WO2019142543A1 - パワー半導体装置 - Google Patents

パワー半導体装置 Download PDF

Info

Publication number
WO2019142543A1
WO2019142543A1 PCT/JP2018/045404 JP2018045404W WO2019142543A1 WO 2019142543 A1 WO2019142543 A1 WO 2019142543A1 JP 2018045404 W JP2018045404 W JP 2018045404W WO 2019142543 A1 WO2019142543 A1 WO 2019142543A1
Authority
WO
WIPO (PCT)
Prior art keywords
power semiconductor
conductor
semiconductor element
semiconductor device
power
Prior art date
Application number
PCT/JP2018/045404
Other languages
English (en)
French (fr)
Inventor
ひろみ 島津
谷江 尚史
晃 松下
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019142543A1 publication Critical patent/WO2019142543A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body

Definitions

  • the present invention relates to a power semiconductor device, and more particularly to a power semiconductor device used for a power conversion device that controls a motor for driving a vehicle.
  • both the front and back surfaces of the power semiconductor chip are soldered to a conductive plate, and a sealing body sealed with resin in a state where the conductive plate is exposed is a cylinder having a heat dissipation member on both sides. It is housed in a metal case of a mold.
  • the inside of the metal case (heat dissipation member) and the conductor plate are adhered by a heat conductive insulating adhesive (insulation member), and the heat generation of the power semiconductor chip is achieved by the conductor plate on both sides, the heat conductive insulation bond.
  • the heat is dissipated to the outside through the agent (insulation member) and the heat dissipation member.
  • a wiring called a gate finger and a pattern of a wiring protective film for protecting it are formed on the chip surface electrode side (emitter side) of the power semiconductor element.
  • an object of the present invention is to improve the reliability of the chip surface electrode and the conductor connection portion of repeated heat generation (during a power cycle) of the power semiconductor chip.
  • a power semiconductor device comprises: a semiconductor element; and a first conductor and a second conductor respectively connected to the semiconductor element with the semiconductor element interposed therebetween via a solder material.
  • the semiconductor element has a first electrode on one side, a second electrode on the other side, a wire on the one side, and a protective cover covering the wire, and the first conductor is The first conductor is disposed on the one surface side of the semiconductor element, and the first conductor has a protrusion which protrudes from the other portion in a portion facing the protective wedge.
  • the reliability of the power semiconductor device can be improved.
  • FIG. 4 is a longitudinal cross-sectional view of the power module 100 shown in FIG. It is a top view of the power semiconductor element 31 of the power module 100 which concerns on this embodiment. It is the top view and side view which showed only the connection part of the power semiconductor element 31 and the 1st conductor 33. FIG. It is the top view and side view which showed only the connection part of the power semiconductor element 31 and the 1st conductor 33.
  • FIG. 4 is the longitudinal cross-sectional view of the power module 100 shown in FIG. It is a top view of the power semiconductor element 31 of the power module 100 which concerns on this embodiment. It is the top view and side view which showed only the connection part of the power semiconductor element 31 and the 1st conductor 33.
  • FIG. It is the top view and side view which showed only the connection part of the power semiconductor element 31 and the 1st conductor 33.
  • FIG. 4 is a longitudinal cross-sectional view of the power module 100 shown in FIG. It is a top view of the power semiconductor element 31 of the power module 100 which concerns on
  • FIG. 1 It is a graph which shows the result of having evaluated the stress of the electrode film 44 with the case where there is a projection part 33p, and the case where there is no projection part 33p by finite element analysis. It is the top view and side view which showed only the connection part of the power semiconductor element 31 which concerns on 3rd Embodiment, and the 1st conductor 33. FIG. It is the top view and side view which showed only the connection part of the power semiconductor element 31 which concerns on other embodiment, and the 1st conductor 33.
  • Example 1 Hereinafter, an embodiment of a power conversion device according to the present invention will be described with reference to the drawings.
  • FIG. 1 is an external perspective view of a power conversion device 200 according to the present embodiment.
  • FIG. 2 is an exploded perspective view of the power conversion device 200 according to the present embodiment.
  • the power conversion device 200 is used as a power supply device of an electric car or a hybrid car.
  • Power conversion device 200 incorporates an inverter circuit connected to a motor generator, and further includes a booster circuit connected to an external battery and a control circuit for controlling the entire battery.
  • Power converter 200 has a case 201 formed of an aluminum-based metal such as aluminum or an aluminum alloy, and a bottom cover 202 fastened to case 201 by a fastening member (not shown).
  • the housing 201 and the bottom cover 202 can also be formed by integral molding.
  • An upper lid (not shown) is fastened to the upper portion of the housing 201 by a fastening member to form a sealed container.
  • a peripheral wall 211 for forming a cooling flow path is formed, and a cooling space 210 is formed by the peripheral wall 211 and the bottom cover 202.
  • a plurality of (four in FIG. 2) support members 220 having side walls 221 and a plurality of (three in FIG. 2) power modules 100 disposed between the side walls 221 are accommodated. Details of the power module 100 will be described later.
  • a pair of through holes are provided in one side portion of the housing 201, an inlet pipe 203a is provided in one of the through holes, and an outlet pipe 203b is provided in the other of the through holes.
  • a cooling medium such as cooling water flows into the cooling space 210 from the inlet pipe 203a, flows through the cooling path between the side wall 221 of the support member 220 and each power module 100, and flows out from the outlet pipe 203b. .
  • the cooling medium having flowed out of the outlet pipe 203b is cooled by a cooling device such as a radiator (not shown) and circulated again so as to flow into the cooling space 210 from the inlet pipe 203a.
  • a cooling device such as a radiator (not shown)
  • the cooling space 210 is sealed by the cover member 240 with the seal member 231 interposed therebetween.
  • the cover member 240 forms an opening 241 through which the terminal of the power module 100 is inserted.
  • the peripheral portion of the cover member 240 is fixed to an upper portion of the peripheral wall 211 forming the cooling space 210 by a fastening member (not shown).
  • a capacitor module 250 including a plurality of capacitor elements 251 for smoothing DC power supplied to the inverter circuit is housed.
  • the DC side bus bar assembly 261 is disposed on the top of the capacitor module 250 and the power module 100.
  • the DC side bus bar assembly 261 transfers DC power between the capacitor module 250 and the power module 100.
  • a control circuit board assembly 262 including a driver circuit unit that controls the inverter circuit is disposed above the DC side bus bar assembly 261.
  • the AC side bus bar assembly 263 is connected to the power module 100 to transmit AC power. Also, the AC side bus bar assembly 263 has a current sensor.
  • the power module 100 according to the present embodiment will be described based on FIGS. 3 to 6.
  • FIG. 3 is an external front view of the power module 100 according to the present embodiment.
  • FIG. 4 is a longitudinal sectional view of the power module 100 shown in FIG.
  • FIG. 5 is a cross-sectional view of the metal case of the power module 100 according to the present embodiment.
  • FIG. 6 is a cross-sectional view of a power semiconductor module of the power module 100 of the present invention.
  • the power module 100 has a metal case 40 configured of a pair of heat dissipating members 41 having heat dissipating fins 42 and a frame 43.
  • a circuit body containing the power semiconductor element 31 and the like is accommodated.
  • the metal case 40 is, for example, a flat-cylindrical cooler having an insertion port on one side and a bottom on the other side.
  • the metal case 40 is formed of a member having electrical conductivity, for example, a composite material such as Cu, Cu alloy, Cu-C, Cu-CuO, or a composite material such as Al, Al alloy, AlSiC, Al-C, etc. ing.
  • the pair of heat dissipation members 41 is joined to the frame 43.
  • As the bonding for example, FSW (friction stir welding), laser welding, brazing or the like can be applied.
  • FSW frequency stir welding
  • the cooling medium may enter into the power module 100. It can be prevented by a simple configuration.
  • the heat radiating member 41 and the frame 43 may be the same member or may be integrated.
  • the example of the power module in which the opening is in only one direction is shown, but it is also possible to apply to a power module in two directions in which the openings face each other.
  • each of the first conductor 33 and the second conductor 34 is disposed to be opposed to each electrode surface of the power semiconductor element 31, and is joined via the joining material 32.
  • the first conductor 33 is connected to the front surface electrode of the power semiconductor element 31, and the second conductor 34 is connected to the back surface electrode.
  • the first conductor 33 and the second conductor 34 are made of, for example, copper, a copper alloy, aluminum, an aluminum alloy or the like.
  • the bonding material 32 is formed of a solder material or the like.
  • a structure configured of the power semiconductor element 31, the first conductor 33 and the second conductor 34 is sealed by a first sealing resin 6.
  • the upper surface 33 a of the first conductor 33 and the upper surface 34 a of the second conductor 34 are exposed from the first sealing resin 6, and are connected to the heat dissipation member 41 through the thermally conductive insulating layer 51.
  • the insulating layer 51 thermally conducts the heat generated from the power semiconductor element 31 to the heat dissipation member 41, and is formed of a material having a high thermal conductivity and a large withstand voltage.
  • a ceramic such as aluminum oxide (alumina), aluminum nitride, silicon nitride, or an insulating sheet or adhesive containing these fine powders can be used.
  • the gap between the metal case 40 and the insulating layer 51 and the mold resin 6 is filled with the second sealing resin 7.
  • FIG. 5 is a plan view of the power semiconductor element 31 of the power module 100 according to the present embodiment.
  • FIG. 6 is a plan view and a side view showing only the connection portion between the power semiconductor element 31 and the first conductor 33.
  • FIG. 7 is a plan view and a side view showing only the connection portion between the power semiconductor element 31 and the first conductor 33.
  • an electrode film 44 and an electrode pad 47 are formed on the surface of the power semiconductor element 31.
  • a wire 45 and a protective film 46 for protecting the wire 45 are further formed on the surface of the power semiconductor element 31.
  • the electrode film 44 and the wiring 45 are formed of, for example, aluminum, an aluminum alloy, copper, a copper alloy, or the like.
  • a metal film such as nickel may be formed on the surface of the electrode film 44.
  • the protective film 46 is formed of, for example, a polyimide film.
  • a protrusion 33 p is provided on the surface of the first conductor 33 connected to the power semiconductor element 31 at a position facing the protective film 46.
  • the protrusion 33 p is formed to have a width at least equal to or larger than the width of the protective film 46.
  • the side wall 33 b of the protrusion 33 p is provided on the projection plane (the plane parallel to the electrode film 44) to be the same as or outside the side wall 46 a of the protective film 46.
  • the planar pattern of the projecting portion 33 p is provided along the pattern of the protective film 46 provided to cover the upper surface of the wiring 45.
  • both surfaces of the power semiconductor element 31 are connected to a conductor by a bonding material.
  • the power semiconductor element 31 generates heat, the temperature of peripheral members of the power semiconductor element 31 such as the power semiconductor element 31, the bonding material 32 such as solder, the first conductor 33 and the second conductor 34 rises.
  • the linear expansion coefficient of the bonding material 32 such as solder is larger than that of the power semiconductor element 31, the first conductor 33 and the second conductor 34, the amount of expansion is larger than that of other members. Due to the expansion of the bonding material 32, the protective film 46 receives a force, and a stress is generated at the end of the protective film 46.
  • a protrusion 33 p is provided at a position facing the protective film 46.
  • the solder thickness 32b on the protective film 46 can be made thinner than the solder thickness 32a of other parts.
  • the amount of expansion of the solder other than the protruding portion 33p becomes larger than the amount of expansion of the solder near the protruding portion 33p, and the force applied to the protective film 46 near the protruding portion can be reduced.
  • FIG. 8 is a graph showing the result of evaluation of stress of the electrode film 44 with and without the protrusion 33 p by finite element analysis.
  • the stress can be reduced by about 40% when the protrusion is provided as compared with the case where the protrusion is not provided as in the prior art. By thus reducing the stress, it is possible to prevent the fatigue failure of the electrode film at the end of the protective film.
  • the stress generated at the end of the protective film 46 can be reduced, the fatigue failure of the electrode 44 and the bonding material 32 can be prevented, and a highly reliable power semiconductor device can be realized.
  • Example 2 In the first embodiment, an example of the power module in which the second conductor 33 is connected to the power semiconductor element 31 and the insulating layer 51 via the connection portion 32 is shown.
  • FIG. 9 is a cross-sectional view of a power module 100 according to the second embodiment.
  • the second conductor 33 is connected to the surface electrode side of the power semiconductor element 31 via the bonding material 32, and is further connected to the third conductor 35 via the bonding material 38, and the third conductor 35 May be connected to the insulating layer 51.
  • the power module 100 has a metal case 40 composed of a pair of heat dissipating members 41 having heat dissipating fins 42 and a frame 43, and a power semiconductor is provided in the metal case 40. It showed about the case where the module was stored.
  • the power semiconductor module sealed by the first sealing resin 6 is connected to the fourth conductor 36 and the fifth conductor 37 via the insulating layer 51, and further via the bonding portion 39.
  • the cooling unit 48 may be connected.
  • the protrusion 33 p is provided at the position facing the protective film 46 on the surface of the first conductor 33 to which the power semiconductor element 31 is connected.
  • the protrusion is formed to have a width 33a at least equal to or greater than the width of the protective film.
  • the side wall 33 b of the protrusion is provided on the projection plane to be the same as or outside the side wall 46 a of the protective film 46.
  • the planar pattern of the projecting portion 33 p is provided along the pattern of the protective film 46 provided to cover the upper surface of the wiring 45.
  • the planar pattern of the projecting portion 33 p provided on the first conductor 33 entirely covers the pattern of the protective film 46 provided to cover the upper surface of the wiring 45.
  • the protrusion 33p is provided.
  • the stress reduction effect of the electrode film 44 at the end of the protective film 46 is confirmed by stress analysis that the effect is the largest when the protrusion 33 p is provided along the wiring pattern as shown in FIG. .
  • the protruding portion 33 p is provided to cover the entire wiring pattern as in the present embodiment, the stress of the electrode film 44 can be reduced.
  • the planar pattern of the protruding portion 33p is simple, there is an advantage that it is easy to manufacture.
  • the shape of the heat dissipating fins 42 of the heat dissipating member 41 is a pin fin, but it may be another shape, for example, a straight fin or a corrugated fin.
  • the on-vehicle power semiconductor device mounted on an electric car or a hybrid car has been described as an example, but a double-sided cooling type in which a conductor is connected to both sides of the power semiconductor element 31 by a connection portion
  • the present invention can be similarly applied to any power semiconductor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Inverter Devices (AREA)

Abstract

本発明の課題は、信頼性の高いパワーモジュールを提供することにある。 本発明に係るパワー半導体装置は、半導体素子と、前記半導体素子を挟みかつ当該半導体素子と半田材を介して、それぞれ接続される第1導体及び第2導体と、を備え、前記半導体素子は、一方の面に第1電極と、他方の面に第2電極と、当該一方の面に配線と、当該配線を覆う保護摸とを有し、前記第1導体は、前記半導体素子の前記一方の面側に配置され、さらに前記第1導体は、前記保護摸と対向する部分に他の部分より突出する突出部を有する。 

Description

パワー半導体装置
 本発明は、パワー半導体装置に関し、特に車両駆動用のモータを制御する電力変換装置に用いられるパワー半導体装置に関する。
 近年、環境への負荷低減のため、ハイブリッド自動車や電気自動車の普及が急務である。ハイブリッド自動車や電気自動車においては搭載される部品の小型化が重要視され、電力変換装置も例外ではなく小型化が求められている。
 電力変換装置の小型化に伴い発熱密度が高くなるため、電力変換装置を構成する電子部品の中で発熱量が大きいパワー半導体装置においては、冷却性能を向上させる必要があり、例えば特許文献1に示すように、両面直接冷却方式のパワー半導体装置が開示されている。
 特許文献1に記載のパワー半導体装置においては、パワー半導体チップの表裏両面を導電板に半田付けし、導体板を露出した状態で樹脂により封止した封止体を、両面に放熱部材を有する筒型の金属ケース内に、収納された構造となっている。
 金属ケースの内側(放熱部材)と導体板との間は熱伝導性の絶縁接着剤(絶縁部材)により接着されており、パワー半導体チップの発熱を、両面の導体板、熱伝導性の絶縁接着剤(絶縁部材)、放熱部材を介して、外部に放熱している。
 しかしパワー半導体装置においては、さらなるパワー密度の向上のためパワー半導体チップの使用温度範囲の高温化や、パワーサイクル寿命の長寿命化が望まれている。
 これにより、パワー半導体素子と導体板との接続部における長期信頼性の低下が懸念される。特にパワー半導体素子のチップ表面電極側(エミッタ側)には、ゲートフィンガーと呼ばれる配線やそれを保護する配線保護膜のパターンが形成されている。
 両面冷却型のパワー半導体装置では、これらの保護膜パターンを含めた表面電極が導体とはんだ接続されている。このため、パワー半導体チップの発熱時には、表面電極、導体や保護膜の線膨脹係数差により配線保護膜パターン端部は応力集中場となり、配線保護膜パターン端部付近の表面電極膜やはんだには繰り返し高い応力が負荷されることになり疲労破壊が懸念される。
特開2012-257369号公報
 そこで本発明の課題は、パワー半導体チップの繰り返し発熱(パワーサイクル時)のチップ表面電極と導体接続部に対する信頼性を向上させることである。
 上記課題を解決するために、本発明に係るパワー半導体装置は、半導体素子と、前記半導体素子を挟みかつ当該半導体素子と半田材を介して、それぞれ接続される第1導体及び第2導体と、を備え、前記半導体素子は、一方の面に第1電極と、他方の面に第2電極と、当該一方の面に配線と、当該配線を覆う保護摸とを有し、前記第1導体は、前記半導体素子の前記一方の面側に配置され、さらに前記第1導体は、前記保護摸と対向する部分に他の部分より突出する突出部を有する。
 本発明によれば、パワー半導体装置の信頼性を向上させることができる。
本実施形態に係る電力変換装置200の外観斜視図である。 本実施形態に係る電力変換装置200の分解斜視図である。 本実施形態に係るパワーモジュール100の外観正面図である。 図3に図示されたパワーモジュール100のA-A´線縦断面図である。 本実施形態に係るパワーモジュール100のパワー半導体素子31の平面図である。 パワー半導体素子31と第1導体33との接続部のみを示した平面図と側面図である。 パワー半導体素子31と第1導体33との接続部のみを示した平面図と側面図である。 有限要素法解析により、突出部33pがある場合とない場合の電極膜44の応力を評価した結果を示すグラフである。 第3実施形態に係るパワー半導体素子31と第1導体33との接続部のみを示した平面図と側面図である。 他の実施形態に係るパワー半導体素子31と第1導体33との接続部のみを示した平面図と側面図である。
 (実施例1)
 以下、図を参照して、本発明に係る電力変換装置の一実施の形態を説明する。
 図1は、本実施形態に係る電力変換装置200の外観斜視図である。図2は、本実施形態に係る電力変換装置200の分解斜視図である。
 電力変換装置200は、電気自動車やハイブリッド自動車の電源装置として用いられる。電力変換装置200は、モータジェネレータに接続されたインバータ回路を内蔵し、また外部のバッテリに接続された昇圧回路および全体を制御する制御回路を備えている。
 電力変換装置200は、アルミニウムやアルミニウム合金等のアルミニウム系金属により形成された筐体201と、筐体201に締結部材(不図示)により締結される底蓋202と、を有する。筐体201と底蓋202とは、一体成型により形成することもできる。
 筐体201の上部には、不図示の上蓋が締結部材により締結され、密閉状の容器が形成される。筐体201の内部には、冷却流路を形成するための周壁211が形成され、周壁211と底蓋202とにより冷却用空間210が形成されている。
 冷却用空間210内には、複数(図2では4つ)の側壁221を有する支持部材220と各側壁221間に配置される複数(図2では3つ)のパワーモジュール100が収納される。パワーモジュール100の詳細は後述する。
 筐体201の一側部には、一対の貫通孔が設けられ、貫通孔の一方には、入口用配管203aが設けられ、貫通孔の他方には、出口用配管203bが設けられている。
 冷却水などの冷却媒体は、入口用配管203aから冷却用空間210内に流入し、支持部材220の側壁221と各パワーモジュール100との間の冷却路を流通して出口用配管203bから流出する。
 出口用配管203bから流出した冷却媒体は、不図示のラジエータ等の冷却装置によって冷却されて、再び、入口用配管203aから冷却用空間210内に流入するように循環する。
 冷却用空間210は、シール部材231を介在して、カバー部材240により密封される。カバー部材240は、パワーモジュール100の端子が挿通される開口部241を形成する。カバー部材240の周縁部は、冷却用空間210を形成する周壁211の上部に、不図示の締結部材により固定される。
 筐体201の冷却用空間210の外側領域には、インバータ回路に供給される直流電力を平滑化するための複数のコンデンサ素子251を備えるコンデンサモジュール250が収納される。
 コンデンサモジュール250とパワーモジュール100の上部に、直流側バスバーアセンブリ261が配置される。直流側バスバーアセンブリ261は、コンデンサモジュール250とパワーモジュール100の間に直流電力を伝達する。
 直流側バスバーアセンブリ261の上方には、インバータ回路を制御するドライバ回路部を含んだ制御回路基板アセンブリ262が配置されている。
 交流側バスバーアセンブリ263は、パワーモジュール100と接続され、交流電力を伝達する。また、交流側バスバーアセンブリ263は、電流センサを有する。
 図3ないし図6に基づき、本実施形態に係るパワーモジュール100について説明する。
 図3は、本実施形態に係るパワーモジュール100の外観正面図である。図4は、図3に図示されたパワーモジュール100のA-A´線縦断面図である。図5は、本実施形態に係るパワーモジュール100の金属ケースの断面図である。図6は、本発明のパワーモジュール100のパワー半導体モジュールの断面図である。
 図3及び図4に示されるように、パワーモジュール100は、放熱フィン42を有する一対の放熱部材41及び枠体43から構成されている金属製ケース40を有する。
 金属製ケース40内に、パワー半導体素子31等を内蔵する回路体が収納されている。
 金属製ケース40は、例えば一面に挿入口を、他面に底部を有する扁平状の筒型形状をした冷却器である。金属製ケース40は、電気伝導性を有する部材、例えばCu、Cu合金、Cu-C、Cu-CuOなどの複合材、あるいはAl、Al合金、AlSiC、Al-Cなどの複合材などから形成されている。
 一対の放熱部材41は、枠体43と接合されている。接合としては、例えば、FSW(摩擦攪拌接合)、レーザ溶接、ろう付等を適用することができる。このような形状の金属製のケースを用いることで、パワーモジュール100を水や油、有機物などの冷媒が流れる流路内に挿入しても、冷却媒体がパワーモジュール100の内部に侵入するのを簡易な構成で防ぐことができる。本実施形態においては、放熱部材41と枠体43が別部材の場合について示したが、放熱部材41と枠体43は同一部材であってもよく一体化されていてもよい。
 上述した実施の形態では、開口部が1方向のみのパワーモジュールの例を示したが、開口部が対向する2方向のパワーモジュールにも適用することが可能である。
 図4に示されるように、第1導体33と第2導体34のそれぞれは、パワー半導体素子31の各電極面に対向して配置され、接合材32を介して接合される。第1導体33はパワー半導体素子31の表面電極に接続され、第2導体34が裏面電極に接続されている。
 第1導体33及び第2導体34は、例えば、銅、銅合金、あるいはアルミニウム、アルミニウム合金などにより形成されている。接合材32ははんだ材などにより形成されている。
 なお図4では第1導体33が同一部材で形成されている場合を示したが、複数の部材を接合して形成されていても構わない。
 パワー半導体素子31と第1導体33と第2導体34とに構成される構造体は、第1封止樹脂6で封止されている。
 第1導体33の上面33a及び第2導体34の上面34aは、第1封止樹脂6から露出しており、熱伝導性の絶縁層51を介して放熱部材41と接続されている。
 絶縁層51は、パワー半導体素子31から発生する熱を放熱部材41に熱伝導するものであり、熱伝導率が高く、かつ、絶縁耐圧が大きい材料で形成されている。例えば、酸化アルミニウム(アルミナ)、窒化アルミニウム、窒化ケイ素等のセラミックス、あるいは、これらの微粉末を含有する絶縁シートまたは接着剤を用いることができる。
 金属製ケース40と絶縁層51およびモールド樹脂6との隙間は第2封止樹脂7により、埋められている。
 図5は、本実施形態に係るパワーモジュール100のパワー半導体素子31の平面図である。図6は、パワー半導体素子31と第1導体33との接続部のみを示した平面図と側面図である。図7は、パワー半導体素子31と第1導体33との接続部のみを示した平面図と側面図である。
 図5に示されるように、パワー半導体素子31の表面には、電極膜44と電極パッド47が形成されている。図7に示されるように、パワー半導体素子31の表面には、さらに、配線45と、配線45を保護するための保護膜46とが形成される。
 電極膜44や配線45は例えば、アルミニウム、アルミニウム合金、あるいは銅、銅合金などにより形成されている。電極膜44の表面にはニッケルなどの金属膜が形成されていてもよい。また、保護膜46は例えば、ポリイミド膜などにより形成されている。
 パワー半導体素子31と接続する第1導体33の面には、保護膜46に対向する位置に突出部33pが設けられている。突出部33pは、少なくとも保護膜46の幅と同じかそれよりも大きい幅で形成されている。
 突出部33pの側壁33bは、投影面(電極膜44と平行な面)上で保護膜46の側壁46aと同じかそれより外側になるように設けられている。
 また、突出部33pの平面パターンは、配線45の上面を覆うように設けられた保護膜46のパターンに沿って設けられている。
 本実施形態に係る第1導体33により作用と効果を説明する。
 両面冷却パワー半導体装置では、パワー半導体素子31の両面を導体に接合材により接続されている。パワー半導体素子31の発熱時には、パワー半導体素子31、はんだなどの接合材32、第1導体33および第2導体34など、パワー半導体素子31周辺部材の温度は上昇する。
 特にはんだなどの接合材32の線膨脹係数は、パワー半導体素子31や第1導体33および第2導体34に比べて大きいため、他の部材に比べて膨脹量が大きい。接合材32の膨脹により、保護膜46は力を受け、保護膜46端部には応力が発生する。
 本実施形態におけるパワーモジュール100においては、第1導体33のパワー半導体素子31を接続する面には、保護膜46に対向する位置に突出部33pが設けられている。これにより保護膜46上のはんだ厚32bを、他の部分のはんだ厚32aよりも薄くすることができる。
 これにより、突出部33p以外のはんだの膨脹量が、突出部33p付近のはんだの膨脹量よりも大きくなり、突出部付近の保護膜46に負荷される力を減少することができる。
 図8は、有限要素法解析により、突出部33pがある場合とない場合の電極膜44の応力を評価した結果を示すグラフである。
 従来のように突出部が無い場合に比べて、突出部を設けた場合、応力は約40%低減出来ることを確認した。このように応力が低減されることにより、保護膜端部での電極膜の疲労破壊を防止することが可能となる。
 これにより、保護膜46端部に発生する応力を低減することができ、電極44や接合材32の疲労破壊を防止でき、信頼性の高いパワー半導体装置が実現できる。
 (実施例2)
 第1の実施例では、第2導体33がパワー半導体素子31と絶縁層51に接続部32を介して接続されているパワーモジュールの例を示した。図9は、第2実施形態に係るパワーモジュール100の断面図である。
 図9に示されるように、パワー半導体素子31の表面電極側に接合材32を介して第2導体33を接続し、さらに接合材38を介して第3導体35に接続され、第3導体35が絶縁層51に接続されていてもよい。
 また、第1の実施形態では、パワーモジュール100は、放熱フィン42を有する一対の放熱部材41と枠体43から構成されている金属製ケース40を有し、金属製ケース40内に、パワー半導体モジュールが収納されている場合について示した。
 しかし、図9に示すように、第1封止樹脂6により封止されたパワー半導体モジュールが絶縁層51を介して第4導体36、第5導体37に接続され、さらに接合部39を介して冷却部48に接続されていてもよい。
 この場合でも、第1導体33のパワー半導体素子31を接続する面には、保護膜46に対向する位置に突出部33pが設けられている。突出部は33a少なくとも保護膜46の幅と同じかそれよりも大きい幅で形成されている。突出部の側壁33bは、投影面上で保護膜46の側壁46aと同じかそれより外側になるように設けられている。また、突出部33pの平面パターンは、配線45の上面を覆うように設けられた保護膜46のパターンに沿って設けられている。これにより、実施形態1と同様の効果が得られる。
 その他、本発明は、上記実施形態に限定されるものではなく、本発明の趣旨の範囲内で、種々変形して適用することが可能である。
 (実施例3)
 また、実施形態1においては、図6に示したように、第1導体33に設ける突出部33pの平面パターンは、配線45の上面を覆うように設けられた保護膜46のパターンに全体を覆うように突出部33pを設けている。
 保護膜46端部での電極膜44の応力低減効果は、図6に示したように、配線パターンに沿って突出部33pを設けた場合、効果が最も大きいことを応力解析により確認している。
 しかし、図10に示されるように、本実施形態のように配線パターン全体を覆うように突出部33pを設けた場合でも、電極膜44の応力を低減できる。また、突出部33pの平面パターンが単純となるため、製造しやすいというメリットがある。
 上述した実施の形態では、放熱部材41の放熱フィン42の形状をピンフィンとしたが、他の形状、例えばストレートフィンやコルゲートフィンであっても良い。
 また、上述した実施の形態では、電気自動車やハイブリッド自動車に搭載される車載用のパワー半導体装置を例に説明したが、パワー半導体素子31の両面に導体が接続部により接続されている両面冷却式のパワー半導体装置であれば、本発明を同様に適用することができる。
6…第1封止樹脂、7…第2封止樹脂、31…パワー半導体素子、32…接合材、32a…はんだ厚、32b…はんだ厚、33…第1導体、33a…上面、33b…側壁、33p…突出部、34…第2導体、35…第3導体、36…第4導体、37…第5導体、38…接合材、39…接合材、40…金属ケース、41…放熱部材、42…放熱フィン、43…枠体、44…電極膜、45…配線、46…保護膜、47…電極パッド、48…冷却部、51…絶縁層、100…パワーモジュール、200…電力変換装置、201…筐体、202…底蓋、203a…入口用配管、203b…出口用配管、210…冷却用空間、211…周壁、221…側壁、220…支持部材、231…シール部材、240…カバー部材、241…開口部、250…コンデンサモジュール、251…コンデンサ素子、261…直流側バスバーアセンブリ、262…制御回路基板アセンブリ、263…交流側バスバーアセンブリ

Claims (4)

  1.  半導体素子と、
     前記半導体素子を挟みかつ当該半導体素子と半田材を介して、それぞれ接続される第1導体及び第2導体と、を備え、
     前記半導体素子は、一方の面に第1電極と、他方の面に第2電極と、当該一方の面に配線と、当該配線を覆う保護摸とを有し、
     前記第1導体は、前記半導体素子の前記一方の面側に配置され、
     さらに前記第1導体は、前記保護摸と対向する部分に他の部分より突出する突出部を有するパワー半導体装置。
  2.  請求項1に記載のパワー半導体装置であって、
     前記突出部の幅が前記保護膜の幅よりも長く、かつ前記突出部の側壁は保護膜側壁よりも外側に位置するパワー半導体装置。
  3.  請求項1に記載のパワー半導体装置であって、
     前記突出部が前記配線の平面パターンに沿って形成され、前記配線を覆う前記保護膜の幅よりも長く、かつ前記突出部側壁は保護膜側壁よりも外側に位置するパワー半導体装置。
  4.  請求項1に記載のパワー半導体装置であって、
     前記突出部が前記配線の平面パターンを覆うように形成されるパワー半導体装置。
PCT/JP2018/045404 2018-01-17 2018-12-11 パワー半導体装置 WO2019142543A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018005308A JP7030535B2 (ja) 2018-01-17 2018-01-17 パワー半導体装置
JP2018-005308 2018-01-17

Publications (1)

Publication Number Publication Date
WO2019142543A1 true WO2019142543A1 (ja) 2019-07-25

Family

ID=67301014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045404 WO2019142543A1 (ja) 2018-01-17 2018-12-11 パワー半導体装置

Country Status (2)

Country Link
JP (1) JP7030535B2 (ja)
WO (1) WO2019142543A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023166635A (ja) * 2020-10-01 2023-11-22 京セラドキュメントソリューションズ株式会社 流体冷却式コールドプレート及び流体冷却式コールドプレートの製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011066377A (ja) * 2009-08-18 2011-03-31 Denso Corp 半導体装置およびその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011066377A (ja) * 2009-08-18 2011-03-31 Denso Corp 半導体装置およびその製造方法

Also Published As

Publication number Publication date
JP7030535B2 (ja) 2022-03-07
JP2019125700A (ja) 2019-07-25

Similar Documents

Publication Publication Date Title
JP5206822B2 (ja) 半導体装置
JP6286320B2 (ja) パワーモジュール
JP4292913B2 (ja) 半導体冷却ユニット
JP5217884B2 (ja) 半導体装置
WO2016158259A1 (ja) 電力変換装置
JP3646665B2 (ja) インバータ装置
JP6215151B2 (ja) 電力変換装置
JP2002315357A (ja) インバータ装置
JP5664472B2 (ja) 電力変換装置
WO2016140147A1 (ja) パワー半導体モジュール及び電力変換装置
JP6710163B2 (ja) パワー半導体装置
US11622478B2 (en) Power converter having improved cooling
WO2019003718A1 (ja) パワー半導体装置及びそれを用いた電力変換装置
WO2019142543A1 (ja) パワー半導体装置
JP4935783B2 (ja) 半導体装置および複合半導体装置
JP7356402B2 (ja) パワーモジュール
WO2017119286A1 (ja) パワー半導体モジュール
JP7183373B1 (ja) 電力変換装置
WO2022209083A1 (ja) パワー半導体装置
US20230361001A1 (en) Power Semiconductor Device
WO2022215352A1 (ja) パワーモジュール
JP6961047B1 (ja) 電力変換装置
US20240057302A1 (en) Heat exchange device and power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901181

Country of ref document: EP

Kind code of ref document: A1