WO2019142377A1 - 変換器およびアンテナ装置 - Google Patents

変換器およびアンテナ装置 Download PDF

Info

Publication number
WO2019142377A1
WO2019142377A1 PCT/JP2018/027973 JP2018027973W WO2019142377A1 WO 2019142377 A1 WO2019142377 A1 WO 2019142377A1 JP 2018027973 W JP2018027973 W JP 2018027973W WO 2019142377 A1 WO2019142377 A1 WO 2019142377A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
converter
conductor
waveguide
dielectric substrate
Prior art date
Application number
PCT/JP2018/027973
Other languages
English (en)
French (fr)
Inventor
凌 上田
優 牛嶋
石橋 秀則
丸山 貴史
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019565695A priority Critical patent/JP6687303B2/ja
Priority to DE112018006410.7T priority patent/DE112018006410T5/de
Publication of WO2019142377A1 publication Critical patent/WO2019142377A1/ja
Priority to US16/927,041 priority patent/US11387534B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/081Microstriplines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/121Hollow waveguides integrated in a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • the present invention relates to a converter for mutually converting a signal propagating in a waveguide and a signal propagating in a planar circuit, and an antenna device provided with the same.
  • a converter which mutually converts a signal propagating in a waveguide and a signal propagating in a planar circuit.
  • a transducer connecting a waveguide and a microstrip line propagates a signal from the waveguide to the microstrip line or propagates a signal from the microstrip line to the waveguide.
  • Such a converter is widely used in an antenna device for transmitting a high frequency signal in the microwave band or the millimeter wave band.
  • Patent Document 1 describes a converter including a waveguide and a multilayer substrate including a dielectric substrate and a conductor substrate.
  • a ground plate is provided on the side of the multilayer substrate to which the waveguides are connected, and a conductor pattern is formed on the side opposite to the ground plate.
  • a part of the ground plate is open, and an annular conductor pattern is formed in the inner layer of the multilayer substrate so as to surround the open portion.
  • a conventional converter generally prevents a radio wave from leaking by forming a large number of through holes electrically connecting a conductor pattern provided on the front surface of a dielectric substrate and a ground conductor provided on the back surface.
  • radio wave leakage can be prevented without forming a through hole by forming an annular conductor pattern functioning as a choke.
  • a conductor pattern having a pattern width of an odd multiple of a quarter wavelength of the in-tube wavelength is formed from the end of the opening portion so as to surround the opening portion of the ground plate.
  • the conductor pattern having a length of a quarter wavelength of the in-tube wavelength remains from immediately above the waveguide. Since the tip of the conductor pattern is open, unnecessary radio waves are emitted from the open end.
  • This invention solves the said subject, and it aims at obtaining a small converter which can suppress the unnecessary radiation of an electromagnetic wave, and an antenna apparatus provided with the same.
  • the transducer according to the invention comprises a waveguide, a dielectric substrate, a conductor pattern, a ground conductor, and one or more slots.
  • One end of the waveguide is connected to the back side of the dielectric substrate.
  • the conductor pattern is provided on the front surface of the dielectric substrate, has a signal input / output terminal at one end, and has an electrically open portion electrically open at the other end.
  • the ground conductor is provided on the back of the dielectric substrate.
  • the slot is provided in an area covered by one end of the waveguide in the ground conductor. In this configuration, a portion of the conductor pattern is located directly above one end of the waveguide through the dielectric substrate, and the electrical opening is an annular pattern.
  • Patent Document 1 discloses that the annular pattern electrical open portion is provided at one end of the conductor pattern located directly above the one end of the waveguide through the dielectric substrate. A smaller converter can be realized without the need to provide the described choke structure. Furthermore, since the electrical opening portion has an annular pattern, radio wave leakage can be prevented even without the choke. This makes it possible to reduce the size and unnecessary radiation of radio waves.
  • FIG. 2 is a cross-sectional arrow view showing a cross-section of the converter according to Embodiment 1 taken along line AA of FIG. 1;
  • FIG. 2 is a perspective view showing a waveguide in the first embodiment.
  • FIG. 5 is a plan view showing a conductor pattern in the first embodiment.
  • FIG. 5 is a plan view showing a ground conductor having a rectangular slot in the first embodiment.
  • FIG. 10 is a plan view showing a ground conductor having an H-shaped slot in the first embodiment. It is a graph which shows the electromagnetic field analysis result of the unnecessary radiation characteristic of a converter.
  • FIG. 14 is a plan view showing the front of the converter according to Embodiment 3.
  • FIG. 16 is a plan view showing the front of a modification of the converter in accordance with the third embodiment.
  • FIG. 21 is a plan view showing the front of another modified example of the converter according to the third embodiment.
  • FIG. 16 is a graph showing the results of electromagnetic field analysis of unwanted radiation characteristics of the converter according to Embodiment 2 and the converter according to Embodiment 3.
  • FIG. 1 is a top view showing a configuration of a converter 1 in accordance with Embodiment 1 of the present invention.
  • FIG. 2 is a cross sectional arrow view showing a cross section of the converter 1 taken along the line AA of FIG.
  • the x-, y- and z-axes shown in the figure are three axes orthogonal to each other, and the direction parallel to the x-axis is the x-axis direction, the direction parallel to the y-axis is the y-axis direction, the direction parallel to the z-axis In the z-axis direction.
  • the arrow direction is referred to as the plus x direction, and the direction opposite to the plus x direction is referred to as the minus x direction.
  • the arrow direction is referred to as the plus y direction, and the direction opposite to the plus y direction is referred to as the minus y direction.
  • the arrow direction is referred to as the plus z direction, and the direction opposite to the plus z direction is referred to as the minus z direction.
  • the rotation angle from the x axis to the y axis around the z axis is ⁇
  • the rotation angle from the z axis to the x axis around the y axis is ⁇ .
  • the converter 1 mutually converts the signal propagating in the waveguide 2 and the signal propagating in the planar circuit including the conductor pattern 4. As shown in FIGS. 1 and 2, the converter 1 is configured to include a waveguide 2, a dielectric substrate 3, a conductor pattern 4, a slot 5 and a ground conductor 6.
  • the waveguide 2 is a hollow waveguide whose one end is connected to the dielectric substrate 3.
  • the waveguide 2 is connected to the back surface, and the conductor pattern 4 is formed on the front surface.
  • the dielectric substrate 3 is a flat member made of a resin material.
  • the dielectric substrate 3 may be a single layer substrate, but may be a multilayer dielectric substrate in which a plurality of dielectric substrates and a conductor substrate are stacked.
  • the conductor pattern 4 is a strip-like pattern in which the input / output terminal 4 b is provided at one end and the electrically open portion 4 a is provided at the other end.
  • the conductor pattern 4 is formed, for example, by pressing a conductive metal foil (such as copper foil) on the front surface of the dielectric substrate 3 and patterning the metal foil.
  • the conductor pattern 4 may be formed by attaching a patterned metal plate to the front surface of the dielectric substrate 3. Further, a signal is input / output to the input / output terminal 4b.
  • the electrical opening 4a is an annular conductor pattern and is electrically open.
  • a portion of the conductor pattern 4 is located directly above one end of the waveguide 2 through the dielectric substrate 3 as shown in FIG.
  • the ground conductor 6 is formed on the entire surface.
  • a slot 5 is provided in a region of the ground conductor 6 covered by one end of the waveguide 2.
  • a portion of the conductor pattern 4 is located directly above the slot 5 via the dielectric substrate 3.
  • the conductor pattern 4 provided on the front surface of the dielectric substrate 3 constitutes a microstrip line together with the ground conductor 6.
  • the conductor pattern 4 may constitute one of a strip line, a coplanar line and a coplanar line with a ground conductor together with the ground conductor 6.
  • FIG. 3 is a perspective view showing the waveguide 2.
  • the waveguide 2 is a hollow metal tube having a metal tube wall.
  • the xy cross section of the waveguide 2 is a rectangle having a long side parallel to the y axis and a short side parallel to the x axis, as shown by a broken line in FIG.
  • the waveguide 2 is joined to the ground conductor 6 at the opening edge b shown in FIG. 2 and electrically shorted.
  • the waveguide 2 has an arbitrary configuration.
  • the waveguide 2 may be filled with a dielectric in a tube.
  • the waveguide 2 may have a tube wall in which a plurality of through holes are formed instead of a metal tube wall, and the tube may be filled with a dielectric.
  • the waveguide 2 may have a shape having a curvature at a rectangular corner which is an xy cross section, or may be a ridge type waveguide.
  • the position at which the electrical opening portion 4a is formed is from the position a immediately above the waveguide 2 through the dielectric substrate 3, in the negative x direction, an integer of 0 times or more than a half wavelength of the in-tube wavelength. It is located twice as far away.
  • the position a is a position directly above the opening center of the waveguide 2 through the dielectric substrate 3. In the example of FIG. 1, from the position a just above the waveguide 2 through the dielectric substrate 3, it is separated from the position x on the negative x side (the side facing the input / output terminal 4b) by zero times the half wavelength of the in-tube wavelength.
  • Position, i.e. the electrical opening 4a is formed from the position a.
  • the electrically open portion 4a is an annular pattern having a total circumference which is a natural number one or more times a half wavelength of the in-tube wavelength.
  • the electrically open portion 4a has an annular pattern, and since there is no open end portion, unnecessary radiation of radio waves can be suppressed.
  • the slot end portion from the slot end to an odd multiple of the quarter wavelength of the guide wavelength is used to suppress unnecessary radio wave leakage without forming a large number of through holes.
  • An annular conductor pattern having a pattern width is provided as a choke.
  • the converter 1 which concerns on Embodiment 1 does not need the cyclic
  • the conductor pattern 4 has no portion surrounding the slot 5, and the dimension in the y-axis direction is reduced as compared with the converter described in Patent Document 1. Thereby, converter 1 can be miniaturized compared with the above-mentioned conventional converter.
  • the electrically open portion 4a is an annular pattern of an equilateral triangle having a bent portion 4a-1 and a bent portion 4a-2.
  • the triangle is an annulus whose entire circumference is a half of the in-tube wavelength, that is, one side is a half wavelength of the in-tube wavelength.
  • the bending portion 4a-1 and the bending portion 4a-2 are formed by bending the conductor pattern at a position of a half wavelength of the wavelength in the pipe.
  • the electrically open portion 4a formed into a triangular ring pattern is an example, and may be a square or more polygonal ring pattern, or may be a smooth curved ring pattern. Furthermore, in FIG. 1, a part of the pattern width of the electrically open portion 4a is so-called tapered, in which the pattern width decreases from the position a toward the bent portions 4a-1 and 4a-2.
  • the pattern width of the target open part 4a is arbitrary.
  • FIG. 4 is a plan view showing the conductor pattern 4.
  • the conductor pattern 4 has a stub 4c, a converter 4d and impedance transformers 4e to 4g in addition to the electrically open portion 4a and the input / output terminal 4b.
  • the stub 4c and the impedance transformation parts 4e to 4g function as a matching element that adjusts the impedance of the stub 4c and the impedance of the waveguide 2, that is, performs reflection matching.
  • the stub 4c is a pattern of a conductor extending in the plus y direction and the minus y direction of the conversion part 4d, and is provided immediately above the slot 5 via the dielectric substrate 3 as shown in FIG.
  • the length of the stub 4c linearly extended from the conversion portion 4d in the plus y direction and the minus y direction corresponds to a quarter wavelength of the in-tube wavelength.
  • the tip of the stub 4c is open.
  • the converter 4 d and the impedance transformers 4 e to 4 g have characteristic impedances corresponding to the pattern width.
  • Conversion unit 4d has a characteristic impedance Z 4d corresponding to the pattern width
  • the impedance transformer unit 4e has a characteristic impedance Z 4e corresponding to the pattern width.
  • the impedance transformation portion 4 f has a characteristic impedance Z 4 f corresponding to the pattern width
  • the impedance transformation portion 4 g has a characteristic impedance Z 4 g corresponding to the pattern width.
  • the input / output terminal 4 b has a characteristic impedance Z 4 b corresponding to the pattern width.
  • impedance transformation portions 4e to 4g perform impedance matching between conversion portion 4d and input / output terminal 4b.
  • the characteristic impedance Z 4 e of the impedance transformation unit 4 e is smaller than the characteristic impedance Z 4 b of the input / output terminal 4 b and larger than the characteristic impedance Z 4 d of the conversion unit 4 d. That is, the relationship of Z 4 d ⁇ Z 4 e ⁇ Z 4 b is established.
  • Characteristic impedance Z 4g of the impedance transformer unit 4g is larger than the characteristic impedance Z 4e of small and impedance transformer section 4e than any of the characteristic impedance Z 4b of the input and output terminals 4b and the characteristic impedance Z 4f of the impedance transformer unit 4f.
  • the relationship of Z 4e ⁇ Z 4g ⁇ Z 4f Z 4b holds.
  • the converter 1 includes an impedance transformation portion 4e and an impedance transformation portion 4g having a pattern width that is larger than that of the input / output terminal 4b.
  • impedance conversion is performed between the conversion unit 4 d and the input / output terminal 4 b to reduce power loss.
  • the stub 4c, the conversion unit 4d and the impedance transformation units 4e to 4g shown in FIG. 4 are an example, and the number of stubs 4c and the number of stages of the impedance transformation unit are changed according to the reflection matching condition.
  • FIG. 5 is a plan view showing a ground conductor 6 having a rectangular slot 5.
  • the slot 5 is provided in a region covered by one end of the waveguide 2 in the ground conductor 6, that is, a region surrounded by the opening edge b. 1 to 5 show the case where only one slot 5 is formed in the area surrounded by the opening edge b, a plurality of slots 5 are provided in the area surrounded by the opening edge b May be
  • the ground conductor 6 is formed by pressure bonding a conductive metal foil (such as copper foil) to the back side of the dielectric substrate 3.
  • the ground conductor 6 may be formed by attaching a metal plate to the back surface of the dielectric substrate 3.
  • FIG. 6 is a plan view showing the ground conductor 6 having the H-shaped slot 5A. So far, the rectangular slot 5 has been shown, but an H-shaped slot 5A may be provided on the ground conductor 6 instead of the slot 5 as shown in FIG. Also in this case, the slot 5A is provided in the area covered by one end of the waveguide 2 in the ground conductor 6, that is, the area surrounded by the opening edge b.
  • the operation will be described.
  • the input signal is coupled to the slot 5 provided in the ground conductor 6.
  • the signal coupled to the slot 5 is coupled to the conductor pattern 4.
  • the electrically open portion 4a has an annular pattern having an overall circumference that is a natural number of one or more natural wavelengths that is half the wavelength of the light in the tube (in FIG. ). For this reason, the signal coupled to the conductor pattern 4 is totally reflected by the electrical opening 4 a and is propagated to the input / output terminal 4 b.
  • FIG. 7 is a graph showing the results of electromagnetic field analysis of unwanted radiation characteristics of the transducer 1 and the conventional transducer.
  • the horizontal axis is the rotation angle ⁇ from the z axis to the x axis centered on the y axis in the zx plane
  • the vertical axis is from the x axis to the y axis centered on the z axis in the xy plane.
  • It is a radiation amount (gain) of unnecessary radio waves according to the rotation angle ⁇ .
  • Data D1 indicated by a solid line is data indicating unwanted radiation characteristics obtained by electromagnetic field analysis of the structure of the converter 1 shown in FIGS. 1 and 2.
  • Data D2 indicated by a broken line is data indicating unwanted radiation characteristics obtained by electromagnetic field analysis of the structure of a conventional converter having no electrical opening 4a and stub 4c among the components of converter 1. is there.
  • this effectiveness is the same also in the converter which concerns on Embodiment 2 and Embodiment 3 which are mentioned later.
  • the annular pattern is formed at one end of the conductor pattern 4 located immediately above the one end of the waveguide 2 via the dielectric substrate 3. It has an electrical opening 4a.
  • the converter 1 does not need the choke structure described in Patent Document 1, and can be miniaturized. Since the electrical opening 4a has an annular pattern, radio wave leakage can be prevented even without the choke. As a result, the converter 1 can be compact and suppress unnecessary radiation of radio waves.
  • the conductor pattern 4 is a strip-shaped pattern extending from the electrically open portion 4a to the input / output terminal 4b.
  • the band-like patterns have a plurality of pattern widths that have different characteristic impedances. This matches the impedance in the strip pattern and reduces power loss.
  • the electrically open portion 4a is an annular pattern having a total circumference that is a natural number one or more times a half wavelength of the in-tube wavelength.
  • the electrically open portion 4a is an equilateral triangular annular pattern in which one side is a half wavelength of the in-tube wavelength, and an annular pattern having the same pattern width or an annular portion having a different pattern width. It is a pattern of Since there is no tip open portion in the electric open portion 4a, it is possible to suppress unnecessary radiation of radio waves. Further, since a choke having a length that is an odd multiple of a quarter wavelength of the in-tube wavelength is unnecessary, the converter 1 can be miniaturized.
  • FIG. 8 is a top view showing a configuration of a converter 1A in accordance with Embodiment 2 of the present invention.
  • FIG. 9 is a plan view showing the front of the converter 1A according to the second embodiment.
  • the converter 1 ⁇ / b> A mutually converts the signal propagating in the waveguide 2 and the signal propagating in the planar circuit including the conductor pattern 7.
  • the converter 1A includes the waveguide 2, the dielectric substrate 3, the slot 5, the conductor pattern 7, the floating conductor 8a and the floating conductor 8b, and as in FIG.
  • a ground conductor 6 is provided on the back side of the substrate 3.
  • FIG. 8 shows that the converter 1A includes the waveguide 2, the dielectric substrate 3, the slot 5, the conductor pattern 7, the floating conductor 8a and the floating conductor 8b, and as in FIG.
  • a ground conductor 6 is provided on the back side of the substrate 3.
  • the position a is a position directly above the opening center of the waveguide 2 through the dielectric substrate 3.
  • c is the pattern width of the conversion unit 7c.
  • the floating conductor 8a and the floating conductor 8b are rectangular conductor patterns each having a length L2 in the y-axis direction and a length L3 in the x-axis direction.
  • the conductor pattern 7 has a converter 7 c and an impedance transformer 7 d in addition to the electrical opening 7 a and the input / output terminal 7 b.
  • the floating conductor 8 a and a part of the floating conductor 8 b are located directly on one end of the waveguide 2 via the dielectric substrate 3 and also located directly on the slot 5 via the dielectric substrate 3. There is.
  • the floating conductor 8a and the floating conductor 8b are each separated from the conversion portion 7c by an interval L1 as shown in FIG.
  • the floating conductor 8a and the floating conductor 8b are in a positional relationship of x-axis symmetry passing through the position a. Also, L3 is longer than L2, and L2 is longer than L1.
  • the electrically open portion 7a is an annular pattern having a total circumference which is a natural number one or more times a half wavelength of the in-tube wavelength. Moreover, since the electrical opening part 7a is a cyclic
  • the electrically open portion 7a is an annular pattern of an equilateral triangle having a fold 7a-1 and a fold 7a-2.
  • one side is a half wavelength of the in-tube wavelength and the entire circumference is a half wavelength of the in-tube wavelength.
  • the bending portion 7a-1 and the bending portion 7a-2 are formed by bending the conductor pattern at a position of a half wavelength of the wavelength in the pipe.
  • the electrical opening 7a in the form of a triangular ring is merely an example, and may be a square or more polygonal ring pattern, or may be a smooth curvilinear ring pattern. Although the pattern in which a part of the pattern width of the electrical opening 7a is tapered is illustrated, the pattern width of the electrical opening 7a is arbitrary.
  • the position of the electrically open portion 4a is separated from the position a immediately above the waveguide 2 through the dielectric substrate 3 by the zero times the half wavelength of the in-tube wavelength.
  • the electrically open portion 7a is separated from the position a immediately above the waveguide 2 through the dielectric substrate 3 by a half of the in-tube wavelength. It is formed in position.
  • the transducer 1 has been adjusted to the characteristic impedance Z 4b having the stub 4c and the impedance transformer section 4e ⁇ 4g, characteristic impedance Z 4d input and output terminal 4b with the conversion unit 4d is .
  • the characteristic impedance of the conversion unit 7c and the characteristic impedance of the input / output terminal 7b are adjusted by the impedance transformation unit 7d, the floating conductor 8a and the floating conductor 8b. ing.
  • each of floating conductor 8a and floating conductor 8b is separated from conversion portion 7c by distance L1, a parasitic capacitance or a parasitic inductor component is added in conversion portion 7c.
  • the converter 1A can effectively reduce the loss of power.
  • the converter 1A according to the second embodiment can mitigate a rapid change in impedance between the converter 7c and the input / output terminal 7b, it becomes possible to handle a wide band signal.
  • the shapes of the floating conductor 8a and the floating conductor 8b shown in FIG. 8 and FIG. 9 are an example, and may be a polygonal shape having five or more corners or a smooth curved shape.
  • the converter 1A according to the second embodiment includes the floating conductor 8a and the floating conductor 8b provided on the front surface of the dielectric substrate 3. A part of each of the floating conductor 8 a and the floating conductor 8 b is located directly above one end of the waveguide 2 through the dielectric substrate 3. According to this structure, the same effect as that of the first embodiment can be obtained, and a rapid change in impedance between conversion portion 7c and input / output terminal 7b in conductor pattern 7 is alleviated. It becomes possible to handle the signal.
  • FIG. 10 is a top view showing a configuration of a converter 1B in accordance with Embodiment 3 of the present invention.
  • FIG. 11 is a plan view showing the front of the converter 1B according to the third embodiment.
  • the converter 1 B mutually converts the signal propagating in the waveguide 2 and the signal propagating in the planar circuit including the conductor pattern 7.
  • the converter 1B includes the waveguide 2, the dielectric substrate 3, the slot 5, the conductor pattern 7, the floating conductor 8a and the floating conductor 8b, and the conversion shown in FIG. Similar to the case 1, the ground conductor 6 is provided on the back side of the dielectric substrate 3.
  • FIG. 10 is a top view showing a configuration of a converter 1B in accordance with Embodiment 3 of the present invention.
  • FIG. 11 is a plan view showing the front of the converter 1B according to the third embodiment.
  • the converter 1 B mutually converts the signal propagating in the waveguide 2 and the signal propagating in the planar circuit including the conductor pattern 7.
  • the position a is a position directly above the opening center of the waveguide 2 through the dielectric substrate 3.
  • c is the pattern width of the conversion unit 7c.
  • the floating conductor 8a and the floating conductor 8b are rectangular conductor patterns each having a length L2 in the y-axis direction and a length L3 in the x-axis direction.
  • the floating conductor 8a and the floating conductor 8b are rectangular conductors having a length L2 in the y-axis direction and a length L3 in the x-axis direction. It was a pattern.
  • the floating conductor 8a and the floating conductor 8b included in the converter 1B according to the third embodiment have a rectangular notch 9a and a notch 9b in part of the floating conductor. Have.
  • Each of the two notches 9 a and the two notches 9 b is disposed on the same straight line along the longitudinal direction (y-axis direction) of the slot 5 via the dielectric substrate 3.
  • the conductor pattern 7 has a converter 7 c and an impedance transformer 7 d in addition to the electrical opening 7 a and the input / output terminal 7 b.
  • the floating conductor 8 a and a part of the floating conductor 8 b are located directly on one end of the waveguide 2 via the dielectric substrate 3 and also located directly on the slot 5 via the dielectric substrate 3. There is.
  • the floating conductor 8a and the floating conductor 8b are each separated from the converter 7c by an interval L1 as shown in FIG.
  • the floating conductor 8a and the floating conductor 8b are in a positional relationship of x-axis symmetry passing through the position a. Also, L3 is longer than L2, and L2 is longer than L1.
  • the electrically open portion 7a is an annular pattern having a total circumference which is a natural number one or more times a half wavelength of the in-tube wavelength. Moreover, since the electrical opening part 7a is a cyclic
  • the electrically open portion 7a has an annular pattern of an equilateral triangle having a bent portion 7a-1 and a bent portion 7a-2.
  • one side is a half wavelength of the in-tube wavelength and the entire circumference is a half wavelength of the in-tube wavelength.
  • the bending portion 7a-1 and the bending portion 7a-2 are formed by bending the conductor pattern at a position of a half wavelength of the wavelength in the pipe.
  • the electrical opening 7a is a triangular ring pattern
  • this is an example, and may be a square or more polygonal ring pattern or a smooth curved ring pattern. It may be.
  • the pattern in which a part of the pattern width of the electrically open portion 7a is tapered is illustrated, the pattern width of the electrically open portion 7a is arbitrary.
  • the position of the electrically open portion 4a is separated from the position a immediately above the waveguide 2 through the dielectric substrate 3 by the zero times the half wavelength of the in-tube wavelength.
  • the electrically open portion 7a is separated from the position a immediately above the waveguide 2 through the dielectric substrate 3 by a half of the in-tube wavelength. It is formed in the following position.
  • the transducer 1 has been adjusted to the characteristic impedance Z 4b having the stub 4c and the impedance transformer section 4e ⁇ 4g, characteristic impedance Z 4d input and output terminal 4b with the conversion unit 4d is .
  • the characteristic impedance of the conversion unit 7c and the characteristic impedance of the input / output terminal 7b are adjusted by the impedance transformation unit 7d, the floating conductor 8a and the floating conductor 8b. ing.
  • the notch 9a provided in the floating conductor 8a and the notch 9b provided in the floating conductor 8b are disposed at positions where electric fields become nodes on the floating conductor.
  • the notches 9a and 9b allow the current distributed widely around the ends of the floating conductor 8a and the floating conductor 8b to be concentrated in the notches 9a and 9b.
  • the current flowing to one side in the x-axis direction of the rectangular notch portion 9a and the notch portion 9b is not efficiently radiated to the space because one side is shorter than the wavelength. According to the above principle, unnecessary radiation can be suppressed by the notch 9a and the notch 9b provided in the floating conductor 8a and the floating conductor 8b.
  • the shapes of the floating conductor 8a and the floating conductor 8b shown in FIGS. 10 and 11 are an example of the floating conductor in which a rectangular notch is provided in part of a rectangular conductor.
  • 12 and 13 are plan views showing the front of a modification of the converter 1B according to the third embodiment.
  • the floating conductor 8a and the floating conductor 8b may have a polygonal shape with pentagons or more, or as shown in FIG. 13, a shape having a smooth curved outline at a part thereof It may be.
  • the shapes of the notch 9a and the notch 9b shown in FIGS. 10 to 13 are also an example, and may be a polygon having a triangle or more or a shape having a smooth curved contour. .
  • FIG. 14 is a graph showing the results of electromagnetic field analysis of unwanted radiation characteristics of the converter 1A according to the second embodiment and the converter 1B according to the third embodiment.
  • the horizontal axis is the rotation angle ⁇ from the z axis to the x axis with respect to the y axis in the zx plane
  • the vertical axis is from the x axis to the y axis with the z axis in the xy plane.
  • It is a radiation amount (gain) of unnecessary radio waves according to the rotation angle ⁇ .
  • data D4 indicated by a solid line is data indicating unwanted radiation characteristics obtained by performing electromagnetic field analysis on the structure of the converter 1B shown in FIG. 10 and FIG.
  • Data D3 indicated by a broken line is data indicating unwanted radiation characteristics obtained by electromagnetic field analysis of the structure of the converter 1A shown in FIGS. 8 and 9.
  • the converter 1B includes the floating conductor 8a provided on the front surface of the dielectric substrate 3 and the rectangular notch 9a and the notch provided in part of the floating conductor 8b.
  • a unit 9b is provided.
  • the notch 9 a and the notch 9 b are disposed on the same straight line along the longitudinal direction (y-axis direction) of the slot 5 via the dielectric substrate 3.
  • the converter 1 according to the first embodiment, the converter 1A according to the second embodiment, and the converter 1B according to the third embodiment may be mounted on an antenna device.
  • each of the converter 1, the converter 1A, and the converter 1B can be miniaturized, it is possible to miniaturize an antenna apparatus provided with any of these.
  • the present invention is not limited to the above embodiment, and within the scope of the present invention, variations or embodiments of respective free combinations of the embodiments or respective optional components of the embodiments.
  • An optional component can be omitted in each of the above.
  • the converter according to the present invention is small in size and can suppress unnecessary radiation of radio waves, and thus can be used, for example, in an on-vehicle antenna device.
  • 1, 1A, 1B converter 2 waveguides, 3 dielectric substrates, 4, 7 conductor patterns, 4a, 7a electrically open portions, 4a-1, 4a-2, 7a-1, 7a-2 bent portions, 4b, 7b input / output terminals, 4c stubs, 4d, 7c conversion parts, 4e to 4g, 7d impedance transformation parts, 5, 5A slots, 6 ground conductors, 8a, 8b floating conductors, 9a, 9b notched parts.

Landscapes

  • Waveguide Aerials (AREA)
  • Waveguides (AREA)

Abstract

変換器(1)において、誘電体基板(3)を介した導波管(2)の一方の端部の直上に位置している導体パターン(4)の一方の端部に環状のパターンである電気的開放部(4a)を有する。

Description

変換器およびアンテナ装置
 この発明は、導波管を伝搬する信号と平面回路を伝搬する信号とを相互に変換する変換器およびこれを備えたアンテナ装置に関する。
 従来から、導波管を伝搬する信号と平面回路を伝搬する信号とを相互に変換する変換器が知られている。例えば、導波管とマイクロストリップ線路とを接続した変換器が、導波管からマイクロストリップ線路へ信号を伝搬させ、または、マイクロストリップ線路から導波管へ信号を伝搬させる。このような変換器は、マイクロ波帯またはミリ波帯の高周波信号を伝送させるアンテナ装置に広く用いられている。
 例えば、特許文献1には、導波管と、誘電体基板および導体基板からなる多層基板とを備えた変換器が記載されている。多層基板における導波管が接続される側の面には接地板が設けられ、接地板とは反対側の面に導体パターンが形成されている。接地板の一部は開口しており、この開口部分を取り囲むように多層基板の内層に環状の導体パターンが形成されている。環状の導体パターンを、上記開口部分の端部から管内波長の4分の1波長の奇数倍のパターン幅とすることで、電波漏洩を防止するためのチョークとして機能する。
 従来の変換器は、一般に、誘電体基板の正面に設けた導体パターンと背面に設けた接地導体との間を電気的に接続する多数のスルーホールを形成して電波漏洩を防止していた。これに対して、特許文献1に記載された変換器では、チョークとして機能する環状の導体パターンを形成することで、スルーホールを形成することなく、電波漏洩を防止することができる。
特開2017-85420号公報
 特許文献1に記載された変換器では、接地板の開口部分を取り囲むように、開口部分の端部から管内波長の4分の1波長の奇数倍のパターン幅の導体パターンを形成するため、小型化が制限されるという課題があった。
 また、特許文献1に記載された変換器において、小型化を優先して環状の導体パターンを削除すると、導波管の直上から管内波長の4分の1波長の長さの導体パターンが残る。この導体パターンは先端が開放されているため、開放された先端部から不要な電波が放射される。
 この発明は上記課題を解決するものであり、小型かつ電波の不要放射を抑圧することができる変換器およびこれを備えたアンテナ装置を得ることを目的とする。
 この発明に係る変換器は、導波管、誘電体基板、導体パターン、接地導体、および1つまたは複数のスロットを備える。誘電体基板は、背面側に導波管の一方の端部が接続されている。導体パターンは、誘電体基板の正面に設けられ、一方の端部に信号の入出力端子を有し、他方の端部に電気的に開放された電気的開放部を有する。接地導体は、誘電体基板の背面に設けられる。スロットは、接地導体における導波管の一方の端部に覆われた領域に設けられる。この構成において、導体パターンの一部は、誘電体基板を介した導波管の一方の端部の直上に位置し、電気的開放部は、環状のパターンである。
 この発明によれば、誘電体基板を介した導波管の一方の端部の直上に位置する導体パターンの一方の端部に環状のパターンの電気的開放部を有することで、特許文献1に記載されたチョーク構造を設ける必要がなく、より小型の変換器を実現できる。さらに、電気的開放部が環状のパターンであることから、チョークがなくても電波漏洩を防止することができる。これにより、小型かつ電波の不要放射を抑圧することができる。
この発明の実施の形態1に係る変換器の構成を示す上面図である。 実施の形態1に係る変換器を、図1のA-A線で切った断面を示す断面矢示図である。 実施の形態1における導波管を示す斜視図である。 実施の形態1における導体パターンを示す平面図である。 実施の形態1における矩形状のスロットを有した接地導体を示す平面図である。 実施の形態1におけるH字形状のスロットを有した接地導体を示す平面図である。 変換器の不要放射特性の電磁界解析結果を示すグラフである。 この発明の実施の形態2に係る変換器の構成を示す上面図である。 実施の形態2に係る変換器の正面を示す平面図である。 この発明の実施の形態3に係る変換器の構成を示す上面図である。 実施の形態3に係る変換器の正面を示す平面図である。 実施の形態3に係る変換器の変形例の正面を示す平面図である。 実施の形態3に係る変換器の別の変形例の正面を示す平面図である。 実施の形態2に係る変換器と実施の形態3に係る変換器の不要放射特性の電磁界解析結果を示すグラフである。
 以下、この発明をより詳細に説明するため、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1に係る変換器1の構成を示す上面図である。図2は、変換器1を、図1のA-A線で切った断面を示す断面矢示図である。図に示すx軸、y軸およびz軸は、互いに直交する3軸であり、x軸に平行な方向をx軸方向、y軸に平行な方向をy軸方向、z軸に平行な方向をz軸方向とする。x軸方向のうち、矢印方向をプラスx方向と呼び、プラスx方向とは逆の方向をマイナスx方向と呼ぶ。y軸方向のうち、矢印方向をプラスy方向と呼び、プラスy方向とは逆の方向をマイナスy方向と呼ぶ。z軸方向のうち、矢印方向をプラスz方向と呼び、プラスz方向とは逆の方向をマイナスz方向と呼ぶ。xy平面において、z軸を中心としたx軸からy軸への回転角度をΦとし、zx平面において、y軸を中心としたz軸からx軸への回転角度をθとする。
 変換器1は、導波管2を伝搬する信号と、導体パターン4を含んだ平面回路を伝搬する信号と、を相互に変換する。変換器1は、図1および図2に示すように、導波管2、誘電体基板3、導体パターン4、スロット5および接地導体6を備えて構成される。
 導波管2は、一方の端部が誘電体基板3に接続されている中空導波管である。誘電体基板3は、導波管2が背面に接続され、導体パターン4が正面に形成されている。誘電体基板3は、樹脂材料で構成された平板状の部材である。誘電体基板3は単層基板であってもよいが、複数の誘電体基板と導体基板とが積層された多層誘電体基板であってもよい。
 導体パターン4は、一方の端部に入出力端子4bが設けられ、他方の端部に電気的開放部4aが設けられた帯状のパターンである。導体パターン4は、例えば、導電性の金属箔(銅箔など)を誘電体基板3の正面に圧着し、金属箔をパターニングすることにより形成される。導体パターン4は、パターニングされた金属板を誘電体基板3の正面に取り付けて形成してもよい。また、入出力端子4bには、信号が入出力される。電気的開放部4aは、環状の導体パターンであり、電気的に開放されている。
 導体パターン4の一部は、図1に示すように、誘電体基板3を介した導波管2の一方の端部の直上に位置している。誘電体基板3の背面には、図2に示すように、接地導体6が全面に形成されている。接地導体6における導波管2の一方の端部に覆われた領域には、スロット5が設けられる。
 導体パターン4の一部は、誘電体基板3を介したスロット5の直上に位置している。
 なお、図1および図2では、誘電体基板3の正面に設けられた導体パターン4が、接地導体6とともに、マイクロストリップ線路を構成している。ただし、導体パターン4は、接地導体6とともに、ストリップ線路、コプレーナ線路および接地導体付きのコプレーナ線路のうちのいずれかを構成してもよい。
 図3は、導波管2を示す斜視図である。図3に示すように、導波管2は、金属製の管壁を有した中空の金属管である。また、導波管2のxy断面は、図1に破線で示すように、y軸に平行な長辺とx軸に平行な短辺とを有した長方形である。導波管2は、図2に示す開口縁部bで接地導体6に接合され、電気的に短絡されている。
 なお、導波管2は任意の構成であるものとする。例えば、導波管2は、管内に誘電体が充填したものであってもよい。また、導波管2は、金属製の管壁に代えて、複数のスルーホールが形成された管壁を有し、管内に誘電体が充填したものであってもよい。導波管2は、xy断面である長方形の角部に曲率を持たせた形状であってもよく、リッジ型の導波管であってもよい。
 電気的開放部4aが形成される位置は、誘電体基板3を介した導波管2の直上の位置aから、マイナスx方向に管内波長の2分の1波長の0倍または1以上の整数倍だけ離れた位置である。なお、位置aは、誘電体基板3を介した導波管2の開口中心の直上の位置である。図1の例では、誘電体基板3を介した導波管2の直上の位置aからマイナスx方向(入出力端子4bと対向する側)に管内波長の2分の1波長のゼロ倍だけ離れた位置、すなわち電気的開放部4aが位置aから形成されている。
 電気的開放部4aは、管内波長の2分の1波長の1以上の自然数倍の全周長さを有する環状のパターンである。電気的開放部4aは、環状のパターンであって、先端開放部分が存在しないため、不要な電波の放射を抑圧することができる。
 また、特許文献1に記載された変換器では、多数のスルーホールを形成することなく、不要な電波の漏洩を抑圧するために、スロット端部から管内波長の4分の1波長の奇数倍のパターン幅を有した環状の導体パターンをチョークとして設けていた。
 これに対し、実施の形態1に係る変換器1は、電気的開放部4aを有することにより、チョークとして機能する環状の導体パターンが不要である。例えば、導体パターン4は、スロット5を取り囲む部分がなく、特許文献1に記載された変換器に比べて、y軸方向の寸法が削減される。これにより、変換器1は、上記従来の変換器に比べて小型化することができる。
 図1の例では、電気的開放部4aが、折り曲げ部4a-1および折り曲げ部4a-2を有した正三角形の環状のパターンである。三角形は、全周が管内波長の2分の3波長の環状、すなわち、一辺が管内波長の2分の1波長の長さである。折り曲げ部4a-1および折り曲げ部4a-2は、管内波長の2分の1波長の長さの位置で導体パターンを折り曲げて形成されている。これにより、折り曲げ部4a-1および折り曲げ部4a-2のそれぞれが電界の節となって原理的にはエネルギーが存在しないため、不要な電波の放射が発生しにくい。
 なお、三角形の環状のパターンとした電気的開放部4aは一例であり、四角以上の多角形状の環状パターンであってもよく、滑らかな曲線状の環状パターンであってもよい。
 さらに、図1では、電気的開放部4aのパターン幅の一部が、位置aから折り曲げ部4a-1,4a-2へ向けてパターン幅が小さくなる、いわゆるテーパ状になっているが、電気的開放部4aのパターン幅は任意であるものとする。
 図4は、導体パターン4を示す平面図である。図4に示すように、導体パターン4は、電気的開放部4aと入出力端子4bとに加え、スタブ4c、変換部4dおよびインピーダンス変成部4e~4gを有する。スタブ4cおよびインピーダンス変成部4e~4gは、スタブ4cが有するインピーダンスと、導波管2が有するインピーダンスとを調整する、すなわち、反射整合をとる整合素子として機能する。
 スタブ4cは、変換部4dのプラスy方向とマイナスy方向とにそれぞれ延びた導体のパターンであり、図1に示すように、誘電体基板3を介したスロット5の直上に設けられている。スタブ4cにおけるプラスy方向とマイナスy方向とに変換部4dから直線上に延びた長さは、管内波長の4分の1波長の長さに相当する。なお、スタブ4cは、先端が開放されている。
 変換部4dとインピーダンス変成部4e~4gとは、パターン幅に対応した特性インピーダンスを有する。変換部4dは、パターン幅に対応した特性インピーダンスZ4dを有し、インピーダンス変成部4eは、パターン幅に対応した特性インピーダンスZ4eを有する。インピーダンス変成部4fは、パターン幅に対応した特性インピーダンスZ4fを有し、インピーダンス変成部4gは、パターン幅に対応した特性インピーダンスZ4gを有する。入出力端子4bは、パターン幅に対応した特性インピーダンスZ4bを有する。
 仮に、入出力端子4bと変換部4dが隣り合わせで設けられた場合、入出力端子4bの特性インピーダンスZ4bと変換部4dの特性インピーダンスZ4dとの不整合に起因して不要な電波の放射が増大して電力の損失が大きくなる。そこで、実施の形態1における導体パターン4では、インピーダンス変成部4e~4gが変換部4dと入出力端子4bとの間のインピーダンス整合を行う。
 インピーダンス変成部4eの特性インピーダンスZ4eは、入出力端子4bの特性インピーダンスZ4bよりも小さくかつ変換部4dの特性インピーダンスZ4dよりも大きい。すなわち、Z4d<Z4e<Z4bの関係が成り立つ。
 インピーダンス変成部4fの特性インピーダンスZ4fは、入出力端子4bの特性インピーダンスZ4bと等しくかつインピーダンス変成部4eの特性インピーダンスZ4eよりも大きく、Z4e<Z4f=Z4bの関係が成り立つ。
 インピーダンス変成部4gの特性インピーダンスZ4gは、インピーダンス変成部4fの特性インピーダンスZ4fと入出力端子4bの特性インピーダンスZ4bのいずれよりも小さくかつインピーダンス変成部4eの特性インピーダンスZ4eよりも大きい。Z4e<Z4g<Z4f=Z4bの関係が成り立つ。
 実施の形態1に係る変換器1は、入出力端子4bよりも拡大されたパターン幅を有するインピーダンス変成部4eおよびインピーダンス変成部4gを備える。この構成を有することで、変換部4dと入出力端子4bとの間がインピーダンス整合されて電力の損失が低減される。なお、図4に示したスタブ4c、変換部4dおよびインピーダンス変成部4e~4gは一例であり、反射整合条件に応じてスタブ4cの数およびインピーダンス変成部の段数は変更される。
 図5は、矩形状のスロット5を有した接地導体6を示す平面図である。スロット5は、接地導体6における導波管2の一方の端部に覆われた領域、すなわち、開口縁部bに囲まれた領域に設けられる。図1から図5では、スロット5が、開口縁部bに囲まれた領域に1つだけ形成された場合を示したが、複数のスロット5を、開口縁部bに囲まれた領域に設けてもよい。接地導体6は、導電性の金属箔(銅箔など)を、誘電体基板3の背面側に圧着することで形成される。また、接地導体6は、誘電体基板3の背面に金属板を取り付けて形成してもよい。
 図6は、H字形状のスロット5Aを有した接地導体6を示す平面図である。これまで、矩形状のスロット5を示したが、図6に示すように、スロット5の代わりに、H字形状のスロット5Aを接地導体6に設けてもよい。この場合においても、スロット5Aは、接地導体6における導波管2の一方の端部に覆われた領域、すなわち、開口縁部bに囲まれた領域に設けられる。
 次に動作について説明する。
 例えば、導波管2から基本モードの信号が入力されると、入力された信号は、接地導体6に設けられたスロット5に結合する。スロット5と結合した信号は、導体パターン4と結合する。電気的開放部4aは、管内波長の2分の1波長の1以上の自然数倍の全周長さを有した環状のパターン(図2では、管内波長の2分の3波長の全周長さ)である。このため、導体パターン4と結合した信号は、電気的開放部4aで全反射されて、入出力端子4bへ伝搬される。
 次に、実施の形態1に係る変換器1の構造の有効性について説明する。
 図7は、変換器1および従来の変換器の不要放射特性の電磁界解析結果を示すグラフである。図7において、横軸は、zx平面におけるy軸を中心としたz軸からx軸への回転角度θであり、縦軸は、xy平面におけるz軸を中心としたx軸からy軸への回転角度Φに応じた不要な電波の放射量(ゲイン)である。図7は、Φ=0(deg.)に対する、θ=-90(deg.)から+90(deg.)の間の不要電波の放射量を示している。
 実線で示すデータD1は、図1および図2に示した変換器1の構造を電磁界解析して得られた不要放射特性を示すデータである。破線で示すデータD2は、変換器1の構成要素のうち、電気的開放部4aおよびスタブ4cを有さない従来の変換器の構造を電磁界解析して得られた不要放射特性を示すデータである。図7に示すように、従来の変換器では、Φ=0(deg.)における不要電波の最大放射量が、θ=-60(deg.)で-2(dB)である。一方、変換器1では、Φ=0(deg.)における不要電波の最大放射量が、θ=-60(deg.)で-6.54(dB)である。不要電波の放射量は、ΔG=4.54(dB)だけ改善している。なお、この有効性は、後述する実施の形態2および実施の形態3に係る変換器においても同様である。
 以上のように、実施の形態1に係る変換器1において、誘電体基板3を介した導波管2の一方の端部の直上に位置する導体パターン4の一方の端部に環状のパターンの電気的開放部4aを有している。このため、変換器1は、特許文献1に記載されたチョーク構造が不要であり、小型化を実現することができる。電気的開放部4aが環状のパターンであることから、チョークがなくても、電波漏洩を防止することができる。これにより、変換器1は、小型かつ電波の不要放射を抑圧することができる。
 実施の形態1に係る変換器1において、導体パターン4は、電気的開放部4aから入出力端子4bに向けて延びた帯状のパターンである。帯状のパターンは、異なる特性インピーダンスとなる複数のパターン幅をそれぞれ有する。これにより、帯状のパターンにおけるインピーダンスが整合されて、電力損失が低減される。
 実施の形態1に係る変換器1において、電気的開放部4aは、管内波長の2分の1波長の1以上の自然数倍の全周長さを有した環状のパターンである。例えば、電気的開放部4aは、1辺が管内波長の2分の1波長の長さである正三角形の環状のパターンであり、同じパターン幅の環状のパターンまたは一部のパターン幅が異なる環状のパターンである。電気的開放部4aには、先端開放部分が存在しないことから、不要な電波の放射を抑圧することができる。また、管内波長の4分の1波長の奇数倍の長さを有したチョークが不要であるため、変換器1の小型化を実現できる。
実施の形態2.
 図8は、この発明の実施の形態2に係る変換器1Aの構成を示す上面図である。また、図9は、実施の形態2に係る変換器1Aの正面を示す平面図である。変換器1Aは、導波管2を伝搬する信号と、導体パターン7を含む平面回路を伝搬する信号とを相互に変換する。変換器1Aは、図8および図9に示すように、導波管2、誘電体基板3、スロット5、導体パターン7、浮遊導体8aおよび浮遊導体8bを備え、図2と同様に、誘電体基板3の背面側には、接地導体6が設けられている。図8に示すように、位置aは誘電体基板3を介した導波管2の開口中心の直上の位置である。図9に示すように、cは変換部7cのパターン幅である。浮遊導体8aおよび浮遊導体8bは、y軸方向の長さがL2、x軸方向の長さがL3の矩形状の導体パターンである。
 導体パターン7は、電気的開放部7aと入出力端子7bとに加えて、変換部7cおよびインピーダンス変成部7dを有する。浮遊導体8aおよび浮遊導体8bの一部は、誘電体基板3を介した導波管2の一方の端部の直上に位置し、誘電体基板3を介したスロット5の直上にも位置している。浮遊導体8aおよび浮遊導体8bのそれぞれと変換部7cとの間は、図9に示すように間隔L1だけ離れている。浮遊導体8aと浮遊導体8bとは、位置aを通るx軸対称の位置関係にある。また、L3はL2よりも長く、L2はL1よりも長い。
 電気的開放部7aは、管内波長の2分の1波長の1以上の自然数倍の全周長さを有する環状のパターンである。また、電気的開放部7aは、環状のパターンであって、先端開放部分が存在しないため、不要な電波の放射を抑圧することができる。電気的開放部7aを設けることで、特許文献1に記載された管内波長の4分の1波長の奇数倍のパターン幅を有するチョークが不要になる。このため、変換器1Aは、従来の変換器に比べて小型化することができる。
 図8および図9では、電気的開放部7aが、折り曲げ部7a-1および折り曲げ部7a-2を有した正三角形の環状のパターンである。この三角形は、一辺が管内波長の2分の1波長分の長さであり、全周が管内波長の2分の3波長の長さである。折り曲げ部7a-1および折り曲げ部7a-2は、管内波長の2分の1波長の長さの位置で導体パターンを折り曲げて形成されている。これにより、折り曲げ部7a-1および折り曲げ部7a-2のそれぞれが電界の節となって原理的にはエネルギーが存在しないため、不要な電波の放射が発生しにくい。
 なお、三角形の環状のパターンとした電気的開放部7aは一例であり、四角以上の多角形状の環状パターンであってもよく、滑らかな曲線状の環状パターンであってもよい。
 電気的開放部7aのパターン幅の一部がテーパ状になっているパターンを例示したが、電気的開放部7aのパターン幅は任意であるものとする。
 実施の形態1に係る変換器1では、電気的開放部4aの位置が、誘電体基板3を介した導波管2の直上の位置aから管内波長の2分の1波長のゼロ倍だけ離れた位置であった。これに対し、実施の形態2に係る変換器1Aでは、電気的開放部7aが、誘電体基板3を介した導波管2の直上の位置aから管内波長の2分の1波長だけ離れた位置に形成されている。
 また、実施の形態1に係る変換器1では、スタブ4cおよびインピーダンス変成部4e~4gによって、変換部4dが有する特性インピーダンスZ4dと入出力端子4bが有する特性インピーダンスZ4bとを調整していた。これに対して、実施の形態2に係る変換器1Aでは、インピーダンス変成部7d、浮遊導体8aおよび浮遊導体8bによって、変換部7cが有する特性インピーダンスと入出力端子7bが有する特性インピーダンスとを調整している。
 浮遊導体8aおよび浮遊導体8bのそれぞれと変換部7cとは間隔L1だけ離れているので、変換部7cにおいて寄生キャパシタンスまたは寄生インダクタ成分が付加される。これによって、変換部7cと入出力端子7bとの間のインピーダンスの急激な変化を緩和することが可能であり、変換器1Aは、電力の損失を効果的に低減できる。
 なお、実施の形態2に係る変換器1Aは、変換部7cと入出力端子7bとの間のインピーダンスの急激な変化を緩和できるので、広帯域の信号を扱うことが可能となる。
 図8および図9に示す浮遊導体8aおよび浮遊導体8bの形状は一例であり、五角以上の多角形状または滑らかな曲線状の形状であってもよい。
 以上のように、実施の形態2に係る変換器1Aは、誘電体基板3の正面上に設けられた浮遊導体8aおよび浮遊導体8bを備えている。浮遊導体8aおよび浮遊導体8bのそれぞれの一部は、誘電体基板3を介した導波管2の一方の端部の直上に位置している。このように構成することにより、実施の形態1と同様の効果が得られ、さらに導体パターン7における変換部7cと入出力端子7bとの間のインピーダンスの急激な変化が緩和されるので、広帯域の信号を扱うことが可能となる。
実施の形態3.
 図10は、この発明の実施の形態3に係る変換器1Bの構成を示す上面図である。また、図11は、実施の形態3に係る変換器1Bの正面を示す平面図である。変換器1Bは、導波管2を伝搬する信号と導体パターン7を含む平面回路を伝搬する信号とを相互に変換する。変換器1Bは、図10および図11に示すように、導波管2、誘電体基板3、スロット5、導体パターン7、浮遊導体8aおよび浮遊導体8bを備えており、図2に示した変換器1と同様に、誘電体基板3の背面側には接地導体6が設けられている。図10に示すように、位置aは、誘電体基板3を介した導波管2の開口中心の直上の位置である。図11において、cは、変換部7cのパターン幅である。浮遊導体8aおよび浮遊導体8bは、y軸方向の長さがL2、x軸方向の長さがL3の矩形状の導体パターンである。
 実施の形態2に係る変換器1Aにおいて、浮遊導体8aおよび浮遊導体8bは、図9に示したように、y軸方向の長さがL2、x軸方向の長さがL3の矩形状の導体パターンであった。これに対して、実施の形態3に係る変換器1Bが備える浮遊導体8aおよび浮遊導体8bは、図11に示すように、浮遊導体の一部に四角形の切り欠き部9aおよび切り欠き部9bを備えている。2つの切り欠き部9aおよび2つの切り欠き部9bのそれぞれは、誘電体基板3を介して、スロット5の長手方向(y軸方向)に沿った同一の直線上に配置されている。
 導体パターン7は、電気的開放部7aと入出力端子7bとに加えて、変換部7cおよびインピーダンス変成部7dを有する。浮遊導体8aおよび浮遊導体8bの一部は、誘電体基板3を介した導波管2の一方の端部の直上に位置し、誘電体基板3を介したスロット5の直上にも位置している。浮遊導体8aおよび浮遊導体8bのそれぞれと変換部7cとの間は、図11に示すように間隔L1だけ離れている。浮遊導体8aと浮遊導体8bとは、位置aを通るx軸対称の位置関係にある。また、L3は、L2よりも長く、L2は、L1よりも長い。
 電気的開放部7aは、管内波長の2分の1波長の1以上の自然数倍の全周長さを有する環状のパターンである。また、電気的開放部7aは、環状のパターンであって、先端開放部分が存在しないため、不要な電波の放射を抑圧することができる。電気的開放部7aを設けることで、特許文献1に記載された管内波長の4分の1波長の奇数倍のパターン幅を揺するチョークが不要になる。このため、変換器1Aは、従来の変換器に比べて小型化することができる。
 図10および図11では、電気的開放部7aが、折り曲げ部7a-1および折り曲げ部7a-2を有した正三角形の環状のパターンである。この三角形は、一辺が管内波長の2分の1波長分の長さであり、全周が管内波長の2分の3波長の長さである。折り曲げ部7a-1および折り曲げ部7a-2は、管内波長の2分の1波長の長さの位置で導体パターンを折り曲げて形成されている。これにより、折り曲げ部7a-1および折り曲げ部7a-2のそれぞれが電界の節となって原理的にはエネルギーが存在しないため、不要な電波の放射が発生しにくい。
 なお、電気的開放部7aが三角形の環状パターンである構成を示したが、これは、一例であり、四角以上の多角形の環状パターンであってもよいし、滑らかな曲線状の環状パターンであってもよい。また、電気的開放部7aのパターン幅の一部がテーパ状になっているパターンを例示したが、電気的開放部7aのパターン幅は任意であるものとする。
 実施の形態1に係る変換器1では、電気的開放部4aの位置が、誘電体基板3を介した導波管2の直上の位置aから管内波長の2分の1波長のゼロ倍だけ離れた位置であった。これに対して、実施の形態3に係る変換器1Bでは、電気的開放部7aが、誘電体基板3を介した導波管2の直上の位置aから管内波長の2分の1波長だけ離れた位置に形成されている。
 また、実施の形態1に係る変換器1では、スタブ4cおよびインピーダンス変成部4e~4gによって、変換部4dが有する特性インピーダンスZ4dと入出力端子4bが有する特性インピーダンスZ4bとを調整していた。これに対して、実施の形態3に係る変換器1Bでは、インピーダンス変成部7d、浮遊導体8aおよび浮遊導体8bによって、変換部7cが有する特性インピーダンスと入出力端子7bが有する特性インピーダンスとを調整している。
 浮遊導体8aが備える切り欠き部9aと浮遊導体8bが備える切り欠き部9bは、浮遊導体上で電界が節となる位置に配置されている。切り欠き部9aおよび切り欠き部9bによって、浮遊導体8aおよび浮遊導体8bの端部を中心として広く分布していた電流が、切り欠き部9aおよび切り欠き部9bに集中する。四角形である切り欠き部9aおよび切り欠き部9bのy軸方向の2辺に電流がそれぞれに対して反対方向に流れ、2辺の間隔が波長に対して短いため、電流による放射のほとんどが打ち消される。また、四角形である切り欠き部9aおよび切り欠き部9bのx軸方向の1辺に流れる電流は、1辺が波長に対して短いため、効率よく空間へ放射されない。以上の原理によって、浮遊導体8aおよび浮遊導体8bが備える切り欠き部9aおよび切り欠き部9bによって、不要放射を抑圧することが可能である。
 図10および図11に示す浮遊導体8aおよび浮遊導体8bの形状は、矩形状の導体の一部に四角形の切り欠きを設けた浮遊導体の一例である。図12および図13は、実施の形態3に係る変換器1Bの変形例の正面を示す平面図である。図12に示すように、浮遊導体8aおよび浮遊導体8bは、五角以上の多角形状であってもよいし、図13に示すように、滑らかな曲線形状の輪郭線を一部に有した形状であってもよい。また、図10から図13までに示した切り欠き部9aおよび切り欠き部9bの形状も一例であって、三角形以上の多角形状または滑らかな曲線状の輪郭線を有した形状であってもよい。
 次に、実施の形態3に係る変換器1Bの構造の有効性について説明する。
 図14は、実施の形態2に係る変換器1Aと実施の形態3に係る変換器1Bの不要放射特性の電磁界解析結果を示すグラフである。図14において、横軸は、zx平面におけるy軸を中心としたz軸からx軸への回転角度θであり、縦軸は、xy平面におけるz軸を中心としたx軸からy軸への回転角度Φに応じた不要な電波の放射量(ゲイン)である。図14は、Φ=0(deg.)に対する、θ=-90(deg.)の間の不要電波の放射量を示している。
 図14において、実線で示すデータD4は、図10および図11に示した変換器1Bの構造を電磁界解析して得られた不要放射特性を示すデータである。破線で示すデータD3は、図8および図9に示した変換器1Aの構造を電磁界解析して得られた不要放射特性を示すデータである。変換器1Aでは、Φ=0(deg.)における不要電波の最大放射量が、θ=0(deg.)で-5.13(dB)である。一方、変換器1Bでは、Φ=0(deg.)における不要電波の最大放射量が、θ=0(deg.)で-8.10(dB)である。不要電波の放射量は、変換器1Bにおいて、ΔG1=2.97(dB)だけ改善している。
 以上のように、実施の形態3に係る変換器1Bは、誘電体基板3の正面上に設けられた浮遊導体8aおよび浮遊導体8bの一部に設けられた四角形の切り欠き部9aおよび切り欠き部9bを備える。切り欠き部9aおよび切り欠き部9bは、誘電体基板3を介して、スロット5の長手方向(y軸方向)に沿った同一の直線上に配置されている。この構成を有することにより、実施の形態1と同様の効果が得られ、さらに浮遊導体8aおよび浮遊導体8bからの放射が低減される。
 実施の形態1に係る変換器1、実施の形態2に係る変換器1Aおよび実施の形態3に係る変換器1Bは、アンテナ装置に搭載してもよい。この場合、変換器1、変換器1Aおよび変換器1Bのそれぞれが小型化できるので、これらのいずれかを備えたアンテナ装置についても小型化することが可能である。
 なお、本発明は上記実施の形態に限定されるものではなく、本発明の範囲内において、実施の形態のそれぞれの自由な組み合わせまたは実施の形態のそれぞれの任意の構成要素の変形もしくは実施の形態のそれぞれにおいて任意の構成要素の省略が可能である。
 この発明に係る変換器は、小型かつ電波の不要放射を抑圧することができるので、例えば、車載用のアンテナ装置に利用することが可能である。
 1,1A,1B 変換器、2 導波管、3 誘電体基板、4,7 導体パターン、4a,7a 電気的開放部、4a-1,4a-2,7a-1,7a-2 折り曲げ部、4b,7b 入出力端子、4c スタブ、4d,7c 変換部、4e~4g,7d インピーダンス変成部、5,5A スロット、6 接地導体、8a,8b 浮遊導体、9a,9b 切り欠き部。

Claims (15)

  1.  導波管と、
     前記導波管の一方の端部が背面側に接続された誘電体基板と、
     前記誘電体基板の正面に設けられ、一方の端部に信号の入出力端子を有し、他方の端部に電気的に開放された電気的開放部を有した導体パターンと、
     前記誘電体基板の背面に設けられた接地導体と、
     前記接地導体における前記導波管の一方の端部に覆われた領域に設けられた1つまたは複数のスロットとを備え、
     前記導体パターンの一部は、前記誘電体基板を介した前記導波管の一方の端部の直上に位置し、
     前記電気的開放部は、環状のパターンであること
     を特徴とする変換器。
  2.  前記導体パターンは、前記電気的開放部から前記入出力端子に向けて延びた帯状のパターンであり、
     前記帯状のパターンは、異なる特性インピーダンスとなる複数のパターン幅をそれぞれ有すること
     を特徴とする請求項1記載の変換器。
  3.  前記誘電体基板の正面に設けられた浮遊導体を備え、
     前記浮遊導体の一部は、前記誘電体基板を介した前記導波管の一方の端部の直上に位置すること
     を特徴とする請求項1記載の変換器。
  4.  前記導体パターンは、マイクロストリップ線路、ストリップ線路、コプレーナ線路および前記接地導体を有するコプレーナ線路のうちのいずれかを構成すること
     を特徴とする請求項1記載の変換器。
  5.  前記電気的開放部は、前記誘電体基板を介した前記導波管の一方の端部の直上の位置から、前記入出力端子と対向する側に管内波長の2分の1波長の0倍または1以上の整数倍だけ離れた位置にあること
     を特徴とする請求項1記載の変換器。
  6.  前記電気的開放部は、管内波長の2分の1波長の1以上の自然数倍の全周長さの環状のパターンであること
     を特徴とする請求項1記載の変換器。
  7.  前記電気的開放部は、1辺が管内波長の2分の1波長の長さである三角形の環状のパターンであること
     を特徴とする請求項1記載の変換器。
  8.  前記電気的開放部は、同じパターン幅の環状のパターンまたは一部のパターン幅が異なる環状のパターンであること
     を特徴とする請求項1記載の変換器。
  9.  前記浮遊導体は、矩形状または多角形状のパターンであること
     を特徴とする請求項3記載の変換器。
  10.  前記浮遊導体は、少なくとも一つ以上の切り欠き部を有し、
     前記切り欠き部は、前記誘電体基板を介して前記スロットの長手方向に沿った直線上に配置されること
     を特徴とする請求項3または請求項9記載の変換器。
  11.  前記スロットは、矩形状またはH字形状であること
     を特徴とする請求項1記載の変換器。
  12.  前記誘電体基板は、複数の基板で構成された多層誘電体基板であること
     を特徴とする請求項1記載の変換器。
  13.  前記導波管は、金属製の管壁を有した中空導波管であること
     を特徴とする請求項1記載の変換器。
  14.  前記導波管は、金属製の管壁を有し、一部に誘電体が充填されている、または、管壁に複数のスルーホールが形成され、一部に誘電体が充填されていること
     を特徴とする請求項1記載の変換器。
  15.  請求項1から請求項14のいずれか1項記載の変換器を備えたアンテナ装置。
PCT/JP2018/027973 2018-01-19 2018-07-25 変換器およびアンテナ装置 WO2019142377A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019565695A JP6687303B2 (ja) 2018-01-19 2018-07-25 変換器およびアンテナ装置
DE112018006410.7T DE112018006410T5 (de) 2018-01-19 2018-07-25 Umsetzer und antennenvorrichtung
US16/927,041 US11387534B2 (en) 2018-01-19 2020-07-13 Converter and antenna device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/001559 WO2019142314A1 (ja) 2018-01-19 2018-01-19 変換器およびアンテナ装置
JPPCT/JP2018/001559 2018-01-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/927,041 Continuation US11387534B2 (en) 2018-01-19 2020-07-13 Converter and antenna device

Publications (1)

Publication Number Publication Date
WO2019142377A1 true WO2019142377A1 (ja) 2019-07-25

Family

ID=67301356

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/001559 WO2019142314A1 (ja) 2018-01-19 2018-01-19 変換器およびアンテナ装置
PCT/JP2018/027973 WO2019142377A1 (ja) 2018-01-19 2018-07-25 変換器およびアンテナ装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001559 WO2019142314A1 (ja) 2018-01-19 2018-01-19 変換器およびアンテナ装置

Country Status (4)

Country Link
US (1) US11387534B2 (ja)
JP (1) JP6687303B2 (ja)
DE (1) DE112018006410T5 (ja)
WO (2) WO2019142314A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021144828A1 (ja) * 2020-01-14 2021-07-22 三菱電機株式会社 変換器、及びアンテナ装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230035534A1 (en) * 2020-03-06 2023-02-02 Mitsubishi Electric Corporation Waveguide microstrip line converter
DE112020007647T5 (de) * 2020-10-01 2023-07-13 Mitsubishi Electric Corporation Wellenleiter-Mikrostreifenleitungswandler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5455150A (en) * 1977-10-12 1979-05-02 Hitachi Ltd Waveguide-strip line converter
JPS6413802U (ja) * 1987-07-15 1989-01-24
US20020097109A1 (en) * 2000-12-21 2002-07-25 Du Toit Cornelis Frederik Waveguide to microstrip transition
JP2003501851A (ja) * 1999-05-27 2003-01-14 エイチアールエル ラボラトリーズ,エルエルシー ストリップ線路と導波管との間の移行
JP2004187224A (ja) * 2002-12-06 2004-07-02 Toko Inc 誘電体導波管共振器の入出力結合構造

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189204A (ja) * 1988-01-22 1989-07-28 Fujitsu Ltd 導波管−マイクロ・ストリップ線路変換器
JP2004096206A (ja) 2002-08-29 2004-03-25 Fujitsu Ten Ltd 導波管・平面線路変換器、及び高周波回路装置
US7498896B2 (en) * 2007-04-27 2009-03-03 Delphi Technologies, Inc. Waveguide to microstrip line coupling apparatus
JP5334242B2 (ja) * 2008-09-05 2013-11-06 大学共同利用機関法人自然科学研究機構 受信イメージングアンテナアレイ
EP2403055B1 (en) * 2009-02-27 2019-11-06 Mitsubishi Electric Corporation Waveguide-microstrip line converter
JP5431433B2 (ja) * 2011-09-30 2014-03-05 株式会社東芝 高周波線路−導波管変換器
WO2015133454A1 (ja) * 2014-03-03 2015-09-11 株式会社フジクラ アンテナモジュール、及び、その実装方法
JP6534911B2 (ja) 2015-10-29 2019-06-26 日本ピラー工業株式会社 導波管・マイクロストリップ線路変換器
JP6415790B2 (ja) * 2016-07-05 2018-10-31 三菱電機株式会社 導波管−平面導波路変換器
CN106549203B (zh) 2016-11-12 2018-10-23 电子科技大学 一种耦合微带线到矩形波导的转换电路
WO2018116416A1 (ja) * 2016-12-21 2018-06-28 三菱電機株式会社 導波管マイクロストリップ線路変換器およびアンテナ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5455150A (en) * 1977-10-12 1979-05-02 Hitachi Ltd Waveguide-strip line converter
JPS6413802U (ja) * 1987-07-15 1989-01-24
JP2003501851A (ja) * 1999-05-27 2003-01-14 エイチアールエル ラボラトリーズ,エルエルシー ストリップ線路と導波管との間の移行
US20020097109A1 (en) * 2000-12-21 2002-07-25 Du Toit Cornelis Frederik Waveguide to microstrip transition
JP2004187224A (ja) * 2002-12-06 2004-07-02 Toko Inc 誘電体導波管共振器の入出力結合構造

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARUYAMA, TAKASHI: "Through-holeless waveguide using multistage impedance transformer-microstrip line converter", PROCEEDINGS OF THE 2107 IEICE GENERAL CONFERENCE ELECTRONICS 1, 25 March 2017 (2017-03-25) *
NAKAJIMA ET AL.: "Through-hole less microstrip line to waveguide transition with quarter-wavelength open stubs", PROCEEDINGS OF ISAP2016, vol. 3A2, 28 October 2016 (2016-10-28), pages 550 - 551, XP033043408, Retrieved from the Internet <URL:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7821197> *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021144828A1 (ja) * 2020-01-14 2021-07-22 三菱電機株式会社 変換器、及びアンテナ装置
JPWO2021144828A1 (ja) * 2020-01-14 2021-07-22
JP7113986B2 (ja) 2020-01-14 2022-08-05 三菱電機株式会社 変換器、及びアンテナ装置

Also Published As

Publication number Publication date
JPWO2019142377A1 (ja) 2020-04-02
JP6687303B2 (ja) 2020-04-22
WO2019142314A1 (ja) 2019-07-25
DE112018006410T5 (de) 2020-09-03
US20200343613A1 (en) 2020-10-29
US11387534B2 (en) 2022-07-12

Similar Documents

Publication Publication Date Title
US7132905B2 (en) Input/output coupling structure for dielectric waveguide having conductive coupling patterns separated by a spacer
JP4884532B2 (ja) 伝送線路変換器
JP5566169B2 (ja) アンテナ装置
WO2018116416A1 (ja) 導波管マイクロストリップ線路変換器およびアンテナ装置
US7471165B2 (en) High-frequency balun
JP6362820B2 (ja) 同軸線路−導波管変換器
WO2019142377A1 (ja) 変換器およびアンテナ装置
WO2019138603A1 (ja) 導波管マイクロストリップ線路変換器およびアンテナ装置
JP2005260570A (ja) マイクロストリップ線路導波管変換器
JP2006191428A (ja) マイクロストリップ線路導波管変換器
JP3317293B2 (ja) 導波管・伝送線路変換器
JP2010056920A (ja) 導波管マイクロストリップ線路変換器
JP4764358B2 (ja) マイクロストリップ線路−導波管変換器
JPH04271501A (ja) 導波管−マイクロストリップ線路変換器
JP2008079085A (ja) 伝送線路導波管変換器
JP4200684B2 (ja) 導波管・伝送線路変換器
JPH10242718A (ja) 平面誘電体集積回路
JP2006081160A (ja) 伝送路変換器
WO2021144828A1 (ja) 変換器、及びアンテナ装置
JP7305059B2 (ja) 導波管マイクロストリップ線路変換器
JP2010118857A (ja) 集積導波管を用いた伝送線路
WO2021176712A1 (ja) 導波管マイクロストリップ線路変換器
JP6839554B2 (ja) 高周波回路基板
JPS6318170Y2 (ja)
JP4103330B2 (ja) Nrdガイドl型アンテナ素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900782

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019565695

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18900782

Country of ref document: EP

Kind code of ref document: A1