WO2019142919A1 - Cyclone refrigeration device, cyclone coolness/heat recovery unit, and heat pump system provided with said cyclone refrigeration device or cyclone coolness/heat recovery unit - Google Patents

Cyclone refrigeration device, cyclone coolness/heat recovery unit, and heat pump system provided with said cyclone refrigeration device or cyclone coolness/heat recovery unit Download PDF

Info

Publication number
WO2019142919A1
WO2019142919A1 PCT/JP2019/001499 JP2019001499W WO2019142919A1 WO 2019142919 A1 WO2019142919 A1 WO 2019142919A1 JP 2019001499 W JP2019001499 W JP 2019001499W WO 2019142919 A1 WO2019142919 A1 WO 2019142919A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
phase refrigerant
fluid
cavity
cooled
Prior art date
Application number
PCT/JP2019/001499
Other languages
French (fr)
Japanese (ja)
Inventor
山口 博司
晴彦 山崎
ペーター ネクサ
一裕 服部
神村 岳
Original Assignee
学校法人同志社
株式会社前川製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人同志社, 株式会社前川製作所 filed Critical 学校法人同志社
Priority to EP19741070.7A priority Critical patent/EP3742070B1/en
Publication of WO2019142919A1 publication Critical patent/WO2019142919A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/12Devices using other cold materials; Devices using cold-storage bodies using solidified gases, e.g. carbon-dioxide snow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • F25B9/04Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect using vortex effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air

Definitions

  • the present invention relates to a cyclone-type refrigerator, a cyclone-type cold heat recovery unit, and a heat pump system provided with the cyclone-type refrigerator or the cyclone-type cold heat recovery unit.
  • This type of refrigeration apparatus includes, for example, a compressor that compresses CO 2 to a saturation pressure or a supercritical pressure at a temperature at ordinary temperature level, a condenser that cools and condenses high-pressure gas phase CO 2 from the compressor, and a condenser pressures up the triple point of the CO 2 condensed CO 2 by vessel, solid-gas two-phase is a mixture of phases solid under reduced pressure to a temperature level CO 2 (dry ice) and vapor phase CO 2 (carbon dioxide) and CO 2 expansion device to CO 2, the cold due to sublimation of the solid-gas two-phase CO 2 fed from CO 2 expansion device, a gas-phase CO 2 after sublimation is supplied to the fluid to be cooled from the cooling load
  • a CO 2 sublimation means to be sent to a compressor is provided (see, for example, Patent Document 1).
  • the CO 2 sublimation means comprises a direct contact CO 2 sublimation device (see FIG. 1 of Patent Document 1) or an indirect contact CO 2 sublimation device (see FIG. 2 of Patent Document 1). Then, in the direct contact CO 2 sublimation apparatus, the solid-gas two-phase CO 2 supplied from the CO 2 expander is ejected into the brine stored in the storage tank, and the solid-gas two-phase CO 2 is brine The submersion heat is used to sublime, the sublimation cools the brine, and the cooled brine exchanges heat with the cooled fluid from the cooling load in the brine heat exchanger.
  • the fluid to be cooled from the cooling load is made to flow into a large number of cooling pipes arranged in parallel, while the CO 2 expansion device is provided in the CO 2 passage provided between the cooling pipes.
  • the solid-gas two-phase CO 2 fed from the source is allowed to flow, and the solid-gas two-phase CO 2 is sublimated by the heat of the fluid to be cooled in the cooling pipe, and the sublimation cools the fluid to be cooled to cryogenic temperature.
  • this refrigeration system utilizes the latent heat of solid phase CO 2 in the solid-gas two-phase state, and also has a defect that the cooling capacity is inferior as compared to the case where the sublimation heat of only solid phase CO 2 is used. there were.
  • an object of the present invention is to provide a refrigeration system which has a high cooling capacity and can be operated smoothly and continuously.
  • the present invention has a cylindrical part which is extended vertically and closed at the upper end opening, and a diameter smaller than that of the cylindrical part, connected to the upper end of the cylindrical part and directed upward from the upper end And an exhaust pipe communicating with the internal space of the cylindrical part, and a cooling part having a cavity connected to the lower end of the cylindrical part and communicating with the internal space of the cylindrical part.
  • a refrigerant inlet is formed on the upper side wall of the cylindrical portion, and one end is connected to the refrigerant inlet, and the other end receives a supply of liquid phase refrigerant condensed under high pressure from the other end.
  • a decompressor provided in the refrigerant inflow pipe, wherein the liquid phase refrigerant supplied to the refrigerant inflow pipe is decompressed by the decompressor to form a solid-gas two-phase refrigerant;
  • Phase refrigerant flows into the internal space of the cylindrical portion and While forming the vortex which descends in the internal space, it is separated into a solid-phase refrigerant and a gas-phase refrigerant, and while the solid-phase refrigerant is deposited in the cavity, the gas-phase refrigerant descends from the bottom of the cavity It forms a vortex that rises through the inner space of the vortex, and flows out from the exhaust pipe, and further extends through the cavity of the cooling unit, and both ends of each other outside the cooling unit.
  • the solid-phase refrigerant which is connected and provided in a portion in the cavity in the cooled fluid circulation pipeline through which the cooled fluid from the cooling load flows and the cooled fluid circulation pipeline and the solid phase refrigerant deposited in the cavity
  • Kron refrigeration device is provided.
  • the heat exchanger is formed of a heat conductor, and comprises a container having a fluid outlet and a fluid inlet, the container being filled with the fluid to be cooled therein;
  • a fluid circulation line is connected to the fluid outlet of the container at one end, and a fluid discharge line for cooling which protrudes from the container to the outside of the cooling unit through the cavity, and the fluid at the one end of the container.
  • the cooling fluid supply line connected to the inlet and projecting from the container through the cavity to the outside of the cooling unit, and the other end of the cooling fluid discharge line and the cooling fluid supply line
  • the other ends of the paths are connected to each other via the cooling load, and the pump is provided in the cooled fluid discharge pipeline or the cooled fluid supply pipeline.
  • the cyclonic refrigeration apparatus further comprises an eddy current control member which is disposed straddling the internal space of the cylindrical portion and the cavity of the cooling portion and extends vertically.
  • An eddy current control body is connected to a cylindrical lower portion, an upper end surface of the lower portion, and a truncated conical intermediate portion extending upward from the lower portion and an upper end surface of the intermediate portion, and is directed upward from the intermediate portion
  • An axial through-hole through which the rising vortex flows is formed in the interior of the vortex control body, and the through-hole has a circular cross section, and the vortex has After being tapered upward from the bottom surface of the control body, the vortex flow control body is extended to the upper end surface of the eddy current control body, and the eddy current control body is coaxial with the cylindrical portion and constant on the lower side of the bottom surface.
  • Space is open In a state, the lower is located within said cavity such that said intermediate portion is located across the cavity and the inner space, is supported by the cooling unit or
  • the internal space of the cylindrical portion is tapered downward.
  • the refrigerant is carbon dioxide or water or ammonia.
  • a cyclone type refrigeration system as described above, an outlet of the exhaust pipe of the cyclone type refrigeration system, and a refrigerant circulation pipe connecting the other end of the refrigerant inflow pipe
  • a compressor disposed in the refrigerant circulation pipeline and configured to compress the gas phase refrigerant discharged from the exhaust pipe of the cyclone type refrigeration system, and disposed downstream of the compressor in the refrigerant circulation pipeline;
  • a heat pump system is provided, comprising: a condenser that condenses the gas phase refrigerant compressed by the compressor to form the liquid phase refrigerant.
  • a cyclone type refrigeration system as described above, an outlet of the exhaust pipe of the cyclone type refrigeration system, and a refrigerant circulation pipe connecting the other end of the refrigerant inflow pipe
  • a compressor disposed in the refrigerant circulation pipeline and configured to compress the gas phase refrigerant discharged from the exhaust pipe of the cyclone type refrigeration system, and disposed in series downstream of the compressor in the refrigerant circulation pipeline
  • First and second condensers that condense the gas-phase refrigerant compressed by the compressor to form the liquid-phase refrigerant, and the first and second condensers in the refrigerant circulation pipeline
  • Another heat exchanger disposed downstream, a bypass line connecting the downstream side of the other heat exchanger in the refrigerant circulation line and the upstream side of the compressor, and the bypass line
  • Another pressure reducer An evaporator disposed downstream of the another pressure reducer in the bypass line, and a downstream side of the connection point in the refrigerant circulation line and an upstream side
  • a third flow controller disposed upstream of a connection point between the first and second flow controllers and the downstream end of the bypass channel in the refrigerant circulation pipeline, and the third flow controller in the bypass channel
  • a cyclone type cold heat recovery unit is provided, characterized by comprising a fourth flow rate controller disposed downstream of the evaporator.
  • a cascade heat pump system comprising a low side cycle and a high side cycle, wherein the low side cycle comprises the above-mentioned cyclone type cold heat recovery unit.
  • a cascaded heat pump system is provided, characterized in that the further heat exchanger of the cyclone type cold heat recovery unit forms a lower side heat exchanger of a cascaded heat exchanger.
  • the high-temperature side heat forming the cascade heat exchanger as a pair with the other heat exchanger of the cyclone type cold heat recovery unit An exchanger, a high-end refrigerant circulation pipeline extending between an outlet and an inlet of the high-end heat exchanger, and a high-temperature refrigerant circulation pipeline disposed downstream of the high-end heat exchanger
  • another pressure reducer disposed downstream of the third and fourth condensers.
  • the solid-gas two-phase refrigerant formed by depressurizing the liquid-phase refrigerant condensed under high pressure flows into the internal space of the cylindrical portion to form a downward swirling flow of the solid-gas two-phase refrigerant.
  • the solid-gas two-phase refrigerant is separated into the solid phase refrigerant and the gas phase refrigerant, and the solid phase refrigerant is collected in the cavity of the cooling unit, while the gas phase refrigerant flows through the inner space of the descending vortex ( Since the exhaust pipe is discharged to the outside, it is possible to prevent the solid phase refrigerant from adhering to and accumulating in the refrigerant flow path during the operation of the refrigeration system and the refrigerant flow path being blocked.
  • the fluid to be cooled is returned to the cooled fluid circulation pipeline so as to exchange heat with the solid phase refrigerant deposited in the cavity, and the flow path of the fluid to be cooled is separated from the solid phase refrigerant.
  • the solid phase refrigerant adheres to and accumulates in the flow path of the fluid to be cooled and the flow path of the fluid to be cooled is blocked. This enables smooth continuous operation of the refrigeration system.
  • the present invention only the solid-phase refrigerant separated from the solid-gas two-phase refrigerant exchanges heat with the fluid to be cooled, and cold heat by sublimation of the solid-phase refrigerant is supplied to the fluid to be cooled. Since all of the heat of sublimation can be used to cool the fluid to be cooled, the cooling capacity is increased as compared to the cooling of the fluid to be cooled using the latent heat of the solid phase refrigerant in the solid-gas two-phase state as in the prior art.
  • FIG. 1 shows schematic structure of the cyclone type freezing apparatus by another Example of this invention.
  • FIG. 4 shows schematic structure of the heat pump system with which the cyclone type freezing apparatus of FIG. 1 was integrated as an evaporator.
  • FIG. 4 is a Mollier diagram in the case where the heat pump system of FIG. 3 is provided with the cyclone type refrigerator of FIG. 2 instead of the cyclone type refrigerator of FIG. 1 and CO 2 is used as a refrigerant.
  • the heat pump system of Figure 3 comprises a known evaporator in place of the cyclone-type cooling unit is a Mollier diagram in the case of using CO 2 as the refrigerant. It is a figure which shows schematic structure of the cyclone type cold heat recovery unit provided with the cyclone type freezing apparatus of FIG. It is a figure which shows schematic structure of the cascade heat pump system in which the cyclone type cold heat recovery unit of FIG. 7 was integrated as a low side cycle.
  • FIG. 1 is a front view showing a schematic configuration of a cyclone type refrigerating apparatus according to an embodiment of the present invention.
  • the cylindrical portion 1 extending up and down, the inner flange 2 provided at the upper end opening 1 a of the cylindrical portion 1, and the outer diameter corresponding to the opening diameter of the inner flange 2
  • the exhaust pipe 3 is connected to the inner flange 2 at one end and protrudes upward from the upper end opening 1 a of the cylindrical portion 1.
  • the configuration of the connecting portion between the cylindrical portion 1 and the exhaust pipe 3 is not limited to this embodiment.
  • the cylindrical portion 1 extends vertically and the upper end opening is closed, and the exhaust pipe 3 having a diameter smaller than that of the cylindrical portion 1 is cylindrical. Any configuration may be employed as long as it is connected to the upper end of the portion 1 and coaxially extends upward from the upper end coaxially with the cylindrical portion 1.
  • the inner space 1b of the cylindrical portion 1 is formed to be tapered downward (the inner diameter gradually decreases), but the inner diameter of the inner space 1b may be constant. Further, at the lower end of the cylindrical portion 1, a cooling portion 4 having a cavity 4 a communicating with the internal space 1 b of the cylindrical portion 1 is connected.
  • a refrigerant inlet 1 c is formed on the upper side wall of the cylindrical portion 1.
  • the refrigerant inlet 1 c preferably extends tangentially to the cross section of the cylindrical portion 1.
  • one end 5 a of the refrigerant inflow pipe 5 is connected to the refrigerant inflow port 1 c of the cylindrical portion 1.
  • the refrigerant inflow pipe 5 receives the supply of the liquid phase refrigerant condensed under high pressure from the other end 5b.
  • An expansion valve (depressurizer) 6 is provided in the refrigerant inflow pipe 5.
  • a cylinder G is connected to the other end 5b of the refrigerant inflow pipe 5 as a supply source of liquid phase refrigerant.
  • the liquid-phase refrigerant supplied to the refrigerant inflow pipe 5 is decompressed by the expansion valve 6 to form a solid-gas two-phase refrigerant, and the solid-gas two-phase refrigerant flows from the refrigerant inlet 1c of the cylindrical portion 1 to the internal space 1b. It flows in and forms an eddy current by flowing along the inner wall surface of the inner space 1b.
  • the pressure outside the vortex is larger than the pressure inside the vortex, and the pressure difference between the outside and the inside of the vortex decreases from the top to the bottom of the internal space 1b.
  • the vortex flows from the refrigerant inlet 1 c of the cylindrical portion 1 to the cavity 4 a of the cooling portion 4 and is maintained as it is.
  • the solid-gas two-phase refrigerant is separated into the solid phase refrigerant S and the gas phase refrigerant, and the solid phase refrigerant S is deposited in the cavity 4a.
  • the gas phase refrigerant reaches the bottom of the cavity 4a, but at this time, since the pressure difference between the outside and the inside of the swirl is small, the gas phase refrigerant forms a rising swirl through the inner space of the falling swirl, It flows out through the pipe 3.
  • the refrigerant used in the present invention must be able to be maintained at the pressure and temperature level below the triple point inside the cyclone type refrigerator, and this condition
  • the refrigerant that satisfies the above may include carbon dioxide (CO 2 ), water, and ammonia.
  • a cooled fluid circulation pipeline extending through the cavity 4a of the cooling unit 4 and having both ends connected to each other outside the cooling unit 4 and in which the cooled fluid from the cooling load 9 flows
  • a heat exchanger 8 provided in a portion in the cavity 4a of the to-be-cooled fluid circulation pipeline 7 for exchanging heat between the solid phase refrigerant S deposited in the cavity 4a and the to-be-cooled fluid.
  • the heat exchanger 8 is formed of a heat conductor, and comprises a container having a fluid outlet 8a and a fluid inlet 8b and internally filled with a fluid to be cooled.
  • antifreeze liquid, ethanol or the like can be used as the fluid to be cooled
  • the container (heat exchanger) 8 has high thermal conductivity and is a metal that is not easily affected by corrosion or the like by the fluid to be cooled
  • one end of the to-be-cooled fluid circulation pipeline 7 is connected to the fluid outlet 8 a of the container (heat exchanger) 8 and protrudes from the container (heat exchanger) 8 through the cavity 4 a to the outside of the cooling unit 4
  • a cooled fluid discharge pipeline 7a and one end thereof are connected to a fluid inlet 8b of a container (heat exchanger) 8 so as to project from the container (heat exchanger) 8 through the cavity 4a to the outside of the cooling unit 4
  • the other end of the fluid discharge conduit 7 a and the other end of the fluid supply conduit 7 b are connected to each other via the cooling load 9.
  • the pump 10 is further provided in the cooled fluid discharge conduit 7a or the cooled fluid supply conduit 7b, and the operation of the pump 10 causes the fluid to be cooled to flow from the container (heat exchanger) 8 to
  • the cooling fluid discharge pipeline 7 a ⁇ the cooling load 9 ⁇ the cooled fluid supply pipeline 7 b ⁇ the vessel (heat exchanger) 8 is refluxed in this order.
  • the solid-gas two-phase refrigerant formed by pressure reduction of the liquid phase refrigerant flows into the internal space 1a of the cylindrical portion 1 to form a vortex flowing downward and
  • the refrigerant S and the gas phase refrigerant are separated, and the solid phase refrigerant S is deposited in the cavity 4 a of the cooling unit 4, while the gas phase refrigerant forms a swirling flow rising through the inner space of the falling swirling flow. Flow out to the outside.
  • the solid-phase refrigerant S deposited in the cavity 4 a is sublimated by the heat of the fluid to be cooled filled in the container (heat exchanger) 8, and the cold heat due to the sublimation is supplied to the fluid to be cooled, and cooled
  • the fluid is delivered to the cooling load 9 through the cooled fluid discharge line 7a.
  • the downward vortex of the solid-gas two-phase refrigerant is generated in the internal space 1b of the cylindrical portion 1 to separate the solid-gas two-phase refrigerant into the solid-phase refrigerant S and the gas-phase refrigerant and cool the solid-phase refrigerant S Since the gas phase refrigerant is discharged from the exhaust pipe 3 to the outside through the inner space of the downward vortex flow while being collected in the cavity 4a of the part 4, the solid phase refrigerant S adheres to the inside of the refrigerant channel during operation of the refrigeration system It is prevented that it accumulates and a refrigerant
  • the fluid to be cooled exchanges heat with the solid phase refrigerant S deposited in the cavity 4 a while refluxing the inside of the fluid circulation pipeline to be cooled, whereby the flow path of the fluid to be cooled is separated from the solid phase refrigerant S Therefore, it is also prevented that the solid phase refrigerant S adheres and accumulates in the flow path of the fluid to be cooled and the flow path of the fluid to be cooled is blocked during operation of the refrigeration device, whereby smooth continuity of the refrigeration device It becomes possible to drive.
  • the solid-phase refrigerant S separated from the solid-gas two-phase refrigerant is subjected to heat exchange with the fluid to be cooled, and cold heat due to sublimation of the solid-phase refrigerant S is supplied to the fluid to be cooled. All can be used to cool the fluid being cooled. Therefore, as compared with the conventional example, the solid-gas two-phase refrigerant is subjected to heat exchange with the fluid to be cooled, and the latent heat of the solid-phase refrigerant S in the solid-gas two-phase state is used to cool the fluid to be cooled. Cooling capacity is improved.
  • FIG. 2 is a view similar to FIG. 1 showing a schematic configuration of a cyclonic refrigeration apparatus according to another embodiment of the present invention.
  • the embodiment of FIG. 2 differs from the embodiment of FIG. 1 only in that a structure for controlling the vortex flow is provided over the internal space 1 b of the cylindrical portion 1 and the cavity 4 a of the cooling portion 4. Therefore, in FIG. 2, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and the detailed description thereof will be omitted below.
  • an eddy current control body 11 is disposed straddling the internal space 1 b of the cylindrical portion 1 and the cavity 4 a of the cooling portion 4 and extends vertically.
  • the eddy current control body 11 is connected to the cylindrical lower portion 11a and the upper end surface of the lower portion 11a, and is connected to the upper end surface of the intermediate portion 11b and the truncated cone-like intermediate portion 11b extending upward from the lower portion 11a. It consists of a cylindrical upper portion 11c extending upward from 11b.
  • the vortex control body 11 has therein an axial through hole 12 through which a rising vortex of gas-phase refrigerant flows.
  • the through hole 12 has a circular cross section, and extends upward from the bottom surface 11 e of the eddy current control body 11 in a tapered shape, and then extends up to the upper end surface 11 d of the eddy current control body 11.
  • the through hole 12 has a diffuser function.
  • the lower portion 11a is located in the cavity 4a of the cooling portion 4 and the middle portion 11b is a cavity in a state where a constant space is opened coaxially with the cylindrical portion 1 and below the bottom surface 11e. It is supported by the cooling unit 4 and / or the cylindrical portion 1 by suitable support members (not shown) so as to be located across the internal space 1b of the cylindrical portion 1 and 4a.
  • the falling vortex of the solid-gas two-phase refrigerant passes through the outside of the vortex control body 11, and the rising vortex of the gas-phase refrigerant separated from the solid-gas two-phase refrigerant passes through the through hole 12 of the vortex control body 11. And the pressure is boosted by the diffuser function of the through hole 12 during passage.
  • the vortex control body 11 by providing the vortex control body 11, the movement of the gas phase refrigerant in the falling vortex in the lower part of the internal space 1b and the cavity 4a is promoted to the inside of the vortex, and further, the gas phase refrigerant A steady and strong upward vortex is formed.
  • the collection efficiency of the solid-phase refrigerant S is higher than that of the embodiment of FIG. 1, and as a result, the cooling performance of the refrigeration system is also improved.
  • FIG. 3 is a view showing a schematic configuration of a heat pump system in which the cyclone type refrigeration system of FIG. 1 is incorporated as an evaporator.
  • the same components as those shown in FIG. 1 are designated by the same reference numerals, and the detailed description thereof will be omitted below.
  • the heat pump system 16 is a refrigerant circulation pipe connecting the cyclone type refrigeration system shown in FIG. 1, the opening of the exhaust pipe 3 of the cyclone type refrigeration system, and the other end 5b of the refrigerant inflow pipe 5. It has fifteen.
  • the heat pump system 16 is further disposed in the refrigerant circulation pipeline 15, and is configured to compress the gas phase refrigerant discharged from the exhaust pipe 3 of the cyclone type refrigeration system, and the downstream of the compressor 13 in the refrigerant circulation pipeline 15.
  • the condenser 14 is disposed on the side and condenses the gas phase refrigerant compressed by the compressor 13 to form a liquid phase refrigerant.
  • FIG. 4 is a Mollier diagram when CO 2 is used as the refrigerant in the heat pump system 16.
  • the gaseous phase CO 2 taken into the compressor 13 through the refrigerant circulation line 15 is compressed in the compressor 13 (D ⁇ A in FIG. 4) to form a high pressure gaseous phase CO 2 , and the refrigerant circulation line 15 Is supplied to the condenser.
  • the gas phase CO 2 is cooled in a high pressure state to form liquid phase CO 2 (A ⁇ B in FIG. 4), and is supplied to the expansion valve 6 through the refrigerant inflow pipe 5.
  • the high-pressure liquid phase CO 2 is expanded and reduced by the expansion valve to form solid-gas two-phase CO 2 (B ⁇ C in FIG. 4), and the solid-gas two-phase CO 2 is an evaporator (cyclone type refrigerator)
  • the refrigerant flows into the internal space 1b of the cylindrical portion 1 of the evaporator (cyclone type refrigeration system) from the refrigerant inlet 1c.
  • the inflowing solid-gas two-phase CO 2 forms a vortex that descends the internal space 1b and separates into solid-phase CO 2 and gas-phase CO 2 (C ⁇ E in FIG. 4 (solid-gas two-phase CO 2 solid CO corresponding to the second separation step) and 4 C ⁇ D (corresponding to the vapor phase CO 2 separation process from the solid-gas two-phase CO 2)).
  • the solid phase CO 2 is deposited in the cavity 4 a of the cooling unit 4 of the evaporator (cyclone-type refrigerator), while the gas phase CO 2 forms a rising vortex through the inner space of the falling vortex, and the exhaust is exhausted. From the pipe 3, it is taken into the compressor 13 through the refrigerant circulation line 15.
  • the solid phase CO 2 deposited in the cavity 4a of the evaporator (cyclone type refrigerator) is sublimated by the heat of the fluid to be cooled (E ⁇ D in FIG. 4), and the cold heat by this sublimation is supplied to the fluid to be cooled .
  • FIG. 6 is a Mollier diagram when using a known evaporator instead of the cyclonic refrigeration system of the present invention in the heat pump system 16 of FIG. 3 and using CO 2 as a refrigerant, where D ⁇ A is a compressor 13, A ⁇ B corresponds to the condensation process in the condenser 14, B ⁇ C corresponds to the expansion process in the expansion valve (pressure reducer) 6, C ⁇ D corresponds to the evaporation process in the evaporator It corresponds.
  • the enthalpy obtained in the evaporation process in the evaporator is significantly higher than that of the conventional example. It is increasing. This is because, in the conventional example, solid-gas two-phase CO 2 is subjected to heat exchange with the fluid to be cooled, and the latent heat of solid-phase CO 2 in the solid-gas two-phase state is used to cool the fluid to be cooled.
  • FIG. 5 is a Mollier diagram in the case where the cyclone type refrigerating apparatus of FIG. 2 is provided instead of the cyclone type refrigerating apparatus of FIG. 1 as an evaporator in the heat pump system 16 of FIG. 13,
  • a ⁇ B corresponds to the condensation process in the condenser 14
  • B ⁇ C corresponds to the expansion process in the expansion valve (depressurizer) 6
  • C ⁇ E is the evaporator (cyclone type refrigeration) C) corresponds to the separation process of the gas-phase refrigerant from the solid-gas two-phase refrigerant in the evaporator (cyclone type refrigeration apparatus).
  • E ⁇ D correspond to the evaporation process of the solid phase refrigerant S in the evaporator (cyclone type refrigeration system).
  • the compressor is used alone in the CO 2 compression process (D ⁇ A), but the compressor is formed by connecting a low-pressure stage compressor and a high-pressure stage compressor in series.
  • An intercooler may be provided between the stage compressor and the high pressure stage compressor to perform two-stage compression of gas phase CO 2 .
  • gas phase CO 2 can be easily compressed to a saturation pressure or a supercritical pressure.
  • FIG. 7 is a view showing a schematic configuration of a cyclone type cold heat recovery unit provided with the cyclone type refrigeration system of FIG.
  • the same components as those shown in FIG. 1 are designated by the same reference numerals, and the detailed description thereof will be omitted below.
  • a cyclone type cold heat recovery unit 17 includes the cyclone type refrigerating apparatus shown in FIG. 1, the outlet of the exhaust pipe 3 of the cyclone type refrigerating apparatus, and the other end 5b of the refrigerant inflow pipe 5.
  • a refrigerant circulation line 18 to be connected is provided.
  • a compressor 19 for compressing the gas phase refrigerant discharged from the exhaust pipe 3 of the cyclone type refrigeration system is disposed in the refrigerant circulation pipeline 18, and the compressor 18 in the refrigerant circulation pipeline 18 downstream of the compressor 19
  • First and second condensers 20, 21 for condensing the compressed gas phase refrigerant to form a liquid phase refrigerant are arranged in series.
  • a heat exchanger 22 is disposed downstream of the first and second condensers 20 and 21 in the refrigerant circulation pipeline 18.
  • downstream side of the heat exchanger 22 and the upstream side of the compressor 18 in the refrigerant circulation line 18 are connected by a bypass line 23.
  • An expansion valve (pressure reducing device) 24 is disposed in the bypass line 23, and an evaporator 25 is disposed downstream of the expansion valve 24 in the bypass line 23.
  • a first flow rate controller 27 is disposed downstream of a connection point 26 between the refrigerant circulation pipeline 18 and the upstream end of the bypass pipeline 23, and a second flow controller 27 is disposed upstream of the expansion valve 24 in the bypass pipeline 23.
  • a flow controller 28 is arranged.
  • the third flow rate controller 30a is disposed on the upstream side of the connection point 29 of the refrigerant circulation pipeline 18 with the downstream end of the bypass pipeline 23, and the fourth flow controller 30a is disposed downstream of the evaporator 25 in the bypass pipeline 23.
  • the flow controller 30b of the second embodiment is disposed.
  • the third and fourth flow controllers 30a, 30b have a main purpose of pressure control. That is, in this embodiment, when CO 2 is used as the refrigerant, the cyclone type refrigeration system operates under the pressure condition below the triple point where CO 2 is in the solid-gas two phase state, while the evaporator 25 is CO 2
  • the third and fourth flow controllers 30a and 30b operate so as to maintain the pressure conditions described above.
  • the fluid to be cooled which exchanges heat with the solid phase refrigerant S in the heat exchanger 8 of the cyclone type refrigeration system preferably comprises a cold cooling medium (carbon dioxide, ethanol, helium, etc.) .
  • a cold cooling medium carbon dioxide, ethanol, helium, etc.
  • a part of the liquid phase refrigerant flowing through the refrigerant circulation pipeline 18 is diverted to the bypass pipeline 23 to operate the cyclone type refrigerating apparatus and the evaporator 25 simultaneously, or to the bypass pipeline 23.
  • the supply of the liquid-phase refrigerant can be stopped to operate only the cyclone-type refrigeration system, or the supply of the liquid-phase refrigerant to the cyclone-type refrigeration system can be stopped to operate only the evaporator 25.
  • the temperature range of recoverable cold energy is expanded as compared with the embodiment shown in FIG.
  • FIG. 8 is a view showing a schematic configuration of a cascade heat pump system in which the cyclone type cold heat recovery unit of FIG. 7 is incorporated as a low side cycle.
  • the same components as those shown in FIG. 7 will be assigned the same reference numerals, and the detailed description thereof will be omitted below.
  • the cascade heat pump system 31 includes a low side cycle 32 and a high side cycle 33, and the low side cycle 32 is composed of the cyclone type cold heat recovery unit 17 shown in FIG. ing.
  • the heat exchanger 22 of the cyclone type cold heat recovery unit 17 forms the low side heat exchanger 35 of the cascade heat exchanger 34 of the cascade heat pump system 31.
  • the high-temperature side cycle 33 is between the high-temperature side heat exchanger 36 forming a cascade heat exchanger 34 in pair with the low-temperature side heat exchanger 35, and the outlet 36 a and the inlet 36 b of the high-temperature side heat exchanger 36.
  • a compressor 38 disposed downstream of the high-temperature-side heat exchanger 36 in the high-temperature-side refrigerant circulation pipeline 37 extending in the vertical direction, and a compressor in the high-temperature-region refrigerant circulation pipeline 37
  • the third and fourth condensers 39, 40 disposed in series downstream of 38 and the third and fourth condensers 39, 40 in the upstream refrigerant circulation line 37 are disposed downstream of the third and fourth condensers 39, 40.
  • An expansion valve (depressurizer) 41 is provided.
  • Reference Signs List 1 cylindrical portion 1a upper end opening 1b internal space 1c refrigerant inlet 2 inner flange 3 exhaust pipe 4 cooling portion 4a cavity 5 refrigerant inlet pipe 5a one end 5b other end 6 expansion valve (depressurizer) 7 to-be-cooled fluid circulation pipeline 7a to-be-cooled fluid discharge pipeline 7b to-be-cooled fluid supply pipeline 8 heat exchanger 8a fluid outlet 8b fluid inlet 9 cooling load 10 pump 11 vortex control body 11a lower part 11b middle part 11c upper part 11d upper end surface 11e Bottom 12 Through-hole 13 Compressor 14 Condenser 15 Refrigerant circulation pipeline 16 Heat pump system 17 Cyclone type cold heat recovery unit 18 Refrigerant circulation pipeline 19 Compressor 20 1st condenser 21 2nd condenser 22 Heat exchanger 23 Bypass line 24 expansion valve (pressure reducer) 25 evaporator 26 connection point 27 first flow rate controller 28 second flow rate controller 29 connection point 30a third flow rate controller 30b fourth flow rate controller 31 cascade heat pump system 32 low

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Cyclones (AREA)

Abstract

The present invention is provided with a cylinder part 1, an exhaust pipe 3, a cooling part 4 having a cavity 4a that passes through an internal space 1b of the cylinder part, a refrigerant inflow pipe 5, and a decompression device 6. A liquid-phase refrigerant that has been condensed under high pressure is supplied to a refrigerant supply pipe and is decompressed by the decompression device to form a solid-gas two-phase refrigerant. The solid-gas two-phase refrigerant flows into the internal space of the cylinder part and forms a downward spiral, and is separated into a solid-phase refrigerant S and a gas-phase refrigerant. The solid-phase refrigerant S accumulates in the cavity, and the gas-phase refrigerant forms an upward spiral passing from a bottom part of the cavity through the interior space inside the downward spiral and flows out from the exhaust pipe. The present invention is also provided with: pipelines 7a, 7b through which a fluid to be cooled circulates, said pipelines 7a, 7b through which a fluid to be cooled circulates extending through the cavity of the cooling part, and a fluid to be cooled from a cooling load 9 is circulated through the interior of the pipelines through which a fluid to be cooled circulates; a heat exchanger 8 provided to a portion of the pipelines through which a fluid to be cooled circulates that is within the cavity, the heat exchanger 8 performing heat exchange between the solid-phase refrigerant S and the fluid to be cooled; and a pump 10 that circulates the fluid to be cooled.

Description

サイクロン式冷凍装置、サイクロン式冷熱回収ユニット、および該サイクロン式冷凍装置または該サイクロン式冷熱回収ユニットを備えたヒートポンプシステムCyclone-type refrigeration apparatus, cyclone-type cold heat recovery unit, and heat pump system comprising the cyclone-type refrigeration apparatus or the cyclone-type cold heat recovery unit
 本発明は、サイクロン式冷凍装置、サイクロン式冷熱回収ユニット、および当該サイクロン式冷凍装置または当該サイクロン式冷熱回収ユニットを備えたヒートポンプシステムに関するものである。 The present invention relates to a cyclone-type refrigerator, a cyclone-type cold heat recovery unit, and a heat pump system provided with the cyclone-type refrigerator or the cyclone-type cold heat recovery unit.
 従来技術においては、二酸化炭素(CO)を冷媒として使用する冷凍装置がいくつか知られている。
 この種の冷凍装置は、例えば、COを常温レベルの温度で飽和圧力あるいは超臨界圧力に圧縮する圧縮機と、圧縮機からの高圧の気相COを冷却、凝縮する凝縮器と、凝縮器によって凝縮されたCOをCOの三重点以下の圧力、温度レベルに減圧して固相CO(ドライアイス)と気相CO(炭酸ガス)との混合体である固気二相COとするCO膨張装置と、CO膨張装置から送給される固気二相COの昇華による冷熱を、冷却負荷からの被冷却流体に供給するとともに昇華後の気相COを圧縮機に送るCO昇華手段を備えている(例えば、特許文献1参照)。
In the prior art, several refrigeration systems using carbon dioxide (CO 2 ) as a refrigerant are known.
This type of refrigeration apparatus includes, for example, a compressor that compresses CO 2 to a saturation pressure or a supercritical pressure at a temperature at ordinary temperature level, a condenser that cools and condenses high-pressure gas phase CO 2 from the compressor, and a condenser pressures up the triple point of the CO 2 condensed CO 2 by vessel, solid-gas two-phase is a mixture of phases solid under reduced pressure to a temperature level CO 2 (dry ice) and vapor phase CO 2 (carbon dioxide) and CO 2 expansion device to CO 2, the cold due to sublimation of the solid-gas two-phase CO 2 fed from CO 2 expansion device, a gas-phase CO 2 after sublimation is supplied to the fluid to be cooled from the cooling load A CO 2 sublimation means to be sent to a compressor is provided (see, for example, Patent Document 1).
 CO昇華手段は、直接接触CO昇華装置(特許文献1の図1参照)または間接接触CO昇華装置(特許文献1の図2参照)からなっている。
 そして、直接接触CO昇華装置においては、CO膨張装置から送給される固気二相COが、貯液槽に貯められたブライン中に噴出せしめられ、固気二相COがブラインの熱によって昇華せしめられ、この昇華によってブラインが冷却され、冷却されたブラインは、ブライン熱交換器において冷却負荷からの被冷却流体と熱交換する。
The CO 2 sublimation means comprises a direct contact CO 2 sublimation device (see FIG. 1 of Patent Document 1) or an indirect contact CO 2 sublimation device (see FIG. 2 of Patent Document 1).
Then, in the direct contact CO 2 sublimation apparatus, the solid-gas two-phase CO 2 supplied from the CO 2 expander is ejected into the brine stored in the storage tank, and the solid-gas two-phase CO 2 is brine The submersion heat is used to sublime, the sublimation cools the brine, and the cooled brine exchanges heat with the cooled fluid from the cooling load in the brine heat exchanger.
 また、間接接触CO昇華装置においては、冷却負荷からの被冷却流体が、並列配置された多数の冷却管内に流される一方、冷却管の間に設けられたCO通路に、CO膨張装置から送給される固気二相COが流され、固気二相COが冷却管内の被冷却流体の熱によって昇華せしめられ、この昇華によって被冷却流体が極低温まで冷却される。 Further, in the indirect contact CO 2 sublimation apparatus, the fluid to be cooled from the cooling load is made to flow into a large number of cooling pipes arranged in parallel, while the CO 2 expansion device is provided in the CO 2 passage provided between the cooling pipes. The solid-gas two-phase CO 2 fed from the source is allowed to flow, and the solid-gas two-phase CO 2 is sublimated by the heat of the fluid to be cooled in the cooling pipe, and the sublimation cools the fluid to be cooled to cryogenic temperature.
 しかし、この従来の冷凍装置では、直接接触CO昇華装置とした場合は、貯液槽内に固相COが堆積して、冷却されたブラインを貯液槽から排出する管路が塞がれ、あるいは、貯液槽への固気二相COの噴出口に固相COが付着して噴出口が塞がれることによって、また、間接接触CO昇華装置とした場合は、CO通路内に固相COが付着、堆積して、CO通路が塞がれることによって、冷凍装置の運転に障害をきたすことがあった。 However, in this conventional refrigeration system, when the direct contact CO 2 sublimation apparatus is used, solid phase CO 2 is deposited in the storage tank, and the pipeline for discharging the cooled brine from the storage tank is blocked. Alternatively, if solid phase CO 2 adheres to the solid-gas two-phase CO 2 spout to the storage tank and the spout is blocked, or if the indirect contact CO 2 sublimation apparatus is used, CO The solid phase CO 2 adheres to and accumulates in the two passages, and the CO 2 passage is blocked, which may interfere with the operation of the refrigeration system.
 さらには、この冷凍装置は、固気二相状態での固相COの潜熱を利用しており、固相COのみの昇華熱を利用した場合に比べると、冷却能力が劣るという欠点もあった。 Furthermore, this refrigeration system utilizes the latent heat of solid phase CO 2 in the solid-gas two-phase state, and also has a defect that the cooling capacity is inferior as compared to the case where the sublimation heat of only solid phase CO 2 is used. there were.
特開2004-308972号公報JP 2004-308972 A
 したがって、本発明の課題は、高い冷却能力を有し、スムーズに連続運転できる冷凍装置を提供することにある。 Therefore, an object of the present invention is to provide a refrigeration system which has a high cooling capacity and can be operated smoothly and continuously.
 上記課題を解決するため、本発明によれば、上下にのび、上端開口が閉じた円筒部と、前記円筒部よりも小さい径を有し、前記円筒部の上端に接続されて前記上端から上向きに前記円筒部と同軸にのび、前記円筒部の内部空間に連通する排気管と、前記円筒部の下端に接続され、前記円筒部の前記内部空間に連通するキャビティを有する冷却部と、を備え、前記円筒部の側壁上部には冷媒流入口が形成されており、さらに、一端が前記冷媒流入口に接続され、他端から高圧下で凝縮された液相冷媒の供給を受ける冷媒流入管と、前記冷媒流入管に設けられた減圧器と、を備え、前記冷媒流入管に供給された前記液相冷媒が、前記減圧器によって減圧されて固気二相冷媒を形成し、前記固気二相冷媒は、前記円筒部の前記内部空間に流入して前記内部空間内を下降する渦流を形成するとともに、固相冷媒と気相冷媒とに分離し、前記固相冷媒が前記キャビティに堆積する一方、前記気相冷媒は前記キャビティの底部から前記下降する渦流の内側空間を通って上昇する渦流を形成して、前記排気管から流出するようになっており、さらに、前記冷却部の前記キャビティを貫通してのび、両端が前記冷却部の外部において互いに接続され、内部を冷却負荷からの被冷却流体が流れる被冷却流体循環管路と、前記被冷却流体循環管路における前記キャビティ内の部分に設けられ、前記キャビティに堆積した前記固相冷媒と前記被冷却流体との間で熱交換させる熱交換器と、前記冷却部の外部において前記被冷却流体循環管路に設けられたポンプと、を備えたものであることを特徴とするサイクロン式冷凍装置が提供される。 In order to solve the above-mentioned subject, according to the present invention, it has a cylindrical part which is extended vertically and closed at the upper end opening, and a diameter smaller than that of the cylindrical part, connected to the upper end of the cylindrical part and directed upward from the upper end And an exhaust pipe communicating with the internal space of the cylindrical part, and a cooling part having a cavity connected to the lower end of the cylindrical part and communicating with the internal space of the cylindrical part. A refrigerant inlet is formed on the upper side wall of the cylindrical portion, and one end is connected to the refrigerant inlet, and the other end receives a supply of liquid phase refrigerant condensed under high pressure from the other end. A decompressor provided in the refrigerant inflow pipe, wherein the liquid phase refrigerant supplied to the refrigerant inflow pipe is decompressed by the decompressor to form a solid-gas two-phase refrigerant; Phase refrigerant flows into the internal space of the cylindrical portion and While forming the vortex which descends in the internal space, it is separated into a solid-phase refrigerant and a gas-phase refrigerant, and while the solid-phase refrigerant is deposited in the cavity, the gas-phase refrigerant descends from the bottom of the cavity It forms a vortex that rises through the inner space of the vortex, and flows out from the exhaust pipe, and further extends through the cavity of the cooling unit, and both ends of each other outside the cooling unit. The solid-phase refrigerant which is connected and provided in a portion in the cavity in the cooled fluid circulation pipeline through which the cooled fluid from the cooling load flows and the cooled fluid circulation pipeline and the solid phase refrigerant deposited in the cavity A heat exchanger for exchanging heat with a fluid to be cooled, and a pump provided in the fluid circulation pipe for cooling outside the cooling unit. Kron refrigeration device is provided.
 本発明の好ましい実施例によれば、前記熱交換器は、導熱体から形成されるとともに、流体出口および流体入口を有し、内部に前記被冷却流体が充填された容器からなり、前記被冷却流体循環管路は、一端が前記容器の前記流体出口に接続されて、前記容器から前記キャビティを通って前記冷却部の外部に突出した被冷却流体排出管路と、一端が前記容器の前記流体入口に接続されて、前記容器から前記キャビティを通って前記冷却部の外部に突出した被冷却流体供給管路と、からなり、前記被冷却流体排出管路の他端と前記被冷却流体供給管路の他端が、前記冷却負荷を介して互いに接続され、前記ポンプが前記被冷却流体排出管路または前記被冷却流体供給管路に設けられている。 According to a preferred embodiment of the present invention, the heat exchanger is formed of a heat conductor, and comprises a container having a fluid outlet and a fluid inlet, the container being filled with the fluid to be cooled therein; A fluid circulation line is connected to the fluid outlet of the container at one end, and a fluid discharge line for cooling which protrudes from the container to the outside of the cooling unit through the cavity, and the fluid at the one end of the container The cooling fluid supply line connected to the inlet and projecting from the container through the cavity to the outside of the cooling unit, and the other end of the cooling fluid discharge line and the cooling fluid supply line The other ends of the paths are connected to each other via the cooling load, and the pump is provided in the cooled fluid discharge pipeline or the cooled fluid supply pipeline.
 本発明の別の好ましい実施例によれば、前記サイクロン式冷凍装置は、前記円筒部の前記内部空間および前記冷却部の前記キャビティを跨いで配置されて上下にのびる渦流制御体をさらに備え、前記渦流制御体は、円柱状の下部と、前記下部の上端面に接続し、前記下部から上向き先細りにのびる円錐台状の中間部と、前記中間部の上端面に接続し、前記中間部から上向きにのびる円柱状の上部と、からなり、前記渦流制御体の内部には、前記上昇する渦流が流通する軸方向の貫通孔が形成され、前記貫通孔は、横断面が円形であり、前記渦流制御体の底面から上向きに先細り状にのびた後、前記渦流制御体の上端面まで末広がり状にのびており、前記渦流制御体は、前記円筒部に同軸に、かつ、前記底面の下側に一定のスペースが開けられた状態で、前記下部が前記キャビティ内に位置し、前記中間部が前記キャビティおよび前記内部空間にまたがって位置するように、前記冷却部または前記円筒部またはその両方に支持されている According to another preferred embodiment of the present invention, the cyclonic refrigeration apparatus further comprises an eddy current control member which is disposed straddling the internal space of the cylindrical portion and the cavity of the cooling portion and extends vertically. An eddy current control body is connected to a cylindrical lower portion, an upper end surface of the lower portion, and a truncated conical intermediate portion extending upward from the lower portion and an upper end surface of the intermediate portion, and is directed upward from the intermediate portion An axial through-hole through which the rising vortex flows is formed in the interior of the vortex control body, and the through-hole has a circular cross section, and the vortex has After being tapered upward from the bottom surface of the control body, the vortex flow control body is extended to the upper end surface of the eddy current control body, and the eddy current control body is coaxial with the cylindrical portion and constant on the lower side of the bottom surface. Space is open In a state, the lower is located within said cavity such that said intermediate portion is located across the cavity and the inner space, is supported by the cooling unit or the cylindrical portion, or both
 本発明のさらに別の好ましい実施例によれば、前記円筒部の前記内部空間が下方に向かって先細り状に形成されている。 According to still another preferred embodiment of the present invention, the internal space of the cylindrical portion is tapered downward.
 本発明のさらに別の好ましい実施例によれば、前記冷媒は二酸化炭素または水またはアンモニアである。 According to yet another preferred embodiment of the present invention, the refrigerant is carbon dioxide or water or ammonia.
 本発明のさらに別の好ましい実施例によれば、上記のサイクロン式冷凍装置と、前記サイクロン式冷凍装置の前記排気管の出口、および前記冷媒流入管の前記他端を接続する冷媒循環管路と、前記冷媒循環管路に配置され、前記サイクロン式冷凍装置の前記排気管から排出された前記気相冷媒を圧縮する圧縮機と、前記冷媒循環管路における前記圧縮機の下流側に配置され、前記圧縮機によって圧縮された前記気相冷媒を凝縮して前記液相冷媒を形成する凝縮器と、を備えたものであることを特徴とするヒートポンプシステムが提供される。 According to still another preferred embodiment of the present invention, a cyclone type refrigeration system as described above, an outlet of the exhaust pipe of the cyclone type refrigeration system, and a refrigerant circulation pipe connecting the other end of the refrigerant inflow pipe A compressor disposed in the refrigerant circulation pipeline and configured to compress the gas phase refrigerant discharged from the exhaust pipe of the cyclone type refrigeration system, and disposed downstream of the compressor in the refrigerant circulation pipeline; A heat pump system is provided, comprising: a condenser that condenses the gas phase refrigerant compressed by the compressor to form the liquid phase refrigerant.
 本発明のさらに別の好ましい実施例によれば、上記のサイクロン式冷凍装置と、前記サイクロン式冷凍装置の前記排気管の出口、および前記冷媒流入管の前記他端を接続する冷媒循環管路と、前記冷媒循環管路に配置され、前記サイクロン式冷凍装置の前記排気管から排出された前記気相冷媒を圧縮する圧縮機と、前記冷媒循環管路における前記圧縮機の下流側に直列に配置され、前記圧縮機によって圧縮された前記気相冷媒を凝縮して前記液相冷媒を形成する第1および第2の凝縮器と、前記冷媒循環管路における前記第1および第2の凝縮器の下流側に配置された別の熱交換器と、前記冷媒循環管路における前記別の熱交換器の下流側と前記圧縮機の上流側を接続するバイパス管路と、前記バイパス管路に配置された別の減圧器と、前記バイパス管路における前記別の減圧器の下流側に配置された蒸発器と、前記冷媒循環管路における前記接続点の下流側および前記バイパス管路における前記別の減圧器の上流側にそれぞれ配置された第1および第2の流量制御器と、前記冷媒循環管路における前記バイパス管路の下流端との接続点の上流側に配置された第3の流量制御器と、前記バイパス管路における前記蒸発器の下流側に配置された第4の流量制御器と、を備えたものであることを特徴とするサイクロン式冷熱回収ユニットが提供される。 According to still another preferred embodiment of the present invention, a cyclone type refrigeration system as described above, an outlet of the exhaust pipe of the cyclone type refrigeration system, and a refrigerant circulation pipe connecting the other end of the refrigerant inflow pipe A compressor disposed in the refrigerant circulation pipeline and configured to compress the gas phase refrigerant discharged from the exhaust pipe of the cyclone type refrigeration system, and disposed in series downstream of the compressor in the refrigerant circulation pipeline First and second condensers that condense the gas-phase refrigerant compressed by the compressor to form the liquid-phase refrigerant, and the first and second condensers in the refrigerant circulation pipeline Another heat exchanger disposed downstream, a bypass line connecting the downstream side of the other heat exchanger in the refrigerant circulation line and the upstream side of the compressor, and the bypass line And another pressure reducer An evaporator disposed downstream of the another pressure reducer in the bypass line, and a downstream side of the connection point in the refrigerant circulation line and an upstream side of the another pressure reducer in the bypass line. A third flow controller disposed upstream of a connection point between the first and second flow controllers and the downstream end of the bypass channel in the refrigerant circulation pipeline, and the third flow controller in the bypass channel A cyclone type cold heat recovery unit is provided, characterized by comprising a fourth flow rate controller disposed downstream of the evaporator.
 本発明のさらに別の好ましい実施例によれば、低元側サイクルと高元側サイクルを備えたカスケードヒートポンプシステムであって、前記低元側サイクルが、上記のサイクロン式冷熱回収ユニットから構成され、前記サイクロン式冷熱回収ユニットの前記別の熱交換器がカスケード熱交換器の低元側熱交換器を形成していること特徴とするカスケードヒートポンプシステムが提供される。 According to yet another preferred embodiment of the present invention, there is provided a cascade heat pump system comprising a low side cycle and a high side cycle, wherein the low side cycle comprises the above-mentioned cyclone type cold heat recovery unit. A cascaded heat pump system is provided, characterized in that the further heat exchanger of the cyclone type cold heat recovery unit forms a lower side heat exchanger of a cascaded heat exchanger.
 本発明のさらに別の好ましい実施例によれば、前記高元側サイクルが、前記サイクロン式冷熱回収ユニットの前記別の熱交換器と対となって前記カスケード熱交換器を構成する高元側熱交換器と、前記高元側熱交換器の出口および入口間にのびる高元側冷媒循環管路と、前記高元側冷媒循環管路における前記高元側熱交換器の下流側に配置された別の圧縮機と、前記高元側冷媒循環管路における前記別の圧縮機の下流側に直列に配置された第3および第4の凝縮器と、前記高元側冷媒循環管路における前記第3および第4の凝縮器の下流側に配置された別の減圧器と、を備えている。 According to still another preferred embodiment of the present invention, the high-temperature side heat forming the cascade heat exchanger as a pair with the other heat exchanger of the cyclone type cold heat recovery unit An exchanger, a high-end refrigerant circulation pipeline extending between an outlet and an inlet of the high-end heat exchanger, and a high-temperature refrigerant circulation pipeline disposed downstream of the high-end heat exchanger Another compressor, third and fourth condensers arranged in series downstream of the other compressor in the high-stage refrigerant circulation pipeline, and the third in the high-stage refrigerant circulation pipeline And 3, another pressure reducer disposed downstream of the third and fourth condensers.
 本発明によれば、高圧下で凝縮された液相冷媒を減圧して形成した固気二相冷媒を、円筒部の内部空間内に流入させて固気二相冷媒の下降する渦流を形成することによって、固気二相冷媒を固相冷媒と気相冷媒に分離し、固相冷媒を冷却部のキャビティに捕集する一方、気相冷媒は下降する渦流の内側空間を通して(上昇する渦流として)排気管から外部に排出するようにしたので、冷凍装置の運転中に、固相冷媒が冷媒流路内に付着、堆積して冷媒流路が塞がれることが防止される。 According to the present invention, the solid-gas two-phase refrigerant formed by depressurizing the liquid-phase refrigerant condensed under high pressure flows into the internal space of the cylindrical portion to form a downward swirling flow of the solid-gas two-phase refrigerant. As a result, the solid-gas two-phase refrigerant is separated into the solid phase refrigerant and the gas phase refrigerant, and the solid phase refrigerant is collected in the cavity of the cooling unit, while the gas phase refrigerant flows through the inner space of the descending vortex ( Since the exhaust pipe is discharged to the outside, it is possible to prevent the solid phase refrigerant from adhering to and accumulating in the refrigerant flow path during the operation of the refrigeration system and the refrigerant flow path being blocked.
 また、被冷却流体循環管路内に被冷却流体を還流させて、キャビティに堆積した固相冷媒と熱交換させるようにし、被冷却流体の流路を固相冷媒から分離したので、冷凍装置の運転中に、固相冷媒が被冷却流体の流路内に付着、堆積して被冷却流体流路が塞がれることも防止される。
 それによって、冷凍装置のスムーズな連続運転が可能となる。
Further, the fluid to be cooled is returned to the cooled fluid circulation pipeline so as to exchange heat with the solid phase refrigerant deposited in the cavity, and the flow path of the fluid to be cooled is separated from the solid phase refrigerant. During operation, it is also prevented that the solid phase refrigerant adheres to and accumulates in the flow path of the fluid to be cooled and the flow path of the fluid to be cooled is blocked.
This enables smooth continuous operation of the refrigeration system.
 さらに、本発明によれば、固気二相冷媒から分離した固相冷媒のみを被冷却流体と熱交換させ、固相冷媒の昇華による冷熱を被冷却流体に供給することで、固相冷媒の昇華熱を全て被冷却流体の冷却に使用できるので、従来例のような、固気二相状態での固相冷媒の潜熱を利用した被冷却流体の冷却に比べて、冷却能力がアップする。 Furthermore, according to the present invention, only the solid-phase refrigerant separated from the solid-gas two-phase refrigerant exchanges heat with the fluid to be cooled, and cold heat by sublimation of the solid-phase refrigerant is supplied to the fluid to be cooled. Since all of the heat of sublimation can be used to cool the fluid to be cooled, the cooling capacity is increased as compared to the cooling of the fluid to be cooled using the latent heat of the solid phase refrigerant in the solid-gas two-phase state as in the prior art.
本発明の1実施例によるサイクロン式冷凍装置の概略構成を示す正面図である。It is a front view showing a schematic structure of a cyclone type freezing device by one example of the present invention. 本発明の別の実施例によるサイクロン式冷凍装置の概略構成を示す図1に類似の図である。It is a figure similar to FIG. 1 which shows schematic structure of the cyclone type freezing apparatus by another Example of this invention. 図1のサイクロン式冷凍装置が蒸発器として組み込まれたヒートポンプシステムの概略構成を示す図である。It is a figure which shows schematic structure of the heat pump system with which the cyclone type freezing apparatus of FIG. 1 was integrated as an evaporator. 図3のヒートポンプシステムにおいて冷媒としてCOを使用した場合のモリエル線図である。Is a Mollier diagram in the case of using CO 2 as the refrigerant in the heat pump system of FIG. 図3のヒートポンプシステムにおいて、図1のサイクロン式冷凍装置の代わりに図2のサイクロン式冷凍装置を備え、冷媒としてCOを使用した場合のモリエル線図である。FIG. 4 is a Mollier diagram in the case where the heat pump system of FIG. 3 is provided with the cyclone type refrigerator of FIG. 2 instead of the cyclone type refrigerator of FIG. 1 and CO 2 is used as a refrigerant. 図3のヒートポンプシステムにおいて、サイクロン式冷凍装置の代わりに公知の蒸発器を備え、冷媒としてCOを使用した場合のモリエル線図である。In the heat pump system of Figure 3 comprises a known evaporator in place of the cyclone-type cooling unit is a Mollier diagram in the case of using CO 2 as the refrigerant. 図1のサイクロン式冷凍装置を備えたサイクロン式冷熱回収ユニットの概略構成を示す図である。It is a figure which shows schematic structure of the cyclone type cold heat recovery unit provided with the cyclone type freezing apparatus of FIG. 図7のサイクロン式冷熱回収ユニットが低元側サイクルとして組み込まれたカスケードヒートポンプシステムの概略構成を示す図である。It is a figure which shows schematic structure of the cascade heat pump system in which the cyclone type cold heat recovery unit of FIG. 7 was integrated as a low side cycle.
 以下、添付図面を参照しつつ、本発明の構成を好ましい実施例に基づいて説明する。
 図1は、本発明の1実施例によるサイクロン式冷凍装置の概略構成を示す正面図である。
 図1を参照して、本発明によれば、上下にのびる円筒部1と、円筒部1の上端開口1aに設けられた内側フランジ2と、内側フランジ2の開口径に対応する外径を有し、一端において内側フランジ2に接続されて円筒部1の上端開口1aから上向きに突出した排気管3が備えられる。
 なお、円筒部1と排気管3との接続部の構成はこの実施例に限定されず、円筒部1は上下にのびて上端開口が閉じ、円筒部1よりも小さい径の排気管3が円筒部1の上端に接続されて当該上端から上向きに円筒部1と同軸にのびておれば、どのような構成であってもよい。
Hereinafter, the configuration of the present invention will be described based on a preferred embodiment with reference to the attached drawings.
FIG. 1 is a front view showing a schematic configuration of a cyclone type refrigerating apparatus according to an embodiment of the present invention.
Referring to FIG. 1, according to the present invention, the cylindrical portion 1 extending up and down, the inner flange 2 provided at the upper end opening 1 a of the cylindrical portion 1, and the outer diameter corresponding to the opening diameter of the inner flange 2 The exhaust pipe 3 is connected to the inner flange 2 at one end and protrudes upward from the upper end opening 1 a of the cylindrical portion 1.
The configuration of the connecting portion between the cylindrical portion 1 and the exhaust pipe 3 is not limited to this embodiment. The cylindrical portion 1 extends vertically and the upper end opening is closed, and the exhaust pipe 3 having a diameter smaller than that of the cylindrical portion 1 is cylindrical. Any configuration may be employed as long as it is connected to the upper end of the portion 1 and coaxially extends upward from the upper end coaxially with the cylindrical portion 1.
 この実施例では、円筒部1の内部空間1bは、下方に向かって先細り状に(内径が徐々に小さくなるように)形成されているが、内部空間1bの内径が一定であってもよい。
 また、円筒部1の下端には、円筒部1の内部空間1bに連通するキャビティ4aを有する冷却部4が接続されている。
In this embodiment, the inner space 1b of the cylindrical portion 1 is formed to be tapered downward (the inner diameter gradually decreases), but the inner diameter of the inner space 1b may be constant.
Further, at the lower end of the cylindrical portion 1, a cooling portion 4 having a cavity 4 a communicating with the internal space 1 b of the cylindrical portion 1 is connected.
 円筒部1の側壁上部に冷媒流入口1cが形成されている。冷媒流入口1cは、好ましくは、円筒部1の横断面の接線方向にのびている。
 そして、円筒部1の冷媒流入口1cには、冷媒流入管5の一端5aが接続されている。冷媒流入管5は、他端5bから、高圧下で凝縮された液相冷媒の供給を受けるようになっている。冷媒流入管5には膨張弁(減圧器)6が設けられている。
 なお、この実施例では、冷媒流入管5の他端5bに、液相冷媒の供給源としてボンベGが接続されている。
A refrigerant inlet 1 c is formed on the upper side wall of the cylindrical portion 1. The refrigerant inlet 1 c preferably extends tangentially to the cross section of the cylindrical portion 1.
Further, one end 5 a of the refrigerant inflow pipe 5 is connected to the refrigerant inflow port 1 c of the cylindrical portion 1. The refrigerant inflow pipe 5 receives the supply of the liquid phase refrigerant condensed under high pressure from the other end 5b. An expansion valve (depressurizer) 6 is provided in the refrigerant inflow pipe 5.
In this embodiment, a cylinder G is connected to the other end 5b of the refrigerant inflow pipe 5 as a supply source of liquid phase refrigerant.
 こうして、冷媒流入管5に供給された液相冷媒が、膨張弁6によって減圧されて固気二相冷媒を形成し、固気二相冷媒は円筒部1の冷媒流入口1cから内部空間1bに流入し、内部空間1bの内壁面に沿って流れることによって渦流を形成する。 Thus, the liquid-phase refrigerant supplied to the refrigerant inflow pipe 5 is decompressed by the expansion valve 6 to form a solid-gas two-phase refrigerant, and the solid-gas two-phase refrigerant flows from the refrigerant inlet 1c of the cylindrical portion 1 to the internal space 1b. It flows in and forms an eddy current by flowing along the inner wall surface of the inner space 1b.
 この場合、渦流外側の圧力は渦流内側の圧力よりも大きく、また、この渦流の外側と内側の圧力差が内部空間1bの上部から下部に向かって減少する。それによって、渦流は、円筒部1の冷媒流入口1cから冷却部4のキャビティ4aまで伸長し、そのまま維持される。 In this case, the pressure outside the vortex is larger than the pressure inside the vortex, and the pressure difference between the outside and the inside of the vortex decreases from the top to the bottom of the internal space 1b. Thereby, the vortex flows from the refrigerant inlet 1 c of the cylindrical portion 1 to the cavity 4 a of the cooling portion 4 and is maintained as it is.
 この円筒部1の内部空間1bを下降する渦流によって、固気二相冷媒が固相冷媒Sと気相冷媒とに分離し、固相冷媒Sがキャビティ4a内に堆積する。一方、気相冷媒はキャビティ4aの底部に達するが、このとき、渦流の外側と内側の圧力差が小さいので、気相冷媒は下降する渦流の内側空間を通って上昇する渦流を形成し、排気管3を通って外部に流出する。 By the vortex flowing down the internal space 1b of the cylindrical portion 1, the solid-gas two-phase refrigerant is separated into the solid phase refrigerant S and the gas phase refrigerant, and the solid phase refrigerant S is deposited in the cavity 4a. On the other hand, the gas phase refrigerant reaches the bottom of the cavity 4a, but at this time, since the pressure difference between the outside and the inside of the swirl is small, the gas phase refrigerant forms a rising swirl through the inner space of the falling swirl, It flows out through the pipe 3.
 そして、この冷媒の相変化を実現するため、本発明で使用される冷媒は、サイクロン式冷凍装置の内部において、三重点以下の圧力および温度レベルに維持され得るものでなければならず、この条件を満たす冷媒としては、例えば、二酸化炭素(CO)、水およびアンモニア等を挙げることができる。 And, in order to realize this phase change of the refrigerant, the refrigerant used in the present invention must be able to be maintained at the pressure and temperature level below the triple point inside the cyclone type refrigerator, and this condition Examples of the refrigerant that satisfies the above may include carbon dioxide (CO 2 ), water, and ammonia.
 本発明によれば、また、冷却部4のキャビティ4aを貫通してのび、両端が冷却部4の外部において互いに接続され、内部を冷却負荷9からの被冷却流体が流れる被冷却流体循環管路7と、被冷却流体循環管路7におけるキャビティ4a内の部分に設けられて、キャビティ4aに堆積した固相冷媒Sと被冷却流体との間で熱交換させる熱交換器8が備えられる。 According to the present invention, a cooled fluid circulation pipeline extending through the cavity 4a of the cooling unit 4 and having both ends connected to each other outside the cooling unit 4 and in which the cooled fluid from the cooling load 9 flows And a heat exchanger 8 provided in a portion in the cavity 4a of the to-be-cooled fluid circulation pipeline 7 for exchanging heat between the solid phase refrigerant S deposited in the cavity 4a and the to-be-cooled fluid.
 この実施例では、熱交換器8は、導熱体から形成されるとともに、流体出口8aおよび流体入口8bを有し、内部に被冷却流体が充填された容器からなっている。
 この場合、被冷却流体としては、不凍液やエタノール等を使用することができ、容器(熱交換器)8は、高い熱伝導性を有し、かつ被冷却流体による腐食等の影響を受けにくい金属、例えばアルミニウムから形成されていることが好ましい。
In this embodiment, the heat exchanger 8 is formed of a heat conductor, and comprises a container having a fluid outlet 8a and a fluid inlet 8b and internally filled with a fluid to be cooled.
In this case, antifreeze liquid, ethanol or the like can be used as the fluid to be cooled, and the container (heat exchanger) 8 has high thermal conductivity and is a metal that is not easily affected by corrosion or the like by the fluid to be cooled For example, it is preferable to form from aluminum.
 また、被冷却流体循環管路7は、一端が容器(熱交換器)8の流体出口8aに接続されて、容器(熱交換器)8からキャビティ4aを通って冷却部4の外部に突出した被冷却流体排出管路7aと、一端が容器(熱交換器)8の流体入口8bに接続されて、容器(熱交換器)8からキャビティ4aを通って冷却部4の外部に突出した被冷却流体供給管路7bからなり、被冷却流体排出管路7aの他端と被冷却流体供給管路7bの他端が、冷却負荷9を介して互いに接続されている。 Further, one end of the to-be-cooled fluid circulation pipeline 7 is connected to the fluid outlet 8 a of the container (heat exchanger) 8 and protrudes from the container (heat exchanger) 8 through the cavity 4 a to the outside of the cooling unit 4 A cooled fluid discharge pipeline 7a and one end thereof are connected to a fluid inlet 8b of a container (heat exchanger) 8 so as to project from the container (heat exchanger) 8 through the cavity 4a to the outside of the cooling unit 4 The other end of the fluid discharge conduit 7 a and the other end of the fluid supply conduit 7 b are connected to each other via the cooling load 9.
 本発明によれば、さらに、ポンプ10が被冷却流体排出管路7aまたは被冷却流体供給管路7bに設けられ、ポンプ10の作動によって、被冷却流体が、容器(熱交換器)8→被冷却流体排出管路7a→冷却負荷9→被冷却流体供給管路7b→容器(熱交換器)8の順序で還流する。 According to the present invention, the pump 10 is further provided in the cooled fluid discharge conduit 7a or the cooled fluid supply conduit 7b, and the operation of the pump 10 causes the fluid to be cooled to flow from the container (heat exchanger) 8 to The cooling fluid discharge pipeline 7 a → the cooling load 9 → the cooled fluid supply pipeline 7 b → the vessel (heat exchanger) 8 is refluxed in this order.
 こうして、本発明のサイクロン式冷凍装置においては、液相冷媒が減圧されて形成された固気二相冷媒が、円筒部1の内部空間1aに流入して下降する渦流を形成するとともに、固相冷媒Sと気相冷媒に分離され、固相冷媒Sが冷却部4のキャビティ4aに堆積する一方、気相冷媒は下降する渦流の内側空間を通って上昇する渦流を形成して、排気管3から外部に流出する。 Thus, in the cyclone-type refrigeration system of the present invention, the solid-gas two-phase refrigerant formed by pressure reduction of the liquid phase refrigerant flows into the internal space 1a of the cylindrical portion 1 to form a vortex flowing downward and The refrigerant S and the gas phase refrigerant are separated, and the solid phase refrigerant S is deposited in the cavity 4 a of the cooling unit 4, while the gas phase refrigerant forms a swirling flow rising through the inner space of the falling swirling flow. Flow out to the outside.
 そして、キャビティ4aに堆積した固相冷媒Sは、容器(熱交換器)8に充填された被冷却流体の熱によって昇華され、この昇華による冷熱が被冷却流体に供給され、冷却された被冷却流体は、被冷却流体排出管路7aを通って冷却負荷9に送出される。 Then, the solid-phase refrigerant S deposited in the cavity 4 a is sublimated by the heat of the fluid to be cooled filled in the container (heat exchanger) 8, and the cold heat due to the sublimation is supplied to the fluid to be cooled, and cooled The fluid is delivered to the cooling load 9 through the cooled fluid discharge line 7a.
 この構成によれば、固気二相冷媒の下降渦流を円筒部1の内部空間1bに発生させて固気二相冷媒を固相冷媒Sと気相冷媒に分離し、固相冷媒Sを冷却部4のキャビティ4aに捕集する一方、気相冷媒は下降渦流の内側空間を通して排気管3から外部に排出するので、冷凍装置の運転中に、固相冷媒Sが冷媒流路内に付着、堆積して冷媒流路が塞がれることが防止される。 According to this configuration, the downward vortex of the solid-gas two-phase refrigerant is generated in the internal space 1b of the cylindrical portion 1 to separate the solid-gas two-phase refrigerant into the solid-phase refrigerant S and the gas-phase refrigerant and cool the solid-phase refrigerant S Since the gas phase refrigerant is discharged from the exhaust pipe 3 to the outside through the inner space of the downward vortex flow while being collected in the cavity 4a of the part 4, the solid phase refrigerant S adheres to the inside of the refrigerant channel during operation of the refrigeration system It is prevented that it accumulates and a refrigerant | coolant flow path is blocked.
 また、被冷却流体は、被冷却流体循環管路内を還流しつつ、キャビティ4aに堆積した固相冷媒Sと熱交換し、よって被冷却流体の流路が固相冷媒Sから分離されているので、冷凍装置の運転中に、固相冷媒Sが被冷却流体の流路内に付着、堆積して被冷却流体流路が塞がれることも防止され、それによって、冷凍装置のスムーズな連続運転が可能となる。 Further, the fluid to be cooled exchanges heat with the solid phase refrigerant S deposited in the cavity 4 a while refluxing the inside of the fluid circulation pipeline to be cooled, whereby the flow path of the fluid to be cooled is separated from the solid phase refrigerant S Therefore, it is also prevented that the solid phase refrigerant S adheres and accumulates in the flow path of the fluid to be cooled and the flow path of the fluid to be cooled is blocked during operation of the refrigeration device, whereby smooth continuity of the refrigeration device It becomes possible to drive.
 さらには、固気二相冷媒から分離した固相冷媒Sのみを被冷却流体と熱交換させ、固相冷媒Sの昇華による冷熱を被冷却流体に供給することで、固相冷媒Sの昇華熱を全て被冷却流体の冷却に使用できる。そのため、従来例のような、固気二相冷媒を被冷却流体と熱交換させ、固気二相状態での固相冷媒Sの潜熱を利用して被冷却流体を冷却する場合に比べて、冷却能力がアップする。 Furthermore, only the solid-phase refrigerant S separated from the solid-gas two-phase refrigerant is subjected to heat exchange with the fluid to be cooled, and cold heat due to sublimation of the solid-phase refrigerant S is supplied to the fluid to be cooled. All can be used to cool the fluid being cooled. Therefore, as compared with the conventional example, the solid-gas two-phase refrigerant is subjected to heat exchange with the fluid to be cooled, and the latent heat of the solid-phase refrigerant S in the solid-gas two-phase state is used to cool the fluid to be cooled. Cooling capacity is improved.
 図2は、本発明の別の実施例によるサイクロン式冷凍装置の概略構成を示す図1に類似の図である。
 図2の実施例は、円筒部1の内部空間1bおよび冷却部4のキャビティ4aにわたって渦流を制御する構造を設けた点のみが図1の実施例と異なる。よって、図2中、図1に示したものと同じ構成要素には同一番号を付し、以下ではそれらの詳細な説明を省略する。
FIG. 2 is a view similar to FIG. 1 showing a schematic configuration of a cyclonic refrigeration apparatus according to another embodiment of the present invention.
The embodiment of FIG. 2 differs from the embodiment of FIG. 1 only in that a structure for controlling the vortex flow is provided over the internal space 1 b of the cylindrical portion 1 and the cavity 4 a of the cooling portion 4. Therefore, in FIG. 2, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and the detailed description thereof will be omitted below.
 図2を参照して、この実施例では、円筒部1の内部空間1bおよび冷却部4のキャビティ4aに跨って渦流制御体11が配置されて、上下にのびている。
 渦流制御体11は、円柱状の下部11aと、下部11aの上端面に接続し、下部11aから上向き先細りにのびる円錐台状の中間部11bと、中間部11bの上端面に接続し、中間部11bから上向きにのびる円柱状の上部11cとからなっている。
Referring to FIG. 2, in this embodiment, an eddy current control body 11 is disposed straddling the internal space 1 b of the cylindrical portion 1 and the cavity 4 a of the cooling portion 4 and extends vertically.
The eddy current control body 11 is connected to the cylindrical lower portion 11a and the upper end surface of the lower portion 11a, and is connected to the upper end surface of the intermediate portion 11b and the truncated cone-like intermediate portion 11b extending upward from the lower portion 11a. It consists of a cylindrical upper portion 11c extending upward from 11b.
 渦流制御体11は、その内部に、気相冷媒の上昇する渦流が流通する軸方向の貫通孔12を有している。
 貫通孔12は、横断面が円形であり、渦流制御体11の底面11eから上向きに先細り状にのびた後、渦流制御体11の上端面11dまで末広がり状にのびている。
 貫通孔12は、ディフューザーの機能を有している。
The vortex control body 11 has therein an axial through hole 12 through which a rising vortex of gas-phase refrigerant flows.
The through hole 12 has a circular cross section, and extends upward from the bottom surface 11 e of the eddy current control body 11 in a tapered shape, and then extends up to the upper end surface 11 d of the eddy current control body 11.
The through hole 12 has a diffuser function.
 渦流制御体11は、円筒部1に同軸に、かつ、底面11eの下側に一定のスペースが開けられた状態で、下部11aが冷却部4のキャビティ4a内に位置し、中間部11bがキャビティ4aおよび円筒部1の内部空間1bにまたがって位置するように、適当な支持部材(図示しない)によって、冷却部4または円筒部1またはその両方に支持されている。 The lower portion 11a is located in the cavity 4a of the cooling portion 4 and the middle portion 11b is a cavity in a state where a constant space is opened coaxially with the cylindrical portion 1 and below the bottom surface 11e. It is supported by the cooling unit 4 and / or the cylindrical portion 1 by suitable support members (not shown) so as to be located across the internal space 1b of the cylindrical portion 1 and 4a.
 そして、固気二相冷媒の下降する渦流は、渦流制御体11の外側を通り、固気二相冷媒から分離された気相冷媒の上昇する渦流は、渦流制御体11の貫通孔12を通過し、通過の間に貫通孔12のディフューザー機能によって昇圧される。 The falling vortex of the solid-gas two-phase refrigerant passes through the outside of the vortex control body 11, and the rising vortex of the gas-phase refrigerant separated from the solid-gas two-phase refrigerant passes through the through hole 12 of the vortex control body 11. And the pressure is boosted by the diffuser function of the through hole 12 during passage.
 この実施例によれば、渦流制御体11を備えたことにより、内部空間1bの下部およびキャビティ4aにおいて、下降する渦流内の気相冷媒の渦流内側への移動が促進され、さらに、気相冷媒の安定した強い上昇渦流が形成される。
 それによって、図1の実施例よりも、固相冷媒Sの捕集効率が上がり、その結果、冷凍装置の冷却性能もアップする。
According to this embodiment, by providing the vortex control body 11, the movement of the gas phase refrigerant in the falling vortex in the lower part of the internal space 1b and the cavity 4a is promoted to the inside of the vortex, and further, the gas phase refrigerant A steady and strong upward vortex is formed.
As a result, the collection efficiency of the solid-phase refrigerant S is higher than that of the embodiment of FIG. 1, and as a result, the cooling performance of the refrigeration system is also improved.
 図3は、図1のサイクロン式冷凍装置が蒸発器として組み込まれたヒートポンプシステムの概略構成を示す図である。なお、図3中、図1に示したものと同じ構成要素には同一番号を付し、以下ではそれらの詳細な説明を省略する。
 図3を参照して、ヒートポンプシステム16は、図1に示したサイクロン式冷凍装置と、サイクロン式冷凍装置の排気管3の開口、および冷媒流入管5の他端5bを接続する冷媒循環管路15を備えている。
FIG. 3 is a view showing a schematic configuration of a heat pump system in which the cyclone type refrigeration system of FIG. 1 is incorporated as an evaporator. In FIG. 3, the same components as those shown in FIG. 1 are designated by the same reference numerals, and the detailed description thereof will be omitted below.
Referring to FIG. 3, the heat pump system 16 is a refrigerant circulation pipe connecting the cyclone type refrigeration system shown in FIG. 1, the opening of the exhaust pipe 3 of the cyclone type refrigeration system, and the other end 5b of the refrigerant inflow pipe 5. It has fifteen.
 ヒートポンプシステム16は、さらに、冷媒循環管路15に配置され、サイクロン式冷凍装置の排気管3から排出された気相冷媒を圧縮する圧縮機13と、冷媒循環管路15における圧縮機13の下流側に配置され、圧縮機13によって圧縮された気相冷媒を凝縮して液相冷媒を形成する凝縮器14を備えている。 The heat pump system 16 is further disposed in the refrigerant circulation pipeline 15, and is configured to compress the gas phase refrigerant discharged from the exhaust pipe 3 of the cyclone type refrigeration system, and the downstream of the compressor 13 in the refrigerant circulation pipeline 15. The condenser 14 is disposed on the side and condenses the gas phase refrigerant compressed by the compressor 13 to form a liquid phase refrigerant.
 図4は、このヒートポンプシステム16において冷媒としてCOを使用した場合のモリエル線図である。
 次に、図3および図4を参照して、ヒートポンプシステム16の動作を説明する。
 冷媒循環管路15を通じて圧縮機13に取り込まれた気相COは、圧縮機13において圧縮されて(図4のD→A)、高圧の気相COを形成し、冷媒循環管路15を通じて凝縮器14に供給される。
FIG. 4 is a Mollier diagram when CO 2 is used as the refrigerant in the heat pump system 16.
Next, the operation of the heat pump system 16 will be described with reference to FIGS. 3 and 4.
The gaseous phase CO 2 taken into the compressor 13 through the refrigerant circulation line 15 is compressed in the compressor 13 (D → A in FIG. 4) to form a high pressure gaseous phase CO 2 , and the refrigerant circulation line 15 Is supplied to the condenser.
 次いで、凝縮器14において、気相COは高圧状態のまま冷却されて液相COを形成し(図4のA→B)、冷媒流入管5を通じて膨張弁6に供給される。
 高圧の液相COは、膨張弁によって膨張、減圧されて固気二相COを形成し(図4のB→C)、固気二相COは蒸発器(サイクロン式冷凍装置)の冷媒流入口1cから蒸発器(サイクロン式冷凍装置)の円筒部1の内部空間1bに流入する。
Next, in the condenser 14, the gas phase CO 2 is cooled in a high pressure state to form liquid phase CO 2 (A → B in FIG. 4), and is supplied to the expansion valve 6 through the refrigerant inflow pipe 5.
The high-pressure liquid phase CO 2 is expanded and reduced by the expansion valve to form solid-gas two-phase CO 2 (B → C in FIG. 4), and the solid-gas two-phase CO 2 is an evaporator (cyclone type refrigerator) The refrigerant flows into the internal space 1b of the cylindrical portion 1 of the evaporator (cyclone type refrigeration system) from the refrigerant inlet 1c.
 流入した固気二相COは、内部空間1bを下降する渦流を形成するとともに、固相COと気相COに分離する(図4のC→E(固気二相COからの固相COの分離過程に対応)および図4のC→D(固気二相COからの気相COの分離過程に対応))。 The inflowing solid-gas two-phase CO 2 forms a vortex that descends the internal space 1b and separates into solid-phase CO 2 and gas-phase CO 2 (C → E in FIG. 4 (solid-gas two-phase CO 2 solid CO corresponding to the second separation step) and 4 C → D (corresponding to the vapor phase CO 2 separation process from the solid-gas two-phase CO 2)).
 固相COは、蒸発器(サイクロン式冷凍装置)の冷却部4のキャビティ4aに堆積する一方、気相COは、下降する渦流の内側空間を通って上昇する渦流を形成して、排気管3から冷媒循環管路15を通って圧縮機13に取り込まれる。 The solid phase CO 2 is deposited in the cavity 4 a of the cooling unit 4 of the evaporator (cyclone-type refrigerator), while the gas phase CO 2 forms a rising vortex through the inner space of the falling vortex, and the exhaust is exhausted. From the pipe 3, it is taken into the compressor 13 through the refrigerant circulation line 15.
 そして、蒸発器(サイクロン式冷凍装置)のキャビティ4aに堆積した固相COは被冷却流体の熱によって昇華し(図4のE→D)、この昇華による冷熱が被冷却流体に供給される。 Then, the solid phase CO 2 deposited in the cavity 4a of the evaporator (cyclone type refrigerator) is sublimated by the heat of the fluid to be cooled (E → D in FIG. 4), and the cold heat by this sublimation is supplied to the fluid to be cooled .
 図6は、図3のヒートポンプシステム16において、本発明のサイクロン式冷凍装置の代わりに公知の蒸発器を備え、冷媒としてCOを使用した場合のモリエル線図であり、D→Aは圧縮機13における圧縮過程に対応し、A→Bは凝縮器14における凝縮過程に対応し、B→Cは膨張弁(減圧器)6における膨張過程に対応し、C→Dは蒸発器における蒸発過程に対応する。 FIG. 6 is a Mollier diagram when using a known evaporator instead of the cyclonic refrigeration system of the present invention in the heat pump system 16 of FIG. 3 and using CO 2 as a refrigerant, where D → A is a compressor 13, A → B corresponds to the condensation process in the condenser 14, B → C corresponds to the expansion process in the expansion valve (pressure reducer) 6, C → D corresponds to the evaporation process in the evaporator It corresponds.
 図4のグラフと図6のグラフの比較から明らかなように、本発明のヒートポンプシステム16によれば、蒸発器(サイクロン式冷凍装置)における蒸発過程で得られるエンタルピーが、従来例よりも大幅に増大している。
 これは、従来例では、固気二相COを被冷却流体と熱交換させ、固気二相状態での固相COの潜熱を利用して被冷却流体を冷却しており、そのため、固相COの昇華熱を被冷却流体の冷却に効率的に使用できないのに対し、本発明では、固気二相COから分離した固相COのみを被冷却流体と熱交換させ、固相COの昇華による冷熱を被冷却流体に供給することで、固相COの昇華熱を全て被冷却流体の冷却に使用できることに起因する。
 その結果、本発明のヒートポンプシステム16によれば、従来例に比べて冷却能力がアップする。
As apparent from the comparison between the graph of FIG. 4 and the graph of FIG. 6, according to the heat pump system 16 of the present invention, the enthalpy obtained in the evaporation process in the evaporator (cyclone type refrigeration system) is significantly higher than that of the conventional example. It is increasing.
This is because, in the conventional example, solid-gas two-phase CO 2 is subjected to heat exchange with the fluid to be cooled, and the latent heat of solid-phase CO 2 in the solid-gas two-phase state is used to cool the fluid to be cooled. While the heat of sublimation of solid phase CO 2 can not be used efficiently for cooling the fluid to be cooled, in the present invention, only the solid phase CO 2 separated from the solid-gas two-phase CO 2 exchanges heat with the fluid to be cooled, cold heat by sublimation of solid CO 2 by supplying the fluid to be cooled, due to the use of heat of sublimation of solid CO 2 to the cooling of all the fluid to be cooled.
As a result, according to the heat pump system 16 of the present invention, the cooling capacity is improved compared to the conventional example.
 図5は、図3のヒートポンプシステム16において、蒸発器として、図1のサイクロン式冷凍装置に代えて図2のサイクロン式冷凍装置を備えた場合のモリエル線図であり、D→Aは圧縮機13における圧縮過程に対応し、A→Bは凝縮器14における凝縮過程に対応し、B→Cは膨張弁(減圧器)6における膨張過程に対応し、C→Eは蒸発器(サイクロン式冷凍装置)における固気二相冷媒からの固相冷媒Sの分離過程に対応し、C→Dは蒸発器(サイクロン式冷凍装置)における固気二相冷媒からの気相冷媒の分離過程に対応し、E→Dは蒸発器(サイクロン式冷凍装置)における固相冷媒Sの蒸発過程に対応する。 FIG. 5 is a Mollier diagram in the case where the cyclone type refrigerating apparatus of FIG. 2 is provided instead of the cyclone type refrigerating apparatus of FIG. 1 as an evaporator in the heat pump system 16 of FIG. 13, A → B corresponds to the condensation process in the condenser 14, B → C corresponds to the expansion process in the expansion valve (depressurizer) 6, C → E is the evaporator (cyclone type refrigeration) C) corresponds to the separation process of the gas-phase refrigerant from the solid-gas two-phase refrigerant in the evaporator (cyclone type refrigeration apparatus). , E → D correspond to the evaporation process of the solid phase refrigerant S in the evaporator (cyclone type refrigeration system).
 図5のグラフと図4のグラフとの比較から、図5の実施例では、図4の実施例よりも、D点での圧力値が高くなることがわかる。
 これは、渦流制御体11の貫通孔12のディフューザー作用に起因するものである。
 それによって、圧縮機13の吸入圧力が上昇し、圧縮機13の作動効率がアップするという効果が得られる。
From the comparison between the graph of FIG. 5 and the graph of FIG. 4, it can be seen that the pressure value at the point D is higher in the embodiment of FIG. 5 than in the embodiment of FIG.
This is due to the diffuser action of the through hole 12 of the eddy current control body 11.
As a result, the suction pressure of the compressor 13 is increased, and the operation efficiency of the compressor 13 is increased.
 なお、本発明の構成は上記実施例に限定されず、当業者が添付の特許請求の範囲に記載した事項の範囲内で種々の変形例を案出し得ることは言うまでもない。
 例えば、上記実施例では、COの圧縮過程(D→A)に圧縮機を単体で使用したが、圧縮機を低圧段圧縮機と高圧段圧縮機を直列に接続したものから形成し、低圧段圧縮機および高圧段圧縮機間に中間冷却器を設けて、気相COを2段階圧縮するようにしてもよい。
 この構成によれば、気相COを飽和圧力または超臨界圧力まで容易に圧縮することができる。
It is needless to say that the configuration of the present invention is not limited to the above-mentioned embodiment, and various modifications can be devised within the scope of the matter described in the appended claims by those skilled in the art.
For example, in the above embodiment, the compressor is used alone in the CO 2 compression process (D → A), but the compressor is formed by connecting a low-pressure stage compressor and a high-pressure stage compressor in series. An intercooler may be provided between the stage compressor and the high pressure stage compressor to perform two-stage compression of gas phase CO 2 .
According to this configuration, gas phase CO 2 can be easily compressed to a saturation pressure or a supercritical pressure.
 また、上記実施例のCOの凝縮過程(A→B)において、カスケード熱交換器を設け、カスケード熱交換器を介して高圧の気相COを冷却、凝縮することも可能であり、この構成によれば、凝縮器の冷却能力がアップし、高圧の気相COを1段冷却で、より低温まで冷却することができる。 Further, in the condensation process of CO 2 (A → B) of the above embodiment, it is also possible to provide a cascade heat exchanger to cool and condense high-pressure gas phase CO 2 through the cascade heat exchanger. According to the configuration, the cooling capacity of the condenser is increased, and high-pressure gas phase CO 2 can be cooled to a lower temperature by one-stage cooling.
 図7は、図1のサイクロン式冷凍装置を備えたサイクロン式冷熱回収ユニットの概略構成を示す図である。
 なお、図7中、図1に示したものと同じ構成要素には同一番号を付し、以下ではそれらの詳細な説明を省略する。
FIG. 7 is a view showing a schematic configuration of a cyclone type cold heat recovery unit provided with the cyclone type refrigeration system of FIG.
In FIG. 7, the same components as those shown in FIG. 1 are designated by the same reference numerals, and the detailed description thereof will be omitted below.
 図7を参照して、本発明のサイクロン式冷熱回収ユニット17は、図1に示したサイクロン式冷凍装置と、サイクロン式冷凍装置の排気管3の出口、および冷媒流入管5の他端5bを接続する冷媒循環管路18を備えている。 Referring to FIG. 7, a cyclone type cold heat recovery unit 17 according to the present invention includes the cyclone type refrigerating apparatus shown in FIG. 1, the outlet of the exhaust pipe 3 of the cyclone type refrigerating apparatus, and the other end 5b of the refrigerant inflow pipe 5. A refrigerant circulation line 18 to be connected is provided.
 冷媒循環管路18にサイクロン式冷凍装置の排気管3から排出された気相冷媒を圧縮する圧縮機19が配置され、冷媒循環管路18における圧縮機19の下流側には、圧縮機18によって圧縮された気相冷媒を凝縮して液相冷媒を形成する第1および第2の凝縮器20、21が直列に配置されている。さらに、冷媒循環管路18における第1および第2の凝縮器20、21の下流側に熱交換器22が配置されている。 A compressor 19 for compressing the gas phase refrigerant discharged from the exhaust pipe 3 of the cyclone type refrigeration system is disposed in the refrigerant circulation pipeline 18, and the compressor 18 in the refrigerant circulation pipeline 18 downstream of the compressor 19 First and second condensers 20, 21 for condensing the compressed gas phase refrigerant to form a liquid phase refrigerant are arranged in series. Furthermore, a heat exchanger 22 is disposed downstream of the first and second condensers 20 and 21 in the refrigerant circulation pipeline 18.
 また、冷媒循環管路18における熱交換器22の下流側と圧縮機18の上流側がバイパス管路23によって接続されている。
 バイパス管路23には膨張弁(減圧器)24が配置され、バイパス管路23における膨張弁24の下流側に蒸発器25が配置されている。
Further, the downstream side of the heat exchanger 22 and the upstream side of the compressor 18 in the refrigerant circulation line 18 are connected by a bypass line 23.
An expansion valve (pressure reducing device) 24 is disposed in the bypass line 23, and an evaporator 25 is disposed downstream of the expansion valve 24 in the bypass line 23.
 また、冷媒循環管路18とバイパス管路23の上流端との接続点26の下流側に第1の流量制御器27が配置され、バイパス管路23における膨張弁24の上流側に第2の流量制御器28が配置されている。 Further, a first flow rate controller 27 is disposed downstream of a connection point 26 between the refrigerant circulation pipeline 18 and the upstream end of the bypass pipeline 23, and a second flow controller 27 is disposed upstream of the expansion valve 24 in the bypass pipeline 23. A flow controller 28 is arranged.
 さらに、冷媒循環管路18におけるバイパス管路23の下流端との接続点29の上流側に第3の流量制御器30aが配置され、バイパス管路23における蒸発器25の下流側には第4の流量制御器30bが配置されている。 Further, the third flow rate controller 30a is disposed on the upstream side of the connection point 29 of the refrigerant circulation pipeline 18 with the downstream end of the bypass pipeline 23, and the fourth flow controller 30a is disposed downstream of the evaporator 25 in the bypass pipeline 23. The flow controller 30b of the second embodiment is disposed.
 第3および第4の流量制御器30a、30bは圧力制御を主たる目的としている。
 つまり、この実施例では、冷媒としてCOが用いられる場合、サイクロン式冷凍装置は、COが固気二相状態となる三重点以下の圧力条件で動作する一方、蒸発器25は、COが気液二相状態となる三重点以上の圧力条件で動作するようになっており、第3および第4の流量制御器30a、30bは、上記の圧力条件が維持されるように動作する。
The third and fourth flow controllers 30a, 30b have a main purpose of pressure control.
That is, in this embodiment, when CO 2 is used as the refrigerant, the cyclone type refrigeration system operates under the pressure condition below the triple point where CO 2 is in the solid-gas two phase state, while the evaporator 25 is CO 2 The third and fourth flow controllers 30a and 30b operate so as to maintain the pressure conditions described above.
 この実施例では、サイクロン式冷凍装置の熱交換器8において固相冷媒Sとの間で熱交換する被冷却流体は、冷温冷却媒体(二酸化炭素、エタノール、ヘリウム等々)からなっていることが好ましい。
 低温冷却媒体を被冷却流体として用いることによって、より低温度の冷熱源を得ることができる。
In this embodiment, the fluid to be cooled which exchanges heat with the solid phase refrigerant S in the heat exchanger 8 of the cyclone type refrigeration system preferably comprises a cold cooling medium (carbon dioxide, ethanol, helium, etc.) .
By using a low temperature coolant as the cooled fluid, a cold source of lower temperature can be obtained.
 また、サイクロン式冷熱回収ユニット17をより安定的に動作させるためには、サイクロン式冷凍装置内の圧力を1MPa以下に維持することが好ましいが、これは、圧縮機19をシーケンス制御することによって容易に達成される。 In addition, in order to operate the cyclone-type cold heat recovery unit 17 more stably, it is preferable to maintain the pressure in the cyclone-type refrigerator at 1 MPa or less, but this is easily achieved by sequence control of the compressor 19 To be achieved.
 この実施例によれば、冷媒循環管路18を流れる液相冷媒の一部をバイパス管路23に分流させてサイクロン式冷凍装置と蒸発器25を同時に動作させること、あるいは、バイパス管路23への液相冷媒の供給を停止してサイクロン式冷凍装置のみを動作させること、あるいは、サイクロン式冷凍装置への液相冷媒の供給を停止して蒸発器25のみを動作させることができる。
 それによって、図1に示した実施例の場合よりも、回収可能な冷熱の温度範囲が広がる。
According to this embodiment, a part of the liquid phase refrigerant flowing through the refrigerant circulation pipeline 18 is diverted to the bypass pipeline 23 to operate the cyclone type refrigerating apparatus and the evaporator 25 simultaneously, or to the bypass pipeline 23. The supply of the liquid-phase refrigerant can be stopped to operate only the cyclone-type refrigeration system, or the supply of the liquid-phase refrigerant to the cyclone-type refrigeration system can be stopped to operate only the evaporator 25.
As a result, the temperature range of recoverable cold energy is expanded as compared with the embodiment shown in FIG.
 図8は、図7のサイクロン式冷熱回収ユニットが低元側サイクルとして組み込まれたカスケードヒートポンプシステムの概略構成を示す図である。
 なお、図8中、図7に示したものと同じ構成要素には同一番号を付し、以下ではそれらの詳細な説明を省略する。
FIG. 8 is a view showing a schematic configuration of a cascade heat pump system in which the cyclone type cold heat recovery unit of FIG. 7 is incorporated as a low side cycle.
In FIG. 8, the same components as those shown in FIG. 7 will be assigned the same reference numerals, and the detailed description thereof will be omitted below.
 図8に示すように、カスケードヒートポンプシステム31は、低元側サイクル32と高元側サイクル33を備えており、低元側サイクル32が、図7に示したサイクロン式冷熱回収ユニット17から構成されている。
 この場合、サイクロン式冷熱回収ユニット17の熱交換器22は、カスケードヒートポンプシステム31のカスケード熱交換器34の低元側熱交換器35を形成している。
As shown in FIG. 8, the cascade heat pump system 31 includes a low side cycle 32 and a high side cycle 33, and the low side cycle 32 is composed of the cyclone type cold heat recovery unit 17 shown in FIG. ing.
In this case, the heat exchanger 22 of the cyclone type cold heat recovery unit 17 forms the low side heat exchanger 35 of the cascade heat exchanger 34 of the cascade heat pump system 31.
 高元側サイクル33は、低元側熱交換器35と対となってカスケード熱交換器34を構成する高元側熱交換器36と、高元側熱交換器36の出口36aおよび入口36b間にのびる高元側冷媒循環管路37と、高元側冷媒循環管路37における高元側熱交換器36の下流側に配置された圧縮機38、高元側冷媒循環管路37における圧縮機38の下流側に直列に配置された第3および第4の凝縮器39、40と、高元側冷媒循環管路37における第3および第4の凝縮器39、40の下流側に配置された膨張弁(減圧器)41を備えている。 The high-temperature side cycle 33 is between the high-temperature side heat exchanger 36 forming a cascade heat exchanger 34 in pair with the low-temperature side heat exchanger 35, and the outlet 36 a and the inlet 36 b of the high-temperature side heat exchanger 36. A compressor 38 disposed downstream of the high-temperature-side heat exchanger 36 in the high-temperature-side refrigerant circulation pipeline 37 extending in the vertical direction, and a compressor in the high-temperature-region refrigerant circulation pipeline 37 The third and fourth condensers 39, 40 disposed in series downstream of 38 and the third and fourth condensers 39, 40 in the upstream refrigerant circulation line 37 are disposed downstream of the third and fourth condensers 39, 40. An expansion valve (depressurizer) 41 is provided.
1 円筒部
1a 上端開口
1b 内部空間
1c 冷媒流入口
2 内側フランジ
3 排気管
4 冷却部
4a キャビティ
5 冷媒流入管
5a 一端
5b 他端
6 膨張弁(減圧器)
7 被冷却流体循環管路
7a 被冷却流体排出管路
7b 被冷却流体供給管路
8 熱交換器
8a 流体出口
8b 流体入口
9 冷却負荷
10 ポンプ
11 渦流制御体
11a 下部
11b 中間部
11c 上部
11d 上端面
11e 底面
12 貫通孔
13 圧縮機
14 凝縮器
15 冷媒循環管路
16 ヒートポンプシステム
17 サイクロン式冷熱回収ユニット
18 冷媒循環管路
19 圧縮機
20 第1の凝縮器
21 第2の凝縮器
22 熱交換器
23 バイパス管路
24 膨張弁(減圧器)
25 蒸発器
26 接続点
27 第1の流量制御器
28 第2の流量制御器
29 接続点
30a 第3の流量制御器
30b 第4の流量制御器
31 カスケードヒートポンプシステム
32 低元側サイクル
33 高元側サイクル
34 カスケード熱交換器
35 低元側熱交換器
36 高元側熱交換器
36a 出口
36b 入口
37 高元側冷媒循環管路
38 圧縮機
39 第3の凝縮器
40 第4の凝縮器
41 膨張弁(減圧器)
S 固相冷媒
Reference Signs List 1 cylindrical portion 1a upper end opening 1b internal space 1c refrigerant inlet 2 inner flange 3 exhaust pipe 4 cooling portion 4a cavity 5 refrigerant inlet pipe 5a one end 5b other end 6 expansion valve (depressurizer)
7 to-be-cooled fluid circulation pipeline 7a to-be-cooled fluid discharge pipeline 7b to-be-cooled fluid supply pipeline 8 heat exchanger 8a fluid outlet 8b fluid inlet 9 cooling load 10 pump 11 vortex control body 11a lower part 11b middle part 11c upper part 11d upper end surface 11e Bottom 12 Through-hole 13 Compressor 14 Condenser 15 Refrigerant circulation pipeline 16 Heat pump system 17 Cyclone type cold heat recovery unit 18 Refrigerant circulation pipeline 19 Compressor 20 1st condenser 21 2nd condenser 22 Heat exchanger 23 Bypass line 24 expansion valve (pressure reducer)
25 evaporator 26 connection point 27 first flow rate controller 28 second flow rate controller 29 connection point 30a third flow rate controller 30b fourth flow rate controller 31 cascade heat pump system 32 low side cycle 33 high side Cycle 34 Cascade heat exchanger 35 Low side heat exchanger 36 High side heat exchanger 36a Outlet 36b Inlet 37 High side refrigerant circulation pipeline 38 Compressor 39 Third condenser 40 Fourth condenser 41 Expansion valve (Depressurizer)
S Solid phase refrigerant

Claims (9)

  1.  上下にのび、上端開口が閉じた円筒部と、
     前記円筒部よりも小さい径を有し、前記円筒部の上端に接続されて前記上端から上向きに前記円筒部と同軸にのび、前記円筒部の内部空間に連通する排気管と、
     前記円筒部の下端に接続され、前記円筒部の前記内部空間に連通するキャビティを有する冷却部と、を備え、前記円筒部の側壁上部には冷媒流入口が形成されており、さらに、
     一端が前記冷媒流入口に接続され、他端から高圧下で凝縮された液相冷媒の供給を受ける冷媒流入管と、
     前記冷媒流入管に設けられた減圧器と、を備え、
     前記冷媒流入管に供給された前記液相冷媒が、前記減圧器によって減圧されて固気二相冷媒を形成し、前記固気二相冷媒は、前記円筒部の前記内部空間に流入して前記内部空間内を下降する渦流を形成するとともに、固相冷媒と気相冷媒とに分離し、前記固相冷媒が前記キャビティに堆積する一方、前記気相冷媒は前記キャビティの底部から前記下降する渦流の内側空間を通って上昇する渦流を形成して、前記排気管から流出するようになっており、さらに、
     前記冷却部の前記キャビティを貫通してのび、両端が前記冷却部の外部において互いに接続され、内部を冷却負荷からの被冷却流体が流れる被冷却流体循環管路と、
     前記被冷却流体循環管路における前記キャビティ内の部分に設けられ、前記キャビティに堆積した前記固相冷媒と前記被冷却流体との間で熱交換させる熱交換器と、
     前記冷却部の外部において前記被冷却流体循環管路に設けられたポンプと、を備えたものであることを特徴とするサイクロン式冷凍装置。
    Top and bottom, cylindrical part with closed top opening,
    An exhaust pipe connected to the upper end of the cylindrical portion, having a diameter smaller than that of the cylindrical portion, coaxially with the cylindrical portion upward from the upper end, and communicating with the internal space of the cylindrical portion;
    A cooling unit connected to the lower end of the cylindrical portion and having a cavity communicating with the internal space of the cylindrical portion, and a refrigerant inlet is formed on the upper side wall of the cylindrical portion;
    A refrigerant inflow pipe, one end of which is connected to the refrigerant inlet, and the other end of which is supplied with the liquid phase refrigerant condensed under high pressure;
    A decompressor provided in the refrigerant inflow pipe;
    The liquid phase refrigerant supplied to the refrigerant inflow pipe is decompressed by the decompressor to form a solid-gas two-phase refrigerant, and the solid-gas two-phase refrigerant flows into the internal space of the cylindrical portion to While forming a vortex which descends in the inner space, it is separated into a solid phase refrigerant and a gas phase refrigerant, and the solid phase refrigerant is deposited in the cavity, while the gas phase refrigerant falls from the bottom of the cavity. Form a vortex that rises through the inner space of the
    A cooled fluid circulation pipeline extending through the cavity of the cooling unit, both ends of which are connected to each other outside the cooling unit and through which a fluid to be cooled from a cooling load flows.
    A heat exchanger which is provided in a portion in the cavity in the cooled fluid circulation pipeline and exchanges heat between the solid phase refrigerant deposited in the cavity and the cooled fluid;
    A cyclone type refrigeration apparatus comprising: a pump provided in the fluid circulation line for cooling outside the cooling unit.
  2.  前記熱交換器は、導熱体から形成されるとともに、流体出口および流体入口を有し、内部に前記被冷却流体が充填された容器からなり、
     前記被冷却流体循環管路は、
     一端が前記容器の前記流体出口に接続されて、前記容器から前記キャビティを通って前記冷却部の外部に突出した被冷却流体排出管路と、
     一端が前記容器の前記流体入口に接続されて、前記容器から前記キャビティを通って前記冷却部の外部に突出した被冷却流体供給管路と、からなり、
     前記被冷却流体排出管路の他端と前記被冷却流体供給管路の他端が、前記冷却負荷を介して互いに接続され、前記ポンプが前記被冷却流体排出管路または前記被冷却流体供給管路に設けられていることを特徴とする請求項1に記載のサイクロン式冷凍装置。
    The heat exchanger is formed of a heat conductor, and has a fluid outlet and a fluid inlet, and comprises a container filled with the fluid to be cooled therein.
    The cooled fluid circulation pipeline is
    A cooled fluid discharge line, one end of which is connected to the fluid outlet of the vessel, and which protrudes from the vessel through the cavity to the outside of the cooling unit;
    And one end is connected to the fluid inlet of the container, and comprises a cooled fluid supply line which protrudes from the container through the cavity to the outside of the cooling unit;
    The other end of the cooled fluid discharge pipeline and the other end of the cooled fluid supply pipeline are connected to each other through the cooling load, and the pump is the cooled fluid discharge pipeline or the cooled fluid supply pipeline. The cyclone type refrigerating apparatus according to claim 1, wherein the cyclone type refrigerating apparatus is provided in a passage.
  3.  前記円筒部の前記内部空間および前記冷却部の前記キャビティを跨いで配置されて上下にのびる渦流制御体をさらに備え、
     前記渦流制御体は、
     円柱状の下部と、
     前記下部の上端面に接続し、前記下部から上向き先細りにのびる円錐台状の中間部と、
     前記中間部の上端面に接続し、前記中間部から上向きにのびる円柱状の上部と、からなり、
     前記渦流制御体の内部には、前記上昇する渦流が流通する軸方向の貫通孔が形成され、前記貫通孔は、横断面が円形であり、前記渦流制御体の底面から上向きに先細り状にのびた後、前記渦流制御体の上端面まで末広がり状にのびており、
     前記渦流制御体は、前記円筒部に同軸に、かつ、前記底面の下側に一定のスペースが開けられた状態で、前記下部が前記キャビティ内に位置し、前記中間部が前記キャビティおよび前記内部空間にまたがって位置するように、前記冷却部または前記円筒部またはその両方に支持されていることを特徴とする請求項1に記載のサイクロン式冷凍装置。
    The internal space of the cylindrical portion and the cavity of the cooling portion are disposed to straddle each other and further include an eddy current control body extending vertically.
    The vortex control body is
    With a cylindrical lower part,
    A frusto-conical middle portion connected to the upper end surface of the lower portion and extending upward from the lower portion;
    A cylindrical upper portion connected to the upper end surface of the middle portion and extending upward from the middle portion;
    An axial through hole through which the rising vortex flows is formed inside the vortex control body, and the through hole is circular in cross section and tapered upward from the bottom surface of the vortex control body After that, it spreads out to the upper end face of the eddy current control body,
    The lower portion of the eddy current control body is located in the cavity coaxially with the cylindrical portion and a certain space is opened below the bottom surface, and the middle portion is the cavity and the inner portion. The cyclonic refrigeration apparatus according to claim 1, wherein the cyclonic refrigeration unit is supported by the cooling unit and / or the cylindrical unit so as to be located across the space.
  4.  前記円筒部の前記内部空間が下方に向かって先細り状に形成されていることを特徴とする請求項1に記載のサイクロン式冷凍装置。 The cyclone type refrigeration apparatus according to claim 1, wherein the internal space of the cylindrical portion is formed to be tapered downward.
  5.  前記冷媒が二酸化炭素または水またはアンモニアであることを特徴とする請求項1に記載のサイクロン式冷凍装置。 The cyclone type refrigeration system according to claim 1, wherein the refrigerant is carbon dioxide or water or ammonia.
  6.  請求項1~請求項5のいずれかに記載のサイクロン式冷凍装置と、
     前記サイクロン式冷凍装置の前記排気管の出口、および前記冷媒流入管の前記他端を接続する冷媒循環管路と、
     前記冷媒循環管路に配置され、前記サイクロン式冷凍装置の前記排気管から排出された前記気相冷媒を圧縮する圧縮機と、
     前記冷媒循環管路における前記圧縮機の下流側に配置され、前記圧縮機によって圧縮された前記気相冷媒を凝縮して前記液相冷媒を形成する凝縮器と、を備えたものであることを特徴とするヒートポンプシステム。
    A cyclone type refrigeration apparatus according to any one of claims 1 to 5;
    A refrigerant circulation pipe connecting an outlet of the exhaust pipe of the cyclone type refrigeration system and the other end of the refrigerant inflow pipe;
    A compressor disposed in the refrigerant circulation pipeline and compressing the gas phase refrigerant discharged from the exhaust pipe of the cyclone type refrigeration system;
    And a condenser disposed downstream of the compressor in the refrigerant circulation pipeline and condensing the gas-phase refrigerant compressed by the compressor to form the liquid-phase refrigerant. Characteristic heat pump system.
  7.  請求項1~請求項5のいずれかに記載のサイクロン式冷凍装置と、
     前記サイクロン式冷凍装置の前記排気管の出口、および前記冷媒流入管の前記他端を接続する冷媒循環管路と、
     前記冷媒循環管路に配置され、前記サイクロン式冷凍装置の前記排気管から排出された前記気相冷媒を圧縮する圧縮機と、
     前記冷媒循環管路における前記圧縮機の下流側に直列に配置され、前記圧縮機によって圧縮された前記気相冷媒を凝縮して前記液相冷媒を形成する第1および第2の凝縮器と、
     前記冷媒循環管路における前記第1および第2の凝縮器の下流側に配置された別の熱交換器と、
     前記冷媒循環管路における前記別の熱交換器の下流側と前記圧縮機の上流側を接続するバイパス管路と、
     前記バイパス管路に配置された別の減圧器と、
     前記バイパス管路における前記別の減圧器の下流側に配置された蒸発器と、
     前記冷媒循環管路における前記接続点の下流側および前記バイパス管路における前記別の減圧器の上流側にそれぞれ配置された第1および第2の流量制御器と、
     前記冷媒循環管路における前記バイパス管路の下流端との接続点の上流側に配置された第3の流量制御器と、
     前記バイパス管路における前記蒸発器の下流側に配置された第4の流量制御器と、を備えたものであることを特徴とするサイクロン式冷熱回収ユニット。
    A cyclone type refrigeration apparatus according to any one of claims 1 to 5;
    A refrigerant circulation pipe connecting an outlet of the exhaust pipe of the cyclone type refrigeration system and the other end of the refrigerant inflow pipe;
    A compressor disposed in the refrigerant circulation pipeline and compressing the gas phase refrigerant discharged from the exhaust pipe of the cyclone type refrigeration system;
    First and second condensers disposed in series downstream of the compressor in the refrigerant circulation pipeline and condensing the gas phase refrigerant compressed by the compressor to form the liquid phase refrigerant;
    Another heat exchanger disposed downstream of the first and second condensers in the refrigerant circulation line;
    A bypass line connecting the downstream side of the other heat exchanger in the refrigerant circulation line and the upstream side of the compressor;
    Another pressure reducer disposed in the bypass line;
    An evaporator disposed downstream of the further pressure reducer in the bypass line;
    First and second flow controllers disposed respectively downstream of the connection point in the refrigerant circulation pipeline and upstream of the another pressure reducer in the bypass pipeline;
    A third flow rate controller disposed upstream of a connection point of the refrigerant circulation line with the downstream end of the bypass line;
    And a fourth flow rate controller disposed downstream of the evaporator in the bypass line.
  8.  低元側サイクルと高元側サイクルを備えたカスケードヒートポンプシステムであって、前記低元側サイクルが、請求項7に記載のサイクロン式冷熱回収ユニットから構成され、前記サイクロン式冷熱回収ユニットの前記別の熱交換器がカスケード熱交換器の低元側熱交換器を形成していること特徴とするカスケードヒートポンプシステム。 A cascade heat pump system comprising a low side cycle and a high side cycle, wherein the low side cycle comprises the cyclone type cold heat recovery unit according to claim 7, and the other of the cyclone type cold heat recovery unit A cascade heat pump system, characterized in that the heat exchanger of (1) forms a lower side heat exchanger of the cascade heat exchanger.
  9.  前記高元側サイクルが、
     前記サイクロン式冷熱回収ユニットの前記別の熱交換器と対となって前記カスケード熱交換器を構成する高元側熱交換器と、
     前記高元側熱交換器の出口および入口間にのびる高元側冷媒循環管路と、
     前記高元側冷媒循環管路における前記高元側熱交換器の下流側に配置された別の圧縮機と、
     前記高元側冷媒循環管路における前記別の圧縮機の下流側に直列に配置された第3および第4の凝縮器と、
     前記高元側冷媒循環管路における前記第3および第4の凝縮器の下流側に配置された別の減圧器と、を備えたものであることを特徴とする請求項8に記載のカスケードヒートポンプシステム。
    The high side cycle is
    A heat source side heat exchanger constituting the cascade heat exchanger as a pair with the other heat exchanger of the cyclone type cold heat recovery unit;
    A high side refrigerant circulation pipe extending between an outlet and an inlet of the high side heat exchanger;
    Another compressor disposed downstream of the high-stage-side heat exchanger in the high-stage-side refrigerant circulation pipeline;
    Third and fourth condensers arranged in series downstream of the other compressor in the high-stage refrigerant circulation pipeline;
    9. The cascade heat pump according to claim 8, further comprising: another decompressor disposed downstream of the third and fourth condensers in the high-stage-side refrigerant circulation pipeline. system.
PCT/JP2019/001499 2018-01-19 2019-01-18 Cyclone refrigeration device, cyclone coolness/heat recovery unit, and heat pump system provided with said cyclone refrigeration device or cyclone coolness/heat recovery unit WO2019142919A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19741070.7A EP3742070B1 (en) 2018-01-19 2019-01-18 Cyclone heat recovery unit and heat pump system provided with said cyclone heat recovery unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-007071 2018-01-19
JP2018007071A JP6945202B2 (en) 2018-01-19 2018-01-19 Cyclone type freezer and heat pump system equipped with the cyclone type freezer

Publications (1)

Publication Number Publication Date
WO2019142919A1 true WO2019142919A1 (en) 2019-07-25

Family

ID=67301511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001499 WO2019142919A1 (en) 2018-01-19 2019-01-18 Cyclone refrigeration device, cyclone coolness/heat recovery unit, and heat pump system provided with said cyclone refrigeration device or cyclone coolness/heat recovery unit

Country Status (3)

Country Link
EP (1) EP3742070B1 (en)
JP (1) JP6945202B2 (en)
WO (1) WO2019142919A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020133808A1 (en) 2020-12-16 2022-06-23 Technische Universität Dresden, Körperschaft des öffentlichen Rechts Device, system and method for cooling a medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5098359U (en) * 1973-12-03 1975-08-15
JPH1130599A (en) * 1997-07-09 1999-02-02 Toyo Eng Works Ltd Heat accumulation quantity of two-dimensional cooling facility utilizing heat accumulation of dry ice and the two-dimensional cooling facility
JP2004308972A (en) 2003-04-03 2004-11-04 Mayekawa Mfg Co Ltd Co2 refrigerating machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2043190A (en) * 1931-09-10 1936-06-02 Mccabe Maier Corp Refrigerating apparatus and method
US4224801A (en) * 1978-11-13 1980-09-30 Lewis Tyree Jr Stored cryogenic refrigeration
JP2007248005A (en) * 2006-03-17 2007-09-27 Sanyo Electric Co Ltd Refrigerator
DE102012008592A1 (en) * 2012-04-27 2013-10-31 Messer France S.A.S Method and device for cooling products

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5098359U (en) * 1973-12-03 1975-08-15
JPH1130599A (en) * 1997-07-09 1999-02-02 Toyo Eng Works Ltd Heat accumulation quantity of two-dimensional cooling facility utilizing heat accumulation of dry ice and the two-dimensional cooling facility
JP2004308972A (en) 2003-04-03 2004-11-04 Mayekawa Mfg Co Ltd Co2 refrigerating machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3742070A4

Also Published As

Publication number Publication date
EP3742070B1 (en) 2023-07-19
EP3742070A4 (en) 2021-10-20
JP6945202B2 (en) 2021-10-06
JP2019124432A (en) 2019-07-25
EP3742070A1 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
US6622518B2 (en) Cryogenic refrigerating system
JP4973872B2 (en) CO2 refrigerator
US7559212B2 (en) Refrigerant pressurization system with a two-phase condensing ejector
DK2676085T3 (en) LIQUID / DAMPFASESEPARERINGSAPPARAT
CN102232167B (en) Liquid vapor separation in transcritical refrigerant cycle
US6658888B2 (en) Method for increasing efficiency of a vapor compression system by compressor cooling
ITRM20070520A1 (en) COOLANT REFRIGERATOR SYSTEM WITH OIL SCREW COMPRESSOR WITH TWO STAGE ARRANGEMENTS
CN113124581B (en) Turbo refrigerator
JP2008224206A (en) Dual refrigerating cycle device
JP2016056966A (en) Turbo refrigerator
JP2006292229A (en) Co2 refrigeration cycle device and supercritical refrigeration operation method therefor
JP4694365B2 (en) Pressure reducer module with oil separator
WO2019142919A1 (en) Cyclone refrigeration device, cyclone coolness/heat recovery unit, and heat pump system provided with said cyclone refrigeration device or cyclone coolness/heat recovery unit
JP2009300021A (en) Refrigerating cycle device
JP2004308972A (en) Co2 refrigerating machine
KR101092692B1 (en) An economizer and refrigerator with the same
JP2008275211A (en) Vapor compression-type refrigerating cycle
JP6176470B2 (en) refrigerator
WO2005066554A1 (en) Ultralow temperature refrigerator, refrigerating system, and vacuum apparatus
JP2008185256A (en) Refrigerating device
CN110195949B (en) Refrigeration system and method
JP4161871B2 (en) Refrigeration cycle equipment
JP2009186074A (en) Refrigerating device
JP2005098635A (en) Refrigeration cycle
JP2003028518A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019741070

Country of ref document: EP

Effective date: 20200819