WO2019139334A1 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
WO2019139334A1
WO2019139334A1 PCT/KR2019/000286 KR2019000286W WO2019139334A1 WO 2019139334 A1 WO2019139334 A1 WO 2019139334A1 KR 2019000286 W KR2019000286 W KR 2019000286W WO 2019139334 A1 WO2019139334 A1 WO 2019139334A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting chip
encapsulant
mount substrate
chip
Prior art date
Application number
PCT/KR2019/000286
Other languages
French (fr)
Korean (ko)
Inventor
이영진
민승구
박기연
Original Assignee
서울바이오시스주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울바이오시스주식회사 filed Critical 서울바이오시스주식회사
Priority to CN201911344520.3A priority Critical patent/CN111048647B/en
Priority to CN201980000924.2A priority patent/CN110249438B/en
Publication of WO2019139334A1 publication Critical patent/WO2019139334A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to a light emitting device.
  • LEDs Light emitting diodes
  • LEDs Light emitting diodes
  • the demand for a light emitting diode is continuously increasing due to various advantages such as a long lifetime, a low power supply, and excellent driving characteristics compared to a filament used in a conventional light emitting device.
  • a light-emitting diode (hereinafter referred to as a light-emitting chip) in a chip unit is packaged into a sealing material serving as a phosphor or a lens and applied to a light-emitting device.
  • Light emitted from the light emitting chip passes through the encapsulant and is emitted to the outside.
  • the sealing material can be cured by ultraviolet rays.
  • the encapsulant is cured by ultraviolet light, a crack may occur in a portion that is physically weak or has a relatively strong stress. When cracks are generated in the sealing material, the reliability of the light emitting device is deteriorated.
  • Another object of the present invention is to provide a light emitting device capable of improving light extraction efficiency.
  • a light emitting device includes a mount substrate, a light emitting chip, and a first encapsulant.
  • the light emitting chip is mounted on the mount substrate and emits ultraviolet rays.
  • the first encapsulation material covers at least a part of the side surface of the light emitting chip. At this time, the outer surface of the first encapsulant is curved.
  • the encapsulant is formed on a portion of the light emitting chip excluding the vertex of the top surface, thereby preventing cracks of the encapsulant from occurring near the vertex of the light emitting chip, thereby improving reliability.
  • the outer surface of the sealing material through which ultraviolet rays of the light emitting chip pass is formed to have a curvature, so that the light extraction efficiency is improved.
  • the light emitting device since the encapsulation material is formed only on the side surface and the upper surface of the light emitting chip, the light emitting device according to the embodiment of the present invention can reduce the cost.
  • FIG 1 and 2 are views showing an example of a light emitting device according to a first embodiment of the present invention.
  • FIG. 3 is a view showing an example of a crack generated in an encapsulant of a conventional light emitting device.
  • 4 and 5 are diagrams showing the light output of the light emitting device according to the structure of the sealing material.
  • FIG. 6 and 7 are views showing an example of a light emitting device according to a second embodiment of the present invention.
  • FIG 8 and 9 are views showing an example of a light emitting device according to a third embodiment of the present invention.
  • FIG. 10 is an exemplary view showing a light emitting device according to a fourth embodiment of the present invention.
  • the light emitting device includes a mount substrate, a light emitting chip and a first encapsulant.
  • the light emitting chip is mounted on the mount substrate and emits ultraviolet rays.
  • the first encapsulation material covers at least a part of the side surface of the light emitting chip. At this time, the outer surface of the first encapsulant is curved.
  • the light emitting chip is flip-chip bonded to the mount substrate.
  • the light emitting device may further include a submount substrate mounted on the mount substrate and electrically connected to the mount substrate. At this time, the light emitting chip is mounted on the submount substrate, and is flip-chip bonded to the submount substrate.
  • the submount substrate can be flip-chip bonded to the mount substrate.
  • the submount substrate may be wire-bonded to the mount substrate.
  • the wire is positioned at a lower height than the upper surface of the light emitting chip.
  • the first encapsulant is formed to cover the wire.
  • the first encapsulant may be formed of a silicone resin or an epoxy resin.
  • the thickness of the first encapsulant at the side of the light emitting chip becomes thicker from the top to the bottom.
  • the light emitted from the side surface of the light emitting chip and incident on the first encapsulant is refracted from the outer surface of the first encapsulant toward the upper direction of the light emitting chip.
  • the light emitting device may further include a second encapsulant covering the upper surface of the light emitting chip.
  • the second encapsulation material is formed so as not to cover the apexes of the upper surface of the light emitting chip.
  • the second encapsulant may be formed of a silicone resin or an epoxy resin.
  • the light emitting device may further include a reflection frame formed on the upper surface of the mount substrate and formed along the outer side of the first encapsulation member.
  • the light emitted from the light emitting chip and directed toward the reflection frame is reflected from the inner wall of the reflection frame toward the upper direction of the light emitting chip.
  • the inner wall of the reflection frame may have a slope.
  • the distance between the inner walls of the reflective frame and the inner walls facing each other increases toward the upper direction from the mount substrate.
  • the upper surface of the reflective frame is positioned higher than the upper surface of the light emitting chip.
  • FIG 1 and 2 are views showing an example of a light emitting device according to a first embodiment of the present invention.
  • FIG. 1 is a perspective view of a light emitting device 100 according to a first embodiment
  • FIG. 2 is a sectional view (A1-A2) of a light emitting device 100 according to the first embodiment.
  • the light emitting device 100 includes a mount substrate 110, a light emitting chip 120, and a first encapsulant 130.
  • the mount substrate 110 is not shown in detail but is made of an insulating material and a conductive material.
  • the conductive material forms a circuit pattern that is electrically connected to the light emitting chip 120.
  • the insulating material is placed between the circuit patterns to isolate the circuit patterns.
  • the mount substrate 110 may be a metal substrate composed of a plurality of lead frames 111 and an insulating material 112 surrounding the lead frames 111. Although not shown in FIG. 1, a part of the lead frame 111 is exposed to the outside through a side surface or a bottom surface of the mount substrate 110. The exposed portion of the lead frame 111 serves to electrically connect to other external components.
  • the mount substrate 110 may be a circuit board composed of at least one insulating layer and a circuit pattern layer.
  • the light emitting chip 120 is mounted on the mount substrate 110.
  • the light emitting chip 120 is a light emitting diode chip that emits ultraviolet rays.
  • the light emitting chip 120 is a structure in which an n-type first conductivity type semiconductor layer, a p-type second conductivity type semiconductor layer, and an active layer are stacked. At this time, the active layer is located between the first conductivity type semiconductor layer and the second conductivity type semiconductor layer.
  • the first electrode connected to the first conductive type semiconductor layer and the second electrode connected to the second conductive type semiconductor layer are both located below the light emitting chip 120. Accordingly, the light emitting chip 120 is mounted on and connected to the mount substrate 110 by a flip chip bonding method.
  • the light emitting chip 120 generates ultraviolet light in the active layer.
  • the generated ultraviolet rays are emitted to the outside through the upper surface and the side surface of the light emitting chip 120.
  • the first encapsulant 130 is formed to surround the side surface of the light emitting chip 120, as shown in Fig.
  • the first encapsulant 130 may be formed of an epoxy resin or a silicone resin.
  • the thickness of the first encapsulant 130 at the side surface of the light emitting chip 120 gradually increases from the upper portion to the lower portion. 1, the bottom surface of the first encapsulant 130 has a rectangular structure.
  • the first encapsulant 130 may be formed to have various structures such as a quadrilateral whose bottom edge has a circular shape, an elliptical shape, or a curved edge.
  • an encapsulating material serving as a lens was formed so as to cover the side surface and the upper surface of the light emitting chip.
  • the encapsulant is discolored or weakly cured by the ultraviolet rays emitted from the light emitting chip, and a cracking phenomenon occurs.
  • stress concentration occurs at a portion of the encapsulant covering the apex portion of the light emitting chip. Stress concentration is a phenomenon where stress concentrates on a local part, such as an angular part of an object or a part where a cross section changes abruptly. Therefore, when the encapsulant is cured by ultraviolet rays, stress concentration is most concentrated near the vertex of the light emitting chip. Accordingly, as shown in FIG.
  • the sealing material 10 is cured by the ultraviolet rays emitted from the light emitting chip 20, and cracks are generated in a portion covering the vertex of the light emitting chip. Since the lower surface of the light emitting chip is not covered with the sealing material but is in contact with the substrate, the portion where the sealing material is most likely to crack is near the vertex of the upper surface of the light emitting chip. The cracks in the encapsulant material occurring near the apex of the light emitting chip are then expanded to the entire encapsulant material.
  • a cavity and a transparent window are used. That is, in the conventional light emitting device of the embodiment, the light emitting chip is mounted on the cavity of the housing, and then the cavity is covered with the transparent window. However, the adhesive force of the adhesive between the housing and the transparent window can be reduced by the heat generation of the light emitting chip. Further, the temperature of the air inside the cavity rises due to the heat generation of the light emitting chip. At this time, a separate air discharge path must be formed in the housing for discharging the high temperature internal air. In addition, quartz, which is a material having a high unit price, is used as a transparent window, and a structure for seating a transparent window is formed in the housing. As described above, the conventional light emitting device for solving the cracking of the sealing material, which is a problem of the embodiment, increases the unit price due to the air discharge path and the transparent window, complicating the process.
  • the first encapsulant 130 does not cover the upper surface of the light emitting chip 120, but is formed to surround only the side surface of the light emitting chip 120. That is, since the first encapsulant 130 does not cover the vertex of the upper surface of the light emitting chip 120, the problem of cracking at the vertex of the light emitting chip 120 does not occur.
  • no separate component is located on the top of the light emitting chip 120. Therefore, the ultraviolet rays emitted through the upper surface of the light emitting chip 120 proceed directly to the upper side of the light emitting device 100.
  • the ultraviolet rays emitted through the side surface of the light emitting chip 120 pass through the first encapsulant 130.
  • the outer surface of the first encapsulant 130 is curved.
  • ultraviolet rays passing through the first encapsulant 130 are refracted from the outer surface of the first encapsulant 130. Accordingly, the traveling direction of the ultraviolet ray passing through the first encapsulant 130 can be determined according to the curvature of the outer surface of the first encapsulant 130.
  • the refracting power for refracting the ultraviolet rays is changed according to the curvature of the outer surface of the first encapsulant 130. [ Therefore, by reducing or increasing the curvature of the outer surface of the first encapsulant 130, the range over which the ultraviolet light is irradiated by the light emitting device 100 and the ultraviolet ray extraction efficiency can be controlled.
  • the curvature of the first encapsulant 130 may be controlled according to the amount and viscosity of the applied material.
  • the light emitting device 100 is formed so as not to surround the entire light emitting chip 120 but to surround the side surface of the light emitting chip 120, Since the ultraviolet rays emitted from the side surface of the light emitting chip 120 can be directed toward the upper direction of the light emitting device 100 by the first encapsulant 130, do.
  • a material of the first encapsulant 130 such as an epoxy resin or a silicone resin may be coated on the side of the light emitting chip 120 or the upper surface of the mount substrate 110 by a dotting method.
  • the volume of the first encapsulant 130 and the curvature of the outer surface of the first encapsulant 130 can be precisely controlled by finely adjusting the amount of the material of the first encapsulant 130 discharged using a piezoelectric element type injector, can do.
  • the material is applied to the upper surface of the mount substrate 110 through the side surface of the light emitting chip 120, or is applied to the upper surface of the mount substrate 110 along the periphery of the light emitting chip 120.
  • the first encapsulant 130 thus coated covers the side surface of the light emitting chip 120 as shown in Fig. 2 by surface tension, but the outer surface has a curvature.
  • the first encapsulant 130 is formed using a dipping method.
  • the method of forming the first encapsulant 130 is not limited thereto.
  • the first encapsulant 130 may be formed in any manner as long as the outer surface of the encapsulant 130 can be formed to have a curvature while covering the side surface of the light emitting chip 120 except the vertex of the top surface.
  • the light emitting device 100 thus formed can solve the cracks of the first encapsulant 130 generated near the upper surface of the light emitting chip 120 without a simple process and no additional cost increase.
  • the light emitting device 100 can prevent the occurrence of cracks in the first encapsulant 130, reduce the material cost, and improve the light extraction efficiency.
  • 4 and 5 are diagrams showing the light output of the light emitting device according to the structure of the sealing material.
  • the first encapsulant 130 of the light emitting device 100 may include a first structure 131, a second structure 132, and a third structure 132, depending on the amount of material applied to the light emitting chip 120 and the mount substrate 110.
  • a third structure 133, and a fourth structure Referring to FIG. ), A third structure 133, and a fourth structure.
  • the amount of material applied to the first encapsulant 130 from the first structure 131 to the third structure 133 decreases. Therefore, the angle? Between the first encapsulant 130 and the upper surface of the mount substrate 110 increases from the first structure 131 to the third structure 133. In the fourth structure, the first encapsulant 130 is omitted in the light emitting device 100.
  • the light output of the light emitting device 100 represents the fourth structure in which the first encapsulant 130 is omitted, as a reference of 100%.
  • the light output is 106% when the first encapsulant 130 is the first structure 131
  • the optical output is 108% when the first encapsulant 130 is the second structure 132, Is 111%.
  • the light emitting device 100 according to the first structure 131 to the third structure 133 of the first encapsulant 130 includes the light emitting device 100 in which the first encapsulant 130 is omitted (fourth structure) The light output was improved.
  • the light output ratio is the order of the third structure 133, the second structure 132, and the first structure 131. That is, the larger the angle? Between the outer surface of the first encapsulant 130 and the upper surface of the mount substrate 110, the higher the light output.
  • the light output of the light emitting device 100 can be adjusted according to the structure of the first encapsulant 130. Further, the structure of the first encapsulant 130 can be adjusted according to the amount of the material of the first encapsulant 130.
  • FIG. 6 and 7 are views showing an example of a light emitting device according to a second embodiment of the present invention.
  • FIG. 6 is a plan view of a light emitting device 200 according to a second embodiment of the present invention
  • FIG. 7 is a sectional view B1-B2 of a light emitting device 200 according to the second embodiment.
  • the light emitting device 200 includes a mount substrate 110, a light emitting chip 120, a first encapsulant 130, and a reflective frame 210.
  • the reflective frame 210 is formed along the outer side of the first encapsulant 130 on the upper surface of the mount substrate 110. That is, the reflection frame 210 is formed along the outer wall of the first encapsulant 130 or along the rim of the mount substrate 110. Accordingly, the light emitting device 200 has a structure in which the light emitting chip 120 and the first encapsulant 130 are mounted on the cavity formed by the inner walls of the reflective frame 210.
  • the light emitting device 200 of this embodiment is formed such that the first encapsulant 130 covers only a part of the side surface of the light emitting chip 120, not the entire side surface.
  • a part of the ultraviolet ray emitted through the side surface of the light emitting chip 120 is incident on the first encapsulant 130 and a part of the other ultraviolet ray is directed to the reflective frame 210.
  • the ultraviolet rays incident on the first encapsulant 130 are directed to the top of the light emitting device 200 by the outer surface of the first encapsulant 130.
  • the ultraviolet rays toward the reflective frame 210 are reflected by the reflective frame 210 and directed toward the upper portion of the light emitting device 200.
  • the light emitting device 200 according to the present embodiment can expect high light extraction efficiency even if the first encapsulant 130 covers only a part of the side surface of the light emitting chip 120 by the reflective frame 210. That is, the light emitting device 200 according to the present embodiment can further reduce the material cost for the first encapsulant 130 than the first embodiment.
  • the reflection frame 210 is higher in the upper surface than the light emitting chip 120. Accordingly, the inner wall of the reflective frame 210 faces the entire side surface of the light emitting chip 120, and is effective for reflecting the ultraviolet rays emitted from the side surface of the light emitting chip 120.
  • the inner wall of the reflective frame 210 is shown as being perpendicular to the upper surface of the mount substrate 110. However, the inclination of the inner wall of the reflection frame 210 may be changed according to the ultraviolet irradiation range of the light emitting device 200, or the like. For example, the inner wall of the reflective frame 210 may be inclined such that the distance between inner walls facing each other increases toward the upper direction from the mount substrate 110.
  • FIG 8 and 9 are views showing an example of a light emitting device according to a third embodiment of the present invention.
  • FIG. 8 is a plan view of a light emitting device 300 according to the third embodiment
  • FIG. 9 is a sectional view (C1-C2) of the light emitting device 300 according to the third embodiment.
  • the light emitting device 300 includes the mount substrate 110, the light emitting chip 120, the first encapsulant 130, and the second encapsulant 310 do.
  • the second encapsulant 310 is positioned on the upper surface of the light emitting chip 120. At this time, the second encapsulant 310 covers the upper surface of the light emitting chip 120, but is formed so as not to cover the vertex of the upper surface of the light emitting chip 120. When the second encapsulant 310 covers the vertex of the light emitting chip 120, the second encapsulant 310 may be cracked due to stress concentration occurring near the vertex of the light emitting chip 120.
  • the second encapsulant 310 is formed on the upper surface of the light emitting chip 120 and is formed on a portion of the light emitting chip 120 excluding the vertex of the light emitting chip 120 in order to prevent the second encapsulant 310 from cracking.
  • the second encapsulant 310 may be formed in a convex lens shape having a convex upper part.
  • the second encapsulant 310 having the same structure as the convex lens can condense ultraviolet rays emitted through the upper surface of the light emitting chip 120 toward the upper center of the light emitting device 300.
  • the second encapsulant 310 may have a concave-convex structure.
  • the second encapsulant 310 having a concavo-convex structure on its surface can prevent the ultraviolet rays from being totally reflected by the second encapsulant 310, thereby improving the light extraction efficiency of the light emitting device 300.
  • the second encapsulant 310 can be formed in various structures according to the effect required for the light emitting device 300.
  • the second encapsulant 310 may be formed of an epoxy resin or a silicone resin.
  • FIG. 10 is an exemplary view showing a light emitting device according to a fourth embodiment of the present invention.
  • the light emitting device 400 includes a mount substrate 110, a submount substrate 410, a light emitting chip 120, and a first encapsulant 130.
  • the submount substrate 410 is mounted on the mount substrate 110 and the light emitting chip 120 is mounted on the submount substrate 410.
  • the submount substrate 410 may be formed on the mounting substrate 110 in accordance with the difference in size between the light emitting chip 120 and the mount substrate 110
  • the submount substrate 410 is connected to the mount substrate 110 and the light emitting chip 120, respectively.
  • the submount substrate 410 thus formed electrically connects the mount substrate 110 and the light emitting chip 120.
  • the submount substrate 410 may be formed of any structure and material as long as it can electrically connect the mount substrate 110 and the light emitting chip 120.
  • the submount substrate 410 may be a printed circuit board, a ceramic substrate on which electrodes are formed, or a substrate including aluminum nitride (AIN) or silicon carbide (SiC) having high thermal conductivity.
  • the submount substrate 410 may be connected to the mount substrate 110 by a flip chip bonding method or by a wire bonding method.
  • a sub-mount substrate 410 is formed with circuit patterns electrically connected to the light emitting chip 120 and the mount substrate 110 on the upper surface thereof. Accordingly, the submount substrate 410 and the light emitting chip 120 are flip-chip bonded. In addition, the submount substrate 410 and the mount substrate 110 are wire-bonded by the wire 420. At this time, the wire 420 is positioned lower than the upper surface of the light emitting chip 120. That is, in this embodiment, the submount substrate 410 and the mount substrate 110 are connected by a wire bonding method as an example.
  • the first encapsulant 130 is formed to cover the side surface of the light emitting chip 120, the side surface of the submount substrate 410, and the wire 420.
  • the first encapsulant 130 thus formed is prevented from cracking at the vertex of the upper surface of the light emitting chip 120 and can protect the wire 420 from external environment such as impact, dust and moisture.
  • the submount substrate 410 is disposed in a lower direction of the light emitting chip 120, and ultraviolet rays emitted from the lower surface of the light emitting chip 120 may be reflected.
  • the first encapsulant 130 is also located on the lower periphery of the light emitting chip 120 by the submount substrate 410 so that the first encapsulant 130 is emitted in the lower direction of the light emitting chip 120 and passes through the first encapsulant 130
  • the ultraviolet light can be refracted toward the upper side of the light emitting device 400.
  • the outer surface having a small curvature can be formed or the detailed outer curvature can be easily adjusted.
  • the light emitting device 400 of the fourth embodiment is different from the second encapsulant (310 of FIGS. 8 and 9) or the reflective frame (FIGS. 6 and 7) that covers the upper surface portion of the light emitting chip 120, 210) may be further formed.
  • the description of the embodiment in which the light emitting device 400 includes the submount substrate 410 and the description of the embodiment in which the submount substrate 410 and the mount substrate 110 are connected by the flip chip bonding method is omitted .
  • the submount substrate 410 connected to the mount substrate 110 by the flip chip bonding method is applicable to the light emitting device 400 of this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

The present invention relates to a light emitting device. A light emitting device, according to one embodiment of the present invention, comprises a mount substrate, a light emitting chip, and a first encapsulant. The light emitting chip is mounted on the mount substrate, and emits ultraviolet rays. In addition, the first encapsulant covers at least a portion of a side surface of the light emitting chip. Here, an outer surface of the first encapsulant is formed over a curved surface.

Description

발광 장치Light emitting device
본 발명은 발광 장치에 관한 것이다.The present invention relates to a light emitting device.
발광 다이오드(LED)는 전류가 가해지면 p, n형 반도체의 접합 부분에서 전자와 정공의 재결합에 의한 다양한 파장의 광을 방출한다. 발광 다이오드는 종래의 발광 장치에 사용되던 필라멘트에 비해 긴 수명, 낮은 전원, 우수한 구동 특성 등의 여러 장점으로 그 수요가 지속해서 증가하고 있다. Light emitting diodes (LEDs) emit light of various wavelengths by recombination of electrons and holes at junctions of p and n type semiconductors when current is applied. The demand for a light emitting diode is continuously increasing due to various advantages such as a long lifetime, a low power supply, and excellent driving characteristics compared to a filament used in a conventional light emitting device.
칩 단위의 발광 다이오드(이하, 발광 칩)는 형광체 또는 렌즈의 역할을 하는 봉지재로 패키징되어 발광 장치에 적용된다. 발광 칩에서 방출된 광은 봉지재를 통과하여 외부로 방출된다. 이때, 발광 칩에서 방출되는 광이 자외선인 경우, 봉지재는 자외선에 의해서 경화될 수 있다. 봉지재가 자외선에 의해 경화되면, 물리적으로 약하거나 응력이 상대적으로 강하게 나타나는 부분에 균열이 발생할 수 있다. 봉지재에 균열이 발생하면, 발광 장치의 신뢰성이 저하되는 문제점이 발생한다.A light-emitting diode (hereinafter referred to as a light-emitting chip) in a chip unit is packaged into a sealing material serving as a phosphor or a lens and applied to a light-emitting device. Light emitted from the light emitting chip passes through the encapsulant and is emitted to the outside. At this time, when the light emitted from the light emitting chip is ultraviolet light, the sealing material can be cured by ultraviolet rays. When the encapsulant is cured by ultraviolet light, a crack may occur in a portion that is physically weak or has a relatively strong stress. When cracks are generated in the sealing material, the reliability of the light emitting device is deteriorated.
본 발명이 해결하고자 하는 과제는 발광 칩의 봉지재의 균열이 발생하는 것을 방지하여 신뢰성이 향상된 발광 장치를 제공하는 데 있다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a light emitting device in which cracking of an encapsulating material of a light emitting chip is prevented and reliability is improved.
본 발명이 해결하고자 하는 다른 과제는 광 추출 효율을 향상할 수 있는 발광 장치를 제공하는 데 있다.Another object of the present invention is to provide a light emitting device capable of improving light extraction efficiency.
본 발명의 일 실시 예에 따른 발광 장치는 마운트 기판, 발광 칩 및 제1 봉지재를 포함한다. 발광 칩은 마운트 기판상에 실장 되며, 자외선을 방출한다. 또한, 제1 봉지재는 발광 칩의 측면의 적어도 일부를 덮는다. 이때, 제1 봉지재의 외면은 곡면으로 이루어진다.A light emitting device according to an embodiment of the present invention includes a mount substrate, a light emitting chip, and a first encapsulant. The light emitting chip is mounted on the mount substrate and emits ultraviolet rays. Further, the first encapsulation material covers at least a part of the side surface of the light emitting chip. At this time, the outer surface of the first encapsulant is curved.
본 발명의 실시 예에 따른 발광 장치는 봉지재를 발광 칩의 상면 꼭짓점을 제외한 부분에 형성함으로써, 발광 칩의 꼭짓점 부근에서 봉지재의 균열이 발생하는 것을 방지하여 신뢰성이 향상된다.In the light emitting device according to the embodiment of the present invention, the encapsulant is formed on a portion of the light emitting chip excluding the vertex of the top surface, thereby preventing cracks of the encapsulant from occurring near the vertex of the light emitting chip, thereby improving reliability.
또한, 본 발명의 실시 예에 따른 발광 장치는 발광 칩의 자외선이 통과하는 봉지재의 외면을 곡률을 갖도록 형성하여 광 추출 효율이 향상된다.Further, in the light emitting device according to the embodiment of the present invention, the outer surface of the sealing material through which ultraviolet rays of the light emitting chip pass is formed to have a curvature, so that the light extraction efficiency is improved.
또한, 본 발명의 실시 예에 따른 발광 장치는 봉지재가 발광 칩의 측면 및 상면의 일부에만 형성되므로, 비용 감소가 가능하다.In addition, since the encapsulation material is formed only on the side surface and the upper surface of the light emitting chip, the light emitting device according to the embodiment of the present invention can reduce the cost.
도 1 및 도 2는 본 발명의 제1 실시 예에 따른 발광 장치를 나타낸 예시도이다.1 and 2 are views showing an example of a light emitting device according to a first embodiment of the present invention.
도 3은 종래의 발광 장치의 봉지재에서 발생하는 균열을 나타낸 예시도이다.FIG. 3 is a view showing an example of a crack generated in an encapsulant of a conventional light emitting device.
도 4 및 도 5는 봉지재의 구조에 따른 발광 장치의 광 출력을 나타낸 도면이다.4 and 5 are diagrams showing the light output of the light emitting device according to the structure of the sealing material.
도 6 및 도 7은 본 발명의 제2 실시 예에 따른 발광 장치를 나타낸 예시도이다.6 and 7 are views showing an example of a light emitting device according to a second embodiment of the present invention.
도 8 및 도 9는 본 발명의 제3 실시 예에 따른 발광 장치를 나타낸 예시도이다.8 and 9 are views showing an example of a light emitting device according to a third embodiment of the present invention.
도 10은 본 발명의 제4 실시 예에 따른 발광 장치를 나타낸 예시도이다.10 is an exemplary view showing a light emitting device according to a fourth embodiment of the present invention.
이하, 첨부한 도면들을 참고하여 본 발명의 실시 예들을 상세히 설명하기로 한다. 다음에 소개되는 실시 예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위한 예시로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시 예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다. 명세서 전체에 걸쳐서 동일한 참고번호들은 동일한 구성요소들을 나타내고 유사한 참고번호는 대응하는 유사한 구성요소를 나타낸다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The following embodiments are provided by way of example so that those skilled in the art can fully understand the spirit of the present invention. Therefore, the present invention is not limited to the embodiments described below, but may be embodied in other forms. In the drawings, the width, length, thickness, etc. of components may be exaggerated for convenience. Like numbers refer to like elements throughout the specification and like reference numerals represent corresponding like elements.
본 발명의 일 실시 예에 따르면, 발광 장치는 마운트 기판, 발광 칩 및 제1 봉지재를 포함한다. 발광 칩은 상기 마운트 기판상에 실장 되며, 자외선을 방출한다. 또한, 제1 봉지재는 상기 발광 칩의 측면의 적어도 일부를 덮는다. 이때, 상기 제1 봉지재의 외면은 곡면으로 이루어진다.According to one embodiment of the present invention, the light emitting device includes a mount substrate, a light emitting chip and a first encapsulant. The light emitting chip is mounted on the mount substrate and emits ultraviolet rays. Further, the first encapsulation material covers at least a part of the side surface of the light emitting chip. At this time, the outer surface of the first encapsulant is curved.
상기 발광 칩은 상기 마운트 기판에 플립칩 본딩된다.The light emitting chip is flip-chip bonded to the mount substrate.
다른 실시 예로, 발광 장치는 상기 마운트 기판에 실장 되어 상기 마운트 기판과 전기적으로 연결되는 서브 마운트 기판을 더 포함할 수 있다. 이때, 상기 발광 칩은 상기 서브 마운트 기판상에 실장 되어, 상기 서브 마운트 기판에 플립칩 본딩된다. In another embodiment, the light emitting device may further include a submount substrate mounted on the mount substrate and electrically connected to the mount substrate. At this time, the light emitting chip is mounted on the submount substrate, and is flip-chip bonded to the submount substrate.
또한, 상기 서브 마운트 기판은 상기 마운트 기판에 플립칩 본딩될 수 있다. 또는, 상기 서브 마운트 기판은 상기 마운트 기판에 와이어로 본딩될 수 있다.In addition, the submount substrate can be flip-chip bonded to the mount substrate. Alternatively, the submount substrate may be wire-bonded to the mount substrate.
상기 와이어는 상기 발광 칩의 상면보다 낮은 높이에 위치한다.The wire is positioned at a lower height than the upper surface of the light emitting chip.
상기 제1 봉지재는 상기 와이어를 덮도록 형성된다.The first encapsulant is formed to cover the wire.
상기 제1 봉지재는 실리콘 수지 또는 에폭시 수지로 형성될 수 있다.The first encapsulant may be formed of a silicone resin or an epoxy resin.
상기 제1 봉지재는 상부에서 하부로 갈수록 상기 발광 칩의 측면에서의 두께가 두꺼워진다.The thickness of the first encapsulant at the side of the light emitting chip becomes thicker from the top to the bottom.
상기 발광 칩의 측면에서 방출되어 상기 제1 봉지재로 입사된 광은 상기 제1 봉지재의 외면에서 상기 발광 칩의 상부 방향을 향하도록 굴절된다.The light emitted from the side surface of the light emitting chip and incident on the first encapsulant is refracted from the outer surface of the first encapsulant toward the upper direction of the light emitting chip.
또 다른 실시 예로 발광 장치는 상기 발광 칩의 상면을 덮는 제2 봉지재를 더 포함할 수 있다.In still another embodiment, the light emitting device may further include a second encapsulant covering the upper surface of the light emitting chip.
상기 제2 봉지재는 상기 발광 칩의 상면의 꼭짓점 덮지 않도록 형성된다.The second encapsulation material is formed so as not to cover the apexes of the upper surface of the light emitting chip.
상기 제2 봉지재는 실리콘 수지 또는 에폭시 수지로 형성될 수 있다.The second encapsulant may be formed of a silicone resin or an epoxy resin.
또 다른 실시 예로, 발광 장치는 상기 마운트 기판의 상면에 형성되어 상기 제1 봉지재의 외측을 따라 형성된 반사 프레임을 더 포함할 수 있다.In still another embodiment, the light emitting device may further include a reflection frame formed on the upper surface of the mount substrate and formed along the outer side of the first encapsulation member.
상기 발광 칩에서 방출되어 상기 반사 프레임을 향하는 광은 상기 반사 프레임의 내벽에서 상기 발광 칩의 상부 방향을 향하도록 반사된다.The light emitted from the light emitting chip and directed toward the reflection frame is reflected from the inner wall of the reflection frame toward the upper direction of the light emitting chip.
상기 반사 프레임의 내벽은 기울기를 가질 수 있다.The inner wall of the reflection frame may have a slope.
예를 들어, 상기 반사 프레임의 내벽은 상기 마운트 기판에서 상부 방향으로 갈수록 서로 마주 보는 내벽 간의 거리가 커진다.For example, the distance between the inner walls of the reflective frame and the inner walls facing each other increases toward the upper direction from the mount substrate.
상기 반사 프레임의 상면은 상기 발광 칩의 상면보다 높게 위치한다.And the upper surface of the reflective frame is positioned higher than the upper surface of the light emitting chip.
이하 도면을 참고하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail with reference to the drawings.
도 1 및 도 2는 본 발명의 제1 실시 예에 따른 발광 장치를 나타낸 예시도이다.1 and 2 are views showing an example of a light emitting device according to a first embodiment of the present invention.
도 1은 제1 실시 예에 따른 발광 장치(100)의 사시도이고, 도 2는 제1 실시 예에 따른 발광 장치(100)의 단면도(A1-A2)이다.FIG. 1 is a perspective view of a light emitting device 100 according to a first embodiment, and FIG. 2 is a sectional view (A1-A2) of a light emitting device 100 according to the first embodiment.
도 1 및 도 2를 참고하면, 제1 실시 예에 따른 발광 장치(100)는 마운트 기판(110), 발광 칩(120) 및 제1 봉지재(130)를 포함한다.1 and 2, the light emitting device 100 according to the first embodiment includes a mount substrate 110, a light emitting chip 120, and a first encapsulant 130.
마운트 기판(110)은 자세하게 도시되어 있지 않지만, 절연 물질과 전도성 물질로 이루어진다. 전도성 물질은 발광 칩(120)과 전기적으로 연결되는 회로 패턴을 이룬다. 또한, 절연 물질은 회로 패턴들 사이에 위치하여 회로 패턴들을 절연시킨다.The mount substrate 110 is not shown in detail but is made of an insulating material and a conductive material. The conductive material forms a circuit pattern that is electrically connected to the light emitting chip 120. Also, the insulating material is placed between the circuit patterns to isolate the circuit patterns.
예를 들어, 마운트 기판(110)은 복수의 리드 프레임(111)과 리드 프레임(111)을 둘러싸는 절연 물질(112)로 이루어진 금속 기판일 수 있다. 도 1에는 미도시 되었지만, 리드 프레임(111)의 일부는 마운트 기판(110)의 측면 또는 하면을 통해 외부로 노출된다. 리드 프레임(111)에서 노출된 부분은 외부 다른 구성부와 전기적으로 연결되는 역할을 한다. 또는 마운트 기판(110)은 적어도 한 층의 절연층과 회로 패턴층으로 이루어진 회로 기판일 수 있다.For example, the mount substrate 110 may be a metal substrate composed of a plurality of lead frames 111 and an insulating material 112 surrounding the lead frames 111. Although not shown in FIG. 1, a part of the lead frame 111 is exposed to the outside through a side surface or a bottom surface of the mount substrate 110. The exposed portion of the lead frame 111 serves to electrically connect to other external components. Or the mount substrate 110 may be a circuit board composed of at least one insulating layer and a circuit pattern layer.
발광 칩(120)은 마운트 기판(110)에 실장 된다. 발광 칩(120)은 자외선을 방출하는 발광 다이오드 칩이다.The light emitting chip 120 is mounted on the mount substrate 110. The light emitting chip 120 is a light emitting diode chip that emits ultraviolet rays.
발광 칩(120)은 n 타입의 제1 도전형 반도체층, p 타입의 제2 도전형 반도체층 및 활성층이 적층된 구조이다. 이때, 활성층은 제1 도전형 반도체층과 제2 도전형 반도체층 사이에 위치한다. 제1 도전형 반도체층과 연결된 제1 전극과 및 제2 도전형 반도체층과 연결된 제2 전극이 모두 발광 칩(120)의 하부에 위치한다. 따라서, 발광 칩(120)은 마운트 기판(110)에 플립칩 본딩(Flip chip bonding) 방식으로 실장 및 연결된다.The light emitting chip 120 is a structure in which an n-type first conductivity type semiconductor layer, a p-type second conductivity type semiconductor layer, and an active layer are stacked. At this time, the active layer is located between the first conductivity type semiconductor layer and the second conductivity type semiconductor layer. The first electrode connected to the first conductive type semiconductor layer and the second electrode connected to the second conductive type semiconductor layer are both located below the light emitting chip 120. Accordingly, the light emitting chip 120 is mounted on and connected to the mount substrate 110 by a flip chip bonding method.
발광 칩(120)은 활성층에서 자외선이 생성된다. 생성된 자외선은 발광 칩(120)의 상면 및 측면을 통해 외부로 방출된다.The light emitting chip 120 generates ultraviolet light in the active layer. The generated ultraviolet rays are emitted to the outside through the upper surface and the side surface of the light emitting chip 120.
제1 봉지재(130)는 도 1에 도시된 바와 같이, 발광 칩(120)의 측면을 둘러싸도록 형성된다. 예를 들어, 제1 봉지재(130)는 에폭시 수지 또는 실리콘 수지로 형성될 수 있다. 제1 봉지재(130)는 상부에서 하부로 갈수록 발광 칩(120)의 측면에서의 두께가 점점 두꺼워진다. 도 1에서는 제1 봉지재(130)의 하면 테두리가 사각형 구조인 것으로 도시되어 있다. 그러나 제1 봉지재(130)는 하면 테두리가 원형, 타원형, 또는 모서리가 곡선인 사각형 등의 다양한 구조를 갖도록 형성될 수 있다.The first encapsulant 130 is formed to surround the side surface of the light emitting chip 120, as shown in Fig. For example, the first encapsulant 130 may be formed of an epoxy resin or a silicone resin. The thickness of the first encapsulant 130 at the side surface of the light emitting chip 120 gradually increases from the upper portion to the lower portion. 1, the bottom surface of the first encapsulant 130 has a rectangular structure. However, the first encapsulant 130 may be formed to have various structures such as a quadrilateral whose bottom edge has a circular shape, an elliptical shape, or a curved edge.
종래의 일 실시 예에서는 렌즈 역할을 하는 봉지재가 발광 칩의 측면 및 상면을 덮도록 형성되었다. 봉지재는 발광 칩에서 방출되는 자외선에 의해서 변색하거나 약하게라도 경화되어 균열 현상이 발생한다. 특히, 봉지재 중에서 발광 칩의 꼭짓점 부분을 덮는 부위에서 응력 집중(Stress concentration)이 발생한다. 응력 집중은 물체의 각진 부분이나 단면이 급격하게 변화하는 부분과 같이 국부적인 부분에 응력이 집중하는 현상이다. 따라서, 봉지재가 자외선에 의해서 경화될 때, 발광 칩의 꼭짓점 부근에 응력 집중이 가장 크게 발생하게 된다. 그에 따라 봉지재(10)는 도 3에 도시된 바와 같이, 발광 칩(20)에서 방출된 자외선에 의해 경화되면서 발광 칩의 꼭짓점을 덮는 부분에서 균열이 발생한다. 발광 칩의 하면은 봉지재에 덮이지 않고 기판에 접하기 때문에, 봉지재의 균열이 가장 크게 발생하는 곳은 발광 칩의 상면의 꼭짓점 부근이다. 발광 칩의 꼭짓점 부근에서 발생한 봉지재의 균열은 이후 봉지재 전체로 확대된다.In an example of the related art, an encapsulating material serving as a lens was formed so as to cover the side surface and the upper surface of the light emitting chip. The encapsulant is discolored or weakly cured by the ultraviolet rays emitted from the light emitting chip, and a cracking phenomenon occurs. Particularly, stress concentration occurs at a portion of the encapsulant covering the apex portion of the light emitting chip. Stress concentration is a phenomenon where stress concentrates on a local part, such as an angular part of an object or a part where a cross section changes abruptly. Therefore, when the encapsulant is cured by ultraviolet rays, stress concentration is most concentrated near the vertex of the light emitting chip. Accordingly, as shown in FIG. 3, the sealing material 10 is cured by the ultraviolet rays emitted from the light emitting chip 20, and cracks are generated in a portion covering the vertex of the light emitting chip. Since the lower surface of the light emitting chip is not covered with the sealing material but is in contact with the substrate, the portion where the sealing material is most likely to crack is near the vertex of the upper surface of the light emitting chip. The cracks in the encapsulant material occurring near the apex of the light emitting chip are then expanded to the entire encapsulant material.
또한, 종래에는 발광 칩의 꼭짓점에서 발생하는 균열을 해결하기 위해서 캐비티가 형성된 하우징과 투명 창을 이용하였다. 즉, 종래의 다른 실시 예의 발광 장치는 하우징의 캐비티에 발광 칩을 실장한 후, 투명 창으로 캐비티를 덮도록 하였다. 그러나 발광 칩의 발열로 하우징과 투명 창 사이의 접착제의 접착력이 감소할 수 있다. 또한, 발광 칩의 발열에 의해 캐비티 내부의 공기 온도가 상승한다. 이때, 높은 온도의 내부 공기를 배출하기 위한 하우징에 별도의 공기 배출로를 형성해야 한다. 또한, 투명 창으로는 단가가 높은 재질인 쿼츠가 사용되며, 하우징에는 투명 창을 안착시키기 위한 구조가 형성되어야 한다. 이와 같이 종래의 일 실시 예의 문제점인 봉지재의 균열을 해결하기 위한 종래의 다른 실시 예의 발광 장치는 공기 배출로 및 투명 창에 의한 단가가 상승하며, 공정이 복잡하다.In addition, in order to solve the crack generated at the corner of the light emitting chip, a cavity and a transparent window are used. That is, in the conventional light emitting device of the embodiment, the light emitting chip is mounted on the cavity of the housing, and then the cavity is covered with the transparent window. However, the adhesive force of the adhesive between the housing and the transparent window can be reduced by the heat generation of the light emitting chip. Further, the temperature of the air inside the cavity rises due to the heat generation of the light emitting chip. At this time, a separate air discharge path must be formed in the housing for discharging the high temperature internal air. In addition, quartz, which is a material having a high unit price, is used as a transparent window, and a structure for seating a transparent window is formed in the housing. As described above, the conventional light emitting device for solving the cracking of the sealing material, which is a problem of the embodiment, increases the unit price due to the air discharge path and the transparent window, complicating the process.
본 실시 예에서는 제1 봉지재(130)가 발광 칩(120)의 상면은 덮지 않으며, 발광 칩(120)의 측면만을 감싸도록 형성된다. 즉, 제1 봉지재(130)는 발광 칩(120)의 상면의 꼭짓점을 감싸지는 않으므로, 발광 칩(120)의 꼭짓점에서의 균열 문제가 발생하지 않는다.In this embodiment, the first encapsulant 130 does not cover the upper surface of the light emitting chip 120, but is formed to surround only the side surface of the light emitting chip 120. That is, since the first encapsulant 130 does not cover the vertex of the upper surface of the light emitting chip 120, the problem of cracking at the vertex of the light emitting chip 120 does not occur.
본 발명의 실시 예에서, 발광 칩(120)의 상부에는 별도의 구성부가 위치하지 않는다. 따라서, 발광 칩(120)의 상면을 통해서 방출되는 자외선은 그대로 발광 장치(100)의 상부 방향으로 진행하게 된다.In the embodiment of the present invention, no separate component is located on the top of the light emitting chip 120. Therefore, the ultraviolet rays emitted through the upper surface of the light emitting chip 120 proceed directly to the upper side of the light emitting device 100.
발광 칩(120)의 측면을 통해서 방출된 자외선은 제1 봉지재(130)를 통과하게 된다. 본 발명의 실시 예에 따르면, 제1 봉지재(130)의 외면은 곡면으로 이루어진다. 이때, 제1 봉지재(130)를 통과하는 자외선은 제1 봉지재(130)의 외면에서 굴절된다. 따라서, 제1 봉지재(130)의 외면의 곡률에 따라서 제1 봉지재(130)를 통과하는 자외선의 진행 방향을 결정할 수 있다. The ultraviolet rays emitted through the side surface of the light emitting chip 120 pass through the first encapsulant 130. According to the embodiment of the present invention, the outer surface of the first encapsulant 130 is curved. At this time, ultraviolet rays passing through the first encapsulant 130 are refracted from the outer surface of the first encapsulant 130. Accordingly, the traveling direction of the ultraviolet ray passing through the first encapsulant 130 can be determined according to the curvature of the outer surface of the first encapsulant 130.
제1 봉지재(130)의 외면의 곡률에 따라 자외선을 굴절시키는 굴절력이 변경된다. 따라서, 제1 봉지재(130)의 외면의 곡률을 작게 하거나 크게 함으로써, 발광 장치(100)의 자외선이 조사되는 범위 및 자외선 추출 효율을 제어할 수 있다. The refracting power for refracting the ultraviolet rays is changed according to the curvature of the outer surface of the first encapsulant 130. [ Therefore, by reducing or increasing the curvature of the outer surface of the first encapsulant 130, the range over which the ultraviolet light is irradiated by the light emitting device 100 and the ultraviolet ray extraction efficiency can be controlled.
제1 봉지재(130)를 형성할 때, 도포되는 재료 양 및 점도에 따라 제1 봉지재(130)의 곡률을 제어할 수 있다. When forming the first encapsulant 130, the curvature of the first encapsulant 130 may be controlled according to the amount and viscosity of the applied material.
본 발명의 실시 예에 따른 발광 장치(100)는 발광 칩(120) 전체를 둘러싸도록 형성되는 것이 아니라 발광 칩(120)의 측면을 둘러싸도록 형성되기 때문에 재료비가 절감된다. 또한, 발광 장치(100)는 제1 봉지재(130)에 의해서, 발광 칩(120)의 측면에서 방출된 자외선도 발광 장치(100)의 상부 방향을 향하도록 할 수 있으므로, 광 추출 효율이 향상된다.The light emitting device 100 according to the embodiment of the present invention is formed so as not to surround the entire light emitting chip 120 but to surround the side surface of the light emitting chip 120, Since the ultraviolet rays emitted from the side surface of the light emitting chip 120 can be directed toward the upper direction of the light emitting device 100 by the first encapsulant 130, do.
에폭시 수지 또는 실리콘 수지와 같은 제1 봉지재(130)의 재료를 발광 칩(120)의 측면 또는 마운트 기판(110)의 상면에 도팅(dotting) 방식으로 도포할 수 있다. 예를 들어, 압전소자 방식의 인젝터(injector)를 이용하여 배출되는 제1 봉지재(130)의 재료량을 세밀하게 조절함으로써, 제1 봉지재(130)의 부피, 외면의 곡률 등을 정밀하게 제어할 수 있다.A material of the first encapsulant 130 such as an epoxy resin or a silicone resin may be coated on the side of the light emitting chip 120 or the upper surface of the mount substrate 110 by a dotting method. The volume of the first encapsulant 130 and the curvature of the outer surface of the first encapsulant 130 can be precisely controlled by finely adjusting the amount of the material of the first encapsulant 130 discharged using a piezoelectric element type injector, can do.
이때, 재료는 발광 칩(120)의 측면을 통해 마운트 기판(110)의 상면으로 흘러내리도록 도포되거나, 발광 칩(120)의 주변을 따라 마운트 기판(110)의 상면에 도포된다. 이와 같이 도포된 제1 봉지재(130)는 표면 장력에 의해서 도 2에 도시된 바와 같이 발광 칩(120)의 측면의 덮지만, 외면이 곡률을 갖는 구조가 된다.At this time, the material is applied to the upper surface of the mount substrate 110 through the side surface of the light emitting chip 120, or is applied to the upper surface of the mount substrate 110 along the periphery of the light emitting chip 120. The first encapsulant 130 thus coated covers the side surface of the light emitting chip 120 as shown in Fig. 2 by surface tension, but the outer surface has a curvature.
본 실시 예에서는 제1 봉지재(130)가 도팅 방식을 이용하여 형성되는 것으로 설명하였다. 그러나 제1 봉지재(130)를 형성하는 방식은 이에 한정되는 것은 아니다. 제1 봉지재(130)는 발광 칩(120)의 상면 꼭짓점을 제외하고 측면을 덮으면서, 외면이 곡률을 갖도록 형성될 수 있다면 어떠한 방식으로도 형성될 수 있다.In the present embodiment, the first encapsulant 130 is formed using a dipping method. However, the method of forming the first encapsulant 130 is not limited thereto. The first encapsulant 130 may be formed in any manner as long as the outer surface of the encapsulant 130 can be formed to have a curvature while covering the side surface of the light emitting chip 120 except the vertex of the top surface.
이와 같이 형성된 발광 장치(100)는 단순한 공정 및 별도의 단가 상승 없이도 발광 칩(120)의 상면 꼭짓점 부근에서 발생하는 제1 봉지재(130)의 균열을 해결할 수 있다. 또한, 발광 장치(100)는 제1 봉지재(130)의 균열 발생을 방지하는 것과 동시에 재료비를 절감하면서 광 추출 효율도 향상될 수 있다.The light emitting device 100 thus formed can solve the cracks of the first encapsulant 130 generated near the upper surface of the light emitting chip 120 without a simple process and no additional cost increase. In addition, the light emitting device 100 can prevent the occurrence of cracks in the first encapsulant 130, reduce the material cost, and improve the light extraction efficiency.
이후 실시 예에 대한 설명 시, 이전 실시 예와 동일한 구성에 대한 설명은 생략하도록 한다. 따라서, 생략된 설명은 이전 실시 예의 발광 장치에 대한 설명을 참고하도록 한다.In the following description of the embodiment, description of the same configuration as the previous embodiment will be omitted. Therefore, the omitted description refers to the description of the light emitting device of the previous embodiment.
도 4 및 도 5는 봉지재의 구조에 따른 발광 장치의 광 출력을 나타낸 도면이다.4 and 5 are diagrams showing the light output of the light emitting device according to the structure of the sealing material.
도 4를 참고하면, 발광 장치(100)의 제1 봉지재(130)는 발광 칩(120) 및 마운트 기판(110)에 도포되는 재료 양에 따라 제1 구조(131), 제2 구조(132), 제3 구조(133) 및 제4 구조로 형성된다. 제1 봉지재(130)는 제1 구조(131)에서 제3 구조(133)로 갈수록 도포된 재료의 양이 적어진다. 따라서, 제1 봉지재(130)는 제1 구조(131)에서 제3 구조(133)로 갈수록 마운트 기판(110)의 상면과의 각도(θ)가 커진다. 그리고 제4 구조는 발광 장치(100)에서 제1 봉지재(130)가 생략된 것이다.4, the first encapsulant 130 of the light emitting device 100 may include a first structure 131, a second structure 132, and a third structure 132, depending on the amount of material applied to the light emitting chip 120 and the mount substrate 110. Referring to FIG. ), A third structure 133, and a fourth structure. The amount of material applied to the first encapsulant 130 from the first structure 131 to the third structure 133 decreases. Therefore, the angle? Between the first encapsulant 130 and the upper surface of the mount substrate 110 increases from the first structure 131 to the third structure 133. In the fourth structure, the first encapsulant 130 is omitted in the light emitting device 100.
도 5는 도 4에 도시된 각각의 구조의 봉지재의 광 출력 결과를 비율로 나타낸 그래프이다. 도 5를 참고하면, 발광 장치(100)의 광 출력이 제1 봉지재(130)가 생략된 제4 구조를 기준 100%로 나타낸다. 이때, 제1 봉지재(130)가 제1 구조(131)일 때 광 출력은 106%이고, 제2 구조(132)일 때 광 출력은 108%이며, 제3 구조(133)일 때 광 출력은 111%이다. 제1 봉지재(130)의 제1 구조(131) 내지 제3 구조(133)에 따른 발광 장치(100)는 모두 제1 봉지재(130)가 생략(제4 구조)된 발광 장치(100)보다 모두 광 출력이 향상되었다. 또한, 광 출력 비율은 제3 구조(133), 제2 구조(132) 및 제1 구조(131) 순서이다. 즉, 제1 봉지재(130)의 외면과 마운트 기판(110)의 상면 간의 각도(θ)가 클수록 광 출력이 높다.5 is a graph showing the ratio of the light output of the encapsulant of each structure shown in Fig. Referring to FIG. 5, the light output of the light emitting device 100 represents the fourth structure in which the first encapsulant 130 is omitted, as a reference of 100%. In this case, the light output is 106% when the first encapsulant 130 is the first structure 131, the optical output is 108% when the first encapsulant 130 is the second structure 132, Is 111%. The light emitting device 100 according to the first structure 131 to the third structure 133 of the first encapsulant 130 includes the light emitting device 100 in which the first encapsulant 130 is omitted (fourth structure) The light output was improved. In addition, the light output ratio is the order of the third structure 133, the second structure 132, and the first structure 131. That is, the larger the angle? Between the outer surface of the first encapsulant 130 and the upper surface of the mount substrate 110, the higher the light output.
이와 같이, 발광 장치(100)의 광 출력은 제1 봉지재(130)의 구조에 따라 조절될 수 있다. 또한, 제1 봉지재(130)의 구조는 제1 봉지재(130)의 재료의 양에 따라 조절할 수 있다.Thus, the light output of the light emitting device 100 can be adjusted according to the structure of the first encapsulant 130. Further, the structure of the first encapsulant 130 can be adjusted according to the amount of the material of the first encapsulant 130.
도 6 및 도 7은 본 발명의 제2 실시 예에 따른 발광 장치를 나타낸 예시도이다.6 and 7 are views showing an example of a light emitting device according to a second embodiment of the present invention.
도 6은 본 발명의 제2 실시 예에 따른 발광 장치(200)의 평면도이고, 도 7은 제2 실시 예에 따른 발광 장치(200)의 단면도(B1-B2)이다.FIG. 6 is a plan view of a light emitting device 200 according to a second embodiment of the present invention, and FIG. 7 is a sectional view B1-B2 of a light emitting device 200 according to the second embodiment.
도 6을 참고하면, 제2 실시 예에 따른 발광 장치(200)는 마운트 기판(110), 발광 칩(120), 제1 봉지재(130) 및 반사 프레임(210)을 포함한다.Referring to FIG. 6, the light emitting device 200 according to the second embodiment includes a mount substrate 110, a light emitting chip 120, a first encapsulant 130, and a reflective frame 210.
반사 프레임(210)은 마운트 기판(110)의 상면에서 제1 봉지재(130)의 외측을 따라 형성된다. 즉, 반사 프레임(210)은 제1 봉지재(130)의 외벽 또는 마운트 기판(110)의 테두리를 따라 형성된다. 이에 따라, 발광 장치(200)는 발광 칩(120) 및 제1 봉지재(130)가 반사 프레임(210)의 내벽으로 이루어진 캐비티에 실장된 구조가 된다.The reflective frame 210 is formed along the outer side of the first encapsulant 130 on the upper surface of the mount substrate 110. That is, the reflection frame 210 is formed along the outer wall of the first encapsulant 130 or along the rim of the mount substrate 110. Accordingly, the light emitting device 200 has a structure in which the light emitting chip 120 and the first encapsulant 130 are mounted on the cavity formed by the inner walls of the reflective frame 210.
또한, 본 실시 예의 발광 장치(200)는 제1 봉지재(130)가 발광 칩(120)의 측면 전체가 아닌 측면 일부만을 덮도록 형성된다.Further, the light emitting device 200 of this embodiment is formed such that the first encapsulant 130 covers only a part of the side surface of the light emitting chip 120, not the entire side surface.
발광 칩(120)의 측면을 통해 방출된 자외선의 일부는 제1 봉지재(130)에 입사되고, 다른 자외선의 일부는 반사 프레임(210)을 향한다. 제1 봉지재(130)에 입사된 자외선은 제1 봉지재(130)의 외면에 의해서 발광 장치(200)의 상부를 향하게 된다. 또한, 반사 프레임(210)을 향한 자외선은 반사 프레임(210)에 반사되어 발광 장치(200)의 상부를 향하게 된다.A part of the ultraviolet ray emitted through the side surface of the light emitting chip 120 is incident on the first encapsulant 130 and a part of the other ultraviolet ray is directed to the reflective frame 210. The ultraviolet rays incident on the first encapsulant 130 are directed to the top of the light emitting device 200 by the outer surface of the first encapsulant 130. [ The ultraviolet rays toward the reflective frame 210 are reflected by the reflective frame 210 and directed toward the upper portion of the light emitting device 200.
이와 같이, 본 실시 예에 따른 발광 장치(200)는 반사 프레임(210)에 의해서 제1 봉지재(130)가 발광 칩(120)의 측면 일부만 덮도록 형성되어도 높은 광 추출 효율을 기대할 수 있다. 즉, 본 실시 예에 따른 발광 장치(200)는 제1 봉지재(130)에 대한 재료비를 제1 실시 예보다 더 절감할 수 있다.As described above, the light emitting device 200 according to the present embodiment can expect high light extraction efficiency even if the first encapsulant 130 covers only a part of the side surface of the light emitting chip 120 by the reflective frame 210. That is, the light emitting device 200 according to the present embodiment can further reduce the material cost for the first encapsulant 130 than the first embodiment.
또한, 반사 프레임(210)은 발광 칩(120)보다 상면이 높다. 따라서, 반사 프레임(210)의 내벽이 발광 칩(120)의 측면 전체를 마주하게 되어, 발광 칩(120)의 측면에서 방출된 자외선을 반사하는데 효율적이다. 도 7에서는 반사 프레임(210)의 내벽이 마운트 기판(110)의 상면으로부터 수직인 것으로 도시하고 있다. 그러나 반사 프레임(210)의 내벽의 기울기는 발광 장치(200)의 자외선 조사 범위 등에 따라 변경될 수 있다. 예를 들어, 반사 프레임(210)의 내벽은 마운트 기판(110)에서 상부 방향으로 갈수록 서로 마주 보는 내벽 간의 거리가 커지도록 기울어진 구조일 수 있다.Further, the reflection frame 210 is higher in the upper surface than the light emitting chip 120. Accordingly, the inner wall of the reflective frame 210 faces the entire side surface of the light emitting chip 120, and is effective for reflecting the ultraviolet rays emitted from the side surface of the light emitting chip 120. In FIG. 7, the inner wall of the reflective frame 210 is shown as being perpendicular to the upper surface of the mount substrate 110. However, the inclination of the inner wall of the reflection frame 210 may be changed according to the ultraviolet irradiation range of the light emitting device 200, or the like. For example, the inner wall of the reflective frame 210 may be inclined such that the distance between inner walls facing each other increases toward the upper direction from the mount substrate 110.
도 8 및 도 9는 본 발명의 제3 실시 예에 따른 발광 장치를 나타낸 예시도이다.8 and 9 are views showing an example of a light emitting device according to a third embodiment of the present invention.
도 8은 제3 실시 예에 따른 발광 장치(300)의 평면도이고, 도 9는 제3 실시 예에 따른 발광 장치(300)의 단면도(C1-C2)이다.FIG. 8 is a plan view of a light emitting device 300 according to the third embodiment, and FIG. 9 is a sectional view (C1-C2) of the light emitting device 300 according to the third embodiment.
도 8 및 도 9를 참고하면, 제3 실시 예에 따른 발광 장치(300)는 마운트 기판(110), 발광 칩(120), 제1 봉지재(130) 및 제2 봉지재(310)를 포함한다.8 and 9, the light emitting device 300 according to the third embodiment includes the mount substrate 110, the light emitting chip 120, the first encapsulant 130, and the second encapsulant 310 do.
제3 실시 예를 따르면, 제2 봉지재(310)는 발광 칩(120)의 상면에 위치한다. 이때, 제2 봉지재(310)는 발광 칩(120)의 상면을 덮지만, 발광 칩(120) 상면의 꼭짓점을 덮지 않도록 형성된다. 제2 봉지재(310)가 발광 칩(120)의 꼭짓점을 덮을 경우, 발광 칩(120)의 꼭짓점 부근에서 발생하는 응력 집중에 의해서 제2 봉지재(310)에 균열이 발생할 수 있다. 따라서, 제2 봉지재(310)의 균열을 방지하기 위해서 제2 봉지재(310)는 발광 칩(120)의 상면에 형성되되, 발광 칩(120)의 꼭짓점을 제외한 부분에 형성된다.According to the third embodiment, the second encapsulant 310 is positioned on the upper surface of the light emitting chip 120. At this time, the second encapsulant 310 covers the upper surface of the light emitting chip 120, but is formed so as not to cover the vertex of the upper surface of the light emitting chip 120. When the second encapsulant 310 covers the vertex of the light emitting chip 120, the second encapsulant 310 may be cracked due to stress concentration occurring near the vertex of the light emitting chip 120. The second encapsulant 310 is formed on the upper surface of the light emitting chip 120 and is formed on a portion of the light emitting chip 120 excluding the vertex of the light emitting chip 120 in order to prevent the second encapsulant 310 from cracking.
예를 들어, 제2 봉지재(310)는 상부가 볼록한 볼록 렌즈 형상으로 형성될 수 있다. 볼록 렌즈와 같은 구조로 형성된 제2 봉지재(310)는 발광 칩(120)의 상면을 통해서 방출되는 자외선을 발광 장치(300)의 상부 중심 방향으로 집광할 수 있다. 또는 제2 봉지재(310)는 표면이 요철 구조로 형성될 수 있다. 표면에 요철 구조를 갖는 제2 봉지재(310)는 제2 봉지재(310)에 의해서 자외선이 전반사되는 것을 방지하여 발광 장치(300)의 광 추출 효율을 향상 시킬 수 있다.For example, the second encapsulant 310 may be formed in a convex lens shape having a convex upper part. The second encapsulant 310 having the same structure as the convex lens can condense ultraviolet rays emitted through the upper surface of the light emitting chip 120 toward the upper center of the light emitting device 300. Or the second encapsulant 310 may have a concave-convex structure. The second encapsulant 310 having a concavo-convex structure on its surface can prevent the ultraviolet rays from being totally reflected by the second encapsulant 310, thereby improving the light extraction efficiency of the light emitting device 300.
이와 같이, 제2 봉지재(310)는 발광 장치(300)에 필요한 효과에 따라 다양한 구조로 형성될 수 있다.As described above, the second encapsulant 310 can be formed in various structures according to the effect required for the light emitting device 300.
예를 들어, 제2 봉지재(310)는 에폭시 수지 또는 실리콘 수지로 형성될 수 있다.For example, the second encapsulant 310 may be formed of an epoxy resin or a silicone resin.
도 10은 본 발명의 제4 실시 예에 따른 발광 장치를 나타낸 예시도이다.10 is an exemplary view showing a light emitting device according to a fourth embodiment of the present invention.
도 10을 참고하면, 제4 실시 예에 따른 발광 장치(400)는 마운트 기판(110), 서브 마운트 기판(410), 발광 칩(120) 및 제1 봉지재(130)를 포함한다.Referring to FIG. 10, the light emitting device 400 according to the fourth embodiment includes a mount substrate 110, a submount substrate 410, a light emitting chip 120, and a first encapsulant 130.
서브 마운트 기판(410)은 마운트 기판(110) 상부에 실장 되며, 서브 마운트 기판(410) 상부에는 발광 칩(120)이 실장 된다. The submount substrate 410 is mounted on the mount substrate 110 and the light emitting chip 120 is mounted on the submount substrate 410.
서브 마운트 기판(410)은 발광 칩(120)과 마운트 기판(110) 간의 규격 차이에 따라 The submount substrate 410 may be formed on the mounting substrate 110 in accordance with the difference in size between the light emitting chip 120 and the mount substrate 110
서브 마운트 기판(410)은 마운트 기판(110) 및 발광 칩(120)과 각각 연결된다. 이와 같이 형성된 서브 마운트 기판(410)은 마운트 기판(110)과 발광 칩(120)을 전기적으로 연결한다. 서브 마운트 기판(410)은 마운트 기판(110)과 발광 칩(120)을 전기적으로 연결할 수 있다면 어떠한 구조 및 재질로도 형성될 수 있다. 예를 들어, 서브 마운트 기판(410)은 인쇄회로기판, 전극이 형성된 세라믹 기판 또는 열전도율이 높은 질화알루미늄(AIN)이나 실리콘카바이드(SiC)를 포함하는 기판일 수 있다.The submount substrate 410 is connected to the mount substrate 110 and the light emitting chip 120, respectively. The submount substrate 410 thus formed electrically connects the mount substrate 110 and the light emitting chip 120. The submount substrate 410 may be formed of any structure and material as long as it can electrically connect the mount substrate 110 and the light emitting chip 120. For example, the submount substrate 410 may be a printed circuit board, a ceramic substrate on which electrodes are formed, or a substrate including aluminum nitride (AIN) or silicon carbide (SiC) having high thermal conductivity.
서브 마운트 기판(410)은 마운트 기판(110)과 플립칩 본딩 방식으로 연결되거나 와이어 본딩 방식으로 연결될 수 있다.The submount substrate 410 may be connected to the mount substrate 110 by a flip chip bonding method or by a wire bonding method.
도 10을 참고하면, 서브 마운트 기판(410)은 상면에 발광 칩(120) 및 마운트 기판(110)과 전기적으로 연결되는 회로 패턴이 형성된다. 이에 따라 서브 마운트 기판(410)과 발광 칩(120)은 플립칩 본딩된다. 또한, 서브 마운트 기판(410)과 마운트 기판(110)은 와이어(420)에 의한 와이어 본딩(Wire bonding)이 된다. 이때, 와이어(420)는 발광 칩(120)의 상면보다 낮은 높이에 위치한다. 즉, 본 실시 예에서는 서브 마운트 기판(410)과 마운트 기판(110)이 와이어 본딩 방식으로 연결되는 것을 예시로 설명한다. Referring to FIG. 10, a sub-mount substrate 410 is formed with circuit patterns electrically connected to the light emitting chip 120 and the mount substrate 110 on the upper surface thereof. Accordingly, the submount substrate 410 and the light emitting chip 120 are flip-chip bonded. In addition, the submount substrate 410 and the mount substrate 110 are wire-bonded by the wire 420. At this time, the wire 420 is positioned lower than the upper surface of the light emitting chip 120. That is, in this embodiment, the submount substrate 410 and the mount substrate 110 are connected by a wire bonding method as an example.
제1 봉지재(130)는 발광 칩(120)의 측면, 서브 마운트 기판(410)의 측면 및 와이어(420)를 덮도록 형성된다. 이와 같이 형성된 제1 봉지재(130)는 발광 칩(120)의 상면 꼭짓점에서 균열이 발생하는 것을 방지하며, 와이어(420)를 충격, 먼지, 수분 등의 외부 환경으로부터 보호할 수 있다.The first encapsulant 130 is formed to cover the side surface of the light emitting chip 120, the side surface of the submount substrate 410, and the wire 420. The first encapsulant 130 thus formed is prevented from cracking at the vertex of the upper surface of the light emitting chip 120 and can protect the wire 420 from external environment such as impact, dust and moisture.
또한, 본 실시 예의 발광 장치(400)는 발광 칩(120)의 하부 방향에 서브 마운트 기판(410)이 배치되어, 발광 칩(120)의 하면에서 방출되는 자외선이 반사될 수 있다. 또는 서브 마운트 기판(410)에 의해서 제1 봉지재(130)가 발광 칩(120)의 하부 주변에도 위치하므로, 발광 칩(120)의 하부 방향으로 방출되어 제1 봉지재(130)를 통과하는 자외선을 발광 장치(400)의 상부 방향으로 향하도록 굴절시킬 수 있다.In the light emitting device 400 of the present embodiment, the submount substrate 410 is disposed in a lower direction of the light emitting chip 120, and ultraviolet rays emitted from the lower surface of the light emitting chip 120 may be reflected. The first encapsulant 130 is also located on the lower periphery of the light emitting chip 120 by the submount substrate 410 so that the first encapsulant 130 is emitted in the lower direction of the light emitting chip 120 and passes through the first encapsulant 130 The ultraviolet light can be refracted toward the upper side of the light emitting device 400.
또한, 서브 마운트 기판(410)에 의해서 제1 봉지재(130)의 높이가 높아지고 외면이 길이가 길어지므로, 작은 곡률을 갖는 외면을 형성하거나, 세밀한 외면 곡률 조정이 용이하다.Further, since the height of the first encapsulation material 130 is increased by the submount substrate 410 and the outer surface is long, the outer surface having a small curvature can be formed or the detailed outer curvature can be easily adjusted.
미도시 되었지만, 제4 실시 예의 발광 장치(400)는 발광 칩(120)의 상면 꼭짓점을 제외한 상면 부분을 덮는 제2 봉지재(도 8 및 도 9의 310) 또는 반사 프레임(도 6 및 도 7의 210)이 더 형성될 수 있다.The light emitting device 400 of the fourth embodiment is different from the second encapsulant (310 of FIGS. 8 and 9) or the reflective frame (FIGS. 6 and 7) that covers the upper surface portion of the light emitting chip 120, 210) may be further formed.
발광 장치(400)가 서브 마운트 기판(410)을 포함하는 실시 예를 설명하면서, 서브 마운트 기판(410)과 마운트 기판(110)이 플립칩 본딩 방식으로 연결되는 실시 예에 관해서는 설명을 생략하였다. 그러나 본 실시 예의 발광 장치(400)에는 마운트 기판(110)과 플립칩 본딩 방식으로 연결되는 서브 마운트 기판(410)이 적용 가능하다는 것은 자명한 사항이다.The description of the embodiment in which the light emitting device 400 includes the submount substrate 410 and the description of the embodiment in which the submount substrate 410 and the mount substrate 110 are connected by the flip chip bonding method is omitted . However, it is obvious that the submount substrate 410 connected to the mount substrate 110 by the flip chip bonding method is applicable to the light emitting device 400 of this embodiment.
위에서 설명한 바와 같이 본 발명에 대한 구체적인 설명은 첨부된 도면을 참고한 실시 예에 의해서 이루어졌지만, 상술한 실시 예는 본 발명의 바람직한 예를 들어 설명하였을 뿐이므로, 본 발명이 실시 예에만 국한되는 것으로 이해돼서는 안 되며, 본 발명의 권리범위는 후술하는 청구범위 및 그 등가 개념으로 이해되어야 할 것이다.Although the present invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, It should be understood that the scope of the present invention is to be understood as the scope of the following claims and their equivalents.

Claims (20)

  1. 마운트 기판;Mount substrate;
    상기 마운트 기판상에 실장 되며, 자외선을 방출하는 발광 칩; 및A light emitting chip mounted on the mount substrate and emitting ultraviolet light; And
    상기 발광 칩의 측면의 적어도 일부를 덮으며, 외면이 곡면으로 이루어진 제1 봉지재;를 포함하며,And a first encapsulant covering at least a part of a side surface of the light emitting chip and having an outer curved surface,
    상기 제1 봉지재는 상부에서 하부로 갈수록 상기 발광 칩의 측면에서의 두께가 두꺼워지는 발광 장치.Wherein the first encapsulant has a greater thickness at a side of the light emitting chip from the upper portion to the lower portion.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 발광 칩은 상기 마운트 기판에 플립칩 본딩되는 발광 장치.Wherein the light emitting chip is flip-chip bonded to the mount substrate.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 마운트 기판에 실장 되어 상기 마운트 기판과 전기적으로 연결되는 서브 마운트 기판을 더 포함하며,And a submount substrate mounted on the mount substrate and electrically connected to the mount substrate,
    상기 발광 칩은 상기 서브 마운트 기판상에 실장 되어, 상기 서브 마운트 기판에 플립칩 본딩되는 발광 장치.Wherein the light emitting chip is mounted on the submount substrate and is flip-chip bonded to the submount substrate.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 봉지재는 실리콘 수지 또는 에폭시 수지로 형성된 발광 장치.Wherein the first encapsulant is formed of a silicone resin or an epoxy resin.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 발광 칩의 측면에서 방출되어 상기 제1 봉지재로 입사된 광은 상기 제1 봉지재의 외면에서 상기 발광 칩의 상부 방향을 향하도록 굴절되는 발광 장치.Wherein the light emitted from the side surface of the light emitting chip and incident on the first encapsulant is refracted from the outer surface of the first encapsulant toward the upper direction of the light emitting chip.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 발광 칩의 상면을 덮는 제2 봉지재를 더 포함하며,And a second encapsulant covering an upper surface of the light emitting chip,
    상기 제2 봉지재는 상기 발광 칩의 상면의 꼭짓점 덮지 않는 발광 장치.And the second encapsulant does not cover the apex of the upper surface of the light emitting chip.
  7. 청구항 6에 있어서,The method of claim 6,
    상기 제2 봉지재는 실리콘 수지 또는 에폭시 수지로 형성된 발광 장치.And the second encapsulant is formed of a silicone resin or an epoxy resin.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 마운트 기판의 상면에 형성되어 상기 제1 봉지재의 외측을 따라 형성된 반사 프레임을 더 포함하는 발광 장치.And a reflective frame formed on an upper surface of the mount substrate and formed along an outer side of the first encapsulation member.
  9. 청구항 8에 있어서,The method of claim 8,
    상기 발광 칩에서 방출되어 상기 반사 프레임을 향하는 광은 상기 반사 프레임의 내벽에서 상기 발광 칩의 상부 방향을 향하도록 반사되는 발광 장치.Wherein the light emitted from the light emitting chip and directed toward the reflection frame is reflected from the inner wall of the reflection frame toward the upper direction of the light emitting chip.
  10. 청구항 9에 있어서,The method of claim 9,
    상기 반사 프레임의 내벽은 기울기를 갖는 발광 장치.Wherein the inner wall of the reflection frame has a slope.
  11. 청구항 10에 있어서,The method of claim 10,
    상기 반사 프레임의 내벽은 상기 마운트 기판에서 상부 방향으로 갈수록 서로 마주 보는 내벽 간의 거리가 커지는 발광 장치.Wherein an inner wall of the reflective frame has a larger distance between inner walls facing each other in an upward direction from the mount substrate.
  12. 청구항 8에 있어서,The method of claim 8,
    상기 반사 프레임의 상면은 상기 발광 칩의 상면보다 높게 위치하는 발광 장치.And the upper surface of the reflective frame is positioned higher than the upper surface of the light emitting chip.
  13. 마운트 기판;Mount substrate;
    상기 마운트 기판상에 실장 되며, 자외선을 방출하는 발광 칩; 및A light emitting chip mounted on the mount substrate and emitting ultraviolet light; And
    상기 발광 칩의 꼭지점을 제외한 상면을 덮는 봉지재;를 포함하는 발광 장치.And a sealing material covering an upper surface of the light emitting chip excluding a vertex of the light emitting chip.
  14. 청구항 13에 있어서,14. The method of claim 13,
    상기 마운트 기판에 실장 되어 상기 마운트 기판과 전기적으로 연결되는 서브 마운트 기판을 더 포함하는 발광 장치.And a submount substrate mounted on the mount substrate and electrically connected to the mount substrate.
  15. 청구항 13에 있어서,14. The method of claim 13,
    상기 봉지재는 실리콘 수지 또는 에폭시 수지로 형성된 발광 장치.Wherein the encapsulation material is formed of a silicone resin or an epoxy resin.
  16. 청구항 13에 있어서,14. The method of claim 13,
    상기 봉지재는 상기 발광 칩의 측면의 적어도 일부를 더 덮는 발광 장치.Wherein the sealing material further covers at least a part of a side surface of the light emitting chip.
  17. 청구항 16에 있어서,18. The method of claim 16,
    상기 발광 칩의 측면을 덮는 상기 봉지재는 외면이 곡면으로 이루어진 발광 장치.Wherein the sealing material covering the side surface of the light emitting chip has a curved outer surface.
  18. 청구항 17에 있어서,18. The method of claim 17,
    상기 발광 칩의 측면에서 방출되어 상기 봉지재로 입사된 광은 상기 봉지재의 상기 외면에서 상기 발광 칩의 상부 방향을 향하도록 굴절되는 발광 장치.Wherein the light emitted from the side surface of the light emitting chip and incident on the sealing material is refracted from the outer surface of the sealing material toward the upper direction of the light emitting chip.
  19. 청구항 13에 있어서,14. The method of claim 13,
    상기 마운트 기판의 상면에 형성되어 상기 발광 칩의 측면을 둘러싸는 반사 프레임을 더 포함하는 발광 장치.And a reflective frame formed on an upper surface of the mount substrate and surrounding a side surface of the light emitting chip.
  20. 청구항 19에 있어서,The method of claim 19,
    상기 반사 프레임의 내벽은 기울기를 가지며,The inner wall of the reflection frame has a slope,
    상기 반사 프레임은 상기 마운트 기판에서 상부 방향으로 갈수록 서로 마주 보는 내벽 간의 거리가 커지는 발광 장치.Wherein the reflective frame has a larger distance between inner walls facing each other in an upward direction from the mount substrate.
PCT/KR2019/000286 2018-01-09 2019-01-08 Light emitting device WO2019139334A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911344520.3A CN111048647B (en) 2018-01-09 2019-01-08 Light emitting device
CN201980000924.2A CN110249438B (en) 2018-01-09 2019-01-08 Light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180002967A KR20190084807A (en) 2018-01-09 2018-01-09 Light emitting device
KR10-2018-0002967 2018-01-09

Publications (1)

Publication Number Publication Date
WO2019139334A1 true WO2019139334A1 (en) 2019-07-18

Family

ID=67218360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000286 WO2019139334A1 (en) 2018-01-09 2019-01-08 Light emitting device

Country Status (3)

Country Link
KR (1) KR20190084807A (en)
CN (2) CN111048647B (en)
WO (1) WO2019139334A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7494133B2 (en) 2021-03-11 2024-06-03 シチズン電子株式会社 Light-emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100107827A (en) * 2009-03-26 2010-10-06 한국생산기술연구원 Lead frame for light emitting diode and method for fabricating the same
KR20100129771A (en) * 2008-03-17 2010-12-09 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Underfill process for flip-chip leds
KR20110070989A (en) * 2008-09-25 2011-06-27 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Coated light emitting device and method for coating thereof
JP2015164234A (en) * 2015-06-17 2015-09-10 シチズン電子株式会社 LED light-emitting device and manufacturing method thereof
WO2016204408A1 (en) * 2015-06-15 2016-12-22 엘지이노텍 주식회사 Light-emitting diode package

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107293536A (en) * 2012-06-13 2017-10-24 亿光电子工业股份有限公司 Package structure for LED and preparation method thereof
US9680075B2 (en) * 2012-08-31 2017-06-13 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device
KR20150114264A (en) * 2014-04-01 2015-10-12 서울반도체 주식회사 Ultraviolet light emitting diode package and method of fabricating the same
EP2988341B1 (en) * 2014-08-22 2017-04-05 LG Innotek Co., Ltd. Light emitting device package
KR20160041599A (en) * 2014-10-08 2016-04-18 서울반도체 주식회사 Light emitting device
CN105355752B (en) * 2015-10-27 2018-03-02 天津三安光电有限公司 A kind of LED chip construction, encapsulating structure and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100129771A (en) * 2008-03-17 2010-12-09 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Underfill process for flip-chip leds
KR20110070989A (en) * 2008-09-25 2011-06-27 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Coated light emitting device and method for coating thereof
KR20100107827A (en) * 2009-03-26 2010-10-06 한국생산기술연구원 Lead frame for light emitting diode and method for fabricating the same
WO2016204408A1 (en) * 2015-06-15 2016-12-22 엘지이노텍 주식회사 Light-emitting diode package
JP2015164234A (en) * 2015-06-17 2015-09-10 シチズン電子株式会社 LED light-emitting device and manufacturing method thereof

Also Published As

Publication number Publication date
CN111048647A (en) 2020-04-21
CN110249438B (en) 2024-04-02
KR20190084807A (en) 2019-07-17
CN110249438A (en) 2019-09-17
CN111048647B (en) 2024-04-26

Similar Documents

Publication Publication Date Title
WO2018159977A1 (en) Display device, backlight unit, light-emitting module and lens
US8405110B2 (en) Light emitting device package including a current regulator and different inclination angles
KR101413503B1 (en) Optoelectronic component with a wireless contacting
US8283691B2 (en) Light emitting device package and a lighting device
WO2016190644A1 (en) Light-emitting device and vehicular lamp comprising same
WO2018080224A1 (en) Semiconductor device package
WO2016080768A1 (en) Light emitting device and vehicular lamp comprising same
WO2013165124A1 (en) Light emitting diode package and method for manufacturing same
WO2012015153A2 (en) Light emitting diode having distributed bragg reflector
WO2011002208A2 (en) Light-emitting diode package
WO2016208957A1 (en) Optical lens, light emitting element, and light emitting module having same
WO2016178487A1 (en) Ultraviolet ray emitting device
WO2013051906A1 (en) Light-emitting diode package
WO2019231115A1 (en) Semiconductor device package and light irradiation device comprising same
KR101829511B1 (en) Led package
WO2016126020A1 (en) Lens and light emitting diode package including same
WO2019139334A1 (en) Light emitting device
KR20180003327A (en) Light emitting device package and illumination apparatus including the same
KR101970938B1 (en) Light emitting device package having a controlled beam angle and light emitting apparatus using the same
WO2019240461A1 (en) Light-emitting diode package
WO2019225866A1 (en) Light-emitting device
KR20070025008A (en) Lens mount type light emitting diode package
WO2019212285A1 (en) Semiconductor element package and light-emitting device comprising same
WO2024085689A1 (en) Light-emitting diode package
WO2018030680A1 (en) Semiconductor light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19739058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19739058

Country of ref document: EP

Kind code of ref document: A1