of 0.5 ⁇ ⁇ in Production Example 2 to prepare a carbon black having an average particle diameter of 10 ⁇ ⁇ in the horizontal direction and an average particle diameter of 2 nm in the vertical direction, was prepared in the same manner as in Example 1, except that graphene having an average particle diameter of 3 m and an average particle diameter of 2 nm with respect to the vertical direction was mixed.
  • the polyimide films prepared in each of Examples 1 to 7 and Comparative Examples 1 to 9 were measured for light transmittance using a light transmittance measuring instrument (Model: ColorQuesetXE, manufactured by Hunter Lab)
  • the light transmittance was measured by the ASTM D1003 method in the region, and the results are shown in Table 1 below.
  • the first shielding filler The second shielding filler Light transmittance (%) Content (parts by weight) Particle size ( ⁇ ) Content (parts by weight) Horizontal grain size ( ⁇ ) Vertical grain size (nm)
  • Example 1 3 0.5 One 10 2 5.4 Example 2 3.5 0.5 0.5 10 2 6.0 Example 3 3.7 0.5 0.3 10 2 6.5 Example 4 5 0.5 One 10 2 5.0 Example 5 One 0.5 0.3 10 2 6.9 Example 6 3 One One 15 2 6.5 Example 7 3 0.1 One 5 2 6.8 Comparative Example 1 4 0.5 0 - - 7.3 Comparative Example 2 2 0.5 2 10 2 4.1 Comparative Example 3 One 0.5 3 10 2 3.3 Comparative Example 4 3.9 0.5 0.1 10 2 7.1 Comparative Example 5 0.5 0.5 3.5 10 2 7.1 Comparative Example 6 8 0.5 One 10 2 3.8 Comparative Example 7 0.5 0.5 0.1 10 2 17.0 Comparative Example 8 3 2 One 20 2 13.2 Comparative Example 9 3 0.01 One 3 2 12.5
  • the first shielding filler having an average particle diameter of 0.1 to 1 ⁇ ⁇ in an amount of 1 to 5 parts by weight and the average particle diameter in the horizontal direction of 0.3 to 1 part by weight 5 to 15 ⁇ ⁇ and the second shielding filler having an average particle diameter of 1 to 10 nm with respect to the vertical direction is included, it can be confirmed that the light transmittance is lower than that of Comparative Example 1 which does not include the second shielding filler.
  • the polyimide films of Comparative Examples 4 and 5 and Comparative Examples 7 to 9 have a higher light transmittance than those of Examples 1 to 7, indicating that the polyimide film of the present invention has excellent shielding properties .
  • the content of at least one of the first shielding filler and the second shielding filler is out of the range of the present invention as in Comparative Examples 4 and 5 and Comparative Examples 7 to 9, or the content of the first shielding filler and the second shielding filler It is understood that the shielding property of the polyimide film is significantly lowered when the particle diameter of the polyimide film is outside the range of the present invention.
  • the first shielding filler The second shielding filler Modulus (GPa) Content (parts by weight) Particle size ( ⁇ ) Content (parts by weight) Horizontal grain size ( ⁇ ) Vertical grain size (nm) MD TD
  • Example 1 0.5 One 10 2 4.2 3.8 Example 2 3.5 0.5 0.5 10 2 3.5 2.9
  • Example 3 3.7 0.5 0.3 10 2 3.6 2.95
  • Example 4 5 0.5 One 10 2 4.3 3.9
  • Example 5 One 0.5 0.3 10 2 3.5 2.8
  • Example 6 3 One One 15 2 3.8 2.9
  • Example 7 3 0.1 One 5 2 3.7 3.1 Comparative Example 1 4 0.5 0 - - 2.8 2.8 Comparative Example 2 2 0.5 2 10 2 3.7 3.1 Comparative Example 3 One 0.5 3 10 2 4.3 3.9 Comparative Example 4 3.9 0.5 0.1 10 2 2.95 2.9 Comparative Example 5 0.5 0.5 3.5 10 2 4.5 3.8 Comparative Example 6 8 0.5 One 10 2 3.6 2.8 Comparative Example 7 0.5 0.5
  • the first shielding filler having an average particle size of 0.1 to 1 ⁇ ⁇ in an amount of 1 to 5 parts by weight and the average particle size in the horizontal direction of 0.3 to 1 part by weight 5 to 15 mu m and an average particle diameter in the vertical direction of 1 to 10 nm, it can be confirmed that the modulus measured by MD is not less than 3 GPa, unlike Comparative Example 1, which does not include the second shielding filler .
  • the polyimide films of Comparative Example 4 and Comparative Examples 7 to 9 had a modulus in the MD direction of less than 3 Gpa, which was low in Examples 1 to 7. This indicates that the mechanical stability of the polyimide film according to the present invention .
  • the dielectric constant of each of the polyimide films prepared in Examples 1 to 7 and Comparative Examples 1 to 9 was measured at a frequency of 1.1 GHz using an SPDR measuring device manufactured by Keysight, The results are shown in Table 3 below.
  • the first shielding filler The second shielding filler
  • Example 1 3 0.5 One 10 2 3.7 Example 2 3.5 0.5 0.5 10 2 3.6
  • Example 3 3.7 0.5 0.3 10 2 3.5
  • Example 4 5 0.5 One 10 2 4.2
  • Example 5 One 0.5 0.3 10 2 3.3
  • Example 6 3 One One 15 2 4.3
  • Comparative Example 1 4 0.5 0 - - 3.4 Comparative Example 2 2 0.5 2 10.8 Comparative Example 3
  • the object of the present invention is to provide a black polyimide film, and more particularly, to a polyimide film which comprises 1 to 5 parts by weight of a first shielding filler and 0.3 to 1 part by weight of a second shielding filler
  • the light transmittance is reduced to improve the shielding property, and the modulus can be improved to secure the mechanical stability and to minimize the dielectric constant, even though a small amount of filler is contained.

Abstract

The present invention provides a polyimide film comprising: 100 parts by weight of a polyimide resin; 1-5 parts by weight of a first shielding filler having an average diameter of 0.1-1 μm; and 0.3-1 parts by weight of a second shielding filler having an average diameter in a horizontal direction, of 5-15 μm, and an average diameter in a vertical direction, of 1-10 nm, wherein the light transmittance in the visible region is 7% or less, the modulus of the polyimide film, measured in the machine direction (MD) and/or the transverse direction (TD), is 3 GPa or more, and the thickness of the polyimide film is 8.0 μm or less.

Description

블랙 폴리이미드 필름 및 이의 제조방법Black polyimide film and manufacturing method thereof
본 발명은 블랙 폴리이미드 필름 및 이의 제조방법에 관한 것이다.The present invention relates to a black polyimide film and a method for producing the same.
일반적으로 폴리이미드(PI) 수지라 함은 방향족 디안하이드라이드와 방향족 디아민 또는 방향족 디이소시아네이트를 용액중합하여 폴리아믹산 유도체를 제조한 후, 고온에서 폐환탈수시켜 이미드화하여 제조되는 고내열 수지를 일컫는다.Generally, polyimide (PI) resin refers to a high heat-resistant resin prepared by preparing a polyamic acid derivative by combining an aromatic dianhydride with an aromatic diamine or an aromatic diisocyanate in solution and then dehydrating it by ring-closure dehydration at a high temperature.
폴리이미드 수지는 피로멜리틱디안하이드라이드(PMDA) 또는 비페닐테트라카르복실릭디안하이드라이드(BPDA) 등의 방향족 디안하이드라이드 및 4,4'-옥시디아닐린(ODA), 3,4'-옥시디아닐린, p-페닐렌디아민(p-PDA), m-페닐렌디아민(m-PDA), 메틸렌디아닐린(MDA), 비스아미노페닐헥사플루오로프로판(HFDA) 등의 방향족 디아민 성분을 중합함으로써 제조하는 것이 일반적인 방법이다.The polyimide resin may include aromatic dianhydride such as pyromellitic dianhydride (PMDA) or biphenyltetracarboxylic dianhydride (BPDA), 4,4'-oxydianiline (ODA), 3,4'- An aromatic diamine component such as oxydianiline, p-phenylenediamine (p-PDA), m-phenylenediamine (m-PDA), methylenedianiline (MDA), and bisaminophenylhexafluoropropane (HFDA) Is a general method.
폴리이미드 수지는 불용, 불융의 초고내열성 수지로서 내열산화성, 내열특성, 내방사선성, 저온특성, 내약품성 등에 우수한 특성을 가지고 있어, 자동차 재료, 항공소재, 우주선 소재 등의 내열 첨단소재 및 절연코팅제, 절연막, 반도체, TFT-LCD의 전극 보호막 등 전자재료에 광범위한 분야에 사용되고 있다.Polyimide resin is an insoluble and non-fusible ultra-high temperature resistant resin. It has excellent heat resistant oxidizing property, heat resistance property, radiation resistance property, low temperature property, chemical resistance and so on. It is a high heat resistant material such as automobile material, , Insulating films, semiconductors, and electrode protective films for TFT-LCDs.
최근에는 휴대용 전자기기 및 통신기기에 커버레이(coverlay)로서 널리 사용되고 있다.Recently, it is widely used as a coverlay in portable electronic devices and communication devices.
커버레이는 인쇄 배선 기판, 반도체 집적 회로의 리드프레임 등의 전자 부품을 보호하기 위한 것으로, 일정 수준 이상의 절연성이 확보되어야 함은 물론, 박막화 및 슬림화를 위한 기계적 물성이 요구되며, 최근에는 전자 부품이나 실장 부품에 대한 보안 및 시각적인 효과를 얻기 위해 차폐성과 같은 광학 특성도 요구되고 있다.The coverlay is for protecting electronic parts such as a printed wiring board and a lead frame of a semiconductor integrated circuit. The coverlay not only requires a certain level of insulation, but also requires mechanical properties for thinning and slimness. In recent years, Optical properties such as shielding are also required to obtain security and visual effects on the mounting components.
한편, 상기에서 언급한 폴리이미드 수지에 대해, 차폐성과 같은 광학 특성을 확보하기 위한 방법으로 전구체 용액 중에 카본블랙(carbon black) 등의 유색 필러 물질을 분산시킨 후, 이를 이용하여 필름을 형성하는 방법이 알려져 있다.On the other hand, for the above-mentioned polyimide resin, there is a method for securing optical characteristics such as shielding property by dispersing a colored filler material such as carbon black in a precursor solution, Is known.
그러나, 필름 내에 상기와 같은 필러의 함량이 증가할 수록 폴리이미드 필름의 광투과율이 낮아져 차폐성이 향상될 수 있으나, 필러로 인해 유전율이 증가하는 경향이 있다.However, as the content of the filler increases in the film, the light transmittance of the polyimide film is lowered to improve the shielding property, but the dielectric constant tends to increase due to the filler.
즉, 이러한 방법에 의해 제조된 폴리이미드 필름의 경우에, 투입된 필러의 함량이 증가할수록 차폐성은 향상될지라도, 폴리이미드 필름의 절연성이 저하되어 전자기기에 사용할 수 없는 경우가 발생할 수 있다.That is, in the case of the polyimide film produced by this method, although the shielding property is improved as the content of the filled filler is increased, the insulating property of the polyimide film may be lowered and the film may not be used for electronic equipment.
뿐만 아니라, 필름 내에 필러의 함량이 증가함에 따라, 폴리이미드 필름의 기계적 물성이 저하되거나, 필름화 공정 자체가 불가능한 문제도 발생할 수 있다.In addition, as the content of the filler in the film increases, the mechanical properties of the polyimide film may deteriorate or the filming process itself may become impossible.
따라서, 이러한 문제점을 근본적으로 해결할 수 있는 기술에 대한 필요성이 높은 실정이다.Therefore, there is a high need for a technique capable of fundamentally solving such problems.
본 발명의 목적은 블랙 폴리이미드 필름을 제공하는 것이며, 구체적으로, 상기 폴리이미드 필름에 폴리이미드 수지 100중량부를 기준으로 1 내지 5중량부의 제1 차폐성 필러 및 0.3 내지 1중량부의 제2 차폐성 필러를 포함하도록 구성함으로써, 소량의 필러를 포함함에도 불구하고 광투과율을 감소시켜서 차폐성을 향상시키고, 모듈러스를 향상시켜 기계적 안정성을 확보하는 동시에 유전율을 최소화할 수 있는 블랙 폴리이미드 필름을 제공하는 것이다.The present invention provides a black polyimide film. Specifically, the polyimide film is coated with 1 to 5 parts by weight of a first shielding filler and 0.3 to 1 part by weight of a second shielding filler based on 100 parts by weight of a polyimide resin It is an object of the present invention to provide a black polyimide film which can reduce the light transmittance and improve the shielding property even though a small amount of the filler is contained therein and can improve the modulus and ensure the mechanical stability while minimizing the dielectric constant.
이러한 목적을 달성하기 위해 본 발명은, 100중량부의 폴리이미드 수지;To achieve this object, the present invention provides a polyimide resin composition comprising 100 parts by weight of a polyimide resin;
1 내지 5중량부의 평균 입경이 0.1 내지 1㎛인 제1 차폐성 필러; 및1 to 5 parts by weight of a first shielding filler having an average particle diameter of 0.1 to 1 占 퐉; And
0.3 내지 1중량부의 수평 방향에 대한 평균 입경이 5 내지 15㎛이고, 수직 방향에 대한 평균 입경이 1 내지 10nm인 제2 차폐성 필러를 포함하고,0.3 to 1 part by weight of a second shielding filler having an average particle diameter in a horizontal direction of 5 to 15 占 퐉 and an average particle diameter in a vertical direction of 1 to 10 nm,
가시광선 영역에서의 광투과율이 7% 이하이고, 폴리이미드 필름의 기계반송방향(machine direction; MD) 및 폭방향(transverse direction; TD) 중 적어도 하나의 방향에서 측정한 모듈러스(modulus)가 3GPa 이상이고, 폴리이미드 필름의 두께가 8.0㎛ 이하인 폴리이미드 필름을 제공한다.A modulus measured in at least one direction of the machine direction (MD) and the transverse direction (TD) of the polyimide film is not less than 3 GPa And a polyimide film having a thickness of 8.0 m or less.
본 발명에 따른 폴리이미드 필름의 경우, 소망하는 정도 이하의 광투과율을 가지면서, 기계적 안정성이 저하되지 않고, 동시에 소망하는 정도 이하의 유전율을 확보할 수 있는 바, 휴대용 전자기기 및 통신기기에 커버레이로서 바람직하게 활용될 수 있다.In the case of the polyimide film according to the present invention, it is possible to secure a dielectric constant of not more than a desired degree without decreasing the mechanical stability while having a light transmittance of not more than a desired degree, Ray can be preferably utilized.
이하에서는 본 발명에 따른 "폴리이미드 필름" 및 "폴리이미드 필름의 제조 방법" 의 순서로 발명의 실시 형태를 보다 상세하게 설명한다.Hereinafter, the embodiments of the invention will be described in more detail in the order of "polyimide film" and "method for producing polyimide film" according to the present invention.
이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Prior to this, terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms, and the inventor should appropriately interpret the concepts of the terms appropriately It should be construed in accordance with the meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined.
따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 하나의 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, it is to be understood that the constituent features of the embodiments described herein are merely the most preferred embodiments of the present invention, and are not intended to represent all of the inventive concepts of the present invention, so that various equivalents and variations Examples should be understood.
본 명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.As used herein, the singular forms "a", "an" and "the" include plural referents unless the context clearly dictates otherwise. In this specification, the terms "comprising," "comprising," or "having ", and the like are intended to specify the presence of stated features, integers, But do not preclude the presence or addition of one or more other features, integers, steps, components, or combinations thereof.
폴리이미드 필름Polyimide film
앞서 설명한 바와 같이, 본 발명에 따른 폴리이미드 필름은, 100중량부의 폴리이미드 수지;As described above, the polyimide film according to the present invention comprises 100 parts by weight of a polyimide resin;
1 내지 5중량부의 평균 입경이 0.1 내지 1㎛인 제1 차폐성 필러; 및1 to 5 parts by weight of a first shielding filler having an average particle diameter of 0.1 to 1 占 퐉; And
0.3 내지 1중량부의 수평 방향에 대한 평균 입경이 5 내지 15㎛이고, 수직 방향에 대한 평균 입경이 1 내지 10nm인 제2 차폐성 필러를 포함하고,0.3 to 1 part by weight of a second shielding filler having an average particle diameter in a horizontal direction of 5 to 15 占 퐉 and an average particle diameter in a vertical direction of 1 to 10 nm,
가시광선 영역에서의 광투과율이 7% 이하이고, 폴리이미드 필름의 MD 및 TD 중 적어도 하나의 방향에서 측정한 모듈러스(modulus)가 3GPa 이상이고, 폴리이미드 필름의 두께가 8.0㎛ 이하인 것을 특징으로 한다.A modulus of at least 3 GPa measured in at least one direction of the MD and TD of the polyimide film, and a thickness of the polyimide film of 8.0 m or less in the visible light region .
상기 제1 차폐성 필러의 소재는 폴리이미드 필름의 차폐성을 확보하기 위한 소재로서, 유색 필러 물질일 수 있으며, 상세하게는, 상기 제1 차폐성 필러는 구형화도가 0.8 이상인 구형 필러일 수 있고, 더욱 상세하게는, 상기 제1 차폐성 필러는 카본블랙(carbon black)일 수 있다.The material of the first shielding filler may be a colored filler material to secure the shielding property of the polyimide film. Specifically, the first shielding filler may be a spherical filler having a sphericity of 0.8 or more, In this case, the first shielding filler may be carbon black.
여기서 구형 필러란, 필러의 형상이 구상, 또는 구상에 가까운 것으로, 평균 입경과 평균 단경의 비가 1 또는 1에 가까운 것, 즉, 구형화도(필러 입자의 단경/필러 입자의 입경)가 0.8 이상인 것으로 정의할 수 있다.Here, the spherical filler means that the shape of the filler is spherical or spherical, and the ratio of the average particle diameter to the average diameter is close to 1 or 1, that is, the sphericity (the diameter of the filler particles / the particle diameter of the filler particles) Can be defined.
이때, 상기 제1 차폐성 필러의 함량 또는 평균 입경이 상기의 범위 미만인 경우, 소망하는 정도의 차폐성을 확보하기 어려우므로 바람직하지 않다.At this time, when the content or the average particle diameter of the first shielding filler is less than the above-mentioned range, it is difficult to secure a desired degree of shielding.
반대로, 상기 제1 차폐성 필러의 함량 또는 평균 입경이 상기의 범위를 초과하는 경우, 제조과정에서 폴리아믹산과 혼합시 분산도가 낮아지고, 필러가 필름 표면으로부터 돌출하여 외관 불량이 발생할 수 있으며, 폴리이미드 필름의 유전율이 상승할 수 있으므로 바람직하지 않다.On the contrary, when the content or the average particle diameter of the first shielding filler is in excess of the above range, the dispersity becomes low when mixed with the polyamic acid in the manufacturing process, the peeler protrudes from the film surface, The dielectric constant of the mid-film may rise, which is not preferable.
한편, 상기 제2 차폐성 필러의 소재는 폴리이미드 필름의 차폐성을 확보하기 위한 소재로서, 수평 방향에 대한 평균 입경이 5 내지 15㎛이고, 수직 방향에 대한 평균 입경이 1 내지 10nm를 만족하는 판상형 필러일 수 있고, 상세하게는, 상기 제2 차폐성 필러는 그래핀(graphene)일 수 있다.On the other hand, the material of the second shielding filler is a material for securing the shielding property of the polyimide film. The material of the second shielding filler is a plate-like filler having an average particle diameter in the horizontal direction of 5 to 15 μm and an average particle diameter in the vertical direction of 1 to 10 nm And in particular, the second shielding filler may be a graphene.
여기서, 판상형 필러란, 필러 형상이 판상 또는 인편상인 필러로서, 평균 두께가 표면부의 평균 입경 또는 평균 단경보다 충분히 작은 것, 즉, 구형화도(필러 입자의 수직 방향에 대한 입경 또는 단경/필러 입자의 수평 방향에 대한 입경 또는 단경)가 0.1 이하인 것으로 정의할 수 있다.Here, the plate-like filler is a filler in which the filler shape is plate or scaly, and the average thickness is sufficiently smaller than the average particle size or the average short diameter of the surface portion, that is, the shape of the filler is spherical (the particle size or the small diameter in the vertical direction of the filler particles / The grain size or the short diameter in the horizontal direction) is 0.1 or less.
이러한 판상형 필러는 폴리이미드 필름의 제막 시 필름 내에 필러 입자의 배향 또는 배열에 따라 더욱더 효과적으로 빛을 차단하는 특성이 나타날 수 있으므로, 소량의 필러 물질을 투입하더라도 폴리이미드 필름의 광투과율을 현저히 낮출 수 있다.Such a plate-like filler may exhibit a property of blocking light more effectively in accordance with the orientation or arrangement of filler particles in the film when the polyimide film is formed, so that even when a small amount of filler material is added, the light transmittance of the polyimide film can be significantly lowered .
더욱이, 상기 제2 차폐성 필러는 배열 또는 배향에 따라, MD 및 TD 중 적어도 하나의 방향에서 측정한 모듈러스(modulus)가 3GPa 이상으로서 기계적 안정성이 충분히 확보되며, 상세하게는, MD에서 측정한 모듈러스가 3GPa 이상으로서 탄성률이 증가할 수 있다.Further, the second shielding filler has a modulus of at least 3 GPa measured in at least one direction of MD and TD, depending on the arrangement or orientation, and thus the mechanical stability is sufficiently secured. Specifically, the modulus measured by MD The elastic modulus can be increased to 3 GPa or more.
이때, 상기 제1 차폐성 필러의 함량, 수평 방향 또는 수직 방향에 대한 평균 입경이 상기의 범위 미만인 경우, 소망하는 정도의 차폐성을 확보하기 어려우므로 바람직하지 않다.At this time, when the content of the first shielding filler, the average grain size in the horizontal direction or the vertical direction is less than the above-mentioned range, it is difficult to secure a desired degree of shielding.
반대로, 상기 제2 차폐성 필러의 함량, 수평 방향 또는 수직 방향에 대한 평균 입경이 상기의 범위를 초과하는 경우, 상기 제1 차폐성 필러의 경우와 마찬가지로, 제조과정에서 폴리아믹산과 혼합시 분산도가 낮아지고, 이에 따라 기계적 물성 저하로 필름을 형성하기 어려우며, 필름을 제조하더라도 필러가 필름 표면으로부터 돌출하는 등 외관 불량이 발생할 수 있으므로 바람직하지 않다.On the contrary, when the content of the second shielding filler, the average particle size in the horizontal direction or the vertical direction exceeds the above-mentioned range, the dispersion degree when mixed with the polyamic acid in the manufacturing process is low as in the case of the first shielding filler It is difficult to form a film due to deterioration of mechanical properties, and even if a film is produced, a filler may protrude from the surface of the film, resulting in poor appearance.
더욱이, 제2 차폐성 필러의 경우, 폴리이미드 필름의 제막 시 필름 내에 필러 입자의 배향 또는 배열에 따라 폴리이미드 필름의 유전율을 급격하게 상승시켜 절연필름으로서 기능하지 못할 수 있으므로, 바람직하지 않다.Furthermore, in the case of the second shielding filler, the dielectric constant of the polyimide film may be abruptly increased depending on the orientation or arrangement of the filler particles in the film at the time of film formation of the polyimide film, so that the film may not function as an insulating film.
바람직하게는, 상기 폴리이미드 필름은 주파수 1.1Ghz에서 측정한 유전율이 5 이하일 수 있다.Preferably, the polyimide film may have a dielectric constant of 5 or less measured at a frequency of 1.1 GHz.
또한, 상기 제2 차폐성 필러의 함량 대비 상기 제1 차폐성 필러의 함량 비율은 중량을 기준으로 100% 내지 1600%일 수 있고, 상세하게는, 상기 제2 차폐성 필러의 함량 대비 상기 제1 차폐성 필러의 함량 비율은 중량을 기준으로 200% 내지 1,000%일 수 있으며, 더욱 상세하게는, 300% 내지 800%일 수 있다.Also, the content ratio of the first shielding filler to the content of the second shielding filler may be 100% to 1600% based on the weight of the second shielding filler. In particular, the content of the first shielding filler The content ratio may be from 200% to 1,000% by weight, and more specifically, from 300% to 800% by weight.
따라서, 상기 폴리이미드 필름은 커버레이, 절연필름, 반도체 등에 적용되는 경우, 제품을 보다 슬림화시킬 수 있을 뿐만 아니라 미적 특성을 향상시킬 수 있고, 내부 형상 및 장입 부품들이 외부의 시야로부터 차단될 수 있어 보안상 유용하다.Accordingly, when the polyimide film is applied to a coverlay, an insulating film, a semiconductor or the like, the product can be made slimmer, the aesthetic property can be improved, and the inner shape and the charging parts can be shielded from the external view It is useful for security.
폴리이미드 필름의 제조 방법Method for producing polyimide film
본 발명은 (a) 디안하이드라이드 및 디아민류로부터 폴리아믹산을 중합하는 단계;(A) polymerizing a polyamic acid from a dianhydride and a diamine;
(b) 밀링기를 이용하여 평균 입경이 0.1 내지 1㎛인 제1 차폐성 필러 및 수평 방향에 대한 평균 입경이 5 내지 15㎛이고, 수직 방향에 대한 평균 입경이 1 내지 10nm인 제2 차폐성 필러를 제조하는 단계;(b) Using a milling machine, a first shielding filler having an average particle diameter of 0.1 to 1 占 퐉 and a second shielding filler having an average particle diameter of 5 to 15 占 퐉 in the horizontal direction and an average particle diameter of 1 to 10 nm in the vertical direction ;
(c) 상기 폴리아믹산에 상기 제1 차폐성 필러 및 제2 차폐성 필러를 혼합하고 지지체에 제막하고 열처리하여 이미드화하는 단계를 포함하는 폴리이미드 필름의 제조방법을 제공한다.(c) mixing the first shielding filler and the second shielding filler with the polyamic acid, forming a film on the support, and heat-treating the film to imidize the polyimide film.
즉, 본 발명의 폴리이미드 필름은 폴리이미드의 전구체인 폴리아믹산의 용액으로부터 얻어진다.That is, the polyimide film of the present invention is obtained from a solution of polyamic acid which is a precursor of polyimide.
구체적으로, 폴리아믹산 용액은 디안하이드라이드 단량체 및 디아민 단량체로부터 유래될 수 있으며, 상기 디안하이드라이드 단량체는, 피로멜리틱디안하이드라이드(PMDA), 비페닐테트라카르복실릭디안하이드라이드(BPDA), 옥시디프탈릭안하이드라이드(ODPA), 및 벤조페논테트라카르복실릭디안하이드라이드(BTDA)으로 이루어진 군으로부터 선택된 1종 이상일 수 있으나 이것만으로 한정되는 것은 아니다.Specifically, the polyamic acid solution may be derived from a dianhydride monomer and a diamine monomer, wherein the dianhydride monomer is selected from the group consisting of pyromellitic dianhydride (PMDA), biphenyltetracarboxylic dianhydride (BPDA) (ODPA), benzophenone tetracarboxylic dianhydride (BTDA), and the like, but it is not limited thereto.
또한, 상기 디아민 단량체는, 1,4-페닐렌디아민(PPD), 4,4'-옥시디아닐린(ODA), 3,4'-옥시디아닐린, 2,2-비스[4'-(4-아미노페녹시)페닐]프로판(BAPP), 4,4'-메틸렌디아닐린(MDA) 및 1,3-비스(4-아미노페녹시)벤젠(TPE-R)으로 이루어진 군으로부터 선택된 1종 이상일 수 있으나 이것만으로 한정되는 것은 아니다.The diamine monomer may be at least one selected from the group consisting of 1,4-phenylenediamine (PPD), 4,4'-oxydianiline (ODA), 3,4'-oxydianiline, 2,2- (TPE-R) selected from the group consisting of 1-aminophenoxy) phenyl] propane (BAPP), 4,4'-methylene dianiline (MDA) and 1,3- But is not limited to this.
한편, 폴리아믹산 용액은 방향족 디아민 단량체와 방향족 디안하이드라이드 단량체가 실질적으로 등몰량이 되도록 배합된 단량체 화합물을 유기 용매 중에 용해시킨, 혼합 용액을 제어된 온도 조건하에서 상기 방향족 디안하이드라이드 단량체와 상기 방향족 디아민 단량체의 중합이 완료될 때까지 교반함으로써 제조된다.On the other hand, the polyamic acid solution is prepared by dissolving a monomer compound in which an aromatic diamine monomer and an aromatic dianhydride monomer are mixed so as to have a substantially equimolar amount in an organic solvent, and mixing the aromatic dianhydride monomer and the aromatic diamine And stirring until the polymerization of the monomers is completed.
폴리아믹산 용액은 통상 고형분 함량이 5 내지 35 중량%, 바람직하게는 10 내지 30 중량%의 농도로 얻어진다.The polyamic acid solution usually has a solid content of 5 to 35% by weight, preferably 10 to 30% by weight.
이 범위의 농도인 경우, 폴리아믹산 용액은 적당한 분자량과 용액 점도를 얻는다.In the case of concentrations in this range, the polyamic acid solution obtains an appropriate molecular weight and solution viscosity.
폴리아믹산 용액을 합성하기 위한 용매는 특별히 한정되는 것은 아니고, 폴리아믹산을 용해시키는 용매이면 어떠한 용매도 사용할 수 있지만, 아미드계 용매인 것이 바람직하다.The solvent for synthesizing the polyamic acid solution is not particularly limited, and any solvent which can dissolve the polyamic acid can be used, but an amide solvent is preferable.
구체적으로는, 상기 용매는 유기 극성 용매일 수 있고, 상세하게는 비양성자성 극성 용매(aprotic polar solvent)일 수 있으며, 예를 들어, N,N'-디메틸포름아미드(DMF), N,N'-디메틸아세트아미드, N-메틸-피롤리돈(NMP), 감마 브티로 락톤(GBL), 디그림(Diglyme)으로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 제한되는 것은 아니며, 필요에 따라 단독으로 또는 2종 이상 조합해서 사용할 수 있다.Specifically, the solvent may be an organic polar solvent and may be an aprotic polar solvent, for example, N, N'-dimethylformamide (DMF), N, N May be at least one selected from the group consisting of N, N'-dimethylacetamide, N-methylpyrrolidone (NMP), gammabutyrolactone (GBL), Diglyme, Or a combination of two or more.
하나의 예에서, 상기 용매는 N,N-디메틸포름아미드 및 N,N-디메틸아세트아미드가 특히 바람직하게 사용될 수 있다.In one example, N, N-dimethylformamide and N, N-dimethylacetamide may be particularly preferably used as the solvent.
한편, 상기 제1 차폐성 필러 및 제2 차폐성 필러는 비드밀 밀링기를 이용하여 입경을 제어할 수 있으며, 이러한 밀링 공정은 입경 분산도가 상대적으로 낮은 필러가 폴리아믹산 용액과 적절히 혼합 및 분산되게 하여 이로부터 제조되는 폴리이미드 필름 전체적으로 광투과율을 균일하게 유지함으로써, 결과적으로 광투과율을 보다 감소시키기 위한 것이다.Meanwhile, the first shielding filler and the second shielding filler can control the particle diameter using a bead miller. In this milling process, the filler having a relatively low particle diameter dispersion is mixed and dispersed with the polyamic acid solution, To keep the light transmittance uniform throughout the polyimide film as a whole, thereby further reducing the light transmittance.
또한, 상기 제1 차폐성 필러 및 제2 차폐성 필러의 분산성을 향상시키고, 분산 상태를 안정화시키기 위해 분산제, 증점제 등을 필름 물성에 영향을 미치지 않는 범위 내에서 사용할 수 있다.In order to improve dispersibility of the first shielding filler and the second shielding filler and to stabilize the dispersion state, a dispersant, a thickener, and the like may be used within a range that does not affect film physical properties.
한편, 폴리아믹산 용액, 제1 차폐성 필러 및 제2 차폐성 필러에 촉매를 더 투입한 후 지지체에 도포할 수 있다.On the other hand, the catalyst may be further added to the polyamic acid solution, the first shielding filler, and the second shielding filler, and then applied to the support.
상기 촉매로는, 아세트산 무수물 등의 무수산으로 이루어진 탈수 촉매와 이소퀴놀린, β-피콜린, 피리딘 등의 3급 아민류 등을 사용할 수 있고, 무수산/아민류의 혼합물 또는 무수산/아민/용매 혼합물의 형태로 사용할 수 있다.As the catalyst, there may be used a dehydration catalyst composed of an anhydrous acid such as acetic anhydride and tertiary amines such as isoquinoline, p-picoline and pyridine, and a mixture of anhydrous acid / amines or an anhydride / amine / Can be used.
무수산의 투입량은 폴리아믹산 용액 중 o-카르복실릭아미드기(o-carboxylic amide functional group)의 몰 비율로 계산할 수 있으며 1.0 내지 5.0몰로 사용할 수 있고, 3급 아민의 투입량은 폴리아믹산 용액 중 o-카르복실릭아미드기의 몰 비율로 계산할 수 있으며, 구체적으로 0.2 내지 3.0몰로 투입할 수 있다.The amount of anhydrous acid can be calculated in terms of the molar ratio of the o-carboxylic amide functional group in the polyamic acid solution and can be used in the range of 1.0 to 5.0 moles. -Carboxylic amide group, and may be specifically added in an amount of 0.2 to 3.0 mol.
또한 지지체에 도포된 폴리아믹산 용액을 열처리하여 겔화하는 단계는, 겔화 온도 조건이 100 내지 250℃일 수 있다.Also, the step of heat-treating the polyamic acid solution coated on the support to gelation may have a gelling temperature of 100 to 250 ° C.
상기 지지체로는 유리판, 알루미늄박, 순환 스테인레스 벨트, 스테인레스 드럼 등을 사용할 수 있다.As the support, a glass plate, an aluminum foil, a circulating stainless belt, a stainless steel drum, or the like can be used.
겔화에 필요한 처리 시간은 5 내지 30분일 수 있으나, 이에 제한하지 않으며, 겔화 온도, 지지체의 종류, 도포된 폴리아믹산 용액의 양 및 촉매의 혼합조건에 따라 달라질 수 있다.The treatment time required for gelation may be 5 to 30 minutes, but is not limited thereto, and may vary depending on the gelation temperature, the type of support, the amount of polyamic acid solution applied, and the mixing conditions of the catalyst.
겔화된 필름은 지지체에서 분리한 후 열처리하여 건조 및 이미드화를 완료시킨다.The gelled film is separated from the support and then heat-treated to complete drying and imidization.
열처리 온도는 100 내지 500℃일 수 있고, 열처리 시간은 1분 내지 30분일 수 있다. 겔화된 필름은 열처리시 고정가능한 지지대, 예컨대, 핀 타입의 프레임 또는 클립형 등의 지지대에 고정시켜 열처리시킬 수 있다.The heat treatment temperature may be 100 to 500 占 폚, and the heat treatment time may be 1 to 30 minutes. The gelled film can be heat-treated by being fixed to a supporting base such as a pin type frame or a clip type which can be fixed at the time of heat treatment.
한편, 본 발명에서는 8㎛ 이하의 초박막 필름을 구현하기 위해 폴리아믹산을 지지체에 도포(토출)할 때, 토출량, 속도, 압력 등의 공정 조건을 제어하여야 한다.On the other hand, in the present invention, when polyamic acid is applied (discharged) on a support in order to realize an ultra thin film of 8 μm or less, process conditions such as discharge amount, speed, and pressure should be controlled.
구체적으로, T-다이(T-Die)에서 엔드리스 벨트(endless belt)로 폴리아믹산 용액이 토출되어 막 형태로 착지하는 시점의 흔들림을 최소화하여야 하는데, 이를 위해, 토출막 형성시 일반 폴리이미드 필름 제조시에 사용되는 압력보다 낮은 압력, 예컨대, 10 내지 40mmH2O의 압력에서 에어(air)를 공급할 수 있다.Specifically, it is necessary to minimize the shaking at the time when the polyamic acid solution is discharged from the T-die to the endless belt and land in a film form. To this end, in order to form a general polyimide film The air can be supplied at a pressure lower than the pressure used at the time of, for example, 10 to 40 mm H 2 O.
이때, T-다이에서 토출되는 양 및 엔드리스 벨트의 속도는 하기 수학식을 만족할 수 있고, 예컨대, T-다이에서 토출되는 양은 150kg/hr 내지 300kg/hr 일 수 있고, 엔드리스 벨트의 속도는 15mpm 내지 25mpm 일 수 있다.In this case, the amount discharged from the T-die and the speed of the endless belt may satisfy the following equation, for example, the amount discharged from the T-die may be 150 kg / hr to 300 kg / hr, Lt; / RTI >
[수학식][Mathematical Expression]
T-다이에서 토출되는 양/T-다이에서 토출되는 시간 = 필름의 비중*(T-다이 단면적)*(엔드리스 벨트의 속도)Dissolved amount from T-die / time from T-die = specific gravity of film * (T-die cross section) * (speed of endless belt)
실험실 수준에서는 캐스팅 두께를 조절하여 초박막 두께의 폴리이미드 필름을 얻을 수 있으나, 대량 생산 공정에서는 상기 범위를 만족할 때, 8㎛ 이하의 초박막의 두께 구현이 가능하다.At the laboratory level, it is possible to obtain an ultra thin film polyimide film by controlling the casting thickness. However, in the mass production process, it is possible to realize an ultra thin film thickness of 8 μm or less when the above range is satisfied.
구체적으로, 본 발명에 따른 폴리이미드 필름은 7.5㎛ 이하, 상세하게는, 3 내지 7.5㎛, 더욱 상세하게는, 5 내지 7.5㎛의 두께를 가질 수 있다.Specifically, the polyimide film according to the present invention may have a thickness of 7.5 占 퐉 or less, specifically 3 to 7.5 占 퐉, more specifically, 5 to 7.5 占 퐉.
또한, 핀 타입의 프레임에 고정시킨 후 텐더 드라이어 등의 기기를 이용한 열처리시, 열처리 공정 중 필름에 파단이 발생하는 것을 방지하기 위해 같은 두께의 옐로우 폴리이미드 필름 제조시의 열처리 최고 온도 기준 50 내지 150℃ 낮은 온도에서 열처리를 수행할 수 있다.In addition, in order to prevent the film from being broken during the heat treatment process in a heat treatment using a device such as a tenter dryer after being fixed to a frame of a pin type, it is preferable that the heat treatment temperature of the yellow polyimide film Lt; 0 > C.
또한, 이미드화가 완료된 필름을 20 내지 30℃ 에서 냉각 처리하여 필름화할 수 있다.Further, the imidized film may be subjected to a cooling treatment at 20 to 30 占 폚 to form a film.
본 발명은 또한 상기 폴리이미드 필름을 포함하는 커버레이(coverlay)를 제공할 수 있으며, 상기 커버레이를 포함하는 전자 장치를 제공할 수 있다.The present invention can also provide a coverlay including the polyimide film, and can provide an electronic device including the coverlay.
이하, 구체적인 실시예 및 비교예를 통하여 본 발명을 더욱 상세히 설명한다. 하기 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by way of specific examples and comparative examples. The following examples are intended to further illustrate the present invention and are not intended to limit the scope of the present invention.
<실시예 1>&Lt; Example 1 >
제조예 1: 폴리아믹산의 중합Production Example 1: Polymerization of polyamic acid
폴리아믹산 용액 중합 공정으로서, 1L 반응기에 질소 분위기하에서 용매로서 디메틸포름아미드(DMF)를 407.5g 투입하였다.As a polyamic acid solution polymerization process, 407.5 g of dimethylformamide (DMF) was added as a solvent in a 1 L reactor under a nitrogen atmosphere.
온도를 25℃로 설정한 다음, 디아민 단량체로서 ODA를 35.1g, PPD를 6.3g 투입하고, 30분 가량 교반하여 단량체가 용해된 것을 확인한 뒤에 디안하이드라이드 단량체로서 PMDA를 51.0g 분할 투입하고 최종적으로 점도 25만cp에서 30만cp가 되도록 마지막 투입량을 조정하여 투입하였다.After setting the temperature at 25 占 폚, 35.1 g of ODA as a diamine monomer and 6.3 g of PPD were added and stirred for about 30 minutes to confirm that the monomer was dissolved. Then, 51.0 g of PMDA as a dianhydride monomer was added thereto in portions The final dosage was adjusted so that the viscosity was 250,000 cp to 300,000 cp.
투입이 끝나면 온도를 유지하면서 1시간 동안 교반하여 최종점도 26만cp의 폴리아믹산 용액을 중합하였다.When the addition was completed, the solution was stirred for 1 hour while maintaining the temperature, and the polyamic acid solution having a final viscosity of 260,000 cp was polymerized.
제조예 2: 차폐성 필러를 포함하는 블랙 조액의 제조Production Example 2: Preparation of black tank liquid containing shielding filler
카본블랙 10g, 그래핀 3g을, 86g의 DMF 및 1g의 분산제 BYK-430과 혼합한 후 밀링기를 이용하여 평균 입경이 0.5㎛인 카본블랙, 수평 방향에 대한 평균 입경이 10㎛이고, 수직 방향에 대한 평균 입경이 2nm인 그래핀을 포함하는 블랙 조액을 제조하였다.10 g of carbon black and 3 g of graphene were mixed with 86 g of DMF and 1 g of dispersant BYK-430, and then milled using a milling machine to obtain carbon black having an average particle diameter of 0.5 탆, an average particle diameter in the horizontal direction of 10 탆, To prepare a black tank liquid containing graphene having an average particle diameter of 2 nm.
제조예 3: 폴리이미드 필름의 제조Production Example 3: Preparation of polyimide film
제조예 1에서 제조된 폴리아믹산 용액 20g에 제조예 2에서 제조된 블랙 조액 4.628g을 혼합하고, 촉매로서 이소퀴놀린(IQ) 0.65g, 무수초산(AA) 4.78g, 및 DMF 0.57g을 투입한 후, 균일하게 혼합하여 SUS plate(100SA, Sandvik)에 닥터 블레이드를 사용하여 70㎛로 캐스팅하고 100℃ 내지 200℃의 온도범위에서 건조시켰다.0.62 g of isoquinoline (IQ), 4.78 g of anhydrous acetic acid (AA) and 0.57 g of DMF were added to 20 g of the polyamic acid solution prepared in Preparation Example 1, and 4.628 g of the black tank liquid prepared in Preparation Example 2 Then, the mixture was uniformly mixed and cast on a SUS plate (100SA, Sandvik) using a doctor blade to a thickness of 70 mu m and dried at a temperature range of 100 DEG C to 200 DEG C.
그 다음, 필름을 SUS Plate에서 박리하여 핀 프레임에 고정시켜 고온 텐터로 이송하였다.Then, the film was peeled off from the SUS plate, fixed to the pin frame, and transferred to the hot tenter.
필름을 고온 텐터에서 200℃부터 600℃까지 가열한 후 25℃에서 냉각시킨 후 핀 프레임에서 분리하여, 100중량부의 폴리이미드 수지, 제1 차폐성 필러로서 3중량부의 카본블랙 및 제2 차폐성 필러로서 1중량부의 그래핀을 포함하는 7.5㎛ 두께의 폴리이미드 필름을 제조하였다.The film was heated in a hot tenter from 200 ° C to 600 ° C, cooled at 25 ° C and separated from the pin frame to obtain 100 parts by weight of polyimide resin, 3 parts by weight of carbon black as the first shielding filler and 1 part by weight of carbon black as the second shielding filler A polyimide film having a thickness of 7.5 mu m including graphene in a weight part was prepared.
<실시예 2>&Lt; Example 2 >
제조예 2에서 카본블랙 3.5g, 그래핀 0.5g을 혼합하여 폴리이미드 수지 100중량부를 기준으로 3.5중량부의 카본블랙 및 0.5중량부의 그래핀을 포함하도록 한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.In Production Example 2, 3.5 g of carbon black and 0.5 g of graphene were mixed to prepare 3.5 parts by weight of carbon black and 0.5 part by weight of graphene based on 100 parts by weight of the polyimide resin, To prepare a polyimide film.
<실시예 3>&Lt; Example 3 >
제조예 2에서 카본블랙 3.7g, 그래핀 0.3g을 혼합하여 폴리이미드 수지 100중량부를 기준으로 3.7중량부의 카본블랙 및 0.3중량부의 그래핀을 포함하도록 한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.In Production Example 2, 3.7 g of carbon black and 0.3 g of graphene were mixed to obtain 3.7 parts by weight of carbon black and 0.3 part by weight of graphene based on 100 parts by weight of polyimide resin, To prepare a polyimide film.
<실시예 4><Example 4>
제조예 2에서 카본블랙 5g, 그래핀 1g을 혼합하여 폴리이미드 수지 100중량부를 기준으로 5중량부의 카본블랙 및 1중량부의 그래핀을 포함하도록 한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.In Production Example 2, 5 g of carbon black and 1 g of graphene were mixed, and 5 parts by weight of carbon black and 1 part by weight of graphene were contained based on 100 parts by weight of polyimide resin, A film was prepared.
<실시예 5>&Lt; Example 5 >
제조예 2에서 카본블랙 1g, 그래핀 0.3g을 혼합하여 폴리이미드 수지 100중량부를 기준으로 1중량부의 카본블랙 및 0.3중량부의 그래핀을 포함하도록 한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.Except that 1 g of carbon black and 0.3 g of graphene were mixed in Production Example 2 to contain 1 part by weight of carbon black and 0.3 part by weight of graphene based on 100 parts by weight of polyimide resin, A mid-film was produced.
<실시예 6>&Lt; Example 6 >
제조예 2에서 평균 입경이 0.5㎛인 카본블랙 대신 평균 입경이 1㎛인 카본블랙을 혼합하고, 수평 방향에 대한 평균 입경이 10㎛이고, 수직 방향에 대한 평균 입경이 2nm인 그래핀 대신 수평 방향에 대한 평균 입경이 15㎛이고, 수직 방향에 대한 평균 입경이 2nm인 그래핀을 혼합한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.Carbon black having an average particle diameter of 1 占 퐉 was mixed in place of carbon black having an average particle diameter of 0.5 占 퐉 in Production Example 2, and graphene having an average particle diameter in the horizontal direction of 10 占 퐉 and an average particle diameter in the vertical direction of 2 nm was used instead of carbon black in the horizontal direction Was prepared in the same manner as in Example 1, except that graphene having an average particle diameter of 15 m and an average particle diameter of 2 nm with respect to the vertical direction was mixed.
<실시예 7>&Lt; Example 7 >
제조예 2에서 평균 입경이 0.5㎛인 카본블랙 대신 평균 입경이 0.1㎛인 카본블랙을 혼합하고, 수평 방향에 대한 평균 입경이 10㎛이고, 수직 방향에 대한 평균 입경이 2nm인 그래핀 대신 수평 방향에 대한 평균 입경이 5㎛이고, 수직 방향에 대한 평균 입경이 2nm인 그래핀을 혼합한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.Carbon black having an average particle diameter of 0.1 占 퐉 was mixed in place of carbon black having an average particle diameter of 0.5 占 퐉 in Production Example 2 to prepare a carbon black having an average particle diameter of 10 占 퐉 in the horizontal direction and an average particle diameter of 2 nm in the vertical direction, Was prepared in the same manner as in Example 1 except that graphene having an average particle diameter of 5 m and an average particle diameter of 2 nm in the vertical direction was mixed.
<비교예 1>&Lt; Comparative Example 1 &
제조예 2에서 카본블랙 4g을 단독으로 혼합하여 폴리이미드 필름에 4중량부의 카본블랙을 포함하도록 한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.A polyimide film was produced in the same manner as in Example 1, except that 4 g of carbon black was singly mixed in Production Example 2 to contain 4 parts by weight of carbon black in the polyimide film.
<비교예 2>&Lt; Comparative Example 2 &
제조예 2에서 카본블랙 2g, 그래핀 2g을 혼합하여 폴리이미드 필름에 2중량부의 카본블랙 및 2중량부의 그래핀을 포함하도록 한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.A polyimide film was produced in the same manner as in Example 1, except that 2 g of carbon black and 2 g of graphene were mixed in Production Example 2 to contain 2 parts by weight of carbon black and 2 parts by weight of graphene in the polyimide film .
<비교예 3>&Lt; Comparative Example 3 &
제조예 2에서 카본블랙 1g, 그래핀 3g을 혼합하여 폴리이미드 필름에 1중량부의 카본블랙 및 3중량부의 그래핀을 포함하도록 한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.A polyimide film was produced in the same manner as in Example 1, except that 1 g of carbon black and 3 g of graphene were mixed in Production Example 2 to include 1 part by weight of carbon black and 3 parts by weight of graphene in the polyimide film .
<비교예 4>&Lt; Comparative Example 4 &
제조예 2에서 카본블랙 3.9g, 그래핀 0.1g을 혼합하여 폴리이미드 필름에 3.9중량부의 카본블랙 및 0.1중량부의 그래핀을 포함하도록 한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.A polyimide film was prepared in the same manner as in Example 1, except that 3.9 g of carbon black and 0.1 g of graphene were mixed in Production Example 2 to contain 3.9 parts by weight of carbon black and 0.1 part by weight of graphene in the polyimide film .
<비교예 5>&Lt; Comparative Example 5 &
제조예 2에서 카본블랙 0.5g, 그래핀 3.5g을 혼합하여 폴리이미드 필름에 0.5중량부의 카본블랙 및 3.5중량부의 그래핀을 포함하도록 한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.A polyimide film was produced in the same manner as in Example 1 except that 0.5 g of carbon black and 3.5 g of graphene were mixed in Production Example 2 to contain 0.5 part by weight of carbon black and 3.5 parts by weight of graphene in the polyimide film .
<비교예 6>&Lt; Comparative Example 6 >
제조예 2에서 카본블랙 8g, 그래핀 1g을 혼합하여 폴리이미드 필름에 8중량부의 카본블랙 및 1중량부의 그래핀을 포함하도록 한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.A polyimide film was prepared in the same manner as in Example 1, except that 8 g of carbon black and 1 g of graphene were mixed in Production Example 2 to include 8 parts by weight of carbon black and 1 part by weight of graphene in the polyimide film .
<비교예 7>&Lt; Comparative Example 7 &
제조예 2에서 카본블랙 0.5g, 그래핀 0.1g을 혼합하여 폴리이미드 필름에 0.5중량부의 카본블랙 및 0.1중량부의 그래핀을 포함하도록 한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.A polyimide film was produced in the same manner as in Example 1, except that 0.5 g of carbon black and 0.1 g of graphene were mixed in Production Example 2 to contain 0.5 part by weight of carbon black and 0.1 part by weight of graphene in the polyimide film .
<비교예 8>&Lt; Comparative Example 8 >
제조예 2에서 평균 입경이 0.5㎛인 카본블랙 대신 평균 입경이 2㎛인 카본블랙을 혼합하고, 수평 방향에 대한 평균 입경이 10㎛이고, 수직 방향에 대한 평균 입경이 2nm인 그래핀 대신 수평 방향에 대한 평균 입경이 20㎛이고, 수직 방향에 대한 평균 입경이 2nm인 그래핀을 혼합한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.Carbon black having an average particle diameter of 2 占 퐉 was mixed in place of carbon black having an average particle diameter of 0.5 占 퐉 in Production Example 2, and graphene having an average particle diameter in the horizontal direction of 10 占 퐉 and an average particle diameter in the vertical direction of 2 nm was used instead of carbon black in the horizontal direction Was prepared in the same manner as in Example 1 except that graphene having an average particle diameter of 20 mu m and an average particle diameter of 2 nm with respect to the vertical direction was mixed.
<비교예 9>&Lt; Comparative Example 9 &
제조예 2에서 평균 입경이 0.5㎛인 카본블랙 대신 평균 입경이 0.01㎛인 카본블랙을 혼합하고, 수평 방향에 대한 평균 입경이 10㎛이고, 수직 방향에 대한 평균 입경이 2nm인 그래핀 대신 수평 방향에 대한 평균 입경이 3㎛이고, 수직 방향에 대한 평균 입경이 2nm인 그래핀을 혼합한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.Carbon black having an average particle diameter of 0.01 占 퐉 was mixed in place of carbon black having an average particle diameter of 0.5 占 퐉 in Production Example 2 to prepare a carbon black having an average particle diameter of 10 占 퐉 in the horizontal direction and an average particle diameter of 2 nm in the vertical direction, Was prepared in the same manner as in Example 1, except that graphene having an average particle diameter of 3 m and an average particle diameter of 2 nm with respect to the vertical direction was mixed.
실험예 1: 광투과율 평가Experimental Example 1: Evaluation of light transmittance
<실시예 1> 내지 <실시예 7> 및 <비교예 1> 내지 <비교예 9>에서 각각 제조한 폴리이미드 필름에 대해서, 광투과율 측정 기기(모델명: ColorQuesetXE, 제조사: HunterLab)를 이용하여 가시광 영역에서 ASTM D1003 방법으로 광투과율을 측정하고, 그 결과를 하기 표 1에 나타내었다.The polyimide films prepared in each of Examples 1 to 7 and Comparative Examples 1 to 9 were measured for light transmittance using a light transmittance measuring instrument (Model: ColorQuesetXE, manufactured by Hunter Lab) The light transmittance was measured by the ASTM D1003 method in the region, and the results are shown in Table 1 below.
제1 차폐성 필러The first shielding filler 제2 차폐성 필러The second shielding filler 광투과율(%)Light transmittance (%)
함량(중량부)Content (parts by weight) 입경(㎛)Particle size (탆) 함량(중량부)Content (parts by weight) 수평방향입경(㎛)Horizontal grain size (탆) 수직방향입경(nm)Vertical grain size (nm)
실시예 1Example 1 33 0.50.5 1One 1010 22 5.45.4
실시예 2Example 2 3.53.5 0.50.5 0.50.5 1010 22 6.06.0
실시예 3Example 3 3.73.7 0.50.5 0.30.3 1010 22 6.56.5
실시예 4Example 4 55 0.50.5 1One 1010 22 5.05.0
실시예 5Example 5 1One 0.50.5 0.30.3 1010 22 6.96.9
실시예 6Example 6 33 1One 1One 1515 22 6.56.5
실시예 7Example 7 33 0.10.1 1One 55 22 6.86.8
비교예 1Comparative Example 1 44 0.50.5 00 -- -- 7.37.3
비교예 2Comparative Example 2 22 0.50.5 22 1010 22 4.14.1
비교예 3Comparative Example 3 1One 0.50.5 33 1010 22 3.33.3
비교예 4Comparative Example 4 3.93.9 0.50.5 0.10.1 1010 22 7.17.1
비교예 5Comparative Example 5 0.50.5 0.50.5 3.53.5 1010 22 7.17.1
비교예 6Comparative Example 6 88 0.50.5 1One 1010 22 3.83.8
비교예 7Comparative Example 7 0.50.5 0.50.5 0.10.1 1010 22 17.017.0
비교예 8Comparative Example 8 33 22 1One 2020 22 13.213.2
비교예 9Comparative Example 9 33 0.010.01 1One 33 22 12.512.5
표 1을 참조하면, 실시예 1 내지 실시예 7의 폴리이미드 필름의 경우, 1 내지 5중량부의 평균 입경이 0.1 내지 1㎛인 제1 차폐성 필러 및 0.3 내지 1중량부의 수평 방향에 대한 평균 입경이 5 내지 15㎛이고, 수직 방향에 대한 평균 입경이 1 내지 10nm인 제2 차폐성 필러를 포함함으로써, 제2 차폐성 필러를 포함하지 않은 비교예 1에 비해 광투과율이 낮음을 확인할 수 있다.Referring to Table 1, in the case of the polyimide films of Examples 1 to 7, the first shielding filler having an average particle diameter of 0.1 to 1 占 퐉 in an amount of 1 to 5 parts by weight and the average particle diameter in the horizontal direction of 0.3 to 1 part by weight 5 to 15 占 퐉 and the second shielding filler having an average particle diameter of 1 to 10 nm with respect to the vertical direction is included, it can be confirmed that the light transmittance is lower than that of Comparative Example 1 which does not include the second shielding filler.
또한, 비교예 4, 5 및 비교예 7 내지 9의 폴리이미드 필름은 실시예 1 내지 실시예 7에 비해 광투과율이 매우 높음을 확인할 수 있고, 이는 본 발명에 따른 폴리이미드 필름의 차폐성이 우수함을 나타낸다.In addition, the polyimide films of Comparative Examples 4 and 5 and Comparative Examples 7 to 9 have a higher light transmittance than those of Examples 1 to 7, indicating that the polyimide film of the present invention has excellent shielding properties .
이러한 결과로부터, 비교예 4, 5 및 비교예 7 내지 9와 같이, 제1 차폐성 필러 및 제2 차폐성 필러 중 적어도 하나의 함량이 본 발명의 범위를 벗어나거나, 제1 차폐성 필러 및 제2 차폐성 필러의 입경이 본 발명의 범위를 벗어나는 경우, 폴리이미드 필름의 차폐성이 현저하게 저하됨을 알 수 있다.From these results, it can be understood that the content of at least one of the first shielding filler and the second shielding filler is out of the range of the present invention as in Comparative Examples 4 and 5 and Comparative Examples 7 to 9, or the content of the first shielding filler and the second shielding filler It is understood that the shielding property of the polyimide film is significantly lowered when the particle diameter of the polyimide film is outside the range of the present invention.
실험예 2: 탄성률 평가Experimental Example 2: Evaluation of elastic modulus
<실시예 1> 내지 <실시예 7> 및 <비교예 1> 내지 <비교예 9>에서 각각 제조한 폴리이미드 필름에 대해서, Instron 5564 모델을 이용하여, ASTM D 882 방법으로 MD 방향 및 TD 방향에 대한 모듈러스를 측정하고, 그 결과를 하기 표 2에 나타내었다.With respect to the polyimide films prepared in Examples 1 to 7 and Comparative Examples 1 to 9, an Instron 5564 model was used to measure the MD and TD directions in accordance with the ASTM D 882 method Were measured, and the results are shown in Table 2. < tb > < TABLE >
제1 차폐성 필러The first shielding filler 제2 차폐성 필러The second shielding filler 모듈러스(GPa)Modulus (GPa)
함량(중량부)Content (parts by weight) 입경(㎛)Particle size (탆) 함량(중량부)Content (parts by weight) 수평방향입경(㎛)Horizontal grain size (탆) 수직방향입경(nm)Vertical grain size (nm) MDMD TDTD
실시예 1Example 1 33 0.50.5 1One 1010 22 4.24.2 3.83.8
실시예 2Example 2 3.53.5 0.50.5 0.50.5 1010 22 3.53.5 2.92.9
실시예 3Example 3 3.73.7 0.50.5 0.30.3 1010 22 3.63.6 2.952.95
실시예 4Example 4 55 0.50.5 1One 1010 22 4.34.3 3.93.9
실시예 5Example 5 1One 0.50.5 0.30.3 1010 22 3.53.5 2.82.8
실시예 6Example 6 33 1One 1One 1515 22 3.83.8 2.92.9
실시예 7Example 7 33 0.10.1 1One 55 22 3.73.7 3.13.1
비교예 1Comparative Example 1 44 0.50.5 00 -- -- 2.82.8 2.82.8
비교예 2Comparative Example 2 22 0.50.5 22 1010 22 3.73.7 3.13.1
비교예 3Comparative Example 3 1One 0.50.5 33 1010 22 4.34.3 3.93.9
비교예 4Comparative Example 4 3.93.9 0.50.5 0.10.1 1010 22 2.952.95 2.92.9
비교예 5Comparative Example 5 0.50.5 0.50.5 3.53.5 1010 22 4.54.5 3.83.8
비교예 6Comparative Example 6 88 0.50.5 1One 1010 22 3.63.6 2.82.8
비교예 7Comparative Example 7 0.50.5 0.50.5 0.10.1 1010 22 2.52.5 1.91.9
비교예 8Comparative Example 8 33 22 1One 2020 22 2.82.8 2.22.2
비교예 9Comparative Example 9 33 0.010.01 1One 33 22 2.72.7 2.12.1
표 2를 참조하면, 실시예 1 내지 실시예 7의 폴리이미드 필름의 경우, 1 내지 5중량부의 평균 입경이 0.1 내지 1㎛인 제1 차폐성 필러 및 0.3 내지 1중량부의 수평 방향에 대한 평균 입경이 5 내지 15㎛이고, 수직 방향에 대한 평균 입경이 1 내지 10nm인 제2 차폐성 필러를 포함함으로써, 제2 차폐성 필러를 포함하지 않은 비교예 1과 달리 MD에서 측정한 모듈러스가 3GPa 이상임을 확인할 수 있다.Referring to Table 2, in the case of the polyimide films of Examples 1 to 7, the first shielding filler having an average particle size of 0.1 to 1 占 퐉 in an amount of 1 to 5 parts by weight and the average particle size in the horizontal direction of 0.3 to 1 part by weight 5 to 15 mu m and an average particle diameter in the vertical direction of 1 to 10 nm, it can be confirmed that the modulus measured by MD is not less than 3 GPa, unlike Comparative Example 1, which does not include the second shielding filler .
또한, 비교예 4 및 비교예 7 내지 9의 폴리이미드 필름은 MD 방향의 모듈러스가 3 Gpa 미만으로 실시예 1 내지 실시예 7에 낮음을 확인할 수 있고, 이는 본 발명에 따른 폴리이미드 필름의 기계적 안정성이 우수함을 나타낸다.In addition, the polyimide films of Comparative Example 4 and Comparative Examples 7 to 9 had a modulus in the MD direction of less than 3 Gpa, which was low in Examples 1 to 7. This indicates that the mechanical stability of the polyimide film according to the present invention .
이러한 결과로부터, 비교예 4 및 비교예 7 내지 9와 같이, 제1 차폐성 필러 및 제2 차폐성 필러 중 적어도 하나의 함량이 본 발명의 범위를 벗어나거나, 제1 차폐성 필러 및 제2 차폐성 필러의 입경이 본 발명의 범위를 벗어나는 경우, 폴리이미드 필름의 기계적 안정성이 현저하게 저하됨을 알 수 있다.From these results, it was found that the content of at least one of the first shielding filler and the second shielding filler is out of the range of the present invention, or the content of the first shielding filler and the second shielding filler, It is understood that the mechanical stability of the polyimide film is remarkably deteriorated if it is out of the scope of the present invention.
실험예 3: 유전율 평가Experimental Example 3: Evaluation of dielectric constant
<실시예 1> 내지 <실시예 7> 및 <비교예 1> 내지 <비교예 9>에서 각각 제조한 폴리이미드 필름에 대해서, Keysight 사의 SPDR 측정기를 이용하여 주파수 1.1GHz에서의 유전율을 측정하고, 그 결과를 하기 표 3에 나타내었다.The dielectric constant of each of the polyimide films prepared in Examples 1 to 7 and Comparative Examples 1 to 9 was measured at a frequency of 1.1 GHz using an SPDR measuring device manufactured by Keysight, The results are shown in Table 3 below.
제1 차폐성 필러The first shielding filler 제2 차폐성 필러The second shielding filler 유전율(Dk)The dielectric constant (Dk)
함량(중량부)Content (parts by weight) 입경(㎛)Particle size (탆) 함량(중량부)Content (parts by weight) 수평방향입경(㎛)Horizontal grain size (탆) 수직방향입경(nm)Vertical grain size (nm)
실시예 1Example 1 33 0.50.5 1One 1010 22 3.73.7
실시예 2Example 2 3.53.5 0.50.5 0.50.5 1010 22 3.63.6
실시예 3Example 3 3.73.7 0.50.5 0.30.3 1010 22 3.53.5
실시예 4Example 4 55 0.50.5 1One 1010 22 4.24.2
실시예 5Example 5 1One 0.50.5 0.30.3 1010 22 3.33.3
실시예 6Example 6 33 1One 1One 1515 22 4.34.3
실시예 7Example 7 33 0.10.1 1One 55 22 4.24.2
비교예 1Comparative Example 1 44 0.50.5 00 -- -- 3.43.4
비교예 2Comparative Example 2 22 0.50.5 22 1010 22 5.85.8
비교예 3Comparative Example 3 1One 0.50.5 33 1010 22 6.56.5
비교예 4Comparative Example 4 3.93.9 0.50.5 0.10.1 1010 22 3.43.4
비교예 5Comparative Example 5 0.50.5 0.50.5 3.53.5 1010 22 7.87.8
비교예 6Comparative Example 6 88 0.50.5 1One 1010 22 5.55.5
비교예 7Comparative Example 7 0.50.5 0.50.5 0.10.1 1010 22 3.43.4
비교예 8Comparative Example 8 33 22 1One 2020 22 4.54.5
비교예 9Comparative Example 9 33 0.010.01 1One 33 22 4.24.2
표 3을 참조하면, 실시예 1 내지 실시예 7의 폴리이미드 필름의 경우, 제2 차폐성 필러의 함량이 본 발명에 따른 함량 범위를 벗어나는 비교예 2, 3 및 5에 비해 유전율이 낮은 것을 확인할 수 있고, 결과적으로 제조된 폴리이미드 필름의 절연성이 우수한 것을 확인할 수 있다.Referring to Table 3, it can be seen that the dielectric constant of the polyimide films of Examples 1 to 7 is lower than that of Comparative Examples 2, 3 and 5 in which the content of the second shielding filler is outside the content range according to the present invention As a result, it can be confirmed that the polyimide film produced has excellent insulating properties.
따라서, 상기 표 1 내지 3에서 확인할 수 있듯이, 비교예들의 경우, 차폐성, 기계적 안정성 및 절연성에 대한 물성들 중 적어도 하나 이상이 본 발명의 범위를 만족하지 않는 반면, 실시예들은 상기 물성들을 모두 만족하는 것을 확인할 수 있다.Therefore, as shown in Tables 1 to 3, in the case of the comparative examples, at least one of the properties of the shielding property, the mechanical stability and the insulating property does not satisfy the scope of the present invention, .
이상 본 발명의 실시예들을 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕을 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.Although the present invention has been fully described by way of example with reference to the accompanying drawings, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the invention.
이상에서 설명한 바와 같이, 본 발명의 목적은 블랙 폴리이미드 필름을 제공하는 것이며, 구체적으로, 상기 폴리이미드 필름에 1 내지 5중량부의 제1 차폐성 필러 및 0.3 내지 1중량부의 제2 차폐성 필러를 포함하도록 구성함으로써, 소량의 필러를 포함함에도 불구하고 광투과율을 감소시켜서 차폐성을 향상시키고, 모듈러스를 향상시켜 기계적 안정성을 확보하는 동시에 유전율을 최소화할 수 있다.As described above, the object of the present invention is to provide a black polyimide film, and more particularly, to a polyimide film which comprises 1 to 5 parts by weight of a first shielding filler and 0.3 to 1 part by weight of a second shielding filler The light transmittance is reduced to improve the shielding property, and the modulus can be improved to secure the mechanical stability and to minimize the dielectric constant, even though a small amount of filler is contained.

Claims (11)

100중량부의 폴리이미드 수지;100 parts by weight of a polyimide resin;
1 내지 5중량부의 평균 입경이 0.1 내지 1㎛인 제1 차폐성 필러; 및1 to 5 parts by weight of a first shielding filler having an average particle diameter of 0.1 to 1 占 퐉; And
0.3 내지 1중량부의 수평 방향에 대한 평균 입경이 5 내지 15㎛이고, 수직 방향에 대한 평균 입경이 1 내지 10nm인 제2 차폐성 필러를 포함하고,0.3 to 1 part by weight of a second shielding filler having an average particle diameter in a horizontal direction of 5 to 15 占 퐉 and an average particle diameter in a vertical direction of 1 to 10 nm,
가시광선 영역에서의 광투과율이 7% 이하이고, 폴리이미드 필름의 기계반송방향(machine direction; MD) 및 폭방향(transverse direction; TD) 중 적어도 하나의 방향에서 측정한 모듈러스(modulus)가 3GPa 이상이고, 폴리이미드 필름의 두께가 8.0㎛ 이하인 폴리이미드 필름.A modulus measured in at least one direction of the machine direction (MD) and the transverse direction (TD) of the polyimide film is not less than 3 GPa And the polyimide film has a thickness of 8.0 m or less.
제1항에 있어서,The method according to claim 1,
상기 제1 차폐성 필러는 구형화도가 0.8 이상인 폴리이미드 필름.Wherein the first shielding filler has a sphericity of 0.8 or more.
제1항에 있어서,The method according to claim 1,
상기 제1 차폐성 필러는 카본블랙(carbon black)인 폴리이미드 필름.Wherein the first shielding filler is carbon black.
제1항에 있어서,The method according to claim 1,
상기 제2 차폐성 필러는 그래핀(graphene)인 폴리이미드 필름.Wherein the second shielding filler is graphene.
제1항에 있어서,The method according to claim 1,
상기 제2 차폐성 필러의 함량 대비 상기 제1 차폐성 필러의 함량 비율은 100% 내지 1600%인 폴리이미드 필름.Wherein the content ratio of the first shielding filler to the content of the second shielding filler is 100% to 1600%.
제1항에 있어서,The method according to claim 1,
상기 폴리이미드 필름은 MD에서 측정한 모듈러스가 3GPa 이상인 폴리이미드 필름.Wherein the polyimide film has a modulus of 3 GPa or more measured by MD.
제1항에 있어서,The method according to claim 1,
상기 폴리이미드 필름은 주파수 1.1Ghz에서 측정한 유전율이 5 이하인 폴리이미드 필름.Wherein the polyimide film has a dielectric constant measured at a frequency of 1.1 GHz of 5 or less.
제1항에 있어서,The method according to claim 1,
상기 폴리이미드 필름은 두께가 3 내지 7.5㎛인 폴리이미드 필름.Wherein the polyimide film has a thickness of 3 to 7.5 占 퐉.
제1항에 따른 폴리이미드 필름을 제조하는 방법으로서,A method for producing a polyimide film according to claim 1,
(a) 디안하이드라이드 및 디아민류로부터 폴리아믹산을 중합하는 단계;(a) polymerizing a polyamic acid from dianhydride and diamines;
(b) 밀링기를 이용하여 평균 입경이 0.1 내지 1㎛인 제1 차폐성 필러 및 수평 방향에 대한 평균 입경이 5 내지 15㎛이고, 수직 방향에 대한 평균 입경이 1 내지 10nm인 제2 차폐성 필러를 제조하는 단계;(b) Using a milling machine, a first shielding filler having an average particle diameter of 0.1 to 1 占 퐉 and a second shielding filler having an average particle diameter of 5 to 15 占 퐉 in the horizontal direction and an average particle diameter of 1 to 10 nm in the vertical direction ;
(c) 상기 폴리아믹산에 상기 제1 차폐성 필러 및 제2 차폐성 필러를 혼합하고 지지체에 제막하고 열처리하여 이미드화하는 단계를 포함하는 폴리이미드 필름의 제조방법.(c) mixing the first shielding filler and the second shielding filler with the polyamic acid, forming a film on the support, and heat treating the film to imidize the polyimide film.
제1항에 따른 폴리이미드 필름을 포함하는 커버레이(coverlay).A coverlay comprising a polyimide film according to claim 1.
제10항에 따른 커버레이를 포함하는 전자 장치.An electronic device comprising a coverlay according to claim 10.
PCT/KR2019/000534 2018-01-16 2019-01-14 Black polyimide film and manufacturing method therefor WO2019143085A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980007464.6A CN111566151B (en) 2018-01-16 2019-01-14 Black polyimide film and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0005551 2018-01-16
KR1020180005551A KR102081098B1 (en) 2018-01-16 2018-01-16 Black Polyimide Film and Method for Preparing The Same

Publications (1)

Publication Number Publication Date
WO2019143085A1 true WO2019143085A1 (en) 2019-07-25

Family

ID=67301123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000534 WO2019143085A1 (en) 2018-01-16 2019-01-14 Black polyimide film and manufacturing method therefor

Country Status (3)

Country Link
KR (1) KR102081098B1 (en)
CN (1) CN111566151B (en)
WO (1) WO2019143085A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130106169A (en) * 2012-03-19 2013-09-27 현대자동차주식회사 Composite for shielding electromagnetic wave
KR20130113778A (en) * 2012-04-06 2013-10-16 에스케이씨코오롱피아이 주식회사 Black polyimide film
JP2013221150A (en) * 2012-04-13 2013-10-28 Mortech Corp Polyimide film and method for manufacturing the same
CN104151582A (en) * 2014-07-17 2014-11-19 哈尔滨工业大学 Method for preparing graphene-polyimide conductive black film
KR20170073996A (en) * 2015-12-21 2017-06-29 주식회사 두산 Electromagnetic wave shielding film for flexible printed circuit board and the preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149542B (en) * 2008-09-08 2014-07-23 新日铁住金化学株式会社 Highly heat conductive polyimide film, highly heat conductive metal-clad laminate and method for producing same
KR101271606B1 (en) * 2011-08-10 2013-06-11 동의대학교 산학협력단 Method of producing polyimide-graphene composite material
JP5582553B1 (en) * 2014-05-02 2014-09-03 清二 加川 High thermal conductivity heat dissipation sheet and method for manufacturing the same
CN105733001B (en) * 2014-12-10 2019-01-01 天津市嘉诺缘电子科技有限公司 A kind of preparation method of the full matt polyimide film of high-performance black
KR101764734B1 (en) * 2015-04-13 2017-08-08 한국과학기술원 Fabrication of 0, 1, 2 dimensional carbon nanomaterials embedded polyimide film and flexible passivation film using the same
CN105085956B (en) * 2015-09-08 2018-01-30 宁波今山电子材料有限公司 Antistatic polyimides shields the preparation method of black film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130106169A (en) * 2012-03-19 2013-09-27 현대자동차주식회사 Composite for shielding electromagnetic wave
KR20130113778A (en) * 2012-04-06 2013-10-16 에스케이씨코오롱피아이 주식회사 Black polyimide film
JP2013221150A (en) * 2012-04-13 2013-10-28 Mortech Corp Polyimide film and method for manufacturing the same
CN104151582A (en) * 2014-07-17 2014-11-19 哈尔滨工业大学 Method for preparing graphene-polyimide conductive black film
KR20170073996A (en) * 2015-12-21 2017-06-29 주식회사 두산 Electromagnetic wave shielding film for flexible printed circuit board and the preparation method thereof

Also Published As

Publication number Publication date
KR20190087138A (en) 2019-07-24
CN111566151B (en) 2022-11-25
CN111566151A (en) 2020-08-21
KR102081098B1 (en) 2020-02-25

Similar Documents

Publication Publication Date Title
WO2019088454A1 (en) Ultra-thin black polyimide film and manufacturing method therefor
KR101156084B1 (en) Black polyimide film and method for preparing the same
WO2019093669A2 (en) Ultra-thin black polyimide film and manufacturing method therefor
WO2016117856A1 (en) Method for preparing polyimide film using porous particles, and low dielectric constant polyimide film
EP2867276A1 (en) Polyimide and polyimide film comprising the same
WO2019112151A1 (en) Polyimide film having low permittivity and high thermal conductivity
EP2342266A2 (en) Polyimide film
WO2016175344A1 (en) Polyimide resin and film using same
WO2018147618A1 (en) Method for preparing polyamide-imide film
JP2015509551A (en) Black polyimide film
WO2020096259A1 (en) Ultra-thin polyimide film having improved dimensional stability and manufacturing method therefor
WO2020111399A1 (en) Polyimide film comprising two or more fillers with different particle diameters and electronic apparatus comprising same
WO2018216853A1 (en) Method for manufacturing polyamic acid resin having easy laser separation property and high heat resistance and polyimide film manufactured using same
KR101167011B1 (en) Black polyimide film and method for preparing the same
WO2019143000A1 (en) Highly thermally conductive polyimide film comprising two or more types of fillers
WO2020101225A1 (en) Polyimide precursor composition containing crosslinkable dianhydride-based compound and antioxidant, and polyimide film produced therefrom
US10519312B2 (en) Ultra-thin black polyimide film and method for preparing the same
WO2019139249A1 (en) Polyimide film with improved alkali resistance and method for manufacturing same
WO2020040527A1 (en) Polyimide film comprising crystalline polyimide resin and thermal conductive filler and manufacturing method therefor
WO2020071588A1 (en) Method for producing polyamideimide film, and polyamideimide film produced therefrom
WO2021006427A1 (en) Polyamic acid composition, preparation method for polyamic acid composition, and polyimide comprising same
WO2016209060A1 (en) Polyamide-imide precursor, polyamide-imide film, and display device comprising same
WO2019143085A1 (en) Black polyimide film and manufacturing method therefor
WO2020040347A1 (en) Polyimide film having improved alkali resistance and method for manufacturing same
WO2020017692A1 (en) Polyimide film comprising clay particles and carbon black and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19740996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19740996

Country of ref document: EP

Kind code of ref document: A1