WO2019139608A1 - Submersible vacuum cleaner - Google Patents

Submersible vacuum cleaner Download PDF

Info

Publication number
WO2019139608A1
WO2019139608A1 PCT/US2018/013476 US2018013476W WO2019139608A1 WO 2019139608 A1 WO2019139608 A1 WO 2019139608A1 US 2018013476 W US2018013476 W US 2018013476W WO 2019139608 A1 WO2019139608 A1 WO 2019139608A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
vacuum cleaner
liquid
pump
cleaner according
Prior art date
Application number
PCT/US2018/013476
Other languages
French (fr)
Inventor
Matthew D'AGUANNO
Original Assignee
Daguanno Matthew
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daguanno Matthew filed Critical Daguanno Matthew
Priority to US16/340,870 priority Critical patent/US20200308858A1/en
Priority to EP18702037.5A priority patent/EP3737808A1/en
Priority to CN201880085997.1A priority patent/CN111566295A/en
Priority to PCT/US2018/013476 priority patent/WO2019139608A1/en
Publication of WO2019139608A1 publication Critical patent/WO2019139608A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H4/00Swimming or splash baths or pools
    • E04H4/14Parts, details or accessories not otherwise provided for
    • E04H4/16Parts, details or accessories not otherwise provided for specially adapted for cleaning
    • E04H4/1618Hand-held powered cleaners
    • E04H4/1636Suction cleaners
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H4/00Swimming or splash baths or pools
    • E04H4/14Parts, details or accessories not otherwise provided for
    • E04H4/16Parts, details or accessories not otherwise provided for specially adapted for cleaning
    • E04H4/1618Hand-held powered cleaners
    • E04H4/1636Suction cleaners
    • E04H4/1645Connections to the pool water circulation system

Definitions

  • swimming pools accumulate debris over a period of time. Some of the debris is cleaned from the pool water as the water is recycled and filtered. Other debris sinks to the bottom of the pool and is not cleaned during water recycling and filtration. To clean the debris that sink to the bottom of the pool, a swimming pool vacuum cleaner may be employed.
  • Robotic automatic pool cleaners The robotic cleaners crawl on belts or are driven on wheels automatically and clean/vacuum debris off the floor of the pool. They are fairly expensive ($900 - $10,000) and are time consuming (average cleaning time 1 1 ⁇ 2 - 3 hours to clean a pool).
  • a large vacuum hose connected to the existing pool equipment via a wall suction or skimmer line.
  • a 1 1 ⁇ 2" x 40' - 50' vacuum hose is connected to a suction line looped into existing pool equipment.
  • Many homeowners, commercial hotels, and pool maintenance companies use this method of cleaning.
  • Home owners have a difficult time learning how to prime (remove air and have water flow) the hose so they can vacuum.
  • Carrying and storing a 50' hose is time consuming and inconvenient. This method also puts pool debris into the pool filter which then needs to be cleaned.
  • This method is for a person who has their own equipment (homeowners, pool maintenance companies and hotels use this method) which they have to carry to the side of the pool in order to vacuum.
  • the equipment consists of a complete pump/motor (30-40 lbs), a large filter (10 lbs, 3' h x 15" d), 40' - 50' of 1 1 ⁇ 2" vacuum hose which is carried to the pool and assembled. Priming a 50' hose is time consuming and difficult to learn. After vacuuming the pool, the 50' hose needs to be rolled up. The pump/motor, filter, and hose are disassembled and then carried back to the work vehicle. Lugging the equipment to and from the pool area and assembling and disassembling the equipment are very time consuming and bulky work to do. Also, the equipment occupies considerable space in the work vehicles.
  • Hand held battery operated vacuum device This method needs 4 - 10 hours of charging time before the vacuum can be used.
  • the battery vacuum device is connected to a standard swimming pool pole and vacuuming begins.
  • the device has a possible 30-45 minute charge depending on the condition of the battery.
  • the device is designed for spot cleaning a pool or complete cleaning of a spa/small body of water. This device cannot clean a large above ground or in ground pool as well as the previous four methods. This device has a short life span due to water and battery complications.
  • a number of swimming pool vacuum cleaners are disclosed in the prior art. For example, the following U.S. patents disclose swimming pool vacuum cleaner apparatus: U.S. Pat. Nos.
  • the patents to Hargrave and Shuman disclose swimming pool vacuum cleaners that avoid the use of long vacuum hoses by using submersible vacuum pumps.
  • the vacuum pump in the Shuman patent is a cordless electric pump.
  • a disadvantage of the Shuman device is that its effective use time is limited by the charge retained in its rechargeable batteries. In this respect, it would be desirable if a submersible swimming pool vacuum apparatus were provided which is not limited by a charge retained by rechargeable batteries.
  • the patent to Hargrave discloses a swimming pool vacuum cleaner which employs an electrical cord running from a submersible vacuum unit to a source of electricity, e.g. an AC outlet, outside the pool. It is well known that the combination of electricity and water is a dangerous one. In this respect, it does not appear that special provisions have been made with the Hargrave device to prevent electricity from being conducted from the underwater portions of the device to a person, outside the pool, using the device.
  • the patents of Erlich and Erlich et al. disclose a battery operated pool vacuum cleaner.
  • the disadvantages of this patent are numerous.
  • the vacuuming of a pool normally takes anywhere from 40 minutes to 1 1 ⁇ 2 hours depending on the pool size.
  • the Erlich patents and product literature claim up to 45 minutes of battery run time and to charge a battery takes anywhere from 4 - 10 hours. Depending on the battery's charge, 100%, 75%, 50% would affect whether you could clean one pool completely, then waiting 4 - 10 hours to continue the cleaning is a complete waste of time.
  • the present disclosure provides a new and improved swimming pool vacuum system with a continuous external power source (not a battery), fully contained, powerful, portable vacuum including fuse protection.
  • the present disclosure relates to a fully contained powerful portable pool vacuuming system. This is not a battery operated device.
  • the vacuuming system has an unlimited power source, a large diameter intake tube, and strong 40-65 GPM water flow.
  • the vacuuming system has a discharge port for vacuuming to waste and a secondary use of removing standing or pooling water from point A to point B.
  • An object of the present disclosure is to provide a new and improved swimming pool vacuum system which vacuums the pool without using the pool filter apparatus.
  • Still another object of the present disclosure is to provide a new and improved swimming pool vacuum system which avoids the use of a vacuum hose running from a vacuum source outside the pool to a vacuuming unit located on the bottom of the pool.
  • Yet another object of the present disclosure is to provide a new and improved swimming pool vacuum system that includes a submersible swimming pool vacuum unit which is not limited by a charge retained by rechargeable batteries.
  • Even another object of the present disclosure is to provide a new and improved swimming pool vacuum system that protects a person outside the pool, who is using the underwater portion of the device, from electric shock or electrocution in the event that a short circuit develops in the underwater portion of the device.
  • Still a further object of the present disclosure is to provide a new and improved swimming pool vacuum system that employs an electrical protection in the electric circuit powering the submersible vacuum cleaner.
  • the main object of the present disclosure is to have a portable, powerful pool vacuum that eliminates the problems of the five current methods of cleaning a pool.
  • the present vacuum system of the present disclosure is more powerful, more durable, longer lasting, much quicker and more convenient than any other method that exists.
  • a liquid-submersible vacuum cleaner includes a housing defining a chamber therein and having a rear end portion and a front end portion, a DC pump disposed within the chamber and configured to move water toward the rear end portion of the housing, a filter disposed within the housing, such that water moves through the filter during activation of the DC pump, and a power converter electrically connected to the DC pump for providing power to the DC pump, wherein the power converter is located remotely from the housing.
  • the DC pump may be configured to be activated upon actuation of the power converter.
  • the vacuum cleaner may include a low voltage power cord directly coupling the power converter and the DC pump.
  • the low voltage power cord may have a front end portion attached to the DC pump at a location within the housing.
  • the DC pump may be configured to generate a flow rate of between about 40 gallons-per-minute (GPM) and about 65 GPM of water.
  • the vacuum cleaner may further include a diffuser cap configured to be coupled to the rear end portion of the housing.
  • the diffuser cap may define a plurality of slits therein to allow for the passage of water out of the housing.
  • the vacuum cleaner may further include a discharge hose cap configured to be detachably coupled to the rear end portion of the housing, wherein the discharge hose cap is configured to be coupled to a hose to allow for the passage of water out of the housing.
  • the discharge hose cap and the diffuser cap may be selectively exchangeable with one another, such that in a first operation mode, the discharge hose cap is coupled to the rear end portion of the housing, and in a second operation mode, the diffuser cap is coupled to the rear end portion of the housing.
  • the vacuum cleaner may further include a nozzle attachment configured to be coupled to the housing when the vacuum cleaner is in the first operation mode and detached from the housing when the vacuum cleaner is in the second operation mode.
  • the vacuum cleaner may further include a pair of clamps attached to the housing and being longitudinally spaced from one another.
  • the pair of clamps may be configured to releasably couple the housing to a pool pole.
  • the vacuum cleaner may further include a flexible intake hose, wherein the housing may include a port configured to provide fluid communication between the chamber of the housing and the flexible intake hose.
  • the vacuum cleaner may further include an intake valve flap disposed within the housing for inhibiting debris from moving toward the front end portion of the housing.
  • the power converter may include a fuse protector.
  • the vacuum cleaner may further include a filter access cover detachably coupled to the housing, wherein the housing and the filter access cover collectively house the filter therein.
  • a liquid-submersible vacuum cleaner in another aspect, includes a housing having a front end portion and a rear end portion, a DC pump disposed within the housing and configured to move water into, through, and out of the housing, a filter disposed within the housing, such that water moves through the filter during activation of the DC pump, and a diffuser cap and a discharge hose cap.
  • the discharge hose cap and the diffuser cap are selectively exchangeable with one another, such that in a first operation mode, the discharge hose cap is coupled to the rear end portion of the housing, and in a second operation mode, the diffuser cap is coupled to the rear end portion of the housing.
  • a nozzle attachment is configured to be coupled to the housing when the vacuum cleaner is in the first operation mode and detached from the housing when the vacuum cleaner is in the second operation mode.
  • the vacuum cleaner may further include a power converter electrically connected to the DC pump for providing power to the DC pump.
  • the vacuum cleaner may further include a low voltage power cord directly coupling the power converter and the DC pump.
  • the low voltage power cord may have a front end portion attached to the DC pump at a location within the housing.
  • the power converter may be located externally of the housing.
  • Figure 1 is an exploded view of an embodiment of the multi-functional submersible vacuum system
  • Figure 2 is a front view of a power converter coupled to an underwater rubber insulated low voltage cord of the vacuum system of figure 1;
  • Figure 3 is a an exploded view of a housing mechanism and other components of the vacuum system of figure 1;
  • Figure 4 A is a top view of the housing mechanism of figure 3;
  • Figure 4B is a front view of the housing mechanism of figure 3;
  • Figure 4C is a side view of the housing mechanism of figure 3;
  • Figure 5 is an exploded view of components of the housing mechanism and other components of the vacuum system of figure 3;
  • Figure 6 is a perspective view of the vacuum system of figure 1 submerged in a pool.
  • Figure 7 is a perspective view of the vacuum system of figure 1 in a room vacuuming water from point A to point B.
  • the vacuuming system generally includes a cylindrical housing, a direct current
  • DC underwater pump
  • a 120 volt AC to 24 volt DC converter to attach to a universal pool telescoping pole.
  • the cylindrical housing is attached via clamps parallel with a universal/standard pool telescoping pole and any vacuum head appropriate for the pool surface.
  • a short length of 1.5 inch corrugated vacuum hose attaches to vacuum head and suction side of a cleaner.
  • a DC volt pump enclosed in the housing (6-8 inches in diameter) produces 40- 65 GPM of water suction, pulling water through a filter cartridge, bag, or screen.
  • the water discharges out of the other end of the housing through a diffuser cap back into the pool.
  • the diffuser hose cap may be used to discharge the water to waste.
  • This multi-purpose wet vacuum may be a 10-volt powered fully submersible multi-port discharge design system.
  • the unit is designed to draw water through an inlet at the base of the unit by means of suction which is created by a centrifuge pump located in the general housing mechanism and is powered by an electric motor.
  • the suction created pulls water to a filter housing which contains a reusable-cleanable wet particle filter that has a long life expectancy.
  • the water passes through the filter and can be discharged to its point of origin or it can be discharged to a point which is not part of the origin supply.
  • the result is water containing suspended particulate in the origin supply will be filtered as it passes through the filter and the result is cleaner water being discharged out of the unit.
  • Water can also be passed to a different location by replacing the diffuser cap with the discharge hose cap.
  • the unit can discharge water from a location (A) to a completely different location (B) through use of interchangeable caps connecting to the housing mechanism.
  • the unit has the mobility of a vacuum and the ability to continually discharge water for extended periods of time.
  • figures 1-7 illustrate an unlimited external power source, self-contained, pump and filter vacuum system 100 (not battery operated).
  • the vacuum system 100 is capable of vacuuming debris (silt, sand, dirt, leaves and water from the bottom of pool) and filtering the water from the bottom of a pool.
  • the filtered water may be dispensed through a diffuser cap 5 back into the pool.
  • debris may be removed using a discharge hose cap 20 that allows water with debris to be removed out of the pool completely (vacuum to waste).
  • a second application of the vacuum system 100 is used for removing (to another location via a waste hose) water from a flood event or a pooling body of water. This application removes the water a sump pump cannot remove.
  • the portable vacuum system 100 replaces a cumbersome wet/dry vacuum and the need to constantly empty the container.
  • the vacuum system 100 has extremely powerful suction (40-65 GPM) and provides excellent removal of underwater debris (sand, leaves, silt, dirt, etc., and water).
  • the vacuum system 100 includes a housing mechanism 9 fabricated from a light weight molded plastic approximately 24 inches long and 7 inches wide.
  • the housing mechanism 9 may have any suitable dimensions.
  • a pump 18 is disposed inside the housing mechanism 9 and is powered by a 24 volt converter 3.
  • the power converter 2 may be any suitable voltage.
  • the converter 3 has a pig tail 2 attached thereto that is connected to a male plug 1 configured to plug into an outdoor extension cord or wall outlet.
  • the converter 3 has water tight on/off switch 0 and built-in fuse protection 1.5.
  • the converter 3 has a 50-foot underwater rubber insulated low voltage cord 4 that connects with the pump 18 in the housing mechanism 9.
  • the housing mechanism 9 connects to a standard pool pole (not included) via a pair of pole clamps 21 with rubber friction pads 15 and is secured with hinge pins 17 fastened to the vacuum pole approximately 42 inches from the vacuum head.
  • An intake fitting 14 connects to a flex intake hose 16, which connects to the vacuum head (not included).
  • the housing mechanism 9 is engaged by plugging male plug 1 into a standard
  • the housing mechanism 9 is clamped onto the pool pole and the flex intake hose 16 is connected to the vacuum head and an intake fitting 14, wherein the complete vacuum, pole and vacuum head are placed in the pool.
  • the 10-100 foot underwater rubber insulated low voltage cord 4 is clamped onto the vacuum pole with the pole clamp 24 which is connected to the converter 3, and the converter 3 is turned on to start vacuuming.
  • the pump 18 may be a 24 DC volt underwater pump capable of moving 40-65
  • the intake valve flap 13 opens to allow water to run through the filter 11 or 12.
  • the filter may be a filter bag 11, a fine or coarse mesh bag filter, a fine metal screen filter, or a pleated cartridge filter 12. After the water is filtered through the vacuum housing 9, it passes through a debris blocking grid 10 to protect the impeller of pump 18 from damage. The water passes through the pump 18 and is released through a diffuser cap 5 into the pool.
  • An O- ring seal 19 creates a water/air tight seal between the discharge hose cap 20 and/or diffuser cap 5.
  • the discharge hose cap 20 may be used to replace the diffuser cap 5 for the option to vacuum water and debris out of pool completely (vacuum to waste), using a waste hose connected to the discharge hose cap 20.
  • the discharge hose cap 20 is used for the second application of removing pooling water from point A to point B.
  • a floor vacuum nozzle attachment 23 is connected to the intake fitting 24 for this second application of the vacuum system 100.
  • the vacuum system 100 easily assembles and has many advantages in function.
  • the intake valve flap 13 stops debris from re-entering the pool when housing mechanism 9 is removed from the pool.
  • a filter access cover 8 provides easy access and cleaning of the filter.
  • the underwater rubber insulated low voltage cord 4 has a connector fitting 6 that protects the cord 4 from being disconnected from the pump 18.
  • the two vacuum pole clamps 15 attach to the housing mechanism 9.
  • the intake fitting 14 is a standard 1.5 inch fitting to accept large debris without clogging.
  • the 24 DC volt converter 3 is a continuous power source, such that the vacuum system 100 does not require the charging of batteries.
  • the vacuum system 100 does not require any battery replacement and the vacuum pump never loses power due to the use of a direct external power source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Filtration Of Liquid (AREA)
  • Cleaning In General (AREA)

Abstract

A liquid-submersible vacuum system includes a housing canister enclosing a filtration element and a water pump. Power comes from a power converter that plugs into a standard AC power supply. The vacuum system further includes a diffuser cap and a discharge hose cap, with each providing the vacuum system with a discrete mode of operation

Description

SUBMERSIBLE VACUUM CLEANER
BACKGROUND
[0001] Swimming pools accumulate debris over a period of time. Some of the debris is cleaned from the pool water as the water is recycled and filtered. Other debris sinks to the bottom of the pool and is not cleaned during water recycling and filtration. To clean the debris that sink to the bottom of the pool, a swimming pool vacuum cleaner may be employed.
[0002] Devices have been created that unsuccessfully clean debris, including hand-held battery operated systems, which have a finite application due to a limited battery life, in-floor cleaning systems or a robotic device, both of which are extremely expensive, bulky and hard to use systems, and other devices which use a power source which creates an electrocution risk.
[0003] In the swimming pool industry now, there exists only 5 ways to clean and filter debris from the floor of a pool.
[0004] 1. In-floor cleaning systems - The in-floor systems can only be installed during the construction of the pool and are very expensive ($10,000 - $30,000). They are not available to the average pool owner.
[0005] 2. Robotic automatic pool cleaners - The robotic cleaners crawl on belts or are driven on wheels automatically and clean/vacuum debris off the floor of the pool. They are fairly expensive ($900 - $5,000) and are time consuming (average cleaning time 1 ½ - 3 hours to clean a pool).
[0006] 3. A large vacuum hose connected to the existing pool equipment via a wall suction or skimmer line. A 1 ½" x 40' - 50' vacuum hose is connected to a suction line looped into existing pool equipment. Many homeowners, commercial hotels, and pool maintenance companies use this method of cleaning. Home owners have a difficult time learning how to prime (remove air and have water flow) the hose so they can vacuum. Carrying and storing a 50' hose is time consuming and inconvenient. This method also puts pool debris into the pool filter which then needs to be cleaned.
[0007] 4. This method is for a person who has their own equipment (homeowners, pool maintenance companies and hotels use this method) which they have to carry to the side of the pool in order to vacuum. The equipment consists of a complete pump/motor (30-40 lbs), a large filter (10 lbs, 3' h x 15" d), 40' - 50' of 1 ½" vacuum hose which is carried to the pool and assembled. Priming a 50' hose is time consuming and difficult to learn. After vacuuming the pool, the 50' hose needs to be rolled up. The pump/motor, filter, and hose are disassembled and then carried back to the work vehicle. Lugging the equipment to and from the pool area and assembling and disassembling the equipment are very time consuming and bulky work to do. Also, the equipment occupies considerable space in the work vehicles.
[0008] 5. Hand held battery operated vacuum device - This method needs 4 - 10 hours of charging time before the vacuum can be used. The battery vacuum device is connected to a standard swimming pool pole and vacuuming begins. The device has a possible 30-45 minute charge depending on the condition of the battery. The device is designed for spot cleaning a pool or complete cleaning of a spa/small body of water. This device cannot clean a large above ground or in ground pool as well as the previous four methods. This device has a short life span due to water and battery complications. [0009] A number of swimming pool vacuum cleaners are disclosed in the prior art. For example, the following U.S. patents disclose swimming pool vacuum cleaner apparatus: U.S. Pat. Nos. 3,868,739 to Hargrave; 4,240,173 to Sherrill; 4,637,086 to Goode; 4,718,129 to Miller; 4,962,559 to Shuman; 7,060,182 to Erlich et al.; and 6,939,460 to Erlich.
[0010] The patents to Sherrill, Goode, and Miller disclose devices which employ a vacuum source outside the pool and provide a vacuum hose running from the vacuum source to the bottom of the pool. The devices disclosed in these patents avoid any potential problems that might result if water and electricity were to mix. Yet, a disadvantage of these devices is that a large and heavy vacuum hose must be employed. ETse of such a large and heavy vacuum hose is undesirable for a number of reasons. Much physical effort must be expended to unwind the hose, use the hose, and rewind the hose. The hose is susceptible to rotting and leaking, thereby reducing its effectiveness. A large hose requires quite a bit of storage space when the hose is not being used. It would be desirable, therefore, if a swimming pool vacuum apparatus were provided which avoided the use of a vacuum hose running from a vacuum source outside the pool to the bottom of the pool.
[0011] The patents to Hargrave and Shuman disclose swimming pool vacuum cleaners that avoid the use of long vacuum hoses by using submersible vacuum pumps. The vacuum pump in the Shuman patent is a cordless electric pump. A disadvantage of the Shuman device is that its effective use time is limited by the charge retained in its rechargeable batteries. In this respect, it would be desirable if a submersible swimming pool vacuum apparatus were provided which is not limited by a charge retained by rechargeable batteries. [0012] The patent to Hargrave discloses a swimming pool vacuum cleaner which employs an electrical cord running from a submersible vacuum unit to a source of electricity, e.g. an AC outlet, outside the pool. It is well known that the combination of electricity and water is a dangerous one. In this respect, it does not appear that special provisions have been made with the Hargrave device to prevent electricity from being conducted from the underwater portions of the device to a person, outside the pool, using the device.
[0013] Thus, while the foregoing body of prior art indicates it to be well known to use submersible swimming pool vacuum cleaners, the prior art described above does not teach or suggest a submersible swimming pool vacuum apparatus which is not limited by a charge retained by rechargeable batteries and which provides electrical protection to protect a person outside the pool, who is using the underwater portion of the device, from electric shock or electrocution in the event that a short circuit develops in the underwater portion of the device. Moreover, the prior art does not provide an electrical protection device in the electric circuit powering the submersible vacuum cleaner.
[0014] The patents of Erlich and Erlich et al. disclose a battery operated pool vacuum cleaner. The disadvantages of this patent are numerous. The vacuuming of a pool normally takes anywhere from 40 minutes to 1 ½ hours depending on the pool size. The Erlich patents and product literature claim up to 45 minutes of battery run time and to charge a battery takes anywhere from 4 - 10 hours. Depending on the battery's charge, 100%, 75%, 50% would affect whether you could clean one pool completely, then waiting 4 - 10 hours to continue the cleaning is a complete waste of time. The product seems to be a good idea on paper, but in reality the intake port has too small of a diameter to vacuum large leaves, the vacuum has a restricted limit to how long the battery lasts, and the motor only has 8 gallons-per-minute (“GPM”) of suction power. The 8 GPM is not enough to handle cleaning an average pool. Water contamination with battery components destroys the device. More specifically with respect to Erlich et al, their vacuum power (water flow GPM) is too weak for any large body of water being cleaned properly. Water and batteries submerged in water do not function well together. The largest customer complaint is battery failure.
[0015] It would be advantageous for a portable vacuum to have a continuous power source, to be powerful enough to clean all debris (large and small) that accumulates in said body of water, and to provide protection for a user from electrocution.
[0016] The foregoing disadvantages are overcome by the unique swimming pool vacuum system of the present disclosure as will be made apparent from the following description thereof. Other advantages of the present disclosure over the prior art also will be rendered evident.
SUMMARY
[0017] To achieve the foregoing and other advantages, the present disclosure provides a new and improved swimming pool vacuum system with a continuous external power source (not a battery), fully contained, powerful, portable vacuum including fuse protection. The present disclosure relates to a fully contained powerful portable pool vacuuming system. This is not a battery operated device. The vacuuming system has an unlimited power source, a large diameter intake tube, and strong 40-65 GPM water flow. The vacuuming system has a discharge port for vacuuming to waste and a secondary use of removing standing or pooling water from point A to point B. [0018] An object of the present disclosure is to provide a new and improved swimming pool vacuum system which vacuums the pool without using the pool filter apparatus.
[0019] Still another object of the present disclosure is to provide a new and improved swimming pool vacuum system which avoids the use of a vacuum hose running from a vacuum source outside the pool to a vacuuming unit located on the bottom of the pool.
[0020] Yet another object of the present disclosure is to provide a new and improved swimming pool vacuum system that includes a submersible swimming pool vacuum unit which is not limited by a charge retained by rechargeable batteries.
[0021] Even another object of the present disclosure is to provide a new and improved swimming pool vacuum system that protects a person outside the pool, who is using the underwater portion of the device, from electric shock or electrocution in the event that a short circuit develops in the underwater portion of the device.
[0022] Still a further object of the present disclosure is to provide a new and improved swimming pool vacuum system that employs an electrical protection in the electric circuit powering the submersible vacuum cleaner.
[0023] The main object of the present disclosure is to have a portable, powerful pool vacuum that eliminates the problems of the five current methods of cleaning a pool. The present vacuum system of the present disclosure is more powerful, more durable, longer lasting, much quicker and more convenient than any other method that exists.
[0024] In one aspect, a liquid-submersible vacuum cleaner is provided and includes a housing defining a chamber therein and having a rear end portion and a front end portion, a DC pump disposed within the chamber and configured to move water toward the rear end portion of the housing, a filter disposed within the housing, such that water moves through the filter during activation of the DC pump, and a power converter electrically connected to the DC pump for providing power to the DC pump, wherein the power converter is located remotely from the housing.
[0025] In aspects, the DC pump may be configured to be activated upon actuation of the power converter.
[0026] In aspects, the vacuum cleaner may include a low voltage power cord directly coupling the power converter and the DC pump.
[0027] In aspects, the low voltage power cord may have a front end portion attached to the DC pump at a location within the housing.
[0028] In aspects, the DC pump may be configured to generate a flow rate of between about 40 gallons-per-minute (GPM) and about 65 GPM of water.
[0029] In aspects, the vacuum cleaner may further include a diffuser cap configured to be coupled to the rear end portion of the housing.
[0030] In aspects, the diffuser cap may define a plurality of slits therein to allow for the passage of water out of the housing.
[0031] In aspects, the vacuum cleaner may further include a discharge hose cap configured to be detachably coupled to the rear end portion of the housing, wherein the discharge hose cap is configured to be coupled to a hose to allow for the passage of water out of the housing.
[0032] In aspects, the discharge hose cap and the diffuser cap may be selectively exchangeable with one another, such that in a first operation mode, the discharge hose cap is coupled to the rear end portion of the housing, and in a second operation mode, the diffuser cap is coupled to the rear end portion of the housing.
[0033] In aspects, the vacuum cleaner may further include a nozzle attachment configured to be coupled to the housing when the vacuum cleaner is in the first operation mode and detached from the housing when the vacuum cleaner is in the second operation mode.
[0034] In aspects, the vacuum cleaner may further include a pair of clamps attached to the housing and being longitudinally spaced from one another. The pair of clamps may be configured to releasably couple the housing to a pool pole.
[0035] In aspects, the vacuum cleaner may further include a flexible intake hose, wherein the housing may include a port configured to provide fluid communication between the chamber of the housing and the flexible intake hose.
[0036] In aspects, the vacuum cleaner may further include an intake valve flap disposed within the housing for inhibiting debris from moving toward the front end portion of the housing.
[0037] In aspects, the power converter may include a fuse protector.
[0038] In aspects, the vacuum cleaner may further include a filter access cover detachably coupled to the housing, wherein the housing and the filter access cover collectively house the filter therein.
[0039] In another aspect, a liquid-submersible vacuum cleaner includes a housing having a front end portion and a rear end portion, a DC pump disposed within the housing and configured to move water into, through, and out of the housing, a filter disposed within the housing, such that water moves through the filter during activation of the DC pump, and a diffuser cap and a discharge hose cap. The discharge hose cap and the diffuser cap are selectively exchangeable with one another, such that in a first operation mode, the discharge hose cap is coupled to the rear end portion of the housing, and in a second operation mode, the diffuser cap is coupled to the rear end portion of the housing. A nozzle attachment is configured to be coupled to the housing when the vacuum cleaner is in the first operation mode and detached from the housing when the vacuum cleaner is in the second operation mode.
[0040] In aspects, the vacuum cleaner may further include a power converter electrically connected to the DC pump for providing power to the DC pump.
[0041] In aspects, the vacuum cleaner may further include a low voltage power cord directly coupling the power converter and the DC pump.
[0042] In aspects, the low voltage power cord may have a front end portion attached to the DC pump at a location within the housing.
[0043] In aspects, the power converter may be located externally of the housing.
[0044] Other features of the present disclosure will be appreciated from the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
[0045] Figure 1 is an exploded view of an embodiment of the multi-functional submersible vacuum system;
[0046] Figure 2 is a front view of a power converter coupled to an underwater rubber insulated low voltage cord of the vacuum system of figure 1;
[0047] Figure 3 is a an exploded view of a housing mechanism and other components of the vacuum system of figure 1;
[0048] Figure 4 A is a top view of the housing mechanism of figure 3; [0049] Figure 4B is a front view of the housing mechanism of figure 3;
[0050] Figure 4C is a side view of the housing mechanism of figure 3;
[0051] Figure 5 is an exploded view of components of the housing mechanism and other components of the vacuum system of figure 3;
[0052] Figure 6 is a perspective view of the vacuum system of figure 1 submerged in a pool; and
[0053] Figure 7 is a perspective view of the vacuum system of figure 1 in a room vacuuming water from point A to point B.
DETAILED DESCRIPTION
[0054] With reference to the drawings, a new and improved swimming pool vacuum system embodying the principles and concepts of the present disclosure will be described.
[0055] The vacuuming system generally includes a cylindrical housing, a direct current
(DC) underwater pump, a 120 volt AC to 24 volt DC converter, a filter, an underwater low voltage cord, and a clamp system to attach to a universal pool telescoping pole. The cylindrical housing is attached via clamps parallel with a universal/standard pool telescoping pole and any vacuum head appropriate for the pool surface. A short length of 1.5 inch corrugated vacuum hose attaches to vacuum head and suction side of a cleaner. A DC volt pump enclosed in the housing (6-8 inches in diameter) produces 40- 65 GPM of water suction, pulling water through a filter cartridge, bag, or screen. The water discharges out of the other end of the housing through a diffuser cap back into the pool. In addition to or in the alternative, the diffuser hose cap may be used to discharge the water to waste. [0056] This multi-purpose wet vacuum may be a 10-volt powered fully submersible multi-port discharge design system. The unit is designed to draw water through an inlet at the base of the unit by means of suction which is created by a centrifuge pump located in the general housing mechanism and is powered by an electric motor. The suction created pulls water to a filter housing which contains a reusable-cleanable wet particle filter that has a long life expectancy. The water passes through the filter and can be discharged to its point of origin or it can be discharged to a point which is not part of the origin supply. The result is water containing suspended particulate in the origin supply will be filtered as it passes through the filter and the result is cleaner water being discharged out of the unit.
[0057] Water can also be passed to a different location by replacing the diffuser cap with the discharge hose cap. The unit can discharge water from a location (A) to a completely different location (B) through use of interchangeable caps connecting to the housing mechanism. The unit has the mobility of a vacuum and the ability to continually discharge water for extended periods of time.
[0058] As described herein, figures 1-7 illustrate an unlimited external power source, self-contained, pump and filter vacuum system 100 (not battery operated). The vacuum system 100 is capable of vacuuming debris (silt, sand, dirt, leaves and water from the bottom of pool) and filtering the water from the bottom of a pool. The filtered water may be dispensed through a diffuser cap 5 back into the pool. In addition or in the alternative, debris may be removed using a discharge hose cap 20 that allows water with debris to be removed out of the pool completely (vacuum to waste). A second application of the vacuum system 100 is used for removing (to another location via a waste hose) water from a flood event or a pooling body of water. This application removes the water a sump pump cannot remove. The portable vacuum system 100 replaces a cumbersome wet/dry vacuum and the need to constantly empty the container. The vacuum system 100 has extremely powerful suction (40-65 GPM) and provides excellent removal of underwater debris (sand, leaves, silt, dirt, etc., and water).
[0059] As shown in Fig. 1, the vacuum system 100 includes a housing mechanism 9 fabricated from a light weight molded plastic approximately 24 inches long and 7 inches wide. In aspects, the housing mechanism 9 may have any suitable dimensions. A pump 18 is disposed inside the housing mechanism 9 and is powered by a 24 volt converter 3. In aspects, the power converter 2 may be any suitable voltage. The converter 3 has a pig tail 2 attached thereto that is connected to a male plug 1 configured to plug into an outdoor extension cord or wall outlet. The converter 3 has water tight on/off switch 0 and built-in fuse protection 1.5. The converter 3 has a 50-foot underwater rubber insulated low voltage cord 4 that connects with the pump 18 in the housing mechanism 9. The housing mechanism 9 connects to a standard pool pole (not included) via a pair of pole clamps 21 with rubber friction pads 15 and is secured with hinge pins 17 fastened to the vacuum pole approximately 42 inches from the vacuum head. An intake fitting 14 connects to a flex intake hose 16, which connects to the vacuum head (not included).
[0060] The housing mechanism 9 is engaged by plugging male plug 1 into a standard
110/120 electric outlet via an outdoor extension cord. The housing mechanism 9 is clamped onto the pool pole and the flex intake hose 16 is connected to the vacuum head and an intake fitting 14, wherein the complete vacuum, pole and vacuum head are placed in the pool. The 10-100 foot underwater rubber insulated low voltage cord 4 is clamped onto the vacuum pole with the pole clamp 24 which is connected to the converter 3, and the converter 3 is turned on to start vacuuming. [0061] The pump 18 may be a 24 DC volt underwater pump capable of moving 40-65
GPM. Water suction is created in the intake fitting 14 and water begins its journey through the housing mechanism 9. The intake valve flap 13 opens to allow water to run through the filter 11 or 12. The filter may be a filter bag 11, a fine or coarse mesh bag filter, a fine metal screen filter, or a pleated cartridge filter 12. After the water is filtered through the vacuum housing 9, it passes through a debris blocking grid 10 to protect the impeller of pump 18 from damage. The water passes through the pump 18 and is released through a diffuser cap 5 into the pool. An O- ring seal 19 creates a water/air tight seal between the discharge hose cap 20 and/or diffuser cap 5.
[0062] The discharge hose cap 20 may be used to replace the diffuser cap 5 for the option to vacuum water and debris out of pool completely (vacuum to waste), using a waste hose connected to the discharge hose cap 20. The discharge hose cap 20 is used for the second application of removing pooling water from point A to point B. A floor vacuum nozzle attachment 23 is connected to the intake fitting 24 for this second application of the vacuum system 100.
[0063] The vacuum system 100 easily assembles and has many advantages in function.
For example, the intake valve flap 13 stops debris from re-entering the pool when housing mechanism 9 is removed from the pool. A filter access cover 8 provides easy access and cleaning of the filter. For further ease of use, there is a full filter bag indicator 7 to notify a user when to clean the filter bag 11. The underwater rubber insulated low voltage cord 4 has a connector fitting 6 that protects the cord 4 from being disconnected from the pump 18. The two vacuum pole clamps 15 attach to the housing mechanism 9. The intake fitting 14 is a standard 1.5 inch fitting to accept large debris without clogging. The 24 DC volt converter 3 is a continuous power source, such that the vacuum system 100 does not require the charging of batteries. The vacuum system 100 does not require any battery replacement and the vacuum pump never loses power due to the use of a direct external power source.
[0064] Persons skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary aspects. It is envisioned that the elements and features illustrated or described in connection with one exemplary aspect may be combined with the elements and features of another without departing from the scope of the present disclosure. As well, one skilled in the art will appreciate further features and advantages of the disclosure based on the above-described aspects. Accordingly, the disclosure is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.

Claims

WHAT IS CLAIMED IS:
1. A liquid-submersible vacuum cleaner, comprising:
a housing defining a chamber therein and having a rear end portion and a front end portion;
a DC pump disposed within the chamber and configured to move water toward the rear end portion of the housing;
a filter disposed within the housing, such that water moves through the filter during activation of the DC pump; and
a power converter electrically connected to the DC pump for providing power to the DC pump, wherein the power converter is located remotely from the housing.
2. The liquid-submersible vacuum cleaner according to claim 1, wherein the DC pump is configured to be activated upon actuation of the power converter.
3. The liquid-submersible vacuum cleaner according to claim 1, further comprising a low voltage power cord directly coupling the power converter and the DC pump.
4. The liquid-submersible vacuum cleaner according to claim 3, wherein the low voltage power cord has a front end portion attached to the DC pump at a location within the housing.
5. The liquid-submersible vacuum cleaner according to claim 1, wherein the DC pump is configured to generate a flow rate of between about 40 gallons-per-minute (GPM) and about 65
GPM of water
6. The liquid-submersible vacuum cleaner according to claim 1, further comprising a diffuser cap configured to be coupled to the rear end portion of the housing.
7. The liquid-submersible vacuum cleaner according to claim 6, wherein the diffuser cap defines a plurality of slits therein to allow for the passage of water out of the housing.
8. The liquid-submersible vacuum cleaner according to claim 6, further comprising a discharge hose cap configured to be detachably coupled to the rear end portion of the housing, wherein the discharge hose cap is configured to be coupled to a hose to allow for the passage of water out of the housing.
9. The liquid-submersible vacuum cleaner according to claim 1, wherein the discharge hose cap and the diffuser cap are selectively exchangeable with one another, such that in a first operation mode, the discharge hose cap is coupled to the rear end portion of the housing, and in a second operation mode, the diffuser cap is coupled to the rear end portion of the housing.
10. The liquid-submersible vacuum cleaner according to claim 9, further comprising a nozzle attachment configured to be coupled to the housing when the vacuum cleaner is in the first operation mode and detached from the housing when the vacuum cleaner is in the second operation mode.
11. The liquid-submersible vacuum cleaner according to claim 1, further comprising a pair of clamps attached to the housing and being longitudinally spaced from one another, the pair of clamps configured to releasably couple the housing to a pool pole.
12. The liquid-submersible vacuum cleaner according to claim 1, further comprising a flexible intake hose, wherein the housing includes a port configured to provide fluid communication between the chamber of the housing and the flexible intake hose.
13. The liquid-submersible vacuum cleaner according to claim 1, further comprising an intake valve flap disposed within the housing for inhibiting debris from moving toward the front end portion of the housing.
14. The liquid-submersible vacuum cleaner according to claim 1, wherein the power converter includes a fuse protector.
15. The liquid-submersible vacuum cleaner according to claim 1, further comprising a filter access cover detachably coupled to the housing, wherein the housing and the filter access cover collectively house the filter therein.
16. A liquid-submersible vacuum cleaner, comprising:
a housing having a front end portion and a rear end portion;
a DC pump disposed within the housing and configured to move water into, through, and out of the housing; a filter disposed within the housing, such that water moves through the filter during activation of the DC pump;
a diffuser cap and a discharge hose cap, wherein the discharge hose cap and the diffuser cap are selectively exchangeable with one another, such that in a first operation mode, the discharge hose cap is coupled to the rear end portion of the housing, and in a second operation mode, the diffuser cap is coupled to the rear end portion of the housing;
a nozzle attachment configured to be coupled to the housing when the vacuum cleaner is in the first operation mode and detached from the housing when the vacuum cleaner is in the second operation mode.
17. The liquid-submersible vacuum cleaner according to claim 16, further comprising a power converter electrically connected to the DC pump for providing power to the DC pump.
18. The liquid-submersible vacuum cleaner according to claim 17, further comprising a low voltage power cord directly coupling the power converter and the DC pump.
19. The liquid-submersible vacuum cleaner according to claim 18, wherein the low voltage power cord has a front end portion attached to the DC pump at a location within the housing.
20. The liquid-submersible vacuum cleaner according to claim 17, wherein the power converter is located externally of the housing.
PCT/US2018/013476 2018-01-12 2018-01-12 Submersible vacuum cleaner WO2019139608A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/340,870 US20200308858A1 (en) 2018-01-12 2018-01-12 Multi-functional submersible vacuum
EP18702037.5A EP3737808A1 (en) 2018-01-12 2018-01-12 Submersible vacuum cleaner
CN201880085997.1A CN111566295A (en) 2018-01-12 2018-01-12 Submerged vacuum cleaner
PCT/US2018/013476 WO2019139608A1 (en) 2018-01-12 2018-01-12 Submersible vacuum cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2018/013476 WO2019139608A1 (en) 2018-01-12 2018-01-12 Submersible vacuum cleaner

Publications (1)

Publication Number Publication Date
WO2019139608A1 true WO2019139608A1 (en) 2019-07-18

Family

ID=61074618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2018/013476 WO2019139608A1 (en) 2018-01-12 2018-01-12 Submersible vacuum cleaner

Country Status (4)

Country Link
US (1) US20200308858A1 (en)
EP (1) EP3737808A1 (en)
CN (1) CN111566295A (en)
WO (1) WO2019139608A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD943849S1 (en) * 2020-01-27 2022-02-15 Matthew P. D'Aguanno Liquid-submersible vacuum cleaner
US20230304312A1 (en) * 2022-03-22 2023-09-28 Matthew D'Aguanno Liquid-submersible vacuum system and components thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3755843A (en) * 1971-06-24 1973-09-04 R Hargrave Pool vacuum system
US3868739A (en) 1973-02-05 1975-03-04 Robert W Hargrave Pool vacuum apparatus
US4240173A (en) 1979-07-13 1980-12-23 Sherrill John C Pool vacuum
US4637086A (en) 1985-01-11 1987-01-20 John Goode Swimming pool vacuum cleaner
US4718129A (en) 1987-05-01 1988-01-12 Miller Robert E Improved swimming pool vacuum apparatus
US4962559A (en) 1988-11-16 1990-10-16 Rainbow Lifegard Products, Inc. Submersible vacuum cleaner
US5317776A (en) * 1993-03-22 1994-06-07 Demoura Robert J Swimming pool vacuum apparatus
US6939460B2 (en) 2002-10-29 2005-09-06 Water Tech Llc. Portable electric pool cleaner
US20050279683A1 (en) * 2002-10-29 2005-12-22 Water Tech Llc Hand-held pool cleaner
US7520015B1 (en) * 2005-11-02 2009-04-21 Mike Ajello Portable submersible cleaning device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2729995B1 (en) * 1995-02-01 1997-04-18 Sarl Vbv DEVICE FOR CLEANING WATER BASIN WALLS AND PARTICULARLY POOLS
AU3707901A (en) * 2000-02-14 2001-08-20 Kenneth Lewis Hawksworth An automatic pool cleaner accessory
CN100434641C (en) * 2003-11-04 2008-11-19 水溶液产品公司 Directional control for dual brush robotic pool cleaners
GB0526528D0 (en) * 2005-12-29 2006-02-08 Interpet Ltd Submersible vacuum cleaner
CN201245992Y (en) * 2008-08-21 2009-05-27 张阿华 Cleaner of pool bottom
US9388594B2 (en) * 2012-06-15 2016-07-12 Gje Technology Llc Portable swimming pool stair assembly with integral filter and circulation system
US9995050B2 (en) * 2015-03-26 2018-06-12 Aqua Products, Inc. Method and apparatus for communicating over a two-wire power cable between an external power supply and a self-propelled robotic swimming pool cleaner
US10876316B2 (en) * 2016-03-09 2020-12-29 Martin Wing-Kin Hui Portable pool cleaner and method therefor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3755843A (en) * 1971-06-24 1973-09-04 R Hargrave Pool vacuum system
US3868739A (en) 1973-02-05 1975-03-04 Robert W Hargrave Pool vacuum apparatus
US4240173A (en) 1979-07-13 1980-12-23 Sherrill John C Pool vacuum
US4240173B1 (en) 1979-07-13 1990-01-16 Innovative Products Corp
US4637086A (en) 1985-01-11 1987-01-20 John Goode Swimming pool vacuum cleaner
US4718129A (en) 1987-05-01 1988-01-12 Miller Robert E Improved swimming pool vacuum apparatus
US4962559A (en) 1988-11-16 1990-10-16 Rainbow Lifegard Products, Inc. Submersible vacuum cleaner
US5317776A (en) * 1993-03-22 1994-06-07 Demoura Robert J Swimming pool vacuum apparatus
US6939460B2 (en) 2002-10-29 2005-09-06 Water Tech Llc. Portable electric pool cleaner
US20050279683A1 (en) * 2002-10-29 2005-12-22 Water Tech Llc Hand-held pool cleaner
US7060182B2 (en) 2002-10-29 2006-06-13 Water Tech Llc. Hand-held pool cleaner
US7520015B1 (en) * 2005-11-02 2009-04-21 Mike Ajello Portable submersible cleaning device

Also Published As

Publication number Publication date
EP3737808A1 (en) 2020-11-18
CN111566295A (en) 2020-08-21
US20200308858A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
US5317776A (en) Swimming pool vacuum apparatus
US4962559A (en) Submersible vacuum cleaner
US11339579B1 (en) Electrically powered pool vacuum cleaner
EP1579096B1 (en) Portable electric pool cleaner
US7520015B1 (en) Portable submersible cleaning device
US7060182B2 (en) Hand-held pool cleaner
US5450644A (en) Self-contained submersible debris cleaner
US8465597B2 (en) Modular recycling cleaning system
US4651376A (en) Underwater self-contained cleaning assembly
US20050247613A1 (en) Underwater vacuum cleaner
US20110247970A1 (en) Portable Pump And Filter Assembly For Use In Pools, Spas And Open Bodies Of Water
US20170260766A1 (en) Portable pool cleaner and method therefor
US20200308858A1 (en) Multi-functional submersible vacuum
US10174516B2 (en) Multi-functional submersible vacuum
US8128815B1 (en) Portable self-contained vacuum unit for use with under water vacuum head
CN116146003A (en) Submersible vacuum cleaner for cleaning artificial pools such as swimming pools
US5111129A (en) Waterproof switch and charging jack assembly
US7214310B2 (en) Portable pool cleaning system
US11008771B2 (en) In-water suction cleaner
US20040200030A1 (en) Self-evacuating vacuum cleaner for cleaning ponds or swimming pools
AU2021103331A4 (en) Cleaning Device Incorporating A Water Jet Facility For The Removal Of Particulates From Water Features
US11136774B1 (en) Electrically powered pool vacuum cleaner
US20230304312A1 (en) Liquid-submersible vacuum system and components thereof
CA2505438A1 (en) Underwater vacuum cleaner
WO2006128111A2 (en) Hand-held pool cleaner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18702037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018702037

Country of ref document: EP

Effective date: 20200812