WO2019139389A1 - 냉장고 - Google Patents

냉장고 Download PDF

Info

Publication number
WO2019139389A1
WO2019139389A1 PCT/KR2019/000424 KR2019000424W WO2019139389A1 WO 2019139389 A1 WO2019139389 A1 WO 2019139389A1 KR 2019000424 W KR2019000424 W KR 2019000424W WO 2019139389 A1 WO2019139389 A1 WO 2019139389A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
mode
heating
space
storage
Prior art date
Application number
PCT/KR2019/000424
Other languages
English (en)
French (fr)
Inventor
정명진
김경석
김경윤
성기석
안승욱
박정원
서용훈
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180003516A external-priority patent/KR102473040B1/ko
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/961,202 priority Critical patent/US11578912B2/en
Priority to EP19739139.4A priority patent/EP3739282B1/en
Priority to CN201980007951.2A priority patent/CN111656112B/zh
Priority claimed from KR1020190003587A external-priority patent/KR102609597B1/ko
Publication of WO2019139389A1 publication Critical patent/WO2019139389A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/005Combined cooling and heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/066Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/068Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans
    • F25D2317/0682Two or more fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/803Bottles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/02Refrigerators including a heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/02Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/06Controlling according to a predetermined profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • F25D2700/121Sensors measuring the inside temperature of particular compartments

Definitions

  • the present invention relates to a refrigerator.
  • a refrigerator is provided with an internal storage space which is shielded by a door,
  • a refrigerator includes a cabinet having a storage chamber; A cooling water stage for cooling the storage chamber; Heating means for heating the storage chamber; A temperature sensor for sensing the temperature of the storage chamber; And a controller for controlling the cooling water stage and the heating means,
  • the controller selectively implements a plurality of modes, the plurality of modes including a cooling mode (E) in which the cooling means is operated or stopped; A heating mode (H) in which the heating means is operated or stopped; (D) in which the cooling means and the heating means are stopped, and the plurality of modes are performed in the order of the cooling mode, the standby mode and the heating mode, or the heating mode, the standby mode and the cooling mode do.
  • a cooling mode E
  • a heating mode H
  • D in which the cooling means and the heating means are stopped, and the plurality of modes are performed in the order of the cooling mode, the standby mode and the heating mode, or the heating mode, the standby mode and the cooling mode do.
  • the cooling means In the cooling mode, the cooling means is operated when the storage room temperature sensed by the temperature sensor exceeds the target temperature upper limit value, and may be stopped when the storage room temperature is below the target temperature lower limit value.
  • the heating means is stopped when the storage room temperature exceeds the target temperature upper limit value, and stops when the storage room temperature is lower than the target temperature lower limit value.
  • the storage room temperature may be between the target temperature lower limit value and the lower limit temperature, or between the target temperature upper limit value and the upper limit temperature.
  • the lower limit temperature may be a temperature lower than the target temperature lower limit value.
  • the upper limit temperature may be a temperature higher than the target upper limit value.
  • the standby mode may be switched to the heating mode if the time period during which the storage compartment temperature is between the target temperature lower limit value and the lower limit temperature is equal to or longer than the first setting time.
  • the standby mode may be switched to the heating mode when the storage room temperature is lower than the lower limit temperature for a second predetermined time period or more.
  • the second set time may be shorter than the first set time.
  • the standby mode can be switched to the cooling mode.
  • the cooling mode may be switched from the standby mode if the storage room temperature exceeds the upper limit temperature for a second predetermined time or longer.
  • the second set time may be shorter than the first set time.
  • the refrigerator has a timer; And input means for inputting the target temperature.
  • the controller may selectively implement the plurality of modes according to the input unit, the timer, and the temperature sensor.
  • the refrigerator may include an air flow forming mechanism for flowing air in the storage room.
  • the controller may operate the airflow forming mechanism in the cooling mode.
  • the controller may stop the airflow forming mechanism in the standby mode.
  • the controller may operate the airflow forming mechanism in the heating mode.
  • the cabinet may include an inner case having the storage chamber.
  • An inner guide for partitioning the storage compartment into a storage space and an air flow path may be disposed in the inner case.
  • the airflow forming mechanism may include a circulation fan disposed in the inner case or the inner guide for circulating air in the storage space.
  • a partition member for partitioning the storage space into a first space and a second space may be disposed.
  • the heating means may be provided for each of the first space and the second space.
  • the inner guide may face the rear body of the inner case.
  • the heating means may include a side heating device installed in a side body of the inner case.
  • the heating means may include an inner heating device disposed in the partition member.
  • the article can be reliably stored while minimizing deterioration of the article.
  • the space having a high target temperature can be quickly adjusted to the target temperature range by using the cooling water step and the heating means, and the article having a high storage temperature can be stored with high reliability.
  • the standby mode is switched to the heating mode so that the user can quickly respond to the user's request even when changing the target temperature.
  • the cooling mode is switched from the standby mode, and the user can quickly respond to the user's request even if the user changes the target temperature.
  • the air flow forming mechanism is stopped and the storage room is rapidly supercooled or rapidly overheated, and the temperature change rate can be minimized.
  • FIG. 1 is a cross-sectional view illustrating an example of a refrigerator according to an embodiment of the present invention
  • FIG. 2 is a sectional view showing another example of a refrigerator according to an embodiment of the present invention.
  • FIG. 3 is a front view of the refrigerator according to the embodiment of the present invention when the refrigerator is disposed adjacent to the other refrigerator;
  • FIG. 4 is a diagram showing the on / off state of the cooling means according to the temperature change of the storage chamber according to the embodiment of the present invention
  • FIGS. 5 to 8 are diagrams illustrating refrigeration cycle examples of a refrigerator according to an embodiment of the present invention.
  • FIG. 9 is a control block diagram of a refrigerator according to an embodiment of the present invention.
  • FIG. 10 is a perspective view illustrating a perspective view of a door of a refrigerator according to an embodiment of the present invention.
  • FIG. 11 is a plan view of an example of a door according to an embodiment of the present invention when the door is opened in a door open module;
  • FIG. 12 is a sectional view of another example of the door according to the embodiment of the present invention when the door is opened by the door open module;
  • FIG. 13 is a cross-sectional view when the holder shown in Fig. 12 is lifted
  • FIG. 14 is a front view of a storage compartment of a refrigerator according to an embodiment of the present invention.
  • FIG. 16 is a cross-sectional view of a refrigerator according to an embodiment of the present invention.
  • FIG. 17 is a flow chart of a refrigerator according to an embodiment of the present invention when the refrigerator is switched from the cooling mode to the heating mode,
  • FIG. 18 is a flow chart of a refrigerator according to an embodiment of the present invention when switching from a heating mode to a cooling mode
  • FIG. 19 is a diagram illustrating an example of a heating mode and a cooling mode according to a temperature change of a storage chamber according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view illustrating an example of a refrigerator according to an embodiment of the present invention.
  • the refrigerator may have a storage room W in which goods and the like can be stored.
  • the refrigerator may include a cabinet (1) in which a storage room (W) is formed.
  • the refrigerator may further include a door (50) for opening and closing the storage room (W).
  • the door (50) may include at least one of a rotatable door (5) and a retractable door (6).
  • the cabinet 1 may include an outer case 7 forming an outer appearance and an inner case 8 forming at least one surface for forming a storage chamber W therein.
  • the storage chamber W may be a storage chamber in which mainly a certain kind of article desired to be stored in a specific temperature range is stored.
  • the storage room W may be a dedicated storage room for storing a specific item such as wine, beer, or the like, which is required for keeping warm or cold, such as a mainstream or fermented food, cosmetics, or medical supplies.
  • the storage room for the wine may be maintained at a temperature between 3 ° C and 20 ° C, more preferably at a temperature higher than that of the refrigerator in a general refrigerator, and not exceeding 20 ° C. More preferably the storage chamber for red wine can be temperature controlled from 12 ° C to 18 ° C and the storage chamber for white wine can be temperature controlled from 6 ° C to 11 ° C. Meanwhile, the storage room for champagne can be temperature controlled to about 5 ° C.
  • the storage chamber W can be temperature-controlled so that the storage temperature fluctuates between the target temperature upper limit value and the target temperature lower limit value of the storage chamber W.
  • the quality of the article stored in the storage chamber W may be reduced by the difference between the target temperature upper limit value and the target temperature lower limit value (hereinafter referred to as the storage temperature difference) depending on the type.
  • the refrigerator can be manufactured to have a small storage temperature difference according to the kind of the article, and the quality reduction of the article can be minimized.
  • the storage room W of the refrigerator of the present embodiment may be a storage room having a smaller storage temperature difference than the storage room of the general refrigerator.
  • the storage temperature difference of the storage chamber W may be less than 3 ⁇ ⁇ , and more preferably 2 ⁇ ⁇ .
  • the storage temperature difference may be less than 1 ⁇ ⁇ .
  • the refrigerator may include a device capable of controlling the temperature of the storage chamber W (hereinafter referred to as a "temperature control device").
  • the temperature regulating device may include at least one of a cooling water stage and a heating means.
  • the temperature controller may cool or heat the storage compartment W by at least one of conduction, convection, and radiation.
  • a cooling means such as an evaporator 150 or an endothermic body of a thermoelectric element may be attached to the inner case 8 to cool the storage chamber W by conduction.
  • an airflow forming mechanism such as a fan is added, the air exchanged with the cooling water stage can be supplied to the storage room W by convection.
  • a heating means such as a heater or a heating body of a thermoelectric element can be attached to the inner case 8 to heat the storage chamber W by conduction.
  • the cooling means may be defined as means for cooling the storage chamber W, including at least one of the evaporator 150, the heat absorbing body of the thermoelectric element, and the fan.
  • the heating means may be defined as means for heating the storage chamber W including at least one of the heater, the heating body of the thermoelectric element and the fan.
  • the refrigerator may further include an inner guide (200).
  • the inner guide 200 can be partitioned into a space in which the article is stored and a space in which the temperature regulating device is located (hereinafter referred to as a "thermostat chamber ") in the inner casing 8. [ There may be a Sudan chamber.
  • the temperature control device chamber may be located between the inner guide 200 and the inner case 8, between the inner guide 200 and the outer case 7, Lt; / RTI >
  • the inner guide 200 may be arranged to partition the space in which the articles are stored and the cool air passage P for supplying cool air to the storage chamber W and at least one of the cooling means may be disposed in the cool air passage P .
  • the inner guide 200 may be arranged so as to partition the space in which the articles are stored and the heat transfer path P for supplying heat to the storage chamber W and at least one of the heating means may be arranged in the heating flow path P .
  • the inner guide for the cooling means and the inner guide for the heating means can be designed for common use and separately manufactured.
  • the inner guide (200) can form a storage space together with the inner gear (8).
  • the inner guide 200 can be disposed in front of the rear body of the inner case.
  • the refrigerator includes a refrigerator having one space having the same storage temperature range of the storage room W and a refrigerator having two or more spaces having different storage temperature ranges.
  • the refrigerator is divided into two or more spaces (for example, a first space W1 and a second space W2) having different storage temperature ranges (for example, a first space W1 and a second space W2) 3).
  • the refrigerator is divided into two or more spaces (for example, a second space W2 and a third space W3) having different storage temperature ranges (for example, a third space W3) 10).
  • the partition member 10 may be separately manufactured and then mounted inside the inner case 8. [
  • the partition member 10 may be foamed together with a heat insulating material disposed between the outer case 7 and the inner casings 8 and 9.
  • the sizes of the two or more spaces may be different from each other.
  • the first space W1 may be located on the upper side
  • the second space W2 may be located on the lower side
  • the partition member 3 may be arranged such that the size of the first space W1, (W2).
  • the first storage temperature for the first space W may be higher than the second storage temperature for the second space W2.
  • the first storage temperature is higher than the second storage temperature when the maximum value of the first storage temperature is larger than the maximum value of the second storage temperature and when the average value of the first storage temperature is larger than the average value of the second storage temperature And the case where the minimum value of the first storage temperature is larger than the minimum value of the second storage temperature.
  • the refrigerator may further include a door (hereinafter, referred to as a perspective door) through which a user can view the storage room through the sight window without opening the door 50 from the outside of the refrigerator, and the perspective door will be described later.
  • a door hereinafter, referred to as a perspective door
  • the refrigerator may further include a transparent gasket (24) disposed on at least one of the perspective door and the partitioning member (3, 10).
  • the transparent gasket 24 can partition the storage chamber W together with the partition members 3 and 10 into two or more spaces having different storage temperature ranges.
  • the refrigerator may further include a door open module (11, 11 ') for forcibly opening the door (50).
  • the door open modules 11 and 11 ' may be a rotatable door open module 11 that allows the door 5 to rotate at a predetermined angle or more without the user holding the door 5, And can be a retractable-type door open module 11 'that allows the door 6 to be advanced and retracted in the forward and backward directions without holding it.
  • the door open modules 11 and 11 ' will be described later.
  • the refrigerator may further include a lifting module 13 capable of lifting or lowering the holder 12, and although not shown in FIG. 1, the lifting module may be located in at least one of the storage room and the door.
  • the refrigerator may have a plurality of doors for opening and closing two or more spaces having different storage temperature ranges. At least one of the plurality of doors may be a perspective door. At least one of the cabinet 1 or the plurality of doors may include a door open module 11, 11 '. A lifting module 13 for lifting and lowering a cradle located in a storage room in which at least one of the plurality of doors opens and closes have.
  • the door for the storage room located at the upper side may be a perspective door, and the lifting module 13 for lifting the storage room of the lower storage room may be disposed.
  • FIG. 2 is a cross-sectional view illustrating another example of a refrigerator according to an embodiment of the present invention.
  • FIG. 1 the storage chamber W shown in FIG. 1 will be referred to as a first storage chamber W.
  • FIG. 1 the storage chamber W shown in FIG. 1 will be referred to as a first storage chamber W.
  • the refrigerator may further include at least one first storage chamber W and a second storage chamber C capable of being temperature-controlled independently from the first storage chamber W.
  • first storage chamber W and a second storage chamber C capable of being temperature-controlled independently from the first storage chamber W.
  • the second storage chamber C may be a storage chamber having a temperature range lower than the temperature range of the first storage chamber W and may be a storage chamber having a temperature range of -24 ° C to 7 ° C, May be a thermostatted storage room based on a target temperature that is a temperature selected by the user from a temperature range of -24 ° C to 7 ° C.
  • the second storage chamber (C) can be constituted by a switching chamber (or a variable temperature chamber) in which any one of a plurality of temperature ranges can be selected, and can be constituted by a non-switching chamber having one temperature range.
  • the user may input the input unit to select the second storage room C as a mode (for example, the refrigerator room mode) which is the temperature range of the image, and the temperature range of the second storage room C is the temperature range (For example, 1 ⁇ ⁇ to 7 ⁇ ⁇ ) may be selected.
  • the target temperature of the second storage room C may be a temperature range of the image of the user (for example, 1 to 7 degrees centigrade) (For example, 4 [deg.] C).
  • the user inputs the input unit to store the second storage room C in a mode (for example, a freezing room mode) that is a subzero temperature range or a special mode (for example, Mode, etc.) can be selected.
  • a mode for example, a freezing room mode
  • a special mode for example, Mode, etc.
  • the first storage chamber W may be a specific article storage chamber in which a specific kind of article desired to be stored in a specific temperature range is stored or mainly a specific kind of article is stored, Specific article storage room where the type of article can be stored.
  • specific articles include alcoholic beverages including wine, fermented foods, cosmetics, medical supplies, and the like.
  • the first storage room W may be a storage room for storing wines or a wine chamber for storing mainly wines.
  • the second storage room C may store goods other than wines, It may be a non-wine chamber where the article is stored.
  • a storage chamber having a relatively small storage temperature difference between the first storage chamber W and the second storage chamber C may be defined as a constant temperature chamber and the first storage chamber W and the second storage chamber C
  • a storage chamber with a relatively large storage temperature difference may be defined as a non-constant temperature chamber.
  • the first storage chamber W and the second storage chamber C may be a priority chamber in which one of them is controlled in priority and the other may be a subordinate chamber controlled in a relatively subordinate order. have.
  • the first article having a large or small quality change due to the temperature change can be stored in the senior storage room and the second article having a small or low quality change due to the temperature change can be stored in the subordinate storage room.
  • the refrigerator can carry out specific driving for the senior storage room and specific driving for the subordinate storage room.
  • the specific operation includes normal operation and special operation for the storage room.
  • Normal operation can be defined as a normal cooling operation for storage compartment cooling.
  • the special operation can be defined as a defrosting operation for defrosting the cooling means, a door load operation which can be carried out after a door is opened and a predetermined condition is satisfied, and a power supply initial closing operation when the power is first applied to the refrigerator .
  • the refrigerator can be controlled so that the specific operation for the priority storage room is performed first when the two operations are collided.
  • the collision of two operations means that when the start condition of the first operation and the start condition of the second operation are satisfied at the same time, the start condition of the first operation is satisfied and the start condition of the second operation And the start condition of the first operation is satisfied while the second operation is proceeding because the start condition of the second operation is satisfied.
  • a refrigerator may be cooled or heated before the subordinate storage room if the temperature of the senior storage room is unsatisfactory and the temperature of the subordinate storage compartment is unsatisfactory.
  • the cooling means for cooling the subordinate storage compartment if the temperature of the priority storage compartment is dissatisfied, the cooling of the subordinate storage compartment may occur during defrosting, the leading storage compartment may be cooled or heated.
  • the senior storage room may be cooled or heated during the door load operation of the subordinate storage room.
  • One of the first storage chamber W and the second storage chamber C may be a storage chamber whose temperature is controlled by the first cooling water stage and the heating means and the other may be a storage chamber whose temperature is controlled by the second cooling means.
  • the refrigerator may further include a separate receiving member 4 in at least one of the first space W1 and the second space W2.
  • a separate space S (hereinafter, referred to as a storage space) in which the articles can be received separately from the first space W1 and the second space W2 may be formed in the housing member 4. [ It is possible for the refrigerator to adjust the storage space S of the storing member 4 to a temperature range different from the first space W1 and the second space W2.
  • the housing member 4 may be disposed in the second space W2 located below the first space W1.
  • the receiving space S of the receiving member 4 may be formed smaller than the second space W2.
  • the storage temperature of the storage space S may be equal to or lower than the storage temperature of the second space W2.
  • the length of the refrigerator itself in the up and down direction may be longer than the width in the left and right direction in order to dispose as many shelves 2 as possible in the first storage room W. In this case, Or more.
  • the length in the up-down direction is preferably three times or less of the width in the left-
  • a preferable example of the vertical length in which a large number of the above-mentioned specific articles can be stored may be 2.3 to 3 times the lateral width, and the most preferable example may be 2.4 to 3 times the lateral width.
  • the length of the refrigerator in the up-and-down direction is longer than the width in the left-right direction, the length of the first storage chamber W in which the specific article is substantially stored, The number of specific articles may not be large. It is preferable that the length of the first storage chamber W in the vertical direction is longer than the length of the second storage chamber C in the vertical direction so that the refrigerator can store as many items as possible.
  • the vertical length of the first storage chamber W may be 1.1 to 1.5 times the length of the second storage chamber C in the vertical direction.
  • At least one of the first door 5 and the second door 6 may be a perspective door, and the perspective door will be described later.
  • the refrigerator may further include door open modules 11 and 11 'for forcibly opening at least one of the first door 5 and the second door 6 and the door open modules 11 and 11' Will be described later.
  • At least one of the first storage chamber W and the second storage chamber C and the first door 5 and the second door 6 may be provided with a lifting module 13 capable of lifting the holder 12 And the lifting module 13 will be described later.
  • FIG 3 is a front view of the refrigerator according to the embodiment of the present invention when it is disposed adjacent to the other refrigerator.
  • the refrigerator of this embodiment can be used adjacent to the other refrigerator.
  • a pair of refrigerators arranged adjacent to each other may be arranged on the left and right sides and will be described as a first refrigerator (Q1) and a second refrigerator (Q2) for convenience of explanation.
  • the first refrigerator (Q1) The same configuration of the two refrigerator (Q2) will be described using the same reference numerals for convenience of explanation.
  • a plurality of storage compartments may be located on the left and right and upper and lower sides of a single outer case, such as a refrigerator of a sidebar side type or a refrigerator of a French door type.
  • At least one of the first refrigerator (Q1) and the second refrigerator (Q2) may be a refrigerator to which the embodiment of the present invention is applied.
  • the first refrigerator (Q1) and the second refrigerator (Q2) have different functions but may have the same or substantially the same length in the up and down direction so as to give the same overall appearance when they are arranged adjacent to the left and right sides , And widths in the left and right directions may be the same or substantially the same.
  • Each of the first refrigerator (Q1) and the second refrigerator (Q2) may include a first storage room and a second storage room.
  • the storage compartment may include upper and lower partition members 10 and the partition member 10 of the first refrigerator Q1 and the partition member 10 of the second refrigerator Q2 may overlap in the horizontal direction.
  • the lower end 6A of the second door 6 opening and closing the second storage room of the first refrigerator Q1 and the lower end 6A of the second door 6 opening and closing the second storage room of the second refrigerator Q2 They can be aligned with each other in the horizontal direction.
  • the lower end 6B of the second door 6 opening and closing the second storage room of the first refrigerator Q1 and the lower end 6B of the second door 6 opening and closing the second storage room of the second refrigerator Q2 They can be aligned with each other in the horizontal direction.
  • FIG. 4 is a diagram showing on / off of the cooling means according to the temperature change of the storage chamber and on / off of the heating means according to the embodiment of the present invention.
  • the refrigerator may be provided with cooling means and heating means which can be controlled independently of each other in order to control the temperature of the storage chamber (W).
  • the refrigerator may have a cooling water stage and a heating means for controlling at least one of a specific storage room, a constant temperature room and a senior storage room.
  • the refrigerator may be controlled in a plurality of modes for controlling the temperature of the storage chamber W.
  • the plurality of modes may include a cooling mode E in which the storage chamber W is cooled by the cooling means, , And a standby mode (D) for keeping the storage chamber (W) in a current state without cooling or heating.
  • the refrigerator may include a temperature sensor that senses the temperature of the storage room W and may perform a cooling mode E, a heating mode H, and a standby mode D depending on the storage room temperature sensed by the temperature sensor have.
  • the cooling mode (E) is not limited to the case where the storage chamber W is continuously cooled by the cooling means, and the storage chamber is cooled by the cooling means as a whole, and the storage chamber W is not cooled temporarily by the cooling means .
  • the cooling mode E may include a case where the storage compartment W is entirely cooled by the cooling means but the storage compartment is temporarily heated by the heating means.
  • the cooling mode (E) may include a case where the time when the storage chamber is cooled by the cooling means is longer than the time when the storage chamber (W) is not cooled by the cooling means.
  • the cooling mode (E) may be a mode in which the cooling means is operated or stopped.
  • the operation of the cooling means may mean that the cooling means is controlled so that at least a part of the cooling means is at a temperature lower than the temperature of the storage chamber W.
  • the operation of the cooling means may mean that cold air is supplied to the storage space and may mean driving a fan that supplies cold air to the storage space, and when a damper for controlling air flowing into the storage space is disposed , It can mean opening.
  • the operation of the cooling means may mean switching the refrigerant valve or driving the compressor to flow the refrigerant through the evaporator. It is also an operation example of the cooling means that only the fan is turned on in order to utilize the latent heat remaining in the evaporator in a state in which the refrigerant does not flow to the evaporator.
  • the stopping of the cooling means may mean switching the refrigerant valve so that the refrigerant does not flow to the evaporator or turning off the fan when the compressor is off (i.e., the compressor is stopped).
  • the cooling mode E may be a mode in which the refrigerant passes through the evaporator, the air in the storage chamber W is cooled by the evaporator, and then flows into the storage chamber W.
  • the compressor can be turned on or off according to the temperature of the storage chamber (W).
  • the compressor can be turned on or off to maintain the storage room temperature between the target temperature lower limit value and the target temperature lower limit value. Specifically, the compressor can be turned on when the storage room temperature reaches the target temperature upper limit value, and can be turned off when the storage room temperature reaches the target temperature lower limit value.
  • the operation of the cooling means may mean that a current is applied to the thermoelectric element to transfer heat-absorbing body heat of the thermoelectric element to the heat-generating body of the thermoelectric element. It is also an example of the operation of the cooling means that only the fan is turned on in order to utilize the latent heat remaining in the heat absorbing body of the thermoelectric element in the state where the current is blocked in the thermoelectric element. Stopping of the cooling means may mean that the thermoelectric element and the fan are off (that is, the current applied to the thermoelectric element and the fan is shut off).
  • the refrigerator includes an evaporator for cooling the first space W1, a fan for circulating the air to the first space W1 and the evaporator, and a first damper for adjusting the air blown into the first space W1
  • the operation of the cooling means may mean that the compressor and the fan are driven and the first damper is controlled in open mode.
  • the refrigerator includes an evaporator for cooling the second space W2, a fan for circulating the air to the second space W2 and the evaporator, and a second damper for adjusting the air blown into the second space W2
  • the operation of the cooling means may mean that the compressor and the fan are driven and the second damper is controlled in open mode.
  • operation of the cooling means may mean releasing the refrigerant valve to the evaporator supply mode.
  • the heating mode H is not limited to the case where the storage chamber W is continuously heated by the heating means but the storage chamber W is heated by the heating means as a whole and the storage chamber W is temporarily heated by the heating means And may include a case where the storage chamber W is heated by the heating means as a whole but the storage chamber W is temporarily cooled by the cooling means.
  • the heating mode H may include a case in which the time for heating the storage chamber W by the heating means is longer than the time for which the storage chamber W is not heated by the heating means.
  • the heating mode H may be a mode in which the heating means is operated or stopped.
  • the operation of the heating means may mean that the heating means is controlled such that at least a part of the heating means is at a temperature higher than the temperature of the storage chamber W.
  • the operation of the heating means may mean that the heating means is turned on (current is applied to the heating means). It is also an operation example of the heating means that only the fan is turned on in order to utilize the latent heat remaining in the heating means in the state that the electric current is cut off to the heating means.
  • the stopping of the heating means may mean that the heating means is turned off (the current applied to the heating means and the fan is cut off).
  • the heating means can be turned on or off to maintain the storage room temperature between the target temperature lower limit value and the target temperature lower limit value. Specifically, the heating means can be turned off when the storage room temperature reaches the target temperature upper limit value, and can be turned on when the storage room temperature reaches the target temperature lower limit value.
  • the refrigerator includes a heating device for heating the first space W1 and a fan (or HG fan) for circulating the air to the first space W1 and the heating device, (Operated) and the fan (or HG fan) is driven.
  • the refrigerator includes an additional heating device for heating the second space W2 and a fan for circulating the air to the second space W2 and the additional heating device, And the fan may be driven.
  • the standby mode (D) may be a mode in which each of the cooling means and the heating means is stationary.
  • the standby mode (D) may be a mode in which the refrigerant does not pass through the evaporator and the heater maintains the off state.
  • the standby mode (D) may be a mode in which the heater also maintains the off state while the compressor is kept in the off state.
  • the air in the storage chamber W may not be forced to flow by the fan.
  • the plurality of modes may be implemented in the order of the cooling mode (E), the standby mode (D), and the heating mode (H) according to the passage of time.
  • the plurality of modes may be implemented in the order of the heating mode H, the standby mode D, and the cooling mode E according to the passage of time.
  • the plurality of modes may be implemented in the order of the cooling mode (E), the standby mode (D), and the cooling mode (E) according to the passage of time.
  • the plurality of modes can be implemented in the order of the heating mode H, the standby mode D, and the heating mode H according to the passage of time.
  • the plurality of modes are alternately performed in the cooling mode E and the standby mode D and when the start condition of the heating mode H is reached in the middle of the standby mode D, the standby mode D is terminated and the heating mode H Can be started. In the plurality of modes, the heating mode H and the standby mode D are alternately performed. When the starting condition of the cooling mode E is reached in the middle of the standby mode D, the standby mode D is terminated and the cooling mode E Can be started.
  • the plurality of modes are not immediately switched to the heating mode H without the standby mode D in the middle of the cooling mode E but are immediately switched to the cooling mode E without the standby mode D in the middle of the heating mode H Do not.
  • the refrigerator may include a controller 30 (see Fig. 9) for controlling various electronic devices such as a motor provided in the refrigerator.
  • the controller 30 can control the cooling water stage and the heating means.
  • the controller 30 can selectively implement a plurality of modes (E) (H) and (D).
  • the cooling mode E may be a mode in which the controller 30 controls the cooling means so that the storage chamber W maintains the target temperature range by the cooling means.
  • the target temperature range may range from a lower limit value of the target temperature to an upper limit value of the target temperature.
  • the cooling means may be operated when the temperature of the storage room sensed by the temperature sensor (hereinafter referred to as storage room temperature) exceeds the target temperature upper limit value in the cooling mode (E), and may be stopped when the storage room temperature is below the target temperature lower limit value.
  • the heating mode H may be a mode in which the controller 30 controls the heating means so that the storage chamber W maintains the target temperature range by the heating means.
  • the heating means may be stopped when the storage room temperature exceeds the target temperature upper limit value in the heating mode (H), and may be operated when the storage room temperature is lower than the target temperature lower limit value.
  • the temperature of the storage chamber W may vary depending on the load of the storage chamber W and the ambient temperature of the refrigerator, and the temperature of the storage chamber W may deviate from the target temperature range.
  • the storage room temperature may be between the lower limit temperature and the lower limit temperature.
  • Another example in which the temperature of the storage chamber W is out of the target temperature range may be when the storage room temperature is between the target temperature upper limit value and the upper limit temperature.
  • the lower limit temperature may be a temperature lower than the target temperature lower limit value.
  • the lower limit temperature may be a temperature set lower than a target temperature lower limit value by a set temperature (for example, 2 DEG C). If the target temperature and the target temperature lower limit value are changed, the lower limit temperature may also be changed according to the changed target temperature and the target temperature lower limit value.
  • the upper limit temperature may be a temperature higher than the target temperature upper limit value.
  • the upper limit temperature may be a temperature set higher than a target temperature upper limit by a set temperature (for example, 2 DEG C). If the target temperature and the target temperature upper limit value are changed, the upper limit temperature may also be changed according to the changed target temperature and the target temperature upper limit value.
  • the refrigerator when the temperature of the storage compartment is between the lower limit temperature and the lower limit temperature or between the upper limit temperature and the upper limit temperature, the refrigerator can be in the standby mode and the controller 30 can stop the cooling means and the heating means have.
  • An example of the standby mode D may be a mode in which the storage compartment temperature is maintained between the lower limit temperature and the lower limit temperature and the refrigerator is not switched to the heating mode H immediately during the cooling mode E, E), the standby mode (D), and the heating mode (H).
  • the refrigerator maintains the standby mode (D) after the end of the cooling mode (E).
  • the refrigerator starts the heating mode (H) ). ≪ / RTI >
  • the refrigerator is switched from the standby mode D to the heating mode (H).
  • the condition that the storage room temperature is between the target temperature lower limit value and the lower limit temperature after the completion of the cooling mode E is equal to or larger than the first set time T1 (for example, 100 minutes) Condition.
  • the temperature of the storage chamber W whose temperature has been controlled by the cooling mode E may not be raised again to the target temperature lower limit value for a long time in a state in which the temperature is lowered below the target temperature lower limit value but kept below the target temperature lower limit value.
  • the standby mode D may be maintained for a long time after the cooling mode E is terminated and the refrigerator can not be returned to the cooling mode E again.
  • the quality of the product stored in the storage chamber W may deteriorate if the storage chamber W is maintained at a temperature lower than the target temperature range and does not rise to the target temperature range for a long time.
  • the controller 30 can stop the standby mode D and start the heating mode H in order to raise the temperature of the storage chamber W by the heating means.
  • the refrigerator is switched from the standby mode D to the heating mode H, . ≪ / RTI >
  • the second set time e.g., 5 minutes
  • the second set time may be shorter than the first set time (e.g., 100 minutes).
  • the condition that the storage room temperature is lower than the lower limit temperature is equal to or greater than the second set time T2 (for example, 5 minutes) after the cooling mode E is completed may be the second start condition of the heating mode H.
  • the temperature of the storage chamber W may be excessively lower than the target temperature range when the temperature of the storage chamber W whose temperature is controlled by the cooling mode E reaches the lower limit temperature lower than the target temperature lower limit value.
  • the controller 30 interrupts the standby mode D to raise the temperature of the storage chamber W by the heating means before reaching the first set time (for example, 100 minutes) Can be started.
  • the controller 30 sets the standby mode D to the heating mode H without waiting for the second set time (for example, 5 minutes) if the storage room temperature is below the lower limit temperature, It is also possible to immediately switch to.
  • the user can input a new target temperature lower than the previous one through the input means while the storage compartment temperature is lower than the lower limit temperature, and since the refrigerator has already been switched to the heating mode H, It may not be able to quickly respond to the target temperature.
  • the controller 30 sets the standby mode D to the heating mode H when the storage room temperature is lower than the lower limit temperature after the cooling mode is terminated If the user inputs a new target temperature lower than the previous one through the input means, the controller 30 changes the lower limit temperature based on the new target temperature before reaching the second set time (for example, 5 minutes) And the controller 30 can judge the switching of the heating mode H based on the newly changed lower limit temperature.
  • the refrigerator can be switched from the standby mode (D) to the cooling mode (E) according to the newly inputted target temperature, and the unnecessary heating mode (H) can be minimized. That is, the refrigerator can respond to the user's target temperature change more quickly.
  • the target temperature is 16 ⁇ ⁇
  • the target temperature lower limit is 15.5 ⁇ ⁇
  • the lower limit temperature is 13.5 ⁇ ⁇
  • the target upper limit value is 16.5 ⁇ ⁇
  • the upper limit temperature is 18.5 ⁇ ⁇ .
  • the storage compartment temperature falls below 15.5 ° C
  • the storage compartment temperature does not fall below 13.5 ° C, but can be maintained between 15.5 ° C and 13.5 ° C for an extended period of time, and the controller 30 maintains the storage compartment temperature between 15.5 ° C and 13.5 ° C
  • the controller 30 may terminate the standby mode D and start the heating mode H if the counted time is not less than the first set time (for example, 100 minutes) have.
  • the controller 30 can count the time the storage compartment temperature remains below 13.5 ° C, (For example, five minutes) or more, the controller 30 can end the standby mode D and start the heating mode H.
  • the controller can start the heating mode (H) if any one of the first start condition and the second start condition of the heating mode (H) is satisfied during the standby mode.
  • the target temperature lower limit value may be changed to 13.5 DEG C
  • the lower limit temperature may be changed to 11.5 DEG C
  • the target temperature upper limit value may be changed to 14.5 DEG C
  • the upper limit temperature may be changed to 16.5 DEG C.
  • the controller 30 can compare the storage compartment temperature with the newly changed lower limit temperature 11.5 ⁇ ⁇ and the controller 30 can control the heating mode H in the standby mode D when the storage compartment temperature exceeds the newly changed lower limit temperature 11.5 ⁇ ⁇ , .
  • the controller 30 can switch from the standby mode D to the cooling mode E if the storage compartment temperature is 14.5 DEG C or higher, which is the newly changed target temperature upper limit value. That is, the refrigerator can quickly respond to the change of the target temperature of the user, and the deterioration of the quality of the articles stored in the storage room W can be minimized.
  • the standby mode D may be a mode in which the storage room temperature is maintained between the upper limit temperature and the upper limit temperature and the refrigerator is not switched to the cooling mode E immediately during the heating mode H, (H), the standby mode (D), and the cooling mode (E).
  • the refrigerator maintains the standby mode (D) after the end of the heating mode (H).
  • the refrigerator starts the cooling mode (E) ). ≪ / RTI >
  • the refrigerator is switched from the standby mode D to the cooling mode (E).
  • the condition that the storage room temperature is between the upper limit temperature and the upper limit temperature after the completion of the heating mode H is equal to or greater than the first predetermined time T1 (for example, 100 minutes) Lt; / RTI >
  • the temperature of the storage chamber W whose temperature has been controlled in the heating mode H may be maintained at a value higher than the target temperature upper limit value but not again lower than the target temperature upper limit value for a long period of time and maintained above the target temperature upper limit value.
  • the standby mode D may be maintained for a long time after the heating mode H is terminated and the refrigerator can not be returned to the heating mode H again.
  • the controller 30 can stop the standby mode D and start the cooling mode E in order to lower the temperature of the storage chamber W by the cooling means.
  • the refrigerator is switched from the standby mode D to the cooling mode E ).
  • the second set time e.g., 5 minutes
  • the second set time may be shorter than the first set time (e.g., 100 minutes).
  • the condition that the storage room temperature exceeds the upper limit temperature after the completion of the heating mode H is equal to or greater than the second set time T2 (for example, five minutes) may be the second start condition of the cooling mode E.
  • the temperature of the storage chamber W may be excessively higher than the target temperature range when the temperature of the storage chamber W whose temperature is controlled by the heating mode H reaches the upper limit temperature higher than the target temperature upper limit value.
  • the controller 30 interrupts the standby mode D to lower the temperature of the storage chamber W by the cooling means before reaching the first set time (for example, 100 minutes) E).
  • the controller 30 determines that the standby mode D is in the cooling mode E without waiting for the second set time (for example, 5 minutes) if the storage room temperature exceeds the upper limit temperature after the completion of the heating mode H, It is also possible to immediately switch to. However, the user may enter a new target temperature, as described in the switching of the heating mode H in the standby mode (D), and the refrigerator may not quickly respond to the new target temperature entered by the user.
  • the second set time for example, 5 minutes
  • the refrigerator is switched from the standby mode D to the cooling mode E It is preferable to be switched.
  • the target temperature is 16 ⁇ ⁇
  • the target temperature lower limit is 15.5 ⁇ ⁇
  • the lower limit temperature is 13.5 ⁇ ⁇
  • the target upper limit value is 16.5 ⁇ ⁇
  • the upper limit temperature is 18.5 ⁇ ⁇ .
  • the controller 30 can maintain the storage room temperature between 16.5 ° C and 18.5 ° C for a long time without increasing the storage compartment temperature from 16.5 ° C to 16.5 ° C, If the counted time is equal to or longer than the first set time (for example, 100 minutes), the controller 30 may terminate the standby mode D and start the cooling mode E.
  • the first set time for example, 100 minutes
  • the controller 30 can count the time when the storage compartment temperature is maintained at 18.5 ° C or higher, and if the counted time exceeds the second set time 5 minutes), the controller 30 can terminate the standby mode D and start the cooling mode E.
  • the controller 30 can start the cooling mode E if any one of the first start condition and the second start condition of the cooling mode E is satisfied during the standby mode E.
  • the plurality of modes may further include a humidification mode for increasing the humidity of the storage compartment.
  • the cooling means In the humidification mode, at least a part of the cooling means is in the off state (for example, the refrigerant supply to the evaporator is stopped, the thermoelectric element is off) and at least a part of the heating means is in the off state (for example, The humidified air flows into the storage chamber W and humidifies the storage chamber while the air in the storage chamber W flows into the cooling means chamber by the fan and is humidified.
  • the air in the storage compartment flows to the evaporator by the fan and is humidified, and the humidified air flows into the storage compartment, Lt; / RTI >
  • the fan circulating the air in the storage compartment to the evaporator and the storage compartment can be driven.
  • FIG. 5 is a view showing a first example of a refrigeration cycle of a refrigerator according to an embodiment of the present invention
  • FIG. 6 is a view illustrating a second example of a refrigeration cycle of a refrigerator according to an embodiment of the present invention
  • FIG. 8 is a view illustrating a fourth example of a refrigeration cycle of a refrigerator according to an embodiment of the present invention.
  • the refrigeration cycle shown in FIGS. 5 to 8 can be applied to a refrigerator having three spaces (hereinafter, referred to as 1, 2 and 3 spaces) having different storage temperature ranges.
  • a refrigerator having i) a first space W1, a second space W2 and a third space W3, ii) a first storage room having a first space W1 and a second space W2,
  • a refrigerator having a first storage compartment W and a second storage compartment C partitioned by a first storage compartment W and iii) a refrigerator having a first storage compartment W and two second compartments W,
  • the refrigeration cycle shown in FIGS. 5 to 7 includes a compressor 100, a condenser 110, a plurality of expansion mechanisms 130 ', 130 and 140, a plurality of evaporators 150', 150 and 160, And may further include a flow path switching mechanism 120 '.
  • first area is the first space W1
  • second area is the second space W2
  • third area is the second storage compartment C
  • first, second and third regions are ii) and iii) described above.
  • the plurality of evaporators 150 ', 150 and 160 includes a pair of first evaporators 150' and 150 'capable of independently cooling the first space W1 and the second space W2, And a second evaporator 160 capable of cooling the two storage compartments (C).
  • One of the pair of first evaporators 150 'and 150 may be an evaporator 150' that cools the first space W1 and one of the pair of first evaporators 150 ' One may be an evaporator 150 that cools the second space W2.
  • the plurality of expansion mechanisms 130 ', 130 and 140 includes a pair of first expansion mechanisms 130' and 130 connected to the pair of first evaporators 150 'and 150, And a second expansion mechanism (140) connected to the second expansion mechanism (140). Any one of the pair of first expansion mechanisms 130 'and 130 may be an expansion mechanism 130' connected to any one of the pair of first evaporators 150 'and 150, The other one of the pair of first expansion mechanisms 130'and 130 may be an expansion mechanism 130 connected to the other one of the pair of first evaporators 150 '
  • the flow switching mechanism 120 ' includes a first refrigerant valve 121 capable of regulating a refrigerant flowing into the pair of first expansion mechanisms 130' and 130, a second refrigerant valve 121 ' And a second refrigerant valve 122 for regulating the refrigerant flowing into the mechanism 140.
  • the refrigerator having the refrigeration cycle shown in FIGS. 5 to 7 includes a pair of first fans 181 'and 181 and a second evaporator 160 and a second storage room And a second fan 182 for circulating the air to the space of the condenser C and a condensing fan 114 for blowing outside air to the condenser 110.
  • One of the pair of first fans 181 'and 181 is connected to either one of the pair of first evaporators 150' and 150 'to cool the first space W1. And the first space (W1).
  • the other one of the pair of fans 181 'and 181 is connected to the other one of the pair of first evaporators 150' and 150 by the cool air in the second space W2.
  • a second space fan that can circulate the air in the second space W2.
  • the refrigeration cycle shown in FIG. 5 includes a first parallel flow path in which a pair of first evaporators 150 'and 150 are connected in parallel, and a pair of first evaporators 150' and 150 are connected to a second evaporator 160 ' And a second parallel flow path connected in parallel with the first parallel flow path.
  • a one-way valve 168 may be installed at the outlet side of the second evaporator 160 to prevent the refrigerant at the outlet side of the second evaporator 160 from flowing back to the second evaporator 160.
  • the refrigeration cycle shown in FIG. 6 includes a parallel flow path in which a pair of first evaporators 150 'and 150 are connected in parallel, and a pair of first evaporators 150' And a serial flow path 123 connected in series with the flow path.
  • One end of the serial flow path 123 may be connected to a parallel flow path in which a pair of first evaporators 150 'and 150 are connected in parallel.
  • the other end of the serial flow path 123 may be connected between the inlet of the second expansion mechanism 140 and the inlet of the second evaporator 160.
  • a one-way valve 168 may be installed at the outlet side of the second evaporator 150 to prevent the refrigerant at the outlet side of the second evaporator 150 from flowing back to the second evaporator 150.
  • the refrigeration cycle shown in FIG. 7 includes a serial flow path 125 in which a pair of first evaporators 150 'and 150 are connected in series, and a pair of first evaporators 150' And a parallel flow path connected in parallel with the flow path 160.
  • One end of the serial flow path 125 may be connected to the outlet of one of the pair of first evaporators 150 ', 150.
  • the other end of the serial flow path 125 may be connected to the inlet side of the other one of the pair of first evaporators 150 'and 150'.
  • a one-way valve 168 may be installed at the outlet side of the second evaporator 160 to prevent the refrigerant at the outlet side of the second evaporator 160 from flowing back to the second evaporator 160.
  • the refrigeration cycle shown in FIG. 8 may include one first evaporator 150 instead of the pair of first evaporators 150 'and 150 shown in FIGS. 5 to 7, and the pair of expansion mechanisms 150' (130) 130 in place of the first expansion mechanism (130).
  • 8 may include a flow switching mechanism 120 for controlling the refrigerant flowing into the first expansion mechanism 130 and the second expansion mechanism 140.
  • the refrigerant cycle switching mechanism 120 may include, May include a refrigerant valve that can be switched to flow to the first expansion mechanism (130) or the second expansion mechanism (140), the refrigerant flowing in the condenser (110).
  • a one-way valve 168 may be installed at the outlet of the second evaporator 160 to prevent the refrigerant at the outlet of the second evaporator 160 from flowing back to the second evaporator 160.
  • the refrigeration cycle shown in FIG. 8 includes one first evaporator 150 and other configurations and operations other than the one first expansion mechanism 130, the flow path switching mechanism 120, and the one-way valve 168,
  • the refrigerant cycle is the same as or similar to the refrigeration cycle shown in FIG. 7, and thus a detailed description thereof will be omitted.
  • the refrigerator having the refrigeration cycle shown in FIG. 8 may replace the pair of first fans 181 'and 181 shown in FIGS. 5 to 7 by the first evaporator 150 And a first fan 181 circulating the refrigerant to the first storage chamber W1.
  • the refrigerator having the refrigeration cycle shown in FIG. 8 includes a first damper 191 for regulating the cold air that is cooled by the first evaporator 150 and then flows into the first space W1, a first evaporator 150 And a second damper 192 for controlling the cool air that is cooled by the first space W2 and then flows into the second space W2. Only one of the first damper 191 and the second damper 192 may be provided. Meanwhile, the refrigerator may selectively supply the air cooled by the single damper evaporator 150 to at least one of the first space W1 and the second space W2.
  • Variations of the refrigeration cycle shown in FIGS. 5 to 8 can be applied to a refrigerator having two spaces having different storage temperature ranges.
  • the refrigeration cycle includes the flow switching mechanisms 120 and 122, the second expansion mechanism 140, the second evaporator 160, the second fan 182, and the one-way valve 168 shown in Figs. 5 to 8 It is also possible to constitute a non-cycle.
  • the refrigeration cycle shown in Figs. 5 to 8 can constitute cooling means for cooling the storage chamber.
  • FIG. 9 is a control block diagram of a refrigerator according to an embodiment of the present invention.
  • the refrigerator may include a controller 30 for controlling various electronic devices such as a motor provided in a refrigerator.
  • the controller 30 can control the refrigerator according to the input value of the input means.
  • the input means includes a communication element 31 for inputting a signal from an external device such as a remote control device such as a remote control or a mobile terminal such as a mobile phone, a microphone 32 for changing the voice of the user into a sound signal, A proximity sensor 34 or a distance sensor capable of sensing the proximity of the user, a touch sensor 35 capable of sensing the touch of the user, a door switch (not shown) 36), a timer 37 for measuring the passage of time, and a control panel 39 for allowing the user to input various input values such as a target temperature.
  • a remote control device such as a remote control or a mobile terminal such as a mobile phone
  • a microphone 32 for changing the voice of the user into a sound signal
  • a proximity sensor 34 or a distance sensor capable of sensing the proximity of the user
  • a touch sensor 35 capable of sensing the touch of the user
  • a timer 37 for measuring the passage of time
  • a control panel 39 for allowing the user
  • the perspective door may be a door from which a perspective viewable state (perspective active state) and a non-visible state (perspective inactive state) can be selected.
  • the perspective door may be a door that varies from the perspective inactivation state to the perspective activation state according to an input value provided to the controller through the input means.
  • the perspective door may be a door that varies from the perspective activation state to the perspective deactivation state according to an input value provided to the controller 30 through the input means.
  • the sensing unit 33 may be a vibration sensor disposed on the back surface of the front panel, the vibration sensor may be formed in black, and the visible exposure may be minimized.
  • the sensing unit 33 may be a microphone disposed on the back surface of the front panel, and the microphone may sense sound waves of vibration applied to the front panel.
  • the perspective view can be activated or deactivated.
  • the sensing unit 33 may be a means for photographing the motion of the user. It is possible to determine whether the image photographed by the sensing unit is similar to or identical to a specific motion input in advance and to vary the perspective view to be activated or deactivated according to the determination result.
  • the perspective view may be changed to be activated or deactivated.
  • the perspective view can be activated, and if the door is determined to be open, the perspective view can be changed to be inactive.
  • the perspective door can be controlled to be inactivated after a certain period of time after the activation.
  • the perspective door can be controlled to be activated after a certain period of time after being inactivated.
  • the transmittance of the see-through door itself may be variable.
  • the perspective door may remain opaque if no current is applied to the panel assembly 23, and may change transparently when current is applied to the panel assembly 23.
  • Another example is that when the light source 38 installed inside the perspective door is turned on, the user can see the storage room through the perspective door by the light irradiated by the light source 38.
  • the light source 38 may make the panel assembly 23 appear transparent or translucent by making the inner side (the storage chamber side with respect to the panel assembly as a reference) appear brighter than the outer side (the outer side with respect to the panel assembly).
  • the light source 38 may be mounted on the light source mounting portion formed on the cabinet 1 or on the light source mounting portion formed on the door, and may be arranged to irradiate the light toward the panel assembly 23.
  • the controller 30 can control the door open module 11 according to the input value of the input means.
  • the controller 30 can control the lifting module 13 according to the input value of the input means.
  • FIG. 10 is a perspective view illustrating a perspective view of a refrigerator according to an embodiment of the present invention.
  • the refrigerator may include a door (hereinafter referred to as a perspective door) through which a user can view the storage room through a sight window without opening the door 50 from the outside of the refrigerator.
  • a door hereinafter referred to as a perspective door
  • the perspective door may include an outer door 22 and a panel assembly 23.
  • the outer door 22 may be opaque and the opening 21 may be formed.
  • the outer door 22 can form an appearance of the perspective door.
  • the outer door 22 may be rotatably connected to the cabinet 1 or may be connected to the cabinet 1 so as to be movable forward and backward.
  • the panel assembly 23 may be disposed in the opening 21.
  • the panel assembly 23 may be arranged to shield the opening 21.
  • the panel assembly 23 can form the same appearance as the front surface of the outer door 22.
  • the see-through door is provided to open and close a storage room in which an article (for example, wine) having a large quality change due to a temperature change is mainly stored.
  • an article for example, wine
  • the storage chamber W is opened and closed as short as possible and the number of times of opening and closing of the storage chamber W is minimized, It is preferable to open and close the wafers W.
  • the perspective door is preferably provided on a door for opening and closing at least one of the specific article storage room, the constant temperature room and the senior storage room.
  • FIG. 11 is a plan view of an example of a door according to an embodiment of the present invention when the door is opened in a door open module.
  • the refrigerator may be an automatic door for opening and closing the storage room, and a door for opening and closing a specific storage room, a constant temperature room and a senior storage room may be an automatic door.
  • the refrigerator may include a door open module 11 for forcibly opening the door 5.
  • the automatic door can be controlled to be opened or closed according to an input value provided to the controller 30 through the input means.
  • the controller 30 can control the door open module 11.
  • the door open module 11 can automatically open the door 5 rotatably connected to the cabinet 1.
  • the door 5 may be a rotary type automatic door which is automatically opened by the door open module 11.
  • the cabinet 1 may be provided with a hinge mechanism 40 with a hinge shaft 42 connected to the door 5.
  • the refrigerator may further include a module cover 70 capable of covering the hinge mechanism 40 and the door open module 11 together.
  • the door open module 11 may include a drive motor 72, a power transmitting portion 74, and a push member 76.
  • the controller 30 can wait for input of an open command of the door 5 when the refrigerator is powered on.
  • the controller 30 can transmit an open signal to the drive motor 72 included in the door open module 11 when the door open command is input through the input means.
  • the drive motor 72 can be rotated in the first direction to move the push member 76 from the initial position to the door open position.
  • the power transmitting portion 74 can transmit the rotational force of the drive motor 72 in the first direction to the push member 76, and the push member 76 moves in the forward direction So that the door 5 can be rotated in the forward direction with respect to the cabinet 1.
  • the controller 30 can determine whether or not the push member 76 reaches the door opening position in the first rotation direction of the drive motor 72. [ For example, the controller can determine that the push member 76 has reached the door open position when the cumulative number of rotations of the drive motor 72 reaches the reference number of revolutions. The controller 30 can stop the rotation of the drive motor 72 when it is determined that the push member 76 has moved to the door opening position.
  • the user can manually increase the opening angle of the door 5 while the door 5 is rotated at a predetermined angle.
  • the door sensor including the magnet 46 and the reed switch 48 is operated by the door 5
  • the controller 30 can output the return signal to the driving motor 72 when the manual opening of the door 5 is sensed by the door sensor.
  • the controller 30 may send a return signal to the drive motor 72 to cause the push member 76 to return to the initial position and the drive motor 72 may be reversed in the second direction, have.
  • the controller 30 can stop the drive motor 72 if it is determined that the push member 76 returns to the initial position.
  • FIG. 12 is a cross-sectional view showing another example of the door according to the embodiment of the present invention when the door is opened by the door open module.
  • the door open module 11 'shown in FIG. 12 can automatically open the door 6 arranged in the cabinet 1 so as to be movable forward and backward.
  • a door having a high height and a door having a low height may be disposed in the refrigerator, and a door having a height lower than that of the other door may be automatically opened.
  • Such a door may be a forward-pull type automatic door which is automatically opened by the door open module 11 '.
  • the door 6 which is advanced and retreated by the door open module 11 ' may include a drawer body 6A and a door body 6B disposed on the drawer body 6A to open and close the storage room.
  • the door open module 11 may include a drive motor 80, a pinion 82 and a rack 84.
  • the pinion 82 may be connected to the rotation axis of the drive motor 80.
  • the rack 84 may extend from the door 6, particularly, the drawer body 6A.
  • the refrigerator may further include a door sensor for sensing the position of the door 6 and the door sensor includes a pair of magnets 46 'spaced apart from the door 6 and a pair of magnets 46' And a reed switch 48 '.
  • the controller 30 can wait for input of an open command of the door 6 when the refrigerator is powered on.
  • the controller 30 can transmit an open signal to the drive motor 80 when a door open command is input through the input means.
  • the drive motor 80 can be rotated in the first direction by the controller 30 when the open signal is inputted and the pinion 82 and the rack 84 draw the rotational force of the drive motor 80, And the door body 6B can be moved forward from the cabinet 1 to the cabinet 1 by moving forward in the forward direction in the storage chamber and forwarding the door body 6B, .
  • the controller 30 can sense that the door 6 has reached the open position by the door sensor and can stop the rotation of the driving motor 80 when the door 6 has reached the open position .
  • the upper surface of the drawer body 6A may be exposed during the advancement of the drawer body 6A.
  • the user can input a door close command so that the drawer body 6A is retracted to the close position through the input means.
  • the controller 30 can transmit a close signal to the drive motor 80 when the motion sensed by the sensing unit 33 coincides with a specific motion.
  • the controller 30 can sense proximity of the user by the proximity sensor 34 and can transmit a close signal to the drive motor 80 when the proximity sensor 34 detects that the user is distanced beyond a predetermined distance have.
  • the drive motor 80 When the close signal is input, the drive motor 80 can be reversely rotated in the second direction opposite to the first direction.
  • the pinion 82 and the rack 84 can transfer the rotational force of the drive motor 80 to the body 6A and the draw body 6A is retracted into the storage chamber
  • the door body 6B can be retracted so as to be in close contact with the cabinet 1 in front of the cabinet 1.
  • the controller 30 can sense that the door 6 has reached the closed position by the door sensor and can stop the rotation of the driving motor 80 when the door 6 has reached the closed position .
  • FIG. 13 is a cross-sectional view of the elevator in a state where the elevator is raised in a state where the door is opened according to the embodiment of the present invention.
  • the refrigerator may further include a lifting module 13 that allows the cradle 12 to be automatically lifted and lowered when the door 50 is opened and the cradle is moved forward by a predetermined distance.
  • the holder 12 may be a shelf, a drawer, a basket or the like on which the article can be lifted.
  • the lifting module 13 may be disposed in the storage room or disposed in at least one of the rotary door 5 and the retractable door 6 for opening and closing the storage room.
  • the refrigerator can be placed with a high-height holder and a low-height holder.
  • the lifting lifting module can be placed in a storage room where a cradle with a relatively lower height than the other cradle is located.
  • the lifting lifting module can be placed in a storage room where a cradle with a height higher than that of the other cradle is located.
  • the lifting lifting module will be described.
  • the lifting module 13 includes a lower frame 93, an upper frame 94, an elevating mechanism 92 having at least one link 95, a drive mechanism 90 for lifting and lowering the upper frame 94
  • the driving mechanism 90 may include a lifting motor 91 and a power transmitting member connected to the lifting motor 91 to transmit the driving force of the lifting motor 91 to the upper frame 94 .
  • the controller 30 waits for the rising command of the cradle 12 to be input.
  • the controller 30 can transmit a rising signal to the elevating motor 91 included in the lifting module 13 when a rising command is inputted through the input means.
  • the controller 30 transmits an open signal to the elevating motor 91, the upper frame 94 can be raised and the holder 12 can be raised to the upper side of the draw body 6B.
  • the user can input a descent command through the input means and the controller 30 can transmit the descent signal to the elevation motor 91 when the descent command is inputted through the input means.
  • the elevating motor 91 can be reversely rotated in the second direction opposite to the first direction.
  • the upper frame 94 can be lowered to the lower inside of the drawer body 82 and the cradle 12 can be lowered to the lower side of the drawer body 6B together with the upper frame 94. [ As shown in FIG.
  • FIG. 14 is a front view of a storage compartment of a refrigerator according to an embodiment of the present invention
  • FIG. 15 is a rear view illustrating the inside of the inner guide according to the embodiment of the present invention
  • FIG. 16 is a cross- Fig.
  • the inner guide 200 can be disposed inside the cabinet 1 in which the storage chamber W is formed and can be disposed inside the inner case 8 to partition the storage space and the air passage P.
  • the air passage P may be formed between the inner guide 200 and the inner case 8 in the inner space of the inner case 8 or may be formed inside the inner guide 200.
  • the temperature regulating device disposed in the refrigerant passage P is a cooling device
  • the temperature regulating device disposed in the air passage P is not limited to the cooling device, and a heating device such as a heater It is possible.
  • the temperature regulating device disposed in the air passage P will be described with reference to the reference numeral 150, which is the same as the evaporator, which is an example thereof.
  • At least one fan 181, 186 may be disposed in the inner case 8 or the inner guide 200.
  • the fan 181 is disposed in the inner guide 200 to circulate the air in the storage space to the air passage P and the storage space.
  • the circulating fan 186 can circulate air in the storage space and can be an HG fan.
  • the circulating fan 186 can be disposed in the circulating flow path P4 to flow the air in the storage space to the circulating flow path P4 other than the air flow path P and to blow air in the circulating flow path P4 into the storage space can do.
  • the circulation flow path P4 can be formed by being partitioned from the air flow path P and the circulation flow path P4 can be formed by dividing the air flow path P while the air passing through the circulation flow path P4 passes through the circulation flow path P4. It can be formed so as not to mix with air passing therethrough.
  • the circulating flow path P4 may be formed in the inner guide 200. [ The circulating flow path P4 may be formed to communicate with the first space W1.
  • the fan 181 may be an inner air flow forming mechanism disposed in the air passage P and the circulating fan 186 may be an outer air flow forming mechanism disposed outside the air passage P.
  • the inner guide (200) can form a storage space together with the inner case (8).
  • the storage space may be a space in front of the inner guide 200 in the inner case 8, And may be formed between the guide 200 and the rear body of the inner case 8 or formed inside the inner guide 200.
  • the inner guide 200 can cover the temperature regulating device 150 and the fan 181.
  • the inner guide 200 may be formed so that the discharge port 204 and the suction port 205 are spaced apart from each other,
  • the partition member 3 may be closer to the lower one of the upper and lower ends of the storage chamber.
  • the discharge port 204 and the suction port 205 may be formed at positions facing the first space W1.
  • the additional discharge port 321 may be the second discharge port and the suction port 205 for sucking air in the first space W1
  • the additional suction port 341 may be the second suction port.
  • One surface of the partition member 3 may be a suction guide surface for guiding air flowing toward the suction port 205 and the other surface of the partition member 3 may be a discharge guide surface for guiding air discharged to the additional discharge port 321 .
  • the discharge port 204 is connected to the additional discharge port 321 and the additional suction port 341,
  • the upper discharge port 321 may be an upper discharge port formed at a higher position.
  • the additional discharge port 321 may be a lower discharge port.
  • the suction port 205 may be an upper suction port formed at a position higher than the additional discharge port 321 and the additional suction port 341.
  • the additional suction port 341 may be a lower suction port.
  • the inner guide 200 may be formed with a heat exchanging passage P1 in which the temperature regulating device 150 and the fan 181 are accommodated.
  • the inner guide 200 may be formed with a discharge passage P2 through which air blown by the fan 181 is guided to be discharged to the discharge port 204.
  • the inner guide 200 may be provided with an additional discharge passage P3 through which the air blown by the fan 181 is guided to be discharged to the additional discharge port 321.
  • the heat exchange path P1 and the discharge path P2 and the additional discharge path P3 can constitute an air flow path P capable of circulating the air through the temperature regulating device 150 and the storage space,
  • the adjusting device 150 and the fan 181 can adjust the temperatures of the first space W1 and the second space W2 while being accommodated in the air passage P.
  • the air guide 400 may include a front housing 410 and a rear housing 420 in which the fan 181 is housed.
  • the air guide 400 may be provided with an outlet 412 communicating with the additional discharge port 321.
  • the outlet 412 is formed to face the additional discharge port 321 and can discharge air to the additional discharge port 321 and communicate with the additional discharge port 321 through a discharge duct (not shown).
  • the refrigerator may include a guide 234 for guiding air forced through the fan 181 inside the air guide 400.
  • the guide 234 may be formed in the discharge guide 202 to guide the air blown from the fan 181 to the outlet 412.
  • the air guide 400 may be provided with a scroll 413 and an opening 414 for guiding air to the discharge passage P2.
  • the scroll 413 can guide the air blown from the fan 181 to the opening 414.
  • the opening 414 can communicate with the lower end of the discharge passage P2.
  • the first damper 191 can be disposed in the air passage P and can adjust the air supplied to the first space W1.
  • the first damper 191 may be mounted between the fan 181 and the discharge port 204 in the air flow direction.
  • the second damper 192 is disposed in the air passage P and can regulate air supplied to the second space W2.
  • the second damper 192 can be mounted between the fan 181 and the additional discharge port 321 in the air flow direction.
  • the circulation fan 186 may be disposed in the inner guide 200.
  • the inner guide 200 may be provided with a circulation flow path P4 through which air circulated by the circulation fan 186 passes when the circulation fan 186 operates.
  • the inner guide 200 may be provided with an inlet 188 through which the air in the storage space flows into the circulation flow path P4 when the circulation fan 186 is driven.
  • the inner guide 200 may be provided with an outlet 189 through which the air of the circulation passage P4 is discharged into the storage space.
  • the inlet 188 and the outlet 189 can communicate with the first space W1 and can be directed toward the first space W1.
  • the circulating fan 186 can circulate the air in the first space W1 to the circulating path P4 and the first space W1.
  • a purifying unit 185 such as an air purifying filter may be disposed in the circulating flow path P4 and the air passing through the circulating flow path P4 may be purified by the purifying unit 185.
  • the inner guide 200 may further include an inlet guide 182 and an inlet body 187 forming an inlet 188.
  • the inner guide 200 may be provided with a first temperature sensor 190 for sensing the temperature of the first space W1 and a second temperature sensor 390 for sensing the temperature of the second space W2.
  • the inner guide 200 may include a discharge guide 202 and an inner cover 300.
  • the discharge guide 202 can be disposed higher than the inner cover 300.
  • the temperature regulating device 150 and the fan 181 are connected to the first space W1 and the second space W2 through the air passage P formed by at least one of the discharge guide 202 and the inner cover 300 Air can be supplied.
  • the temperature regulating device 150 can be accommodated inside the inner cover 300.
  • the discharge guide 202 and the inner cover 300 are accommodated in the inner case 8 together with the temperature regulating device 150 and the fan 181.
  • the fan 181 forcibly flows the heat exchanged air with the temperature regulating device 150 so that the air flowing by the fan 181 flows into the first space W1 by the discharge guide 202 and the inner cover 300, And the second space W2.
  • the discharge guide 202 can be directed to the first space W1 and the discharge guide 202 can be formed with the discharge port 204 and the suction port 205.
  • the inner cover 300 may be connected to the discharge guide 202.
  • the inner cover 300 may be directed to the second space W2 and the inner cover 300 may be provided with an additional discharge port 321 and an additional suction port 341.
  • One side of the discharge guide 202 can be directed to the first space W1 and the discharge port 204 and the suction port 205 can be formed in a region of the discharge guide 202 facing the first space W1 .
  • a portion of the discharge guide 202 which faces the first space W1 is provided with an HG module 184 for cleaning the air in the first space W1 and a heater 223 for sensing the temperature of the first space W1 1 temperature sensor 190 may be provided.
  • the HG module 184 may include a circulating fan 186.
  • the HG module 184 may include a purification unit 185, such as an air purification filter.
  • One side of the inner cover 300 can be directed to the second space W2 and the additional discharge port 321 and the additional suction port 341 can be formed in the area of the inner cover 300 facing the second space W2 have.
  • the height of the additional outlet 321 may be higher than the height of the additional inlet 341.
  • the additional discharge port 321 may be formed on the upper portion of the inner cover 300 and the air blown by the fan 181 may be discharged through the additional discharge port 321 into the second space W2.
  • An additional suction port 341 may be formed in the lower portion of the inner cover 300. The air sucked into the additional intake port 341 may flow to the temperature regulating device 150.
  • a second temperature sensor 390 for sensing the temperature of the second space W2 may be provided at a portion of the inner cover 300 facing the second space W2.
  • the refrigerator may include at least one heating device for heating the storage space, and the refrigerator may perform a heating mode (H, see FIG. 4) using a heating device.
  • At least one heating device can be operated independently of the temperature regulator 150 disposed in the air passage P.
  • the refrigerator can perform the cooling mode E (see FIG. 4) by the temperature regulating device 150 disposed in the air passage P and can perform the heating mode H by the at least one heating device .
  • the heating device may include first heating means (171, 172) capable of heating the storage chamber by conduction and radiation, and second heating means (186) capable of heating the storage chamber by convection.
  • the first heating means can be arranged to heat only one of the first space W1 and the second space W2 and can be provided for each of the first space W1 and the second space W2.
  • the first heating means is preferably installed at a thermally isolated position with the temperature regulating device arranged in the air passage (P).
  • the first heating means may be disposed other than the air passage (P).
  • the first heating means may be disposed other than the inner guide forming the air passage (P).
  • the first heating means may be disposed on a surface of the inner case directly opposite to the inner guide (for example, when the inner guide is disposed at the rear of the storage chamber, a surface of the inner case which forms the rear of the storage chamber while facing the inner guide) have.
  • the first heating means 171 can be arranged to heat an area of the first space W1 that is relatively undercooled relative to other areas.
  • the air discharged from the discharge ports 204 and 321 into the storage compartment can be dropped and sucked through the suction ports 205 and 341.
  • the area of the storage space close to the suction ports 205 and 341 is relatively subcooled It can be an easy area.
  • the first heating means may be arranged to further heat the storage space adjacent to the intake port than the storage space adjacent to the discharge port.
  • the heating means 171 for the first space W1 may be arranged to be located below the inner case forming the first space with the first partitioning member 3.
  • the heating means 172 for the second space W2 may be disposed in the inner case forming the second space with the second partition member 10.
  • the heating means 172 for the second space W2 may be installed in the inner case located between the first partition member 3 and the second partition member 10.
  • the second heating means 186 is disposed as far as possible from the first heating means 171 and 172 in order to increase the circulation efficiency by convection.
  • the second heating means 186 may be disposed closer to the discharge ports 204, 321 than the suction ports 205, 341.
  • the first heating means 171 and 172 may be located below the storage chamber and the second heating means 186 may be located above the storage chamber.
  • the second heating means 186 may be located above the partition wall 3 and the cooling means 150 may be located below the partition wall 3.
  • the second heating means 186 may be located above the inner guide 200 and the cooling means 150 may be located below the inner guide 200.
  • the circulation flow path P4 for the second heating means 186 formed in the inner guide 200 and the air flow path P for the cooling means 150 may be partitioned by a heat insulating material.
  • the heating device 171 may include a pair of first side heating devices 173 and 174 disposed in the first body 8C.
  • the heating device 171 may include an inner heating device 175 disposed in the partition member 3 or the shelf 2.
  • the inner heating device 175 is disposed so as to be exposed on the outer surface of the partition member 3, the shelf 3, and the heating body, and can directly heat the air in the storage space.
  • the heating device 171 includes a pair of first side heating devices 173 and 174 and an inner heating device 175, the capacity of each of these heating devices 173, 174, .
  • the total capacity of the heating device 171 may be the sum of the capacity of each of the pair of first side heating devices 173 and 174 and the capacity of the inner heating device 175, It is preferable that the total capacity of the apparatus 171 is 30% or more.
  • the capacity of the inner heating device 175 may be larger than the capacity of the pair of first side heating devices 173 and 174. [ The sum of the capacities of the pair of first side heating devices 173 and 174 is preferably 31.25% to 56.26% of the total capacity.
  • the refrigerator may further include an additional heating device 172 for heating the second space W2.
  • the additional heating device 172 may include a pair of second side heating devices 176 and 177 disposed in the second body 8D.
  • the additional heating device 172 may further include a lower heating device 178 disposed in the lower body of the inner case 8.
  • the additional heating device 172 includes both the pair of second side heating devices 176 and 177 and the lower heating device 178, the capacity of each of these heating devices 176, 177 and 178 Is suitably distributed.
  • the total capacity of the additional heating device 172 may be the sum of the capacity of each of the pair of second side heating devices 176 and 177 and the capacity of the lower heating device 178, It is preferable that the total amount of the additional heating device 172 is 30% or more.
  • the capacity of the lower heating device 178 may be larger than the capacity of the pair of second side heating devices 176 and 177.
  • the sum of the capacities of the pair of second side heating devices 176 and 177 is preferably 31.25% to 56.26% of the total capacity of the additional heating device 172.
  • the cooling means and the fan 181 can be operated and the heating device 171 can be stopped.
  • the flow switching mechanism 120, the compressor 100, and the like can be controlled so that the cooler is supplied to the temperature controller 150, and the first damper 191 can be opened .
  • the heating device 171 can be operated. In this case, at least one of the fan 181 and the circulating fan 186 can be operated.
  • the circulation fan 186 is driven in the heating mode of the first space W1 so that the air in the first space W1 circulates through the heating device 171 and the circulating flow path P4 so that the first space W1 is convected To be heated.
  • the cooling means can be controlled so that the air in the air passage P is not discharged into the first space W1, so that the first damper 191 can be closed or the fan 181 can be stopped.
  • the fan 181 is operated to circulate the air in the first space W1 through the heating device 171 and the air passage P so that the first space W1 is convected To be heated.
  • the flow switching mechanisms 120 and 120 ', the compressor 100, and the like can be controlled so that the coolant is not supplied to the temperature regulator 150.
  • the cooling means and the fan 181 can be operated and the additional heating device 172 can be stopped.
  • the flow switching mechanism 120, the compressor 100, and the like can be controlled so that the cooler is supplied to the temperature controller 150, and the second damper 192 can be opened .
  • the additional heating device 172 can be operated.
  • the fan 181 may be operated or stopped.
  • the fan 181 In the heating mode of the second space W2, the fan 181 is operated so that the air in the second space W2 circulates through the additional heating device 172 and the air passage P while the second space W2 is convection As shown in Fig.
  • the flow switching mechanisms 120 and 120 ', the compressor 100, and the like can be controlled so that the coolant is not supplied to the temperature regulator 150.
  • the fan 181 can be stopped, and in this case, the additional heating device 172 can heat the second space W2 by conduction.
  • the compressor 100 can be operated and the flow rate switching mechanisms 120 and 120 ' And both the first damper 191 and the second damper 192 can be opened and the fan 181 can be driven.
  • the air in the storage space can circulate through the temperature regulator 150 and the storage space, and the storage space can be cooled by convection.
  • the compressor 100 can be operated and the flow switching mechanisms 120 and 120 ' ,
  • the first damper 191 can be opened, the second damper 192 can be closed, and the fan 181 can be driven.
  • the air in the first space W1 can be circulated through the temperature regulating device 150 and the first space W1 while the first space W1 is cooled by convection.
  • the additional heating device 172 can be operated and the second space W2 can be heated by the additional heating device 172 .
  • the additional heating device 172 can be stopped.
  • One example of the heating mode in which the first space W1 is the heating mode and the second space W2 is the heating mode is that the heating device 171 and the additional heating device 172 can be operated and the circulating fan 186 is operated
  • the first damper 191 can be closed and the second damper 191 can be closed without causing the compressor 100 to operate or the flow path switching mechanisms 120 and 120 '
  • the fan 192 can be opened and the fan 181 can be operated.
  • the air in the first space W1 can be heated by the convection while circulating the heating device 171 and the circulating flow path P4 during the operation of the circulating fan 186.
  • the air in the second space W2 may be circulated through the additional heating device 172 and the air flow path P during the operation of the fan 181 to heat the second space W2 by convection.
  • the heating mode in which the first space W1 is the heating mode and the second space W2 is the heating mode is that the heating device 171 and the additional heating device 172 can be operated and the circulating fan 186 is operated And the first damper 191 and the second damper 192 are connected to the first and second dampers 191 and 192 so that the compressor 100 is not operated or the flow path switching mechanisms 120 and 120 ' And the fan 181 can be stopped.
  • the air in the first space W1 can be circulated through the heating device 171 and the circulating flow path P4 to heat the first space W1 by the convection when the circulating fan 186 is driven.
  • the second space W2 can be heated by the additional heating device 172.
  • the heating mode in which the first space W1 is the heating mode and the second space W2 is the heating mode is that the heating device 171 and the additional heating device 172 can be operated and the compressor 100 is operated
  • the first damper 191 and the second damper 192 can be opened and the fan 181 can be opened or closed without causing the flow switching mechanism 120 or 120 ' Can be driven.
  • the air in the storage space can be heated in the storage space by the convection while circulating the heating device 171 and the additional heating device and the air passage (P).
  • the first space W1 is the heating mode and the second space W2 is the cooling mode is the heating device 171 is operated and the compressor 100 is operated and the flow path switching mechanisms 120 and 120 '
  • the first damper 191 can be closed and the second damper 192 can be opened and the circulation fan 186 and the fan 181 can be opened Can be driven.
  • the air in the first space W1 can be circulated through the heating device 171 and the circulating flow path P4 when the circulating fan 186 is driven and the first space W1 can be heated by convection.
  • air in the second space W2 can circulate through the temperature regulating device 150 and the second space W2, and the second space W2 is cooled by convection .
  • Another example of the second space W2 is the heating mode of the first space W1 and the heating device 171 is operated and the compressor 100 is not operated or the flow path switching mechanisms 120 and 120 '
  • the first damper 191 can be opened, the second damper 192 can be closed, and the fan 181 can be driven without guiding the refrigerant to the temperature regulating device 150.
  • the air in the first space W1 can circulate through the heating device 171 and the air passage P and the first space W1 can be heated by convection when the fan 181 is driven.
  • the heating mode of the first space W1 may be described prior to the cooling mode of the second space W2, and the quality deterioration of the article stored in the first space W1 may be minimized.
  • first space W1 is the heating mode and the second space W2 is the standby mode
  • the heating device 171 can be operated and the compressor 100 is not operated or the flow path switching mechanism 120
  • the first damper 191 and the second damper 192 can be closed and the circulating fan 186 can be operated.
  • the air in the first space W1 during the operation of the circulating fan 186 can circulate the heating device 171 and the circulating flow path P4 so that the first space W1 can be heated by convection.
  • Another example of the second space W2 in the standby mode is that the heating device 171 can be operated and the compressor 100 is not operated or the flow switching mechanism 120 is operated, The first damper 191 can be opened and the second damper 192 can be closed and the circulating fan 186 can be operated without the refrigerant being guided by the temperature regulating device 150, .
  • the air in the first space W1 circulates through the heating device 171 and the air passage P during operation of the circulating fan 186 so that the first space W1 can be heated by convection.
  • the controller 30 can selectively implement a plurality of modes E, H and D in accordance with the input means, the timer 37 and the temperature sensors 190 and 390.
  • the controller 30 controls the temperature of the first space W1 inputted through the input means and the temperature sensed by the first temperature sensor 190 and the temperature of the first space W1 W1) can be adjusted to the cooling mode or the heating mode or the temperature can be maintained in the standby mode.
  • the controller 30 can control the second space W2 in the cooling mode, the standby mode, and the heating mode.
  • the controller 30 controls the temperature of the second space W2 inputted through the input means and the temperature sensed by the second temperature sensor 390 and the temperature of the second space W2 W2) can be temperature controlled in the cooling mode or the heating mode, or the temperature can be maintained in the standby mode.
  • a space controlled by the cooling water stage and the heating means will be referred to as a storage chamber W.
  • the temperature of the storage chamber W is sensed by the temperature sensor 190, It will be described that the cooling device 181 and the circulating fan 186 flow air in the storage room and that the temperature regulating device 150 is a constitution of the cooling device and the heating device 171 heats the storage room .
  • FIG. 17 is a flowchart when the refrigerator according to the embodiment of the present invention is switched from the cooling mode to the heating mode.
  • the temperature change of the storage compartment can be considered in two aspects.
  • a temperature change amount with time (hereinafter referred to as a time temperature change amount) can be measured based on a specific point in the storage space.
  • the time temperature change amount means a difference value of the second temperature in the upper space of the storage compartment when the first temperature is different from the first temperature and the first temperature of the upper space of the storage compartment at the first time.
  • the spatial temperature variation means a difference between the first temperature of the upper space of the storage compartment and the second temperature of the lower space of the storage compartment.
  • the storage temperature difference it is also possible to reduce the difference between the target temperature upper limit value and the target temperature lower limit value (hereinafter referred to as the storage temperature difference) in the storage room by a method for reducing the time temperature variation of the storage room. In this case, frequent turning on / off of the temperature control device lowers parts reliability and increases power consumption.
  • the above problem can be reduced by using a temperature control device including a cooling water stage and a heating means.
  • a cooling water step and a heating means are provided to control the storage room temperature of at least one of the expensive special storage room, the constant temperature greenhouse and the senior storage room of the refrigerator.
  • the target temperature of the storage room is adjusted upward (or downward), or the door is opened, (Or overheated).
  • the heating means (or the cooling means) may be operated to improve or maintain the quality of the stored article.
  • the cooling water stage and the heating means are desirably separated / partitioned from the side of the heat insulation, and the cooling water stage and the heating means It is preferable to control so as not to overlap. To this end, it is preferable to alternately operate the cooling water stage and the heating means.
  • the operation start conditions of the predetermined heating means are satisfied after the cooling means is completed, it is preferable to set a time difference rather than immediately starting the operation of the heating means.
  • the time difference is preferably set to be short.
  • the heating means is operated after the first time (T1) has elapsed, and the temperature of the storage chamber is lowered to the target temperature lower limit value T4 It is preferable that the heating means is operated after the second time (T2, T2 ⁇ T1) has elapsed.
  • the heating means can be operated after the third time (T3, T3 ⁇ T2) has elapsed.
  • the controller 30 can compare the storage room temperature (hereinafter referred to as storage room temperature) sensed by the temperature sensor 190 with the upper limit value of the target temperature. If the storage room temperature exceeds the upper limit value of the target temperature, The cooling mode E can be started. (S1)
  • the controller 30 may reset the first timer of the timer 37 at the start of the cooling mode E (S2).
  • the first timer may be a term for distinguishing from the second timer described later .
  • the timer 37 may include a first timer and a second timer. The start time at which the first timer starts to count time and the start time at which the second timer starts counting time may be different.
  • the controller 30 can operate the temperature regulator 150 and operate the fan 181 in the cooling mode E.
  • the operation of the temperature regulating device 150 may mean operating the refrigerator to supply the refrigerant to the temperature regulating device 150, for example, the operation of the compressor 100 or the flow switching device 120 ) 120 'may guide the refrigerant to the temperature regulator 150.
  • the air in the storage chamber W can cool the storage chamber W while circulating the storage chamber W and the temperature control unit 150 and the storage chamber temperature can be gradually lowered by the temperature control unit 150.
  • the controller 30 can stop the temperature regulator 150 if the storage compartment temperature is below the lower limit of the target temperature.
  • the stopping of the temperature regulating device 150 may mean that the refrigerator is operated so that the refrigerant is not supplied to the temperature regulating device 150.
  • the stopping of the temperature regulating device 150 may mean stopping the compressor 100, 120) 120 'did not supply the refrigerant to the temperature regulating device 150.
  • the storage room temperature may increase again to a target temperature lower limit value or more depending on the load, or may be maintained between the target temperature lower limit value and the lower limit temperature, or lower than the lower limit temperature.
  • the controller 30 can count the first timer of the timer 37 if the storage compartment temperature is less than the lower limit value of the target temperature (S3) (S4).
  • the counting of the first timer is performed when the storage compartment temperature is lower than the target temperature May be counted by the timer 37.
  • the refrigerator can count the time (hereinafter referred to as the first time) in which the storage room temperature is lower than the lower limit value of the target temperature by using the timer 37.
  • the controller 30 compares the storage room temperature with the lower limit temperature and resets the second timer of the timer 37 when the storage room temperature is equal to or lower than the lower limit temperature.
  • the controller 30 compares the first time counted by the timer 37 with the first preset time (e.g., 100 minutes), and the controller 30 compares the first time counted by the timer 37 with the first preset time (For example, 100 minutes), it is possible to start the heating mode H.
  • the first preset time e.g., 100 minutes
  • the controller 30 does not start the heating mode H and the storage room temperature (H) (S9). (S3) If the target temperature is lower than the target temperature lower limit value,
  • the controller 30 can reset the first timer of the timer (S3) (S2)
  • the controller 30 can count the second timer of the tamer 37 if the storage compartment temperature is below the lower limit value of the target temperature and is lower than the lower limit temperature.
  • S3 S5
  • S6 The counting of the timer may mean that the timer 37 counts the time that the storage compartment temperature remains below the lower limit temperature.
  • the refrigerator can use the timer 37 to count the time when the storage room temperature is lower than the lower limit temperature (hereinafter referred to as the second time).
  • the controller 30 can start the heating mode H if the second time is the result of comparison of the second set time (e.g., 5 minutes) and the second time exceeds the second set time (S7) (S10)
  • the controller 30 may compare the first time with the first set time if the second time is less than or equal to the second set time and initiate the heating mode H if the first time exceeds the first set time. On the other hand, if the second time is equal to or less than the second set time and the first time is equal to or shorter than the first set time, the controller 30 does not start the heating mode H, (S7) (S9) (S3)
  • the refrigerator is operated such that the time for which the storage compartment temperature is maintained between the lower limit temperature and the target temperature is greater than the first predetermined time (for example, 100 minutes)
  • the heating mode H can be started when the time for which the holding time H is maintained exceeds the second set time (for example, 5 minutes).
  • the refrigerator may be in a standby mode (D) for a first set time period in which the storage compartment temperature is maintained between the target temperature lower limit value and the lower limit temperature, and the standby mode (D) during the second set time .
  • the controller 30 can operate the heating device 171 and operate the circulating fan 186) and / or the fan 181, (Operation of circulation fan 171 and circulation fan 186) and / or operation of fan 181.
  • FIG. 18 is a flowchart when the refrigerator according to the embodiment of the present invention is switched from the heating mode to the cooling mode.
  • the controller 30 may reset the first timer of the timer 37 at the start of the heating mode H.
  • the first timer may be a term for distinguishing from the second timer described later .
  • the timer 37 may include a first timer and a second timer. The start time at which the first timer starts to count time and the start time at which the second timer starts counting time may be different.
  • the controller 30 can operate the heating device 171 and operate the circulating fan 186 and / or the fan 181 in the heating mode H).
  • the operation of the heating device 171 may mean that the temperature of the heating device 171 is raised to raise the ambient temperature of the heating device 171, for example, .
  • the air in the storage chamber W can heat the storage chamber W while circulating the storage chamber W and the heating device 171 and the storage chamber temperature can be gradually increased by the heating device 171.
  • the controller 30 can stop the heating device 171 if the storage compartment temperature exceeds the upper limit value of the target temperature.
  • the stopping of the heating device 171 may mean blocking the current applied to the heating device 171, and may mean stopping (turning off) the heater, for example.
  • the storage room temperature may be raised again below the target temperature upper limit value, or between the target temperature upper limit value and the upper temperature limit, or lower than the upper limit temperature, depending on the load.
  • the controller 30 may count the first timer of the timer 37 if the storage compartment temperature exceeds the upper limit of the target temperature (S13) (S14).
  • the counting of the first timer is performed when the storage compartment temperature exceeds the upper limit value It may mean that the timer 37 counts the time to maintain the excess.
  • the refrigerator can count the time (hereinafter referred to as the first time) in which the storage room temperature exceeds the upper limit value of the target temperature by using the timer 37.
  • the controller 30 may compare the storage room temperature with the upper limit temperature and reset the second timer of the timer 37 if the storage room temperature exceeds the upper limit temperature. (S15) (S18) The controller 30 compares the first time counted by the timer 37 with the first preset time (e.g., 100 minutes), and the controller 30 compares the first time counted by the timer 37 with the first preset time (For example, 100 minutes), the cooling mode E can be started. (S19) (S1)
  • the controller 30 does not start the cooling mode E and the storage room temperature (for example, (S19) (S13). If the target temperature upper limit value is less than the target temperature upper limit value,
  • the controller 30 can reset the first timer of the timer (S13) (S12)
  • the controller 30 can count the second timer of the tamer 37 if the storage room temperature exceeds the upper limit value of the target temperature and is less than the upper limit temperature. (S13) (S15) (S16)
  • the counting of the timer may mean that the timer 37 counts the time that the storage room temperature remains above the upper limit temperature.
  • the refrigerator can use the timer 37 to count the time when the storage room temperature exceeds the upper limit temperature (hereinafter referred to as the second time).
  • the controller 30 can start the cooling mode E if the second time is the result of the comparison of the second set time (e.g., 5 minutes) and the second time exceeds the second set time (S17) (S1)
  • the controller 30 may compare the first time with the first set time if the second time is less than or equal to the second set time and may initiate the cooling mode E if the first time exceeds the first set time. (S17) (S19) (S1) On the other hand, if the second time is shorter than the second set time and the first time is shorter than the first set time, the controller 30 does not start the cooling mode E, (S17) (S19) (S13)
  • the refrigerator is operated such that the time for which the storage room temperature keeps the target temperature between the upper limit value and the upper limit temperature exceeds the first set time (for example, 100 minutes) (For example, 5 minutes), the cooling mode E can be started.
  • the first set time for example, 100 minutes
  • the cooling mode E can be started.
  • the refrigerator may be in the standby mode (D) for a first set time period in which the storage compartment temperature is kept between the target temperature upper limit value and the upper limit temperature, and the standby mode (D) during the second set time .
  • FIG. 19 is a diagram illustrating an example of a heating mode and a cooling mode according to a temperature change of a storage chamber according to an embodiment of the present invention.
  • the heating target temperature T11 which is the storage target temperature in the heating mode and the cooling target temperature T12 which is the storage target temperature in the cooling mode are set to the same temperature.
  • the heating target temperature T11, which is the storage target temperature in the heating mode, and the cooling target temperature T12, which is the storage target temperature in the mode can be set to different temperatures.
  • the heating target temperature T11 may be set to be lower than the cooling target temperature T12.
  • the heating target temperature T11 may be set to be lower than the cooling target temperature T12 by 0.2 ⁇ ⁇ to 1 ⁇ ⁇ .
  • the storage-chamber temperature satisfaction condition in the temperature rising period after the cooling mode is switched from the standby mode to the heating mode after the cooling mode is satisfied is the storage- Condition.
  • the temperature at which the storage compartment is overheated and the refrigerator is to be switched to the cooling mode is lowered, so that the switching of the cooling mode can be advanced.
  • the heating target temperature T11 and the cooling target temperature T12 are set to 10 ⁇ ⁇ equally
  • the upper limit value of the storage chamber target temperature in the heating mode is 10 ⁇ ⁇ + 3 ⁇ ⁇ and the upper limit temperature is 10 ⁇ ⁇ + 5 ⁇ ⁇
  • the heating mode is switched to the cooling mode after passing through the standby mode on the basis of the above-mentioned 13 ° C or 15 ° C.
  • the heating target temperature T11 is 7 ⁇ ⁇ and the cooling target temperature T12 is 10 ⁇ ⁇
  • the upper limit value of the storage chamber target temperature in the heating mode is 7 ⁇ ⁇ + 3 ⁇ ⁇ and the upper limit temperature is 7 ⁇ ⁇ +
  • the heating mode is switched to the cooling mode after passing through the standby mode on the basis of the above-mentioned 10 ° C or 12 ° C. That is, it is possible to prevent deterioration of the quality of the storage compartment article due to the overheating of the storage compartment, and the time to switch to the cooling mode can be further accelerated.
  • the heating target temperature T11 is set to be lower than the cooling target temperature T12, that is, if the cooling target temperature T12 is set to be higher than the heating target temperature T11
  • the storage compartment satisfactory condition in the temperature lowering period after the first heating mode becomes higher than the storage compartment satisfactory condition in the previous heating mode.
  • the temperature range in which the storage compartment is subcooled and the heating mode is to be switched is also increased, so that the switching to the heating mode can be accelerated.
  • the opposite case of the above-described example can be considered. Therefore, it is possible to prevent the deterioration of the quality of the storage compartment by the supercooling of the storage compartment, and to speed up the switching to the heating mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

냉장고는 저장실이 형성된 캐비닛과; 저장실을 냉각하는 냉각수단과; 저장실을 가열하는 가열수단과; 저장실의 온도를 센싱하는 온도센서와; 냉각수단과 가열수단을 제어하는 컨트롤러를 포함하고, 컨트롤러는 복수의 모드를 선택적으로 실시하고, 복수의 모드는 냉각수단이 작동되거나 정지되는 쿨링모드(E)와, 가열수단이 작동되거나 정지되는 히팅모드(H)와, 냉각수단 및 가열수단이 정지인 대기모드(D)를 포함하고, 복수의 모드는 쿨링모드와 대기모드와 히팅모드의 순서로 실시되거나 히팅모드와 대기모드와 쿨링모드의 순서로 실시된다.

Description

냉장고
본 발명은 냉장고에 관한 것이다.
일반적으로 냉장고는 도어에 의해 차폐되는 내부의 저장공간에 음식물을 저
온 저장할 수 있도록 하는 가전 기기이다.
본 발명은 저장실에 저장되는 물품의 품질 저하를 최소화할 수 있는 냉장고를 제공하는데 있다.
본 발명의 다른 목적은 저장실을 통상적인 냉장실 보다 높은 온도범위로 온도조절할 수 있고, 저장실의 과냉이나 저장실의 과열을 최소화할 수 있는 냉장고를 제공하는데 있다.
본 발명의 실시 예에 따른 냉장고는 저장실이 형성된 캐비닛과; 상기 저장실을 냉각하는 냉각수단과; 상기 저장실을 가열하는 가열수단과; 상기 저장실의 온도를 센싱하는 온도센서와; 상기 냉각수단과 가열수단을 제어하는 컨트롤러를 포함하고,
상기 컨트롤러는 복수의 모드를 선택적으로 실시하고, 상기 복수의 모드는 상기 냉각수단이 작동되거나 정지되는 쿨링모드(E)와; 상기 가열수단이 작동되거나 정지되는 히팅모드(H)와; 상기 냉각수단 및 가열수단이 정지인 대기모드(D)를 포함하고, 상기 복수의 모드는 상기 쿨링모드와 대기모드와 히팅모드의 순서로 실시되거나 상기 히팅모드와 대기모드와 쿨링모드의 순서로 실시된다.
상기 냉각수단은 쿨링모드시, 상기 온도센서에서 센싱된 저장실 온도가 목표온도 상한값 초과이면 작동되고, 상기 저장실 온도가 목표온도 하한값 미만이면 정지될 수 있다.
상기 가열수단은 히팅모드시, 상기 저장실 온도가 목표온도 상한값 초과이면 정지되고, 상기 저장실 온도가 목표온도 하한값 미만이면 정지될 수 있다.
상기 대기모드시 상기 저장실 온도는 상기 목표온도 하한값과 하한 온도 사이이거나, 상기 목표온도 상한값과 상한 온도 사이일 수 있다. 상기 하한 온도는 상기 목표온도 하한값 보다 낮은 온도일 수 있다. 상기 상한 온도는 상기 목표온도 상한값 보다 높은 온도일 수 있다.
상기 쿨링모드가 종료된 후, 상기 저장실 온도가 상기 목표온도 하한값과 하한 온도 사이인 시간이 제1설정시간 이상이면, 상기 대기모드에서 히팅모드로 전환될 수 있다.
상기 쿨링모드가 종료된 후, 상기 저장실 온도가 상기 하한 온도 미만인 시간이 제2설정시간 이상이면, 상기 대기모드에서 히팅모드로 전환될 수 있다.
상기 제2설정시간은 상기 제1설정시간 보다 짧을 수 있다.
상기 히팅모드가 종료된 후, 상기 저장실 온도가 상기 목표온도 상한값과 상한 온도 사이인 시간이 제1설정시간 이상이면, 상기 대기모드에서 쿨링모드로 전환될 수 있다.
상기 히팅모드가 종료된 후, 상기 저장실 온도가 상기 상한 온도 초과인 시간이 제2설정시간 이상이면, 상기 대기모드에서 쿨링모드로 전환될 수 있다.
상기 제2설정시간은 상기 제1설정시간 보다 짧을 수 있다.
냉장고는 타이머와; 상기 목표온도를 입력하는 입력수단를 더 포함할 수 있다.
상기 컨트롤러는 상기 입력부와, 타이머와, 온도센서에 따라 상기 복수의 모드를 선택적으로 실시할 수 있다.
냉장고는 상기 저장실의 공기를 유동시키는 기류형성기구를 포함할 수 있다.
상기 컨트롤러는 상기 쿨링모드시, 상기 기류형성기구를 작동시킬 수 있다.
상기 컨트롤러는 상기 대기모드시 상기 기류형성기구를 정지시킬 수 있다.
상기 컨트롤러는 상기 히팅모드시, 상기 기류형성기구를 작동시킬 수 있다.
상기 캐비닛은 상기 저장실이 형성된 이너 케이스를 포함할 수 있다. 상기 이너 케이스의 내부에는 상기 저장실을 저장공간과 공기유로로 구획하는 이너 가이드가 배치될 수 있다. 상기 기류형성기구는 상기 이너 케이스 또는 이너 가이드에 배치되어 상기 저장공간의 공기를 순환시키는 순환팬을 포함할 수 있다.
상기 저장공간에는 상기 저장공간을 제1공간과 제2공간으로 구획하는 구획부재가 배치될 수 있다.
상기 가열수단은 상기 제1공간과 제2공간 별로 각각 제공될 수 있다.
상기 이너 가이드는 상기 이너 케이스의 리어 바디를 향할 수 있다. 상기 가열수단은 상기 이너 케이스의 사이드 바디에 설치된 사이드 가열장치를 포함할 수 있다.
상기 가열수단은 상기 구획부재에 배치된 이너 가열장치를 포함할 수 있다.
본 발명의 실시 예에 따르면, 물품의 품질 저하를 최소화하면서 물품을 신뢰성 높게 저장할 수 있다.
또한, 목표온도가 높은 공간을 냉각수단과 가열수단을 이용하여 신속하게 목표온도범위로 온도조절할 수 있고, 보관온도가 높은 물품을 신뢰성 높게 보관할 수 있다.
또한, 대기모드시, 저장실이 가열되거나 냉각되지 않기 때문에, 저장실이 급격하게 과냉되거나 급격하게 과열되는 것을 최소화할 수 있다.
또한, 저장실의 온도가 목표온도 범위와 하한 온도 사이의 낮은 온도범위에서 장시간 유지되지 않게 하여, 물품이 목표온도 범위와 하한 온도 사이의 낮은 온도에서 과냉되는 것을 최소화할 수 있다.
또한, 저장실 온도가 하한 온도 미만인 시간이 제2설정시간 이상이면, 대기모드에서 히팅모드로 전환되어, 사용자가 목표온도를 변경 입력할 경우에도 사용자의 요구에 신속하게 대응할 수 잇다.
또한, 저장실의 온도가 목표온도 범위와 상한 온도 사이의 높은 온도범위에서 장시간 유지되지 않게 하여, 물품의 품질이 목표온도 범위와 상한 온도 사이의 낮은 온도에서 저하되는 것을 최소화할 수 있다.
또한, 저장실 온도가 상한 온도 초과인 시간이 제2설정시간 이상이면, 대기모드에서 쿨링모드로 전환되어, 사용자가 목표온도를 변경 입력할 경우에도 사용자의 요구에 신속하게 대응할 수 있다.
또한, 대기모드시 기류 형성기구가 정지되어, 저장실이 급속하게 과냉되거나 급속하게 과열되는 것을 최소화할 수 있고, 온도 변화 속도를 최대한 늦출 수 있다.
도 1는 본 발명의 실시 예에 따른 냉장고 일 예가 도시된 단면도
도 2는 본 발명의 실시 예에 따른 냉장고 다른 예가 도시된 단면도,
도 3은 본 발명의 실시예에 따른 냉장고가 타 냉장고와 인접하게 배치되었을 때의 정면도,
도 4는 본 발명의 실시예에 따른 저장실의 온도 변화에 따른 냉각수단의 온,오프 및 가열수단의 온,오프가 도시된 도,
도 5 내지 도 8은 은 본 발명의 실시 예에 따른 냉장고의 냉동 사이클 예들이 도시된 도,
도 9은 본 발명의 실시예에 따른 냉장고의 제어 블록도,
도 10은 본 발명의 실시 예에 따른 냉장고의 투시 도어가 도시된 사시도,
도 11는 본 발명의 실시예에 따른 도어의 일 예가 도어 오픈 모듈에 오픈하였을 때의 평면도,
도 12는 본 발명의 실시예에 따른 도어의 다른 예가 도어 오픈 모듈에 의해 오픈하였을 때의 단면도,
도 13는 도 12에 도시된 거치대가 상승되었을 때의 단면도
도 14은 본 발명의 실시예에 따른 냉장고의 저장실이 도시된 정면도이고,
도 15은 본 발명의 실시예에 따른 이너 가이드 내부가 도시된 배면도이고,
도 16는 본 발명의 실시예에 따른 냉장고의 단면도이다.
도 17은 본 발명의 실시예에 따른 냉장고가 쿨링모드에서 히팅모드로 전환될 때의 순서도,
도 18는 본 발명의 실시예에 따른 냉장고가 히팅모드에서 쿨링모드로 전환될 때의 순서도,
도 19는 본 발명의 실시예에 따른 저장실의 온도 변화에 따른 히팅모드와 쿨링모드의 예가 도시된 도이다.
이하에서는 본 발명의 구체적인 실시 예를 도면과 함께 상세히 설명하도록 한다.
도 1는 본 발명의 실시 예에 따른 냉장고 일 예가 도시된 단면도이다.
냉장고는 물품 등이 저장될 수 있는 저장실(W)이 형성될 수 있다. 냉장고는 저장실(W)이 형성된 캐비닛(1)을 포함할 수 있다. 냉장고는 저장실(W)을 개폐하는 도어(50)를 더 포함할 수 있다. 도어 (50)은 회전형 도어(5)와 진퇴형 도어(6) 중 적어도 하나를 포함할 수 있다. 캐비닛(1)은 외관을 형성하는 아우터 케이스(7)와, 내부에 저장실(W)을 형성하기 위한 적어도 일면을 형성하는 이너 케이스(8)를 포함할 수 있다.
저장실(W)는 특정 온도범위에서 보관되는 것이 바람직한 특정 종류의 물품이 주로 보관되는 저장실일 수 있다. 예를 들면, 저장실(W)는 와인, 맥주 등 주류나 발효식품, 화장품, 의료용품 등 보온이나 보냉이 필요로 하는 특정 물품이 보관되는 전용 보관실일 수 있다. 한가지 예로, 와인을 위한 저장실은 3℃ 내지 20℃에서 온도가 유지될 수 있고, 더 바람직하게는 일반 냉장고의 냉장실보다는 높은 온도를 가지고, 20℃는 넘지 않는 것이 좋다. 더 바람직하게는 레드 와인을 위한 저장실은 12℃ 내지 18℃로 온도 조절될 수 있고, 와이트 와인을 위한 저장실은 6℃ 내지 11℃로 온도 조절될 수 있다. 한편, 샴페인을 위한 저장실은 약 5℃ 내외로 온도 조절될 수 있다.
저장실(W)은 저장실(W)의 목표온도 상한값과 목표온도 하한값 사이에서 보관온도가 변동(fluctuation)되도록 온도 조절될 수 있다. 저장실(W)에 저장되는 물품은 종류에 따라 목표온도 상한값과 목표온도 하한값의 차(이하, 보관온도차)에 의해 품질이 저감하는 경우가 발생할 수 있다. 냉장고는 상기 물품의 종류에 따라 보관 온도차가 작게 제작될 수 있고, 물품의 품질 저감을 최소화할 수 있다. 본 실시예의 냉장고의 저장실(W)는 일반 냉장고의 저장실에 비해 보관온도차가 작은 저장실일 수 있다. 구체적으로는 저장실(W)의 보관온도차는 3℃ 미만일 수 있고, 더 바람직하게는 예로 2℃일 수 있다. 물론, 온도 변화에 매우 민감한 물품을 고려할 경우, 보관온도차는 1℃ 이하일 수 있다.
냉장고는 저장실(W)의 온도를 조절할 수 있는 장치(이하, "온도조절장치"라 칭함)를 포함할 수 있다. 상기 온도조절장치는 냉각수단과 가열수단 중 적어도 하나를 포함할 수 있다. 상기 온도조절장치는 전도, 대류, 복사 중 적어도 하나의 방법으로 저장실(W)을 냉각 혹은 가열할 수 있다. 예를 들면, 증발기(150) 혹은 열전소자의 흡열바디와 같은 냉각수단을 이너 케이스(8)에 부착하여 전도에 의해 저장실(W)을 냉각할 수 있다. 팬과 같은 기류형성기구를 추가하면 대류에 의해 상기 냉각수단과 열교환된 공기를 저장실(W)에 공급할 수 있다. 한편, 히터 혹은 열전소자의 발열바디와 같은 가열수단을 이너 케이스(8)에 부착하여 전도에 의해 저장실(W)을 가열할 수 있다. 팬과 같은 기류형성기구를 추가하면 대류에 의해 저장실(W)에 열기를 공급할 수 있다. 본 명세서에서, 냉각수단은 증발기(150), 열전소자의 흡열바디 그리고 팬 중 적어도 하나를 포함하여 저장실(W)을 냉각할 수 있는 수단으로 정의될 수 있다. 그리고, 가열수단은 히터, 열전소자의 발열바디 그리고 팬 중 적어도 하나를 포함하여 저장실(W)을 가열할 수 있는 수단으로 정의될 수 있다.
냉장고는 이너 가이드(200)를 더 포함할 수 있다. 이너 가이드(200)는 이너 케이스(8) 내부를 물품이 저장되는 공간과 온도조절장치가 위치하는 공간("이하 온도조절장치 챔버)으로 구획할 수 있다. 온도조절장치 챔버는 냉각수단 챔버와 가열수단 챔버가 있을 수 있다.
예를 들면, 온도조절장치 챔버는 이너 가이드(200)와 이너 케이스(8)의 사이에 위치되거나, 이너 가이드(200)와 아우터 케이스(7) 사이에 위치하거나, 이너 가이드(200)의 내부에 위치될 수 있다.
상기 이너 가이드(200)은 물품이 저장되는 공간과 저장실(W)에 냉기를 공급하기 위한 냉기유로(P)를 구획하도록 배치하고, 냉각수단 중 적어도 하나는 냉기유로(P)에 배치될 수 있다.
상기 이너 가이드(200)은 물품이 저장되는 공간과 저장실(W)에 열기를 공급하기 위한 열기유로(P)를 구획하도록 배치하고, 가열수단 중 적어도 하나는 가열유로(P)에 배치될 수 있다. 냉각수단을 위한 이너 가이드와 가열수단을 위한 이너 가이드는 공용으로 설계할 수 있고, 별도로 구분하여 제작될 수 있다.
이너 가이드(200)는 이너 게이스(8)와 함께 저장공간을 형성할 수 있다. 이너 가이드(200)는 이너 케이스의 리어 바디 전방에 배치될 수 있다.
냉장고는 저장실(W)의 보관온도범위가 동일한 1개의 공간을 가지는 냉장고와 서로 다른 보관온도범위를 가지는 2개 이상의 공간을 가지는 냉장고를 모두 포함한다.
냉장고는 저장실(W)이 서로 다른 보관온도범위를 가지는 2개 이상의 공간(예를 들면, 제1공간(W1), 제2공간(W2))으로 구분하기 위해 상하 또는 좌우로 배치되는 구획부재(3)을 더 포함할 수 있다.
냉장고는 저장실(W)을 서로 다른 보관온도범위를 가지는 2개 이상의 공간(예를 들면, 제2공간(W2), 제3공간(W3))으로 구분하기 위해 상하 또는 좌우로 배치되는 구획부재(10)를 더 포함할 수 있다. 상기 구획부재(10)는 별도로 제작된 후, 이너 케이스(8) 내부에 장착될 수 있다. 상기 구획부재(10)는 아우터 케이스(7)와 이너 케이스(8,9)의 사이에 배치된 단열재와 함께 발포되어 제작될 수 있다.
상기 2개 이상의 공간의 크기는 서로 다를 수 있다. 예를 들면, 제1공간(W1)은 상측에 위치될 수 있고, 제2공간(W2)는 하측에 위치될 수 있으며, 구획부재(3)는 제1공간(W1)의 크기가 제2공간(W2)보다 크도록 배치될 수 있다. 제1공간(W)을 위한 제1보관온도는 제2공간(W2)을 위한 제2보관온도보다 높을 수 있다.
본 명세서에서, 제1보관온도가 제2보관온도보다 높은 것은 제1보관온도의 최대값이 제2보관온도의 최대값보다 큰 경우와, 제1보관온도의 평균값이 제2보관온도의 평균값보다 큰 경우 및 제1보관온도의 최저값이 제2보관온도의 최저값보다 큰 경우 중 적어도 한 경우를 의미하는 것으로 정의될 수 있다.
냉장고는 사용자가 냉장고의 외부에서 도어(50)을 열지 않고도 투시창을 통해 저장실을 볼 수 있는 도어(이하 투시 도어)를 더 포함할 수 있고, 투시 도어에 대해서는 후술하여 설명한다.
한편, 냉장고는 투시 도어와 구획부재(3,10) 중 적어도 하나에 배치되는 투명 가스켓 (24)을 더 포함할 수 있다. 투시 도어가 저장실(W)를 닫았을 때, 투명 가스켓 (24)은 구획부재(3,10)와 함께 저장실(W)를 서로 다른 보관온도범위를 가지는 2개 이상의 공간으로 구획할 수 있다.
냉장고는 도어(50)를 강제 오픈시키는 도어 오픈 모듈(11,11')을 더 포함할 수 있다. 도어 오픈 모듈 (11,11')은 사용자가 도어(5)를 잡지 않은 상태에서, 도어(5)가 소정 각도 이상으로 회전되게 하는 회전형 도어 오픈 모듈(11)이거나 사용자가 도어(6)를 잡지 않은 상태에서, 도어(6)가 전후 방향으로 진퇴되게 할 수 있는 진퇴형 도어 오픈 모듈(11')일 수 있다. 도어 오픈 모듈(11,11')에 대해서는 후술하여 설명한다.
냉장고는 거치대(12)를 승강 혹은 하강시킬 수 있는 리프팅 모듈(13)이 더 배치될 수 있고, 도 1에서 도시하지는 않았지만, 리프팅모듈은 저장실과 도어 중 적어도 하나에 위치할 수 있다.
냉장고는 서로 다른 보관온도범위를 가지는 2개 이상의 공간의 개폐를 위해 위해 복수개를 도어를 구비할 수 있다. 복수개 도어 중 적어도 하나는 투시 도어일 수 있다. 캐비닛(1) 또는 복수개 도어 중 적어도 하나는 도어 오픈 모듈(11,11')을 포함할 수 있다 복수개 도어 중 적어도 하나가 개폐하는 저장실에 위치하는 거치대를 승강시키는 리프팅 모듈(13)이 배치될 수 있다. 예를 들면, 상부에 위치하는 저장실을 위한 도어가 투시 도어일 수 있고, 하부에 위치하는 저장실의 거치대를 승강시키는 리프팅 모듈(13)이 배치될 수 있다.
도 2는 본 발명의 실시 예에 따른 냉장고의 다른 예가 도시된 단면도이다.
이하, 도1에 도시된 저장실(W)을 제1저장실(W)로 칭하여 설명한다.
냉장고는 적어도 하나의 제1저장실(W)과, 제1저장실(W)과 독립적으로 온도 조절될 수 있는 제2저장실(C)를 적어도 하나 더 포함할 수 있다. 이하, 제1저장실(W)에 대해서, 도 1에 도시된 저장실(W)과 동일한 구성 및 작용에 대한 상세한 설명은 생략하고, 도 1에 도시된 저장실(W)과 상이한 구성 및 작용에 대해서 설명한다.
제2저장실(C)은 제1저장실(W)의 온도범위 보다 낮은 온도범위를 갖는 저장실일 수 있고, 일예로 -24℃ 내지 7℃ 온도범위를 갖는 저장실일 수 있고, 제2저장실(C)은 -24℃ 내지 7℃ 온도범위 중 사용자에 의해 선택된 온도인 목표온도를 기준으로 온도 조절되는 저장실일 수 있다.
제2저장실(C)은 다수의 온도범위 중 어느 한 온도범위가 선택될 수 있는 절환실(또는 변온실)로 구성될 수 있고, 하나의 온도범위를 갖는 비절환실로 구성되는 것이 가능하다.
절환실은 다수의 온도범위 중 선택된 온도범위로 온도 조절될 수 있는 저장실로서, 다수의 온도범위는 영상의 제1온도범위와, 영하의 제2온도범위와, 제1온도범위오 제2온도범위 사이의 제3온도범위를 포함할 수 있다.
예를 들면, 사용자는 입력부를 입력하여, 제2저장실(C)을 영상의 온도범위인 모드(예들 들면, 냉장실모드)로 선택할 수 있고, 제2저장실(C)의 온도범위는 영상의 온도범위(예를 들면, 1℃ 내지 7℃)가 선택될 수 있다. 한편, 사용자는 입력부를 입력하여 영상의 온도범위 중 희망온도를 추가로 입력할 수 있고, 제2저장실(C)의 목표온도는 영상의 온도범위(예를 들면, 1℃ 내지 7℃) 중 사용자가 입력한 특정 온도(예를 들면, 4℃)일 수 있다.
한편, 사용자는 입력부를 입력하여, 제2저장실(C)을 영하의 온도범위인 모드 (예를 들면, 냉동실 모드)나, 특수모드(예를 들면, 특정 종류의 물품을 보관하는 모드 또는 김치 저장모드 등)를 선택할 수 있다.
제1저장실(W)은 특정 온도범위에서 보관되는 것이 바람직한 특정 종류의 물품이 저장되거나 주로 특정 종류의 물품이 보관되는 특정물품 저장실일 수 있고, 제2저장실(C)은 특정 종류의 물품 이외에 다양한 종류의 물품이 저장될 수 있는 비특정물품 저장실일 수 있다. 특정물품의 예로는 와인을 포함한 주류,발효식품,화장품,의료용품 등이 될 수 있다. 예를 들면, 제1저장실(W)은 와인이 저장되는 저장실이거나 주로 와인이 저장되는 와인실(wine chamber)일 수 있고, 제2저장실(C)은 와인 이외의 물품이 저장되거나 주로 와인 이외의 물품이 저장되는 비와인실(Non-wine chamber)일 수 있다.
제1저장실(W)과 제2저장실(C) 중 보관온도차가 상대적으로 작은 저장실은 정온실(A constant temperature chamber)로 정의될 수 있고, 제1저장실(W)과 제2저장실(C) 중 보관온도차가 상대적으로 큰 저장실은 비정온실(a non-constant temperature chamber)으로 정의될 수 있다.
제1저장실(W)과 제2저장실(C)은 어느 하나가 선순위로 제어되는 선순위 저장실(a priority chamber)일 수 있고, 다른 하나가 상대적으로 후순위로 제어되는 후순위 저장실(a subordinate chamber)일 수 있다.
온도 변화에 따른 품질 변화가 크거나 고가인 제1물품은 선순위 저장실에 저장될 수 있고, 온도 변화에 따른 품질 변화가 작거나 저가인 제2물품은 후순위 저장실에 저장될 수 있다.
냉장고는 선순위 저장실을 위한 특정 운전과 후순위 저장실을 위한 특정운전을 실시할 수 있다.
상기 특정 운전이란 저장실을 위한 일반운전과 특수운전을 포함하다. 일반운전은 저장실 냉각을 위한 통상적인 냉각운전으로 정의될 수 있다. 그리고. 특수운전은 냉각수단 제상을 위한 제상운전, 도어가 열린 후 소정조건이 만족되면 진행할 수 있는 도어 부하 대응 운전, 및 냉장고에 전원을 처음 투입할 경우의 운전인 전원 초기 투입 운전 등으로 정의될 수 있다.
냉장고는 2가지 운전이 충돌될 경우, 선순위 저장실을 위한 특정 운전이 먼저 진행되도록 제어될 수 있다. 여기서, 2가지 운전의 충돌이란, 제1운전의 시작조건과 제2운전의 시작조건이 동시에 만족한 경우, 제1운전의 시작 조건이 만족되어 제1운전이 진행되는 중에 제2운전의 시작조건이 만족되는 경우, 그리고 제2운전의 시작 조건이 만족되어 제2운전이 진행되는 도중에 제1운전의 시작조건이 만족되는 경우로 정의될 수 있다.
예를 들면, 냉장고는 선순위 저장실의 온도가 불만족이고, 후순위 저장실의 온도가 불만족일 경우, 선순위 저장실이 후순위 저장실 보다 먼저 냉각되거나 가열될 수 있다.
후순위 저장실을 냉각시키는 냉각수단이 제상되는 도중에, 선순위 저장실의 온도가 불만족이면, 후순위 저장실의 냉각수단이 제상되는 도중에, 선순위 저장실이 냉각되거나 가열될 수 있다.
후순위 저장실이 도어 부하대응운전이 진행되고 있는 중에, 선순위 저장실의 온도가 불만족이면, 후순위 저장실의 도어 부하대응운전 중에, 선순위 저장실이 냉각되거나 가열될 수 있다.
한편, 제1저장실(W)과 제2저장실(C) 중 어느 하나는 제1냉각수단과 가열수단에 의해 온도가 조절되는 저장실일 수 있고, 다른 하나는 제2냉각수단에 의해 온도가 조절되는 저장실일 수 있다.
냉장고는 제1공간(W1)과 제2공간(W2) 중 적어도 하나에 별도의 수납부재(4)가 추가로 배치될 수 있다. 수납부재(4)의 내부에는 제1공간 (W1) 및 제2공간(W2)과 별도로 물품이 수용될 수 있는 별도의 공간(S, 이하 수납공간이라 칭함)이 형성될 수 있다. 냉장고는 수납부재(4)의 수납공간(S)을 제1공간(W1) 및 제2공간(W2)과 상이한 온도범위로 조절하는 것이 가능하다.
수납부재(4)는 제1공간(W1)보다 하측에 위치한 제2공간(W2)에 위치되게 배치될 수 있다. 수납부재(4)의 수납공간(S)은 제2공간(W2)보다 작게 형성될 수 있다. 수납공간(S)의 보관온도는 제2공간(W2)의 보관온도 이하일 수 있다.
냉장고는 제1저장실(W)에 최대한 많은 선반(2)이 배치되기 위해, 냉장고 자체의 상하 방향 길이가 좌우 방향 폭 대비 길게 형성되는 것이 가능하고, 이 경우, 냉장고의 상하 방향 길이는 좌우 방향 폭의 2배 이상일 수 있다. 한편, 냉장고는 좌우 방향 폭 대비 상하 방향 길이가 너무 길 경우 전복 가능성이 있을 수 있으므로, 상하 방향 길이는 좌우 방향 폭의 3배 이하인 것이 바람직하다.
상기한 특정물품을 다수 보관할 수 있는 상하 방향 길이의 바람직한 예는 좌우 방향 폭의 2.3배 내지 3배일 수 있고, 가장 바람직한 예는 좌우 방향 폭의 2.4배 내지 3배일 수 있다.
한편, 냉장고의 상하 방향 길이가 좌우 방향 폭 대비 길더라도, 특정물품이 실질적으로 저장되는 저장실 예를 들면, 제1저장실(W)의 상하 방향 길이가 짧으면, 제1저장실(W)에 저장될 수 있는 특정물품의 수가 많지 않을 수 있다. 냉장고는 특정물품을 최대한 많이 저장할 수 있도록 제1저장실(W)의 상하 방향 길이가 제2저장실(C)의 상하 방향 길이 보다 긴 것이 바람직하다. 일예로, 제1저장실(W)의 상하 방향 길이는 제2저장실(C)의 상하 방향 길이의 1.1배 내지 1.5배일 수 있다.
제1도어(5)와 제2도어(6) 중 적어도 하나는 투시 도어일 수 있고, 투시 도어에 대해서는 후술하여 설명한다.
한편, 냉장고는 제1도어(5)와 제2도어(6) 중 적어도 하나를 강제 오픈시키는 도어 오픈 모듈(11,11')을 더 포함할 수 있고, 도어 오픈 모듈(11,11')에 대해서는 후술하여 설명한다.
제1저장실(W)와 제2저장실(C)와 제1도어(5)와 제2도어(6) 중 적어도 하나에는 거치대(12)를 리프트시킬 수 있는 리프팅 모듈(13)이 배치될 수 있고, 리프팅 모듈(13)에 대해서는 후술하여 설명한다.
도 3은 본 발명의 실시예에 따른 냉장고가 타 냉장고와 인접하게 배치되었을 때의 정면도이다.
본 실시예의 냉장고는 타 냉장고와 인접하게 배치되어 사용될 수 있다. 인접하게 배치된 한 쌍의 냉장고는 좌,우 배치될 수 있고, 이하, 설명의 편의를 위해 제1냉장고(Q1) 및 제2냉장고(Q2)로 칭하여 설명하며, 제1냉장고(Q1)과 제2냉장고(Q2)의 동일한 구성에 대해서는 설명의 편의를 위해 동일한 도면부호를 사용하여 설명한다. 한편, 본 실시예의 냉장고는 사이드 바이드 사이드 타입의 냉장고나 프렌치 도어 타입의 냉장고와 같이 하나의 아우터 케이스에 복수개의 저장실이 좌우 및 상하에 위치될 수 있다.
제1냉장고(Q1)와 제2냉장고(Q2) 중 적어도 하나는 본 발명의 실시예가 적용된 냉장고일 수 있다.
제1냉장고(Q1) 및 제2냉장고(Q2)는 일부 기능이 상이하지만, 좌,우 인접하게 배치되었을 때, 전체적인 외관이 동일하거나 비슷한 느낌을 줄 수 있도록 상하 방향 길이가 동일하거나 거의 비슷할 수 있고, 좌우 방향 폭도 동일하거나 거의 비슷할 수 있다.
제1냉장고(Q1)와 제2냉장고(Q2) 각각은 제1저장실과 제2저장실 각각을 포함할 수 있고, 제1냉장고(Q1)와 제2냉장고(Q2) 각각은 제1저장실과 제2저장실은 상하 구획하는 구획부재(10)를 포함할 수 있고, 제1냉장고(Q1)의 구획부재(10)와 제2냉장고(Q2)의 구획부재(10)는 수평 방향으로 오버랩될 수 있다.
제1냉장고(Q1)의 제2저장실을 개폐하는 제2도어(6)의 하단(6A)과 제2냉장고(Q2)의 제2저장실을 개폐하는 제2도어(6)의 하단(6A)은 수평 방향으로 서로 일치될 수 있다.
제1냉장고(Q1)의 제2저장실을 개폐하는 제2도어(6)의 하단(6B)과 제2냉장고(Q2)의 제2저장실을 개폐하는 제2도어(6)의 하단(6B)은 수평 방향으로 서로 일치될 수 있다.
도 4는 본 발명의 실시예에 따른 저장실의 온도 변화에 따른 냉각수단의 온,오프 및 가열수단의 온,오프가 도시된 도이다.
냉장고에는 저장실(W)의 온도를 제어하기 위해, 각각 독립적으로 제어될 수 있는 냉각수단과 가열수단이 구비될 수 있다.
냉장고에는 특정물품 보관실, 정온실 그리고 선순위 저장실 중 적어도 하나를 제어하기 위해 냉각수단과 가열수단이 구비할 수 있다.
냉장고는 저장실(W)의 온도조절을 위해 복수개 모드로 제어될 수 있고, 복수개 모드는 저장실(W)이 냉각수단에 의해 냉각되는 쿨링모드(E)와, 저장실(W)이 가열수단에 의해 가열되는 히팅모드(H)와, 저장실(W)을 냉각하거나 가열하지 않고 현 상태로 유지하는 대기모드(D)를 포함할 수 있다.
냉장고는 저장실(W)의 온도를 센싱하는 온도센서를 포함할 수 있고, 온도센서에 의해 센싱된 저장실 온도에 따라 쿨링모드(E)와 히팅모드(H) 및 대기모드(D)를 실시할 수 있다.
쿨링모드(E)는 저장실(W)이 냉각수단에 의해 계속하여 냉각되는 것에 한정되지 않고, 전체적으로 냉각수단에 의해 저장실이 냉각되되, 일시적으로 냉각수단에 의해 저장실(W)이 냉각되지 않는 경우도 포함될 수 있다. 쿨링모드(E)는 전체적으로 냉각수단에 의해 저장실(W)이 냉각되되, 일시적으로 가열수단에 의해 저장실이 가열되는 경우도 포함할 수 있다. 쿨링모드(E)는 냉각수단에 의해 저장실이 냉각되는 시간이 냉각수단에 의해 저장실(W)이 냉각되지 않는 시간 보다 긴 경우를 포함할 수 있다.
쿨링모드(E)는 냉각수단이 작동되거나 정지되는 모드일 수 있다.
냉각수단의 작동은 냉각수단의 적어도 일부가 저장실(W)의 온도 보다 낮은 온도가 되도록 냉각수단이 제어되는 것을 의미할 수 있다. 냉각수단의 작동은 저장공간으로 차가운 공기가 공급되는 것을 의미할 수 있고, 저장공간으로 냉기를 공급하는 팬을 구동시키는 것을 의미할 수 있고, 저장공간으로 유동되는 공기를 조절하는 댐퍼가 배치될 경우, 오픈하는 것을 의미할 수 있다.
일예로, 냉각수단이 압축기와 응축기와, 팽창기구와 증발기를 포함하는 냉동사이클일 경우, 냉각수단의 작동은 증발기로 냉매를 흐르도록 냉매밸브를 전환하거나 압축기를 구동하는 것을 의미할 수 있다. 증발기로 냉매가 흐르지 않는 상태에서 증발기에 남은 잠열을 이용하기 위해 팬만 온 하는 것도 냉각수단의 작동예가 될 수 있다. 냉각수단의 정지는 증발기로 냉매가 흐르지 않도록 냉매밸브를 전환하거나 압축기가 오프(즉, 압축기가 정지)된 상태에서 팬이 오프되는 것을 의미할 수 있다.
예를 들면, 쿨링모드(E)는 냉매가 증발기를 통과하고, 저장실(W)의 공기가 증발기에 의해 냉각된 후 저장실(W)로 유동되어 모드일 수 있다. 쿨링모드(E)시, 압축기는 저장실(W)의 온도에 따라 온,오프될 수 있다. 쿨링모드(E)시, 압축기는 저장실 온도가 목표온도 하한값과 목표온도 하한값 사이를 유지하게 온,오프될 수 있다. 구체적으로 압축기는 저장실 온도가 목표온도 상한값에 도달되면 온될 수 있고, 저장실 온도가 목표온도 하한값에 도달되면 오프될 수 있다.
다른예로, 냉각수단이 열전소자의 흡열바디일 경우, 냉각수단의 작동은 열전소자로 전류가 인가되어 열전소자의 흡열바디 열이 열전소자의 발열바디로 전달되는 것을 의미할 수 있다. 열전소자에 전류가 차단된 상태에서 열전소자의 흡열바디에 남은 잠열을 이용하기 위해 팬만 온 하는 것도 냉각수단의 작동예가 될 수 있다. 냉각수단의 정지는 열전소자와 팬이 오프(즉, 열전소자와 팬으로 인가되는 전류를 차단)되는 것을 의미할 수 있다.
냉장고가 제1공간(W1)을 냉각하기 위한 증발기와, 공기를 제1공간(W1)과 증발기로 순환시키는 팬과, 제1공간(W1)으로 송풍되는 공기를 조절하는 제1댐퍼를 포함할 경우, 냉각수단의 작동은 압축기 및 팬이 구동되고 제1댐퍼를 오픈모드로 제어하는 것을 의미할 수 있다. 냉장고가 제2공간(W2)을 냉각하기 위한 증발기와, 공기를 제2공간(W2)과 증발기로 순환시키는 팬과, 제2공간(W2)으로 송풍되는 공기를 조절하는 제2댐퍼를 포함할 경우, 냉각수단의 작동은 압축기 및 팬이 구동되고 제2댐퍼를 오픈모드로 제어하는 것을 의미할 수 있다.
냉장고가 증발기로 냉매를 공급하거나 차단하는 냉매밸브를 더 포함할 경우, 냉각수단의 작동은 냉매밸브를 증발기 공급모드로 제아하는 것을 의미할 수 있다.
히팅모드(H)는 저장실(W)이 가열수단에 의해 계속하여 가열되는 것에 한정되지 않고, 전체적으로 가열수단에 의해 저장실(W)을 가열하되, 일시적으로 가열수단에 의해 저장실(W)이 가열되지 않는 경우도 포함될 수 있고, 전체적으로 가열수단에 의해 저장실(W)이 가열되되, 일시적으로 냉각수단에 의해 저장실(W)이 냉각되는 경우도 포함할 수 있다. 히팅모드(H)는 가열수단에 의해 저장실(W)이 가열되는 시간이 가열수단에 의해 저장실(W)이 가열되지 않는 시간 보다 긴 경우를 포함할 수 있다.
히팅모드(H)은 가열수단이 작동되거나 정지되는 모드일 수 있다.
가열수단의 작동은 가열수단의 적어도 일부가 저장실(W)의 온도 보다 높은 온도가 되도록 가열수단이 제어되는 것을 의미할 수 있다.
일예로, 가열수단이 열선 히터나 면상 히터 등의 히터이거나 열전소자의 발열바디일 경우, 가열수단의 작동은 가열수단의 온(가열수단으로 전류가 인가)되는 것을 의미할 수 있다. 가열수단에 전류가 차단된 상태에서 가열수단에 남은 잠열을 이용하기 위해 팬만 온 하는 것도 가열수단의 작동예가 될 수 있다. 가열수단의 정지는 가열수단의 오프(가열수단과 팬으로 인가되는 전류를 차단)되는 것을 의미할 수 있다. 히팅모드(H)시 가열수단은 저장실 온도가 목표온도 하한값과 목표온도 하한값 사이를 유지하게 온,오프될 수 있다. 구체적으로 가열수단은 저장실 온도가 목표온도 상한값에 도달되면 오프될 수 있고, 저장실 온도가 목표온도 하한값에 도달되면 온될 수 있다.
냉장고가 제1공간(W1)을 가열하기 위한 가열장치와, 공기를 제1공간(W1)과 가열장치로 순환시키는 팬(또는 HG 팬)를 포함할 경우, 가열수단의 작동은 가열장치가 온(작동)되고 팬(또는 HG 팬)이 구동되는 것을 의미할 수 있다.
냉장고가 제2공간(W2)을 가열하기 위한 추가 가열장치와, 공기를 제2공간(W2)과 추가 가열장치로 순환시키는 팬를 포함할 경우, 가열수단의 작동은 추가 가열장치가 온(작동)되고 팬이 구동되는 것을 의미할 수 있다.
대기모드(D)는 냉각수단 및 가열수단 각각이 정지인 모드일 수 있다.
예를 들면, 대기모드(D)는 냉매가 증발기를 통과하지 않고, 히터가 오프 상태를 유지하는 모드일 수 있다. 대기모드(D)는 압축기가 오프 상태를 유지하는 동안 히터도 오프 상태를 유지하는 모드일 수 있다. 대기모드시(D)는 저장실(W)의 공기가 팬에 의해 강제 유동되지 않는 모드일 수 있다.
복수의 모드는 시간의 경과에 따라 쿨링모드(E)와 대기모드(D)와 히팅모드(H)의 순서로 실시될 수 있다. 복수의 모드는 시간의 경과에 따라 히팅모드(H)와 대기모드(D)와 쿨링모드(E)의 순서로 실시될 수 있다. 복수의 모드는 시간의 경과에 따라 쿨링모드(E)와 대기모드(D)와 쿨링모드(E)의 순서로 실시될 수 있다. 복수의 모드는 시간의 경과에 따라 히팅모드(H)와 대기모드(D)와 히팅모드(H)의 순서로 실시될 수 있다.
복수의 모드는 쿨링모드(E)와 대기모드(D)가 교대로 실시되다가 대기모드(D)의 도중에 히팅모드(H)의 개시조건이 되면, 대기모드(D)를 종료하고 히팅모드(H)를 개시할 수 있다. 복수의 모드는 히팅모드(H)와 대기모드(D)가 교대로 실시되다가 대기모드(D)의 도중에 쿨링모드(E)의 개시조건이 되면, 대기모드(D)를 종료하고 쿨링모드(E)를 개시할 수 있다.
복수의 모드는 쿨링모드(E)의 도중에 대기모드(D) 없이 곧바로 히팅모드(H)로 전환되지 않고, 히팅모드(H)의 도중에 대기모드(D) 없이 곧바로 쿨링모드(E)로 전환되지 않는다.
냉장고는 냉장고에 구비된 모터 등의 각종 전자기기를 제어하는 컨트롤러(30, 도 9 참조)를 포함할 수 있다. 컨트롤러(30)는 냉각수단과 가열수단을 제어할 수 있다. 컨트롤러(30)는 복수의 모드(E)(H)(D)를 선택적으로 실시할 수 있다.
쿨링모드(E)는 저장실(W)이 냉각수단에 의해 목표온도범위를 유지하도록 컨트롤러(30)가 냉각수단을 제어하는 모드일 수 있다.
목표온도범위는 목표온도의 하한값부터 목표온도의 상한값까지의 범위일 수 있다.
냉각수단은 쿨링모드(E)시, 온도센서에서 센싱된 저장실의 온도(이하, 저장실 온도라 칭함)가 목표온도 상한값 초과이면 작동될 수 있고, 저장실 온도가 목표온도 하한값 미만이면 정지될 수 있다.
히팅모드(H)는 저장실(W)이 가열수단에 의해 목표온도범위를 유지하도록 컨트롤러(30)가 가열수단을 제어하는 모드일 수 있다.
가열수단은 히팅모드(H)시, 저장실 온도가 목표온도 상한값 초과이면 정지될 수 있고, 저장실 온도가 목표온도 하한값 미만이면 작동될 수 있다.
냉장고의 운전시, 저장실(W)의 온도는 저장실(W) 부하와 냉장고 주변온도에 따라, 가변될 수 있고, 저장실(W)의 온도는 목표온도범위를 벗어날 수 있다.
저장실(W)의 온도는 목표온도범위를 벗어나는 일예는 저장실 온도가 목표온도 하한값과 하한 온도 사이인 경우일 수 있다.
저장실(W)의 온도는 목표온도범위를 벗어나는 다른 예는, 저장실 온도가 목표온도 상한값과 상한 온도 사이인 경우일 수 있다.
하한 온도는 목표온도 하한값 보다 낮은 온도일 수 있다. 하한 온도는 목표온도 하한값 보다 설정온도(예를 들면, 2℃) 만큼 더 낮게 설정된 온도일 수 있다. 목표 온도 및 목표온도 하한값이 변경되면, 하한 온도도 변경된 목표 온도 및 목표온도 하한값에 따라 변경될 수 있다.
그리고, 상한 온도는 목표온도 상한값 보다 높은 온도일 수 있다. 상한 온도는 목표온도 상한값 보다 설정온도(예를 들면, 2℃) 만큼 더 높게 설정된 온도일 수 있다. 목표 온도 및 목표온도 상한값이 변경되면, 상한 온도도 변경된 목표 온도 및 목표온도 상한값에 따라 변경될 수 있다.
상기와 같이, 저장실의 온도가 목표온도 하한값과 하한 온도 사이이거나, 목표온도 상한값과 상한 온도 사이일 경우, 냉장고는 대기모드일 수 있고, 컨트롤러(30)는 냉각수단 및 가열수단 각각을 정지할 수 있다.
대기모드(D)의 일예는 저장실 온도가 목표온도 하한값과 하한 온도 사이를 유지할 경우의 모드일 수 있고, 냉장고는 쿨링모드(E)의 도중에 곧바로 히팅모드(H)로 전환되지 않고, 쿨링모드(E)와 대기모드(D)와 히팅모드(H)의 순서로 제어될 수 있다. 이 경우, 냉장고는 쿨링모드(E)의 종료 후 대기모드(D)를 유지하다가, 대기모드(D)의 도중에 히팅모드(H)의 개시조건이 되면, 대기모드(D)에서 히팅모드(H)로 전환될 수 있다.
쿨링모드(E)가 종료된 후, 저장실 온도가 목표온도 하한값과 하한 온도 사이인 시간이 제1설정시간(T1: 예를 들면, 100분) 이상이면, 냉장고는 대기모드(D)에서 히팅모드(H)로 전환될 수 있다.
쿨링모드(E)가 종료된 후, 저장실 온도가 목표온도 하한값과 하한 온도 사이인 시간이 제1설정시간(T1: 예를 들면, 100분) 이상인 조건은, 히팅모드(H)의 제1개시조건일 있다.
쿨링모드(E)로 온도 조절되던 저장실(W)의 온도는 목표온도 하한값 미만으로 내려간 상태에서 장시간 동안 목표온도 하한값 이상으로 다시 상승되지 않고 목표온도 하한값 미만을 유지하는 경우가 있을 수 있다. 이러한 경우는 쿨링모드(E)가 종료된 후 대기모드(D)가 장시간 유지되고 냉장고가 쿨링모드(E)로 다시 복귀되지 못하는 경우일 수 있다.
저장실(W)이 목표온도범위 보다 낮은 상태에서 목표온도범위로 상승되지 않고 장시간 지속될 경우, 저장실(W)에 저장된 물품의 품질 저하가 발생될 수 있고, 이 경우, 냉각수단을 이용하여 저장실(W)을 승온시킬 수 없기 때문에, 컨트롤러(30)는 가열수단에 의해 저장실(W)을 승온시키기 위해, 대기모드(D)를 중단하고 히팅모드(H)를 개시할 수 있다.
한편, 쿨링모드(E)가 종료된 후, 저장실 온도가 하한 온도 미만인 시간이 제2설정시간(T2: 예를 들면, 5분) 이상이면, 냉장고는 대기모드(D)에서 히팅모드(H)로 전환될 수 있다. 제2설정시간(예를 들면, 5분)은 제1설정시간(예를 들면, 100분) 보다 짧을 수 있다.
쿨링모드(E)가 종료된 후, 저장실 온도가 하한 온도 미만인 시간이 제2설정시간(T2: 예를 들면, 5분) 이상인 조건은 히팅모드(H)의 제2개시조건일 수 있다.
쿨링모드(E)로 온도 조절되던 저장실(W)의 온도가 목표온도 하한값 보다 낮은 하한 온도에 도달되면 저장실(W)의 온도는 목표온도범위 보다 과도하게 낮은 상태일 수 있다. 이 경우, 컨트롤러(30)는 제1설정시간(예를 들면, 100분)에 도달되기 이전에 저장실(W)을 가열수단에 의해 승온시키기 위해, 대기모드(D)를 중단하고 히팅모드(H)를 개시할 수 있다.
컨트롤러(30)는 쿨링모드(E)가 종료된 후, 저장실 온도가 하한 온도 미만이면, 제2설정시간(예를 들면, 5분)을 기다리지 않고, 대기모드(D)를 히팅모드(H)로 즉시 전환하는 것도 가능하다. 그러나, 사용자는 저장실 온도가 하한 온도 미만으로 내려간 상태에서, 입력수단을 통해 새로운 목표온도를 종전 보다 낮게 입력할 수 있고, 냉장고는 이미 히팅모드(H)로 전환된 상태이므로, 사용자가 입력한 새로운 목표온도에 신속하게 대응하지 못할 수 있다.
상기와 같이, 쿨링모드가 종료된 후 저장실 온도가 하한 온도 미만인 시간이 제2설정시간(예를 들면, 5분) 이상일 경우, 컨트롤러(30)가 대기모드(D)를 히팅모드(H)로 전환하면, 사용자가 입력수단을 통해 새로운 목표온도를 종전 보다 낮게 입력하더라도, 컨트롤러(30)는 제2설정시간(예를 들면, 5분)에 도달되기 전에 새로운 목표온도를 기준으로 하한 온도를 이전 보다 더 낮게 변경할 수 있고, 컨트롤러(30)는는 새롭게 변경된 하한 온도를 기준으로 히팅모드(H)의 전환이 판단할 수 있다. 이 경우, 냉장고는 새롭게 입력된 목표온도에 따라 대기모드(D)에서 쿨링모드(E)로 전환될 수 있고, 불필요한 히팅모드(H)가 최소화될 수 있다. 즉, 냉장고는 사용자의 목표온도 변경에 대해 보다 신속하게 대응할 수 있다.
설명의 편의를 위해, 목표온도가 16℃이고, 목표온도 하한값이 15.5℃이며, 하한 온도가 13.5℃이며, 목표온도 상한값이 16.5℃이고, 상한 온도가 18.5℃인 경우를 예로 들어 설명한다.
저장실 온도가 15.5℃ 이하로 내려간 후, 저장실 온도는 13.5℃ 이하로 내려가지 않고, 15.5℃와 13.5℃ 사이를 장시간 유지할 수 있고, 컨트롤러(30)는 저장실 온도가 15.5℃와 13.5℃ 사이를 유지하는 시간을 카운트 할 수 있고, 이렇게 카운트 된 시간이 제1설정시간(예를 들면, 100분) 이상이면, 컨트롤러(30)는 대기모드(D)를 종료하고, 히팅모드(H)를 개시할 수 있다.
한편, 저장실 온도가 15.5℃ 이하로 내려간 후, 13.5℃ 이하로 더 내려가면, 컨트롤러(30)는 저장실 온도가 13.5℃ 이하를 유지하는 시간을 카운트 할 수 있고, 이렇게 카운트 된 시간이 제2설정시간(예를 들면, 5분) 이상이면, 컨트롤러(30)는 대기모드(D)를 종료하고, 히팅모드(H)를 개시할 수 있다.
즉, 컨트롤러는 대기모드의 도중에 히팅모드(H)의 제1개시조건과 제2개시조건 중 어느 한 조건이 만족되면, 히팅모드(H)를 개시할 수 있다.
한편, 저장실 온도가 13.5℃ 이하로 내려간 이후 제2설정시간(예를 들면, 5분)에 도달되기 전에, 사용자는 목표온도를 14℃로 낮출 수 있고, 컨트롤러(30)는 목표온도의 변경에 따라, 목표온도 하한값을 13.5℃로 변경하고, 하한 온도를 11.5℃로 변경하며, 목표온도 상한값을 14.5℃로 변경하고, 상한 온도를 16.5℃로 변경할 수 있다.
컨트롤러(30)는 저장실 온도를 새롭게 변경된 하한 온도인 11.5℃와 비교할 수 있고, 컨트롤러(30)는 저장실 온도가 새롭게 변경된 하한 온도인 11.5℃를 초과하면, 대기 모드(D)에서 히팅모드(H)로 전환하지 않는다. 이 경우, 컨트롤러(30)는 저장실 온도가 새롭게 변경된 목표온도 상한값인 14.5℃ 이상이면, 대기모들(D)에서 쿨링모드(E)로 전환할 수 있다. 즉, 냉장고는 사용자의 목표온도 변경에 신속하게 대응할 수 있고, 저장실(W)에 저장된 물품의 품질 저하를 최소화할 수 있다.
대기모드(D)의 다른 예는 저장실 온도가 목표온도 상한값과 상한 온도 사이를 유지할 경우의 모드일 수 있고, 냉장고는 히팅모드(H)의 도중에 곧바로 쿨링모드(E)로 전환되지 않고, 히팅모드(H)와 대기모드(D)와 쿨링모드(E)의 순서로 제어될 수 있다. 이 경우, 냉장고는 히팅모드(H)의 종료 후 대기모드(D)를 유지하다가, 대기모드(D)의 도중에 쿨링모드(E)의 개시조건이 되면, 대기모드(D)에서 쿨링모드(E)로 전환될 수 있다.
히팅모드(H)가 종료된 후, 저장실 온도가 목표온도 상한값과 상한 온도 사이인 시간이 제1설정시간(T1: 예를 들면, 100분) 이상이면, 냉장고는 대기모드(D)에서 쿨링모드(E)로 전환될 수 있다.
히팅모드(H)가 종료된 후, 저장실 온도가 목표온도 상한값과 상한 온도 사이인 시간이 제1설정시간(T1: 예를 들면, 100분) 이상인 조건은 쿨링모드(E)의 제1개시조건일 수 있다.
히팅모드(H)로 온도 조절되던 저장실(W)의 온도는 목표온도 상한값 초과로 상승된 상태에서 장시간 동안 목표온도 상한값 이하로 다시 하강되지 않고 목표온도 상한값 초과를 유지하는 경우가 있을 수 있다, 이 경우는 히팅모드(H)가 종료된 후 대기모드(D)가 장시간 유지되고, 냉장고가 히팅모드(H)로 다시 복귀되지 못하는 경우일 수 있다.
저장실(W)이 목표온도범위 보다 높은 상태에서 목표온도범위로 낮아지지 않고 장시간 지속될 경우, 저장실(W)에 저장된 물품의 품질 저하가 발생될 수 있고, 가열수단을 이용하여 저장실(W)의 온도를 낮출 수 없기 때문에, 컨트롤러(30)는 냉각수단에 의해 저장실(W)의 온도를 낮추기 위해, 대기모드(D)를 중단하고 쿨링모드(E)를 개시할 수 있다.
한편, 히팅모드(H)가 종료된 후, 저장실 온도가 상한 온도 초과인 시간이 제2설정시간(T2: 예를 들면, 5분) 이상이면, 냉장고는 대기모드(D)에서 쿨링모드(E)로 전환될 수 있다. 제2설정시간(예를 들면, 5분)은 제1설정시간(예를 들면, 100분) 보다 짧을 수 있다.
히팅모드(H)가 종료된 후, 저장실 온도가 상한 온도 초과인 시간이 제2설정시간(T2: 예를 들면, 5분) 이상인 조건은 쿨링모드(E)의 제2개시조건일 수 있다.
히팅모드(H)로 온도 조절되던 저장실(W)의 온도가 목표온도 상한값 보다 높은 상한 온도에 도달되면 저장실(W)의 온도는 목표온도범위 보다 과도하게 높은 상태일 수 있다. 이 경우, 컨트롤러(30)는 제1설정시간(예를 들면, 100분)에 도달되기 이전에 냉각수단에 의해 저장실(W)의 온도를 낮추기 위해, 대기모드(D)를 중단하고 쿨링모드(E)를 개시할 수 있다.
컨트롤러(30)는 히팅모드(H)가 종료된 후, 저장실 온도가 상한 온도 초과이면, 제2설정시간(예를 들면, 5분)을 기다리지 않고, 대기모드(D)를 쿨링모드(E)로 즉시 전환하는 것도 가능하다. 그러나, 사용자는 상기 대기모드(D)에서 히팅모드(H)의 전환에서 설명한 바와 같이, 새로운 목표온도를 입력할 수 있고, 냉장고는 사용자가 입력한 새로운 목표온도에 신속하게 대응하지 못할 수 있다.
즉, 냉장고는 히팅모드(H)가 종료된 후, 저장실 온도가 상한 온도 초과이고, 제2설정시간(예를 들면, 5분)이 경과되면, 대기모드(D)에서 쿨링모드(E)로 전환되는 것이 바람직하다.
설명의 편의를 위해, 목표온도가 16℃이고, 목표온도 하한값이 15.5℃이며, 하한 온도가 13.5℃이며, 목표온도 상한값이 16.5℃이고, 상한 온도가 18.5℃인 경우를 예로 들어 설명한다.
저장실 온도는 16.5℃ 이상으로 올라간 후, 16.5℃ 이하로 내려가지 않고, 16.5℃와 18.5℃ 사이를 장시간 유지할 수 있고, 컨트롤러(30)는 저장실 온도가 16.5℃와 18.5℃ 사이를 유지하는 시간을 카운트 할 수 있고, 이렇게 카운트 된 시간이 제1설정시간(예를 들면, 100분) 이상이면, 컨트롤러(30)는 대기모드(D)를 종료하고, 쿨링모드(E)를 개시할 수 있다.
한편, 저장실 온도가 16.5℃ 이상으로 올라간 후, 18.5℃ 이상이면, 컨트롤러(30)는 저장실 온도가 18.5℃ 이상을 유지하는 시간을 카운트 할 수 있고, 이렇게 카운트 된 시간이 제2설정시간(예를 들면, 5분) 이상이면, 컨트롤러(30)는 대기모드(D)를 종료하고, 쿨링모드(E)를 개시할 수 있다.
즉, 컨트롤러(30)는 대기모드(E)의 도중에 쿨링모드(E)의 제1개시조건과 제2개시조건 중 어느 한 조건이 만족되면, 쿨링모드(E)를 개시할 수 있다.
한편, 복수개 모드는 저장실의 습도를 높이는 가습모드를 더 포함할 수 있다.
가습모드는 냉각수단 중 적어도 일부가 오프 상태(예를 들면, 증발기로의 냉매 공급 중단, 열전소자의 오프)이고 가열수단 중 적어도 일부가 오프 상태(예를 들면, 히터의 오프, 열전소자의 오프)를 유지한 상태에서, 저장실(W)의 공기가 팬에 의해 냉각수단 챔버로 유동되어 가습되고, 가습된 공기가 저장실(W)로 유동되어 저장실을 가습하는 모드일 수 있다.
예를 들면, 가습모드는 냉매가 증발기를 통과하지 않고, 히터가 오프 상태를 유지한 상태에서, 저장실의 공기가 팬에 의해 증발기로 유동되어 가습되고, 가습된 공기가 저장실로 유동되어 저장실을 가습하는 모드일 수 있다. 가습모드시, 저장실의 공기를 증발기와 저장실로 순환시키는 팬은 구동될 수 있다.
도 5는 본 발명의 실시 예에 따른 냉장고의 냉동 사이클 제1예가 도시된 도이고, 도 6은 본 발명의 실시 예에 따른 냉장고의 냉동 사이클 제2예가 도시된 도이며, 도 7은 본 발명의 실시 예에 따른 냉장고의 냉동 사이클 제3예가 도시된 도이며, 도 8은 본 발명의 실시 예에 따른 냉장고의 냉동 사이클 제4예가 도시된 도이다.
도 5 내지 도 8에 도시된 냉동 사이클은 서로 다른 보관온도범위를 가지는 3개의 공간(이하, 1,2,3 공간이라 칭함)을 갖는 냉장고에 적용될 수 있다. 예를 들면, i) 제1공간(W1), 제2공간(W2) 그리고 제3공간(W3)을 갖는 냉장고, ii) 제1공간(W1)과 제2공간(W2)을 갖는 제1저장실(W)과, 제1저장실(W)과 구획된 제2저장실(C)를 갖는 냉장고, 그리고 iii) 제1저장실(W)과, 제1저장실(W)과 구획된 2개의 제2,3저장실(C1,C2)를 갖는 냉장고 중 적어도 하나에 적용될 수 있다.
도 5 내지 도 7에 도시된 냉동사이클은 압축기(100)와, 응축기(110)와, 복수개 팽창기구(130')(130)(140)와, 복수개 증발기(150')(150)(160)를 포함할 수 있고, 유로절환기구(120')를 더 포함할 수 있다.
제1영역이 제1공간(W1)이고, 제2영역이 제2공간(W2)이며, 제3영역이 제2저장실(C)인 경우를 예로 들어 설명하면 아래와 같다. 제1,2,3 영역이 위에서 설명한 ii),iii)인 경우에도 적용 가능하다.
복수개 증발기(150')(150)(160)는 제1공간(W1) 과 제2공간(W2)을 각각 독립적으로 냉각할 수 있는 한 쌍의 제1증발기(150')(150)와, 제2저장실(C)을 냉각할 수 있는 제2증발기(160)을 포함할 수 있다.
한 쌍의 제1증발기(150')(150) 중 어느 하나는 제1공간(W1)을 냉각하는 증발기(150')일 수 있고, 한 쌍의 제1증발기(150')(150) 중 다른 하나는 제2공간(W2)을 냉각하는 증발기(150)일 수 있다.
복수개 팽창기구(130')(130)(140)는 한 쌍의 제1증발기(150')(150)에 연결된 한 쌍의 제1팽창기구(130')(130)와, 제2증발기(160)에 연결된 제2팽창기구(140)를 포함할 수 있다. 한 쌍의 제1팽창기구(130')(130) 중 어느 하나는 한 쌍의 제1증발기(150')(150) 중 어느 하나(150')에 연결된 팽창기구(130')일 수 있고, 한 쌍의 제1팽창기구(130')(130) 중 다른 하나는 한 쌍의 제1증발기(150')(150) 중 다른 하나(150)에 연결된 팽창기구(130)일 수 있다.
유로절환기구(120')는 한 쌍의 제1팽창기구(130')(130)로 유동되는 냉매를 조절할 수 있는 제1냉매밸브(121)과, 제1냉매밸브(121)와 제2팽창기구(140)로 유동되는 냉매를 조절하는 제2냉매밸브(122)를 포함할 수 있다.
도 5 내지 도 7에 도시된 냉동사이클을 갖는 냉장고는 한 쌍의 제1팬(181')(181)과, 제2저장실(C)의 공간 내 냉기를 제2증발기(160)과 제2저장실(C)의 공간으로 순환시키는 제2팬(182)을 포함할 수 있고, 응축기(110)로 외기를 송풍하는 응축팬(114)를 더 포함할 수 있다.
한 쌍의 제1팬(181')(181) 중 어느 하나(181')는 제1공간(W1)의 냉기를 한 쌍의 제1증발기(150')(150) 중 어느 하나(150')와 제1공간(W1)으로 순환시킬 수 있는 제1공간용 팬일 수 있다. 그리고, 한 쌍의 팬(181')(181) 중 다른 하나(181)는 제2공간(W2)의 냉기를 한 쌍의 제1증발기(150')(150) 중 다른 하나(150)와 제2공간(W2)으로 순환시킬 수 있는 제2공간용 팬일 수 있다.
도 5에 도시된 냉동 사이클은 한 쌍의 제1증발기(150')(150)가 병렬로 연결된 제1병렬유로와, 한 쌍의 제1증발기(150')(150)가 제2증발기(160)과 병렬로 연결된 제2병렬유로를 포함할 수 있다. 이 경우, 제2증발기(160)의 출구측에는 제2증발기(160)의 출구측의 냉매가 제2증발기(160)로 역류되지 않게 막는 일방향 밸브(168)가 설치될 수 있다.
도 6에 도시된 냉동 사이클은 한 쌍의 제1증발기(150')(150)가 병렬로 연결되는 병렬유로와, 이러한 한 쌍의 제1증발기(150')(150)가 제2증발기(160)과 직렬로 연결되는 직렬유로(123)를 포함할 수 있다. 직렬유로(123)의 일단은 한 쌍의 제1증발기(150')(150)가 병렬로 연결되는 병렬유로에 연결될 수 있다. 직렬유로(123)의 타단은 제2팽창기구(140)과 제2증발기(160)의 입구와 사이에 연결될 수 있다. 이 경우, 제2증발기(150)의 출구측에는 제2증발기(150)의 출구측의 냉매가 제2증발기(150)로 역류되지 않게 막는 일방향 밸브(168)가 설치될 수 있다.
도 7에 도시된 냉동사이클은 한 쌍의 제1증발기(150')(150)가 직렬로 연결되는 직렬유로(125)와, 한 쌍의 제1증발기(150')(150)가 제2증발기(160)과 병렬로 연결되는 병렬유로를 포함할 수 있다. 직렬유로(125)의 일단은 한 쌍의 제1증발기(150')(150) 중 어느 하나(150)의 출구측에 연결될 수 있다. 직렬유로(125)의 타단은 한 쌍의 제1증발기(150')(150) 중 다른 하나(150')의 입구측에 연결될 수 있다. 이 경우, 제2증발기(160)의 출구측에는 제2증발기(160)의 출구측의 냉매가 제2증발기(160)로 역류되지 않게 막는 일방향 밸브(168)가 설치될 수 있다.
도 8에 도시된 냉동사이클은 도 5 내지 도 7에 도시된 한 쌍의 제1증발기(150')(150) 대신에 하나의 제1증발기(150)를 포함할 수 있고, 한 쌍의 팽창기구(130')(130) 대신에 하나의 제1팽창기구(130)를 포함할 수 있다. 그리고, 도 8에 도시된 냉동사이클은 제1팽창기구(130)와 제2팽창기구(140)로 유동되는 냉매를 조절하는 유로절환기구(120)를 포함할 수 있고, 유로절환기구(120)는 응축기(110)에서 유동된 냉매가 제1팽창기구(130) 또는 제2팽창기구(140)로 유동되게 절환될 수 있는 냉매밸브를 포함할 수 있다. 그리고, 제2증발기(160)의 출구측에는 제2증발기(160)의 출구측의 냉매가 제2증발기(160)로 역류되지 않게 막는 일방향 밸브(168)가 설치될 수 있다.
도 8에 도시된 냉동 사이클은 하나의 제1증발기(150)과, 하나의 제1팽창기구(130), 유로절환기구(120) 및 일방향 밸브(168) 이외의 기타 구성 및 작용이 도 5 내지 도 7에 도시된 냉동 사이클과 동일하거나 유사하므로 그에 대한 상세한 설명은 생략한다.
한편, 도 8에 도시된 냉동사이클을 갖는 냉장고는 도 5 내지 도 7에 도시된 한 쌍의 제1팬(181')(181) 대신에 제1저장실(W)의 냉기를 제1증발기(150)와 제1저장실(W1)로 순환시키는 하나의 제1팬(181)을 포함할 수 있다. 그리고, 도 8에 도시된 냉동사이클을 갖는 냉장고는 제1증발기(150)에 의해 냉각된 후 제1공간(W1)으로 유동되는 냉기를 조절하는 제1댐퍼(191)와, 제1증발기(150)에 의해 냉각된 후 제2공간(W2)으로 유동되는 냉기를 조절하는 제2댐퍼(192)를 포함할 수 있다. 제1댐퍼(191)와 제2댐퍼(192)는 어느 하나만 구비되는 것이 가능하다. 한편, 냉장고는 하나의 댐퍼가 증발기(150)에 의해 냉각된 공기를 제1공간(W1)과 제2공간(W2) 중 적어도 하나로 선택적으로 공급하는 것도 가능하다.
도 5 내지 도 8에 도시된 냉동사이클의 변형예는 서로 다른 보관온도범위를 가지는 2개의 공간을 가지는 냉장고에 적용될 수 있다. 즉 제1공간(W1)와 제2공간(W2)을 갖는 냉장고나 제1저장실(W)과 제2저장실(C)를 갖는 냉장고에 적용될 수 있다. 한편, 냉동 사이클은 도 5 내지 도 8에 도시된 유로절환기구(120,122), 제2팽창기구(140), 제2증발기(160), 제2팬(182), 일방향 밸브(168)를 포함하지 않는 사이클로 구성되는 것도 가능하다.
도 5 내지 도 8에 도시된 냉동사이클은 저장실을 냉각할 수 있는 냉각수단을 구성할 수 있다.
도 9은 본 발명의 실시예에 따른 냉장고의 제어 블록도이다.
냉장고는 냉장고에 구비된 모터 등의 각종 전자기기를 제어하는 컨트롤러(30)을 포함할 수 있다.
컨트롤러(30)는 입력수단의 입력값에 따라 냉장고를 제어할 수 있다.
입력수단은 리모컨 등의 원격조작기나 휴대 전화 등의 이동 단말기 등의 외부기기로부터 신호를 입력 받는 통신소자(31), 사용자의 음성을 소리 신호를 바꾸는 마이크(32), 사용자의 모션을 센싱할 수 있는 센싱유닛(33), 사용자의 근접을 센싱할 수 있는 근접 센서(34, 또는 거리 센서), 사용자의 터치를 센싱할 수 있는 터치 센서(35), 도어의 개폐를 감지할 수 있는 도어 스위치(36), 그리고 시간의 경과를 측정할 수 있는 타이머(37)와, 사용자가 목표온도 등의 각종 입력값을 입력할 수 있는 컨트롤 패널(39) 중 적어도 하나를 포함할 수 있다.
투시 도어는 투시할 수 있는 상태(투시 활성화 상태)와 투시할 수 없는 상태(투시 비활성화 상태)가 선택될 수 있는 도어일 수 있다. 투시 도어는 입력수단을 통해 컨트롤러에 제공되는 입력값에 따라 투시 비활성화 상태에서 투시 활성화 상태로 가변되는 도어일 수 있다. 투시 도어는 입력수단을 통해 컨트롤러(30)에 제공되는 입력값에 따라 투시 활성화 상태에서 투시 비활성화 상태로 가변되는 도어일 수 있다.
센싱 유닛(33)은 프론트 패널의 배면에 배치된 진동센서일 수 있고, 진동센서는 검정색으로 형성할 수 있고, 가시적으로 노출되는 것이 최소화될 수 있다. 센싱 유닛(33)은 프론트 패널의 배면에 배치된 마이크일 수 있고, 마이크는 프론트 패널에 가해진 진동의 음파를 센싱할 수 있다. 사용자가 소정 시간 간격을 두고 패널 어셈블리(23)를 복수 회 두드리는 것이 상기 센싱유닛(33)을 통해 감지되면, 투시도어를 활성화 혹은 비활성화되도록 가변할 수 있다. 센싱유닛(33)은 사용자의 모션을 촬영할 수 있는 수단일 수 있다. 센싱유닛에 의해 촬영된 영상이 미리 입력된 특정 모션과 유사하거나 동일한지를 판단하고, 그 판단결과에 따라 투시도어를 활성화 혹은 비활성화되도록 가변할 수 있다.
근접센서(34)를 통해 감지된 값에 따라 사용자가 일정 거리 이상 근접한 상태로 판단되면, 투시도어는 활성화 혹은 비활성화되도록 가변될 수 있다.
도어 스위치(36)를 통해 감지된 값에 따라 도어가 닫힌 상태로 판단되면, 투시도어는 활성화될 수 있고, 도어가 열린 상태로 판단되면 투시도어는 비활성화되도록 가변될 수 있다.
타이머(37)를 통해 입력된 값에 따라 투시 도어는 활성된 후 일정시간이 경과하면 비활성화되도록 제어될 수 있다. 타이머(37)를 통해 입력된 값에 따라, 투시 도어는 비활성된 후 일정시간이 경과하면 활성화되도록 제어될 수 있다.
투시 도어가 활성화 혹은 비활성화는 되는 예로, 투시 도어 자체의 투과도가 가변될 수 있는 경우가 있다. 예를 들면, 투시 도어는 패널 어셈블리(23)에 전류가 인가되지 않으면 불투명한 상태를 유지할 수 있고, 패널 어셈블리(23)에 전류가 인가되면 투명하게 변화될 수 있다. 다른 예는, 투시 도어 내측에 설치된 광원(38)이 온되면, 광원(38)에서 조사된 광에 의해 사용자가 투시 도어를 통해 저장실을 볼 수 있는 경우일 수 있다.
광원(38)은 고내측(패널 어셈블리를 기준으로 저장실측)이 고외측(패널 어셈블리를 기준으로 외측)보다 더 밝게 보이도록 하여 패널 어셈블리(23)가 투명 또는 반투명하게 보이게 할 수 있다.
광원(38)은 캐비닛(1)에 형성된 광원 장착부 또는 도어에 형성된 광원 장착부에 장착될 수 있고, 패널 어셈블리(23)을 향해 광을 조사하게 배치될 수 있다.
컨트롤러(30)는 입력수단의 입력값에 따라 도어 오픈 모듈(11)을 제어할 수 있다. 컨트롤러(30)는 입력수단의 입력값에 따라 리프팅 모듈(13)을 제어할 수 있다.
도 10은 본 발명의 실시 예에 따른 냉장고의 투시 도어가 도시된 사시도이다.
냉장고는 사용자가 냉장고의 외부에서 도어(50)를 열지 않고도 투시창을 통해 저장실을 볼 수 있는 도어(이하 투시 도어)를 포함할 수 있다.
투시 도어는 아우터 도어(22)와, 패널 어셈블리(23)를 포함할 수 있다.
아우터 도어(22)는 불투명할 수 있고 개구부(21)가 형성될 수 있다. 아우터 도어(22)는 투시 도어의 외관을 형성할 수 있다. 아우터 도어(22)는 캐비닛(1)에 회전 가능하게 연결되거나 진퇴 가능하게 연결될 수 있다.
패널 어셈블리(23)는 개구부(21)에 배치될 수 있다. 패널 어셈블리(23)는 개구부(21)를 차폐하도록 배치될 수 있다. 패널 어셈블리(23)은 아우터 도어(22)의 전면과 동일 외관을 형성하는 것이 가능하다.
투시 도어는 온도 변화에 따른 품질 변화가 큰 물품(예를 들면, 와인)이 주로 저장되는 저장실을 개폐하게 구비되는 것이 바람직하다.
저장실(W)에 온도 변화에 따른 품질 변화가 큰 물품이 주로 저장될 경우, 저장실(W)은 최대한 단시간 오픈 되었다가 클로즈되는 것이 바람직하고, 그 개폐 횟수가 최소화되는 것이 바람직하며, 투시 도어는 저장실(W)을 개폐하게 설치되는 것이 바람직하다.
예를 들면, 투시 도어는 상기 특정물품 보관실, 정온실 그리고 선순위 저장실 중 적어도 하나를 개폐하기 위한 도어에 구비되는 것이 바람직하다.
도 11는 본 발명의 실시예에 따른 도어의 일 예가 도어 오픈 모듈에 오픈하였을 때의 평면도이다.
냉장고는 저장실을 개폐하는 도어가 자동도어일 수 있고, 특정물품 보관실, 정온실 그리고 선순위 저장실을 개폐하기 위한 도어는 자동도어일 수 있다.
냉장고는 도어(5)를 강제 오픈시키는 도어 오픈 모듈(11)를 포함할 수 있다.
자동도어는 상기 입력수단을 통해 컨트롤러(30)에 제공되는 입력값에 따라 열리거나 닫히도록 제어될 수 있고, 이를 위해, 컨트롤러(30)는 도어 오픈 모듈(11)을 제어할 수 있다.
도어 오픈 모듈(11)은 캐비닛(1)에 회전 가능하게 연결된 도어(5)를 자동으로 오픈할 수 있다. 이러한 도어(5)는 도어 오픈 모듈(11)에 의해 자동 오픈되는 회전형 자동도어일 수 있다. 캐비닛(1)에는 힌지 축(42)이 도어(5)에 연결된 힌지 기구(40)가 설치될 수 있다. 냉장고는 힌지 기구(40) 및 도어 오픈 모듈(11)을 함께 커버할 수 있는 모듈 커버(70)을 더 포함할 수 있다. 그리고, 도어 오픈 모듈(11)은 구동 모터(72)와, 동력 전달부(74)와, 푸시 부재(76)를 포함할 수 있다.
컨트롤러(30)는 냉장고의 전원이 온되면, 도어(5)의 오픈 명령이 입력되는 것을 대기할 수 있다. 컨트롤러(30)는 입력수단을 통해 도어 오픈 명령이 입력되면, 도어 오픈 모듈 (11)에 포함된 구동 모터(72)로 오픈 신호를 송신할 수 있다.
컨트롤러(30)가 구동 모터(72)로 오픈 신호를 전송하면, 푸시 부재(76)를 초기 위치에서 도어 개방 위치로 이동되도록 구동 모터(72)를 제1방향으로 회전될 수 있다.
구동 모터(72)가 제1방향으로 회전하면, 동력 전달부(74)는 구동 모터(72)의 제1방향 회전력을 푸시 부재(76)로 전달할 수 있고, 푸시 부재(76)는 전방 방향으로 돌출되면서 도어를 밀수 있고, 도어(5)는 캐비닛(1)을 기준으로 전방 방향으로 회전될 수 있다.
컨트롤러(30)는 구동 모터(72)의 제1방향 회전 과정에서 푸시 부재(76)가 도어 개방 위치에 도달하였는지 여부를 판단할 수 있다. 예를 들어, 컨트롤러는 구동 모터(72)의 누적 회전수가 기준 회전수에 도달한 경우 푸시 부재(76)가 도어 개방 위치에 도달한 것으로 판단할 수 있다. 컨트롤러(30)는 푸시 부재(76)가 도어 개방 위치로 이동한 것으로 판단하면 구동 모터(72)의 회전을 정지할 수 있다.
도어(5)가 일정 각도 회전된 상태에서 사용자는 수동으로 도어(5)의 개방 각도를 증가시킬 수 있다.
푸시 부재(76)가 도어(5)를 도어 개방 위치로 이동시킨 상태에서, 사용자가 도어의 개방 각도를 증가시키면, 자석(46) 및 리드 스위치(48)를 포함하는 도어 센서는 이러한 도어(5)의 수동 개방을 센싱할 수 있고, 컨트롤러(30)는 도어 센서에 의해 도어(5)의 수동 개방이 센싱되면, 복귀 신호를 구동 모터(72)로 출력할 수 있다.
컨트롤러(30)는 푸시 부재(76)가 초기 위치로 복귀하도록 복귀 신호를 구동 모터(72)로 전송할 수 있고, 구동 모터(72)는 제1방향과 반대 방향인 제2방향으로 역회전될 수 있다. 컨트롤러(30)는 푸시 부재(76)가 초기 위치로 복귀한 것으로 판단되면, 구동 모터(72)를 정지시킬 수 있다.
도 12은 본 발명의 실시예에 따른 도어의 다른 예가 도어 오픈 모듈에 의해 오픈하였을 때의 단면도이다.
도 12에 도시된 도어 오픈 모듈(11')은 캐비닛(1)에 진퇴 가능하게 배치된 도어(6)를 자동으로 오픈할 수 있다. 냉장고에는 높이가 높은 도어와, 높이가 낮은 도어가 함께 배치될 수 있고, 도어 오픈 모듈(11')은 타 도어 보다 높이가 낮은 도어를 자동으로 오픈하게 설치될 수 있다. 이러한 도어는 도어 오픈 모듈(11')에 의해 자동 오픈되는 진퇴형 자동도어일 수 있다.
도어 오픈 모듈(11')에 의해 진퇴되는 도어(6)는 드로워 바디(6A)와, 드로워 바디(6A)에 배치되어 저장실을 개폐하는 도어 바디(6B)를 포함할 수 있다.
도어 오픈 모듈(11')는 구동 모터(80)와, 피니언(82) 및 랙(84)을 포함할 수 있다. 피니언(82)은 구동 모터(80)의 회전축에 연결될 수 있다. 랙(84)은 도어(6) 특히, 드로워 바디(6A)에서 연장될 수 있다.
냉장고는 도어(6)의 위치를 센싱하는 도어 센서를 더 포함할 수 있고, 도어 센서는 도어(6)에 이격되게 배치된 한 쌍의 자석(46')과, 자석(46')을 센싱하는 리드 스위치(48')를 포함할 수 있다.
컨트롤러(30)는 냉장고의 전원이 온되면, 도어(6)의 오픈 명령이 입력되는 것을 대기할 수 있다.
컨트롤러(30)는 상기 입력수단을 통해 도어 오픈 명령이 입력되면, 구동 모터(80)로 오픈 신호를 송신할 수 있다.
구동모터(80)는 오픈 신호가 입력되면, 컨트롤러(30)에 의해 제1방향으로 회전될 수 있고, 피니언(82) 및 랙(84)은 구동모터(80)의 회전력을 드로워 바디(82)로 전달할 수 있고, 드로워 바디(6A)는 저장실에서 전방 방향으로 전진되면서 도어 바디(6B)를 전진시킬 수 있고, 도어 바디(6B)는 캐비닛(1)의 전방으로 캐비닛(1)과 이격되게 전진될 수 있다.
컨트롤러(30)는 도어 센서에 의해 도어(6)가 오픈 위치에 도달된 것을 센싱할 수 있고, 도어(6)가 오픈 위치에 도달된 상태이면, 구동모터(80)의 회전을 정지할 수 있다.
상기와 같은 드로워 바디(6A)의 전진시 드로워 바디(6A)의 상면은 노출될 수 있다.
드로워 바디(6A)가 오픈 위치로 전진된 상태에서, 사용자는 입력수단을 통해 드로워 바디(6A)가 클로즈 위치로 후퇴되도록 도어 클로즈 명령을 입력할 수 잇다. 예를 들면, 컨트롤러(30)는 센싱 유닛(33)에 의해 센싱된 모션이 특정 모션과 일치하면, 구동모터(80)로 클로즈 신호를 전송할 수 있다. 컨트롤러(30)는 근접 센서(34)에 의해 사용자의 근접을 센싱할 수 있고, 근접 센서(34)에 의해 사용자가 소정 거리 이상으로 멀어진 것으로 감지되면, 구동모터(80)로 클로즈 신호를 전송할 수 있다.
구동모터(80)는 클로즈 신호가 입력되면, 제1방향과 반대 방향인 제2방향으로 역회전될 수 있다. 구동모터(80)의 역회전시, 피니언(82) 및 랙(84)은 구동모터(80)의 회전력을 드로워 바디(6A)로 전달할 수 있고, 드로워 바디(6A)는 저장실 내부로 후퇴되면서 도어 바디(6B)를 후퇴시킬 수 있고, 도어 바디(6B)는 캐비닛(1)의 전방으로 캐비닛(1)과 밀착되게 후퇴될 수 있다.
컨트롤러(30)는 도어 센서에 의해 도어(6)가 클로즈 위치에 도달된 것을 센싱할 수 있고, 도어(6)가 클로즈 위치에 도달된 상태이면, 구동모터(80)의 회전을 정지할 수 있다.
도 13는 본 발명의 실시예에 따른 도어가 오픈된 상태에서 거치대가 상승되었을 때의 단면도이다.
냉장고는 도어(50)가 열려 있고, 거치대가 전방으로 일정 거리 이동된 상태에서, 거치대(12)가 자동으로 승강되게 하는 리프팅 모듈(13)을 더 포함할 수 있다. 거치대(12)는 물품이 올려질 수 있는 선반이나 서랍이나 바스켓 등일 수 있다. 리프팅 모듈(13)은 저장실에 배치되거나 저장실을 개폐하기 위한 회전형 도어(5)와 진퇴형 도어(6) 중 적어도 하나에 배치될 수 있다. 냉장고에는 높이가 높은 거치대와, 높이가 낮은 거치대가 함께 배치될 수 있다.
상승용 리프팅 모듈은 타 거치대 보다 높이가 상대적으로 낮은 거치대가 위치하는 저장실에 배치될 수 있다. 하강용 리프팅 모듈은 타 거치대 보다 높이가 상대적으로 높은 거치대가 위치하는 저장실에 배치될 수 있다.
일례로 상승용 리프팅 모듈에 대해 설명한다.
리프팅 모듈(13)은 로어 프레임(93)과, 어퍼 프레임(94)과, 적어도 하나의 링크(95)를 갖는 승강기구(92)와, 어퍼 프레임(94)을 승강시킬 수 있는 구동기구(90)를 포함할 수 있고, 구동기구(90)는 승강모터(91)과, 승강모터(91)에 연결되어 승강모터(91)의 구동력을 어퍼 프레임(94)에 전달하는 동력 전달부재를 포함할 수 있다.
컨트롤러(30)는 냉장고의 전원이 온되면, 거치대(12)의 상승 명령이 입력되는 것을 대기한다. 컨트롤러(30)는 상기 입력수단을 통해 상승 명령이 입력되면, 리프팅 모듈(13)에 포함된 승강모터(91)로 상승 신호를 송신할 수 있다.
컨트롤러(30)가 승강모터(91)로 오픈 신호를 전송하면, 어퍼 프레임(94)는 상승될 수 있고, 거치대(12)는 드로워 바디(6B)의 상측으로 상승될 수 있다.
사용자는 입력수단을 통해 하강 명령을 입력할 수 있고, 컨트롤러(30)는 입력수단을 통해 하강 명령이 입력되면 승강모터(91)로 하강 신호를 송신할 수 있다.
승강모터(91)는 제1방향과 반대 방향인 제2방향으로 역회전될 수 있다. 승강모터(91)의 역회전시, 어퍼 프레임(94)은 드로워 바디(82)의 내측 하부로 하강될 수 있고, 거치대(12)는 어퍼 프레임(94)과 함께 드로워 바디(6B)의 내부로 삽입될 수 있다.
도 14은 본 발명의 실시예에 따른 냉장고의 저장실이 도시된 정면도이고, 도 15은 본 발명의 실시예에 따른 이너 가이드 내부가 도시된 배면도이며, 도 16는 본 발명의 실시예에 따른 냉장고의 단면도이다.
이너 가이드(200)는 저장실(W)이 형성된 캐비닛(1)의 내부에 배치될 수 있고, 이너 케이스(8)의 내부에 배치되어 저장공간과 공기유로(P)을 구획할 수 있다.
공기유로(P)는 이너 케이스(8)의 내부 공간 중 이너 가이드(200)과 이너 케이스(8)의 사이에 형성되거나 이너 가이드(200) 내부에 형성될 수 있다.
이하, 냉매유로(P)에 배치된 온도조절장치가 냉각수단인 예를 들어 설명하지만, 공기유로(P)에 배치된 온도조절장치는 냉각수단인 것에 한정되지 않고, 히터 등의 가열장치인 것도 가능하다.
한편, 편의를 위해, 공기유로(P)에 배치된 온도조절장치에 대해 그 일예가 될 수 있는 증발기와 동일한 도면부호인 150을 병기하여 설명한다.
적어도 하나의 팬(181)(186)은 이너 케이스(8) 또는 이너 가이드(200)에 배치될 수 있다.
팬(181)은 이너 가이드(200)에 배치되어 저장공간의 공기를 공기유로(P)와 저장공간으로 순환시킬 수 있다.
순환팬(186)은 저장공간의 공기를 순환시킬 수 있고, HG팬일 수 있다.
순환팬(186)은 순환유로(P4)에 배치될 수 있고, 저장공간의 공기를 공기유로(P) 이외의 순환유로(P4)로 유동시키고, 순환유로(P4)의 공기를 저장공간으로 송풍할 수 있다.
순환유로(P4)는 공기유로(P)와 구획되어 형성될 수 있고, 순환유로(P4)는 순환유로(P4)를 통과하는 공기가 순환유로(P4)를 통과하는 동안 공기유로(P)를 통과하는 공기와 섞어지 않게 형성될 수 있다. 순환유로(P4)는 이너 가이드(200)에 형성될 수 있다. 순환유로(P4)는 제1공간(W1)과 연통되게 형성될 수 있다.
팬(181)은 공기유로(P)에 배치된 이너 기류형성기구일 수 있고, 순환팬(186)은 공기유로(P) 외부에 배치된 아우터 기류형성기구일 수 있다.
이너 가이드(200)는 이너 케이스(8)와 함께 저장공간을 형성할 수 있다.
이너 가이드(200)가 이너 케이스(8)의 리어 바디 전방에 배치될 경우, 저장공간은 이너 케이스(8)의 내부 중 이너 가이드(200) 전방의 공간일 수 있고, 공기유로(P)는 이너 가이드(200)와 이너 케이스(8)의 리어 바디 사이에 형성되거나 이너 가이드(200) 내부에 형성될 수 있다.
이너 가이드(200)는 온도조절장치(150) 및 팬(181)을 커버할 수 있다.
이하, 이너 가이드(200)의 상세 구성에 대해 설명한다.
이너 가이드(200)에는 토출구(204) 및 흡입구(205)가 이격되게 형성될 수 있고,
냉장고는 구획부재(3)를 더 포함할 경우,. 구획부재(3)는 저장실의 상단과 하단 중 하단에 더 근접할 수 있다.
토출구(204) 및 흡입구(205)는 제1공간(W1)을 향하는 위치에 형성될 수 있다.
제1공간(W1)으로 공기를 토출하는 토출구(204)가 제1토출구일 경우, 추가 토출구(321)은 제2토출구일 수 있고, 제1공간(W1)의 공기가 흡입되는 흡입구(205)가 제1흡입구일 경우, 추가 흡입구(341)는 제2흡입구일 수 있다.
구획부재(3)의 일면은 흡입구(205)를 향해 유동되는 공기를 안내하는 흡입 안내면 수 있고, 구획부재(3)의 타면은 추가 토출구(321)로 토출된 공기를 안내하는 토출안내면일 수 있다.
구획부재(3)가 저장공간에 수평하게 배치되고, 제1공간(W1)이 제2공간(W2)의 상측에 위치될 경우, 토출구(204)는 추가 토출구(321) 및 추가 흡입구(341) 보다 높은 위치에 형성된 어퍼 토출구일 수 있고, 이 경우, 추가 토출구(321)은 로어 토출구일 수 있다. 그리고, 흡입구(205)는 추가 토출구(321) 및 추가 흡입구(341) 보다 높은 위치에 형성된 어퍼 흡입구일 수 있고, 이 경우 추가 흡입구(341)은 로어 흡입구일 수 있다.
한편, 이너 가이드(200)에는 온도조절장치(150) 및 팬(181)이 수용되는 열교환유로(P1)가 형성될 수 있다. 이너 가이드(200)에는 팬(181)에 의해 송풍된 공기가 토출구(204)로 토출되기 위해 안내되는 토출유로(P2)가 형성될 수 있다. 이너 가이드(200)에는 팬(181)에 의해 송풍된 공기가 추가 토출구(321)로 토출되기 위해 안내되는 추가 토출유로(P3)가 형성될 수 있다.
열교환유로(P1)와, 토출유로(P2) 및 추가 토출유로(P3)는 공기가 온도조절장치(150)와 저장공간을 순환하게 안내할 수 있는 공기유로(P)를 구성할 수 있고, 온도조절장치(150) 및 팬(181)은 공기유로(P)에 수용된 상태에서 제1공간(W1) 및 제2공간(W2)의 온도를 조절할 수 있다.
에어 가이드(400)는 팬(181)이 수용되는 프론트 하우징(410) 및 리어 하우징(420)을 포함할 수 있다. 에어 가이드(400)에는 추가 토출구(321)와 연통되는 출구(412)가 형성될 수 있다. 출구(412)는 추가 토출구(321)와 대향되게 형성되어 추가 토출구(321)로 공기를 토출하는 것이 가능하고, 토출 덕트(미도시)을 통해 추가 토출구(321)과 연통되는 것도 가능하다.
냉장고는 에어 가이드(400)의 내측에서 팬(181)에 의해 강제 유동되는 공기를 안내하는 가이드(234)를 포함할 수 있다. 가이드(234)는 토출 가이드(202)에 형성되어 팬(181)에서 송풍된 공기를 출구(412)로 안내할 수 있다.
에어 가이드(400)에는 토출유로(P2)로 공기를 안내하는 스크롤(413) 및 개구부(414)가 형성될 수 있다. 스크롤(413)은 팬(181)에서 송풍된 공기를 개구부(414)로 안내할 수 있다. 개구부(414)는 토출유로(P2)의 하단과 연통될 수 있다.
제1댐퍼(191)는 공기유로(P)에 배치될 수 있고, 제1공간(W1)으로 공급되는 공기를 조절할 수 있다. 제1댐퍼(191)는 공기 유동 방향으로 팬(181)과 토출구(204)의 사이에 위치되게 장착될 수 있다.
제2댐퍼(192)는 공기유로(P)에 배치되고, 제2공간(W2)으로 공급되는 공기를 조절할 수 있다. 제2댐퍼(192)는 공기 유동 방향으로 팬(181)과 추가 토출구(321)의 사이에 위치되게 장착될 수 있다.
순환팬(186)은 이너 가이드(200)에 배치될 수 있다. 이너 가이드(200)에는 순환팬(186)의 작동시, 순환팬(186)에 의해 유동된 공기가 통과하는 순환유로(P4)가 형성될 수 있다. 이너 가이드(200)에는 순환팬(186)의 구동시, 저장공간의 공기가 순환유로(P4)로 유입되는 입구(188)가 형성될 수 있다. 이너 가이드(200)에는 순환유로(P4)의 공기가 저장공간으로 토출되는 출구(189)가 형성될 수 있다.
입구(188) 및 출구(189)는 제1공간(W1)과 연통될 수 있고, 제1공간(W1)을 향하게 형성될 수 있다. 순환팬(186)은 제1공간(W1)의 공기를 순환유로(P4)와 제1공간(W1)으로 순환시킬 수 있다.
순환유로(P4)에는 공기정화필터 등의 정화유닛(185)가 배치될 수 있고, 순환유로(P4)를 통과하는 공기는 정화유닛(185)에 의해 정화될 수 있다.
이너 가이드(200)는 토출 가이드(202)와 입구(188)를 형성하는 인렛 바디(187)를 더 포함할 수 있다.
이너 가이드(200)에는 제1공간(W1)의 온도를 센싱하는 제1온도센서(190)과, 제2공간(W2)의 온도를 센싱하는 제2온도센서(390)가 제공될 수 있다.
이너 가이드(200)는 토출 가이드(202)와, 이너 커버(300)를 포함할 수 있다.
토출 가이드(202)는 이너 커버(300) 보다 높게 배치될 수 있다.
온도조절장치(150) 및 팬(181)는 토출 가이드(202)와 이너 커버(300) 중 적어도 하나에 의해 형성된 공기유로(P)를 통해 제1공간(W1)과 제2공간(W2)로 공기를 공급될 수 있다.
온도조절장치(150)는 이너 커버(300)의 내부에 수용될 수 있다.
토출 가이드(202)와 이너 커버(300)는 온도조절장치(150) 및 팬(181)과 함께 이너 케이스(8) 내부에 수용되는 구성이고, 토출 가이드(202)와 이너 커버(300)와 온도조절장치(150) 및 팬(181)은 그 전체가 차지하는 용적이 최소화되는 것이 바람직하다.
팬(181)은 온도조절장치(150)와 열교환된 공기를 강제 유동시키는 것으로서, 팬(181)에 의해 유동되는 공기는 토출 가이드(202)와 이너 커버(300)에 의해 제1공간(W1)과 제2공간(W2)으로 토출 안내될 수 있다.
토출 가이드(202)는 제1공간(W1)을 향할 수 있고, 토출 가이드(202)에는 토출구(204)와, 흡입구(205)가 형성될 수 있다.
이너 커버(300)는 토출 가이드(202)와 연결될 수 있다. 이너 커버(300)는 제2공간(W2)를 향할 수 있으며, 이너 커버(300)에는 추가 토출구(321)과 추가 흡입구(341)가 형성될 수 있다.
토출 가이드(202)의 일면은 제1공간(W1)을 향할 수 있고, 토출구(204)와, 흡입구(205)는 토출 가이드(202) 중 제1공간(W1)을 향하는 영역에 형성될 수 있다.
토출 가이드(202) 중 제1공간(W1)을 향하는 부분에는 제1공간(W1)의 공기를 정화하는 HG모듈(184, Heating air generation module) 및 제1공간(W1)의 온도를 센싱하는 제1온도센서(190)가 구비될 수 있다.
HG모듈(184)는 순환팬(186)을 포함할 수 있다. HG모듈(184)는 공기정화필터 등의 정화유닛(185)을 포함할 수 있다.
이너 커버(300)의 일면은 제2공간(W2)을 향할 수 있고, 추가 토출구(321)과 추가 흡입구(341)는 이너 커버(300) 중 제2공간(W2)을 향하는 영역에 형성될 수 있다. 추가 토출구(321)의 높이는 추가 흡입구(341)의 높이 보다 높을 수 있다.
추가 토출구(321)은 이너 커버(300)의 상부에 형성될 수 있고, 팬(181)에 의해 송풍된 공기는 추가 토출구(321)를 통해 제2공간(W2)로 토출될 수 있다.
이너 커버(300)의 하부에는 추가 흡입구(341)가 형성될 수 있다. 추가 흡입구(341)로 흡입된 공기는 온도조절장치(150)로 유동될 수 있다.
이너 커버(300) 중 제2공간(W2)을 향하는 부분에는 제2공간(W2)의 온도를 센싱하는 제2온도센서(390)가 구비될 수 있다.
한편, 냉장고는 저장공간을 가열하기 위한 적어도 하나의 가열장치를 포함할 수 있고, 냉장고는 가열장치를 이용하여 히팅모드(H, 도 4 참조)를 실시할 수 있다.
적어도 하나의 가열장치는 공기유로(P)에 배치된 온도조절장치(150)와 독립적으로 작동될 수 있다.
냉장고는 공기유로(P)에 배치된 온도조절장치(150)에 의해 쿨링모드(E, 도 4 참조)를 실시할 수 있고, 적어도 하나의 가열장치에 의해 히팅모드(H)를 실시할 수 있다.
상기 가열장치는 전도 및 복사에 의해 저장실을 가열할 수 있는 제1가열수단(171, 172)와, 대류에 의해 저장실을 가열할 수 있는 제2가열수단 (186)을 포함할 수 있다. 제1가열수단은 제1공간(W1)과 제2공간(W2) 중 어느 하나만을 가열하게 배치되는 것이 가능하고, 제1공간(W1)과 제2공간(W2) 별로 각각 제공될 수 있다.
에너지 효율 등을 고려할 때, 제1가열수단은 공기유로(P)에 배치된 온도조절장치와 열적으로 분리된 위치에 설치되는 것이 바람직하다. 제1가열수단은 공기유로(P) 이외에 배치될 수 있다. 제1가열수단은 공기유로(P)를 형성하는 이너 가이드 이외에 배치될수 있다. 제1가열수단은 이너 케이스 중 상기 이너 가이드와 직접 마주 보는 면(예. 이너가이드가 저장실의 후방에 배치될 경우, 이너 가이드와 마주보면서 저장실의 후방을 형성하는 이너케이스의 면) 이외에 배치될 수 있다.
한편, 제1가열수단(171)은 제1공간(W1) 중 상대적으로 타 영역보다 과냉되기 쉬운 영역을 가열하게 배치될 수 있다. 토출구(204, 321)에서 저장실 공간으로 토출된 공기는 낙하되어 흡입구(205,341)를 통해 흡입될 수 있고, 저장공간 중 흡입구(205,341)와 근접한 영역은 흡입구(205,341)와 먼 영역보다 상대적으로 과냉되기 쉬운 영역일 수 있다. 제1가열수단은 토출구에 인접한 저장공간 보다 흡입구에 인접한 저장공간을 더 많이 가열할 수 있도록 배치될 수 있다. 일례로, 제1공간(W1)을 위한 가열수단 (171)은 제1구획부재(3)와 제1공간을 형성하는 이너케이스의 하부에 위치하도록 배치될 수 있다. 일례로 제2공간(W2)을 위한 가열수단(172)은 제2구획부재(10)와 제2공간을 형성하는 이너케이스에 배치될 수 있다. 제2공간(W2)을 위한 가열수단(172)은 제1구획부재(3)과 제2구획부재(10) 사이에 위치하는 이너케이스에 설치될 수 있다. 한편, 제2가열수단 (186)은 대류에 의한 순환 효율을 상승하기 위해서 제1가열수단(171,172)와 가능한 이격하여 설치하는 것이 바람직하다. 제2가열수단(186)은 흡입구(205,341)보다 토출구(204, 321)에 더 인접한 곳에 배치될 수 있다. 제1가열수단(171,172)는 저장실의 하측에 위치하고, 제2가열수단(186)은 저장실의 상측에 위치할 수 있다. 제2가열수단(186)은 상기 구획벽(3)의 상부에 위치하고, 상기 냉각수단(150)은 상기 구획벽(3)의 하부에 위치할 수 있다. 제2가열수단(186)은 상기 이너 가이드(200)의 상부에 위치하고, 상기 냉각수단(150)은 상기 이너 가이드(200)의 하부에 위치할 수 있다. 상기 이너 가이드 (200)의 내부에 형성된 제2가열수단(186)을 위한 순환유로(P4)와 상기 냉각수단(150)을 위한 공기유로(P)는 단열체에 의해 구획될 수 있다.
가열장치(171)는 제1바디(8C)에 배치된 한 쌍의 제1 사이드 가열장치(173)(174)를 포함할 수 있다. 가열장치(171)는 구획부재(3)나 선반(2)에 배치된 이너 가열장치(175)를 포함할 수 있다.
이너 가열장치(175)는 구획부재(3)나 선반(3)나 가열바디의 외면에 노출되게 배치되어 저장공간의 공기를 직접 가열하는 것이 가능하다.
가열장치(171)는 한 쌍의 제1사이드 가열장치(173)(174)와 이너 가열장치(175)를 포함할 경우, 이러한 가열장치(173)(174)(175)들 각각의 용량은 적정하게 분배되는 것이 바람직하다.
가열장치(171)의 전체 용량은 한 쌍의 제1사이드 가열장치(173)(174) 각각의 용량과 이너 가열장치(175)의 용량의 합일 수 있고, 이너 가열장치(175)의 용량은 가열장치(171) 전체 용량의 30% 이상인 것이 바람직하다. 그리고, 이너 가열장치(175)의 용량은 한 쌍의 제1사이드 가열장치(173)(174)의 용량 보다 클 수 있다. 그리고, 한 쌍의 제1사이드 가열장치(173)(174)의 용량 합은 전체 용량의 31.25% 내지 56.26% 인 것이 바람직하다.
냉장고는 제2공간(W2)을 가열하는 추가 가열장치(172)를 더 포함할 수 있다. 추가 가열장치(172)는 제2바디(8D)에 배치된 한 쌍의 제2 사이드 가열장치(176)(177)를 포함할 수 있다. 추가 가열장치(172)는 이너 케이스(8)의 로어 바디에 배치된 로어 가열장치(178)를 더 포함할 수 있다.
추가 가열장치(172)가 한 쌍의 제2사이드 가열장치(176)(177)와 로어 가열장치(178)를 모두 포함할 경우, 이러한 가열장치(176)(177)(178)들 각각의 용량은 적정하게 분배되는 것이 바람직하다.
추가 가열장치(172)의 전체 용량은 한 쌍의 제2사이드 가열장치(176)(177) 각각의 용량과 로어 가열장치(178)의 용량의 합일 수 있고, 로어 가열장치(178)의 용량은 추가 가열장치(172) 전체 용량의 30% 이상인 것이 바람직하다. 그리고, 로어 가열장치(178)의 용량는 한 쌍의 제2사이드 가열장치(176)(177)의 용량 보다 클 수 있다. 그리고, 한 쌍의 제2사이드 가열장치(176)(177)의 용량 합은 추가 가열장치(172) 전체 용량의 31.25% 내지 56.26% 인 것이 바람직하다.
제1공간(W1)의 쿨링모드시 냉각수단 및 팬(181)은 작동될 수 있고, 가열장치(171)는 정지될 수 있다. 이 경우, 냉각수단은 온도조절장치(150)로 냉매가 공급되도록 유로절환기구(120)(120') 및 압축기(100) 등이 제어될 수 있고, 제1댐퍼(191)은 오픈될 수 있다.
제1공간(W1)의 히팅모드시, 가열장치(171)는 작동될 수 있다. 이 경우, 팬(181)과 순환팬(186) 중 적어도 하나는 작동될 수 있다.
제1공간(W1)의 히팅모드시 순환팬(186)은 구동되어 제1공간(W1)의 공기가 가열장치(171)와 순환유로(P4)를 순환하면서 제1공간(W1)이 대류에 의해 가열되게 할 수 있다. 이 경우, 냉각수단은 공기유로(P)의 공기가 제1공간(W1)으로 토출되지 않게 제어될 수 있고, 이를 위해 제1댐퍼(191)가 클로즈되거나 팬(181)이 정지될 수 있다.
제1공간(W2)의 히팅모드시, 팬(181)은 작동되어 제1공간(W1)의 공기가 가열장치(171)과 공기유로(P)를 순환하면서 제1공간(W1)이 대류에 의해 가열되게 할 수 있다. 이 경우, 냉각수단은 온도조절장치(150)로 냉매가 공급되지 않게 유로절환기구(120)(120')와 압축기(100) 등이 제어될 수 있다.
제2공간(W2)의 쿨링모드시 냉각수단 및 팬(181)은 작동될 수 있고, 추가 가열장치(172)는 정지될 수 있다. 이 경우, 냉각수단은 온도조절장치(150)로 냉매가 공급되도록 유로절환기구(120)(120') 및 압축기(100) 등이 제어될 수 있고, 제2댐퍼(192)은 오픈될 수 있다.
제2공간(W2)의 히팅모드시, 추가 가열장치(172)는 작동될 수 있다. 이 경우, 팬(181)는 작동되거나 정지될 수 있다.
제2공간(W2)의 히팅모드시, 팬(181)은 작동되어 제2공간(W2)의 공기가 추가 가열장치(172)과 공기유로(P)를 순환하면서 제2공간(W2)이 대류에 의해 가열되게 할 수 있다. 이 경우, 냉각수단은 온도조절장치(150)로 냉매가 공급되지 않게 유로절환기구(120)(120')와 압축기(100) 등이 제어될 수 있다.
제2공간(W2)의 히팅모드시, 팬(181)은 정지될 수 있고, 이 경우, 추가 가열장치(172)는 전도에 의해 제2공간(W2)을 가열할 수 있다.
제1공간(W1)이 쿨링모드이고 제2공간(W2)이 쿨링모드이면, 압축기(100)는 작동될 수 있고, 유로절환기구(120)(120')는 온도조절장치(150)로 냉매를 안내할 수 있으며, 제1댐퍼(191)과 제2댐퍼(192)는 모두 오픈될 수 있고, 팬(181)은 구동될 수 있다. 저장공간의 공기는 온도조절장치(150)와 저장공간을 순환할 수 있고, 저장공간은 대류에 의해 냉각될 수 있다.
제1공간(W1)이 쿨링모드이고 제2공간(W2)이 히팅모드이거나 대기모드이면, 압축기(100)는 작동될 수 있고, 유로절환기구(120)(120')는 온도조절장치(150)로 냉매를 안내할 수 있으며, 제1댐퍼(191)는 오픈될 수 있고, 제2댐퍼(192)는 클로즈될 수 있으며, 팬(181)은 구동될 수 있다. 팬(181))의 구동시 제1공간(W1)의 공기는 온도조절장치(150)과 제1공간(W1)를 순환하면서 제1공간(W1)이 대류에 의해 냉각되게 할 수 있다.
제1공간(W1)이 쿨링모드이고 제2공간(W2)이 히팅모드일 경우, 추가 가열장치(172)는 작동될 수 있고, 제2공간(W2)는 추가 가열장치(172)에 의해 가열될 수 있다. 반면에, 제1공간(W1)이 쿨링모드이고 제2공간(W2)이 대기모드일 경우, 추가 가열장치(172)는 정지될 수 있다.
제1공간(W1)이 히팅모드이고, 제2공간(W2)이 히팅모드의 일 예는, 가열장치(171) 및 추가 가열장치(172)가 작동될 수 있고, 순환팬(186)이 작동될 수 있고, 압축기(100)가 작동되지 않거나 유로절환기구(120)(120')가 온도조절장치(150)로 냉매를 안내하지 않으며, 제1댐퍼(191)는 클로즈될 수 있고 제2댐퍼(192)는 오픈될 수 있으며, 팬(181)은 작동될 수 있다. 순환팬(186)의 작동시 제1공간(W1)의 공기는 가열장치(171)와 순환유로(P4)를 순환하면서 제1공간(W1)이 대류에 의해 가열되게 할 수 있다. 그리고, 팬(181)의 작동시 제2공간(W2)의 공기는 추가 가열장치(172)와 공기유로(P)를 순환하면서 제2공간(W2)이 대류에 의해 가열되게 할 수 있다.
제1공간(W1)이 히팅모드이고, 제2공간(W2)이 히팅모드의 다른 예는, 가열장치(171) 및 추가 가열장치(172)가 작동될 수 있고, 순환팬(186)이 작동될 수 있고, 압축기(100)가 작동되지 않거나 유로절환기구(120)(120')가 온도조절장치(150)로 냉매를 안내하지 않으며, 제1댐퍼(191) 및 제2댐퍼(192)는 클로즈될 수 있고, 팬(181)은 정지될 수 있다. 순환팬(186)의 구동시 제1공간(W1)의 공기는 가열장치(171)와 순환유로(P4)를 순환하면서 제1공간(W1)이 대류에 의해 가열되게 할 수 있다. 그리고, 제2공간(W2)은 추가 가열장치(172)에 의해 가열될 수 있다.
제1공간(W1)이 히팅모드이고, 제2공간(W2)이 히팅모드의 또 다른 예는, 가열장치(171) 및 추가 가열장치(172)는 작동될 수 있고, 압축기(100)가 작동되지 않거나 유로절환기구(120)(120')가 온도조절장치(150)로 냉매를 안내하지 않으며, 제1댐퍼(191) 및 제2댐퍼(192)는 오픈될 수 있고, 팬(181)은 구동될 수 있다. 이 경우, 저장공간의 공기는 가열장치(171)와 추가 가열장치 및 공기유로(P)를 순환하면서 대류에 의해 저장공간을 가열될 수 있다.
제1공간(W1)이 히팅모드이고, 제2공간(W2)이 쿨링모드의 일예는 가열장치(171)가 작동되고, 압축기(100)가 작동되며, 유로절환기구(120)(120')가 온도조절장치(150)로 냉매를 안내할 수 있으며, 제1댐퍼(191)가 클로즈될 수 있고, 제2댐퍼(192)가 오픈될 수 있으며, 순환팬(186) 및 팬(181)이 구동될 수 있다. 순환팬(186)의 구동시 제1공간(W1)의 공기는 가열장치(171)와 순환유로(P4)를 순환될 수 있고, 제1공간(W1)은 대류에 의해 가열될 수 있다. 그리고, 팬(181)의 구동시, 제2공간(W2)의 공기는 온도조절장치(150)과 제2공간(W2)을 순환될 수 있고, 제2공간(W2)은 대류에 의해 냉각될 수 있다.
제1공간(W1)의 히팅모드이고, 제2공간(W2)이 쿨링모드의 다른 예는 가열장치(171)가 작동되고, 압축기(100)가 작동되지 않거나 유로절환기구(120)(120')가 온도조절장치(150)로 냉매를 안내하지 않으며, 제1댐퍼(191)가 오픈될 수 있고, 제2댐퍼(192)가 클로즈될 수 있으며, 팬(181)이 구동될 수 있다. 팬(181)의 구동시, 제1공간(W1)의 공기는 가열장치(171)과 공기유로(P)를 순환할 수 있고, 제1공간(W1)은 대류에 의해 가열될 수 있다. 이 경우, 냉장고는 제1공간(W1)의 히팅모드가 제2공간(W2)의 쿨링모드에 우선하여 설시될 수 있고, 제1공간(W1)에 저장된 물품의 품질 저하는 최소화할 수 있다.
제1공간(W1)이 히팅모드이고, 제2공간(W2)이 대기모드의 일예는, 가열장치(171)가 작동될 수 있고, 압축기(100)가 작동되지 않거나 유로절환기구(120)(120')가 온도조절장치(150)로 냉매를 안내하지 않으며, 제1댐퍼(191) 및 제2댐퍼(192)가 클로즈될 수 있으며, 순환팬(186)이 작동될 수 있다. 이 경우, 순환팬(186)의 작동시 제1공간(W1)의 공기는 가열장치(171)와 순환유로(P4)를 순환하면서 제1공간(W1)이 대류에 의해 가열되게 할 수 있다.
제1공간(W1)이 히팅모드이고, 제2공간(W2)이 대기모드의 다른 예는, 가열장치(171)가 작동될 수 있고, 압축기(100)가 작동되지 않거나 유로절환기구(120)(120')가 온도조절장치(150)로 냉매를 안내하지 않으며, 제1댐퍼(191)가 오픈될 수 있고, 제2댐퍼(192)가 클로즈 될 수 있으며, 순환팬(186)이 작동될 수 있다. 순환팬(186)의 작동시 제1공간(W1)의 공기가 가열장치(171)와 공기유로(P)를 순환하면서 제1공간(W1)이 대류에 의해 가열되게 할 수 있다.
컨트롤러(30)는 입력수단과, 타이머(37)와, 온도센서(190)(390)에 따라 복수의 모드(E)(H)(D)를 선택적으로 실시할 수 있다.
컨트롤러(30)는 입력수단을 통해 입력된 제1공간(W1)의 목표온도와, 제1온도센서(190)에서 감지된 온도와, 타이머(37)에 의해 카운트된 시간에 따라 제1공간(W1)을 쿨링모드나 히팅모드로 온도 조절하거나 대기모드로 온도 유지할 수 있다.
컨트롤러(30)는 제2공간(W2)를 쿨링모드, 대기모드, 히팅모드로 제어할 수 있다. 컨트롤러(30)는 입력수단을 통해 입력된 제2공간(W2)의 목표온도와, 제2온도센서(390)에서 감지된 온도와, 타이머(37)에 의해 카운트된 시간에 따라 제2공간(W2)을 쿨링모드나 히팅모드로 온도 조절하거나 대기모드로 온도 유지할 수 있다.
이하, 중복된 설명을 피하기 위해, 냉각수단과 가열수단에 의해 온도 조절되는 공간을 저장실(W)로 칭하여 설명하고, 저장실(W)의 온도는 온도센서(190)에 의해 센싱되는 것으로 설명하고, 팬(181) 및 순환팬(186)이 저장실의 공기를 유동시키는 기류형상기구인 예로 설명하고, 온도조절장치(150)가 냉각수단의 구성인 것으로 설명하고, 가열장치(171)가 저장실을 가열하는 것으로 설명한다.
이하, 냉각수단에 의한 쿨링모드와 가열수단에 의한 히팅모드의 전환에 대해 도 4, 도 17 및 도 18를 참조하여 상세히 설명한다.
도 17은 본 발명의 실시예에 따른 냉장고가 쿨링모드에서 히팅모드로 전환될 때의 순서도이다.
저장실 내부의 온도 변화가 클 수록 저장실에 보관되는 물품의 품질이 저감되는 경우가 있다. 저장실의 온도변화량은 2가지 측면에서 고찰될 수 있다. 첫째, 저장공간의 특정 지점을 기준으로 시간에 따른 온도 변화량 (이하 시간 온도변화량)을 측정할 수 있다. 예를 들면, 시간 온도변화량은 제1시각일 때, 저장실의 상부 공간의 제1온도와 제1시각과 상이한 제2시각일 때, 저장실의 상부 공간의 제2온도의 차이값을 의미한다.
둘째, 동일한 시각을 기준으로 저장 공간의 위치에 따른 온도 변화량 (이하 공간 온도변화량)을 측정할 수 있다. 예를 들면, 공간 온도변화량은 동 시각, 저장실의 상부 공간의 제1온도와 저장실의 하부 공간의 제2온도의 차이값을 의미한다.
상기 저장실의 시간 온도변화량을 저감하기 위한 방법으로 저장실의 목표온도 상한값과 목표온도 하한값의 차(이하, 보관온도차)를 줄이도록 설정하는 것도 가능하다. 이 경우, 온도조절장치의 잦은 온/오프로 인해 부품 신뢰성이 저하되고, 소비전력이 증가되는 단점이 발생할 수 있다.
또 다른 방법으로는 냉각수단과 가열수단을 포함하는 온도조절장치를 이용하여 상기 문제점을 저감할 수 있다. 특히 냉장고의 고가의 특정물품 보관실, 정온실 그리고 선순위 저장실 중 적어도 하나의 저장실 온도를 제어하기 위해 냉각수단과 가열수단이 구비하는 것이 바람직하다. 예를 들면, 가열수단 중 적어도 일부가 일시적 미/오작동되거나, 저장실의 목표온도가 상향 (혹은 하향) 조정되거나 도어가 오픈되어 고내보다 낮은 (혹은 높은) 외기가 과다 유입되는 경우에 저장실의 온도가 과냉 (혹은 과열) 될 수 있다. 이로 인한 보관품의 품질 향상 혹은 유지를 위해 가열수단 (혹은 냉각수단)이 작동될 수 있다.
한편, 냉각수단과 가열수단은 저장실 온도 유지 측면에서 서로 반대적 기능을 수행하기 때문에, 소비전력 저감을 위해서는 단열측면에서 냉각수단과 가열수단은 분리/구획되는 것이 바람직하고, 제어측면에서도 냉각수단과 가열수단이 중첩되어 작동되지 않도록 제어하는 것이 바람직하다. 이를 위해 냉각수단과 가열수단을 교번운전하는 것이 바람직하다. 한편, 냉각수단이 종료된 후, 미리 정해진 가열수단의 운전 시작조건이 만족된 경우, 즉시 가열수단의 운전을 시작하는 것보다는 시간차를 두는 것이 바람직하다. 이것은 저장실의 온도센서가 저장공간의 온도를 측정할 때 센서 측정값의 흔들림이 발생하는 경우나, 짧은 시간 빈번히 도어를 오픈하여 저장실의 온도가 급격히 변화하는 경우 즉각적으로 온도조절장치가 작동되면, 온도조절장치의 잦은 온/오프로 인해 부품 신뢰성이 저하되고, 소비전력이 증가되는 단점이 발생할 수 있기 때문이다. 한편, 이러한 시간차를 고정적으로 설정하는 것은 매우 어렵다. 왜냐하면, 냉각수단과 가열수단의 전환이 일어나야 하는 상황은 매우 다양하기 때문에, 일률적으로 그 시간차를 설정하는 것은 거의 불가능하다. 따라서, 저장실의 온도와 저장실의 목표온도 차이가 클 수록 보관품의 품질저하 가능성이 크므로, 상기 시간차가 짧게 설정되는 것이 바람직하다. 가열수단의 작동 예를 들면, 저장실의 온도가 목표온도 하한값(T4℃)에 도달할 경우는 제1시간(T1)이 경과된 후 가열수단이 작동되게 하고, 저장실의 온도가 목표온도 하한값(T4℃))보다 더 낮은 온도(T5℃)에 도달할 경우는 제2시간(T2, T2<T1)이 경과된 후 가열수단이 작동되게 하는 것이 바람직하다. 물론 저장실의 온도가 상기 온도(T5℃))보다 더 낮은 온도(T6℃)에 도달할 경우는 제3시간(T3,T3<T2)이 경과된 후 가열수단이 작동되게 할 수 있을 것이다.
냉장고에 전원이 인가되면, 컨트롤러(30)는 온도센서(190)에서 센싱된 저장실 온도(이하, 저장실 온도라 칭함)를 목표온도의 상한값과 비교할 수 있고, 저장실 온도가 목표온도의 상한값 초과이면, 쿨링모드(E)를 개시할 수 있다.(S1)
컨트롤러(30)는 쿨링모드(E)의 개시시, 타이머(37)의 제1타이머를 리셋할 수 있다.(S2) 여기서, 제1타이머는 후술하는 제2타이머와 구별하기 위한 용어일 수 있다. 타이머(37)는 제1타이머와 제2타이머를 포함할 수 있다. 제1타이머가 시간을 카운트하기 시작하는 개시 시점과, 제2타이머가 시간을 카운트하기 시작하는 개시 시점은 상이할 수 있다.
컨트롤러(30)는 쿨링모드(E)시 온도조절장치(150)를 작동시킬 수 있고, 팬(181)을 작동시킬 수 있다. 여기서, 온도조절장치(150)의 작동은 온도조절장치(150)로 냉매가 공급되게 냉장고를 작동시키는 것을 의미할 수 있고, 예를 들면, 압축기(100)의 작동을 의미하거나 유로절환기구(120)(120')가 온도조절장치(150)로 냉매를 안내하는 것을 의미할 수 있다.
저장실(W)의 공기는 저장실(W)과 온도조절장치(150)를 순환하면서 저장실(W)을 냉각할 수 있고, 저장실 온도는 온도조절장치(150)에 의해 점차 낮아질 수 있다.
컨트롤러(30)는 저장실 온도가 목표온도의 하한값 미만이면, 온도조절장치(150)를 정지시킬 수 있다. 여기서, 온도조절장치(150)의 정지는 온도조절장치(150)로 냉매가 공급되지 않게 냉장고를 작동시키는 것을 의미할 수 있고, 예를 들면, 압축기(100)의 정지를 의미하거나 유로절환기구(120)(120')가 온도조절장치(150)로 냉매를 공급하지 않은 것을 의미할 수 있다.
온도조절장치(150)의 정지시, 저장실 온도는 부하에 따라 목표온도 하한값 이상으로 다시 높아지거나, 목표온도 하한값과 하한 온도 사이를 유지하거나, 하한 온도 보다 낮아질 수 있다.
컨트롤러(30)는 저장실 온도가 목표온도의 하한값 미만이면, 타이머(37)의 제1타이머를 카운트 할 수 있다.(S3)(S4) 여기서, 제1타이머의 카운트는 저장실 온도가 목표온도의 하한값 미만을 유지하는 시간을 타이머(37)가 카운트하는 것을 의미할 수 있다. 냉장고는 타이머(37)을 이용하여 저장실 온도가 목표온도의 하한값 미만인 시간(이하, 제1시간이라 칭함)을 카운트 할 수 있다.
컨트롤러(30)는 저장실 온도를 하한온도와 비교하고, 저장실 온도가 하한온도 이상이면, 타이머(37)의 제2타이머를 리셋할 수 있다.(S5)(S8) 그리고, 컨트롤러(30)는 타이머(37)에 의해 카운트된 제1시간을 제1설정시간(예를 들면, 100분)과 비교하고, 컨트롤러(30)는 타이머(37)에 의해 카운트된 제1시간이 제1설정시간(예를 들면, 100분) 초과이면, 히팅모드(H)를 개시할 수 있다.(S9)(S10)
한편, 컨트롤러(30)는 제1시간이 제1설정시간(예를 들면, 100분) 의 비교 결과, 제1시간이 제1설정시간 이하이면, 히팅모드(H)를 개시하지 않고, 저장실 온도를 목표온도 하한값과 다시 비교할 수 있다.(S9)(S3)
한편, 컨트롤러(30)는 저장실 온도가 목표온도 하한값 이상이면, 타이머의 제1타이머를 리셋할 수 있다(S3)(S2)
한편, 컨트롤러(30)는 저장실 온도가 목표온도의 하한값 미만이고, 하한 온도 미만이면, 타미어(37)의 제2타이머를 카운트할 수 있다.(S3)(S5)(S6) 여기서, 제2타이머의 카운트는 저장실 온도가 하한 온도 미만을 유지하는 시간을 타이머(37)가 카운트하는 것을 의미할 수 있다.
냉장고는 타이머(37)을 이용하여 저장실 온도가 하한온도 미만인 시간(이하, 제2시간이라 칭함)을 카운트 할 수 있다.
컨트롤러(30)는 제2시간이 제2설정시간(예를 들면, 5분)의 비교 결과, 제2시간이 제2설정시간 초과이면, 히팅모드(H)를 개시할 수 있다.(S7)(S10)
컨트롤러(30)는 제2시간이 제2설정시간 이하이면, 제1시간을 제1설정시간과 비교하고, 제1시간이 제1설정시간 초과이면, 히팅모드(H)를 개시할 수 있다.(S7)(S9)(S10) 한편, 컨트롤러(30)는 제2시간이 제2설정시간 이하이고 제1시간이 제1설정시간 이하이면, 히팅모드(H)를 개시하지 않고, 저장실 온도를 목표온도 하한값과 비교할 수 있다.(S7)(S9)(S3)
즉, 냉장고는 쿨링모드(E)의 종료 후, 저장실 온도가 목표온도 하한값과 하한 온도를 사이를 유지하는 시간이 제1설정시간(예를 들면, 100분)을 초과하거나 저장실 온도가 하한 온도 미만을 유지하는 시간이 제2설정시간(예를 들면, 5분)을 초과하면, 히팅모드(H)를 개시할 수 있다.
냉장고는 저장실 온도가 목표온도 하한값과 하한 온도를 사이를 유지하는 제1설정시간 동안 대기모드(D)일 수 있고, 저장실 온도가 하한 온도 미만을 유지하는 제2설정시간 동안 대기모드(D)일 수 있다.
히팅모드(H)의 개시시, 컨트롤러(30)는 가열장치(171)을 작동시킬 수 있고, 순환팬(186)) 및/또는 팬(181)을 작동시킬 수 있으며, 저장실의 온도는 가열장치(171)의 작동 및 순환팬(186)) 및/또는 팬(181)의 작동에 의해 점차 상승될 수 있다.
도 18는 본 발명의 실시예에 따른 냉장고가 히팅모드에서 쿨링모드로 전환될 때의 순서도이다.
컨트롤러(30)는 히팅모드(H)의 개시시, 타이머(37)의 제1타이머를 리셋할 수 있다.(S12) 여기서, 제1타이머는 후술하는 제2타이머와 구별하기 위한 용어일 수 있다. 타이머(37)는 제1타이머와 제2타이머를 포함할 수 있다. 제1타이머가 시간을 카운트하기 시작하는 개시 시점과, 제2타이머가 시간을 카운트하기 시작하는 개시 시점은 상이할 수 있다.
컨트롤러(30)는 히팅모드(H)시 가열장치(171)를 작동시킬 수 있고, 순환팬(186)) 및/또는 팬(181)을 작동시킬 수 있다. 여기서, 가열장치(171)의 작동은 가열장치(171)가 주변 온도를 높이도록 가열장치(171)의 온도가 상승되는 것을 의미할 수 있고, 예를 들면, 히터의 작동(온)을 의미할 수 있다.
저장실(W)의 공기는 저장실(W)과 가열장치(171)를 순환하면서 저장실(W)을 가열할 수 있고, 저장실 온도는 가열장치(171)에 의해 점차 높아질 수 있다.
컨트롤러(30)는 저장실 온도가 목표온도의 상한값 초과이면, 가열장치(171)를 정지시킬 수 있다. 여기서, 가열장치(171)의 정지는 가열장치(171)로 인가되는 전류를 차단하는 것을 의미할 수 있고, 예를 들면, 히터의 정지(오프)을 의미할 수 있다.
가열장치(171)의 정지시, 저장실 온도는 부하에 따라 목표온도 상한값 이하로 다시 높아지거나, 목표온도 상한값과 상한 온도 사이를 유지하거나, 상한 온도 보다 낮아질 수 있다.
컨트롤러(30)는 저장실 온도가 목표온도의 상한값 초과이면, 타이머(37)의 제1타이머를 카운트 할 수 있다.(S13)(S14) 여기서, 제1타이머의 카운트는 저장실 온도가 목표온도의 상한값 초과를 유지하는 시간을 타이머(37)가 카운트하는 것을 의미할 수 있다. 냉장고는 타이머(37)을 이용하여 저장실 온도가 목표온도의 상한값 초과인 시간(이하, 제1시간이라 칭함)을 카운트 할 수 있다.
컨트롤러(30)는 저장실 온도를 상한온도와 비교하고, 저장실 온도가 상한온도 초과이면, 타이머(37)의 제2타이머를 리셋할 수 있다.(S15)(S18) 그리고, 컨트롤러(30)는 타이머(37)에 의해 카운트된 제1시간을 제1설정시간(예를 들면, 100분)과 비교하고, 컨트롤러(30)는 타이머(37)에 의해 카운트된 제1시간이 제1설정시간(예를 들면, 100분) 초과이면, 쿨링모드(E)를 개시할 수 있다.(S19)(S1)
한편, 컨트롤러(30)는 제1시간이 제1설정시간(예를 들면, 100분)의 비교 결과, 제1시간이 제1설정시간 이하이면, 쿨링모드(E)를 개시하지 않고, 저장실 온도를 목표온도 상한값과 다시 비교할 수 있다.(S19)(S13)
한편, 컨트롤러(30)는 저장실 온도가 목표온도 상한값 이하이면, 타이머의 제1타이머를 리셋할 수 있다(S13)(S12)
한편, 컨트롤러(30)는 저장실 온도가 목표온도의 상한값 초과이고, 상한 온도 미만이면, 타미어(37)의 제2타이머를 카운트할 수 있다.(S13)(S15)(S16) 여기서, 제2타이머의 카운트는 저장실 온도가 상한 온도 초과를 유지하는 시간을 타이머(37)가 카운트하는 것을 의미할 수 있다.
냉장고는 타이머(37)을 이용하여 저장실 온도가 상한온도 초과인 시간(이하, 제2시간이라 칭함)을 카운트 할 수 있다.
컨트롤러(30)는 제2시간이 제2설정시간(예를 들면, 5분)의 비교 결과, 제2시간이 제2설정시간 초과이면, 쿨링모드(E)를 개시할 수 있다.(S17)(S1)
컨트롤러(30)는 제2시간이 제2설정시간 이하이면, 제1시간을 제1설정시간과 비교하고, 제1시간이 제1설정시간 초과이면, 쿨링모드(E)를 개시할 수 있다.(S17)(S19)(S1) 한편, 컨트롤러(30)는 제2시간이 제2설정시간 이하이고 제1시간이 제1설정시간 이하이면, 쿨링모드(E)를 개시하지 않고, 저장실 온도를 목표온도 상한값과 비교할 수 있다.(S17)(S19)(S13)
즉, 냉장고는 히팅모드(H)의 종료 후, 저장실 온도가 목표온도 상한값과 상한 온도를 사이를 유지하는 시간이 제1설정시간(예를 들면, 100분)을 초과하거나 저장실 온도가 상한 온도 초과를 유지하는 시간이 제2설정시간(예를 들면, 5분)을 초과하면, 쿨링모드(E)를 개시할 수 있다.
냉장고는 저장실 온도가 목표온도 상한값과 상한 온도를 사이를 유지하는 제1설정시간 동안 대기모드(D)일 수 있고, 저장실 온도가 상한 온도 초과를 유지하는 제2설정시간 동안 대기모드(D)일 수 있다.
도 19는 본 발명의 실시예에 따른 저장실의 온도 변화에 따른 히팅모드와 쿨링모드의 예가 도시된 도이다.
히팅모드일 때의 저장실 목표온도인 히팅목표온도(T11)과 쿨링모드일 때의 저장실 목표온도인 쿨링목표온도(T12)는 동일한 온도로 설정되는 것이 일반적이다. 하지만, 히팅모드일 때의 저장실 목표온도인 히팅목표온도(T11)와 모드일 때의 저장실 목표온도인 쿨링목표온도(T12)는 다른 온도로 설정할 수 있다.
바람직하게는, 히팅목표온도(T11)는 쿨링목표온도(T12) 보다 낮게 설정될 수 있다. 예를 들면, 히팅목표온도(T11)는 쿨링목표온도(T12) 보다 0.2℃ 내지 1℃ 만큼 낮게 설정될 수 있다.
히팅목표온도(T11)가 쿨링목표온도(T12)보다 낮게 설정하면, 쿨링모드 종료 후 대기모드에서 히팅모드로 전환된 이후의 온도 상승구간에서의 저장실 온도 만족 조건은 이전 쿨링모드에서의 저장실 온도 만족조건보다 낮아지게 된다. 이로 인해, 저장실이 과열되어 쿨링모드로 전환되어야 하는 온도 역시 낮아지게 되어, 쿨링모드의 전환을 앞당길 수 있다.
예를 들면, 히팅목표온도(T11)와 쿨링목표온도(T12)가 동일하게 10℃로 설정된 경우, 히팅모드에서의 저장실 목표온도의 상한값은 10℃+3℃, 상한온도는 10℃+5℃값으로 설정되고, 상기 13℃ 혹은 15℃를 기준으로, 히팅모드는 대기모드를 거친 후 쿨링모드로 전환된다.
이에 반해, 히팅목표온도(T11)가 7℃이고, 쿨링목표온도(T12)가 10℃일 경우, 히팅모드에서의 저장실 목표온도의 상한값은 7℃+3℃, 상한온도는 7℃+5℃로 설정되어, 상기 10℃ 혹은 12℃를 기준으로, 히팅모드는 대기모드를 거친 후 쿨링모드로 전환된다. 즉 저장실 과열에 의해 저장실 보관 물품의 품질이 저하되는 것을 막고, 쿨링모드로의 전환시점을 더 빨라질 수 있다.
한편, 히팅목표온도(T11)가 쿨링목표온도(T12)보다 낮게 설정되면, 즉 쿨링목표온도(T12)가 히팅목표온도(T11)보다 높게 설정되면, 히팅모드 종료 후 대기모드에서 쿨링모드로 전환된 이후의 온도 하강구간에서의 저장실 만족조건은 이전 히팅모드에서의 저장실 만족조건보다 높아지게 된다. 이로 인해, 저장실이 과냉되어 히팅모드로 전환되어야 하는 온도구간 역시 높아지게 되어, 히팅모드로의 전환을 앞당길 수 있다. 상기 설명한 예시의 반대 경우를 생각할 수 있다. 이로 인해, 저장실 과냉에 의해 저장실 보관 물품의 품질이 저하되는 것을 막고, 히팅모드로의 전환시점을 더 빠르게 할 수 있다
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다.
본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (17)

  1. 저장실이 형성된 캐비닛과,
    상기 저장실을 냉각하는 냉각수단과;
    상기 저장실을 가열하는 가열수단과;
    상기 저장실의 온도를 센싱하는 온도센서와,
    상기 냉각수단과 가열수단을 제어하는 컨트롤러를 포함하고,
    상기 컨트롤러는 복수의 모드를 선택적으로 실시하고,
    상기 복수의 모드는
    상기 냉각수단이 작동되거나 정지되는 쿨링모드(E)와,
    상기 가열수단이 작동되거나 정지되는 히팅모드(H)와,
    상기 냉각수단 및 가열수단이 정지인 대기모드(D)를 포함하고,
    상기 복수의 모드는
    상기 쿨링모드와 대기모드와 히팅모드의 순서로 실시되거나
    상기 히팅모드와 대기모드와 쿨링모드의 순서로 실시되는 냉장고.
  2. 제 1항에 있어서,
    상기 냉각수단은 쿨링모드시,
    상기 온도센서에서 센싱된 저장실 온도가 목표온도 상한값 초과이면 작동되고, 상기 저장실 온도가 목표온도 하한값 미만이면 정지되고,
    상기 가열수단은 히팅모드시,
    상기 저장실 온도가 목표온도 상한값 초과이면 정지되고, 상기 저장실 온도가 목표온도 하한값 미만이면 정지되는 냉장고.
  3. 제 2 항에 있어서,
    상기 대기모드시 상기 저장실 온도는 상기 목표온도 하한값과 하한 온도 사이이거나, 상기 목표온도 상한값과 상한 온도 사이이고,
    상기 하한 온도는 상기 목표온도 하한값 보다 낮은 온도이고,
    상기 상한 온도는 상기 목표온도 상한값 보다 높은 온도인 냉장고.
  4. 제 3 항에 있어서,
    상기 쿨링모드가 종료된 후, 상기 저장실 온도가 상기 목표온도 하한값과 하한 온도 사이인 시간이 제1설정시간 이상이면, 상기 대기모드에서 히팅모드로 전환되는 냉장고.
  5. 제 4 항에 있어서,
    상기 쿨링모드가 종료된 후, 상기 저장실 온도가 상기 하한 온도 미만인 시간이 제2설정시간 이상이면, 상기 대기모드에서 히팅모드로 전환되는 냉장고.
  6. 제 5 항에 있어서,
    상기 제2설정시간은 상기 제1설정시간 보다 짧은 냉장고.
  7. 제 3 항에 있어서,
    상기 히팅모드가 종료된 후, 상기 저장실 온도가 상기 목표온도 상한값과 상한 온도 사이인 시간이 제1설정시간 이상이면, 상기 대기모드에서 쿨링모드로 전환되는 냉장고.
  8. 제 7 항에 있어서,
    상기 히팅모드가 종료된 후, 상기 저장실 온도가 상기 상한 온도 초과인 시간이 제2설정시간 이상이면, 상기 대기모드에서 쿨링모드로 전환되는 냉장고.
  9. 제 8 항에 있어서,
    상기 제2설정시간은 상기 제1설정시간 보다 짧은 냉장고.
  10. 제 1항에 있어서,
    타이머와;
    상기 목표온도를 입력하는 입력부를 더 포함하고,
    상기 컨트롤러는 상기 입력부와, 타이머와, 온도센서에 따라 상기 복수의 모드를 선택적으로 실시하는 냉장고.
  11. 제 1항에 있어서,
    상기 저장실의 공기를 유동시키는 기류형성기구를 포함하고,
    상기 컨트롤러는 상기 쿨링모드시, 상기 기류형성기구를 작동시키는 냉장고.
  12. 제 1 항에 있어서,
    상기 저장실의 공기를 유동시키는 기류형성기구를 포함하고,
    상기 컨트롤러는 상기 대기모드시 상기 기류형성기구를 정지시키는 냉장고.
  13. 제 1 항에 있어서,
    상기 저장실의 공기를 유동시키는 기류형성기구를 포함하고,
    상기 컨트롤러는 상기 히팅모드시, 상기 기류형성기구를 작동시키는 냉장고.
  14. 제 13 항에 있어서,
    상기 캐비닛은 상기 저장실이 형성된 이너 케이스를 포함하고,
    상기 이너 케이스의 내부에는 상기 저장실을 저장공간과 공기유로로 구획하는 이너 가이드가 배치되며,
    상기 기류형성기구는 상기 이너 케이스 또는 이너 가이드에 배치되어 상기 저장공간의 공기를 순환시키는 순환팬을 포함하는 냉장고.
  15. 제 1항에 있어서,
    상기 캐비닛은 상기 저장실이 형성된 이너 케이스를 포함하고,
    상기 이너 케이스에는 상기 저장실을 저장공간과 공기유로로 구획하는 이너 가이드가 배치되며,
    상기 저장공간에는 상기 저장공간을 제1공간과 제2공간으로 구획하는 구획부재가 배치되며,
    상기 가열수단은 상기 제1공간과 제2공간 별로 각각 제공된 냉장고.
  16. 제 15 항에 있어서,
    상기 이너 가이드는 상기 이너 케이스의 리어 바디를 향하고,
    상기 가열수단은 사기 이너 케이스의 사이드 바디에 설치된 사이드 가열장치를 포함하는 냉장고.
  17. 제 8 항에 있어서,
    상기 가열수단는 상기 구획부재에 배치된 이너 가열장치를 포함하는 냉장고.
PCT/KR2019/000424 2018-01-10 2019-01-10 냉장고 WO2019139389A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/961,202 US11578912B2 (en) 2018-01-10 2019-01-10 Refrigerator
EP19739139.4A EP3739282B1 (en) 2018-01-10 2019-01-10 Refrigerator
CN201980007951.2A CN111656112B (zh) 2018-01-10 2019-01-10 冰箱

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0003516 2018-01-10
KR1020180003516A KR102473040B1 (ko) 2018-01-10 2018-01-10 냉장고
KR1020190003587A KR102609597B1 (ko) 2019-01-10 2019-01-10 냉장고
KR10-2019-0003587 2019-01-10

Publications (1)

Publication Number Publication Date
WO2019139389A1 true WO2019139389A1 (ko) 2019-07-18

Family

ID=67218323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000424 WO2019139389A1 (ko) 2018-01-10 2019-01-10 냉장고

Country Status (2)

Country Link
US (1) US11578912B2 (ko)
WO (1) WO2019139389A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102492728B1 (ko) 2018-05-08 2023-01-27 엘지전자 주식회사 냉장고

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611230A (ja) * 1992-06-25 1994-01-21 Sanyo Electric Co Ltd 冷却貯蔵庫
JP2003083658A (ja) * 2001-09-10 2003-03-19 Sanyo Electric Co Ltd 冷却貯蔵庫
JP2003172573A (ja) * 2001-11-27 2003-06-20 Samsung Electronics Co Ltd 多用途室を有する冷蔵庫及びその制御方法
KR100725495B1 (ko) * 2006-01-18 2007-06-08 삼성전자주식회사 보조저장실을 구비한 냉장고 및 그 운전제어방법
KR20140097863A (ko) * 2013-01-30 2014-08-07 엘지전자 주식회사 냉장고 및 그 운전 방법

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19948119A1 (de) 1999-10-06 2001-04-12 Eisfink Robert Detzer Gmbh & C Kühlschrank
JP2001201230A (ja) 2000-01-21 2001-07-27 Gac Kk 貯蔵庫およびその制御方法
JP2001201229A (ja) 2000-01-21 2001-07-27 Gac Kk 貯蔵庫およびその制御方法
JP2002130908A (ja) 2000-10-31 2002-05-09 Sanyo Electric Co Ltd 補助熱源装置を備えた冷蔵庫
US6802369B2 (en) 2001-01-05 2004-10-12 General Electric Company Refrigerator quick chill and thaw control methods and apparatus
US8010484B2 (en) 2003-06-16 2011-08-30 Sap Aktiengesellschaft Generating data subscriptions based on application data
KR100565622B1 (ko) * 2003-09-19 2006-03-30 엘지전자 주식회사 냉장고
ATE468779T1 (de) 2004-04-13 2010-06-15 Whirlpool Co Schubladegerät
JP3938384B2 (ja) 2004-10-28 2007-06-27 シャープ株式会社 冷蔵庫
KR20060067605A (ko) 2004-12-15 2006-06-20 위니아만도 주식회사 업소용 숙성 냉장고
CN1967104A (zh) 2005-11-18 2007-05-23 乐金电子(天津)电器有限公司 葡萄酒柜及其操作方法
JP5149588B2 (ja) 2006-11-20 2013-02-20 サンデン株式会社 冷却加熱装置
KR100889966B1 (ko) 2007-06-28 2009-03-24 엘지전자 주식회사 와인 냉장고
KR20090075057A (ko) 2008-01-03 2009-07-08 주식회사 대우일렉트로닉스 해동실을 구비하는 냉장고 및 해동방법
KR101443638B1 (ko) 2008-05-30 2014-09-23 엘지전자 주식회사 냉장고
US8997517B2 (en) * 2009-02-27 2015-04-07 Electrolux Home Products, Inc. Controlled temperature compartment for refrigerator
IL200680A0 (en) 2009-09-01 2010-05-17 Water Gen Ltd Vehicle integrable water producing device
US10690387B2 (en) * 2010-05-03 2020-06-23 Consejo Superior De Investigaciones Científicas (Csic) System and method for recovery and recycling coolant gas at elevated pressure
CN102331135A (zh) 2011-10-09 2012-01-25 合肥美的荣事达电冰箱有限公司 冰箱
WO2013088541A1 (ja) 2011-12-14 2013-06-20 三菱電機株式会社 ヒートポンプ装置ならびに、それを備えた空気調和機、ヒートポンプ給湯機、冷蔵庫、および冷凍機
JP6296675B2 (ja) 2012-08-28 2018-03-20 東芝ライフスタイル株式会社 冷蔵庫
US20140208783A1 (en) * 2013-01-30 2014-07-31 Lg Electronics Inc. Refrigerator
KR102183719B1 (ko) 2013-04-08 2020-11-27 삼성전자주식회사 냉장고 및 그 제조 방법
WO2014200494A1 (en) 2013-06-13 2014-12-18 Creative Thermal Solutions, Inc. Beverage container cooling system and method
JP6068306B2 (ja) 2013-09-19 2017-01-25 株式会社ニフコ カップホルダ
CN106104182B (zh) 2014-01-07 2020-09-15 三星电子株式会社 冰箱
KR101626651B1 (ko) * 2014-05-16 2016-06-13 엘지전자 주식회사 냉장고
EP2975345B1 (en) 2014-07-16 2019-01-02 LG Electronics Inc. Refrigerator door and manufacturing method of the same
KR101639522B1 (ko) 2015-05-07 2016-07-22 엘지전자 주식회사 터치 센서 어셈블리가 구비된 냉장고 도어
JP6210571B1 (ja) 2016-05-20 2017-10-11 さくら製作所株式会社 ワインセラーおよび温度制御方法
US10712074B2 (en) * 2017-06-30 2020-07-14 Midea Group Co., Ltd. Refrigerator with tandem evaporators
KR102551391B1 (ko) 2017-12-06 2023-07-05 엘지전자 주식회사 냉장고 및 냉장고 도어 아웃 플레이트
KR102432497B1 (ko) 2017-12-19 2022-08-17 엘지전자 주식회사 냉장고
EP3574764B1 (en) * 2018-05-31 2022-12-14 Thermo King Corporation A refrigerated transport container
US11480382B2 (en) * 2019-01-10 2022-10-25 Lg Electronics Inc. Refrigerator
CN109730538A (zh) * 2019-02-01 2019-05-10 东莞理工学院 节能型饮水机即热速冷调温方法及饮水机
CN110732591B (zh) 2019-10-31 2021-01-15 宁波奥克斯厨电制造有限公司 一种冲头结构及冲压方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611230A (ja) * 1992-06-25 1994-01-21 Sanyo Electric Co Ltd 冷却貯蔵庫
JP2003083658A (ja) * 2001-09-10 2003-03-19 Sanyo Electric Co Ltd 冷却貯蔵庫
JP2003172573A (ja) * 2001-11-27 2003-06-20 Samsung Electronics Co Ltd 多用途室を有する冷蔵庫及びその制御方法
KR100725495B1 (ko) * 2006-01-18 2007-06-08 삼성전자주식회사 보조저장실을 구비한 냉장고 및 그 운전제어방법
KR20140097863A (ko) * 2013-01-30 2014-08-07 엘지전자 주식회사 냉장고 및 그 운전 방법

Also Published As

Publication number Publication date
US11578912B2 (en) 2023-02-14
US20210055042A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
WO2017014559A1 (en) Air conditioner and control method thereof
EP3183509A1 (en) Air conditioner and control method thereof
WO2017014504A1 (en) Air conditioner
WO2012008756A2 (en) Refrigerator and cooling apparatus
WO2017014505A1 (en) Air conditioner
WO2011081500A2 (en) Refrigerator
EP3183508A1 (en) Air conditioner
WO2019066508A1 (ko) 수건 관리 장치
WO2010093213A2 (ko) 배기 어셈블리, 이를 갖는 큐어링 및 저온 저장 시스템, 그리고 이를 이용한 큐어링 및 저온 저장 방법
WO2022014841A1 (ko) 공기 조화기 및 그 제어 방법
WO2019139389A1 (ko) 냉장고
WO2020149582A1 (ko) 공기 조화기 및 그 제어 방법
WO2018169328A1 (ko) 냉장고
WO2022103154A1 (ko) 냉장고 및 그의 제어방법
WO2021045415A1 (en) Refrigerator and method of controlling the same
WO2021096289A1 (ko) 냉장고
WO2021177547A1 (ko) 공간 배치형 냉장고 시스템
WO2019066509A1 (ko) 수건 관리 장치
WO2017014478A1 (ko) 공기조화기
WO2020071761A1 (ko) 냉장고
WO2020071741A1 (ko) 냉장고 및 그의 제어방법
WO2021091103A1 (en) Refrigerator and method of controlling the same
WO2023171967A1 (ko) 제빙 장치 및 냉장고
WO2023171961A1 (ko) 제빙 장치 및 냉장고
WO2024135993A1 (ko) 냉장고

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19739139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019739139

Country of ref document: EP

Effective date: 20200810