WO2019142816A1 - Hybrid-type superconducting bulk magnet device - Google Patents

Hybrid-type superconducting bulk magnet device Download PDF

Info

Publication number
WO2019142816A1
WO2019142816A1 PCT/JP2019/001062 JP2019001062W WO2019142816A1 WO 2019142816 A1 WO2019142816 A1 WO 2019142816A1 JP 2019001062 W JP2019001062 W JP 2019001062W WO 2019142816 A1 WO2019142816 A1 WO 2019142816A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
bulk
superconducting
lens
magnet
Prior art date
Application number
PCT/JP2019/001062
Other languages
French (fr)
Japanese (ja)
Inventor
博之 藤代
圭太 高橋
Original Assignee
国立大学法人岩手大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人岩手大学 filed Critical 国立大学法人岩手大学
Publication of WO2019142816A1 publication Critical patent/WO2019142816A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures

Definitions

  • the present invention relates to a hybrid superconducting bulk magnet apparatus that generates a high magnetic field using a superconducting bulk.
  • a superconducting magnet can generate a very high magnetic field as compared with a permanent magnet, and a superconducting coil magnet has been generally used in the past, but recently, a superconducting magnet using a superconducting bulk has been developed.
  • a superconducting magnet using this superconducting bulk is more compact than a superconducting coil magnet, and is suitable for applications that generate a large magnetic field in a relatively small space.
  • Patent Document 1 As a superconducting magnet using a superconducting bulk, there has been proposed a bulk superconductor magnetic lens which utilizes the magnetic lens effect to cause the magnetic flux to converge at an appropriate position in the induction direction of the magnetic flux (Patent Document 1 and the like).
  • FIG. 1A shows an example of a superconducting magnet apparatus using a conventional bulk superconductor magnetic lens.
  • the superconducting magnet device 1 is composed of a bulk superconducting magnetic lens 2 in which a pair of superconducting bulks are butted, and a magnetizing magnetic field (applied magnetic field B app ) is applied by a magnetizing superconducting coil magnet 3 disposed outside.
  • a magnetizing magnetic field applied magnetic field B app
  • GdBaCuO is used as the superconducting bulk
  • NbTi is used as the superconducting coil.
  • the magnetic field produced by the superconducting coil magnet 3 for magnetization is converged by the bulk superconductor magnetic lens 2 provided therein using the magnetic shielding effect, and the magnetic field amplification factor (ratio of generated magnetic field to applied magnetic field) ) Generates a high magnetic field B c which is larger than 1 as shown in FIG. 1 (b).
  • the magnetic field amplification factor ratio of generated magnetic field to applied magnetic field
  • the present invention solves the problems of the prior art as described above, can generate a magnetic field larger than the applied magnetic field, and continuously generate a magnetic field larger than the applied magnetic field even after the applied magnetic field is zeroed. It is an object of the present invention to provide a novel superconducting bulk magnet device that can
  • a superconducting magnet for magnetization for magnetization provided at the inner center of a cylindrical bulk superconductor with a bulk superconductor magnetic lens having characteristics different from those of the cylindrical bulk superconductor having a shape for converging a magnetic field, and disposed outside
  • the trapping phenomenon of the magnetic field by the cylindrical bulk superconductor and the magnetic focusing effect by the bulk superconductor magnetic lens are combined to generate a magnetic field larger than the applied magnetic field
  • a hybrid type superconducting bulk magnet apparatus characterized in that a magnetic field larger than an applied magnetic field can be continuously generated even after the application of the magnetic field by the superconducting magnet for magnetization is reduced to zero.
  • a hybrid type superconducting bulk magnet according to the first aspect of the invention, wherein the cylindrical bulk superconductor is made of MgB 2 and the bulk superconductor magnetic lens is made of REBaCuO (RE is a rare earth element or Y). apparatus.
  • RE is a rare earth element or Y.
  • each of the cylindrical bulk superconductor and the bulk superconductor magnetic lens is made of REBaCuO (RE is a rare earth element or Y).
  • the hybrid superconducting bulk magnet device of the present invention is an environment purification field such as magnetic separation for separating harmful substances by magnetic force, an energy field such as a small / high efficiency motor / generator, or a medical treatment such as nuclear magnetic resonance (NMR) device It can be used in the field etc.
  • NMR nuclear magnetic resonance
  • it can be applied to the fields of measurement and high energy physics such as "separation and purification of substances” and “electron and ion beam focusing” which can not be achieved by the conventional superconducting bulk magnet apparatus.
  • FIG. 1 is a view showing an example of a hybrid superconducting bulk magnet apparatus according to a first embodiment of the present invention. It is a figure which shows the magnetic field distribution on the central axis (x axis) in a magnetization increase process and a de-magnetization process. It is a figure which shows the step dependency of the generated magnetic field in the center of a magnetic lens.
  • FIG. 6 is a view showing the relationship between an external magnetic field Bex and a generated magnetic field (central magnetic field) B H in each step (steps 0 to 10) when the applied magnetic field B app is 3T, 6T, 10T.
  • FIG. 2A shows an example of a hybrid superconducting bulk magnet apparatus (hereinafter, also simply referred to as a superconducting bulk magnet apparatus) 11 according to the present invention.
  • a bulk superconducting magnetic lens 12 formed by butting a pair of superconducting bulks is disposed at the inner center of the cylindrical bulk superconductor 13, and is configured to be a superconducting magnet for magnetization disposed outside.
  • a magnetizing magnetic field (applied magnetic field B app ) is applied by the reference numeral 14.
  • the bulk superconductor magnetic lens 12 has a shape for converging a magnetic field, and the characteristics thereof are different from the characteristics of the cylindrical bulk superconductor 13.
  • REBaCuO (RE is a rare earth element or Y) is used as a superconducting bulk of the bulk superconductor magnetic lens 12
  • MgB 2 or REBaCuO (RE is a rare earth element or Y) is used as a superconducting bulk of the cylindrical bulk superconductor 13.
  • a solenoid type coil or a split type coil made of, for example, NbTi is used as the superconducting magnet 14 for magnetization.
  • GdBaCuO is preferable.
  • the cylindrical bulk superconductor 13 is magnetized by the magnetizing superconducting magnet 14 to capture the magnetic field by the cylindrical bulk superconductor 13 and the magnetic convergence by the bulk superconductor magnetic lens 12.
  • a magnetic field B c larger than the applied magnetic field B app is generated, and after the magnetic field application by the superconducting magnet 14 for magnetization is made zero, the applied magnetic field B app is A large magnetic field B c can be generated continuously.
  • FIG. 3 shows an example of dimensions of each part of the superconducting bulk magnet device 11 of the present invention.
  • the superconducting bulk magnet apparatus 11 of the present invention is very compact and suitable for applications that generate a large magnetic field in a relatively small space.
  • GdBaCuO is used as the superconducting bulk of the bulk superconductor magnetic lens 12
  • MgB 2 is used as the superconducting bulk of the cylindrical bulk superconductor 13
  • a superconducting solenoid coil made of NbTi is used as the superconducting magnet 14 for magnetization.
  • MgB 2 bulk superconductor magnetic lens 12 using GdBaCuO the MgB 2 cylinder 13 is used as the superconducting magnet 14 for magnetization.
  • Each part of the superconducting bulk magnet device 11 according to the present embodiment can be shaped and sized as shown in FIG.
  • the magnetization process of the superconducting bulk magnet apparatus 11 of this embodiment is shown in FIG.
  • This magnetization process takes the time sequence of (1) to (5) shown in FIG. 4 and below.
  • B app was 3T.
  • the external magnetic field B ex linearly rises. This is performed over five steps (steps 1 to 5) up to B app corresponding to the zero magnetic field cooling magnetization (ZFCM) of the GdBaCuO lens 12.
  • the magnetic field B c which is essentially higher than B app due to the shielding effect of the magnetic lens 12, completely penetrates the MgB 2 cylinder 13 and the magnetic field converges to the center of the magnetic lens.
  • the external magnetic field B ex linearly decreases and becomes 0 in 5 steps (steps 6 to 10).
  • the MgB 2 cylinder 13 is magnetized by magnetic field cooling magnetisation (FCM) and the magnetic flux is trapped within the MgB 2 cylinder 13.
  • Field focusing effect is slightly decreased due to a decrease of the external magnetic field B ex, since the magnetic field trapped in the MgB 2 cylinder 13 is present, the central magnetic field B c in the center of GdBaCuO lens 12 still remains.
  • FIG. 5 shows the magnetic field distribution on the central axis (x axis) in the magnetizing process and the demagnetizing process
  • FIG. 6 shows the step dependency of the generated magnetic field at the center of the magnetic lens.
  • GdBaCuO is used as the superconducting bulk of the bulk superconductor magnetic lens 12
  • the same GdBaCuO is used as the superconducting bulk of the cylindrical bulk superconductor 13
  • a superconducting solenoidal coil made of NbTi is used as the superconducting magnet 14 for magnetization.
  • the bulk superconductor magnetic lens 12 using GdBaCuO is abbreviated as a GdBaCuO lens 12
  • the cylindrical bulk superconductor 13 using GdBaCuO is abbreviated as a GdBaCuO cylinder 13.
  • Each part of the superconducting bulk magnet device 11 according to the present embodiment can also be shaped and sized as shown in FIG.
  • the time sequence of this magnetization process is as follows (1) to (5).
  • the external magnetic field B ex linearly decreases and becomes 0 in 5 steps (steps 6 to 10).
  • the GdBaCuO cylinder 13 is magnetized by magnetic field cooling magnetisation (FCM) and the magnetic flux is trapped within the GdBaCuO cylinder 13.
  • Field focusing effect is slightly decreased due to a decrease of the external magnetic field B ex, because of the presence of the magnetic field trapped GdBaCuO cylinder 13, the center magnetic field B c in the center of GdBaCuO lens 12 still remains.
  • FIG. 8 shows the magnetic field distribution on the central axis (x axis) in the magnetizing process and the demagnetizing process.
  • the magnetic field could be generated continuously even after the application of the magnetic field was stopped. Further, the same tendency was obtained for the superconducting bulk magnet device of the first embodiment.

Abstract

Provided is a novel superconducting bulk magnet device comprising cylindrical bulk superconductors 13 in which at the center are disposed bulk superconductor magnetic lenses 12 having a shape for converging a magnetic field and characteristics different from those of the cylindrical bulk superconductors 13, wherein the cylindrical bulk superconductors 13 are magnetized by means of an externally installed magnetizing superconducting magnet 14, whereby a magnetic field capturing effect due to the cylindrical bulk superconductors 13 and a magnetization converging effect due to the bulk superconductor magnetic lenses 12 are combined, a magnetic field greater than the applied magnetic field is generated, and the magnetic field greater than the applied magnetic field can be generated continuously even after the application of the magnetic field due to the magnetizing superconducting magnet 14 is made zero. Thus, it is possible to generate a magnetic field greater than the applied magnetic field, and to generate the magnetic field greater than the applied magnetic field continuously even after the applied magnetic field is made zero.

Description

ハイブリッド型超電導バルク磁石装置Hybrid-type superconducting bulk magnet device
 本発明は、超電導バルクを用いて高磁場を発生するハイブリッド型超電導バルク磁石装置に関するものである。 The present invention relates to a hybrid superconducting bulk magnet apparatus that generates a high magnetic field using a superconducting bulk.
 超電導磁石は永久磁石に比べ、非常に高い磁場を発生することができ、従来は超電導コイル磁石が一般的であったが、最近では超電導バルクを用いた超電導磁石の開発がなされている。この超電導バルクを用いた超電導磁石は、超電導コイル磁石よりもコンパクトであり、比較的小さな空間に大きな磁場を発生する用途に適している。 A superconducting magnet can generate a very high magnetic field as compared with a permanent magnet, and a superconducting coil magnet has been generally used in the past, but recently, a superconducting magnet using a superconducting bulk has been developed. A superconducting magnet using this superconducting bulk is more compact than a superconducting coil magnet, and is suitable for applications that generate a large magnetic field in a relatively small space.
 超電導バルクを用いた超電導磁石として、磁気レンズ効果を利用し、磁束の誘導方向の適所に磁束を収束させるバルク超電導体磁気レンズが提案されている(特許文献1等)。 As a superconducting magnet using a superconducting bulk, there has been proposed a bulk superconductor magnetic lens which utilizes the magnetic lens effect to cause the magnetic flux to converge at an appropriate position in the induction direction of the magnetic flux (Patent Document 1 and the like).
 図1(a)に、従来のバルク超電導体磁気レンズを用いた超電導磁石装置の一例を示す。この超電導磁石装置1は、一対の超電導バルクを突き合わせてなるバルク超電導体磁気レンズ2から構成され、外部に配置される着磁用超電導コイル磁石3により着磁用磁場(印加磁場Bapp)が印加されるようになっている。例えば、超電導バルクとしては、GdBaCuOが用いられ、超電導コイルとしては、NbTiが用いられる。 FIG. 1A shows an example of a superconducting magnet apparatus using a conventional bulk superconductor magnetic lens. The superconducting magnet device 1 is composed of a bulk superconducting magnetic lens 2 in which a pair of superconducting bulks are butted, and a magnetizing magnetic field (applied magnetic field B app ) is applied by a magnetizing superconducting coil magnet 3 disposed outside. It is supposed to be For example, GdBaCuO is used as the superconducting bulk, and NbTi is used as the superconducting coil.
 この超電導磁石装置1は、着磁用超電導コイル磁石3が作る磁場を、磁気シールド効果を用いて内部に設けたバルク超電導体磁気レンズ2により収束し、磁場増幅率(印加磁場に対する発生磁場の比)が図1(b)に示すように1より大きくなる高磁場Bを発生させるものである。現状では、外部磁場Bapp=8Tのもとで、バルク超電導体磁気レンズ2内で12.4Tの磁場収束が実現している(非特許文献1)。 In the superconducting magnet device 1, the magnetic field produced by the superconducting coil magnet 3 for magnetization is converged by the bulk superconductor magnetic lens 2 provided therein using the magnetic shielding effect, and the magnetic field amplification factor (ratio of generated magnetic field to applied magnetic field) ) Generates a high magnetic field B c which is larger than 1 as shown in FIG. 1 (b). At present, under the external magnetic field B app = 8 T, a magnetic field convergence of 12.4 T is realized in the bulk superconductor magnetic lens 2 (Non-patent Document 1).
 しかしながら、このような従来の超電導磁石装置1では、磁場収束効果は外部磁場Bappをゼロにすると磁気レンズ効果が失われるため、着磁用超電導コイル磁石3が励磁されている状態(図1(b)の点線の矢印で示す)だけ有効となっているに過ぎなかった。 However, in such a conventional superconducting magnet device 1, the magnetic lens focusing effect is lost when the external magnetic field B app is made zero, so that the magnetic lens effect is lost, so the superconducting coil magnet 3 for magnetization is excited (FIG. Only indicated by the dotted arrow in b)).
特開平2009-135487号公報(特許第5158799号公報)Unexamined-Japanese-Patent No. 2009-135487 (patent 5158799)
 本発明は、以上のような従来技術の問題点を解決し、印加磁場より大きな磁場を発生でき、しかも、印加磁場をゼロにした後も、印加磁場より大きな磁場を持続的に発生することができる新規な超電導バルク磁石装置を提供することを課題とする。 The present invention solves the problems of the prior art as described above, can generate a magnetic field larger than the applied magnetic field, and continuously generate a magnetic field larger than the applied magnetic field even after the applied magnetic field is zeroed. It is an object of the present invention to provide a novel superconducting bulk magnet device that can
 本発明によれば、上記課題を解決するため、以下の発明が提供される。 According to the present invention, the following inventions are provided in order to solve the above problems.
 〔1〕円筒状バルク超電導体の内部中心に、磁場を収束させるための形状を有する前記円筒状バルク超電導体とは異なる特性のバルク超電導体磁気レンズを配置し、外部に設置した着磁用超電導マグネットにより前記円筒状バルク超電導体を着磁することにより、前記円筒状バルク超電導体による磁場の捕捉現象と、前記バルク超電導体磁気レンズによる磁気収束効果を組み合わせ、印加磁場より大きな磁場を発生させ、かつ、前記着磁用超電導マグネットによる磁場印加をゼロにした後も印加磁場より大きな磁場を持続的に発生できるようにしたことを特徴とするハイブリッド型超電導バルク磁石装置。 [1] A superconducting magnet for magnetization for magnetization provided at the inner center of a cylindrical bulk superconductor with a bulk superconductor magnetic lens having characteristics different from those of the cylindrical bulk superconductor having a shape for converging a magnetic field, and disposed outside By magnetizing the cylindrical bulk superconductor with a magnet, the trapping phenomenon of the magnetic field by the cylindrical bulk superconductor and the magnetic focusing effect by the bulk superconductor magnetic lens are combined to generate a magnetic field larger than the applied magnetic field, A hybrid type superconducting bulk magnet apparatus characterized in that a magnetic field larger than an applied magnetic field can be continuously generated even after the application of the magnetic field by the superconducting magnet for magnetization is reduced to zero.
 〔2〕上記第1の発明において、前記円筒状バルク超電導体がMgB2からなり、前記バルク超電導体磁気レンズがREBaCuO(REは希土類元素またはY)からなることを特徴とするハイブリッド型超電導バルク磁石装置。 [2] A hybrid type superconducting bulk magnet according to the first aspect of the invention, wherein the cylindrical bulk superconductor is made of MgB 2 and the bulk superconductor magnetic lens is made of REBaCuO (RE is a rare earth element or Y). apparatus.
 〔3〕上記第1の発明において、前記円筒状バルク超電導体および前記バルク超電導体磁気レンズがそれぞれREBaCuO(REは希土類元素またはY)からなることを特徴とするハイブリッド型超電導バルク磁石装置。 [3] A hybrid type superconducting bulk magnet apparatus according to the first aspect of the invention, wherein each of the cylindrical bulk superconductor and the bulk superconductor magnetic lens is made of REBaCuO (RE is a rare earth element or Y).
 本発明によれば、上記構成を採用したので、印加磁場より大きな磁場を発生でき、しかも、印加磁場をゼロにした後も、印加磁場より大きな磁場を持続的に発生することができる新規なハイブリッド超電導バルク磁石装置を提供することが可能となる。 According to the present invention, since the above configuration is adopted, a new hybrid that can generate a magnetic field larger than the applied magnetic field and can continuously generate a magnetic field larger than the applied magnetic field even after the applied magnetic field is zeroed. It becomes possible to provide a superconducting bulk magnet device.
 本発明のハイブリッド超電導バルク磁石装置は、有害物質を磁気力により分離する磁気分離等の環境浄化分野、小型・高効率モーター・発電機等のエネルギー分野や、核磁気共鳴(NMR)装置等の医療分野などに利用することができる。また、これまでの超電導バルク磁石装置ではできなかった「物質の分離・精製」や、「電子・イオンビーム収束」などの計測・高エネルギー物理分野へも応用することが可能である。 The hybrid superconducting bulk magnet device of the present invention is an environment purification field such as magnetic separation for separating harmful substances by magnetic force, an energy field such as a small / high efficiency motor / generator, or a medical treatment such as nuclear magnetic resonance (NMR) device It can be used in the field etc. In addition, it can be applied to the fields of measurement and high energy physics such as "separation and purification of substances" and "electron and ion beam focusing" which can not be achieved by the conventional superconducting bulk magnet apparatus.
 本発明は日本に数百台設置されている10T超電導マグネットを用いて、比較的容易に15T級の強磁場を持続的に実現できる可能性が有り、このメリットやインパクトは大きい。 In the present invention, there is a possibility that a 15T class strong magnetic field can be realized relatively easily and sustainably by using hundreds of 10T superconducting magnets installed in Japan, and this merit and impact are large.
従来のバルク超電導体磁気レンズを用いた超電導磁石装置の一例を示す図である。It is a figure which shows an example of the superconducting magnet apparatus which used the conventional bulk superconductor magnetic lens. 本発明によるハイブリッド型超電導バルク磁石装置の一例を示す図である。It is a figure showing an example of the hybrid type superconducting bulk magnet device by the present invention. 本発明の超電導バルク磁石装置の各部の寸法例を示す図である。It is a figure which shows the example of a dimension of each part of the superconducting bulk magnet apparatus of this invention. 本発明の第1の実施形態に係るハイブリッド型超電導バルク磁石装置の一例を示す図である。FIG. 1 is a view showing an example of a hybrid superconducting bulk magnet apparatus according to a first embodiment of the present invention. 増磁過程および減磁過程での中心軸(x軸)上での磁場分布を示す図である。It is a figure which shows the magnetic field distribution on the central axis (x axis) in a magnetization increase process and a de-magnetization process. 磁気レンズ中心での発生磁場のステップ依存性を示す図である。It is a figure which shows the step dependency of the generated magnetic field in the center of a magnetic lens. 本発明の第2の実施形態に係る超電導バルク磁石装置の磁化プロセスにおける個別温度制御を説明するための図である。It is a figure for demonstrating separate temperature control in the magnetization process of the superconducting bulk magnet apparatus which concerns on the 2nd Embodiment of this invention. 増磁過程および減磁過程での中心軸(x軸)上での磁場分布を示す図である。It is a figure which shows the magnetic field distribution on the central axis (x axis) in a magnetization increase process and a de-magnetization process. 印加磁場Bappが3T、6T、10Tの場合の各ステップ(ステップ0~10)における外部磁場Bexと発生磁界(中心磁界)Bとの関係を示す図である。FIG. 6 is a view showing the relationship between an external magnetic field Bex and a generated magnetic field (central magnetic field) B H in each step (steps 0 to 10) when the applied magnetic field B app is 3T, 6T, 10T.
 以下、本発明を実施の形態に基づいて詳細に説明する。 Hereinafter, the present invention will be described in detail based on the embodiments.
 図2(a)に、本発明によるハイブリッド型超電導バルク磁石装置(以下、単に超電導バルク磁石装置とも称する)11の一例を示す。この超電導バルク磁石装置11は、一対の超電導バルクを突き合わせてなるバルク超電導体磁気レンズ12が、円筒状バルク超電導体13の内部中心に配置されて構成され、外部に配置される着磁用超電導マグネット14により着磁用磁場(印加磁場Bapp)が印加されるようになっている。バルク超電導体磁気レンズ12は、図2(a)に示すように、磁場を収束させるための形状となっており、その特性は円筒状バルク超電導体13の特性とは異なっている。バルク超電導体磁気レンズ12の超電導バルクとしては、例えばREBaCuO(REは希土類元素またはY)が用いられ、円筒状バルク超電導体13の超電導バルクとしては、例えばMgB2またはREBaCuO(REは希土類元素またはY)が用いられ、着磁用超電導マグネット14としては、例えばNbTiからなるソレノイド型コイルまたはスプリット型コイルが用いられる。上記REBaCuOとしては、特にGdBaCuOが好ましい。 FIG. 2A shows an example of a hybrid superconducting bulk magnet apparatus (hereinafter, also simply referred to as a superconducting bulk magnet apparatus) 11 according to the present invention. In the superconducting bulk magnet device 11, a bulk superconducting magnetic lens 12 formed by butting a pair of superconducting bulks is disposed at the inner center of the cylindrical bulk superconductor 13, and is configured to be a superconducting magnet for magnetization disposed outside. A magnetizing magnetic field (applied magnetic field B app ) is applied by the reference numeral 14. As shown in FIG. 2A, the bulk superconductor magnetic lens 12 has a shape for converging a magnetic field, and the characteristics thereof are different from the characteristics of the cylindrical bulk superconductor 13. For example, REBaCuO (RE is a rare earth element or Y) is used as a superconducting bulk of the bulk superconductor magnetic lens 12, and MgB 2 or REBaCuO (RE is a rare earth element or Y) is used as a superconducting bulk of the cylindrical bulk superconductor 13. A solenoid type coil or a split type coil made of, for example, NbTi is used as the superconducting magnet 14 for magnetization. Especially as said REBaCuO, GdBaCuO is preferable.
 この超電導バルク磁石装置11は、着磁用超電導マグネット14により円筒状バルク超電導体13を着磁することにより、円筒状バルク超電導体13による磁場の捕捉現象と、バルク超電導体磁気レンズ12による磁気収束効果を組み合わせることにより、図2(b)に示すように、印加磁場Bappより大きな磁場Bを発生させ、かつ、着磁用超電導マグネット14による磁場印加をゼロにした後に印加磁場Bappより大きな磁場Bを持続的に発生できるようになる。 In the superconducting bulk magnet device 11, the cylindrical bulk superconductor 13 is magnetized by the magnetizing superconducting magnet 14 to capture the magnetic field by the cylindrical bulk superconductor 13 and the magnetic convergence by the bulk superconductor magnetic lens 12. By combining the effects, as shown in FIG. 2B, a magnetic field B c larger than the applied magnetic field B app is generated, and after the magnetic field application by the superconducting magnet 14 for magnetization is made zero, the applied magnetic field B app is A large magnetic field B c can be generated continuously.
 ここで、図3に、本発明の超電導バルク磁石装置11の各部の寸法例を示す。図示のように、本発明の超電導バルク磁石装置11は、非常にコンパクトであり、比較的小さな空間に大きな磁場を発生する用途に適するものとなる。 Here, FIG. 3 shows an example of dimensions of each part of the superconducting bulk magnet device 11 of the present invention. As shown, the superconducting bulk magnet apparatus 11 of the present invention is very compact and suitable for applications that generate a large magnetic field in a relatively small space.
 次に、本発明の第1の実施形態の超電導バルク磁石装置について説明する。本実施形態では、バルク超電導体磁気レンズ12の超電導バルクとしてGdBaCuOを用い、円筒状バルク超電導体13の超電導バルクとしてMgB2を用い、着磁用超電導マグネット14としてNbTiからなる超電導ソレノイド型コイルを用いる。ここでは、GdBaCuOを用いたバルク超電導体磁気レンズ12をGdBaCuOレンズ12、 MgB2を用いた円筒状バルク超電導体13をMgB2円筒13と略記する。 Next, the superconducting bulk magnet device of the first embodiment of the present invention will be described. In this embodiment, GdBaCuO is used as the superconducting bulk of the bulk superconductor magnetic lens 12, MgB 2 is used as the superconducting bulk of the cylindrical bulk superconductor 13, and a superconducting solenoid coil made of NbTi is used as the superconducting magnet 14 for magnetization. . Here, abbreviated cylindrical bulk superconductor 13 using GdBaCuO lens 12, MgB 2 bulk superconductor magnetic lens 12 using GdBaCuO the MgB 2 cylinder 13.
 本実施形態の超電導バルク磁石装置11の各部は、図3に示す形状、大きさとすることができる。 Each part of the superconducting bulk magnet device 11 according to the present embodiment can be shaped and sized as shown in FIG.
 本実施形態の超電導バルク磁石装置11の磁化プロセスを図4に示す。この磁化プロセスは、図4及び下記に示す(1)~(5)の時間シーケンスをとる。Bappは3Tとした。 The magnetization process of the superconducting bulk magnet apparatus 11 of this embodiment is shown in FIG. This magnetization process takes the time sequence of (1) to (5) shown in FIG. 4 and below. B app was 3T.
 (1)MgB2円筒13とGdBaCuOレンズ12は、室温からT=40Kに冷却される。このTはMgB2の超電導転移温度Tc=39Kより高いが、GdBaCuOの超電導転移温度T=92Kよりも低い。従って、この段階では、MgB2円筒13は常電導状態にあり、GdBaCuOレンズ12は超電導状態にある(ステップ0)。 (1) The MgB 2 cylinder 13 and the GdBaCuO lens 12 are cooled from room temperature to T H = 40K. The T H is higher than the superconducting transition temperature Tc = 39 K of MgB 2 but lower than the superconducting transition temperature T c = 92 K of GdBaCuO. Therefore, at this stage, the MgB 2 cylinder 13 is in the normal conduction state, and the GdBaCuO lens 12 is in the superconducting state (step 0).
 (2)外部磁場Bexは直線的に上昇する。これはGdBaCuOレンズ12のゼロ磁場冷却着磁(ZFCM)に対応するBappまでの5ステップ(ステップ1~5)にわたって行われる。磁気レンズ12によるシールド効果のためにBappよりも本質的に高い磁場Bは、MgB2円筒13を完全に貫通し、磁場は磁気レンズの中心に収束する。 (2) The external magnetic field B ex linearly rises. This is performed over five steps (steps 1 to 5) up to B app corresponding to the zero magnetic field cooling magnetization (ZFCM) of the GdBaCuO lens 12. The magnetic field B c, which is essentially higher than B app due to the shielding effect of the magnetic lens 12, completely penetrates the MgB 2 cylinder 13 and the magnetic field converges to the center of the magnetic lens.
 (3)MgB2円筒13とGdBaCuOレンズ12の両方の温度は、MgB2のTよりも低いT=20Kまで低下する。 (3) The temperatures of both the MgB 2 cylinder 13 and the GdBaCuO lens 12 drop to T L = 20 K, which is lower than the T c of MgB 2 .
 (4)外部磁場Bexは直線的に減少し、5ステップ(ステップ6~10)で0となる。このプロセス中、MgB2円筒13は磁場中冷却着磁(FCM)によって磁化され、磁束はMgB2円筒13内に捕捉される。磁場収束効果は、外部磁場Bexの減少によりわずかに減少するが、MgB2円筒13内に捕捉された磁場が存在するため、GdBaCuOレンズ12の中心にある中心磁場Bはまだ残っている。 (4) The external magnetic field B ex linearly decreases and becomes 0 in 5 steps (steps 6 to 10). During this process, the MgB 2 cylinder 13 is magnetized by magnetic field cooling magnetisation (FCM) and the magnetic flux is trapped within the MgB 2 cylinder 13. Field focusing effect is slightly decreased due to a decrease of the external magnetic field B ex, since the magnetic field trapped in the MgB 2 cylinder 13 is present, the central magnetic field B c in the center of GdBaCuO lens 12 still remains.
 (5)結果として、外部磁場Bex=0の後であっても、Bappより高い磁場Bを確実に発生できる超電導バルク磁石が実現する。 (5) As a result, a superconducting bulk magnet is realized that can reliably generate a magnetic field B c higher than B app even after an external magnetic field B ex = 0.
 図5に、増磁過程および減磁過程での中心軸(x軸)上での磁場分布、図6に、磁気レンズ中心での発生磁場のステップ依存性を示す。 FIG. 5 shows the magnetic field distribution on the central axis (x axis) in the magnetizing process and the demagnetizing process, and FIG. 6 shows the step dependency of the generated magnetic field at the center of the magnetic lens.
 次に、本発明の第2の実施形態の超電導バルク磁石装置について説明する。本実施形態では、バルク超電導体磁気レンズ12の超電導バルクとしてGdBaCuOを用い、円筒状バルク超電導体13の超電導バルクとして同じGdBaCuOを用い、着磁用超電導マグネット14としてNbTiからなる超電導ソレノイド型コイルを用いる。ここでは、GdBaCuOを用いたバルク超電導体磁気レンズ12をGdBaCuOレンズ12、 GdBaCuOを用いた円筒状バルク超電導体13をGdBaCuO円筒13と略記する。 Next, a superconducting bulk magnet device of a second embodiment of the present invention will be described. In this embodiment, GdBaCuO is used as the superconducting bulk of the bulk superconductor magnetic lens 12, the same GdBaCuO is used as the superconducting bulk of the cylindrical bulk superconductor 13, and a superconducting solenoidal coil made of NbTi is used as the superconducting magnet 14 for magnetization. . Here, the bulk superconductor magnetic lens 12 using GdBaCuO is abbreviated as a GdBaCuO lens 12, and the cylindrical bulk superconductor 13 using GdBaCuO is abbreviated as a GdBaCuO cylinder 13.
 本実施形態の超電導バルク磁石装置11の各部も、図3に示す形状、大きさとすることができる。 Each part of the superconducting bulk magnet device 11 according to the present embodiment can also be shaped and sized as shown in FIG.
 本実施形態の超電導バルク磁石装置11の磁化プロセスでは、図7に示すように、GdBaCuOレンズ12とGdBaCuO円筒13の温度を個別に制御する必要がある。図中、実線がGdBaCuO円筒13の温度、破線がGdBaCuOレンズ12の温度を示す。Bappは10Tである。 In the magnetization process of the superconducting bulk magnet device 11 of the present embodiment, as shown in FIG. 7, it is necessary to control the temperatures of the GdBaCuO lens 12 and the GdBaCuO cylinder 13 individually. In the figure, the solid line indicates the temperature of the GdBaCuO cylinder 13, and the broken line indicates the temperature of the GdBaCuO lens 12. B app is 10T.
 この場合も、印加磁場Bexと発生磁場Bの関係は図4と同様な傾向となる。 Again, the relationship of the applied magnetic field B ex and the magnetic field generated B c is the same tendency as FIG.
 この磁化プロセスの時間シーケンスは下記の(1)~(5)となる。 The time sequence of this magnetization process is as follows (1) to (5).
 (1)GdBaCuO円筒13は100Kに維持され、GdBaCuOレンズ12はT=40Kまで冷却される。従って、この段階では、GdBaCuO円筒13は常電導状態にあり、GdBaCuOレンズ12は超電導状態にある(ステップ0)。 (1) The GdBaCuO cylinder 13 is maintained at 100 K, and the GdBaCuO lens 12 is cooled to T H = 40 K. Therefore, at this stage, the GdBaCuO cylinder 13 is in the normal conduction state, and the GdBaCuO lens 12 is in the superconducting state (step 0).
 (2)外部磁場BexはBappまで5ステップ(ステップ1~5)にわたって直線的に増加し、Bappと等しい磁場がGdBaCuO円筒13を完全に貫通し、磁場は磁気レンズの中心に収束するが、GdBaCuOレンズ12はゼロ磁場冷却(ZFC)により着磁される。 (2) an external magnetic field B ex increases linearly over 5 steps until B app (Step 1 ~ 5), B app equal magnetic field completely through GdBaCuO cylinder 13, the magnetic field is converged to the center of the magnetic lens However, the GdBaCuO lens 12 is magnetized by zero field cooling (ZFC).
 (3)GdBaCuO円筒13とGdBaCuOレンズ12の両方の温度は、T=20Kまで低下する。 (3) The temperatures of both the GdBaCuO cylinder 13 and the GdBaCuO lens 12 drop to T L = 20K.
 (4)外部磁場Bexは直線的に減少し、5ステップ(ステップ6~10)で0となる。このプロセス中、GdBaCuO円筒13は磁場中冷却着磁(FCM)によって磁化され、磁束はGdBaCuO円筒13内に捕捉される。磁場収束効果は、外部磁場Bexの減少によりわずかに減少するが、GdBaCuO円筒13内に捕捉された磁場が存在するため、GdBaCuOレンズ12の中心にある中心磁場Bはまだ残っている。 (4) The external magnetic field B ex linearly decreases and becomes 0 in 5 steps (steps 6 to 10). During this process, the GdBaCuO cylinder 13 is magnetized by magnetic field cooling magnetisation (FCM) and the magnetic flux is trapped within the GdBaCuO cylinder 13. Field focusing effect is slightly decreased due to a decrease of the external magnetic field B ex, because of the presence of the magnetic field trapped GdBaCuO cylinder 13, the center magnetic field B c in the center of GdBaCuO lens 12 still remains.
 (5)結果として、外部磁場Bex=0の後であっても、Bappより高い磁場Bを確実に発生できる超電導バルク磁石が実現する。 (5) As a result, a superconducting bulk magnet is realized that can reliably generate a magnetic field B c higher than B app even after an external magnetic field B ex = 0.
 図8に、増磁過程および減磁過程での中心軸(x軸)上での磁場分布を示す。 FIG. 8 shows the magnetic field distribution on the central axis (x axis) in the magnetizing process and the demagnetizing process.
 また、図9に、Bapp=3T、6T、10Tの場合の各ステップ(ステップ0~10)における外部磁場Bexと発生磁界(中心磁界)Bとの関係を示す。いずれも磁場印加を停止した後も磁場を持続的に発生することができた。また、実施形態1の超電導バルク磁石装置についても同様な傾向が得られた。 Further, in FIG. 9 shows B app = 3T, 6T, the relationship between the external magnetic field B ex and the generated magnetic field (center field) B c in each step (step 0-10) in the case of 10T. In any case, the magnetic field could be generated continuously even after the application of the magnetic field was stopped. Further, the same tendency was obtained for the superconducting bulk magnet device of the first embodiment.
  11  超電導バルク磁石装置
  12  バルク超電導体磁気レンズ
  13  円筒状バルク超電導体
  14  着磁用超電導マグネット
  
11 Superconducting Bulk Magnet Device 12 Bulk Superconductor Magnetic Lens 13 Cylindrical Bulk Superconductor 14 Superconducting Magnet for Magnetization

Claims (3)

  1.  円筒状バルク超電導体の内部中心に、磁場を収束させるための形状を有する前記円筒状バルク超電導体とは異なる特性のバルク超電導体磁気レンズを配置し、外部に設置した着磁用超電導マグネットにより前記円筒状バルク超電導体を着磁することにより、前記円筒状バルク超電導体による磁場の捕捉現象と、前記バルク超電導体磁気レンズによる磁気収束効果を組み合わせ、印加磁場より大きな磁場を発生させ、かつ、前記着磁用超電導マグネットによる磁場印加をゼロにした後も印加磁場より大きな磁場を持続的に発生できるようにしたことを特徴とするハイブリッド型超電導バルク磁石装置。 A bulk superconductor magnetic lens having characteristics different from those of the cylindrical bulk superconductor having a shape for converging a magnetic field is disposed at the inner center of the cylindrical bulk superconductor, and the magnetizing superconducting magnet disposed outside is used. By magnetizing the cylindrical bulk superconductor, the trapping phenomenon of the magnetic field by the cylindrical bulk superconductor and the magnetic focusing effect by the bulk superconductor magnetic lens are combined to generate a magnetic field larger than the applied magnetic field, and A hybrid superconducting bulk magnet apparatus characterized in that a magnetic field larger than an applied magnetic field can be continuously generated even after the application of a magnetic field by a superconducting magnet for magnetization is reduced to zero.
  2.  前記円筒状バルク超電導体がMgB2からなり、前記バルク超電導体磁気レンズがREBaCuO(REは希土類元素またはY)からなることを特徴とする請求項1に記載のハイブリッド型超電導バルク磁石装置。 The cylindrical bulk superconductor is composed MgB 2, wherein the bulk superconductor magnetic lens REBaCuO (RE is a rare earth element or Y) hybrid superconducting bulk magnet apparatus according to claim 1, characterized in that it consists of.
  3.  前記円筒状バルク超電導体および前記バルク超電導体磁気レンズがそれぞれREBaCuO(REは希土類元素またはY)からなることを特徴とする請求項1に記載のハイブリッド型超電導バルク磁石装置。
      
    The hybrid superconducting bulk magnet apparatus according to claim 1, wherein the cylindrical bulk superconductor and the bulk superconductor magnetic lens are made of REBaCuO (RE is a rare earth element or Y), respectively.
PCT/JP2019/001062 2018-01-17 2019-01-16 Hybrid-type superconducting bulk magnet device WO2019142816A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018005677A JP7006291B2 (en) 2018-01-17 2018-01-17 Hybrid superconducting bulk magnet device
JP2018-005677 2018-03-19

Publications (1)

Publication Number Publication Date
WO2019142816A1 true WO2019142816A1 (en) 2019-07-25

Family

ID=67301459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001062 WO2019142816A1 (en) 2018-01-17 2019-01-16 Hybrid-type superconducting bulk magnet device

Country Status (2)

Country Link
JP (1) JP7006291B2 (en)
WO (1) WO2019142816A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057219A (en) * 2003-08-07 2005-03-03 Aisin Seiki Co Ltd Superconductivity magnetic field generator, its excitation method, sputtering depositing equipment using the superconductivity magnetic field generator, and ferromagnetic member attachment and detachment holder
JP2016046278A (en) * 2014-08-20 2016-04-04 株式会社日立製作所 Magnetic field generation device
JP2016123802A (en) * 2015-01-08 2016-07-11 株式会社日立製作所 Superconducting magnet apparatus and magnetic resonance imaging apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5143006B2 (en) * 2005-10-03 2013-02-13 マサチューセッツ インスティテュート オブ テクノロジー A system using ring magnets to obtain magnetic resonance spectra.
JP5158799B2 (en) * 2007-11-09 2013-03-06 独立行政法人物質・材料研究機構 Magnetic flux concentrator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057219A (en) * 2003-08-07 2005-03-03 Aisin Seiki Co Ltd Superconductivity magnetic field generator, its excitation method, sputtering depositing equipment using the superconductivity magnetic field generator, and ferromagnetic member attachment and detachment holder
JP2016046278A (en) * 2014-08-20 2016-04-04 株式会社日立製作所 Magnetic field generation device
JP2016123802A (en) * 2015-01-08 2016-07-11 株式会社日立製作所 Superconducting magnet apparatus and magnetic resonance imaging apparatus

Also Published As

Publication number Publication date
JP7006291B2 (en) 2022-01-24
JP2019125710A (en) 2019-07-25

Similar Documents

Publication Publication Date Title
JP4623848B2 (en) Magnetic field generator
AU2007269995B2 (en) Method and apparatus for direct energy conversion
FR2533361A1 (en) PERMANENT MULTIPOLAR MAGNET WITH ADJUSTABLE FIELD INTENSITY
JP2021086927A (en) Hybrid-type superconducting bulk magnet device and magnetization method thereof
WO2019142816A1 (en) Hybrid-type superconducting bulk magnet device
JP3671442B2 (en) Demagnetizing method and demagnetizing device
US9080557B2 (en) Method and apparatus for direct energy conversion
CN113936884A (en) Laser-assisted heating multipole magnetization method
JP4482688B2 (en) Magnetic field generation method and magnetic field generation apparatus
KR20100022288A (en) The multi-layered magnetic field generator for a ecr ion source
Caunes et al. Pulsed field magnetization of multiple bulks used as field pole of a high-temperature superconducting rotating machine
Kraus The overview and history of permanent magnet devices in accelerator technology
Nakamura et al. Challenges towards industrialization of the ERL-FEL light source for EUV lithography
JP2699251B2 (en) Magnetic field generator
JP5326357B2 (en) Magnetization method of permanent magnet
JP7356934B2 (en) Superconducting magnet device and bending electromagnet device
JP6355703B2 (en) Sample holder
Isogami et al. Fabrication of Multipole Magnets with Enhanced Flux Density Using Anisotropic Bond Magnets for Miniature Optical Pickup Devices
JP2004342796A (en) Magnetic field generator
US11357095B2 (en) Fast-switch undulator and method for polarizing electron beam
Iwashita et al. Practical applications of permanent magnet multipoles
Iwashita et al. Strong variable permanent multipole magnets
Reisner Permanent magnet lenses
Berger et al. New experimental test rig for pulsed field magnetization of bulk HTS with small coils
JP4283406B2 (en) Method and apparatus for magnetizing oxide superconducting material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19740978

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19740978

Country of ref document: EP

Kind code of ref document: A1