WO2019142522A1 - Shift device - Google Patents

Shift device Download PDF

Info

Publication number
WO2019142522A1
WO2019142522A1 PCT/JP2018/044447 JP2018044447W WO2019142522A1 WO 2019142522 A1 WO2019142522 A1 WO 2019142522A1 JP 2018044447 W JP2018044447 W JP 2018044447W WO 2019142522 A1 WO2019142522 A1 WO 2019142522A1
Authority
WO
WIPO (PCT)
Prior art keywords
shift
magnet
magnetic sensor
driven member
pole
Prior art date
Application number
PCT/JP2018/044447
Other languages
French (fr)
Japanese (ja)
Inventor
直哉 小林
孝明 福島
昭仁 野口
Original Assignee
津田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 津田工業株式会社 filed Critical 津田工業株式会社
Priority to JP2019565750A priority Critical patent/JP6985424B2/en
Priority to CN201880086016.5A priority patent/CN111565960B/en
Publication of WO2019142522A1 publication Critical patent/WO2019142522A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K20/00Arrangement or mounting of change-speed gearing control devices in vehicles
    • B60K20/02Arrangement or mounting of change-speed gearing control devices in vehicles of initiating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G25/00Other details or appurtenances of control mechanisms, e.g. supporting intermediate members elastically
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/02Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
    • G05G9/04Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
    • G05G9/047Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks

Definitions

  • the present invention relates to a shift device operated by a driver of a vehicle to select a shift position.
  • a shift device corresponding to a shift-by-wire transmission system
  • a device has been proposed in which a magnet is attached to the rear end of the shift lever operable in the shift direction and select direction and a magnetic sensor for detecting the displacement position of the magnet is provided.
  • a sensor substrate on which a plurality of magnetic sensors are disposed is disposed to face the displacement region of the magnet.
  • the shift position at which the shift lever is operated is detected by detecting the displacement position of the magnet at the rear end of the shift lever using a plurality of magnetic sensors.
  • the present invention has been made in view of the above-mentioned conventional problems, and it is an object of the present invention to provide a shift device which can be compactly designed easily.
  • the present invention relates to a vehicle including a combination of a magnetic sensor for detecting at least an action direction of a component along a predetermined detection surface among magnetism acting from the outside, and a magnet for applying magnetism to the magnetic sensor.
  • the shift device of An operation unit that receives an operation by a driver of the vehicle; An operating lever provided with the operating portion and rotatably supported in response to an operation on the operating portion; And a driven member that is rotationally displaced following the pivotal movement of the operation lever.
  • the driven member is supported by a support structure that enables a rotational displacement corresponding to at least a rotational displacement of the operating lever.
  • the shift device is configured to drive either one of the magnetic sensor and the magnet so that the action direction of the magnetism acting on the magnetic sensor changes according to the operation on the operation unit.
  • the shift device of the present invention when the operation unit is operated, the action direction of the magnetism on the detection surface changes.
  • the shift device of the present invention since the operation can be detected not according to the positional change of the magnet but according to the change of the action direction of the magnetism, it is less necessary to secure the displacement space of the magnet. Therefore, the shift device of the present invention is easy to compact design.
  • FIG. 1 is a perspective view showing a shift device in Embodiment 1.
  • FIG. FIG. 2 is an assembly view showing a structure of a shift device in Embodiment 1.
  • FIG. 5 is a first assembly view showing the structure of the shift lever and the substrate in the first embodiment.
  • the 2nd assembly drawing which shows the structure of a shift lever and a board
  • FIG. 16 is a third assembly view showing the structure of the shift lever and the substrate in Embodiment 1 (the viewing direction matches the second assembly drawing).
  • the perspective view which shows the structure of the magnet in Example 1 (figure seen from an upper surface side).
  • FIG. 8 is an explanatory diagram of the operation of the shift lever in the first embodiment.
  • FIG. 8 is an explanatory view showing how the magnet is displaced according to the operation of the shift lever in the first embodiment.
  • FIG. 5 is an explanatory view showing a relationship between a magnet and a detection surface in Embodiment 1. Explanatory drawing which shows the other magnet 1 in Example 1. FIG. Explanatory drawing which shows 2 other magnets in Example 1. FIG. Explanatory drawing which shows the relationship between a magnet and a detection surface in Example 2.
  • Example 1 This example is an example related to the shift device 1 corresponding to the shift system of shift by wire. The contents will be described with reference to FIGS. 1 to 11.
  • the shift device 1 shown in FIG. 1 is an operation device for selecting a shift range set by an automatic transmission (not shown) mounted on a vehicle, and includes a shift knob (operation portion) 111 serving as a driver's hand. There is.
  • the shift device 1 is connected via a signal line to an ECU (not shown) for controlling an automatic transmission via a signal line, converts operation information of the shift knob 111 by the driver into an electric signal, and inputs the electric signal to the ECU.
  • the B range when engine braking is required, the D (drive) range at the time of forward movement, the R (reverse) range at the reverse time, and the N (neutral) range can be selected.
  • the shift position which is the operation position of the shift knob 111 corresponding to each shift range is set, and the corresponding shift range is set by operating the shift knob 111 at any shift position. It can be set selectively.
  • the shift position corresponding to the D range is referred to as a D position.
  • the shift knob 111 can be operated in the shift direction along the traveling direction of the vehicle and the select direction along the vehicle width direction, with the H (home) position as the initial position as the starting point of operation.
  • the B position when viewed from the driver side of the right steering wheel, the B position is closer to the shift direction (the traveling direction reverse side, the vehicle rear side) than the H position, and the N position is closer to the select direction (
  • the R position is disposed on the right side, and the R position is disposed on the rear side in the shift direction (traveling direction side, vehicle front side) with respect to the N position, and the D position is on the front side in the shift direction.
  • the B range can be selected.
  • the D range can be selected by moving the shift knob 111 from the H position along the select direction to temporarily operate to the N position and operating the shift knob 111 to the D position on the front side in the shift direction.
  • the R range can be selected by moving the shift knob 111 from the H position along the select direction and once operating it to the N position and then operating the shift knob 111 to the R position on the back side in the shift direction.
  • the shift knob 111 is biased toward the H position which is the starting point of the operation. For example, after operating the shift knob 111 to the D position, when the driver releases the shift knob 111, the shift knob 111 automatically returns to the H position.
  • the shift device 1 is a device in which a shift lever 11 is pivotally supported by a housing 13 as shown in FIGS.
  • the shift lever 11 protrudes from the upper surface of the housing 13, and the shift knob 111 is attached to the tip of the shift lever 11.
  • the shift device 1 is configured to magnetically detect a shift operation and externally output an electric signal representing the shift operation.
  • the substrate 2 on which the magnetic sensor IC 201 is mounted Inside the housing 13 (FIGS. 2 to 5), the substrate 2 on which the magnetic sensor IC 201 is mounted, the driven member 17 that follows the rotation operation of the shift lever (an example of the operation lever) 11, etc. There is.
  • the magnet 21 On the substrate 2, the magnet 21 is held in a state capable of forward and backward displacement and rotational displacement facing the detection surface 201 S of the magnetic sensor IC 201.
  • the driven member 17 is pivotally supported by a pivot ball 135 (FIG. 2) mounted on the housing 13 side.
  • the rotational movement of the shift lever 11 accompanying the shift operation is converted to the displacement movement of the magnet 21 via the driven member 17.
  • the shift device 1 detects a shift operation by detecting a change in the action direction of the magnetism accompanying the displacement of the magnet 21.
  • the configuration of each part of the shift device 1 will be described.
  • the housing 13 has a divided structure of a cover 13C and a bottom plate 13B (FIG. 2). By fixing the bottom plate portion 13B to the cover portion 13C with, for example, a screw or the like, an inner space for accommodating the shaft support structure of the shift lever 11, the driven member 17 and the substrate 2 is formed.
  • the housing 13 has an elongated outer shape, and is assembled to the vehicle along the front-rear direction.
  • the upper surface of the housing (cover portion) 13 is provided with three step-like steps that become higher toward the front side of the vehicle.
  • the highest step 131 corresponding to the front side of the vehicle is provided with a hole 130 through which the shaft portion 11S of the shift lever 11 is disposed.
  • an external connector 2C is provided for connecting an external cable (not shown) for supplying operating power or outputting an electronic signal to the outside.
  • the cover portion 13C (FIGS. 1 and 2) has a mounting portion (not shown) of a spherical bearing 15 rotatably supporting the shift lever 11 inside the hole 130.
  • the shift lever 11 is rotatably supported by a spherical bearing 15 attached to the attachment portion.
  • the inner side of the middle step 132 is a housing space for the driven member 17 described above.
  • a structure for pivotally supporting the driven member 17 is provided on an inner peripheral surface (ceiling surface) of a cover portion 13C which forms a ceiling of the accommodation space.
  • the upper end portion of the driven member 17 is provided with a spherical bearing 17E.
  • a pivot ball 135 corresponding to the spherical bearing 17E of the driven member 17 is erected downward.
  • the driven member 17 can perform the same rotational movement as the shift lever 11 by the support structure of the combination of the spherical bearing 17E and the pivot ball 135.
  • the bottom plate 13B is a member having a shape corresponding to the opening on the bottom side of the cover 13C.
  • a portion corresponding to the front side of the vehicle is provided with a detent 13D for giving a sense of moderation to the shift operation, and a portion corresponding to the rear side is provided with a space for attaching the substrate 2.
  • the detent portion 13D is formed in an inclined shape which becomes higher gradually toward the front side of the vehicle.
  • a detent groove 137 corresponding to the shift pattern is formed on the surface of the detent portion 13D.
  • the detent groove 137 (FIG. 2) is a groove in which a tip portion 119T of a detent rod 119, which will be described later, included in the shift lever 11 is fitted. Therefore, the detent groove 137 has a similar shape to the shift pattern that forms the operation path of the shift knob 111. Asperities (not shown) are formed on the bottom of the detent groove 137, and recesses are provided at positions corresponding to shift positions such as the H position and the N position. A shallow groove bottom is formed in the gap between the adjacent recesses.
  • the shift lever 11 is provided with a shaft portion 11S on the upper side sandwiching the spherical portion 110, and a shift knob 111 (see FIG. 1) is attached to the tip thereof.
  • a lever base 11 ⁇ / b> B is formed on the lower side of the shift lever 11 with the spherical portion 110 interposed therebetween.
  • the lever base 11B serves not only as a weight for improving the weight balance of the shift lever 11, but also for the bases of the arms 116 and 117 for following the driven member 17 and for giving a sense of moderation to the shift operation. It has a role as a base of the detent rod 119 and the like.
  • two arms 116 and 117 are erected in a direction substantially orthogonal to the axial direction.
  • One arm is a select arm 117 for rotating the driven member 17 according to the shift operation in the select direction.
  • a spherical drive unit 117S is provided at the tip of the select arm 117. The select arm 117 protrudes toward the driven member 17 adjacent to the shift lever 11 in the longitudinal direction of the housing 13 (the front-rear direction of the vehicle, the shift direction).
  • the other arm is a shift arm 116 for rotating the driven member 17 in response to the shift operation in the shift direction.
  • the shift arm 116 includes a combination of an intermediate lever portion 116M along the shift direction and a cylindrical drive portion 116C along the select direction.
  • the intermediate lever portion 116 ⁇ / b> M is located on the side of the driven member 17 corresponding to the width direction of the housing 13.
  • the cylindrical drive portion 116C is erected so as to project toward the driven member 17 on the side surface near the tip of the intermediate lever portion 116M.
  • a rod-like detent rod 119 is erected obliquely downward on the opposite side of the shift arm 116 and the select arm 117 (FIG. 4, FIG. 5).
  • the tip portion 119T of the detent rod 119 is held by the rod main body 119B via a telescopic structure.
  • the distal end portion 119T is held by the rod main body 119B in a state of being biased toward the distal end side by, for example, a coil spring (not shown) accommodated inside the detent rod 119.
  • the hemispherical tip 119T of the detent rod 119 is fitted into the detent groove 137 (FIG. 2).
  • the tip of the detent rod 119 is fitted into the detent groove 137, whereby the shift pattern is restricted to a predetermined pattern.
  • the moderation giving mechanism including the combination of the detent rod 119 and the detent groove 137 will be briefly described.
  • the shift knob 111 When the shift knob 111 is operated to any shift position such as the H position, the tip end 119T of the detent rod 119 is positioned in the recess of the detent groove 137, and the tip end 119T protrudes from the rod main body 119B by the biasing force of the coil spring. It becomes a state.
  • the shift knob 111 When operating the shift knob 111 from the H position to the N position, the groove bottom against which the tip portion 119T of the detent rod 119 is pressed gradually becomes shallow, so a force for pushing the tip portion 119T into the rod main body 119B is necessary. Force is the reaction force.
  • the bottom of the groove against which the tip end 119T of the detent rod 119 is pushed becomes gradually deeper.
  • the tip end 119T can be protruded from the rod main body 119B, and the coil spring is gradually extended.
  • a force is generated to pull the shift knob 111 to the N position according to the extension of the coil spring.
  • the combination of the tip portion 119T held by the rod main body 119B by the expansion / contraction structure and the detent groove 137 having the concavities and convexities on the groove bottom gives a sense of moderation to the operation of the shift knob 111.
  • the driven member 17 (FIGS. 2 to 5) is a member that rotates following the rotation of the shift lever 11.
  • the driven member 17 is an intermediate member that transmits the rotational movement of the shift lever 11 to the magnet 21.
  • the magnet 21 In the case where the driven member 17 is not used, in order to displace the magnet 21 by the shift lever 11, the magnet 21 needs to be disposed below or to the side of the lever base 11B or the like.
  • the driven member 17 if the driven member 17 is used, the magnet 21 can be disposed at a position away from the lever base 11B. This is because the driven member 17 has a role of a position changer for transmitting a pivoting operation corresponding to the pivoting operation of the shift lever 11 to a position different from that of the shift lever 11. If the driven member 17 is used, the design freedom of the installation position of the substrate 2 including the magnet 21 can be significantly improved.
  • the driven member 17 is a member provided with a spherical bearing 17E at its upper end, and is rotatable around the pivot ball 135 (FIG. 2) accommodated in the spherical bearing 17E.
  • the driven member 17 has a downwardly extending shape.
  • a drive pin 17P and a drive slit 17S for displacing the magnet 21 are provided.
  • the shift arm 116 extended from the shift lever 11 and the receiving portions 176 and 177 of the select arm 117 are provided.
  • a shift receiving portion 176 (FIGS. 3 to 5), which is a receiving portion of the shift arm 116, corresponds to a cylindrical drive portion 116C (an example of a columnar member) at the tip of the shift arm 116.
  • the shift receiving portion 176 is a slit-like space in which a pair of wall surfaces 176S (FIG. 5) along the select direction (vehicle width direction) corresponding to the width direction of the housing 13 face each other.
  • the slit width of the shift receiving portion 176 is a dimension that can accommodate the cylindrical drive portion 116C of the shift arm 116 with a small gap.
  • a select receiving portion 177 (FIGS. 4 and 5) which is a receiving portion of the select arm 117 is a slit-like space for accommodating the spherical drive portion 117S at the tip of the select arm 117.
  • the select receiving portion 177 extends along the shift direction (longitudinal direction of the vehicle) corresponding to the longitudinal direction of the housing 13.
  • the drive pin 17P (FIGS. 3 to 5) is a drive unit for rotationally displacing the magnet 21 in accordance with the shift operation in the shift direction.
  • the driving pin 17P has an axial shape protruding toward the substrate 2 disposed below the driven member 17, and a spherical portion 171 is provided at the tip.
  • the spherical portion 171 is accommodated in a guide groove 214 which is a gap between a pair of guide walls 218 described later provided in the magnet 21.
  • the drive slit 17S (FIGS. 3 to 5) is a drive portion for advancing and retracting the magnet 21 in accordance with the shift operation in the select direction.
  • the drive slit 17S is along the shift direction and forms a slit-like space that opens downward.
  • the drive slit 17S accommodates an operation pin 213 described later provided in the magnet 21.
  • the substrate 2 (FIGS. 3 to 5) is mounted with a not-shown microcomputer chip or the like for generating and outputting an electric signal representing a shift position selected by operation of the shift knob 111.
  • Electronic substrate In the substrate 2 compatible with double-sided mounting, the magnetic sensor IC 201 is disposed facing the internal space of the housing 13, and another electronic component such as a microcomputer chip is disposed on the back surface thereof.
  • the magnetic sensor IC 201 (FIGS. 3 to 5) is a biaxial magnetic sensor capable of detecting the magnitude of magnetism in two orthogonal directions.
  • the magnetic sensor IC 201 has a detection surface 201S defined by the two orthogonal directions, and the detection surface 201S is attached along the surface of the substrate 2.
  • the magnetic sensor IC 201 detects the acting direction of the magnetism on the detection surface 201S, and outputs a sensor signal representing the acting direction. That is, the magnetic sensor IC 201 functions as a single-axis rotation sensor that detects a rotation angle about an axis orthogonal to the detection surface 201S.
  • the microcomputer chip processes the sensor signal output from the magnetic sensor IC 201 to detect the shift position at which the shift knob 111 is operated, and electrically outputs an operation signal representing the shift position.
  • a displacement mechanism of the magnet 21 is attached to the substrate 2.
  • the displacement mechanism includes a combination of a magnet holder 25 including a rail 250 on which the magnet 21 can be advanced and retracted, and a holder guide 23 for holding the magnet holder 25 which is also a rotating table.
  • the holder guide 23 (FIGS. 3 to 5) is a substantially annular guide member for rotatably holding the magnet holder 25.
  • the holder guide 23 is provided with engaging portions 23B (FIG. 3) for rotatably holding the magnet holder 25 at two opposing positions in the circumferential direction.
  • the pair of engaging portions 23B disposed opposite to each other has a hook shape in cross section and is formed over about 40 degrees in the circumferential direction.
  • the substantially annular holder guide 23 is fixed to the substrate 2 with a dashed annular region 23F shown on the surface of the substrate 2 in FIG. 5 as a mounting region.
  • the magnetic sensor IC 201 located inside the annular region 23F is located inside the substantially annular holder guide 23.
  • the broken line area 25F in the figure indicates the area where the magnet 21 faces at the H position.
  • the plate thickness of the annular portion of the holder guide 23 is set to be slightly larger than the mounting height of the magnetic sensor IC 201. According to such dimension setting, it is possible to realize a state in which the lower surface of the magnet holder 25 held by the holder guide 23 faces the magnetic sensor IC 201 non-contactingly with a slight gap.
  • the magnet holder 25 (FIGS. 3 to 5) is a rotary table that holds the magnet 21 so as to be able to move forward and backward.
  • the magnet holder 25 is formed of a nonmagnetic material such as resin.
  • the magnet holder 25 is configured by providing a rail 250 for advancing and retracting the magnet 21 on the surface of a disk portion 252 having a substantially circular flat plate shape.
  • the rail 250 is a groove-shaped space formed by opposingly arranging a pair of engaging portions 25A having a cross-sectional hook shape.
  • the length of the rail 250 substantially matches the length of the magnet 21 in the longitudinal direction.
  • notches 25B which do not have a cross-sectional hook shape are provided at two places in the longitudinal direction.
  • the magnet 21 can be detached from the front side of the magnet holder 25 by using the notch 25B.
  • peripheral portions 25C in which the disc portion 252 has an arc shape and protrudes outward are formed.
  • the magnet holder 25 which is a rotating table is rotatable in a state where the peripheral portion 25C is engaged with the engaging portion 23B of the holder guide 23.
  • the outer peripheral portion corresponding to the opening on both sides in the longitudinal direction of the rail 250 is cut off linearly to form an incomplete circular shape (see FIG. 4). If the magnet holder 25 is rotated about 90 degrees, it can pass through the gap between the pair of engaging portions 23B, which makes it possible to detach the magnet holder 25 from the front side of the holder guide 23.
  • the magnet 21 (FIG. 3, FIG. 4, FIG. 6) is a rectangular parallelepiped main body 21B covered with a cover 210 made of a nonmagnetic material.
  • the outer shape of the magnet 21 shown in FIGS. 3 to 5 is the outer shape of the cover 210.
  • the lower surface which is an exposed surface of the main body 21B faces the detection surface 201S of the magnetic sensor IC 201.
  • the outer shape of the cover 210 which is the outer shape of the magnet 21, is indicated by a thin broken line.
  • the configuration of the magnet 21 including the cover 210 will be mainly described with reference to FIGS. 3 and 4, and then the magnetic configuration of the main body 21B will be described with reference to FIG.
  • the slider 217 engaged with the engaging portion 25A of the magnet holder 25 so as to be capable of advancing and retracting is provided on both side surfaces.
  • a pair of guide walls 218 and a shaft-like action pin 213 are provided upright at both ends in the longitudinal direction of the magnet 21.
  • the slider 217 (FIGS. 3 and 4) is formed to project from the side surface of the magnet 21 so as to be flush with the lower surface of the magnet 21.
  • the slider 217 extended along the longitudinal direction of the magnet 21 engages with the engaging portion 25 A of the magnet holder 25 to allow the magnet 21 to advance and retract along the rail 250.
  • the slider 217 is provided with notches at two locations in its longitudinal direction. The notch is provided corresponding to the notch 25B of the engaging portion 25A of the magnet holder 25 and enables the magnet 21 to be detached from the front side of the magnet holder 25.
  • the action pin 213 (FIG. 3, FIG. 4) is a pin on which a force acts to drive the magnet 21 in the longitudinal direction.
  • the action pin 213 has a spherical portion 213S at its tip.
  • the spherical portion 213S at the tip end of the action pin 213 is accommodated in the drive slit 17S of the driven member 17.
  • the drive slit 17S is a slit-like space that opens in the side of the substrate 2 and is along the shift direction.
  • the diameter of the spherical portion 213S of the action pin 213 is substantially the same as the slit width to the extent that it can be accommodated in the drive slit 17S.
  • the guide wall 218 (FIG. 3, FIG. 4) is a wall provided to be parallel to the longitudinal direction of the magnet 21.
  • the wall surfaces 218S of the pair of guide walls 218 are provided to face each other with a gap therebetween, and form a guide groove 214 which is a slit-like space.
  • a spherical portion 171 at the tip of the drive pin 17P is accommodated in the guide groove 214.
  • the groove width of the guide groove 214 is substantially the same as the diameter of the guide groove 214 so as to accommodate the spherical portion 171 of the drive pin 17P.
  • FIG. 6A is a perspective view in which the main body 21B is viewed from the upper surface side
  • FIG. 6B is a perspective view in which the main body 21B is viewed from the lower surface side.
  • the broken line in the figure indicates the outer shape of the magnet 21 (the outer shape of the cover 210).
  • the main body 21B is a rectangular parallelepiped magnet in which three block-shaped magnets 21H, M, and L in which an N pole and an S pole forming a magnetic pole pair face each other are arranged.
  • the two magnets 21H and L at both ends have the same side facing the N pole (the lower surface illustrated in FIG. 6B), while the central magnet 21M is The S pole is turned to the side where the N poles of the other two magnets 21 H and L face each other.
  • a magnetic field is also formed by a magnetic pole pair which belongs to a combination of adjacent N and S poles.
  • Such a magnetic pole pair includes a magnetic pole pair 215A by a combination of the north pole of the magnet 21H and a south pole of the magnet 21M, and a pole pair 215B by a combination of the south pole of the magnet 21M and the north pole of the magnet 21L. It is done.
  • the magnetic pole pairs 215A ⁇ B form a magnetic field along the direction in which the magnet 21H, the magnet 21M, and the magnet 21L are adjacent, that is, the longitudinal direction of the rectangular parallelepiped main body 21B (magnet 21).
  • the magnet 21 in which the cover 210 is placed on the main body 21B is accommodated in the rail 250 of the magnet holder 25 facing the substrate 2 as described above.
  • the magnet 21 is held with its longitudinal direction along the surface of the substrate 2. Therefore, the magnetic field formed by the magnetic pole pairs 215A and B exerts magnetism in the direction along the surface of the substrate 2.
  • the N pole facing the substrate 2 among the magnets 21L arranged on the guide wall 218 side in the longitudinal direction of the magnet 21 is referred to as the second N pole 212N, and the action pin 213 side in the longitudinal direction of the magnet 21.
  • the N pole facing the substrate 2 among the magnets 21H arranged in the above is called a first N pole 211N.
  • the S pole facing the substrate 2 among the central magnets 21M is referred to as the S pole 21S.
  • the boundary between the first N pole 211N and the S pole 21S in the magnetic pole pair 215A is referred to as a first boundary B1
  • the boundary between the second N pole 212N and the S pole 21S in the magnetic pole pair 215B is referred to as a second boundary B2.
  • the surface of the main body 21B formed by the first N pole 211N of the magnet 21H, the S pole 21S of the magnet 21M, and the second N pole 212N of the magnet 21L is not covered by the cover 210 and serves as the lower surface of the magnet 21. It is exposed (FIG. 6 (b)).
  • the cylindrical drive portion 116C of the shift arm 116 is accommodated in the shift receiving portion 176, and the spherical drive portion 117S of the select arm 117 is accommodated in the select receiving portion 177. And are linked.
  • the cylindrical drive portion 116C of the shift arm 116 has a cylindrical shape along the select direction.
  • the shift receiving portion 176 is a slit along the selection direction.
  • the select arm 117 has an axial shape along the shift direction.
  • the select receiving portion 177 is a slit along the shift direction.
  • the shift receiving portion 176 and the select receiving portion 177 are both formed long in the height direction orthogonal to the shift direction and the select direction. Therefore, the shift receiving portion 176 and the select receiving portion 177 can absorb the displacement in the height direction of the cylindrical drive portion 116C of the shift arm 116 and the spherical drive portion 117S of the select arm 117.
  • the driven member 17 and the magnet 21 are connected such that the spherical portion 171 of the drive pin 17P is accommodated in the guide groove 214 and the drive slit 17S accommodates the spherical portion 213S of the action pin 213.
  • the guide groove 214 is a slit in the longitudinal direction of the magnet 21.
  • the drive slit 17S is a slit along the shift direction.
  • the portion where the spherical portion 171 (drive pin 17 P) of the driven member 17 abuts on the wall surface 218 S (guide wall 218) is positioned off the rotation center of the magnet holder 25.
  • the contact point of the spherical portion 171 with the wall surface 218S is offset downward and to the left in FIG. 8 with respect to the rotation center of the magnet holder 25.
  • the magnet 21 When the shift lever 11 is in the H position (FIG. 8), the magnet 21 is in the select direction, and the magnet 21 is accommodated almost completely in the rail 250 of the magnet holder 25. At this time, the second boundary B2 of the magnet 21 faces the detection surface 201S of the magnetic sensor IC 201. The magnetism from the second north pole 212N to the south pole 21S acts on the detection surface 201S.
  • the movement when the shift lever 11 is operated in the shift direction and the movement when the shift lever 11 is operated in the select direction will be described with reference to FIG.
  • FIG. 1 by showing a top view and a side view of the shift lever 11 for each shift position, posture change of the shift arm 116 and the select arm 117 according to the operation of the shift lever 11 is shown.
  • the top view enclosed by the broken line in the figure is an image diagram for explaining the movement when shifting from one of the shift positions to the adjacent shift position.
  • the left and right direction in the figure corresponds to the vertical direction, and the higher the left side in the figure, the lower the right side.
  • a lever base 11 ⁇ / b> B is provided on the opposite side of the shift knob 111 via the spherical portion 110 which is the rotation center.
  • the lever base portion 11B pivots in the direction opposite to the displacement direction of the shift knob 111 forming the operation portion. For example, when the shift lever 11 is operated to the near side in the shift direction, the lever base 11B pivots to the far side in the shift direction. Also, for example, when the shift lever 11 is operated to the right in the selection direction, the lever base 11B pivots to the left in the selection direction.
  • a line segment L connecting the cylindrical drive portion 116C at the tip of the shift arm 116 and the spherical portion 110 is in the tip-down state (FIG. 7, side view (H, N)).
  • tip-down means that the position of the drive portion 116C at the tip is lower than the spherical portion 110 at the rotation center.
  • the cylindrical drive portion 116C of the shift arm 116 is accommodated in the shift receiving portion 176 which is a slit along the select direction.
  • the driven member 17 supported by using the spherical bearing 17E at the upper end pivots to the rear side in the shift direction.
  • Such rotational movement of the driven member 17 to the rear side in the shift direction is performed by rotating the lever base 11B to the rear side in the shift direction, which occurs when the shift lever 11 is operated to the front side in the shift direction (SH1 in FIG. 7). It is similar to the movement operation.
  • the spherical drive portion 117S of the select arm 117 is accommodated in the select receiving portion 177 which is a slit along the shift direction.
  • the driven member 17 supported using the spherical bearing 17E at the upper end pivots to the same side in the select direction.
  • the pivoting operation of the driven member 17 is similar to the pivoting operation of the lever base 11B that occurs when the shift lever 11 is operated from the H position to the N position (arrow SL1 in FIG. 7).
  • the driven member 17 supported by using the spherical bearing 17E at the upper end realizes the same rotation operation as the lever base 11B of the shift lever 11.
  • the pivoting operation of the driven member 17 can be said to be a duplicate of the pivoting operation of the lever base 11B.
  • the pivoting operation of the lever base 11B accompanying the operation of the shift lever 11 is converted into the pivoting operation of the driven member 17.
  • the area of the rotational movement is changed in position by the driven member 17 acting as a position changer.
  • the shift lever 11 and the driven member 17 are connected.
  • the shift arm 116 acts on the magnetic sensor IC 201 by the rotational displacement of the magnet 21 relative to the magnetic sensor IC 201.
  • the driven member 17 is driven to change the action direction.
  • FIG. 8 shows the rotational position and the advancing and retreating position of the magnet 21 at each position.
  • FIG. 9 shows the positional relationship between the magnet 21 and the detection surface 201S at each position.
  • the parallelogram attached to each position in FIG. 8 represents the shape of the lower surface of the magnet 21 facing the substrate 2, and the parallelogram of a small thick frame shown on the inside of the parallelogram is a magnetic symbol.
  • the detection surface 201S of the sensor IC 201 is shown. It is FIG. 9 that the relative positional relationship in FIG. 8 of the parallelogram representing the lower surface shape of the magnet 21 and the parallelogram of a thick frame representing the detection surface 201S is easily understood in a front view.
  • the magnet 21 is in the select direction, and the magnet 21 is completely close to the rail 250 of the magnet holder 25.
  • the detection surface 201S of the magnetic sensor IC 201 is in a state of facing the second boundary B2 of the magnet 21.
  • the magnetism from the second N pole 212N to the S pole 21S that is, the magnetism directed upward in the figure acts on the detection surface 201S.
  • the drive pin 17P provided on the lower side of the driven member 17 and accommodated in the guide groove 214 is displaced to the rear side in the shift direction (arrow CH1 in FIG. 8). .
  • the spherical portion 171 of the drive pin 17P is pressed against the wall surface 218S of the guide wall 218, and a contact load is applied to the wall surface 218S.
  • the contact point of the spherical portion 171 with the wall surface 218S is eccentrically located from the rotation center of the magnet holder 25. Therefore, the contact load of the spherical portion 171 of the drive pin 17P is converted into a rotational moment acting on the magnet holder 25.
  • the magnet holder 25 is rotated clockwise in FIG. 8 by this rotational moment.
  • the longitudinal direction of the magnet 21 rotates clockwise.
  • the longitudinal direction of the magnet 21 is displaced so as to be inclined by this rotation.
  • the direction of the magnetic field from the second N pole 212N to the S pole 21S is rotated while maintaining the second boundary B2 of the magnet 21 facing the detection surface 201S. .
  • the action direction of the magnetism on the detection surface 201S changes. By detecting such a change in the acting direction of the magnetism, it is possible to detect the operation of the shift lever 11 in the shift direction from the H position to the B position.
  • the spherical drive portion 117S at the tip of the select arm 117 is displaced to the opposite side of the select direction (arrow in FIG. 7 ML1).
  • the spherical drive portion 117S of the select arm 117 is accommodated in a select receiving portion 177 which is a slit in the shift direction. Therefore, in accordance with the shift operation in the select direction, the driven member 17 pivots to the select direction H position side.
  • the drive slit 17S When the driven member 17 is displaced in the select direction H position side, the drive slit 17S provided at the lower end of the driven member 17 is displaced in the select direction (arrow CL1 in FIG. 8).
  • the drive slit 17S is extended along the shift direction.
  • displacement of the action pin 213 accommodated in the drive slit 17S occurs in the select direction.
  • the longitudinal direction of the magnet 21 As described above, at the H position and the N position, the longitudinal direction of the magnet 21 is along the select direction. Therefore, if the action pin 213 is displaced in the select direction, the magnet 21 advances in the longitudinal direction (arrow K1 in FIG. 8).
  • the portion of the magnet 21 facing the detection surface 201S of the magnetic sensor IC 201 switches from the second boundary B2 to the first boundary B1 (FIG. 9).
  • the action direction of the magnetism on the detection surface 201S is from the direction from the second N pole 212N to the S pole 21S (upward in FIG. 9) to the direction from the first N pole 211N to the S pole 21S (downward in FIG. Invert to). If such reversal of the direction of action of magnetism is detected, it is possible to detect the operation in the select direction from the H position to the N position.
  • the magnet holder 25 rotates clockwise P1 as in the case of the operation from the H position to the B position described above, and the longitudinal direction of the magnet 21 is Rotate.
  • the magnetic field from the first N pole 211N to the S pole 21S rotates, thereby changing the action direction of the magnetism in the detection surface 201S. (Fig. 9). If such an action direction of the magnetism is detected, it is possible to detect an operation in the shift direction from the N position to the D position.
  • the driven member 17 is shifted following the shift lever 11 Rotate in the direction. Thereby, the magnet 21 is rotationally driven, and the action direction of the magnetism in the detection surface 201S changes.
  • the driven member 17 When an operation in the select direction between the H position and the N position is performed, the driven member 17 is rotated in the select direction following the shift lever 11. As a result, the magnet 21 is driven to move back and forth, and the magnetic pole pair that exerts a magnetic field on the magnetic sensor IC 201 is switched to reverse the action direction of the magnetism on the detection surface 201S.
  • the shift device 1 of this example by detecting the action direction of magnetism on one magnetic sensor IC 201, the operation of the two-dimensional shift lever 11 along the shift direction and the select direction orthogonal to each other is detected. It is possible. Therefore, in the shift device 1 of this example, unlike the conventional configuration, it is not necessary to secure a large installation space for arranging a plurality of magnetic sensor ICs in a two-dimensional manner, and compact design is facilitated.
  • the shift device 1 has a configuration in which the rotation operation of the shift lever 11 is copied to the rotation operation of the driven member 17, and the driven member 17 displaces the magnet 21.
  • the shift device 1 there is no need to dispose the substrate 2 at a position adjacent to the shift lever 11.
  • the substrate 2 may be disposed adjacent to the driven member 17 having a role as a position changer. Therefore, in this shift device 1, the degree of freedom in design when arranging the substrate 2 including the magnet 21 is high, and a more compact design is easy.
  • the magnet 21 is displaced according to the operation of the shift lever 11.
  • the magnet 21 may be fixed to the substrate or the like, and the magnetic sensor may be displaced according to the operation of the shift lever 11.
  • both the magnet 21 and the magnetic sensor IC 201 may be displaced following the shift lever 11 so that the relative positional relationship between the two may change.
  • This example is an example of the shift device 1 capable of operating the shift lever 11 in the shift direction and the select direction which intersect each other. It may be a shift device capable of operating the shift lever 11 linearly only in one direction.
  • the shift arm 116 rotates the driven member 17 in the shift direction according to the operation in the shift direction, and rotationally displaces the magnet 21, while the select arm 117 selects the driven member 17 according to the operation in the select direction.
  • the configuration in which the magnet 21 is moved forward and backward by rotating in the direction is described. Instead of this configuration, during operation in the shift direction, the magnet 21 is displaced forward and backward via the shift arm 116, while when operated in the select direction, the magnet 21 is rotationally displaced via the select arm 117. Also good.
  • the configuration in which the magnet 21 is driven by a structure in which the cylindrical drive portion 116C of the shift arm 116 is sandwiched by the pair of facing wall surfaces 176S is illustrated.
  • the driven member 17 supported by the spherical bearing 17E is capable of rotating in addition to rotational movement.
  • the axial direction of the columnar drive portion 116C is along the pair of wall surfaces 176S It can regulate.
  • the rotation of the driven member 17 can be restricted such that the axial direction of the cylindrical drive portion 116C makes an angle with the wall surface 176S.
  • the accuracy of the rotation operation of the driven member 17 accompanying the rotation of the shift lever 11 can be improved.
  • a structure may be adopted in which a columnar drive portion replacing the spherical drive portion 117S is sandwiched by a pair of wall surfaces.
  • a prismatic or rectangular flat drive part may be adopted instead of the cylindrical drive part 116C. In this case, it is preferable to employ a structure in which the intermediate lever portion 116M rotatably supports a prism-like drive portion or the like.
  • the magnet 21 is configured so that the south pole 21S is positioned at the center facing the substrate 2 and the north poles 211N and 212N are positioned on both sides.
  • a magnet may be employed in which the S pole is located on both sides and the N pole is located at the center.
  • the magnet 21 instead of the magnet 21 in which the three magnets 21H, M, L are arranged in parallel, as shown in FIG. 10, the magnet 21 made of a combination of two magnets 21A and B facing each other with the S pole inside is adopted. You may.
  • the combination of the N pole and the S pole of the magnets 21A and 21B is a magnetic pole pair that exerts magnetism on the magnetic sensor IC 201.
  • the magnets 21A, B facing the magnetic sensor IC 201 are It is good to be configured to switch.
  • the magnet 21 in which the two magnets 21A and B are integrated can be formed.
  • the magnet 21 in which the two magnets 21A and B are integrated may be formed by insert molding in which a molten resin material is poured and cured around the two magnets 21A and B.
  • These two magnets 21A and 21B may be arranged such that the directions of the magnetic fields are different as shown in FIG. 11 instead of facing each other with the south pole facing inward.
  • the magnets 21 may be formed by arranging three or more magnets having different magnetic field orientations. In this case, for example, it is possible to cope with a shift device that operates the shift knob along each row in the shift direction of three or more rows. The operation of the two-dimensional shift knob including three or more shift directions can be detected by only one magnetic sensor IC.
  • a two-axis magnetic sensor capable of detecting magnetism acting in two orthogonal directions is employed, but instead, a three-axis magnetic sensor capable of detecting magnetism acting in three mutually orthogonal directions is used instead It is also good to adopt a sensor.
  • the shift device 1 when the shift knob 111 is operated in the select direction, the first boundary B1 faces the state where the second boundary B2 of the magnet 21 faces the detection surface 201S of the magnetic sensor.
  • the direction of action of the magnetism on the detection surface 201S is rotated by 180 degrees. In the middle of such switching, a state occurs in which the south pole 21S of the magnet 21 faces the detection surface 201S.
  • magnetism in a direction orthogonal to the detection surface 201S acts. Therefore, when the 180 degree rotation of the acting direction of the magnetism on the detection surface 201S can be detected, and the magnetism in the acting direction orthogonal to the detection surface 201S can be detected during the 180 degree rotation, the operation in the select direction is performed. It may be configured to detect. In this case, the operation in the selection direction can be detected with higher reliability.
  • Example 2 This example is an example of a shift device in which detection reliability is enhanced based on the shift device of the first embodiment. This content will be described with reference to FIG. 1, FIG. 2, and FIG.
  • the figure is a figure corresponding to FIG. 9 in the first embodiment.
  • the magnet 21 is a combination of four magnets such that two N poles and two S poles are alternately arranged in the longitudinal direction facing the magnetic sensor IC. In this magnet 21, an N pole, an S pole, an N pole, and an S pole are arranged in order from the top in FIG.
  • the boundary B1 (the boundary of the magnetic pole pair 215A), the boundary B2 (the boundary of the magnetic pole pair 215B), and the boundary B3 (the boundary of the magnetic pole pair 215C) which form the boundary of the magnetic pole at intervals corresponding to the span S2 of the magnetic pole. Is formed.
  • two magnetic sensor ICs are arranged at an interval, and two detection surfaces 201A and 201B are formed.
  • the two magnetic sensor ICs are arranged such that the spans S1 of the detection surfaces 201A and 201B substantially coincide with the span S2 forming the space between the magnetic poles of the magnet 21.
  • the detection surface 201A faces the boundary B2 of the magnetic pole
  • the detection surface 201B faces the boundary B3.
  • the magnet 21 rotates following the shift lever 11.
  • the magnet 21 is inclined and the direction of the magnetic field is rotated while maintaining the state in which the detection surfaces 201A and B face the boundaries B2 and B3, whereby the action direction of the magnetism on the detection surfaces 201A and B changes.
  • the magnet 21 is driven by the shift lever 11 to move downward in FIG.
  • the state in which the boundary B2 faces the detection surface 201A is switched to the state in which the boundary B1 faces
  • the state in which the boundary B3 faces the detection surface 201B is switched to the state in which the boundary B2 faces.
  • the action direction of the magnetism on the detection surfaces 201A and B is reversed according to the operation to the N position.
  • the operation position of the shift knob 111 is detected using the two magnetic sensor ICs having the detection surfaces 201A and B, so that the reliability and reliability of detection can be improved.
  • the detection surfaces 201A and B are configured to face different boundaries.
  • only one of the detection surfaces may face any boundary.
  • the other configurations and operational effects are the same as in the first embodiment.
  • Shift device 11 Shift lever (operation lever) 110 spherical part 111 shift knob (operation part) 116 shift arm (first drive unit) 116C Drive part (column-shaped member) 117 Select arm (second drive unit) 13 housing 15 spherical bearing 17 driven member 17E spherical bearing 17P drive pin 176 shift receiving part (first drive part) 176S wall surface 177 select receiving unit (second drive unit) 2 Substrate 201 Magnetic Sensor IC (Magnetic Sensor) 201S Detection surface 21 Magnet 215A to C Magnetic pole pair 23 Holder guide 25 Magnet holder (rotary table) 250 rails

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Control Devices For Change-Speed Gearing (AREA)

Abstract

A shift device (1) comprises: a shift lever (11) that is supported so as to be rotatable in accordance with an operation performed on a shift knob (111); and a follower member (17) that is rotationally shifted by following the rotational operation of the shift lever (11). The follower member (17) is supported by a support structure including a spherical bearing (17E) for enabling rotational shifting that corresponds to the rotational shifting of the shift lever (11), and causes driving of a magnet (21) to change the acting direction of magnetism acting on a magnetic sensor, in accordance with the operation performed on the shift knob.

Description

シフト装置Shift device
 本発明は、車両の運転者がシフト位置を選択するために操作するシフト装置に関する。 The present invention relates to a shift device operated by a driver of a vehicle to select a shift position.
 従来より、車両の原動機が出力する回転を加減速するための自動変速機が知られている。この自動変速機を含む変速システムとしては、自動変速機を制御する車載コンピュータユニットと、シフト位置を選択するためのシフト装置と、が信号線を介して接続されたシフトバイワイヤの変速システムが実用化されている。この変速システムでは、シフト装置で選択されたシフト位置を表す電気信号が車載コンピュータユニットに伝達され、その電気信号に応じて自動変速機が制御される。 2. Description of the Related Art Automatic transmissions for accelerating and decelerating the rotation output by a motor of a vehicle are known. As a transmission system including this automatic transmission, a shift-by-wire transmission system in which an on-board computer unit for controlling the automatic transmission and a shift device for selecting a shift position are connected via a signal line is put into practical use It is done. In this transmission system, an electrical signal representing a shift position selected by the shift device is transmitted to the on-vehicle computer unit, and the automatic transmission is controlled according to the electrical signal.
 シフトバイワイヤの変速システムに対応するシフト装置としては、例えば、シフト方向及びセレクト方向に操作可能なシフトレバーの後端に磁石を取り付けると共に、磁石の変位位置を検出する磁気センサを設けた装置が提案されている(例えば、下記の特許文献1参照。)。このシフト装置では、磁気センサが複数配置されたセンサ基板が磁石の変位領域に対面するように配設される。このシフト装置では、複数の磁気センサを利用して、シフトレバーの後端の磁石の変位位置を検出することで、シフトレバーが操作されたシフト位置が検出される。 As a shift device corresponding to a shift-by-wire transmission system, for example, a device has been proposed in which a magnet is attached to the rear end of the shift lever operable in the shift direction and select direction and a magnetic sensor for detecting the displacement position of the magnet is provided. (See, for example, Patent Document 1 below). In this shift device, a sensor substrate on which a plurality of magnetic sensors are disposed is disposed to face the displacement region of the magnet. In this shift device, the shift position at which the shift lever is operated is detected by detecting the displacement position of the magnet at the rear end of the shift lever using a plurality of magnetic sensors.
特開2007-223384号公報JP 2007-223384 A
 しかしながら、前記従来のシフト装置では、シフトレバーの操作に応じた磁石の2方向(シフト方向及びセレクト方向)の変位位置を検出できるように磁石が変位するスペースを確保する必要があると共に、磁石の変位領域に対応して磁気センサを2次元的に配置する必要がある。比較的大判のセンサ基板が必要となるため、装置のコンパクト設計の難易度が高くなる傾向にあるという問題がある。 However, in the above-mentioned conventional shift device, it is necessary to secure a space in which the magnet is displaced so that the displacement position of the magnet in two directions (shift direction and select direction) can be detected according to the operation of the shift lever. It is necessary to arrange the magnetic sensors two-dimensionally corresponding to the displacement region. Since a relatively large-sized sensor substrate is required, there is a problem that the degree of difficulty in compact design of the device tends to be high.
 本発明は、前記従来の問題点に鑑みてなされたものであり、コンパクト設計が容易なシフト装置を提供しようとするものである。 The present invention has been made in view of the above-mentioned conventional problems, and it is an object of the present invention to provide a shift device which can be compactly designed easily.
 本発明は、外部から作用する磁気のうち、少なくとも、予め定められた検出面に沿う成分の作用方向を検出する磁気センサと、該磁気センサに磁気を作用する磁石と、の組合せを含む車両用のシフト装置であって、
 車両を運転する者による操作を受け付ける操作部と、
 該操作部が設けられていると共に該操作部に対する操作に応じて回動可能に支持された操作レバーと、
 前記操作レバーの回動動作に従動して回動変位する従動部材と、を有し、
 該従動部材は、少なくとも前記操作レバーの回動変位に対応する回動変位を可能にする支持構造により支持されていると共に、
 前記操作部に対する操作に応じて前記磁気センサに作用する磁気の作用方向が変化するように該磁気センサ及び該磁石のうちのいずれか一方を駆動するシフト装置にある。
The present invention relates to a vehicle including a combination of a magnetic sensor for detecting at least an action direction of a component along a predetermined detection surface among magnetism acting from the outside, and a magnet for applying magnetism to the magnetic sensor. The shift device of
An operation unit that receives an operation by a driver of the vehicle;
An operating lever provided with the operating portion and rotatably supported in response to an operation on the operating portion;
And a driven member that is rotationally displaced following the pivotal movement of the operation lever.
The driven member is supported by a support structure that enables a rotational displacement corresponding to at least a rotational displacement of the operating lever.
The shift device is configured to drive either one of the magnetic sensor and the magnet so that the action direction of the magnetism acting on the magnetic sensor changes according to the operation on the operation unit.
 本発明のシフト装置では、操作部が操作されたときに検出面における磁気の作用方向が変化する。このシフト装置では、磁石の位置的な変化ではなく、磁気の作用方向の変化に応じて操作を検出可能であるので、磁石の変位スペースを確保する必要性が少ない。したがって、本発明のシフト装置は、コンパクト設計が容易である。 In the shift device of the present invention, when the operation unit is operated, the action direction of the magnetism on the detection surface changes. In this shift device, since the operation can be detected not according to the positional change of the magnet but according to the change of the action direction of the magnetism, it is less necessary to secure the displacement space of the magnet. Therefore, the shift device of the present invention is easy to compact design.
実施例1における、シフト装置を示す斜視図。1 is a perspective view showing a shift device in Embodiment 1. FIG. 実施例1における、シフト装置の構造を示す組立図。FIG. 2 is an assembly view showing a structure of a shift device in Embodiment 1. 実施例1における、シフトレバー及び基板の構造を示す第1の組立図。FIG. 5 is a first assembly view showing the structure of the shift lever and the substrate in the first embodiment. 実施例1における、シフトレバー及び基板の構造を示す第2の組立図(第1の組立図とは視方向が相違している。)。The 2nd assembly drawing which shows the structure of a shift lever and a board | substrate in Example 1 (view direction differs from a 1st assembly drawing). 実施例1における、シフトレバー及び基板の構造を示す第3の組立図(第2の組立図と視方向が一致している。)。FIG. 16 is a third assembly view showing the structure of the shift lever and the substrate in Embodiment 1 (the viewing direction matches the second assembly drawing). 実施例1における、磁石の構成を示す斜視図(上面側から見込む図。)。The perspective view which shows the structure of the magnet in Example 1 (figure seen from an upper surface side). 実施例1における、磁石の構成を示す斜視図(下面側から見込む図。)。The perspective view which shows the structure of the magnet in Example 1 (figure seen from a lower surface side). 実施例1における、シフトレバーの操作の説明図。FIG. 8 is an explanatory diagram of the operation of the shift lever in the first embodiment. 実施例1における、シフトレバーの操作に応じて磁石が変位する様子を示す説明図。FIG. 8 is an explanatory view showing how the magnet is displaced according to the operation of the shift lever in the first embodiment. 実施例1における、磁石と検出面との関係を示す説明図。FIG. 5 is an explanatory view showing a relationship between a magnet and a detection surface in Embodiment 1. 実施例1における、他の磁石その1を示す説明図。Explanatory drawing which shows the other magnet 1 in Example 1. FIG. 実施例1における、他の磁石その2を示す説明図。Explanatory drawing which shows 2 other magnets in Example 1. FIG. 実施例2における、磁石と検出面との関係を示す説明図。Explanatory drawing which shows the relationship between a magnet and a detection surface in Example 2. FIG.
 本発明の実施の形態につき、以下の実施例を用いて具体的に説明する。
(実施例1)
 本例は、シフトバイワイヤの変速システムに対応するシフト装置1に関する例である。この内容について、図1~図11を参照して説明する。
 図1のシフト装置1は、車両に搭載される図示しない自動変速機で設定されるシフトレンジを選択するための操作装置であり、運転者の持ち手をなすシフトノブ(操作部)111を備えている。シフト装置1は、自動変速機を制御するECU(図示しない車載コンピュータユニット)と信号線を介して接続されており、運転者によるシフトノブ111の操作情報を電気信号に変換してECUに入力する。
Embodiments of the present invention will be specifically described using the following examples.
Example 1
This example is an example related to the shift device 1 corresponding to the shift system of shift by wire. The contents will be described with reference to FIGS. 1 to 11.
The shift device 1 shown in FIG. 1 is an operation device for selecting a shift range set by an automatic transmission (not shown) mounted on a vehicle, and includes a shift knob (operation portion) 111 serving as a driver's hand. There is. The shift device 1 is connected via a signal line to an ECU (not shown) for controlling an automatic transmission via a signal line, converts operation information of the shift knob 111 by the driver into an electric signal, and inputs the electric signal to the ECU.
 例示するシフト装置1では、エンジンブレーキが必要なときのBレンジ、前進時のD(ドライブ)レンジ、後退時のR(リバース)レンジ、N(ニュートラル)レンジを選択できる。シフト装置1では、図1のごとく、各シフトレンジに対応するシフトノブ111の操作位置であるシフト位置が設定されており、いずれかのシフト位置にシフトノブ111を操作することで、対応するシフトレンジを選択的に設定できる。なお、以下の説明では、例えばDレンジに対応するシフト位置をDポジションと言う。 In the illustrated shift device 1, the B range when engine braking is required, the D (drive) range at the time of forward movement, the R (reverse) range at the reverse time, and the N (neutral) range can be selected. In the shift device 1, as shown in FIG. 1, the shift position which is the operation position of the shift knob 111 corresponding to each shift range is set, and the corresponding shift range is set by operating the shift knob 111 at any shift position. It can be set selectively. In the following description, for example, the shift position corresponding to the D range is referred to as a D position.
 図1のシフト装置1では、初期位置となるH(ホーム)ポジションを操作の起点として、車両の進行方向に沿うシフト方向、及び車幅方向に沿うセレクト方向にシフトノブ111を操作可能である。このシフト装置1の例では、右ハンドルの運転者側から見て、Hポジションに対してBポジションがシフト方向手前側(進行方向逆側、車両後部側)、Nポジションがセレクト方向に引き寄せる側(右側)に配置され、Nポジションに対してRポジションがシフト方向奥側(進行方向側、車両前側)、Dポジションがシフト方向手前側に当たる位置に配置されている。 In the shift device 1 of FIG. 1, the shift knob 111 can be operated in the shift direction along the traveling direction of the vehicle and the select direction along the vehicle width direction, with the H (home) position as the initial position as the starting point of operation. In this example of the shift device 1, when viewed from the driver side of the right steering wheel, the B position is closer to the shift direction (the traveling direction reverse side, the vehicle rear side) than the H position, and the N position is closer to the select direction ( The R position is disposed on the right side, and the R position is disposed on the rear side in the shift direction (traveling direction side, vehicle front side) with respect to the N position, and the D position is on the front side in the shift direction.
 図1に示すHポジションを起点として、運転者がシフト方向手前側にあるBポジションにシフトノブ111を操作すれば、Bレンジを選択できる。Dレンジは、Hポジションからセレクト方向に沿ってシフトノブ111を移動させて一旦Nポジションに操作し、そのままシフト方向手前側のDポジションにシフトノブ111を操作することで選択できる。Rレンジは、Hポジションからセレクト方向に沿ってシフトノブ111を移動させて一旦Nポジションに操作した後、そのままシフト方向奥側のRポジションにシフトノブ111を操作することで選択できる。なお、このシフト装置1では、操作の起点であるHポジションに向けてシフトノブ111が付勢されている。例えばDポジションにシフトノブ111を操作した後、運転者がシフトノブ111から手を離すと、シフトノブ111は自動的にHポジションに復帰する。 Starting from the H position shown in FIG. 1, if the driver operates the shift knob 111 to the B position on the near side in the shift direction, the B range can be selected. The D range can be selected by moving the shift knob 111 from the H position along the select direction to temporarily operate to the N position and operating the shift knob 111 to the D position on the front side in the shift direction. The R range can be selected by moving the shift knob 111 from the H position along the select direction and once operating it to the N position and then operating the shift knob 111 to the R position on the back side in the shift direction. In the shift device 1, the shift knob 111 is biased toward the H position which is the starting point of the operation. For example, after operating the shift knob 111 to the D position, when the driver releases the shift knob 111, the shift knob 111 automatically returns to the H position.
 このシフト装置1は、図1~図5のごとく、筐体13によってシフトレバー11が回動可能に軸支された装置である。シフト装置1では、筐体13の上面からシフトレバー11が突き出しており、その先端にシフトノブ111が取り付けられている。シフト装置1は、シフト操作を磁気的に検出し、シフト操作を表す電気信号を外部出力するように構成されている。 The shift device 1 is a device in which a shift lever 11 is pivotally supported by a housing 13 as shown in FIGS. In the shift device 1, the shift lever 11 protrudes from the upper surface of the housing 13, and the shift knob 111 is attached to the tip of the shift lever 11. The shift device 1 is configured to magnetically detect a shift operation and externally output an electric signal representing the shift operation.
 筐体13の内部(図2~図5)には、磁気センサIC201が実装された基板2や、シフトレバー(操作レバーの一例)11の回動動作に従動する従動部材17等が収容されている。基板2では、磁気センサIC201の検出面201Sに面して、進退変位及び回転変位が可能な状態で磁石21が保持されている。従動部材17は、筐体13側に取り付けられたピボット球135(図2)によって回動可能に軸支されている。シフト操作に伴うシフトレバー11の回動動作は、この従動部材17を介在して磁石21の変位動作に変換される。そして、シフト装置1は、磁石21の変位に伴う磁気の作用方向の変化を検出することで、シフト操作を検出する。以下、シフト装置1の各部の構成を説明する。 Inside the housing 13 (FIGS. 2 to 5), the substrate 2 on which the magnetic sensor IC 201 is mounted, the driven member 17 that follows the rotation operation of the shift lever (an example of the operation lever) 11, etc. There is. On the substrate 2, the magnet 21 is held in a state capable of forward and backward displacement and rotational displacement facing the detection surface 201 S of the magnetic sensor IC 201. The driven member 17 is pivotally supported by a pivot ball 135 (FIG. 2) mounted on the housing 13 side. The rotational movement of the shift lever 11 accompanying the shift operation is converted to the displacement movement of the magnet 21 via the driven member 17. Then, the shift device 1 detects a shift operation by detecting a change in the action direction of the magnetism accompanying the displacement of the magnet 21. Hereinafter, the configuration of each part of the shift device 1 will be described.
 筐体13は、カバー部13Cと底板部13Bとによる分割構造を有している(図2)。カバー部13Cに対して、例えばビス止め等により底板部13Bを固定することで、シフトレバー11の軸支構造や、従動部材17や、基板2を収容するための内部空間が形成される。筐体13は、細長い外形状を呈し、車両に対してはその前後方向に沿って組み付けられる。筐体(カバー部)13の上面は、車両の前側ほど高くなる階段状の3段の段差が設けられている。車両の前側に当たる一番高い段131には、シフトレバー11の軸部11Sを貫通配置するための孔130が設けられている。また、筐体13の後端面には、動作電力を供給したり、電子信号を外部出力するための外部ケーブル(図示略)を接続するための外部コネクタ2Cが設けられている。 The housing 13 has a divided structure of a cover 13C and a bottom plate 13B (FIG. 2). By fixing the bottom plate portion 13B to the cover portion 13C with, for example, a screw or the like, an inner space for accommodating the shaft support structure of the shift lever 11, the driven member 17 and the substrate 2 is formed. The housing 13 has an elongated outer shape, and is assembled to the vehicle along the front-rear direction. The upper surface of the housing (cover portion) 13 is provided with three step-like steps that become higher toward the front side of the vehicle. The highest step 131 corresponding to the front side of the vehicle is provided with a hole 130 through which the shaft portion 11S of the shift lever 11 is disposed. Further, on the rear end face of the housing 13, an external connector 2C is provided for connecting an external cable (not shown) for supplying operating power or outputting an electronic signal to the outside.
 カバー部13C(図1、図2)は、上記の孔130の内側に、シフトレバー11を回動可能に軸支する球状軸受15の取付部(図示略)を有している。シフトレバー11は、この取付部に取り付けられた球状軸受15により、回動可能に軸支される。また、カバー部13Cの階段状の上面のうち、中間の段132の内側は、上記の従動部材17の収容空間となっている。この収容空間の天井をなすカバー部13Cの内周面(天井面)には、従動部材17を回動可能に軸支するための構造が設けられている。詳しくは、後述するが、従動部材17の上端部には球状軸受17Eが設けられている。一方、カバー部13Cの内部空間の天井面には、従動部材17の球状軸受17Eに対応するピボット球135が下方に向けて立設されている。従動部材17は、球状軸受17Eとピボット球135との組合せによる支持構造によってシフトレバー11と同様の回動動作が可能である。 The cover portion 13C (FIGS. 1 and 2) has a mounting portion (not shown) of a spherical bearing 15 rotatably supporting the shift lever 11 inside the hole 130. The shift lever 11 is rotatably supported by a spherical bearing 15 attached to the attachment portion. Further, of the stepped upper surfaces of the cover portion 13C, the inner side of the middle step 132 is a housing space for the driven member 17 described above. A structure for pivotally supporting the driven member 17 is provided on an inner peripheral surface (ceiling surface) of a cover portion 13C which forms a ceiling of the accommodation space. Although described later in detail, the upper end portion of the driven member 17 is provided with a spherical bearing 17E. On the other hand, on the ceiling surface of the internal space of the cover portion 13C, a pivot ball 135 corresponding to the spherical bearing 17E of the driven member 17 is erected downward. The driven member 17 can perform the same rotational movement as the shift lever 11 by the support structure of the combination of the spherical bearing 17E and the pivot ball 135.
 底板部13Bは、カバー部13Cの底側の開口形状に対応する形状の部材である。車両の前側に当たる部分には、シフト操作に節度感を付与するためのディテント部13Dが設けられ、後ろ側に当たる部分には、基板2を取り付けるためのスペースが設けられている。ディテント部13Dは、車両の前側に向けて次第に高くなる傾斜状に形成されている。ディテント部13Dの表面には、シフトパターンに対応するディテント溝137が穿設されている。 The bottom plate 13B is a member having a shape corresponding to the opening on the bottom side of the cover 13C. A portion corresponding to the front side of the vehicle is provided with a detent 13D for giving a sense of moderation to the shift operation, and a portion corresponding to the rear side is provided with a space for attaching the substrate 2. The detent portion 13D is formed in an inclined shape which becomes higher gradually toward the front side of the vehicle. A detent groove 137 corresponding to the shift pattern is formed on the surface of the detent portion 13D.
 ディテント溝137(図2)は、シフトレバー11が備える後述のディテントロッド119の先端部119Tが嵌まり込む溝である。それ故、ディテント溝137は、シフトノブ111の操作経路をなすシフトパターンと相似形をなしている。ディテント溝137の溝底面には凹凸(図示略)が形成され、HポジションやNポジションなどのシフト位置に対応する位置に、それぞれ凹みが設けられている。そして、隣り合う凹みの間隙には、浅い溝底面が形成されている。 The detent groove 137 (FIG. 2) is a groove in which a tip portion 119T of a detent rod 119, which will be described later, included in the shift lever 11 is fitted. Therefore, the detent groove 137 has a similar shape to the shift pattern that forms the operation path of the shift knob 111. Asperities (not shown) are formed on the bottom of the detent groove 137, and recesses are provided at positions corresponding to shift positions such as the H position and the N position. A shallow groove bottom is formed in the gap between the adjacent recesses.
 シフトレバー11は、球状部110を挟んで上側に軸部11Sが設けられ、その先端にシフトノブ111(図1参照。)が取り付けられる。球状部110を挟んでシフトレバー11の下側には、レバー基部11Bが形成されている。レバー基部11Bは、シフトレバー11の重量バランスを良好にするためのウェイトとしての役割を有するほか、従動部材17を従動させるためのアーム116、117の基部、シフト操作に節度感を付与するためのディテントロッド119の基部、としての役割等を有している。 The shift lever 11 is provided with a shaft portion 11S on the upper side sandwiching the spherical portion 110, and a shift knob 111 (see FIG. 1) is attached to the tip thereof. A lever base 11 </ b> B is formed on the lower side of the shift lever 11 with the spherical portion 110 interposed therebetween. The lever base 11B serves not only as a weight for improving the weight balance of the shift lever 11, but also for the bases of the arms 116 and 117 for following the driven member 17 and for giving a sense of moderation to the shift operation. It has a role as a base of the detent rod 119 and the like.
 レバー基部11B(図2~図5)では、軸方向に略直交する方向に向けて、2本のアーム116、117が立設されている。1本のアームは、セレクト方向のシフト操作に応じて従動部材17を回動させるためのセレクトアーム117である。このセレクトアーム117の先端には、球状の駆動部117Sが設けられている。セレクトアーム117は、シフトレバー11に対して筐体13の長手方向(車両の前後方向、シフト方向)に隣り合わせの従動部材17に向けて突き出ている。 In the lever base 11B (FIGS. 2 to 5), two arms 116 and 117 are erected in a direction substantially orthogonal to the axial direction. One arm is a select arm 117 for rotating the driven member 17 according to the shift operation in the select direction. At the tip of the select arm 117, a spherical drive unit 117S is provided. The select arm 117 protrudes toward the driven member 17 adjacent to the shift lever 11 in the longitudinal direction of the housing 13 (the front-rear direction of the vehicle, the shift direction).
 もう1本のアームは、シフト方向のシフト操作に応じて従動部材17を回動させるためのシフトアーム116である。シフトアーム116は、シフト方向に沿う中間レバー部116Mと、セレクト方向に沿う円柱状の駆動部116Cと、の組合せを含んでいる。中間レバー部116Mは、筐体13の幅方向に当たる従動部材17の側方に位置している。円柱状の駆動部116Cは、中間レバー部116Mの先端近くの側面において、従動部材17に向けて突き出すように立設されている。中間レバー部116Mと駆動部116Cとの組合せにより、シフトアーム116は、全体として略L字状を呈している。 The other arm is a shift arm 116 for rotating the driven member 17 in response to the shift operation in the shift direction. The shift arm 116 includes a combination of an intermediate lever portion 116M along the shift direction and a cylindrical drive portion 116C along the select direction. The intermediate lever portion 116 </ b> M is located on the side of the driven member 17 corresponding to the width direction of the housing 13. The cylindrical drive portion 116C is erected so as to project toward the driven member 17 on the side surface near the tip of the intermediate lever portion 116M. By the combination of the intermediate lever portion 116M and the drive portion 116C, the shift arm 116 has a substantially L shape as a whole.
 レバー基部11Bのうち、シフトアーム116及びセレクトアーム117の反対側には、斜め下方に向かって棒状のディテントロッド119が立設されている(図4、図5)。ディテントロッド119の先端部119Tは、伸縮構造を介してロッド本体119Bに保持されている。先端部119Tは、例えばディテントロッド119の内部に収容されたコイルばね(図示略)によって、先端側に向けて付勢された状態で、ロッド本体119Bに保持されている。シフト装置においては、ディテントロッド119の半球状の先端部119Tが、ディテント溝137(図2)に嵌まり込んでいる。シフト装置1では、ディテントロッド119の先端部119Tがディテント溝137に嵌まり込むことで、シフトパターンが所定のパターンに規制される。 Of the lever base 11B, a rod-like detent rod 119 is erected obliquely downward on the opposite side of the shift arm 116 and the select arm 117 (FIG. 4, FIG. 5). The tip portion 119T of the detent rod 119 is held by the rod main body 119B via a telescopic structure. The distal end portion 119T is held by the rod main body 119B in a state of being biased toward the distal end side by, for example, a coil spring (not shown) accommodated inside the detent rod 119. In the shift device, the hemispherical tip 119T of the detent rod 119 is fitted into the detent groove 137 (FIG. 2). In the shift device 1, the tip of the detent rod 119 is fitted into the detent groove 137, whereby the shift pattern is restricted to a predetermined pattern.
 ここで、ディテントロッド119とディテント溝137との組み合わせを含む節度付与機構について簡単に説明しておく。シフトノブ111がHポジションなどいずれかのシフト位置に操作されたとき、ディテントロッド119の先端部119Tがディテント溝137の凹みに位置し、コイルばねの付勢力によって先端部119Tがロッド本体119Bから突出する状態となる。HポジションからNポジションに向けてシフトノブ111を操作する際には、ディテントロッド119の先端部119Tが押し当たる溝底面が次第に浅くなるので、先端部119Tをロッド本体119Bに押し込む力が必要となり、この力が操作反力となる。その後、Nポジションに近づくと、ディテントロッド119の先端部119Tが押し当たる溝底面が次第に深くなる。このときには、先端部119Tがロッド本体119Bから突出でき、コイルばねが次第に伸張する。この場合には、先端部119Tをロッド本体119Bに押し込む場合とは反対に、コイルばねの伸張に応じてシフトノブ111をNポジションに引き込む力が生じる。このように、伸縮構造によってロッド本体119Bに保持された先端部119Tと、溝底面に凹凸が形成されたディテント溝137と、の組み合わせによって、シフトノブ111の操作に節度感が付与される。 Here, the moderation giving mechanism including the combination of the detent rod 119 and the detent groove 137 will be briefly described. When the shift knob 111 is operated to any shift position such as the H position, the tip end 119T of the detent rod 119 is positioned in the recess of the detent groove 137, and the tip end 119T protrudes from the rod main body 119B by the biasing force of the coil spring. It becomes a state. When operating the shift knob 111 from the H position to the N position, the groove bottom against which the tip portion 119T of the detent rod 119 is pressed gradually becomes shallow, so a force for pushing the tip portion 119T into the rod main body 119B is necessary. Force is the reaction force. Thereafter, as the position N is approached, the bottom of the groove against which the tip end 119T of the detent rod 119 is pushed becomes gradually deeper. At this time, the tip end 119T can be protruded from the rod main body 119B, and the coil spring is gradually extended. In this case, in contrast to the case where the tip 119T is pushed into the rod main body 119B, a force is generated to pull the shift knob 111 to the N position according to the extension of the coil spring. As described above, the combination of the tip portion 119T held by the rod main body 119B by the expansion / contraction structure and the detent groove 137 having the concavities and convexities on the groove bottom gives a sense of moderation to the operation of the shift knob 111.
 次に、従動部材17(図2~図5)は、上記のごとく、シフトレバー11の回動動作に従動して回動する部材である。この従動部材17は、シフトレバー11の回動動作を磁石21に伝達する中間部材である。従動部材17を利用しない構成の場合、シフトレバー11によって磁石21を変位させるためには、レバー基部11B等の下方や側方に磁石21を配置する必要がある。一方、従動部材17を利用すれば、レバー基部11Bから離れた位置に磁石21を配置できる。この従動部材17は、シフトレバー11の回動動作に対応する回動動作を、シフトレバー11とは異なる位置に伝達するためのポジションチェンジャーの役割を有しているからである。従動部材17を利用すれば、磁石21を含む基板2の設置位置の設計自由度を格段に向上できる。 Next, as described above, the driven member 17 (FIGS. 2 to 5) is a member that rotates following the rotation of the shift lever 11. The driven member 17 is an intermediate member that transmits the rotational movement of the shift lever 11 to the magnet 21. In the case where the driven member 17 is not used, in order to displace the magnet 21 by the shift lever 11, the magnet 21 needs to be disposed below or to the side of the lever base 11B or the like. On the other hand, if the driven member 17 is used, the magnet 21 can be disposed at a position away from the lever base 11B. This is because the driven member 17 has a role of a position changer for transmitting a pivoting operation corresponding to the pivoting operation of the shift lever 11 to a position different from that of the shift lever 11. If the driven member 17 is used, the design freedom of the installation position of the substrate 2 including the magnet 21 can be significantly improved.
 従動部材17は、上端部に球状軸受17Eが設けられた部材であり、この球状軸受17Eに収容された上記のピボット球135(図2)を中心として回動可能である。従動部材17は、下方に向けて末広がりの形状を有している。従動部材17の下端には、磁石21を変位させるための駆動ピン17P、駆動スリット17Sが設けられている。従動部材17の上下方向における中間的な位置には、シフトレバー11から延設されたシフトアーム116、セレクトアーム117の受け部176、177が設けられている。 The driven member 17 is a member provided with a spherical bearing 17E at its upper end, and is rotatable around the pivot ball 135 (FIG. 2) accommodated in the spherical bearing 17E. The driven member 17 has a downwardly extending shape. At the lower end of the driven member 17, a drive pin 17P and a drive slit 17S for displacing the magnet 21 are provided. At an intermediate position in the vertical direction of the driven member 17, the shift arm 116 extended from the shift lever 11 and the receiving portions 176 and 177 of the select arm 117 are provided.
 シフトアーム116の受け部であるシフト受け部176(図3~図5)は、シフトアーム116の先端の円柱状の駆動部116C(柱状の部材の一例)に対応している。シフト受け部176は、筐体13の幅方向に当たるセレクト方向(車幅方向)に沿う一対の壁面176S(図5)が対面するスリット状の空間である。シフト受け部176のスリット幅は、シフトアーム116の円柱状の駆動部116Cを隙間少なく収容可能な寸法である。 A shift receiving portion 176 (FIGS. 3 to 5), which is a receiving portion of the shift arm 116, corresponds to a cylindrical drive portion 116C (an example of a columnar member) at the tip of the shift arm 116. The shift receiving portion 176 is a slit-like space in which a pair of wall surfaces 176S (FIG. 5) along the select direction (vehicle width direction) corresponding to the width direction of the housing 13 face each other. The slit width of the shift receiving portion 176 is a dimension that can accommodate the cylindrical drive portion 116C of the shift arm 116 with a small gap.
 セレクトアーム117の受け部であるセレクト受け部177(図4、図5)は、セレクトアーム117の先端の球状の駆動部117Sを収容するスリット状の空間である。セレクト受け部177は、筐体13の長手方向に当たるシフト方向(車両の前後方向)に沿って延在している。 A select receiving portion 177 (FIGS. 4 and 5) which is a receiving portion of the select arm 117 is a slit-like space for accommodating the spherical drive portion 117S at the tip of the select arm 117. The select receiving portion 177 extends along the shift direction (longitudinal direction of the vehicle) corresponding to the longitudinal direction of the housing 13.
 駆動ピン17P(図3~図5)は、シフト方向のシフト操作に応じて磁石21を回転変位させるための駆動部である。駆動ピン17Pは、従動部材17の下側に配置される基板2に向かって突出する軸状をなし、その先端に球状部171が設けられている。この球状部171は、磁石21が備える後述の一対のガイド壁218の間隙であるガイド溝214に収容される。 The drive pin 17P (FIGS. 3 to 5) is a drive unit for rotationally displacing the magnet 21 in accordance with the shift operation in the shift direction. The driving pin 17P has an axial shape protruding toward the substrate 2 disposed below the driven member 17, and a spherical portion 171 is provided at the tip. The spherical portion 171 is accommodated in a guide groove 214 which is a gap between a pair of guide walls 218 described later provided in the magnet 21.
 駆動スリット17S(図3~図5)は、セレクト方向のシフト操作に応じて磁石21を進退変位させるための駆動部である。駆動スリット17Sは、シフト方向に沿っていると共に、下方に向けて開口するスリット状の空間を形成している。この駆動スリット17Sは、磁石21が備える後述の作用ピン213を収容する。 The drive slit 17S (FIGS. 3 to 5) is a drive portion for advancing and retracting the magnet 21 in accordance with the shift operation in the select direction. The drive slit 17S is along the shift direction and forms a slit-like space that opens downward. The drive slit 17S accommodates an operation pin 213 described later provided in the magnet 21.
 基板2(図3~図5)は、磁気センサIC(磁気センサ)201のほか、シフトノブ111の操作により選択されたシフト位置を表す電気信号を生成し出力するための図示しないマイコンチップなどが実装された電子基板である。両面実装に対応する基板2では、筐体13の内部空間に面して磁気センサIC201が配置され、その裏面にマイコンチップなど他の電子部品が配置されている。 In addition to the magnetic sensor IC (magnetic sensor) 201, the substrate 2 (FIGS. 3 to 5) is mounted with a not-shown microcomputer chip or the like for generating and outputting an electric signal representing a shift position selected by operation of the shift knob 111. Electronic substrate. In the substrate 2 compatible with double-sided mounting, the magnetic sensor IC 201 is disposed facing the internal space of the housing 13, and another electronic component such as a microcomputer chip is disposed on the back surface thereof.
 磁気センサIC201(図3~図5)は、直交する2方向の磁気の大きさを検知可能な2軸の磁気センサである。この磁気センサIC201は、この直交する2方向により規定される検出面201Sを有し、この検出面201Sが基板2の表面に沿うように取り付けられている。磁気センサIC201は、この検出面201Sにおける磁気の作用方向を検出し、その作用方向を表すセンサ信号を出力する。つまり、この磁気センサIC201は、検出面201Sに直交する軸回りの回転角を検出する1軸の回転センサとして機能する。
 マイコンチップは、磁気センサIC201が出力するセンサ信号を処理することで、シフトノブ111が操作されたシフト位置を検出し、そのシフト位置を表す操作信号を電気的に出力する。
The magnetic sensor IC 201 (FIGS. 3 to 5) is a biaxial magnetic sensor capable of detecting the magnitude of magnetism in two orthogonal directions. The magnetic sensor IC 201 has a detection surface 201S defined by the two orthogonal directions, and the detection surface 201S is attached along the surface of the substrate 2. The magnetic sensor IC 201 detects the acting direction of the magnetism on the detection surface 201S, and outputs a sensor signal representing the acting direction. That is, the magnetic sensor IC 201 functions as a single-axis rotation sensor that detects a rotation angle about an axis orthogonal to the detection surface 201S.
The microcomputer chip processes the sensor signal output from the magnetic sensor IC 201 to detect the shift position at which the shift knob 111 is operated, and electrically outputs an operation signal representing the shift position.
 基板2には、図3~図5のごとく、磁気センサIC201等の電子部品のほかに、磁石21の変位機構が取り付けられている。変位機構は、磁石21が進退可能なレール250を含むマグネットホルダ25と、回転台でもあるマグネットホルダ25を保持するホルダガイド23と、の組合せ等を含んで構成されている。 In addition to the electronic components such as the magnetic sensor IC 201 and the like, as shown in FIGS. 3 to 5, a displacement mechanism of the magnet 21 is attached to the substrate 2. The displacement mechanism includes a combination of a magnet holder 25 including a rail 250 on which the magnet 21 can be advanced and retracted, and a holder guide 23 for holding the magnet holder 25 which is also a rotating table.
 ホルダガイド23(図3~図5)は、マグネットホルダ25を回転可能に保持する略円環状のガイド部材である。このホルダガイド23は、周方向において対向する2箇所にマグネットホルダ25を回転可能に保持するための係合部23B(図3)を備えている。対向配置された一対の係合部23Bは、いずれも断面カギ状を呈し、周方向における約40度に亘って形成されている。 The holder guide 23 (FIGS. 3 to 5) is a substantially annular guide member for rotatably holding the magnet holder 25. The holder guide 23 is provided with engaging portions 23B (FIG. 3) for rotatably holding the magnet holder 25 at two opposing positions in the circumferential direction. The pair of engaging portions 23B disposed opposite to each other has a hook shape in cross section and is formed over about 40 degrees in the circumferential direction.
 略円環状のホルダガイド23は、図5において基板2の表面に示す破線の環状領域23Fを取付領域として基板2に固定されている。この環状領域23Fの内側に位置する磁気センサIC201は、略円環状のホルダガイド23の内側に位置することになる。なお、同図中の破線領域25Fは、Hポジション時に磁石21が対面する領域を示している。ホルダガイド23における円環状をなす部分の板厚は、磁気センサIC201の実装高さを僅かに超える寸法に設定されている。このような寸法設定によれば、ホルダガイド23に保持されたマグネットホルダ25の下面が、磁気センサIC201に対して僅かな隙間を空けて非接触で対面する状態を実現できる。 The substantially annular holder guide 23 is fixed to the substrate 2 with a dashed annular region 23F shown on the surface of the substrate 2 in FIG. 5 as a mounting region. The magnetic sensor IC 201 located inside the annular region 23F is located inside the substantially annular holder guide 23. The broken line area 25F in the figure indicates the area where the magnet 21 faces at the H position. The plate thickness of the annular portion of the holder guide 23 is set to be slightly larger than the mounting height of the magnetic sensor IC 201. According to such dimension setting, it is possible to realize a state in which the lower surface of the magnet holder 25 held by the holder guide 23 faces the magnetic sensor IC 201 non-contactingly with a slight gap.
 マグネットホルダ25(図3~図5)は、磁石21を進退可能に保持する回転台である。このマグネットホルダ25は、樹脂等の非磁性材料により形成されている。マグネットホルダ25は、略円形平板状をなす円板部252の表面に、磁石21を進退させるレール250を設けて構成されている。 The magnet holder 25 (FIGS. 3 to 5) is a rotary table that holds the magnet 21 so as to be able to move forward and backward. The magnet holder 25 is formed of a nonmagnetic material such as resin. The magnet holder 25 is configured by providing a rail 250 for advancing and retracting the magnet 21 on the surface of a disk portion 252 having a substantially circular flat plate shape.
 レール250は、断面カギ状を呈する一対の係合部25Aを対向配置することで形成される溝状の空間である。レール250の長さは、磁石21の長手方向の長さと略一致している。各係合部25Aでは、断面カギ状にならない切欠き25Bが長手方向の2箇所に設けられている。詳しくは後述するが、この切欠き25Bを利用して、マグネットホルダ25の正面側からの磁石21の脱着が可能になっている。 The rail 250 is a groove-shaped space formed by opposingly arranging a pair of engaging portions 25A having a cross-sectional hook shape. The length of the rail 250 substantially matches the length of the magnet 21 in the longitudinal direction. In each engaging portion 25A, notches 25B which do not have a cross-sectional hook shape are provided at two places in the longitudinal direction. As will be described in detail later, the magnet 21 can be detached from the front side of the magnet holder 25 by using the notch 25B.
 レール250の両側には、円板部252が円弧状をなして外側に張り出す周縁部25Cが形成されている。回転台であるマグネットホルダ25は、この周縁部25Cがホルダガイド23の係合部23Bに係合する状態で回転可能である。
 円板部252は、レール250の長手方向両側の開口部に当たる外周部分が直線的に切り落とされて不完全な円形状をなしている(図4参照。)。約90度回転させた状態のマグネットホルダ25であれば、一対の係合部23Bの間隙を通過でき、これにより、ホルダガイド23の正面側からマグネットホルダ25の脱着が可能になる。
On both sides of the rail 250, peripheral portions 25C in which the disc portion 252 has an arc shape and protrudes outward are formed. The magnet holder 25 which is a rotating table is rotatable in a state where the peripheral portion 25C is engaged with the engaging portion 23B of the holder guide 23.
In the disc portion 252, the outer peripheral portion corresponding to the opening on both sides in the longitudinal direction of the rail 250 is cut off linearly to form an incomplete circular shape (see FIG. 4). If the magnet holder 25 is rotated about 90 degrees, it can pass through the gap between the pair of engaging portions 23B, which makes it possible to detach the magnet holder 25 from the front side of the holder guide 23.
 磁石21(図3、図4、図6)は、直方体形状の本体21Bに対して、非磁性材料よりなるカバー210を被せたものである。図3~図5に示す磁石21の外形状は、このカバー210の外形状である。磁石21では、本体21Bの露出面である下面が、磁気センサIC201の検出面201Sに対面する。なお、図6では、磁石21の外形状であるカバー210の外形状を細線の破線により示している。 The magnet 21 (FIG. 3, FIG. 4, FIG. 6) is a rectangular parallelepiped main body 21B covered with a cover 210 made of a nonmagnetic material. The outer shape of the magnet 21 shown in FIGS. 3 to 5 is the outer shape of the cover 210. In the magnet 21, the lower surface which is an exposed surface of the main body 21B faces the detection surface 201S of the magnetic sensor IC 201. In FIG. 6, the outer shape of the cover 210, which is the outer shape of the magnet 21, is indicated by a thin broken line.
 以下、カバー210を含む磁石21の形状的な構成について主に図3、図4を参照して説明し、続いて本体21Bの磁気的な構成を図6を参照して説明する。
 磁石21(図3、図4)では、マグネットホルダ25の係合部25Aに進退可能に係合するスライダ217が両側面に設けられている。また、磁石21の上面には、一対のガイド壁218と、軸状の作用ピン213と、が磁石21の長手方向の両端側に立設されている。
Hereinafter, the configuration of the magnet 21 including the cover 210 will be mainly described with reference to FIGS. 3 and 4, and then the magnetic configuration of the main body 21B will be described with reference to FIG.
In the magnet 21 (FIG. 3, FIG. 4), the slider 217 engaged with the engaging portion 25A of the magnet holder 25 so as to be capable of advancing and retracting is provided on both side surfaces. Further, on the top surface of the magnet 21, a pair of guide walls 218 and a shaft-like action pin 213 are provided upright at both ends in the longitudinal direction of the magnet 21.
 スライダ217(図3、図4)は、磁石21の下面と面一をなすよう、磁石21の側面から張り出して形成されている。磁石21の長手方向に沿って延設されたスライダ217は、マグネットホルダ25の係合部25Aに係合し、レール250に沿う磁石21の進退を可能にする。なお、スライダ217には、その長手方向の2箇所に切欠きが設けられている。この切欠きは、マグネットホルダ25の係合部25Aの切欠き25Bに対応して設けられ、マグネットホルダ25の正面側からの磁石21の脱着を可能にする。 The slider 217 (FIGS. 3 and 4) is formed to project from the side surface of the magnet 21 so as to be flush with the lower surface of the magnet 21. The slider 217 extended along the longitudinal direction of the magnet 21 engages with the engaging portion 25 A of the magnet holder 25 to allow the magnet 21 to advance and retract along the rail 250. The slider 217 is provided with notches at two locations in its longitudinal direction. The notch is provided corresponding to the notch 25B of the engaging portion 25A of the magnet holder 25 and enables the magnet 21 to be detached from the front side of the magnet holder 25.
 作用ピン213(図3、図4)は、磁石21を長手方向に進退駆動するための力が作用するピンである。この作用ピン213は、先端に球状部213Sが設けられている。作用ピン213の先端の球状部213Sは、前記従動部材17の駆動スリット17Sに収容される。なお、上記のごとく、駆動スリット17Sは、基板2側に開口すると共に、シフト方向に沿うスリット状の空間である。作用ピン213の球状部213Sの直径は、駆動スリット17Sに収容され得る程度に、そのスリット幅と略一致している。 The action pin 213 (FIG. 3, FIG. 4) is a pin on which a force acts to drive the magnet 21 in the longitudinal direction. The action pin 213 has a spherical portion 213S at its tip. The spherical portion 213S at the tip end of the action pin 213 is accommodated in the drive slit 17S of the driven member 17. As described above, the drive slit 17S is a slit-like space that opens in the side of the substrate 2 and is along the shift direction. The diameter of the spherical portion 213S of the action pin 213 is substantially the same as the slit width to the extent that it can be accommodated in the drive slit 17S.
 ガイド壁218(図3、図4)は、磁石21の長手方向に平行をなすように立設された壁である。一対のガイド壁218の壁面218Sは、間隙を空けて互いに対面するように設けられ、スリット状の空間であるガイド溝214を形成している。このガイド溝214には、駆動ピン17Pの先端の球状部171が収容される。ガイド溝214の溝幅は、駆動ピン17Pの球状部171を収容できる程度に、その直径と略一致している。 The guide wall 218 (FIG. 3, FIG. 4) is a wall provided to be parallel to the longitudinal direction of the magnet 21. The wall surfaces 218S of the pair of guide walls 218 are provided to face each other with a gap therebetween, and form a guide groove 214 which is a slit-like space. In the guide groove 214, a spherical portion 171 at the tip of the drive pin 17P is accommodated. The groove width of the guide groove 214 is substantially the same as the diameter of the guide groove 214 so as to accommodate the spherical portion 171 of the drive pin 17P.
 次に、磁石21の本体21Bの構成について図6を参照して説明する。図6(a)は、本体21Bを上面側から見込む斜視図であり、図6(b)は、本体21Bを下面側から見込む斜視図である。なお、同図中の細線の破線は、磁石21の外形状(カバー210の外形状)を示している。 Next, the configuration of the main body 21B of the magnet 21 will be described with reference to FIG. FIG. 6A is a perspective view in which the main body 21B is viewed from the upper surface side, and FIG. 6B is a perspective view in which the main body 21B is viewed from the lower surface side. The broken line in the figure indicates the outer shape of the magnet 21 (the outer shape of the cover 210).
 本体21Bは、磁極対をなすN極とS極とを対面させたブロック状の磁石21H、M、Lを3つ並べた直方体形状の磁石である。3つの磁石21H、M、Lのうち、両端の2つの磁石21H、LはN極が面する側(図6(b)で図示される下面側)が同じである一方、中央の磁石21Mは裏返されて他の2つの磁石21H、LのN極が面する側にS極が面している。 The main body 21B is a rectangular parallelepiped magnet in which three block-shaped magnets 21H, M, and L in which an N pole and an S pole forming a magnetic pole pair face each other are arranged. Of the three magnets 21H, M, and L, the two magnets 21H and L at both ends have the same side facing the N pole (the lower surface illustrated in FIG. 6B), while the central magnet 21M is The S pole is turned to the side where the N poles of the other two magnets 21 H and L face each other.
 この本体21Bでは、各磁石21H、M、Lの磁極対によってN極とS極とが対面する方向の磁界が形成されるのに加えて、磁石21H、M、Lのうちの異なる2つに属して隣接するN極とS極との組み合わせによる磁極対によっても磁界が形成される。このような磁極対には、磁石21HのN極と磁石21MのS極との組み合わせによる磁極対215Aと、磁石21MのS極と磁石21LのN極との組み合わせによる磁極対215Bと、が含まれている。 In the main body 21B, in addition to the magnetic field of the direction in which the N pole and the S pole face each other is formed by the magnetic pole pairs of the magnets 21H, M, L, two different magnets 21H, M, L A magnetic field is also formed by a magnetic pole pair which belongs to a combination of adjacent N and S poles. Such a magnetic pole pair includes a magnetic pole pair 215A by a combination of the north pole of the magnet 21H and a south pole of the magnet 21M, and a pole pair 215B by a combination of the south pole of the magnet 21M and the north pole of the magnet 21L. It is done.
 磁極対215A・B(図6(b))は、磁石21Hと磁石21Mと磁石21Lとが隣り合う方向、すなわち直方体形状の本体21B(磁石21)の長手方向に沿う磁界を形成する。ここで、本体21Bにカバー210を被せた磁石21は、上記の通り、基板2に対面するマグネットホルダ25のレール250に収容されている。磁石21は、その長手方向が基板2の表面に沿う状態で保持されている。そのため、磁極対215A・Bが形成する磁界は、基板2の表面に沿う方向に磁気を作用することになる。 The magnetic pole pairs 215A · B (FIG. 6B) form a magnetic field along the direction in which the magnet 21H, the magnet 21M, and the magnet 21L are adjacent, that is, the longitudinal direction of the rectangular parallelepiped main body 21B (magnet 21). Here, the magnet 21 in which the cover 210 is placed on the main body 21B is accommodated in the rail 250 of the magnet holder 25 facing the substrate 2 as described above. The magnet 21 is held with its longitudinal direction along the surface of the substrate 2. Therefore, the magnetic field formed by the magnetic pole pairs 215A and B exerts magnetism in the direction along the surface of the substrate 2.
 なお、以下の説明では、磁石21の長手方向においてガイド壁218側に配置された磁石21Lのうち基板2に面するN極を第2N極212Nといい、磁石21の長手方向において作用ピン213側に配置された磁石21Hのうち基板2に面するN極を第1N極211Nという。また、中央の磁石21Mのうち基板2に面するS極をS極21Sという。 In the following description, the N pole facing the substrate 2 among the magnets 21L arranged on the guide wall 218 side in the longitudinal direction of the magnet 21 is referred to as the second N pole 212N, and the action pin 213 side in the longitudinal direction of the magnet 21. The N pole facing the substrate 2 among the magnets 21H arranged in the above is called a first N pole 211N. Further, the S pole facing the substrate 2 among the central magnets 21M is referred to as the S pole 21S.
 また、磁極対215Aにおける第1N極211NとS極21Sとの境目を第1境界B1といい、磁極対215Bにおける第2N極212NとS極21Sとの境目を第2境界B2という。本例の構成では、磁石21Hの第1N極211N、磁石21MのS極21S、磁石21Lの第2N極212Nにより形成される本体21Bの表面が、カバー210によって覆われずに磁石21の下面として露出している(図6(b))。 The boundary between the first N pole 211N and the S pole 21S in the magnetic pole pair 215A is referred to as a first boundary B1, and the boundary between the second N pole 212N and the S pole 21S in the magnetic pole pair 215B is referred to as a second boundary B2. In the configuration of the present example, the surface of the main body 21B formed by the first N pole 211N of the magnet 21H, the S pole 21S of the magnet 21M, and the second N pole 212N of the magnet 21L is not covered by the cover 210 and serves as the lower surface of the magnet 21. It is exposed (FIG. 6 (b)).
 次に、シフトレバー11が初期位置であるHポジションにあるときの各部品の配置や姿勢を説明し、続いてシフト位置の具体的な検出方法について説明する。
(1)Hポジション時の各部品の配置・姿勢について
 本例のシフト装置1では、図1~図5を参照して示した通り、従動部材17の下側に、磁石21を進退可能に保持するマグネットホルダ25が位置している。そして、マグネットホルダ25では、長手方向がほぼセレクト方向に沿う姿勢で磁石21が保持されている。詳細には、Hポジション、Nポジションのとき、磁石21の長手方向がセレクト方向に一致し、Bポジション、Dポジション、Rポジションのときは、磁石21の回転によりその長手方向がセレクト方向からずれる。
Next, the arrangement and posture of each part when the shift lever 11 is at the H position, which is the initial position, will be described, and then a specific method of detecting the shift position will be described.
(1) Arrangement and posture of each part at H position In the shift device 1 of this example, as shown with reference to FIGS. 1 to 5, the magnet 21 is held below the driven member 17 so as to be able to advance and retract. Magnet holder 25 is positioned. In the magnet holder 25, the magnet 21 is held in a posture in which the longitudinal direction substantially follows the selection direction. Specifically, when the H position and the N position, the longitudinal direction of the magnet 21 coincides with the select direction, and when the B position, the D position, and the R position, the longitudinal direction deviates from the select direction due to the rotation of the magnet 21.
 シフトレバー11と従動部材17とは、シフトアーム116の円柱状の駆動部116Cがシフト受け部176に収容されると共に、セレクトアーム117の球状の駆動部117Sがセレクト受け部177に収容された状態で、連結されている。上記のごとく、シフトアーム116の円柱状の駆動部116Cは、セレクト方向に沿う円柱状をなしている。シフト受け部176は、セレクト方向に沿うスリットである。また、セレクトアーム117は、シフト方向に沿う軸状をなしている。セレクト受け部177は、シフト方向に沿うスリットである。 In the shift lever 11 and the driven member 17, the cylindrical drive portion 116C of the shift arm 116 is accommodated in the shift receiving portion 176, and the spherical drive portion 117S of the select arm 117 is accommodated in the select receiving portion 177. And are linked. As described above, the cylindrical drive portion 116C of the shift arm 116 has a cylindrical shape along the select direction. The shift receiving portion 176 is a slit along the selection direction. Further, the select arm 117 has an axial shape along the shift direction. The select receiving portion 177 is a slit along the shift direction.
 なお、シフト受け部176及びセレクト受け部177は、いずれも、シフト方向及びセレクト方向に対して直交する高さ方向に長く形成されている。それ故、シフト受け部176及びセレクト受け部177は、シフトアーム116の円柱状の駆動部116C、セレクトアーム117の球状の駆動部117Sの高さ方向の変位を吸収可能である。 The shift receiving portion 176 and the select receiving portion 177 are both formed long in the height direction orthogonal to the shift direction and the select direction. Therefore, the shift receiving portion 176 and the select receiving portion 177 can absorb the displacement in the height direction of the cylindrical drive portion 116C of the shift arm 116 and the spherical drive portion 117S of the select arm 117.
 また、従動部材17と磁石21とは、駆動ピン17Pの球状部171がガイド溝214に収容されると共に、駆動スリット17Sが作用ピン213の球状部213Sを収容する状態で、連結されている。上記のごとく、ガイド溝214は、磁石21の長手方向のスリットである。駆動スリット17Sは、シフト方向に沿うスリットである。 The driven member 17 and the magnet 21 are connected such that the spherical portion 171 of the drive pin 17P is accommodated in the guide groove 214 and the drive slit 17S accommodates the spherical portion 213S of the action pin 213. As described above, the guide groove 214 is a slit in the longitudinal direction of the magnet 21. The drive slit 17S is a slit along the shift direction.
 シフト装置1では、従動部材17の球状部171(駆動ピン17P)が壁面218S(ガイド壁218)に当接する箇所が、マグネットホルダ25の回転中心からずれて位置している。全てのシフト位置において、壁面218Sに対する球状部171の当接箇所は、マグネットホルダ25の回転中心に対して図8中の左下方にずれて位置している。 In the shift device 1, the portion where the spherical portion 171 (drive pin 17 P) of the driven member 17 abuts on the wall surface 218 S (guide wall 218) is positioned off the rotation center of the magnet holder 25. In all the shift positions, the contact point of the spherical portion 171 with the wall surface 218S is offset downward and to the left in FIG. 8 with respect to the rotation center of the magnet holder 25.
 シフトレバー11がHポジションにあるとき(図8)、磁石21がセレクト方向に沿うと共に、マグネットホルダ25のレール250に磁石21が完全に近く収容された状態となっている。このとき、磁気センサIC201の検出面201Sに対して、磁石21の第2境界B2が対面する状態にある。検出面201Sには、第2N極212NからS極21Sに向かう磁気が作用する。 When the shift lever 11 is in the H position (FIG. 8), the magnet 21 is in the select direction, and the magnet 21 is accommodated almost completely in the rail 250 of the magnet holder 25. At this time, the second boundary B2 of the magnet 21 faces the detection surface 201S of the magnetic sensor IC 201. The magnetism from the second north pole 212N to the south pole 21S acts on the detection surface 201S.
 ここで、シフト方向にシフトレバー11が操作された時の動き、及びセレクト方向にシフトレバー11が操作された時の動きについて、図7を参照して説明する。同図では、シフト位置毎のシフトレバー11の上面図及び側面図を示すことで、シフトレバー11の操作に応じたシフトアーム116、セレクトアーム117の姿勢変化を示している。なお、同図中の破線で囲む上面図は、いずれかのシフト位置から隣り合うシフト位置に移行するときの動きを説明するためのイメージ図である。側面図では、同図中の左右方向が鉛直方向に対応し、同図中の左側ほど高く、右側ほど低くなっている。 Here, the movement when the shift lever 11 is operated in the shift direction and the movement when the shift lever 11 is operated in the select direction will be described with reference to FIG. In the same figure, by showing a top view and a side view of the shift lever 11 for each shift position, posture change of the shift arm 116 and the select arm 117 according to the operation of the shift lever 11 is shown. Note that the top view enclosed by the broken line in the figure is an image diagram for explaining the movement when shifting from one of the shift positions to the adjacent shift position. In the side view, the left and right direction in the figure corresponds to the vertical direction, and the higher the left side in the figure, the lower the right side.
 なお、シフトレバー11では、回動中心となる球状部110を介してシフトノブ111の反対側にレバー基部11Bが設けられている。このレバー基部11Bは、操作部をなすシフトノブ111の変位方向とは逆向きに回動する。例えば、シフトレバー11がシフト方向手前側に操作されると、レバー基部11Bはシフト方向奥側に回動する。また、例えば、シフトレバー11がセレクト方向右側に操作されると、レバー基部11Bはセレクト方向左側に回動する。 In the shift lever 11, a lever base 11 </ b> B is provided on the opposite side of the shift knob 111 via the spherical portion 110 which is the rotation center. The lever base portion 11B pivots in the direction opposite to the displacement direction of the shift knob 111 forming the operation portion. For example, when the shift lever 11 is operated to the near side in the shift direction, the lever base 11B pivots to the far side in the shift direction. Also, for example, when the shift lever 11 is operated to the right in the selection direction, the lever base 11B pivots to the left in the selection direction.
・シフト方向の操作時
 シフトレバー11がHポジションあるいはNポジションにあるとき、シフトアーム116の先端の円柱状の駆動部116Cと、球状部110と、を結ぶ線分Lが先端下がりの状態にある(図7、側面図(H、N))。ここで、先端下がりとは、回転中心の球状部110に対して先端の駆動部116Cの位置が低くなっている状態を意味している。HポジションあるいはNポジションのときの線分Lの先端下がりの状態を起点として、シフトレバー11がシフト方向手前側に操作されると(図7、矢印SH1)、線分Lが回動して先端下がりの度合いが強まる(図7、側面図(B、D))。そうすると、シフト方向における球状部110の中心と駆動部116Cとの距離Dが短くなり、円柱状の駆動部116Cがシフト方向奥側に変位する(同矢印MH1)。
When operating the shift direction When the shift lever 11 is at the H position or the N position, a line segment L connecting the cylindrical drive portion 116C at the tip of the shift arm 116 and the spherical portion 110 is in the tip-down state (FIG. 7, side view (H, N)). Here, tip-down means that the position of the drive portion 116C at the tip is lower than the spherical portion 110 at the rotation center. When the shift lever 11 is operated to the near side in the shift direction starting from the state where the tip of the line segment L is lowered at the H position or the N position (FIG. 7, arrow SH1), the line segment L rotates and the tip The degree of the fall is intensified (FIG. 7, side views (B, D)). Then, the distance D between the center of the spherical portion 110 and the drive portion 116C in the shift direction becomes short, and the cylindrical drive portion 116C is displaced to the rear side in the shift direction (the arrow MH1).
 シフトアーム116の円柱状の駆動部116Cは、上記のごとく、セレクト方向に沿うスリットであるシフト受け部176に収容されている。駆動部116Cがシフト方向奥側に変位したとき(図7中矢印MH1)、上端の球状軸受17Eを利用して支持された従動部材17がシフト方向奥側に回動する。このような従動部材17のシフト方向奥側への回動動作は、シフトレバー11がシフト方向手前側に操作されたとき(図7中SH1)に生じるレバー基部11Bのシフト方向奥側への回動動作と同様である。 As described above, the cylindrical drive portion 116C of the shift arm 116 is accommodated in the shift receiving portion 176 which is a slit along the select direction. When the drive portion 116C is displaced to the rear side in the shift direction (arrow MH1 in FIG. 7), the driven member 17 supported by using the spherical bearing 17E at the upper end pivots to the rear side in the shift direction. Such rotational movement of the driven member 17 to the rear side in the shift direction is performed by rotating the lever base 11B to the rear side in the shift direction, which occurs when the shift lever 11 is operated to the front side in the shift direction (SH1 in FIG. 7). It is similar to the movement operation.
 一方、シフトレバー11が、Nポジションからシフト方向奥側のRポジションに操作されると(図7、矢印SH2)、線分Lの回動により先端下がりの度合いが弱くなり、線分Lが水平に近づく。そうすると、シフト方向における球状部110の中心と駆動部116Cとの距離Dが長くなり、円柱状の駆動部116Cがシフト方向手前側に変位する(同矢印MH2)。これにより、従動部材17は、レバー基部11Bと同様、シフト方向手前側に回動する。 On the other hand, when the shift lever 11 is operated from the N position to the R position on the rear side in the shift direction (arrow SH2 in FIG. 7), the turning of the line segment L weakens the degree of tip lowering, and the line segment L becomes horizontal Approach to Then, the distance D between the center of the spherical portion 110 and the drive portion 116C in the shift direction becomes longer, and the cylindrical drive portion 116C is displaced to the front side in the shift direction (the arrow MH2). Thereby, the driven member 17 is pivoted to the near side in the shift direction, similarly to the lever base 11B.
・セレクト方向の操作時
 シフトレバー11がセレクト方向に操作されたとき、セレクトアーム117の球状の駆動部117Sは、レバー基部11Bと共にセレクト方向の逆向きに変位する。Hポジションを起点として、シフトレバー11がNポジションに向けて操作されると(図7、矢印SL1)、セレクトアーム117の球状の駆動部117Sは、セレクト方向における左側に変位する(同矢印ML1)。
· Operation in Select Direction When the shift lever 11 is operated in the select direction, the spherical drive portion 117S of the select arm 117 is displaced in the reverse direction of the select direction together with the lever base 11B. When the shift lever 11 is operated toward the N position starting from the H position (FIG. 7, arrow SL1), the spherical drive portion 117S of the select arm 117 is displaced to the left in the select direction (the arrow ML1). .
 上記のごとく、セレクトアーム117の球状の駆動部117Sは、シフト方向に沿うスリットであるセレクト受け部177に収容されている。球状の駆動部117Sがセレクト方向における左側(図7中矢印ML1)に変位すると、上端の球状軸受17Eを利用して支持された従動部材17がセレクト方向における同じ側に回動する。この従動部材17の回動動作は、シフトレバー11がHポジションからNポジションに向けて操作されたとき(図7、矢印SL1)に生じるレバー基部11Bの回動動作と同様である。 As described above, the spherical drive portion 117S of the select arm 117 is accommodated in the select receiving portion 177 which is a slit along the shift direction. When the spherical drive portion 117S is displaced to the left side (arrow ML1 in FIG. 7) in the select direction, the driven member 17 supported using the spherical bearing 17E at the upper end pivots to the same side in the select direction. The pivoting operation of the driven member 17 is similar to the pivoting operation of the lever base 11B that occurs when the shift lever 11 is operated from the H position to the N position (arrow SL1 in FIG. 7).
 また、Nポジションを起点としてシフトレバー11がHポジションに向けて(図7中の左側)操作されると、セレクト方向の球状の駆動部117Sは、セレクト方向における逆向き(図7中の右側)に変位する。そうすると、従動部材17が、レバー基部11Bと同様、セレクト方向における逆向き(図7中の右側)に回動する。 Further, when the shift lever 11 is operated toward the H position (left side in FIG. 7) starting from the N position, the spherical drive portion 117S in the selection direction is reversed in the select direction (right side in FIG. 7) Displace. Then, the driven member 17 pivots in the opposite direction (right side in FIG. 7) in the select direction, as in the case of the lever base 11B.
 以上の通り、上端の球状軸受17Eを利用して支持された従動部材17は、シフトレバー11のレバー基部11Bと同様の回動動作を実現する。従動部材17の回動動作は、レバー基部11Bの回動動作の複製とも言える。本例のシフト装置1では、シフトレバー11の操作に伴うレバー基部11Bの回動動作が、従動部材17の回動動作に変換されている。そして、ポジションチェンジャーとして作用する従動部材17によって、回動動作のエリアが位置的に変更されている。 As described above, the driven member 17 supported by using the spherical bearing 17E at the upper end realizes the same rotation operation as the lever base 11B of the shift lever 11. The pivoting operation of the driven member 17 can be said to be a duplicate of the pivoting operation of the lever base 11B. In the shift device 1 of this example, the pivoting operation of the lever base 11B accompanying the operation of the shift lever 11 is converted into the pivoting operation of the driven member 17. The area of the rotational movement is changed in position by the driven member 17 acting as a position changer.
 本例のシフト装置1では、第1の駆動部の一例をなすシフトアーム116とシフト受け部176との組合せ、及び第2の駆動部の一例をなすセレクトアーム117とセレクト受け部177との組合せ、を介在して、シフトレバー11と従動部材17とが連結されている。詳しくは後述するが、シフトアーム116は、シフト方向に沿ってシフトノブ111(シフトレバー11)が操作されたとき、磁気センサIC201に相対する磁石21の回転変位により、磁気センサIC201に作用する磁気の作用方向が変化するように従動部材17を駆動する。セレクトアーム117は、セレクト方向に沿ってシフトノブ111(シフトレバー11)が操作されたとき、磁気センサIC201に相対する磁石21の進退変位により、磁気センサIC201に作用する磁気の作用方向が変化するように従動部材17を駆動する。 In the shift device 1 of this example, a combination of the shift arm 116 and the shift receiving portion 176 which are an example of a first drive portion, and a combination of a select arm 117 and a select receiving portion 177 which is an example of a second drive portion. , And the shift lever 11 and the driven member 17 are connected. As will be described in detail later, when the shift knob 111 (shift lever 11) is operated along the shift direction, the shift arm 116 acts on the magnetic sensor IC 201 by the rotational displacement of the magnet 21 relative to the magnetic sensor IC 201. The driven member 17 is driven to change the action direction. In the select arm 117, when the shift knob 111 (shift lever 11) is operated along the select direction, the action direction of the magnetism acting on the magnetic sensor IC 201 is changed by the forward / backward displacement of the magnet 21 relative to the magnetic sensor IC 201. The driven member 17 is driven.
(2)シフト位置の検出方法
 次に、図8及び図9を参照しながらシフト位置の検出方法を説明する。図8は、各ポジションにおける磁石21の回転位置及び進退位置を示している。図9は、各ポジションにおける磁石21と検出面201Sとの位置関係を示している。なお、図8中のポジション毎に付記された平行四辺形は、基板2に面する磁石21の下面形状を表し、この平行四辺形の内側に重ねて示す小さな太枠の平行四辺形は、磁気センサIC201の検出面201Sを表している。磁石21の下面形状を表す平行四辺形と、検出面201Sを表す太枠の平行四辺形と、の図8中の相対的な位置関係を、わかり易く正面視に書き換えたものが図9である。
(2) Method of Detecting Shift Position Next, a method of detecting the shift position will be described with reference to FIGS. 8 and 9. FIG. 8 shows the rotational position and the advancing and retreating position of the magnet 21 at each position. FIG. 9 shows the positional relationship between the magnet 21 and the detection surface 201S at each position. The parallelogram attached to each position in FIG. 8 represents the shape of the lower surface of the magnet 21 facing the substrate 2, and the parallelogram of a small thick frame shown on the inside of the parallelogram is a magnetic symbol. The detection surface 201S of the sensor IC 201 is shown. It is FIG. 9 that the relative positional relationship in FIG. 8 of the parallelogram representing the lower surface shape of the magnet 21 and the parallelogram of a thick frame representing the detection surface 201S is easily understood in a front view.
 図8の通り、Hポジションのとき、磁石21がセレクト方向に沿うと共に、マグネットホルダ25のレール250に磁石21が完全に近く収容された状態となる。このとき、磁気センサIC201の検出面201Sは、磁石21の第2境界B2に対面する状態にある。検出面201Sには、図9に示すように、第2N極212NからS極21Sに至る磁気、つまり同図中の上方に向かう磁気が作用する。 As shown in FIG. 8, at the H position, the magnet 21 is in the select direction, and the magnet 21 is completely close to the rail 250 of the magnet holder 25. At this time, the detection surface 201S of the magnetic sensor IC 201 is in a state of facing the second boundary B2 of the magnet 21. As shown in FIG. 9, the magnetism from the second N pole 212N to the S pole 21S, that is, the magnetism directed upward in the figure acts on the detection surface 201S.
 Hポジションを起点としてシフトレバー11が(運転者側から見て)シフト方向手前側のBポジションに操作されると、上記のようにシフトアーム116の先端側の駆動部116Cがシフト方向奥側(図7中の矢印MH1)に変位し、これにより従動部材17がシフト方向奥側に回動変位する。 When the shift lever 11 is operated to the B position on the near side in the shift direction (as viewed from the driver side) starting from the H position, the drive portion 116C on the tip side of the shift arm 116 is on the far side in the shift direction As a result, the driven member 17 is pivotally displaced to the rear side in the shift direction.
 従動部材17がシフト方向奥側に回動変位すると、従動部材17の下側に設けられてガイド溝214に収容された駆動ピン17Pがシフト方向奥側に変位する(図8中の矢印CH1)。そうすると、駆動ピン17Pの球状部171がガイド壁218の壁面218Sに押し当たり、壁面218Sに対して当接荷重を作用する。壁面218Sに対する球状部171の当接箇所は、マグネットホルダ25の回転中心から偏心して位置している。そのため、駆動ピン17Pの球状部171の当接荷重は、マグネットホルダ25に作用する回転モーメントに変換される。マグネットホルダ25は、この回転モーメントにより図8中の時計回りP1に回転する。 When the driven member 17 is rotationally displaced to the rear side in the shift direction, the drive pin 17P provided on the lower side of the driven member 17 and accommodated in the guide groove 214 is displaced to the rear side in the shift direction (arrow CH1 in FIG. 8). . Then, the spherical portion 171 of the drive pin 17P is pressed against the wall surface 218S of the guide wall 218, and a contact load is applied to the wall surface 218S. The contact point of the spherical portion 171 with the wall surface 218S is eccentrically located from the rotation center of the magnet holder 25. Therefore, the contact load of the spherical portion 171 of the drive pin 17P is converted into a rotational moment acting on the magnet holder 25. The magnet holder 25 is rotated clockwise in FIG. 8 by this rotational moment.
 マグネットホルダ25の図8中の時計回りP1の回転と共に、磁石21の長手方向が時計回りに回転する。図9では、この回転により磁石21の長手方向が傾くように変位している。このとき、磁石21の進退は生じないので、検出面201Sに対して磁石21の第2境界B2が対面する状態を維持しつつ、第2N極212NからS極21Sに至る磁界の向きが回転する。これにより検出面201Sにおける磁気の作用方向が変化する。このような磁気の作用方向の変化を検出することで、HポジションからBポジションへのシフトレバー11のシフト方向の操作を検出可能である。 Along with the rotation of the magnet holder 25 in the clockwise direction P1 in FIG. 8, the longitudinal direction of the magnet 21 rotates clockwise. In FIG. 9, the longitudinal direction of the magnet 21 is displaced so as to be inclined by this rotation. At this time, since the magnet 21 does not move forward or backward, the direction of the magnetic field from the second N pole 212N to the S pole 21S is rotated while maintaining the second boundary B2 of the magnet 21 facing the detection surface 201S. . As a result, the action direction of the magnetism on the detection surface 201S changes. By detecting such a change in the acting direction of the magnetism, it is possible to detect the operation of the shift lever 11 in the shift direction from the H position to the B position.
 また、Hポジションを起点としてシフトレバー11がNポジションに向けてセレクト方向に操作されると、セレクトアーム117の先端の球状の駆動部117Sがセレクト方向の逆側に変位する(図7中の矢印ML1)。このセレクトアーム117の球状の駆動部117Sは、シフト方向のスリットであるセレクト受け部177に収容されている。そのため、上記のセレクト方向のシフト操作に応じて、従動部材17は、セレクト方向Hポジション側に回動する。 Also, when the shift lever 11 is operated in the select direction toward the N position starting from the H position, the spherical drive portion 117S at the tip of the select arm 117 is displaced to the opposite side of the select direction (arrow in FIG. 7 ML1). The spherical drive portion 117S of the select arm 117 is accommodated in a select receiving portion 177 which is a slit in the shift direction. Therefore, in accordance with the shift operation in the select direction, the driven member 17 pivots to the select direction H position side.
 従動部材17がセレクト方向Hポジション側に変位すると、従動部材17の下端部に設けられた駆動スリット17Sがセレクト方向に変位する(図8中の矢印CL1)。この駆動スリット17Sは、シフト方向に沿って延設されている。この駆動スリット17Sがセレクト方向に並進すると、駆動スリット17Sに収容された作用ピン213のセレクト方向の変位を生じる。上記のごとく、Hポジション、Nポジションのとき、磁石21の長手方向はセレクト方向に沿っている。そのため、作用ピン213がセレクト方向に変位すれば、磁石21が長手方向に前進する(図8中の矢印K1)。 When the driven member 17 is displaced in the select direction H position side, the drive slit 17S provided at the lower end of the driven member 17 is displaced in the select direction (arrow CL1 in FIG. 8). The drive slit 17S is extended along the shift direction. When the drive slit 17S translates in the select direction, displacement of the action pin 213 accommodated in the drive slit 17S occurs in the select direction. As described above, at the H position and the N position, the longitudinal direction of the magnet 21 is along the select direction. Therefore, if the action pin 213 is displaced in the select direction, the magnet 21 advances in the longitudinal direction (arrow K1 in FIG. 8).
 このように磁石21が長手方向に前進すると、磁気センサIC201の検出面201Sに対面する磁石21の部位が、第2境界B2から第1境界B1に切り替わる(図9)。この結果、検出面201Sにおける磁気の作用方向は、第2N極212NからS極21Sに至る方向(図9中の上向き)から、第1N極211NからS極21Sに至る方向(図9中の下向き)に反転する。このような磁気の作用方向の反転を検出すれば、HポジションからNポジションへのセレクト方向の操作を検出できる。 When the magnet 21 advances in the longitudinal direction in this manner, the portion of the magnet 21 facing the detection surface 201S of the magnetic sensor IC 201 switches from the second boundary B2 to the first boundary B1 (FIG. 9). As a result, the action direction of the magnetism on the detection surface 201S is from the direction from the second N pole 212N to the S pole 21S (upward in FIG. 9) to the direction from the first N pole 211N to the S pole 21S (downward in FIG. Invert to). If such reversal of the direction of action of magnetism is detected, it is possible to detect the operation in the select direction from the H position to the N position.
 さらに、NポジションからDポジションにシフトレバー11が操作されると、上記したHポジションからBポジションへの操作の場合と同様、マグネットホルダ25の時計回りP1の回転が生じ、磁石21の長手方向が回転する。このとき、検出面201Sが磁石21の第1境界B1と対面する状態を維持したまま、第1N極211NからS極21Sに至る磁界が回転し、これによって検出面201Sにおける磁気の作用方向が変化する(図9)。このような磁気の作用方向を検出すれば、NポジションからDポジションへのシフト方向の操作を検出できる。 Furthermore, when the shift lever 11 is operated from the N position to the D position, the magnet holder 25 rotates clockwise P1 as in the case of the operation from the H position to the B position described above, and the longitudinal direction of the magnet 21 is Rotate. At this time, while maintaining the state in which the detection surface 201S faces the first boundary B1 of the magnet 21, the magnetic field from the first N pole 211N to the S pole 21S rotates, thereby changing the action direction of the magnetism in the detection surface 201S. (Fig. 9). If such an action direction of the magnetism is detected, it is possible to detect an operation in the shift direction from the N position to the D position.
 シフトレバー11がNポジションからRポジションに操作されたときには、従動部材17の下側に設けられてガイド溝214に収容された駆動ピン17Pがシフト方向手前側に変位する(図8中の矢印CH2)。そうすると、駆動ピン17Pの球状部171がガイド壁218の壁面218Sに押し当たって、マグネットホルダ25の反時計回りP2(図8)の回転が生じる。この回転により、NポジションからDポジションへの操作の場合とは逆向きに磁石21が回転する。このとき、磁気センサIC201の検出面201Sが第1境界B1と対面した状態を維持したまま、第1N極211NからS極21Sに至る磁界が回転し、検出面201Sにおける磁気の作用方向が変化する(図9)。このような磁気の作用方向の変化を検出すれば、NポジションからRポジションへのシフト方向の操作を検出できる。 When the shift lever 11 is operated from the N position to the R position, the drive pin 17P provided below the driven member 17 and accommodated in the guide groove 214 is displaced toward the near side in the shift direction (arrow CH2 in FIG. 8). ). Then, the spherical portion 171 of the drive pin 17P pushes against the wall surface 218S of the guide wall 218, causing the magnet holder 25 to rotate counterclockwise P2 (FIG. 8). By this rotation, the magnet 21 rotates in the opposite direction to the case of the operation from the N position to the D position. At this time, with the detection surface 201S of the magnetic sensor IC 201 facing the first boundary B1, the magnetic field from the first N pole 211N to the S pole 21S rotates, and the action direction of the magnetism in the detection surface 201S changes. (Figure 9). By detecting such a change in the direction of action of the magnetism, it is possible to detect an operation in the shift direction from the N position to the R position.
 以上のような構成のシフト装置1では、HポジションからBポジション、あるいはNポジションからRポジションまたはDポジションに至るシフト方向の操作が行われたとき、シフトレバー11に従動して従動部材17がシフト方向に回動する。これにより磁石21が回転駆動されて、検出面201Sにおける磁気の作用方向が変化する。 In the shift device 1 configured as described above, when an operation in the shift direction from the H position to the B position or from the N position to the R position or the D position is performed, the driven member 17 is shifted following the shift lever 11 Rotate in the direction. Thereby, the magnet 21 is rotationally driven, and the action direction of the magnetism in the detection surface 201S changes.
 HポジションとNポジションとの間のセレクト方向の操作が行われたときには、シフトレバー11に従動して従動部材17がセレクト方向に回動する。これにより磁石21が進退駆動されて、磁気センサIC201に磁界を作用する磁極対が切り替わって検出面201Sにおける磁気の作用方向が反転する。 When an operation in the select direction between the H position and the N position is performed, the driven member 17 is rotated in the select direction following the shift lever 11. As a result, the magnet 21 is driven to move back and forth, and the magnetic pole pair that exerts a magnetic field on the magnetic sensor IC 201 is switched to reverse the action direction of the magnetism on the detection surface 201S.
 このように本例のシフト装置1によれば、1つの磁気センサIC201に対する磁気の作用方向を検出することで、互いに直交するシフト方向及びセレクト方向に沿う2次元的なシフトレバー11の操作を検出可能である。したがって、本例のシフト装置1では、従来の構成とは異なり、複数の磁気センサICを2次元的に配置するために大きな設置スペースを確保する必要がなくなり、コンパクト設計が容易になっている。 As described above, according to the shift device 1 of this example, by detecting the action direction of magnetism on one magnetic sensor IC 201, the operation of the two-dimensional shift lever 11 along the shift direction and the select direction orthogonal to each other is detected. It is possible. Therefore, in the shift device 1 of this example, unlike the conventional configuration, it is not necessary to secure a large installation space for arranging a plurality of magnetic sensor ICs in a two-dimensional manner, and compact design is facilitated.
 特に、シフト装置1は、シフトレバー11の回動動作を従動部材17の回動動作に複製し、従動部材17が磁石21を変位させるという構成を有している。このシフト装置1では、シフトレバー11に対して隣り合う位置に基板2を配置する必要がない。ポジションチェンジャーとしての役割を有する従動部材17に対して隣り合う位置に基板2を配置すれば良い。それ故、このシフト装置1では、磁石21を含む基板2を配置する際の設計自由度が高くなっており、一層のコンパクト設計が容易である。 In particular, the shift device 1 has a configuration in which the rotation operation of the shift lever 11 is copied to the rotation operation of the driven member 17, and the driven member 17 displaces the magnet 21. In the shift device 1, there is no need to dispose the substrate 2 at a position adjacent to the shift lever 11. The substrate 2 may be disposed adjacent to the driven member 17 having a role as a position changer. Therefore, in this shift device 1, the degree of freedom in design when arranging the substrate 2 including the magnet 21 is high, and a more compact design is easy.
 なお、本例の構成では、シフトレバー11の操作に応じて磁石21を変位させている。これに代えて、磁石21を基板等に固定する一方、シフトレバー11の操作に応じて磁気センサが変位する構成を採用しても良い。さらに、シフトレバー11に従動して磁石21及び磁気センサIC201の両方が変位し、両者間の相対的な位置関係が変化するように構成しても良い。 In the configuration of this example, the magnet 21 is displaced according to the operation of the shift lever 11. Instead of this, the magnet 21 may be fixed to the substrate or the like, and the magnetic sensor may be displaced according to the operation of the shift lever 11. Furthermore, both the magnet 21 and the magnetic sensor IC 201 may be displaced following the shift lever 11 so that the relative positional relationship between the two may change.
 本例は、互いに交わるシフト方向、セレクト方向にシフトレバー11を操作可能なシフト装置1の例である。一方向にのみ直線的にシフトレバー11を操作可能なシフト装置であっても良い。
 本例では、シフト方向の操作に応じてシフトアーム116が従動部材17をシフト方向に回動させ、磁石21を回転変位させる一方、セレクト方向の操作に応じてセレクトアーム117が従動部材17をセレクト方向に回動させ、磁石21を進退変位させる構成を説明している。この構成に代えて、シフト方向の操作のとき、シフトアーム116を介して磁石21が進退変位する一方、セレクト方向の操作のとき、セレクトアーム117を介して磁石21が回転変位する構成であっても良い。
This example is an example of the shift device 1 capable of operating the shift lever 11 in the shift direction and the select direction which intersect each other. It may be a shift device capable of operating the shift lever 11 linearly only in one direction.
In this example, the shift arm 116 rotates the driven member 17 in the shift direction according to the operation in the shift direction, and rotationally displaces the magnet 21, while the select arm 117 selects the driven member 17 according to the operation in the select direction. The configuration in which the magnet 21 is moved forward and backward by rotating in the direction is described. Instead of this configuration, during operation in the shift direction, the magnet 21 is displaced forward and backward via the shift arm 116, while when operated in the select direction, the magnet 21 is rotationally displaced via the select arm 117. Also good.
 本例では、シフトアーム116の円柱状の駆動部116Cが、対面する一対の壁面176Sにより挟まれる構造により磁石21が駆動される構成を例示している。球状軸受17Eで支持された従動部材17は回動動作のほか、自転が可能である。一対の壁面176Sが対面するスリット状のシフト受け部176と、円柱状の駆動部116Cと、の組合せの構造によれば、円柱状の駆動部116Cの軸方向を一対の壁面176Sに沿うように規制できる。換言すると、この構造によれば、円柱状の駆動部116Cの軸方向が、壁面176Sに対して角度を持つような従動部材17の自転を規制できる。従動部材17の自転を規制すれば、シフトレバー11の回動に伴う従動部材17の回動動作の精度を向上できる。なお、第2の駆動部の一例をなすセレクトアーム117とセレクト受け部177との組合せにおいても、球状の駆動部117Sに代わる柱状の駆動部が一対の壁面により挟まれる構造を採用しても良い。また、円柱状の駆動部116Cに代えて、角柱状あるいは短冊平板状の駆動部を採用することも良い。この場合には、中間レバー部116Mが角柱状等の駆動部を回転可能に軸支する構造を採用すると良い。 In this example, the configuration in which the magnet 21 is driven by a structure in which the cylindrical drive portion 116C of the shift arm 116 is sandwiched by the pair of facing wall surfaces 176S is illustrated. The driven member 17 supported by the spherical bearing 17E is capable of rotating in addition to rotational movement. According to the combined structure of the slit-shaped shift receiving portion 176 facing the pair of wall surfaces 176S and the columnar drive portion 116C, the axial direction of the columnar drive portion 116C is along the pair of wall surfaces 176S It can regulate. In other words, according to this structure, the rotation of the driven member 17 can be restricted such that the axial direction of the cylindrical drive portion 116C makes an angle with the wall surface 176S. If the rotation of the driven member 17 is restricted, the accuracy of the rotation operation of the driven member 17 accompanying the rotation of the shift lever 11 can be improved. Even in the combination of the select arm 117 and the select receiving portion 177 which are an example of the second drive portion, a structure may be adopted in which a columnar drive portion replacing the spherical drive portion 117S is sandwiched by a pair of wall surfaces. . Further, instead of the cylindrical drive part 116C, a prismatic or rectangular flat drive part may be adopted. In this case, it is preferable to employ a structure in which the intermediate lever portion 116M rotatably supports a prism-like drive portion or the like.
 なお、本例では、基板2に面して、中央にS極21Sが位置すると共に、両側にN極211N、212Nが位置するように磁石21を構成している。これに代えて、両側にS極が位置し、中央にN極が位置するような磁石を採用しても良い。また、3つの磁石21H、M、Lが並列配置された磁石21に代えて、図10のごとく、S極を内側にして対向配置された2つの磁石21A・Bの組み合わせよりなる磁石21を採用しても良い。この場合、磁石21A及び21BのN極とS極との組み合わせが、磁気センサIC201に磁気を作用する磁極対となる。Hポジションが属するシフト方向の列にシフトノブ111が操作されているときと、Nポジションが属するシフト方向の列にシフトノブ111が操作されているときと、で磁気センサIC201が対面する磁石21A、Bが切り替わるように構成すると良い。例えば、プラスチックマグネットを着磁することで、2つの磁石21A・Bが一体化された磁石21を形成できる。あるいは、例えば、この2つの磁石21A・Bの周りに溶融状態の樹脂材料を流し込み硬化させるインサート成形により、2つの磁石21A・Bが一体化された磁石21を形成することも良い。これら2つの磁石21A・Bについては、S極を内側にして対向配置するのに代えて、図11のように、磁界の向きが異なるように配置しても良い。さらに、磁界の向きが異なる磁石を3つ以上並べて配置して磁石21を形成しても良い。この場合には、例えば3列以上のシフト方向の各列に沿ってシフトノブを操作するシフト装置にも対応できるようになる。3列以上のシフト方向を含む2次元的なシフトノブの操作を、たった1つの磁気センサICによって検出できる。 In this example, the magnet 21 is configured so that the south pole 21S is positioned at the center facing the substrate 2 and the north poles 211N and 212N are positioned on both sides. Instead of this, a magnet may be employed in which the S pole is located on both sides and the N pole is located at the center. Further, instead of the magnet 21 in which the three magnets 21H, M, L are arranged in parallel, as shown in FIG. 10, the magnet 21 made of a combination of two magnets 21A and B facing each other with the S pole inside is adopted. You may. In this case, the combination of the N pole and the S pole of the magnets 21A and 21B is a magnetic pole pair that exerts magnetism on the magnetic sensor IC 201. When the shift knob 111 is operated in the shift direction row to which the H position belongs, and when the shift knob 111 is operated in the shift direction row to which the N position belongs, the magnets 21A, B facing the magnetic sensor IC 201 are It is good to be configured to switch. For example, by magnetizing a plastic magnet, the magnet 21 in which the two magnets 21A and B are integrated can be formed. Alternatively, for example, the magnet 21 in which the two magnets 21A and B are integrated may be formed by insert molding in which a molten resin material is poured and cured around the two magnets 21A and B. These two magnets 21A and 21B may be arranged such that the directions of the magnetic fields are different as shown in FIG. 11 instead of facing each other with the south pole facing inward. Furthermore, the magnets 21 may be formed by arranging three or more magnets having different magnetic field orientations. In this case, for example, it is possible to cope with a shift device that operates the shift knob along each row in the shift direction of three or more rows. The operation of the two-dimensional shift knob including three or more shift directions can be detected by only one magnetic sensor IC.
 本例では、直交する2方向に作用する磁気を検出可能な2軸の磁気センサを採用しているが、これに代えて、互いに直交する3方向に作用する磁気を検出可能な3軸の磁気センサを採用することも良い。シフト装置1では、上記のごとく、シフトノブ111がセレクト方向に操作されると、磁気センサの検出面201Sに対して磁石21の第2境界B2が対面する状態から第1境界B1が対面する状態に切り替わり、これにより、検出面201Sにおける磁気の作用方向が180度回転する。このような切り替わりの途中では、検出面201Sに対して磁石21のS極21Sが対面する状態が生じ、この状態では、検出面201Sに対して直交する方向の磁気が作用する。そこで、検出面201Sにおける磁気の作用方向の180度回転を検出でき、かつ、180度回転の途中で、検出面201Sに対して直交する作用方向の磁気を検出できたとき、セレクト方向の操作を検出するように構成しても良い。この場合には、セレクト方向の操作を一層確実性高く検出できる。 In this example, a two-axis magnetic sensor capable of detecting magnetism acting in two orthogonal directions is employed, but instead, a three-axis magnetic sensor capable of detecting magnetism acting in three mutually orthogonal directions is used instead It is also good to adopt a sensor. In the shift device 1, as described above, when the shift knob 111 is operated in the select direction, the first boundary B1 faces the state where the second boundary B2 of the magnet 21 faces the detection surface 201S of the magnetic sensor. The direction of action of the magnetism on the detection surface 201S is rotated by 180 degrees. In the middle of such switching, a state occurs in which the south pole 21S of the magnet 21 faces the detection surface 201S. In this state, magnetism in a direction orthogonal to the detection surface 201S acts. Therefore, when the 180 degree rotation of the acting direction of the magnetism on the detection surface 201S can be detected, and the magnetism in the acting direction orthogonal to the detection surface 201S can be detected during the 180 degree rotation, the operation in the select direction is performed. It may be configured to detect. In this case, the operation in the selection direction can be detected with higher reliability.
(実施例2)
 本例は、実施例1のシフト装置に基づき、検出信頼性を高めたシフト装置の例である。この内容について図1、図2、図12を参照して説明する。同図は、実施例1における図9に対応する図である。
 本例のシフト装置では、磁石21及び磁気センサICの配置構成が実施例1とは相違している。磁石21は、磁気センサICに面して、2箇所のN極と2箇所のS極とが長手方向に交互に配置されるように4つの磁石を組み合わせたものである。この磁石21では、磁気センサIC側の下面において、図12中の上から順番に、N極、S極、N極、S極が配置され、これにより、3対の磁極対215A、B、Cが形成されている。この磁石21では、磁極のスパンS2に一致する間隔で、磁極の境目をなす境界B1(磁極対215Aの境界)、境界B2(磁極対215Bの境界)、及び境界B3(磁極対215Cの境界)が形成されている。
(Example 2)
This example is an example of a shift device in which detection reliability is enhanced based on the shift device of the first embodiment. This content will be described with reference to FIG. 1, FIG. 2, and FIG. The figure is a figure corresponding to FIG. 9 in the first embodiment.
In the shift device of this example, the arrangement configuration of the magnet 21 and the magnetic sensor IC is different from that of the first embodiment. The magnet 21 is a combination of four magnets such that two N poles and two S poles are alternately arranged in the longitudinal direction facing the magnetic sensor IC. In this magnet 21, an N pole, an S pole, an N pole, and an S pole are arranged in order from the top in FIG. 12 on the lower surface of the magnetic sensor IC side, thereby three pole pairs 215A, B, C Is formed. In this magnet 21, the boundary B1 (the boundary of the magnetic pole pair 215A), the boundary B2 (the boundary of the magnetic pole pair 215B), and the boundary B3 (the boundary of the magnetic pole pair 215C) which form the boundary of the magnetic pole at intervals corresponding to the span S2 of the magnetic pole. Is formed.
 この磁石21に対面する基板(図示略)では、2個の磁気センサICが間隔を空けて配置され、2箇所の検出面201A・Bが形成されている。2個の磁気センサICは、磁石21における磁極の間隔をなすスパンS2に対して、検出面201A・BのスパンS1が略一致するように配置されている。 On a substrate (not shown) facing the magnet 21, two magnetic sensor ICs are arranged at an interval, and two detection surfaces 201A and 201B are formed. The two magnetic sensor ICs are arranged such that the spans S1 of the detection surfaces 201A and 201B substantially coincide with the span S2 forming the space between the magnetic poles of the magnet 21.
 シフトノブ111がHポジションにあるとき、検出面201Aが磁極の境界B2に対面し、検出面201Bが境界B3に対面する状態にある。例えば、このHポジションを起点としてシフトノブ111がシフト方向手前側のBポジションに操作されると、シフトレバー11に従動して磁石21が回転する。この場合、検出面201A・Bが境界B2・B3に対面する状態を維持しつつ磁石21が傾いて磁界の向きが回転し、これにより検出面201A・Bにおける磁気の作用方向が変化する。 When the shift knob 111 is in the H position, the detection surface 201A faces the boundary B2 of the magnetic pole, and the detection surface 201B faces the boundary B3. For example, when the shift knob 111 is operated to the B position on the near side in the shift direction starting from the H position, the magnet 21 rotates following the shift lever 11. In this case, the magnet 21 is inclined and the direction of the magnetic field is rotated while maintaining the state in which the detection surfaces 201A and B face the boundaries B2 and B3, whereby the action direction of the magnetism on the detection surfaces 201A and B changes.
 また例えば、Hポジションを起点としてシフトノブ111がセレクト方向のNポジションに操作されると、シフトレバー11により磁石21が駆動されて図12中の下方に移動する。この場合、検出面201Aに対して境界B2が対面する状態から境界B1が対面する状態に切り替わると共に、検出面201Bに対して境界B3が対面する状態から境界B2が対面する状態に切り替わる。境界B1とB2、境界B2とB3、では、磁界の向きが逆であるため、Nポジションへの操作に応じて、検出面201A・Bにおける磁気の作用方向が反転する。 For example, when the shift knob 111 is operated to the N position in the selection direction starting from the H position, the magnet 21 is driven by the shift lever 11 to move downward in FIG. In this case, the state in which the boundary B2 faces the detection surface 201A is switched to the state in which the boundary B1 faces, and the state in which the boundary B3 faces the detection surface 201B is switched to the state in which the boundary B2 faces. At the boundaries B1 and B2 and the boundaries B2 and B3, since the direction of the magnetic field is opposite, the action direction of the magnetism on the detection surfaces 201A and B is reversed according to the operation to the N position.
 本例のシフト装置1によれば、検出面201A・Bを有する2つの磁気センサICを利用してシフトノブ111の操作位置を検出するため、検出の信頼性、確実性を向上できる。
 なお、本例では、いずれかのポジションにシフトノブ111が操作されたとき、検出面201A・Bが異なる境界に対面する状態となるように構成している。この構成に代えて、いずれかのポジションにシフトノブ111が操作されたとき、一方の検出面のみがいずれかの境界に対面する状態となるように構成しても良い。
 なお、その他の構成及び作用効果については実施例1と同様である。
According to the shift device 1 of this example, the operation position of the shift knob 111 is detected using the two magnetic sensor ICs having the detection surfaces 201A and B, so that the reliability and reliability of detection can be improved.
In this example, when the shift knob 111 is operated to any position, the detection surfaces 201A and B are configured to face different boundaries. Instead of this configuration, when the shift knob 111 is operated to any position, only one of the detection surfaces may face any boundary.
The other configurations and operational effects are the same as in the first embodiment.
 以上、実施例のごとく本発明の具体例を詳細に説明したが、これらの具体例は、特許請求の範囲に包含される技術の一例を開示しているにすぎない。言うまでもなく、具体例の構成や数値等によって、特許請求の範囲が限定的に解釈されるべきではない。特許請求の範囲は、公知技術や当業者の知識等を利用して前記具体例を多様に変形、変更あるいは適宜組み合わせた技術を包含している。 Although the specific examples of the present invention have been described in detail as in the examples, the specific examples only disclose an example of the technology included in the claims. It goes without saying that the scope of the claims should not be interpreted limitedly by the configuration, numerical values and the like of the specific example. The claims encompass variously modified, changed or appropriately combined techniques using the known techniques and the knowledge of those skilled in the art.
 1 シフト装置
 11 シフトレバー(操作レバー)
 110 球状部
 111 シフトノブ(操作部)
 116 シフトアーム(第1の駆動部)
 116C 駆動部(柱状の部材)
 117 セレクトアーム(第2の駆動部)
 13 筐体
 15 球状軸受
 17 従動部材
 17E 球状軸受
 17P 駆動ピン
 176 シフト受け部(第1の駆動部)
 176S 壁面
 177 セレクト受け部(第2の駆動部)
 2 基板
 201 磁気センサIC(磁気センサ)
 201S 検出面
 21 磁石
 215A~C 磁極対
 23 ホルダガイド
 25 マグネットホルダ(回転台)
 250 レール
1 Shift device 11 Shift lever (operation lever)
110 spherical part 111 shift knob (operation part)
116 shift arm (first drive unit)
116C Drive part (column-shaped member)
117 Select arm (second drive unit)
13 housing 15 spherical bearing 17 driven member 17E spherical bearing 17P drive pin 176 shift receiving part (first drive part)
176S wall surface 177 select receiving unit (second drive unit)
2 Substrate 201 Magnetic Sensor IC (Magnetic Sensor)
201S Detection surface 21 Magnet 215A to C Magnetic pole pair 23 Holder guide 25 Magnet holder (rotary table)
250 rails

Claims (4)

  1.  外部から作用する磁気のうち、少なくとも、予め定められた検出面に沿う成分の作用方向を検出する磁気センサと、該磁気センサに磁気を作用する磁石と、の組合せを含む車両用のシフト装置であって、
     車両を運転する者による操作を受け付ける操作部と、
     該操作部が設けられていると共に該操作部に対する操作に応じて回動可能に支持された操作レバーと、
     前記操作レバーの回動動作に従動して回動変位する従動部材と、を有し、
     該従動部材は、前記操作レバーの回動変位に対応する回動変位を可能にする支持構造により支持されていると共に、
     前記操作部に対する操作に応じて前記磁気センサに作用する磁気の作用方向が変化するように該磁気センサ及び該磁石のうちのいずれか一方を駆動するシフト装置。
    A shift device for a vehicle including a combination of a magnetic sensor that detects the action direction of at least a component along a predetermined detection surface among magnetism acting from the outside, and a magnet that exerts magnetism on the magnetic sensor. There,
    An operation unit that receives an operation by a driver of the vehicle;
    An operating lever provided with the operating portion and rotatably supported in response to an operation on the operating portion;
    And a driven member that is rotationally displaced following the pivotal movement of the operation lever.
    The driven member is supported by a support structure that enables a rotational displacement corresponding to the rotational displacement of the operating lever.
    A shift device for driving any one of the magnetic sensor and the magnet such that the action direction of the magnetism acting on the magnetic sensor changes according to the operation on the operation unit.
  2.  請求項1において、前記操作部は、互いに直交するシフト方向及びセレクト方向に沿って操作可能であって、
     前記磁石は、N極とS極との組み合わせよりなると共に前記検出面における磁気の作用方向が異なる磁極対を少なくとも2対含んでおり、
     前記操作レバーと前記従動部材とは、前記シフト方向及び前記セレクト方向のうちの一方の方向に沿って前記操作部が操作されたとき、前記磁気センサに相対する前記磁石の回転変位により、前記磁石に属するいずれか一の磁極対から前記磁気センサに作用する磁気の作用方向が変化するように該従動部材を駆動する第1の駆動部、及び
     前記シフト方向及び前記セレクト方向のうちの他方の方向に沿って前記操作部が操作されたとき、前記磁気センサに磁気を作用する磁極対の切替を伴う前記磁気センサに相対する前記磁石の進退により、前記磁気センサに作用する磁気の作用方向が変化するように該従動部材を駆動する第2の駆動部、を介在して連結されているシフト装置。
    In Claim 1, the said operation part is operable along the shift direction and selection direction which mutually orthogonally cross,
    The magnet includes a combination of an N pole and an S pole, and includes at least two pairs of magnetic poles having different acting directions of magnetism on the detection surface,
    When the operation portion is operated along one of the shift direction and the select direction, the operation lever and the driven member move the magnet by rotational displacement of the magnet relative to the magnetic sensor. A first drive unit for driving the driven member so that the action direction of the magnetism acting on the magnetic sensor from any one of the magnetic pole pairs belonging to the first and second directions among the shift direction and the select direction When the operation unit is operated along, the action direction of the magnetism acting on the magnetic sensor changes due to the movement of the magnet relative to the magnetic sensor accompanied by the switching of the magnetic pole pair which exerts magnetism on the magnetic sensor And a second drive unit for driving the driven member.
  3.  請求項2において、前記従動部材は、球状軸受により支持されており、前記第1の駆動部及び前記第2の駆動部のうちの少なくともいずれか一方は、略平行をなして対面する一対の壁面が柱状の部材を挟み、該柱状の部材の軸方向を該壁面に沿うように規制する構造を有するシフト装置。 In Claim 2, the driven member is supported by a spherical bearing, and at least one of the first drive unit and the second drive unit is a pair of wall surfaces facing each other in a substantially parallel manner. A shift device having a structure in which a columnar member is sandwiched and the axial direction of the columnar member is regulated along the wall surface.
  4.  請求項2または3において、前記検出面に対面する状態で回転可能な回転台を含み、該回転台は、前記検出面に沿って進退可能に前記磁石を保持しているシフト装置。 The shift device according to claim 2 or 3, further comprising: a rotatable table which is rotatable in a state of facing the detection surface, and the rotatable table holds the magnet so as to be able to advance and retract along the detection surface.
PCT/JP2018/044447 2018-01-16 2018-12-03 Shift device WO2019142522A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019565750A JP6985424B2 (en) 2018-01-16 2018-12-03 Shift device
CN201880086016.5A CN111565960B (en) 2018-01-16 2018-12-03 Gear shifting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-004781 2018-01-16
JP2018004781 2018-01-16
JP2018-116781 2018-06-20
JP2018116781 2018-06-20

Publications (1)

Publication Number Publication Date
WO2019142522A1 true WO2019142522A1 (en) 2019-07-25

Family

ID=67301005

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/044446 WO2019142521A1 (en) 2018-01-16 2018-12-03 Shift device
PCT/JP2018/044447 WO2019142522A1 (en) 2018-01-16 2018-12-03 Shift device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044446 WO2019142521A1 (en) 2018-01-16 2018-12-03 Shift device

Country Status (3)

Country Link
JP (2) JP6853900B2 (en)
CN (2) CN111565960B (en)
WO (2) WO2019142521A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008311A1 (en) * 2021-07-30 2023-02-02 ミネベアミツミ株式会社 Shift device
WO2023008312A1 (en) * 2021-07-30 2023-02-02 ミネベアミツミ株式会社 Shift device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014052281A (en) * 2012-09-07 2014-03-20 Tokai Rika Co Ltd Biaxial position sensor and shift position sensor including the same
US20170191561A1 (en) * 2016-01-04 2017-07-06 Dura Operating, Llc Shift detection system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057627Y2 (en) * 1988-08-30 1993-02-25
JP2000250649A (en) * 1999-02-26 2000-09-14 Aisin Seiki Co Ltd Controlling device for movable body
US7621198B2 (en) * 2003-08-22 2009-11-24 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Shift lever device
JP2005306276A (en) * 2004-04-23 2005-11-04 Tokai Rika Co Ltd Two-way rotational movement detecting device and shift lever device
JP2005332156A (en) * 2004-05-19 2005-12-02 Alps Electric Co Ltd Force sense giving type input device
JP4886606B2 (en) * 2007-06-07 2012-02-29 本田技研工業株式会社 Lever device
CN101614275A (en) * 2008-06-24 2009-12-30 F·波尔希名誉工学博士公司 The shift lever apparatus that automotive transmission is used
JP5427057B2 (en) * 2010-02-09 2014-02-26 パナソニック株式会社 Connecting structure of sensor device and detection object
US10234023B2 (en) * 2010-05-20 2019-03-19 Sl Corporation Apparatus for electronically controllable transmission
JP6062332B2 (en) * 2013-08-28 2017-01-18 本田技研工業株式会社 Rotation angle detector
JP2017083195A (en) * 2015-10-23 2017-05-18 株式会社東海理化電機製作所 Position sensor
JP6688161B2 (en) * 2016-06-07 2020-04-28 株式会社ユーシン Shift position detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014052281A (en) * 2012-09-07 2014-03-20 Tokai Rika Co Ltd Biaxial position sensor and shift position sensor including the same
US20170191561A1 (en) * 2016-01-04 2017-07-06 Dura Operating, Llc Shift detection system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008311A1 (en) * 2021-07-30 2023-02-02 ミネベアミツミ株式会社 Shift device
WO2023008312A1 (en) * 2021-07-30 2023-02-02 ミネベアミツミ株式会社 Shift device

Also Published As

Publication number Publication date
CN111565960B (en) 2023-05-23
JPWO2019142521A1 (en) 2021-01-07
CN111587189B (en) 2023-01-17
JP6853900B2 (en) 2021-03-31
WO2019142521A1 (en) 2019-07-25
JPWO2019142522A1 (en) 2021-01-07
CN111587189A (en) 2020-08-25
JP6985424B2 (en) 2021-12-22
CN111565960A (en) 2020-08-21

Similar Documents

Publication Publication Date Title
JP4800762B2 (en) Shift selector
JP4806647B2 (en) Lever operating position determination device for transmission operating lever
US10234023B2 (en) Apparatus for electronically controllable transmission
JP4629591B2 (en) Shift device
JP4886606B2 (en) Lever device
WO2019142522A1 (en) Shift device
JP5021602B2 (en) Operation position detection device and shift operation position detection device
JP2019089540A (en) Shifter assembly
KR101116934B1 (en) Vehicular transmission range switching device
WO2019142519A1 (en) Shift device
KR20100083981A (en) Vehicular transmission range switching device
JP2012046046A (en) Shift lever device
WO2019142520A1 (en) Input device
KR101110316B1 (en) Vehicular ransmission range switching device
JP5080394B2 (en) Lever switch device
JP4921398B2 (en) Operation position detecting device and shift device
JP2008037297A (en) Column shift device
KR20100083983A (en) Vehicular transmission range switching device
JP2023155011A (en) shift device
JP2004175195A (en) Change lever unit
JP2019086309A (en) Rotation angle detector
JP2009295301A (en) Composite switch lever device and structure of magnetic detection unit of the same
JPH06191311A (en) Parking range detector switch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019565750

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901320

Country of ref document: EP

Kind code of ref document: A1