WO2019142583A1 - ロボット装置及び電子機器の製造方法 - Google Patents

ロボット装置及び電子機器の製造方法 Download PDF

Info

Publication number
WO2019142583A1
WO2019142583A1 PCT/JP2018/046796 JP2018046796W WO2019142583A1 WO 2019142583 A1 WO2019142583 A1 WO 2019142583A1 JP 2018046796 W JP2018046796 W JP 2018046796W WO 2019142583 A1 WO2019142583 A1 WO 2019142583A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
robot
control
hand unit
hand
Prior art date
Application number
PCT/JP2018/046796
Other languages
English (en)
French (fr)
Inventor
雄司 小堀
誠 利根川
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201880086193.3A priority Critical patent/CN111587168B/zh
Priority to JP2019565776A priority patent/JP7294144B2/ja
Priority to US16/960,475 priority patent/US20200352037A1/en
Priority to EP18901328.7A priority patent/EP3741521A4/en
Publication of WO2019142583A1 publication Critical patent/WO2019142583A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/081Touching devices, e.g. pressure-sensitive
    • B25J13/082Grasping-force detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0084Programme-controlled manipulators comprising a plurality of manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1669Programme controls characterised by programming, planning systems for manipulators characterised by special application, e.g. multi-arm co-operation, assembly, grasping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1682Dual arm manipulator; Coordination of several manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1687Assembly, peg and hole, palletising, straight line, weaving pattern movement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39122Follower, slave mirrors leader, master
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39123Manipulate, handle flexible object
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39125Task is grasp object with movable parts, like pliers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40032Peg and hole insertion, mating and joining, remote center compliance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0147Carriers and holders

Definitions

  • the present technology is used, for example, in the manufacture of electronic devices having a flexible member such as a harness including a plurality of wires and a terminal portion connected to the end, a flexible flat cable (FFC) or a flexible printed circuit (FPC).
  • the present invention relates to a robot device and a method of manufacturing an electronic device.
  • an object of the present technology is to provide a robot device and a method of manufacturing an electronic device capable of appropriately performing work involving a plurality of robots to improve productivity.
  • a robot apparatus includes a first robot and a second robot.
  • the first robot has a first hand unit and a first control unit.
  • the first hand unit is configured to be able to hold a part of a work.
  • the first control unit is configured to be capable of controlling the first hand unit and generating a reference signal including information on the operation of the first hand unit.
  • the second robot has a second hand unit and a second control unit.
  • the second hand unit is configured to be capable of holding another part of the work.
  • the second control unit controls the second hand unit in cooperation with the first hand unit based on the first control mode for controlling the second hand unit and the reference signal. It is possible to selectively execute the two control modes.
  • the second control unit can execute the second control mode in which the first and second hand units are cooperatively controlled based on the information on the operation of the first hand unit. Configured Thereby, the work in which a plurality of robots participate can be performed appropriately.
  • the second control unit generates a control signal for controlling the first hand unit in the second control mode, and the first control unit controls the first hand based on the control signal. It may be configured to control the unit.
  • the second control unit detects the position of the first hand unit based on the reference signal in the second control mode, and the first hand unit and the second hand unit belong to each other.
  • the first hand unit and the second hand unit may be individually controlled using a common coordinate system.
  • the second control unit releases the holding of the work by the first hand unit when detecting that the first hand unit has reached the first predetermined position in the second control mode.
  • the control unit may be configured to generate, as the control signal, a retraction command for moving the first hand unit to a second predetermined position different from the first predetermined position.
  • the second control unit may operate the second hand unit in synchronization with the first hand unit in the second control mode. Alternatively, the second control unit may move the second hand unit in the same direction as the first hand unit in the second control mode. Alternatively, the second control unit may move the second hand unit at the same speed as the first hand unit in the second control mode.
  • the robot apparatus may further include a controller that transmits a coordination control command signal to start execution of the second control mode to the second control unit.
  • a method of manufacturing an electronic device includes a first work having a connection portion and a linear or strip-like flexible member assembled to the first work and connected to the connection portion.
  • a method of manufacturing an electronic device comprising: holding the flexible member of the second work held by the second robot with a first robot. The second work and the flexible member are simultaneously moved toward the first work while cooperatively controlling the first robot and the second robot. After the flexible member is connected to the connection portion, the second work is assembled to the first work.
  • FIG. 1 is a schematic side view showing a manufacturing apparatus (robot apparatus) of an electronic device according to an embodiment of the present technology.
  • robot apparatus a manufacturing apparatus of an electronic device according to an embodiment of the present technology.
  • the robot apparatus 1 includes a work bench supporting an assembly robot 100 (first robot), a transfer robot 200 (second robot), and a semifinished product of an electronic device (hereinafter also referred to as a work W). 2 and a controller 3 that manages the entire system including the assembly robot 100 and the transfer robot 200.
  • the assembly robot 100 includes a hand unit 101 (first hand unit), an articulated arm 102 capable of moving the hand unit 101 to an arbitrary coordinate position with six-axis degrees of freedom, and a control unit (control unit) And the like.
  • the transport robot 200 includes a hand unit 201 (second hand unit), an articulated arm 202 capable of moving the hand unit 201 to an arbitrary coordinate position with six-axis degrees of freedom, and a control unit (control unit) A second control unit) and the like.
  • the articulated arms 102 and 202 are respectively connected to the work bench 2 or a drive source (not shown) disposed close to the work bench 2.
  • FIG. 2 is a schematic side sectional view showing the configuration of the work W.
  • the workpiece W includes a base portion W1, a wiring board WB disposed in the base portion W1, a connector C (connection portion) mounted on the surface of the wiring board W2, and a base portion W1 facing the wiring board WB.
  • the wiring member H extended from the device part W2 and connected to the connector C.
  • the workpiece W is an assembly of a first workpiece composed of the base portion W1 and the wiring board WB (connector C) and a second workpiece composed of the equipment portion W2 and the wiring member H.
  • the base portion W1 configures, for example, a lower case or an upper case of the electronic device, and a planar shape of the base portion W1 is a substantially rectangular shape.
  • the device unit W2 corresponds to an electric / electronic device unit such as a power supply unit, an optical disk device, or an HDD (Hard Disk Drive).
  • the device portion W2 is configured to be engageable with the upper end of the base portion W1, and its planar shape is a substantially rectangular shape.
  • the wiring member H is constituted by a harness having a terminal portion (Hc) with the connector C at the tip end, but it is also constituted by other linear or strip-like flexible members such as a cable, FFC, FPC etc. May be
  • the robot apparatus 1 assembles the work W on the work table 2. As described in detail later, after the base portion W1 is mounted on the workbench 2 by the transfer robot 200, the apparatus portion W2 is held by the transfer robot 200, and the wiring member H is held by the assembly robot 100. An operation of assembling the device unit W2 is performed.
  • FIG. 3 is a block diagram showing configurations of the assembly robot 100 and the transfer robot 200.
  • the assembly robot 100 and the transfer robot 200 are configured in the same manner, and have control units 103 and 203, communication units 104 and 204, force sensors 105 and 205, etc. in addition to the hand units 101 and 201 and articulated arms 102 and 202. .
  • the assembly robot 100 and the transfer robot 200 may further have a camera, a lamp, and the like.
  • the hand units 101 and 201 are typically configured by a clamp unit.
  • the hand unit 101 of the assembly robot 100 is configured of a finger unit capable of clamping the wiring member H from two directions.
  • the hand unit 201 of the transfer robot 200 is configured to be able to simultaneously clamp the four side surfaces of the base unit W1 or the device unit W2.
  • the hand portion 201 may be configured by a suction unit capable of holding the base portion W1 or the device portion W2 by vacuum suction instead of the clamp unit.
  • the hand units 101 and 201 may be configured to be exchangeable to different attachments depending on the type of work.
  • the articulated arms 102 and 202 move the hand units 101 and 102 or convert their postures.
  • the articulated arms 102 and 202 are typically configured by a vertical articulated arm, a horizontal articulated arm, and the like, but may be configured by an XYZ orthogonal robot (three-axis robot) and the like.
  • the control units 103 and 203 are configured by a computer having a CPU (Central Processing Unit), a memory, and the like.
  • the control units 103 and 203 control the assembly robot 100 and the transfer robot 200 independently, and control the assembly robot 100 and the transfer robot 200 in cooperation with each other. And can be selectively implemented.
  • the assembly robot 100 and the transfer robot 200 are assigned their own respective work for assembling the work W, and only the process of assembling the equipment unit W2 to the base unit W1 is performed. It is configured that the robots 100 and 200 can operate in cooperation.
  • the first control mode is selected, and when the robots 100 and 200 work in cooperation, the second control mode is selected.
  • the unique work executed in the first control mode for example, with respect to the transfer robot 200, positioning and transfer of the base part W1 and the device part W2 and transfer of the work W after assembly, etc. may be mentioned.
  • installation of the shield plate S (see FIG. 1) and attachment of a screw for fixing the same can be mentioned on the equipment unit W2 assembled to the base unit W1.
  • operation control such as operating two hands 101 and 201 synchronously, moving in the same direction, moving at the same speed, etc. included.
  • operation control such as operating two hands 101 and 201 synchronously, moving in the same direction, moving at the same speed, etc. included.
  • an operation trouble for example, failure of the hand part or a collision with another member
  • the other hand part is also stopped similarly.
  • it is possible to prevent in advance the occurrence of trouble for example, disconnection or damage of the wiring member H due to the operation of only one hand portion.
  • control unit 203 of the transfer robot 200 is higher than the control unit 103 of the assembly robot 100, and not only the operation control of the hand unit 201 but also the operation of the hand unit 101 of the assembly robot 100 It is possible to generate a control signal for controlling the At this time, the control unit 103 of the assembly robot 100 controls the operation of the hand unit 101 in accordance with the control signal from the transfer robot 200.
  • control of the hand units 101 and 201 or control of these operations also includes control of operations of the articulated arms 102 and 202 for moving the hand units 101 and 201 to arbitrary coordinate positions with six-axis degrees of freedom. It shall be.
  • the control unit 103 of the assembly robot 100 In the second control mode, the control unit 103 of the assembly robot 100 generates a reference signal including information such as the position and attitude of the hand unit 101 and the operation status, and transmits the reference signal to the transfer robot 200.
  • the control unit 103 receives a control signal transmitted from the control unit 203 of the transport robot 200 in the second control mode, and controls the operation of the hand unit 101 based on the control signal.
  • control unit 203 of the transfer robot 200 receives the reference signal from the assembly robot 100, and based on that, the control unit 203 of the hand unit 101 of the assembly robot 100 cooperates with the operation of the hand unit 201. Control the operation.
  • the communication units 104 and 204 are configured to be able to transmit and receive reference signals and control signals. That is, the communication unit 104 of the assembly robot 100 is configured to be able to transmit a reference signal and receive a control signal. On the other hand, the communication unit 204 of the transfer robot 200 is configured to be capable of receiving a reference signal and transmitting a control signal.
  • the communication method in the communication units 104 and 204 may be wired or wireless.
  • the communication units 104 and 204 are further configured to be able to transmit and receive with the controller 3.
  • the controller 3 monitors the operation of the assembly robot 100 and the transfer robot 200 based on the control information transmitted from the communication units 104 and 204, and stops the operation of the robot apparatus 1 when an abnormal operation is detected. It is possible to trigger a predetermined alarm.
  • the controller 3 is configured to determine the start and end (cancellation) of cooperative control by the assembly robot 100 and the transfer robot 200 based on the above control information, and to notify each of the robots 100 and 200. Be done.
  • the force sensors 105 and 205 are attached to the hand units 101 and 201, and configured to be capable of detecting external stress acting on the hand units 101 and 201.
  • the force sensors 105 and 205 are composed of various sensors capable of detecting an external force such as a strain sensor, an electrostatic sensor, a piezoelectric sensor or the like, and the outputs thereof are transmitted to the control units 103 and 203, respectively.
  • the force sensor 105 in the assembly robot 100 typically detects a stress acting on the hand portion 101 at the time of handling of the wiring member H, connection of the wiring member H to the connector C, and the like.
  • the force sensor 205 in the transport robot 200 detects a stress acting on the hand portion 201 when transporting the base portion W1, the device portion W2 and the work W, assembling the device portion W2 to the base portion W1, etc. .
  • FIGS. 4 and 5 are schematic process diagrams for explaining the method of manufacturing the work W
  • FIG. 6 is a sequence diagram for explaining the operation of the robot apparatus 1.
  • steps in the 100's are processes executed by the assembly robot 100
  • steps in the 200's are processes executed by the transfer robot 200
  • steps in the 300's are processes executed by the controller 3.
  • control units 103 and 203 independently execute control (first control mode) unless otherwise specified. Furthermore, various notifications transmitted from the assembly robot 100 to the transport robot 200 or the controller 3 are generated in the control unit 103 and transmitted via the communication unit 104. Similarly, various notifications transmitted from the transport robot 200 to the assembly robot 100 or the controller 3 are generated in the control unit 203 and transmitted via the communication unit 204.
  • the base unit W1 is placed at a predetermined position on the workbench 2 (FIG. 1) by the hand unit 201 of the transport robot 200 (FIG. 4A, step 201). Subsequently, the equipment unit W2 is transported by the hand unit 201 of the transport robot 200 to a predetermined position immediately above the base unit W1 (FIG. 4B, step S202).
  • the predetermined position is set to an appropriate position at which the work space of the hand portion 101 of the assembly robot 100 can be secured at a position immediately above the connector C in the base portion W1.
  • the transport robot 200 After transport of the machine unit W2, the transport robot 200 transmits a transport completion notification to the controller 3 (step S203), and maintains the hand unit 201 in a stationary state while holding the machine unit W2 at the transport position.
  • the controller 3 receives the conveyance completion notification from the conveyance robot 200, the controller 3 transmits a notification of the start of the harness processing to the assembly robot 100 (step S301).
  • the assembly robot 100 takes out the shield plate S from the stocker and places it on a predetermined temporary storage site (step 101). Then, when the start notification of the harness process is received from the controller 3, the hand unit 101 is moved to the device unit W2 transported to the position shown in FIG. 4B, and the terminal unit Hc of the wiring member H is converted into a predetermined posture. Harness processing is started (step 102).
  • FIG. 4C and 5A show the procedure of the harness processing by the assembly robot 100.
  • the assembly robot 100 holds the wiring member H protruding outward from one side surface of the device unit W2 by the hand unit 101 with a predetermined gripping force, and then moves the hand unit 101 in a direction away from the device unit W2. , And stop at the position where it contacts the terminal Hc at the tip of the wiring member H (FIG. 4C).
  • the predetermined gripping force is set to an appropriate size such that the hand portion 101 can slide relative to the wiring member H while gripping the wiring member H.
  • the adjustment of the gripping force of the hand portion 101 and the contact detection with the terminal portion Hc are adjusted based on the output of the force sensor 105.
  • the sliding direction of the hand portion 101 with respect to the wiring member H is not particularly limited, and may be horizontal as shown in FIG. 4C, or may be obliquely upward or obliquely downward with respect to the horizontal.
  • the assembly robot 100 moves the hand portion 101 to a position where the terminal portion Hc of the wiring member H vertically opposes the connector C in the base portion W1 (FIG. 5A). At this time, the terminal portion Hc is converted into a posture in which the connector C can be connected from above. After completing the attitude conversion of the terminal Hc, the assembling robot 100 transmits a process completion notification to the controller 3 (step 103).
  • the controller 3 When the controller 3 receives the process completion notification from the assembly robot 100, the controller 3 transmits a cooperative control start command to the transfer robot 200 (step 302).
  • the transport robot 200 receives the cooperative control start command from the controller 3, the transport robot 200 starts the connection work between the terminal Hc and the connector C by the cooperative operation with the assembly robot 100 (step 204).
  • the transfer robot 200 switches the first control mode to the second control mode, and operates the hand unit 201 and the hand unit 101 of the assembly robot 100 in cooperation.
  • FIG. 7 is a flowchart showing the processing procedure of the control unit 203 of the transfer robot 200.
  • the control unit 203 acquires information (reference signal) on the position of the hand unit 101 holding the wiring member H from the assembly robot 100 (step 211).
  • the reference signal is directly transmitted and received via the communication units 104 and 204 as described above.
  • control unit 203 detects the position of the hand unit 101 of the assembly robot 100 based on the reference signal, and executes calibration processing for setting a common coordinate system to which the two hand units 101 and 201 belong. (Step S212).
  • the control unit 203 can monitor the position of the hand unit 101 of the assembly robot 100, and can easily determine and adjust the relative positions of the hand units 101 and 201.
  • the control unit 203 executes connection processing between the terminal Hc of the wiring member H and the connector C by individually controlling the hand units 101 and 201 using a common coordinate system (step S213). Specifically, as shown in FIG. 5B, while the movement of the hand units 101 and 201 is coordinated with each other, the relative distance between the device unit W2 and the terminal unit Hc is maintained within a predetermined range. W2 and the terminal Hc are lowered toward the base W1.
  • control unit 203 generates a control signal for controlling the operation of the hand unit 101, transmits this directly to the assembly robot 100 via the communication units 104 and 204 (without using the controller 3), and assembles it.
  • the control unit 103 of the robot 100 controls the hand unit 101.
  • the control unit 203 generates a control signal for moving the hand unit 101 in synchronization with the hand unit 201 as a control signal.
  • the hand unit 201 can be moved in synchronization with the hand unit 101 of the assembly robot 100, so that the change in the relative positional relationship between the device unit W2 and the terminal unit Hc can be suppressed within a predetermined range.
  • the hand units 101 and 201 are not always limited to simultaneously moving or stopping simultaneously, as long as the operation of the hand units 101 and 201 is synchronized for at least a part of the connection process.
  • the control unit 203 generates, as a control signal, a signal for moving the hand unit 101 in the same direction (vertically downward in this example) as the hand unit 201. Thereby, since the hand unit 201 can be moved in the same direction as the hand unit 101 of the assembly robot 100, a change in distance in the horizontal direction between the device unit W2 and the terminal unit Hc can be avoided.
  • the control unit 203 generates a control signal for moving the hand unit 101 at the same speed as the hand unit 201 as a control signal. Thereby, since the hand unit 201 can be moved at the same speed as the hand unit 101 of the assembly robot 100, a change in distance in the vertical direction between the device unit W2 and the terminal unit Hc can be avoided.
  • the control unit 203 determines the presence or absence of an abnormality of the hand units 101 and 201 during the connection process (step 214). For example, when one hand unit 101 contacts the side wall or the like of the base unit W1 and the movement is stopped, the movement of the other hand unit is also stopped and a predetermined alarm is triggered (step 215).
  • the control unit 203 continues the coordinated operation control of the hand units 101 and 201 until the connection work of the terminal Hc to the connector C is completed (step 216).
  • the assembly robot 100 transmits a connector connection completion notification to the transfer robot 200 (step 104 in FIG. 6).
  • the control unit 203 stops the lowering operation of the device unit W2 (step 217), releases the holding of the wiring member H, and moves the hand unit 101 from the connector connection position to a predetermined retraction position.
  • a save command to be moved is transmitted as a control signal to the assembly robot 100 (step 205 in FIG. 6).
  • the retracted position is not particularly limited, and is set to an appropriate position that does not hinder the assembly of the device unit W2 with the base unit W1.
  • a save completion notification is sent to the controller 3 (step 106 in FIG. 6).
  • the controller 3 receives the evacuation completion notification, the controller 3 transmits a cooperative control cancellation command to the transport robot 200 (step 303 in FIG. 6).
  • the transport robot 200 switches from the second control mode to the first control mode and starts the assembly process of the device unit W2 to the base unit W1 when receiving the cooperative control release command from the controller 3 (FIG. 6) Step 206, step 219 of FIG. 7).
  • the transport robot 200 horizontally moves the equipment unit W2 to a position immediately above the base unit W, and then lowers the equipment unit W2 to assemble it to the base unit W1 (see FIG. 5C). Thereafter, the transport robot 200 transmits an assembly completion notification to the controller 3 as shown in FIG. 6 (step S207), and the controller 3 notifies the assembly robot 100 of an attachment start instruction of the shield plate S (step 304).
  • the assembly robot 100 When receiving the attachment start command from the controller 3, the assembly robot 100 switches from the second control mode to the first control mode, and arranges the shield plate S on the upper surface of the equipment unit W2 set on the base unit W1. And attach the fixing screw (step 107). Thereafter, the assembly robot 100 transmits an assembly completion notification to the controller 3 (step 108), and the controller 3 notifies the transport robot 200 of a transport command (step 305). After receiving the transfer instruction, the transfer robot 200 transfers the work W from the work bench 2 to a predetermined transfer line.
  • the work W is manufactured by repeatedly executing the above-described operation.
  • the assembly work of the work W is performed by the two robots 100 and 200, efficiency of the work can be improved as compared with the case where the work is performed by one robot, and Since it is not necessary to secure the temporary placement space of the part, the working space can be made small, and furthermore, it can be easily coped with even when the wiring member is short.
  • the wiring member H is connected to the connector C by cooperative control by the robot 100, 200, stable connection work is ensured while avoiding disconnection or damage of the wiring member H. Can.
  • each robot 100, 200 is configured to be able to switch between independent control (first control mode) and cooperative control (second control mode), it is not necessary to connect wiring members H. It is possible to assign the other task to each of the robots 100 and 200, and to improve the efficiency of the task.
  • the start and end (switching between the first control mode and the second control mode) of cooperative control by the assembly robot 100 and the transfer robot 200 are configured to be performed based on the notification from the controller 3.
  • the present invention is not limited thereto, and the control mode may be switched by mutual communication between the assembly robot 100 and the transfer robot 200 without the intervention of the controller 3.
  • the timing of the start and end of cooperative control between the assembly robot 100 and the transfer robot 200 is not limited to the above-described example, and for example, cooperative control may be started from the start of harness processing by the assembly robot 100 (step 102). Then, the cooperative control may be ended by the notification of the connector connection completion (step 104).
  • the present invention is not limited thereto.
  • a plurality of units are used for the work of drawing long linear members such as antenna cables
  • the robot's cooperative control may be applied.
  • the present technology may be applied, for example, when transporting a large substrate or a large structure for FPD (Flat Panel Display) using a plurality of robots.
  • the present technology can also be configured as follows.
  • a first hand unit capable of holding a part of a work, and controlling the first hand unit to generate a reference signal including information on at least the position of the first hand unit A first robot having a first controller capable of A second hand unit capable of holding another part of the work, a first control mode for controlling the second hand unit, and the second hand unit based on the reference signal
  • a robot apparatus comprising: a second robot having a second control unit capable of selectively executing a second control mode for controlling in cooperation with the first hand unit.
  • the second control unit generates a control signal for controlling the first hand unit in the second control mode.
  • the second control unit detects the position of the first hand unit based on the reference signal in the second control mode, and the first hand unit and the second hand unit belong to each other.
  • a robot apparatus individually controlling the first hand unit and the second hand unit using a common coordinate system.
  • the second control unit releases the holding of the work by the first hand unit when detecting that the first hand unit has reached the first predetermined position in the second control mode.
  • a robot apparatus that generates, as the control signal, a retraction command that causes the first hand unit to move to a second predetermined position different from the first predetermined position.
  • the robot apparatus further comprising: a controller that transmits, to the second control unit, a coordinated control command signal for starting the execution of the second control mode.
  • a method of manufacturing an electronic device comprising: a first work having a connection portion; and a second work having a linear or strip-like flexible member assembled to the first work and connected to the connection portion And A first robot holds the flexible member of the second work held by the second robot; Simultaneously moving the second work and the flexible member toward the first work while performing cooperative control of the first robot and the second robot; A method of manufacturing an electronic device, wherein the second work is assembled to the first work after connecting the flexible member to the connection portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)
  • Automatic Assembly (AREA)

Abstract

本技術の一形態に係るロボット装置は、第1のロボットと第2のロボットとを具備する。第1のロボットは、第1のハンド部と、第1の制御部とを有する。第1のハンド部は、ワークの一部を保持することが可能に構成され、第1の制御部は、第1のハンド部を制御し、第1のハンド部の動作に関する情報を含む参照信号を生成することが可能に構成される。第2のロボットは、第2のハンド部と、第2の制御部とを有する。第2のハンド部は、ワークの他の一部を保持することが可能に構成される。第2の制御部は、第2のハンド部を制御する第1の制御モードと、上記参照信号に基づいて第2のハンド部を第1のハンド部と協調して制御する第2の制御モードとを選択的に実行することが可能に構成される。

Description

ロボット装置及び電子機器の製造方法
 本技術は、例えば、複数の線材とその端に接続された端子部とを含むハーネス、FFC(Flexible Flat Cable)やFPC(Flexible Printed Circuit)等の柔軟性部材を有する電子機器の製造に用いられるロボット装置及び電子機器の製造方法に関する。
 例えば、電子機器の製造においては電子部品の組み立てに産業用ロボットが広く用いられている。例えば、ケーブル等の線状部材とコネクタ部品との接続工程を自動で行う技術が知られている(例えば特許文献1参照)。
特開2014-176917号公報
 配線ケーブルを有する機器部を筐体内のコネクタに組み付ける作業を一台のロボットで組み立てる場合、機器部を筐体の近傍に仮置きし、配線ケーブルをコネクタに接続し、機器部を筐体内に組み込む工程を順次実行する必要がある。しかしながら、このような作業は、効率が悪いだけでなく、機器部の仮置きスペースを確保する必要があるため作業スペースを小さくすることができないという問題がある。しかも、配線ケーブルが短い場合、機器部を仮置きするスペースを確保することすら困難な場合がある。
 一方、複数台のロボットを用いて同様な作業を実行する場合、個々のロボットの制御を厳密に制御する必要があり、例えば、一のロボットによる作業の不具合を他のロボットの作業に適切に反映させることが困難であるという問題がある。
 以上のような事情に鑑み、本技術の目的は、複数のロボットが関与する作業を適切に行って生産性の向上を図ることができるロボット装置及び電子機器の製造方法を提供することにある。
 本技術の一形態に係るロボット装置は、第1のロボットと、第2のロボットとを具備する。
 上記第1のロボットは、第1のハンド部と、第1の制御部とを有する。上記第1のハンド部は、ワークの一部を保持することが可能に構成される。上記第1の制御部は、上記第1のハンド部を制御し、上記第1のハンド部の動作に関する情報を含む参照信号を生成することが可能に構成される。
 上記第2のロボットは、第2のハンド部と、第2の制御部とを有する。上記第2のハンド部は、上記ワークの他の一部を保持することが可能に構成される。上記第2の制御部は、上記第2のハンド部を制御する第1の制御モードと、上記参照信号に基づいて上記第2のハンド部を上記第1のハンド部と協調して制御する第2の制御モードとを選択的に実行することが可能に構成される。
 上記ロボット装置において、第2の制御部は、第1のハンド部の動作に関する情報に基づいて第1及び第2のハンド部を協調して制御する第2の制御モードを実行することが可能に構成される。これにより、複数のロボットが関与する作業を適切に行うことができる。
 上記第2の制御部は、上記第2の制御モードにおいて、上記第1のハンド部を制御する制御信号を生成し、上記第1の制御部は、上記制御信号に基づいて上記第1のハンド部を制御するように構成されてもよい。
 上記第2の制御部は、上記第2の制御モードにおいて、上記参照信号に基づいて上記第1のハンド部の位置を検出し、上記第1のハンド部及び上記第2のハンド部がそれぞれ属する共通の座標系を用いて上記第1のハンド部及び上記第2のハンド部を個別に制御するように構成されてもよい。
 上記第2の制御部は、上記第2の制御モードにおいて、上記第1のハンド部が第1の所定位置に到達したことを検出したとき、上記第1のハンド部による上記ワークの保持を解除させ、上記第1の所定位置とは異なる第2の所定位置へ上記第1のハンド部を移動させる退避指令を上記制御信号として生成するように構成されてもよい。
 上記第2の制御部は、上記第2の制御モードにおいて上記第2のハンド部を上記第1のハンド部と同期して動作させてもよい。
 あるいは、上記第2の制御部は、上記第2の制御モードにおいて上記第2のハンド部を上記第1のハンド部と同一の方向に移動させてもよい。
 あるいは、上記第2の制御部は、上記第2の制御モードにおいて上記第2のハンド部を上記第1のハンド部と同一の速度で移動させてもよい。
 上記ロボット装置は、上記第2の制御モードの実行を開始させる協調制御指令信号を上記第2の制御部に送信するコントローラをさらに具備してもよい。
 本技術の一形態に係る電子機器の製造方法は、接続部を有する第1のワークと、上記第1のワークに組み付けられ上記接続部と接続される線状または帯状の柔軟部材を有する第2のワークとを備えた電子機器の製造方法であって、第2のロボットにより保持された上記第2のワークの上記柔軟部材を第1のロボットで保持することを含む。
 上記第1のロボットと上記第2のロボットとを協調制御しながら、上記第2のワークと上記柔軟部材とが上記第1のワークに向けて同時に移動させられる。
 上記柔軟部材を上記接続部に接続した後、上記第2のワークが上記第1のワークへ組み付けられる。
 以上のように、本技術によれば、複数のロボットが関与する作業を適切に行って生産性の向上を図ることができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術の一実施形態に係る電子機器の製造装置(ロボット装置)を示す概略側面図である。 電子機器としてのワークの一構成例を示す概略側断面図である。 上記ロボット装置の構成を示すブロック図である。 上記ワークの製造方法を説明する概略工程図である。 上記ワークの製造方法を説明する概略工程図である。 上記ロボット装置の動作を説明するシーケンス図である。 上記ロボット装置における一のロボットによる処理手順を示すフローチャートである。
 以下、本技術に係る実施形態を、図面を参照しながら説明する。
 図1は、本技術の一実施形態に係る電子機器の製造装置(ロボット装置)を示す概略側面図である。本実施形態では、電子機器の組立工程に本技術を適用する例について説明する。
[ロボット装置の概略構成]
 本実施形態のロボット装置1は、組立ロボット100(第1のロボット)と、搬送ロボット200(第2のロボット)と、電子機器の半完成品(以下、ワークWともいう)を支持する作業台2と、組立ロボット100及び搬送ロボット200を含むシステム全体を管理するコントローラ3とを備える。
 組立ロボット100は、ハンド部101(第1のハンド部)、ハンド部101を6軸自由度で任意の座標位置へ移動させることが可能な多関節アーム102、これらの駆動を制御する制御部(第1の制御部)等を有する。
 搬送ロボット200は、ハンド部201(第2のハンド部)、ハンド部201を6軸自由度で任意の座標位置へ移動させることが可能な多関節アーム202、これらの駆動を制御する制御部(第2の制御部)等を有する。
 多関節アーム102,202は、作業台2又は作業台2に近接して配置された図示しない駆動源にそれぞれ接続される。
 図2は、ワークWの構成を示す概略側断面図である。
 ワークWは、ベース部W1と、ベース部W1内に配置された配線基板WBと、配線基板W2の表面に搭載されたコネクタC(接続部)と、配線基板WBに対向するようにベース部W1に組み付けられる機器部W2と、機器部W2から延出しコネクタCと接続される配線部材Hとを有する。ワークWは、ベース部W1及び配線基板WB(コネクタC)により構成される第1のワークと、機器部W2及び配線部材Hとにより構成される第2のワークとの組立体で構成される。
 ベース部W1は、例えば、電子機器の下筐体あるいは上筐体を構成し、その平面形状は概略矩形である。ベース部W1の内部には、配線基板WBや機器部W2以外にも他の基板や機器部が予め組み込まれていてもよい。
 機器部W2は、電源ユニットや光ディスク装置、HDD(Hard Disk Drive)等の電気・電子機器ユニットに相当する。機器部W2は、ベース部W1の上端に係合可能に構成され、その平面形状は概略矩形である。
 配線部材Hは、先端部にコネクタCとの端子部(Hc)を有するハーネスで構成されるが、これ以外にも、ケーブル、FFC、FPC等の他の線状または帯状の柔軟部材で構成されてもよい。
 ロボット装置1は、作業台2上においてワークWを組み立てる。詳細は後述するように、搬送ロボット200でベース部W1を作業台2へ載置した後、搬送ロボット200で機器部W2を、組立ロボット100で配線部材Hをそれぞれ保持しながら、ベース部W1へ機器部W2を組み付ける作業を実行する。
 図3は、組立ロボット100及び搬送ロボット200の構成を示すブロック図である。組立ロボット100及び搬送ロボット200はそれぞれ同様に構成され、ハンド部101,201、多関節アーム102,202のほか、制御部103,203、通信部104,204、力覚センサ105,205等を有する。組立ロボット100及び搬送ロボット200は、図示せずとも、カメラや照明灯等をさらに有していてもよい。
 ハンド部101,201は、典型的にはクランプユニットで構成される。具体的に、組立ロボット100のハンド部101は、配線部材Hを2方向からクランプ可能なフィンガユニットで構成される。一方、搬送ロボット200のハンド部201は、ベース部W1あるいは機器部W2の4側面を同時にクランプ可能に構成される。ハンド部201は、クランプ優ニットに代えて、ベース部W1あるいは機器部W2を真空吸着により保持可能な吸着ユニットで構成されてもよい。
 さらに、ハンド部101,201は、作業の種類に応じて異なるアタッチメントに交換可能に構成されてもよい。
 多関節アーム102,202は、ハンド部101,102を移動させ、あるいはその姿勢を変換する。多関節アーム102,202は、典型的には、垂直多関節アーム、水平多関節アーム等で構成されるが、XYZ直交ロボット(3軸ロボット)等で構成されてもよい。
 制御部103,203は、CPU(Central Processing Unit)やメモリ等を有するコンピュータで構成される。制御部103,203は、組立ロボット100及び搬送ロボット200の動作をそれぞれ独立して制御する第1の制御モードと、組立ロボット100及び搬送ロボット200を相互に協調して制御する第2の制御モードとを選択的に実行することが可能に構成される。
 本実施形態のロボット装置1においては、組立ロボット100及び搬送ロボット200は、ワークWの組立に関して、それぞれ独自の作業が割り当てられており、ベース部W1への機器部W2の組付け工程のみ、各ロボット100,200が協調して動作することが可能に構成される。各ロボットが独自の作業を行うときは、第1の制御モードが選択され、各ロボット100,200が協調して作業を行うときは、第2の制御モードが選択される。
 第1の制御モードとして実行される独自の作業としては、例えば、搬送ロボット200に関しては、ベース部W1および機器部W2の位置決めと搬送、組立後のワークWの搬送等が挙げられ、組立ロボット100に関しては、ベース部W1へ組み付けられた機器部W2上へのシールド板S(図1参照)の設置とその固定用ネジの取り付け等が挙げられる。
 第2の制御モードとして実行される協調作業としては、例えば、2つのハンド部101,201を、同期して動作させる、同一の方向に移動させる、同一の速度で移動させる、等の動作制御が含まれる。このとき、一方のハンド部について動作の支障をきたす事由が発生して停止した場合(例えば、当該ハンド部の故障や他部材との衝突等)は、他方のハンド部もまた同様に停止するように構成される。これにより、一方のハンド部のみが動作することによるトラブルの発生(例えば、配線部材Hの断線や損傷)を未然に防止することができる。
 第2の制御モードの実行中は、搬送ロボット200の制御部203は、組立ロボット100の制御部103よりも上位となり、ハンド部201の動作制御だけでなく、組立ロボット100のハンド部101の動作を制御するための制御信号を生成することが可能に構成される。このとき、組立ロボット100の制御部103は、搬送ロボット200からの制御信号に従ってハンド部101の動作を制御する。
 なお、ハンド部101,201の制御あるいはこれらの動作の制御というときには、ハンド部101,201を6軸自由度で任意の座標位置へ移動させる多関節アーム102,202の動作の制御もが含まれるものとする。
 組立ロボット100の制御部103は、第2の制御モードにおいて、ハンド部101の位置や姿勢、動作の状況等の情報を含む参照信号を生成し、それを搬送ロボット200へ送信する。制御部103は、第2の制御モードにおいて、搬送ロボット200の制御部203から送信される制御信号を受信し、その制御信号に基づいて、ハンド部101の動作を制御する。
 一方、搬送ロボット200の制御部203は、第2の制御モードにおいて、組立ロボット100から参照信号を受信し、それに基づいて、ハンド部201の動作と協調するように組立ロボット100のハンド部101の動作を制御する。
 通信部104,204は、参照信号および制御信号の送受信が可能に構成される。つまり、組立ロボット100の通信部104は参照信号の送信及び制御信号の受信が可能に構成される。一方、搬送ロボット200の通信部204は、参照信号の受信及び制御信号の送信が可能に構成される。
 通信部104,204における通信方式は、有線でもよいし、無線であってもよい。
 通信部104,204はさらに、コントローラ3と送受信することが可能に構成される。コントローラ3は、通信部104,204から送信される制御情報に基づいて組立ロボット100及び搬送ロボット200の動作を監視し、異常な動作が検出されたときは、ロボット装置1の動作を停止させ、所定の警報を発動させることが可能に構成される。
 本実施形態においてコントローラ3は、上記制御情報に基づいて、組立ロボット100及び搬送ロボット200による協調制御の開始およびその終了(解除)を決定し、各ロボット100,200へ通知することが可能に構成される。
 力覚センサ105,205は、各ハンド部101,201に取り付けられ、ハンド部101,201に作用する外部応力を検出することが可能に構成される。力覚センサ105,205は、歪センサや静電センサ、圧電センサ等のような外力を検出することが可能な種々のセンサで構成され、その出力が制御部103,203へそれぞれ送信される。
 組立ロボット100における力覚センサ105は、典型的には、配線部材Hのハンドリング時、コネクタCへの配線部材Hの接続時等にハンド部101に作用する応力を検出する。
 一方、搬送ロボット200における力覚センサ205は、ベース部W1、機器部W2及びワークWの搬送時、ベース部W1への機器部W2の組付け時等にハンド部201に作用する応力を検出する。
[電子機器の製造方法]
 次に、各制御部103,203の詳細について、ロボット装置1の動作と併せて説明する。図4及び図5は、ワークWの製造方法を説明する概略工程図、図6はロボット装置1の動作を説明するシーケンス図である。
 図6において、100番台のステップは組立ロボット100が実行する処理、200番台のステップは搬送ロボット200が実行する処理、そして300番台のステップはコントローラ3が実行する処理である。
 以下、組立ロボット100あるいは搬送ロボット200を主体として説明するが、特に断らない限り、制御部103,203による独立した制御(第1の制御モード)として実行される。さらに、組立ロボット100から搬送ロボット200あるいはコントローラ3へ送信される各種通知は、制御部103において生成され、通信部104を介して送信されるものとする。同様に、搬送ロボット200から組立ロボット100あるいはコントローラ3へ送信される各種通知は、制御部203において生成され、通信部204を介して送信されるものとする。
 まず、搬送ロボット200のハンド部201により、ベース部W1が作業台2(図1)の所定位置に載置される(図4A、ステップ201)。続いて、搬送ロボット200のハンド部201により、機器部W2がベース部W1の直上の所定位置に搬送される(図4B、ステップS202)。
 所定位置としては、ベース部W1内のコネクタCの直上位置において組立ロボット100のハンド部101の作業スペースを確保することが可能な適宜の位置に設定される。
 機器部W2の搬送後、搬送ロボット200はコントローラ3へ搬送完了通知を送信し(ステップS203)、その搬送位置において機器部W2を保持したままハンド部201の静止状態を維持する。コントローラ3は、搬送ロボット200より搬送完了通知を受信したとき、組立ロボット100へハーネス処理の開始通知を送信する(ステップS301)。
 組立ロボット100は、搬送ロボット200によるベース部W1及び機器部W2の搬送が行われている間、シールド板Sをストッカから取り出して、所定の仮置き場へ載置する(ステップ101)。そして、コントローラ3からハーネス処理の開始通知を受信したとき、図4Bに示す位置へ搬送された機器部W2へハンド部101を移動させて、配線部材Hの端子部Hcを所定の姿勢に変換するハーネス処理を開始する(ステップ102)。
 図4C及び図5Aは、組立ロボット100によるハーネス処理の手順を示している。
 組立ロボット100は、ハンド部101によって機器部W2の一方の側面から外方へ突出している配線部材Hを所定の把持力で保持した後、ハンド部101を、機器部W2から離れる方向へ移動させ、配線部材Hの先端の端子部Hcと接触する位置で停止させる(図4C)。
 上記所定の把持力は、配線部材Hを把持しながらハンド部101が配線部材Hに対してスライド可能な適宜の大きさに設定される。ハンド部101の把持力の調整および端子部Hcとの接触検知は、力覚センサ105の出力に基づいて調整される。配線部材Hに対するハンド部101のスライド方向は特に限定されず、図4Cに示すように水平方向でもよいし、水平に対して斜め上方あるいは斜め下方であってもよい。
 続いて、組立ロボット100は、配線部材Hの端子部Hcがベース部W1内のコネクタCと上下方向に対向する位置にハンド部101を移動させる(図5A)。このとき、端子部Hcは、コネクタCに対して上方から接続が可能な姿勢に変換される。組立ロボット100は、端子部Hcの姿勢変換が完了した後、処理完了通知をコントローラ3へ送信する(ステップ103)。
 コントローラ3は、組立ロボット100から処理完了通知を受信したとき、搬送ロボット200に対して協調制御の開始指令を送信する(ステップ302)。搬送ロボット200は、コントローラ3からの協調制御開始指令を受信したとき、組立ロボット100との協調動作による端子部HcとコネクタCとの接続作業を開始する(ステップ204)。
 (協調制御)
 搬送ロボット200は、第1の制御モードから第2の制御モードに切り替えて、ハンド部201と組立ロボット100のハンド部101とを協調して動作させる。図7は、搬送ロボット200の制御部203の処理手順を示すフローチャートである。
 制御部203は、配線部材Hを保持するハンド部101の位置に関する情報(参照信号)を組立ロボット100から取得する(ステップ211)。参照信号は、上述のように、通信部104,204を介して直接的に送受信される。
 続いて、制御部203は、参照信号に基づいて、組立ロボット100のハンド部101の位置を検出し、2つのハンド部101,201がそれぞれ属する共通の座標系を設定するキャリブレーション処理を実行する(ステップS212)。これにより、制御部203において組立ロボット100のハンド部101の位置を監視することが可能となるとともに、各ハンド部101,201の相対位置の判定と調整とを容易に行うことが可能となる。
 制御部203は、各ハンド部101,201を共通の座標系を用いて個別に制御することにより、配線部材Hの端子部HcとコネクタCとの接続処理を実行する(ステップS213)。具体的には、図5Bに示すように、機器部W2と端子部Hcとの相対距離が所定の範囲内に維持されるようにハンド部101,201の移動を相互に協調させながら、機器部W2と端子部Hcとをベース部W1に向けて下降させる。
 このとき制御部203は、ハンド部101の動作を制御する制御信号を生成し、これを組立ロボット100へ通信部104,204を介して(コントローラ3を介さずに)直接的に送信し、組立ロボット100の制御部103にハンド部101を制御させる。これにより、組立ロボット100と搬送ロボット200との間でコントローラ3との通信遅延による影響を受けることなく迅速な通信を確立できるので、作業の高速化が可能となる。
 制御部203は、制御信号として、ハンド部101をハンド部201と同期して移動させる制御信号を生成する。これにより、ハンド部201を組立ロボット100のハンド部101と同期して移動させることができるので、機器部W2と端子部Hcとの間の相対位置関係の変化を所定以内に抑えられる。ハンド部101,201は、常時、同時に移動し、あるいは停止する場合に限られず、当該接続処理の少なくとも一部の時間だけハンド部101,201の動作が同期していればよい。
 制御部203は、制御信号として、ハンド部101をハンド部201と同一の方向(本例では鉛直下方)に移動させる信号を生成する。これにより、ハンド部201を組立ロボット100のハンド部101と同一方向に移動させることができるので、機器部W2と端子部Hcとの間の水平方向における距離変化が回避される。
 制御部203は、制御信号として、ハンド部101をハンド部201と同一の速度で移動させる制御信号を生成する。これにより、ハンド部201を組立ロボット100のハンド部101と同一の速度で移動させることができるので、機器部W2と端子部Hcとの間の鉛直方向における距離変化が回避される。
 制御部203は、接続処理の工程中、ハンド部101,201の異常の有無を判定する(ステップ214)。例えば、一方のハンド部101がベース部W1の側壁等に接触して移動が停止したとき、他方のハンド部の移動も停止させて、所定の警報を発動させる(ステップ215)。
 制御部203は、端子部HcのコネクタCへの接続作業が完了するまで、ハンド部101,201の協調動作制御を継続させる(ステップ216)。上記接続作業が完了すると、組立ロボット100はコネクタ接続完了通知を搬送ロボット200へ送信する(図6のステップ104)。制御部203は、コネクタ接続完了通知を受信すると、機器部W2の下降動作を停止させる(ステップ217)とともに、配線部材Hの保持を解除させ、コネクタ接続位置から所定の退避位置へハンド部101を移動させる退避指令を制御信号として組立ロボット100へ送信する(図6のステップ205)。上記退避位置は特に限定されず、ベース部W1に対する機器部W2の組付けを阻害しない適宜の位置に設定される。
 組立ロボット100は、ハンド部101の所定の退避位置への退避が完了すると、コントローラ3へ退避完了通知が送信される(図6のステップ106)。コントローラ3は、退避完了通知を受け取ると、搬送ロボット200へ協調制御の解除指令を送信する(図6のステップ303)。
 搬送ロボット200は、コントローラ3より協調制御の解除指令を受信すると、第2の制御モードから第1の制御モードへ切り替えて、ベース部W1への機器部W2の組み立て工程を開始する(図6のステップ206、図7のステップ219)。
 組み立て工程では、搬送ロボット200は、機器部W2をベース部Wの直上位置へ水平移動させた後、機器部W2を下降させてベース部W1へ組み付ける(図5C参照)。その後、搬送ロボット200は、図6に示すようにコントローラ3へ組立完了通知を送信し(ステップS207)、コントローラ3は、組立ロボット100へシールド板Sの取り付け開始指令を通知する(ステップ304)。
 組立ロボット100は、コントローラ3から取り付け開始指令を受信すると、第2の制御モードから第1の制御モードへ切り替えて、ベース部W1上にセットされた機器部W2の上面に、シールド板Sを配置し、固定ネジを取り付ける(ステップ107)。その後、組立ロボット100は、組立完了通知をコントローラ3へ送信し(ステップ108)、コントローラ3は、搬送ロボット200へ搬送指令を通知する(ステップ305)。搬送ロボット200は、搬送指令を受信した後、作業台2から所定の搬送ラインへワークWを搬送する。
 以上の動作が繰り返し実行されることにより、ワークWが製造される。
 本実施形態によれば、ワークWの組立作業を2台のロボット100,200で行うため、作業を一台のロボットで行う場合と比較して、作業の効率化を図ることができるとともに、機器部の仮置きスペースを確保する必要がないため作業スペースを小さくすることができ、さらには配線部材が短い場合にも容易に対応することができる。
 本実施形態によれば、ロボット100,200による協調制御によって配線部材HをコネクタCへ接続するように構成されるため、配線部材Hの断線や損傷を回避しつつ安定した接続作業を確保することができる。
 本実施形態によれば、各ロボット100,200が独立した制御(第1の制御モード)と協調制御(第2の制御モード)とを切り替え可能に構成されるため、配線部材Hの接続作業以外の他の作業を各ロボット100,200へ割り当てることが可能となり、作業の効率化の促進を図ることができる。
<変形例>
 例えば以上の実施形態では、組立ロボット100及び搬送ロボット200による協調制御の開始及び終了(第1の制御モードと第2の制御モードとの切り替え)をコントローラ3からの通知に基づいて行うように構成されたが、これに限られず、コントローラ3を介さずに、組立ロボット100と搬送ロボット200との相互通信によって制御モードを切り替えるように構成されてもよい。
 組立ロボット100及び搬送ロボット200との間の協調制御の開始及び終了のタイミングは上述の例に限られず、例えば、組立ロボット100によるハーネス処理の開始(ステップ102)から協調制御が開始されてもよいし、コネクタ接続完了の通知(ステップ104)により協調制御が終了してもよい。
 以上の実施形態では、配線部材とコネクタとの接続に複数のロボットの協調制御を適用する場合について説明したが、これに限られず、アンテナケーブル等の長尺の線状部材の引き回し作業に複数台のロボットの協調制御が適用されてもよい。あるいは、FPD(Flat Panel Display)用の大型基板や大型の構造物を複数台のロボットを用いて搬送する場合等に、本技術が適用されてもよい。
 なお、本技術は以下のような構成もとることができる。
(1) ワークの一部を保持することが可能な第1のハンド部と、前記第1のハンド部を制御し、前記第1のハンド部の少なくとも位置に関する情報を含む参照信号を生成することが可能な第1の制御部とを有する第1のロボットと、
 前記ワークの他の一部を保持することが可能な第2のハンド部と、前記第2のハンド部を制御する第1の制御モードと、前記参照信号に基づいて前記第2のハンド部を前記第1のハンド部と協調して制御する第2の制御モードとを選択的に実行することが可能な第2の制御部とを有する、第2のロボットと
 を具備するロボット装置。
(2)上記(1)に記載のロボット装置であって、
 前記第2の制御部は、前記第2の制御モードにおいて、前記第1のハンド部を制御する制御信号を生成し、
 前記第1の制御部は、前記制御信号に基づいて前記第1のハンド部を制御する
 ロボット装置。
(3)上記(2)に記載のロボット装置であって、
 前記第2の制御部は、前記第2の制御モードにおいて、前記参照信号に基づいて前記第1のハンド部の位置を検出し、前記第1のハンド部及び前記第2のハンド部がそれぞれ属する共通の座標系を用いて前記第1のハンド部及び前記第2のハンド部を個別に制御する
 ロボット装置。
(4)上記(2)又は(3)に記載のロボット装置であって、
 前記第2の制御部は、前記第2の制御モードにおいて、前記第1のハンド部が第1の所定位置に到達したことを検出したとき、前記第1のハンド部による前記ワークの保持を解除させ、前記第1の所定位置とは異なる第2の所定位置へ前記第1のハンド部を移動させる退避指令を前記制御信号として生成する
 ロボット装置。
(5)上記(1)~(4)のいずれか1つに記載のロボット装置であって、
 前記第2の制御部は、前記第2の制御モードにおいて前記第2のハンド部を前記第1のハンド部と同期して動作させる
 ロボット装置。
(6)上記(1)~(5)のいずれか1つに記載のロボット装置であって、
 前記第2の制御部は、前記第2の制御モードにおいて前記第2のハンド部を前記第1のハンド部と同一の方向に移動させる
 ロボット装置。
(7)上記(1)~(6)のいずれか1つに記載のロボット装置であって、
 前記第2の制御部は、前記第2の制御モードにおいて前記第2のハンド部を前記第1のハンド部と同一の速度で移動させる
 ロボット装置。
(8)上記(1)~(7)のいずれか1つに記載のロボット装置であって、
 前記第2の制御モードの実行を開始させる協調制御指令信号を前記第2の制御部に送信するコントローラをさらに具備する
 ロボット装置。
(9) 接続部を有する第1のワークと、前記第1のワークに組み付けられ前記接続部と接続される線状または帯状の柔軟部材を有する第2のワークとを備えた電子機器の製造方法であって、
 第2のロボットにより保持された前記第2のワークの前記柔軟部材を第1のロボットで保持し、
 前記第1のロボットと前記第2のロボットとを協調制御しながら、前記第2のワークと前記柔軟部材とを前記第1のワークに向けて同時に移動させ、
 前記柔軟部材を前記接続部に接続した後、前記第2のワークを前記第1のワークへ組み付ける
 電子機器の製造方法。
(10)上記(9)に記載の電子機器の製造方法であって、
 前記柔軟部材は、配線部材である
 電子機器の製造方法。
 1…ロボット装置
 2…作業台
 3…コントローラ
 100…組立ロボット
 101,201…ハンド部
 102,202…多関節アーム
 103,203…制御部
 104,204…通信部
 105,205…力覚センサ
 200…搬送ロボット
 C…コネクタ
 H…配線部材
 W…ワーク
 W1…ベース部
 W2…機構部

Claims (10)

  1.  ワークの一部を保持することが可能な第1のハンド部と、前記第1のハンド部を制御し、前記第1のハンド部の少なくとも位置に関する情報を含む参照信号を生成することが可能な第1の制御部とを有する第1のロボットと、
     前記ワークの他の一部を保持することが可能な第2のハンド部と、前記第2のハンド部を制御する第1の制御モードと、前記参照信号に基づいて前記第2のハンド部を前記第1のハンド部と協調して制御する第2の制御モードとを選択的に実行することが可能な第2の制御部とを有する、第2のロボットと
     を具備するロボット装置。
  2.  請求項1に記載のロボット装置であって、
     前記第2の制御部は、前記第2の制御モードにおいて、前記第1のハンド部を制御する制御信号を生成し、
     前記第1の制御部は、前記制御信号に基づいて前記第1のハンド部を制御する
     ロボット装置。
  3.  請求項2に記載のロボット装置であって、
     前記第2の制御部は、前記第2の制御モードにおいて、前記参照信号に基づいて前記第1のハンド部の位置を検出し、前記第1のハンド部及び前記第2のハンド部がそれぞれ属する共通の座標系を用いて前記第1のハンド部及び前記第2のハンド部を個別に制御する
     ロボット装置。
  4.  請求項2に記載のロボット装置であって、
     前記第2の制御部は、前記第2の制御モードにおいて、前記第1のハンド部が第1の所定位置に到達したことを検出したとき、前記第1のハンド部による前記ワークの保持を解除させ、前記第1の所定位置とは異なる第2の所定位置へ前記第1のハンド部を移動させる退避指令を前記制御信号として生成する
     ロボット装置。
  5.  請求項1に記載のロボット装置であって、
     前記第2の制御部は、前記第2の制御モードにおいて前記第2のハンド部を前記第1のハンド部と同期して動作させる
     ロボット装置。
  6.  請求項1に記載のロボット装置であって、
     前記第2の制御部は、前記第2の制御モードにおいて前記第2のハンド部を前記第1のハンド部と同一の方向に移動させる
     ロボット装置。
  7.  請求項1に記載のロボット装置であって、
     前記第2の制御部は、前記第2の制御モードにおいて前記第2のハンド部を前記第1のハンド部と同一の速度で移動させる
     ロボット装置。
  8.  請求項1に記載のロボット装置であって、
     前記第2の制御モードの実行を開始させる協調制御指令信号を前記第2の制御部に送信するコントローラをさらに具備する
     ロボット装置。
  9.  接続部を有する第1のワークと、前記第1のワークに組み付けられ前記接続部と接続される線状または帯状の柔軟部材を有する第2のワークとを備えた電子機器の製造方法であって、
     第2のロボットにより保持された前記第2のワークの前記柔軟部材を第1のロボットで保持し、
     前記第1のロボットと前記第2のロボットとを協調制御しながら、前記第2のワークと前記柔軟部材とを前記第1のワークに向けて同時に移動させ、
     前記柔軟部材を前記接続部に接続した後、前記第2のワークを前記第1のワークへ組み付ける
     電子機器の製造方法。
  10.  請求項9に記載の電子機器の製造方法であって、
     前記柔軟部材は、配線部材である
     電子機器の製造方法。
PCT/JP2018/046796 2018-01-19 2018-12-19 ロボット装置及び電子機器の製造方法 WO2019142583A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880086193.3A CN111587168B (zh) 2018-01-19 2018-12-19 机器人设备和制造电子装置的方法
JP2019565776A JP7294144B2 (ja) 2018-01-19 2018-12-19 ロボット装置及び電子機器の製造方法
US16/960,475 US20200352037A1 (en) 2018-01-19 2018-12-19 Robot apparatus and method of manufacturingg electronic apparatus
EP18901328.7A EP3741521A4 (en) 2018-01-19 2018-12-19 ROBOTIC DEVICE AND METHOD OF MANUFACTURING ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018007114 2018-01-19
JP2018-007114 2018-01-19

Publications (1)

Publication Number Publication Date
WO2019142583A1 true WO2019142583A1 (ja) 2019-07-25

Family

ID=67301716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046796 WO2019142583A1 (ja) 2018-01-19 2018-12-19 ロボット装置及び電子機器の製造方法

Country Status (5)

Country Link
US (1) US20200352037A1 (ja)
EP (1) EP3741521A4 (ja)
JP (1) JP7294144B2 (ja)
CN (1) CN111587168B (ja)
WO (1) WO2019142583A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037550A1 (ja) * 2021-09-13 2023-03-16 東京ロボティクス株式会社 ロボット、ロボットシステム、制御方法及びプログラム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348205U (ja) * 1986-09-18 1988-04-01
JPH08141957A (ja) * 1994-11-11 1996-06-04 Matsushita Electric Ind Co Ltd ロボットの制御装置
JP2001150372A (ja) * 1999-09-16 2001-06-05 Fanuc Ltd 複数ロボットの同期又は協調動作制御装置
JP2005011580A (ja) * 2003-06-17 2005-01-13 Fanuc Ltd コネクタ把持装置、同装置を備えたコネクタ検査システム及びコネクタ接続システム
JP2014176917A (ja) 2013-03-14 2014-09-25 Yaskawa Electric Corp ロボット装置
WO2016124492A1 (de) * 2015-02-05 2016-08-11 Kuka Roboter Gmbh Manipulatorsystem zur koordinierten steuerung von zumindest zwei manipulatoren
JP2016193471A (ja) * 2015-04-01 2016-11-17 セイコーエプソン株式会社 ロボット
JP2017159390A (ja) * 2016-03-08 2017-09-14 富士通株式会社 把持装置及び把持方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223179A (ja) * 1994-02-04 1995-08-22 Toshiba Corp 複腕ロボット
JP2006187826A (ja) * 2005-01-05 2006-07-20 Kawasaki Heavy Ind Ltd ロボットコントローラ
JP5293039B2 (ja) * 2008-09-19 2013-09-18 株式会社安川電機 ロボットシステムおよびロボットの制御方法
JP2011115877A (ja) * 2009-12-02 2011-06-16 Canon Inc 双腕ロボット
WO2014002678A1 (ja) * 2012-06-29 2014-01-03 三菱電機株式会社 ロボット制御装置およびロボット制御方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348205U (ja) * 1986-09-18 1988-04-01
JPH08141957A (ja) * 1994-11-11 1996-06-04 Matsushita Electric Ind Co Ltd ロボットの制御装置
JP2001150372A (ja) * 1999-09-16 2001-06-05 Fanuc Ltd 複数ロボットの同期又は協調動作制御装置
JP2005011580A (ja) * 2003-06-17 2005-01-13 Fanuc Ltd コネクタ把持装置、同装置を備えたコネクタ検査システム及びコネクタ接続システム
JP2014176917A (ja) 2013-03-14 2014-09-25 Yaskawa Electric Corp ロボット装置
WO2016124492A1 (de) * 2015-02-05 2016-08-11 Kuka Roboter Gmbh Manipulatorsystem zur koordinierten steuerung von zumindest zwei manipulatoren
JP2016193471A (ja) * 2015-04-01 2016-11-17 セイコーエプソン株式会社 ロボット
JP2017159390A (ja) * 2016-03-08 2017-09-14 富士通株式会社 把持装置及び把持方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037550A1 (ja) * 2021-09-13 2023-03-16 東京ロボティクス株式会社 ロボット、ロボットシステム、制御方法及びプログラム

Also Published As

Publication number Publication date
JPWO2019142583A1 (ja) 2021-01-28
CN111587168A (zh) 2020-08-25
JP7294144B2 (ja) 2023-06-20
EP3741521A4 (en) 2021-05-26
EP3741521A1 (en) 2020-11-25
CN111587168B (zh) 2024-02-06
US20200352037A1 (en) 2020-11-05

Similar Documents

Publication Publication Date Title
WO2019136996A1 (zh) 一种瓷砖桁架机械手及其行走方式
CN110520255B (zh) 机械手装置和电子设备的制造方法
KR20180086208A (ko) 제조 시스템, 제조 시스템의 구축 방법, 엔드 이펙터, 로봇 및 로봇의 작업 방법
CN110573311B (zh) 机器人设备和电子设备制造方法
JP2011240443A (ja) ロボットセル装置及び生産システム
JP2014176943A (ja) ロボットシステム、校正方法及び被加工物の製造方法
JP2013158876A (ja) 組立装置および組立方法
JP2008213129A (ja) 生産システム用汎用セル及び該汎用セルを用いた生産システム
JP2006187826A (ja) ロボットコントローラ
US10279468B2 (en) Industrial robot for performing processing on works
KR102653148B1 (ko) 기판조립장치 및 기판조립방법
WO2019142583A1 (ja) ロボット装置及び電子機器の製造方法
JP2020066067A (ja) ロボットハンドおよびロボットシステム
KR20160150359A (ko) 워크 장착 로봇 제어 시스템 및 방법
JP7392154B2 (ja) ロボット制御装置
US11173612B2 (en) Robot system, robot controller, robot control method, and robot program
JP2003165078A (ja) 自動教示システム
TWI644767B (zh) 工件保持機構
US10403539B2 (en) Robot diagnosing method
WO2015029142A1 (ja) 組立システムおよび組立品の生産方法
JP4079835B2 (ja) 加工システム
JP2019000972A (ja) 生産システム、生産機器および生産システムの制御方法
TWI756946B (zh) 保持裝置、控制方法、控制裝置及機器人系統
WO2015059762A1 (ja) 基板作業機
CN116214575A (zh) 多功能机器人及机械手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901328

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019565776

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018901328

Country of ref document: EP

Effective date: 20200819