WO2019137168A1 - 信息传输方法、终端及网络设备 - Google Patents

信息传输方法、终端及网络设备 Download PDF

Info

Publication number
WO2019137168A1
WO2019137168A1 PCT/CN2018/122003 CN2018122003W WO2019137168A1 WO 2019137168 A1 WO2019137168 A1 WO 2019137168A1 CN 2018122003 W CN2018122003 W CN 2018122003W WO 2019137168 A1 WO2019137168 A1 WO 2019137168A1
Authority
WO
WIPO (PCT)
Prior art keywords
uci
pucch
pucch resource
pucch resources
cyclic shift
Prior art date
Application number
PCT/CN2018/122003
Other languages
English (en)
French (fr)
Inventor
高雪娟
艾托尼
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to KR1020207023025A priority Critical patent/KR102449523B1/ko
Priority to US16/961,863 priority patent/US11497003B2/en
Priority to EP18899254.9A priority patent/EP3739779A4/en
Publication of WO2019137168A1 publication Critical patent/WO2019137168A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0074Code shifting or hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1692Physical properties of the supervisory signal, e.g. acknowledgement by energy bursts
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to an information transmission method, a terminal, and a network device.
  • PUCCH Physical Uplink Control Channel
  • the PUCCH is used to transmit Uplink Control Information (UCI), and the UCI includes Hybrid Automatic Repeat ReQuest-ACKnowledgement (HARQ-ACK), Channel State Information (CSI), and Scheduling Request ( Scheduling Request, SR).
  • UCI Uplink Control Information
  • HARQ-ACK Hybrid Automatic Repeat ReQuest-ACKnowledgement
  • CSI Channel State Information
  • Scheduling Request Scheduling Request
  • the PUCCH format 0 or 1 is used to carry no more than 2 bits of UCI transmission
  • the PUCCH format 2, 3 or 4 is used to carry more than 2 bits of UCI transmission.
  • the HARQ-ACK can be configured to transmit using any of five formats.
  • the CSI can be configured to use at least PUCCH format 2, 3 or 4 transmission
  • the SR can be configured to transmit using at least PUCCH format 0 or 1.
  • the PUCCH formats 2, 3, and 4 are transmitted by using coding and rate matching. After the UCI to be transmitted is channel-coded and rate matched, the UCI is mapped to the configured PUCCH format resource and transmitted on resources other than the DMRS.
  • the HARQ-ACK and the CSI is configured to use the PUCCH format 2, 3 or 4 transmission, if at least one of the HARQ-ACK and the CSI overlaps with the transmission opportunity of the SR in the time domain transmission position,
  • the 1-bit information indicates the state of the SR. For example, the value of the bit information is 1 indicating a positive SR, and the value of the bit information is 0 indicating a negative SR, the 1-bit information and the bits of the HARQ-ACK and the CSI.
  • the information is cascaded together for joint encoding and transmitted simultaneously on resources of PUCCH format 2, 3 or 4.
  • multiple SR configurations are also supported for the terminal.
  • Different SR configurations correspond to different service types and/or transmission requirements and/or logical channels.
  • Different SR configuration parameters are different, such as SR resources, periods, and the like. Wait.
  • the transmission opportunities of multiple SR configurations may overlap.
  • Which SR is transmitted by the terminal is triggered by the upper layer of the terminal, and the upper layer only triggers.
  • One of the SRs (the triggered SR is a positive SR), therefore, the terminal only transmits the triggered SR on the SR resource corresponding to the triggered SR in the SR transmission opportunity.
  • the network device performs blind detection on the SR resources corresponding to the multiple SR configurations configured to the terminal, thereby determining which SR the terminal transmits, and performing reasonable uplink scheduling according to the blind detected SR.
  • An embodiment of the present disclosure provides an information transmission method, which is applied to a terminal, and includes:
  • the UCI is transmitted through the target PUCCH resource.
  • the step of determining a plurality of physical uplink control channel PUCCH resources corresponding to the uplink control information UCI includes:
  • a plurality of PUCCH resources corresponding to the UCI are determined according to an initial cyclic shift parameter configured for the UCI.
  • the step of determining a plurality of PUCCH resources corresponding to the UCI according to the initial cyclic shift parameter configured for the UCI includes:
  • each cyclic shift parameter set includes a plurality of cyclic shift parameters, each of each cyclic shift parameter set
  • the cyclic shift parameter corresponds to a feedback state of the UCI; each cyclic shift parameter in the cyclic shift parameter set is determined by performing a predetermined offset on the initial cyclic shift parameter;
  • M is an integer greater than 1
  • one of the M+1 cyclic shift parameter sets is used to transmit the UCI when the SR status of the multiple scheduling request SR configurations is a negative negative SR
  • Each of the plurality of cyclic shift parameter sets in the plurality of cyclic shift parameter sets is used for an SR state of one SR configuration corresponding to the cyclic shift parameter set in the plurality of SR configurations, respectively
  • the UCI is transmitted when the positive SR is affirmed.
  • the step of determining a target PUCCH resource for transmitting the UCI in the multiple PUCCH resources according to the SR status of the multiple SR configurations includes:
  • the cyclic shift parameter set corresponding to the negative SR in the M+1 cyclic shift parameter sets is determined as the target for transmitting the UCI.
  • the cyclic shift parameter set corresponding to one SR configuration in the M+1 cyclic shift parameter sets is determined as a target loop for transmitting the UCI. Shift parameter set.
  • the step of determining a plurality of physical uplink control channel PUCCH resources corresponding to the uplink control information UCI includes:
  • M is an integer greater than 1, and one of the M+1 PUCCH resources is used to transmit the UCI when the SR status of the multiple scheduling request SRs is negative negative SR, the M+1 Each of the remaining PUCCH resources in the PUCCH resource is used to transmit the UCI when the SR state of one SR configuration corresponding to the PUCCH resource in the multiple SR configurations is a positive positive SR.
  • the step of determining the M+1 PUCCH resources corresponding to the UCI according to the PUCCH resource indication field in the downlink control information DCI includes:
  • M+1 PUCCH resources are determined from a predetermined one of the PUCCH resource sets.
  • the PUCCH resource indication field indicates the kth PUCCH resource in the UCI corresponding PUCCH resource set
  • the kth PUCCH resource and the (k+i) mod N PUCCH resources in the PUCCH resource set are determined as M+1 PUCCHs.
  • Resource, or, the kth PUCCH resource and the (k+4+i) mod N PUCCH resources in the PUCCH resource set are determined as M+1 PUCCH resources; where i is greater than 0 and less than or equal to M
  • the integer is N, which is the number of PUCCH resources included in the PUCCH resource set.
  • the PUCCH resource indication field indicates a PUCCH resource subset in the PUCCH resource set, where the PUCCH resource subset includes more than one PUCCH resource;
  • the number of PUCCH resources included in the PUCCH resource subset is less than M+1, determining M+1 PUCCH resources from the plurality of PUCCH resource subsets in the PUCCH resource set starting from the PUCCH resource subset;
  • the PUCCH resources in the PUCCH resource subset are used as M+1 PUCCH resources;
  • the M+1 PUCCH resources are determined from the PUCCH resource subset.
  • the J PUCCH resources are configured for high-level signaling, or a set of resources determined from a plurality of PUCCH resource sets pre-configured by the high-layer signaling according to the number of bits of the UCI.
  • the correspondence between the M+1 cyclic shift parameter sets and the positive SR state and the positive SR state of each of the plurality of SR configurations is configured by a predefined or network device or determined according to a predetermined rule.
  • the correspondence between the M+1 PUCCH resources and the negative SR and the positive SR state of each of the plurality of SR configurations is configured by a predefined or network device or determined according to a predetermined rule.
  • the step of determining a target PUCCH resource for transmitting UCI in the M+1 PUCCH resources according to the SR state of the multiple SR configurations includes:
  • the PUCCH resources corresponding to the negative SR in the M+1 PUCCH resources are determined as the target PUCCH resources used for transmitting the UCI;
  • the PUCCH resource corresponding to one SR configuration among the M+1 PUCCH resources is determined as the target PUCCH resource for transmitting the UCI.
  • M is determined according to one of the following:
  • the number indicated by the configuration signaling sent by the network device is the number indicated by the configuration signaling sent by the network device.
  • UCI includes at least one of the following information:
  • the hybrid automatic repeat request acknowledges the HARQ-ACK and channel state information CSI.
  • the method Before determining the plurality of physical uplink control channel PUCCH resources corresponding to the uplink control information, the method further includes:
  • the step of determining the M+1 physical uplink control channel PUCCH resources corresponding to the uplink control information UCI is performed when one of the following conditions is met:
  • the current time is the transmission opportunity of the SR; or,
  • the current time is the transmission opportunity of the SR, and there are multiple SR configurations in the transmission opportunity.
  • the embodiment of the present disclosure further provides a terminal, including: a transceiver, a memory, a processor, and a program stored on the memory and operable on the processor, and the step of implementing the information transmission method on the terminal side when the processor executes the program .
  • the implementation of the present disclosure also provides a terminal, including:
  • a first determining module configured to determine multiple physical uplink control channel PUCCH resources corresponding to the uplink control information UCI;
  • a second determining module configured to determine, according to an SR state of the multiple SR configurations, a target PUCCH resource used for transmitting the UCI in the multiple PUCCH resources;
  • the first sending module is configured to send the UCI through the target PUCCH resource.
  • the embodiment of the present disclosure further provides an information transmission method, which is applied to a network device, and includes:
  • the UCI is detected in a plurality of PUCCH resources, and the SR states of the plurality of SR configurations are determined according to the PUCCH resources in which the UCI is detected.
  • the step of determining a plurality of physical uplink control channel PUCCH resources corresponding to the uplink control information UCI includes:
  • a plurality of PUCCH resources corresponding to the UCI are determined according to an initial cyclic shift parameter configured for the UCI.
  • the step of determining a plurality of PUCCH resources corresponding to the UCI according to the initial cyclic shift parameter configured for the UCI includes:
  • each cyclic shift parameter set includes a plurality of cyclic shift parameters, each of each cyclic shift parameter set
  • the cyclic shift parameter corresponds to a feedback state of the UCI; each cyclic shift parameter in the cyclic shift parameter set is determined by performing a predetermined offset on the initial cyclic shift parameter;
  • M is an integer greater than 1
  • one of the M+1 cyclic shift parameter sets is used to transmit the UCI when the SR status of the multiple scheduling request SR configurations is a negative negative SR
  • Each of the plurality of cyclic shift parameter sets in the plurality of cyclic shift parameter sets is used for an SR state of one SR configuration corresponding to the cyclic shift parameter set in the plurality of SR configurations, respectively
  • the UCI is transmitted when the positive SR is affirmed.
  • the UCI is detected in the M+1 PUCCH resources, and the SR states of the multiple SR configurations are determined according to the PUCCH resources that are detected by the UCI, including:
  • the step of determining a plurality of physical uplink control channel PUCCH resources corresponding to the uplink control information UCI includes:
  • M is an integer greater than 1, and one of the M+1 PUCCH resources is used to transmit the UCI when the SR status of the multiple scheduling request SRs is negative negative SR, the M+1 Each of the remaining PUCCH resources in the PUCCH resource is used to transmit the UCI when the SR state of one SR configuration corresponding to the PUCCH resource in the multiple SR configurations is a positive positive SR.
  • the step of determining the M+1 PUCCH resources corresponding to the UCI according to the PUCCH resource indication field in the downlink control information DCI includes:
  • the PUCCH resource indication field indicates the kth PUCCH resource in the UCI corresponding PUCCH resource set
  • the kth PUCCH resource and the (k+i) mod N PUCCH resources in the PUCCH resource set are determined as M+1 PUCCHs.
  • Resource, or, the kth PUCCH resource and the (k+4+i) mod N PUCCH resources in the PUCCH resource set are determined as M+1 PUCCH resources; where i is greater than 0 and less than or equal to M
  • the integer is N, which is the number of PUCCH resources included in the PUCCH resource set.
  • the PUCCH resource indication field indicates a PUCCH resource subset in the PUCCH resource set, where the PUCCH resource subset includes more than one PUCCH resource;
  • the number of PUCCH resources included in the PUCCH resource subset is less than M+1, determining M+1 PUCCH resources from the plurality of PUCCH resource subsets in the PUCCH resource set starting from the PUCCH resource subset;
  • the PUCCH resources in the PUCCH resource subset are used as M+1 PUCCH resources;
  • the M+1 PUCCH resources are determined from the PUCCH resource subset.
  • the J PUCCH resources are configured for high-level signaling, or a set of resources determined from a plurality of PUCCH resource sets pre-configured by the high-layer signaling according to the number of bits of the UCI.
  • the correspondence between the M+1 cyclic shift parameter sets and the positive SR state of each of the plurality of SR configurations is pre-defined or configured by the network device or determined according to a predetermined rule. .
  • the correspondence between the M+1 PUCCH resources and the negative SR and the positive SR state of each of the plurality of SR configurations is predefined or determined by the network device and notified to the terminal or determined according to a predetermined rule. .
  • the UCI is detected in the M+1 PUCCH resources, and the SR states of the multiple SR configurations are determined according to the PUCCH resources that are detected by the UCI, including:
  • the SR state of one of the plurality of SR configurations is a positive SR.
  • M is determined according to one of the following:
  • the number indicated by the configuration signaling sent by the network device is the number indicated by the configuration signaling sent by the network device.
  • UCI includes at least one of the following information:
  • the hybrid automatic repeat request acknowledges the HARQ-ACK and channel state information CSI.
  • the method Before determining the plurality of physical uplink control channel PUCCH resources corresponding to the uplink control information, the method further includes:
  • the step of determining the M+1 physical uplink control channel PUCCH resources corresponding to the uplink control information is performed when one of the following conditions is met:
  • the current time is the transmission opportunity of the SR; or,
  • the current time is the transmission opportunity of the SR, and there are multiple SR configurations in the transmission opportunity.
  • the embodiment of the present disclosure further provides a network device, including: a transceiver, a memory, a processor, and a program stored on the memory and operable on the processor, and implementing the information transmission method on the network device side when the processor executes the program A step of.
  • the embodiment of the present disclosure further provides a network device, including:
  • a first processing module configured to determine a plurality of physical uplink control channel PUCCH resources corresponding to the uplink control information UCI;
  • a second processing module configured to detect UCI in the multiple PUCCH resources, and determine an SR state of the multiple SR configurations according to the detected PUCCH resources of the UCI.
  • the embodiment of the present disclosure further provides a computer readable storage medium having stored thereon a computer program that, when executed by the processor, implements the steps of the information transmission method on the terminal side.
  • the embodiment of the present disclosure further provides a computer readable storage medium having stored thereon a computer program, which when executed by the processor, implements the steps of the information transmission method on the network device side.
  • FIG. 1 is a schematic flowchart diagram of a method for transmitting information on a terminal side in an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a module of a terminal in an embodiment of the present disclosure
  • Figure 3 shows a block diagram of a terminal of an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart diagram of an information transmission method on a network device side in an implementation of the present disclosure
  • FIG. 5 is a schematic structural diagram of a module of a network device according to an embodiment of the present disclosure.
  • Figure 6 shows a block diagram of a network device in accordance with an embodiment of the present disclosure.
  • system and “network” are used interchangeably herein.
  • B corresponding to A means that B is associated with A, and B can be determined from A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the network device is not limited in form, and may include a Macro Base Station, a Pico Base Station, a Node B (a name of a 3G mobile base station), an enhanced base station (eNB), and a home. Access to an enhanced base station (Femto eNB or Home eNode B or Home eNB or HeNB), a relay station, an access point, an RRU (Remote Radio Unit), an RRH (Remote Radio Head) network.
  • a Macro Base Station a Pico Base Station
  • Node B a name of a 3G mobile base station
  • eNB enhanced base station
  • a relay station Access to an enhanced base station (Femto eNB or Home eNode B or Home eNB or HeNB
  • an RRU Remote Radio Unit
  • RRH Remote Radio Head
  • the terminal can be a mobile phone (or cell phone), or other device capable of transmitting or receiving wireless signals, including user equipment, personal digital assistants (PDAs), wireless modems, wireless communication devices, handheld devices, laptop computers, cordless phones, A wireless local loop (WLL) station, a CPE (Customer Premise Equipment) capable of converting a mobile signal into a WiFi signal, or a mobile intelligent hotspot, a smart home appliance, or other non-human operation can spontaneously communicate with a mobile communication network. Equipment, etc.
  • PDAs personal digital assistants
  • WLL wireless local loop
  • CPE Customer Premise Equipment
  • the embodiment of the present disclosure provides an information transmission method, which solves the problem that in the prior art, when the terminal has both the SR transmission and the other UCI transmission, it is impossible to determine which SR of the multiple SR configurations is simultaneously transmitted with other UCIs. The problem.
  • an embodiment of the present disclosure provides an information transmission method, which specifically includes the following steps 11 to 13 .
  • Step 11 Determine a plurality of physical uplink control channel PUCCH resources corresponding to the uplink control information UCI.
  • the plurality of PUCCH resources are optionally M+1 PUCCH resources.
  • M is an integer greater than 1, and one of the M+1 PUCCH resources is used to transmit UCI when the SR status of the multiple scheduling request SRs is negative negative SR, and the remaining PUCCH resources in the M+1 PUCCH resources
  • Each PUCCH resource is used to transmit UCI when the SR state of one SR configuration corresponding to the PUCCH resource in multiple SR configurations is a positive positive SR. That is, one of the M+1 PUCCH resources corresponds to the negative SR, and the remaining M PUCCH resources correspond to the state in which each SR in the SR configuration is configured as a positive SR.
  • M determines, according to one of the following: the number of maximum SR configurations supported by the terminal; the number of SR configurations configured by the terminal; the number of SR configurations overlapped by the terminal in the same SR transmission opportunity; and the network The number indicated by the configuration signaling sent by the device.
  • M is the maximum number of multiple SR configurations configured in the system and configured for the same terminal. In this case, if the number of SR configurations configured by the terminal is less than the maximum value, it is equivalent to M+1.
  • M is the number of multiple SR configurations configured for the same terminal; or, M is configured for the same.
  • M is the number of overlapping SR configurations exists in the transmission opportunities of the multiple SR configurations of one terminal; or, M is notified to the terminal by the network side through configuration signaling.
  • Step 12 Determine a target PUCCH resource for transmitting UCI among the plurality of PUCCH resources according to the SR state of the multiple SR configurations.
  • the terminal may determine a corresponding PUCCH resource, where the target PUCCH resource implicitly indicates the SR state of the SR configuration.
  • Step 13 Send the UCI to the network device through the target PUCCH resource.
  • the terminal sends the UCI to the network device by using the target PUCCH resource, and the network device determines the SR state of the multiple SR configurations of the terminal according to the detected PUCCH resource of the UCI, so as to ensure the correct uplink scheduling of the terminal by the network device.
  • step 11 can be implemented by, but not limited to, the following:
  • Manner 1 Determine a plurality of PUCCH resources corresponding to the UCI according to the initial cyclic shift parameter configured for the UCI.
  • the M+1 cyclic shift parameter sets are determined based on the initial cyclic shift parameters configured for UCI.
  • each cyclic shift parameter set includes a plurality of cyclic shift parameters, each cyclic shift parameter in each cyclic shift parameter set corresponds to a UCI feedback state; each cyclic shift in the cyclic shift parameter set
  • the bit parameters are determined by performing a predetermined offset on the initial cyclic shift parameter, and one cyclic shift parameter corresponds to one PUCCH resource.
  • each of the plurality of cyclic shift parameter sets in the plurality of cyclic shift parameter sets is used for one SR configuration corresponding to the cyclic shift parameter set in the plurality of SR configurations, respectively
  • the SR state is transmitted when the positive SR is positive.
  • the terminal determines, according to the initial cyclic shift parameter CS initial configured to the UCI, the M+1 group cyclic shift parameter set, where each cyclic shift parameter corresponds to one PUCCH resource, and each set of cyclic shift parameter sets is based on The initial cyclic shift parameter is obtained by a predetermined offset, wherein the cyclic shift parameters in the cyclic shift parameter set all correspond to cyclic shifts in the same RB.
  • the terminal transmits the UCI through the target PUCCH resource, according to the feedback state (ACK and NACK) of the UCI, one cyclic shift parameter corresponding to the feedback state of the UCI in the target cyclic shift parameter set is selected; using the one cyclic shift Bit parameter, sending UCI; correspondingly, the network device side can detect the UCI feedback state by using which cyclic shift parameter in the cyclic shift parameter set to detect UCI; for example, UCI is 1-bit HARQ-ACK feedback, one cycle
  • the first parameter in the shift parameter set corresponds to NACK, and the second parameter corresponds to ACK. If UCI is detected using the first parameter, UCI is 1-bit NACK. If UCI is detected using the second parameter, UCI It is a 1-bit ACK.
  • the cyclic shift parameter set corresponding to the negative SR in the M+1 cyclic shift parameter sets is determined to be used for Transmitting a target cyclic shift parameter set of the UCI;
  • the SR state of one of the plurality of SR configurations is a positive SR, the cyclic shift parameter set corresponding to one SR configuration in the M+1 cyclic shift parameter sets Determined as a set of target cyclic shift parameters for transmitting UCI.
  • the correspondence between the M+1 cyclic shift parameter sets and the negative SR and the M SR configurations is predefined, or configured for the network side, or determined according to a predetermined rule.
  • the i-th cyclic shift parameter set in the M+1 cyclic shift parameter set corresponds to the i-th SR configuration
  • the last cyclic shift parameter set corresponds to the negative SR, or vice versa
  • M+1 cyclic shift parameter sets The first set of cyclic shift parameters corresponds to the negative SR
  • the remaining M cyclic shift parameter sets correspond to M SR configurations numbered from small to large, as shown in Table 1 or Table 2:
  • HARQ-ACK/SR state NACK ACK Negative SR CS initial (CS initial +6) mod12 Positive SR, SR configuration 1 (CS initial +2) mod12 (CS initial +8) mod12 Positive SR, SR configuration 2 (CS initial +4) mod12 (CS initial +10) mod12
  • Table 1 is a correspondence table between the cyclic shift parameter set and the SR state when 1-bit HARQ-ACK is used.
  • Table 2 is a correspondence table of the cyclic shift parameter set and the SR state when 2-bit HARQ-ACK is used.
  • HARQ-ACK/SR state NACK ACK Negative SR 0 6 Positive SR, SR configuration 1 2 8 Positive SR, SR configuration 2 4 10
  • the terminal generates 1-bit HARQ-ACK information, if the HARQ-ACK is NACK, transmits a HARQ-ACK using a cyclic shift parameter "2", and if the HARQ-ACK is an ACK, transmits a HARQ-ACK using a cyclic shift parameter "8"
  • a cyclic shift parameter Ccs to cyclically shift the determined base sequence, by transmitting the cyclically shifted sequence to the network device, by transmitting a sequence of different cyclic shifts to express the feedback state of the HARQ-ACK ; positive SR 1 by using the cyclic shift parameter set corresponding to an implicit expression was present positive SR 1 transmission.
  • the correspondence between the M+1 cyclic shift parameter sets and the negative SR state and the positive SR state of each SR configuration in the multiple SR configurations is a predefined or network device configuration. Or determined according to predetermined rules.
  • Manner 2 Determine, according to the PUCCH resource indication field in the downlink control information DCI, M+1 PUCCH resources corresponding to the UCI.
  • the terminal may determine M+1 PUCCH resources from a predetermined one of the PUCCH resource sets according to the PUCCH resource indication field in the DCI.
  • the correspondence between the M+1 PUCCH resources and the positive SR state and the positive SR state of each of the plurality of SR configurations is pre-defined or configured by the network device or determined according to a predetermined rule. That is to say, the correspondence between the M+1 PUCCH resources and the negative SR and the M SR configurations is predefined or configured on the network side or determined according to a predetermined rule.
  • the i-th PUCCH resource of the M+1 PUCCH resources corresponds to the i-th SR configuration
  • the last PUCCH resource corresponds to the negative SR, or vice versa
  • the first PUCCH resource of the M+1 PUCCH resources corresponds to the negative SR
  • the M PUCCH resources correspond to M SR configurations numbered from small to large at a time, as shown in Table 4 or Table 5.
  • HARQ-ACK/SR state PUCCH resources Negative SR The first of the M+1 resources Positive SR, SR configuration 1 The second resource of M+1 resources Positive SR, SR configuration 2 The third resource of M+1 resources
  • Table 4 shows the correspondence table between the PUCCH resource and the SR state when the two SRs are configured.
  • HARQ-ACK/SR state PUCCH resources Negative SR The first of the M+1 resources Positive SR, SR configuration 1 The second resource of M+1 resources Positive SR, SR configuration 2 The third resource of M+1 resources Positive SR, SR configuration 3 4th of M+1 resources
  • Table 5 shows the correspondence table between the PUCCH resources and the SR state when the three SRs are configured.
  • the PUCCH resource indication field indicates that the UCI corresponds to the kth PUCCH resource in the PUCCH resource set
  • determining the kth PUCCH resource and the (k+i) mod N PUCCH resources in the PUCCH resource set It is M+1 PUCCH resources, or the kth PUCCH resource and the (k+4+i) mod N PUCCH resources in the PUCCH resource set are determined as M+1 PUCCH resources.
  • i is an integer greater than 0 and less than or equal to M
  • N is the number of PUCCH resources included in the PUCCH resource set.
  • the PUCCH resource indication field indicates the kth PUCCH resource in the PUCCH resource set corresponding to the UCI
  • the kth PUCCH resource and the (k+i) modN PUCCH resource in the PUCCH resource set corresponding to the UCI are selected as the selected M+ One PUCCH resource, or the kth PUCCH resource and the (k+4+i) modN PUCCH resource in the PUCCH resource set corresponding to the UCI are selected as the M+1 PUCCH resources.
  • AmodB represents the remainder obtained by dividing A by B.
  • each PUCCH resource set corresponds to a different UCI bit number range, and the terminal needs to transmit the number of HARQ-ACK bits according to the current need. From which a PUCCH resource set is selected. It is assumed that the selected PUCCH resource set includes four PUCCH resources, and the correspondence between the 2-bit PUCCH resource indication field and the indicated PUCCH resource is as shown in Table 6:
  • PUCCH resource indicator PUCCH resource ‘00’ The first resource in the PUCCH resource collection ‘01’
  • the second resource in the PUCCH resource collection ‘10’ The third resource in the PUCCH resource collection ‘11’
  • the 2-bit PUCCH resource indication field indication state in the DCI used for the PDCCH corresponding to the downlink transmission in which the HARQ-ACK feedback is performed at time 1 is "10", according to the PUCCH resource indication field and the indication indicated in Table 6.
  • the correspondence between the PUCCH resources and the M+1 resources may be determined as the third, fourth, and first resources in the PUCCH resource set. Assuming that the correspondence between the M+1 resources and the SR state is as shown in Table 3, the third resource in the PUCCH resource set corresponds to the negative SR, the fourth resource corresponds to SR 1 as the positive, and the first resource corresponds to the SR 2 Positive.
  • the terminal generates the HARQ-ACK feedback information, and determines that the used PUCCH resource is the second resource in the M+1 PUCCH resources, that is, the fourth resource in the PUCCH resource set, on the determined PUCCH resource, according to the SR1 being positive.
  • the PUCCH format is configured to transmit the HARQ-ACK to the PUCCH format of the HARQ-ACK.
  • the PUCCH format may be format1 or 2 or 3 or 4.
  • the PUCCH resources of the different PUCCH formats may be different, and one PUCCH resource may be represented by a group of PUCCH resource parameters.
  • PUCCH transmission includes various parameters required for the PUCCH transmission, such as time domain resource size and location, frequency domain resource size and location, cyclic shift (if required, eg PUCCH format 1), orthogonal spread spectrum OCC sequence (if required, eg PUCCH) Some or all of the parameters in format1 or 4), frequency hopping parameters, etc. It should be noted that all definitions of PUCCH resources in the embodiments of the present disclosure are the same as here.
  • the PUCCH resource set determined according to the UCI bit number range may further include more than 4 resources, for example, 8 resources, and the correspondence between the PUCCH resource indication field and the indicated PUCCH resource is as shown in Table 7. Shown as follows:
  • PUCCH resource indicator PUCCH resource ‘00’ ⁇ 1, 5 ⁇ resources in the PUCCH resource collection ‘01’ ⁇ 2,6 ⁇ resources in the PUCCH resource collection ‘10’ ⁇ 3,7 ⁇ resources in the PUCCH resource collection ‘11’ ⁇ 4,8 ⁇ resources in the PUCCH resource collection
  • the first resource in the PUCCH resource sub-set is taken as an example.
  • the PUCCH resource indication field indicates a PUCCH resource subset in the PUCCH resource set, where the PUCCH resource subset includes more than one PUCCH resource.
  • the M+1 PUCCH resources are determined from the plurality of PUCCH resource subsets in the PUCCH resource set starting from the PUCCH resource subset. That is, when the PUCCH resource indication field corresponding to the PUCCH resource indication field in the first UCI is a PUCCH resource subset, and the PUCCH resource subset includes more than one PUCCH resource, the PUCCH resource indication domain is sequentially taken. A PUCCH resource corresponding to one PUCCH resource subset and a PUCCH resource of a subsequent PUCCH resource subset are selected as the selected M+1 PUCCH resources.
  • the PUCCH resource set determined according to the UCI bit number range may further include more than 4 resources, for example, 8 resources, as shown in Table 7, when the 2-bit PUCCH resource indication field indicates the state is “10”, the PUCCH resource set is determined.
  • the medium and PUCCH resource indication field indicates a PUCCH resource subset, and the M+1 PUCCH resource may be determined to be two PUCCH resources in the third PUCCH resource subset corresponding to the PUCCH resource indication field, and the next PUCCH resource.
  • One PUCCH resource in the subset (for example, the first PUCCH resource), that is, the third PUCCH resource in the PUCCH resource set corresponds to the negative SR, the seventh PUCCH resource corresponds to the positive SR 1 , and the fourth PUCCH resource corresponds to the positive SR 2 .
  • the PUCCH resources in the PUCCH resource subset are used as M+1 PUCCH resources. That is, when the PUCCH resource indication field corresponding to the PUCCH resource indication field is one PUCCH resource subset and the PUCCH resource subset includes M+1 PUCCH resources, the PUCCH resource indication domain corresponds to one PUCCH. The subset of resources is selected as M+1 PUCCH resources.
  • the M+1 PUCCH resources are determined from the PUCCH resource subset. That is, when the PUCCH resource indication field corresponding to the PUCCH resource indication field is one PUCCH resource subset and the PUCCH resource subset includes more than M+1 PUCCH resources, the PUCCH resource indication domain corresponds to one
  • the M1 CHCCH resources eg, the first M+1 or the last M+1 resources in the subset
  • Manner 3 Determine M+1 PUCCH resources from the pre-configured J PUCCH resources as M+1 PUCCH resources. Where J is an integer greater than or equal to M+1.
  • the J PUCCH resources are configured for high-level signaling, or a set of resources determined from a plurality of PUCCH resource sets pre-configured by the high-layer signaling according to the number of bits of the UCI.
  • the pre-configured J PUCCH resources are configured for high-layer signaling, or one PUCCH resource set is selected from a plurality of PUCCH resource sets pre-configured according to the number of UCI bits, and the resources in the PUCCH resource set are used.
  • the manner of determining the M+1 PUCCH resources from the pre-configured J PUCCH resources as the M+1 PUCCH resources may include, but is not limited to, selecting the first M+1 or the last M+1 of the J PUCCH resources. One.
  • the correspondence between the M+1 PUCCH resources and the negative SR and the M SR configurations is predefined or configured on the network side or determined according to a predetermined rule.
  • the i-th PUCCH resource of the M+1 PUCCH resources corresponds to the i-th SR configuration
  • the last PUCCH resource corresponds to the negative SR, or vice versa
  • the first PUCCH resource of the M+1 PUCCH resources corresponds to the negative SR
  • the M PUCCH resources correspond to M SR configurations numbered from small to large at a time. It is assumed that there is still CSI transmission at time 1, and the configuration supports simultaneous transmission of CSI and HARQ-ACK/SR.
  • the high-layer signaling is configured with four PUCCH resources corresponding to CSI in advance, and it can be determined that M+1 resources are sequentially CSI.
  • the first, second, and third resources of the corresponding four PUCCH resources wherein the first resource of the four PUCCH resources corresponding to the CSI (that is, the first resource of the M+1 resources) corresponds to the negative SR.
  • the second resource of the four PUCCH resources corresponding to the CSI (that is, the second resource of the M+1 resources) corresponds to the positive SR 1
  • the third resource of the four PUCCH resources corresponding to the CSI ie, M+1
  • the third resource in the resource corresponds to the positive SR 2 .
  • M is an integer greater than 1, and one of the M+1 PUCCH resources is used when the SR state of multiple scheduling request SR configurations is negative negative SR. Transmitting the UCI, where each of the remaining PUCCH resources of the M+1 PUCCH resources is used when a SR status of one SR configuration corresponding to the PUCCH resource in a plurality of SR configurations is a positive positive SR Transmitting the UCI.
  • how the terminal determines the target PUCCH resource for transmitting the UCI according to the SR state of the multiple SR configurations may be implemented by, but not limited to, the following manner:
  • the step 12 is implemented by: selecting, according to the feedback state of the UCI, one cyclic shift parameter corresponding to the feedback state of the UCI in the target cyclic shift parameter set; using the one cyclic shift parameter, sending UCI.
  • the UCI is transmitted by using the cyclic shift parameter set corresponding to the negative SR in the M+1 cyclic shift parameter sets, that is, UCI is transmitted using the cyclic shift parameter set corresponding to UCI when only UCI is present.
  • the UCI is transmitted using the cyclic shift parameter set corresponding to the i th SR; wherein, the M+1 cyclic shift parameter sets are apart from the negative SR
  • Each of the M cyclic shift parameter sets outside the corresponding cyclic shift parameter set respectively corresponds to one of the M SR configurations.
  • the step 12 may include: determining, when the SR state of each of the plurality of SR configurations is a negative SR, determining the PUCCH resource corresponding to the negative SR in the M+1 PUCCH resources as Target PUCCH resource used to transmit UCI. That is to say, when it is a negative SR, the UCI is transmitted using the PUCCH resource corresponding to the negative SR among the M+1 PUCCH resources, that is, when only UCI is present, the UCI corresponding PUCCH resource transmits the UCI.
  • the PUCCH resource corresponding to one SR configuration among the M+1 PUCCH resources is determined as the target PUCCH resource for transmitting the UCI. That is, when the i th SR of the M SR configurations is a positive SR, the UCI is transmitted using the PUCCH resource corresponding to the i th SR; wherein, among the M+1 PUCCH resources, other than the PUCCH resource corresponding to the negative SR Each of the M PUCCH resources corresponds to one of the M SR configurations.
  • the UCI includes at least one of the following information: a hybrid automatic repeat request acknowledgement HARQ-ACK and channel state information CSI.
  • CSI channel state information
  • the UCI includes CSI
  • the CSI is composed of the first partial CSI (CSI part1) and the second partial CSI (CSI part2)
  • the CRC corresponding to the CSI part1 is scrambled.
  • the CSI includes one or more of periodic CSI, aperiodic CSI, and semi-persistent scheduling CSI.
  • CSI terminal In an example CSI, CSI terminal generates feedback information according to SR 1 is positive, determine a PUCCH resource M + 1 PUCCH resource in the second resource, i.e., corresponding to the four CSI PUCCH resources of two resource And transmitting CSI according to the PUCCH format configured to the CSI on the determined PUCCH resource; the PUCCH format may be format 2 or 3 or 4.
  • the M+1 resources may also be three resources that satisfy the first resource that can carry the CSI transmission according to the configured code rate among the four PUCCH resources corresponding to the CSI, for example, assuming If the first resource cannot carry the CSI according to the configured code rate and the second resource is available, the M+1 resources are determined to be the second, third, and fourth resources among the four PUCCH resources corresponding to the CSI.
  • the second resource of the four PUCCH resources corresponding to the CSI corresponds to the negative SR
  • the third resource of the four PUCCH resources corresponding to the CSI ie, M+
  • the second resource of the one resource corresponds to the positive SR 1
  • the fourth resource among the four PUCCH resources corresponding to the CSI corresponds to the positive SR 2 .
  • the UCI may also have a HARQ-ACK (for example, 1 or 2 bits) while CSI is present, and the CSI and the HARQ-ACK are configured to be simultaneously transmitted. It is replaced by transmitting HARQ-ACK and CSI on the corresponding PUCCH resource, and the specific process is not described again.
  • HARQ-ACK for example, 1 or 2 bits
  • the method before step 11, further includes: performing the step of determining the M+1 physical uplink control channel PUCCH resources corresponding to the uplink control information UCI when the one of the following conditions is met: the current time is the SR The transmission opportunity; or, the current time is the transmission opportunity of the SR, and there are multiple SR configurations in the transmission opportunity. That is to say, in the transmission opportunity of the SR, the above operation is performed regardless of whether or not the SR transmission opportunity includes at least two SR configurations.
  • the terminal may perform SR transmission in the foregoing manner in any of the transmission opportunities of SR 1 and SR 2 overlapping with other UCIs, that is, if only one SR configuration exists in one SR transmission opportunity and overlaps with other UCIs, the above may also be performed.
  • the transmission mechanism of UCI is the same in any SR transmission opportunity; this method can implement a unified transmission scheme for any SR transmission opportunity.
  • the above operation is performed in an SR transmission opportunity including at least 2 SR configurations, that is, only in an SR transmission opportunity including at least 2 SR configurations.
  • the terminal performs the above process when there are multiple SR configuration overlapping transmission opportunities and there are other UCIs in the transmission opportunity. If there is only one SR configuration in an SR transmission opportunity, and other UCIs exist in the transmission opportunity, it may not be transmitted in the above manner, but may be transmitted in other agreed manners; for example, by transmitting other resources on the SR resources corresponding to the positive SR.
  • the UCI implicitly expresses the positive SR, or only the 1-bit SR is cascaded with other UCIs for simultaneous transmission on other UCI-related resources; for example, only the transmission opportunity of SR 1 in time 2: at time 2 , only there may be a positive SR 1, can be 1, employed in time 2 by transmitting other UCI implicitly expressed positive SR in the SR 1 SR resources corresponding to 1, or whether positive SR 1-bit SR with other UCI stage Together, they are transmitted simultaneously on resources corresponding to other UCIs.
  • the network device can always judge that the 1-bit SR corresponds to SR 1 ; for example, only SR 2 in time 3 transmission opportunity, then: 3 in time, there may be only a positive SR 2, by transmitting other UCI may be implicitly expressed in the positive SR 2 SR 2 SR resources corresponding to or regardless of No positive SR 2, using 1-bit SR cascaded together with other UCI 3 in time, simultaneous transmission on the other corresponding to the UCI resources, because there is only one time in the 3 SR configuration, the network may determine whether the device is always 1 bit SR corresponds to SR 2 ; at this time, the above operation is performed with respect to each SR transmission opportunity, and is performed only in the transmission opportunity including multiple SRs, which reduces the occupation overhead of transmission resources of other UCIs, but different SRs In the transmission opportunity, the transmission scheme used may be different.
  • the information transmission method of the embodiment of the present disclosure when there are multiple SR configurations in the terminal, if there is UCI in the transmission opportunity of the SR, M+1 PUCCH resources are determined, and M+1 PUCCHs are selected according to the selected SR. A UCI is selected in the resource, and the SR state of the multiple SRs is implicitly indicated by the PUCCH resource used for transmitting the UCI, thereby ensuring correct uplink scheduling of the terminal by the network device.
  • the terminal 200 of the embodiment of the present disclosure includes:
  • the first determining module 210 is configured to determine multiple physical uplink control channel PUCCH resources corresponding to the uplink control information UCI;
  • a second determining module 220 configured to determine, according to an SR state of the multiple SR configurations, a target PUCCH resource used for transmitting the UCI among the multiple PUCCH resources;
  • the first sending module 230 is configured to send the UCI through the target PUCCH resource.
  • the first determining module 210 includes:
  • the first determining submodule is configured to determine, according to the initial cyclic shift parameter configured for the UCI, a plurality of PUCCH resources corresponding to the UCI.
  • the first determining submodule includes:
  • a first determining unit configured to determine, according to an initial cyclic shift parameter configured for the UCI, an M+1 cyclic shift parameter set; wherein each cyclic shift parameter set includes multiple cyclic shift parameters, each cyclic shift Each cyclic shift parameter in the set of bit parameters corresponds to a feedback state of a UCI; each cyclic shift parameter in the set of cyclic shift parameters is determined by predetermined offset of the initial cyclic shift parameter; wherein, a cyclic shift The bit parameter corresponds to one PUCCH resource, where M is an integer greater than 1, and one of the M+1 cyclic shift parameter sets is used to set the SR state of the SR request to be negative negative Transmitting the UCI when SR is generated, and each of the plurality of cyclic shift parameter sets in the plurality of cyclic shift parameter sets is respectively used to correspond to the cyclic shift parameter set in multiple SR configurations
  • the SR state of an SR configuration is transmitted when the positive SU is positive.
  • the first determining unit includes:
  • a first determining subunit configured to: when the SR states of each of the plurality of SR configurations are negative SR, the cyclic shift corresponding to the negative SR in the M+1 cyclic shift parameter sets a set of bit parameters, determined as a set of target cyclic shift parameters for transmitting the UCI;
  • a second determining subunit configured to: when an SR state of one of the plurality of SR configurations is a positive SR, a loop corresponding to the one SR configuration in the M+1 cyclic shift parameter sets
  • the set of shift parameters is determined to be a set of target cyclic shift parameters for transmitting the UCI.
  • the first determining module 210 further includes:
  • a second determining submodule configured to determine, according to the PUCCH resource indication field in the downlink control information DCI, the M+1 PUCCH resources corresponding to the UCI;
  • a third determining submodule configured to determine M+1 PUCCH resources from the pre-configured J PUCCH resources as M+1 PUCCH resources; wherein, J is an integer greater than or equal to M+1;
  • M is an integer greater than 1, and one of the M+1 PUCCH resources is used to transmit the UCI when the SR status of the multiple scheduling request SRs is negative negative SR, the M+1 Each of the remaining PUCCH resources in the PUCCH resource is used to transmit the UCI when the SR state of one SR configuration corresponding to the PUCCH resource in the multiple SR configurations is a positive positive SR.
  • the second determining submodule includes:
  • a third determining unit configured to determine, according to the PUCCH resource indication field in the DCI, the M+1 PUCCH resources from the predetermined one of the PUCCH resource sets.
  • the second determining submodule further includes:
  • a fourth determining unit configured to: if the PUCCH resource indication field indicates the kth PUCCH resource in the UCI corresponding PUCCH resource set, the kth PUCCH resource and the (k+i) mod N PUCCH resources in the PUCCH resource set Determining to be M+1 PUCCH resources, or determining the kth PUCCH resource and the (k+4+i) mod N PUCCH resources in the PUCCH resource set as M+1 PUCCH resources; wherein i is greater than 0, and an integer less than or equal to M, where N is the number of PUCCH resources included in the PUCCH resource set.
  • the second determining submodule further includes:
  • the PUCCH resource indication field indicates a PUCCH resource subset in the PUCCH resource set, where the PUCCH resource subset includes more than one PUCCH resource;
  • a fifth determining unit configured to determine, when the number of PUCCH resources included in the PUCCH resource subset is less than M+1, determine M+1 by using a plurality of PUCCH resource subsets starting from a PUCCH resource subset in the PUCCH resource set.
  • a sixth determining unit configured to: if the number of PUCCH resources included in the PUCCH resource subset is equal to M+1, use the PUCCH resource in the PUCCH resource subset as the M+1 PUCCH resources;
  • a seventh determining unit configured to determine M+1 PUCCH resources from the PUCCH resource subset if the number of PUCCH resources included in the PUCCH resource subset is greater than M+1.
  • the J PUCCH resources are configured for high-level signaling, or a set of resources determined from a plurality of PUCCH resource sets pre-configured by the high-layer signaling according to the number of bits of the UCI.
  • the correspondence between the M+1 cyclic shift parameter sets and the positive SR state of each of the plurality of SR configurations is pre-defined or configured by the network device or determined according to a predetermined rule. .
  • the correspondence between the M+1 PUCCH resources and the negative SR and the positive SR state of each of the plurality of SR configurations is configured by a predefined or network device or determined according to a predetermined rule.
  • the second determining module 220 includes:
  • a fourth determining submodule configured to determine, when the SR state of each of the plurality of SR configurations is a negative SR, the PUCCH resource corresponding to the negative SR in the M+1 PUCCH resources, to be used for transmitting the UCI Target PUCCH resources;
  • a fifth determining submodule configured to determine, when the SR state of one of the multiple SR configurations is a positive SR, the PUCCH resource corresponding to one SR configuration in the M+1 PUCCH resources, to be used for transmitting the UCI Target PUCCH resource.
  • M is determined according to one of the following:
  • the number indicated by the configuration signaling sent by the network device is the number indicated by the configuration signaling sent by the network device.
  • UCI includes at least one of the following information:
  • the hybrid automatic repeat request acknowledges the HARQ-ACK and channel state information CSI.
  • the terminal further includes: a third determining module, configured to perform the step of determining the M+1 physical uplink control channel PUCCH resources corresponding to the uplink control information UCI when one of the following conditions is met:
  • the current time is the transmission opportunity of the SR; or,
  • the current time is the transmission opportunity of the SR, and there are multiple SR configurations in the transmission opportunity.
  • the terminal embodiment of the present disclosure corresponds to the embodiment of the information transmission method on the terminal side. All the implementation methods in the foregoing method embodiments are applicable to the embodiment of the terminal, and the same technical effects can be achieved.
  • M+1 PUCCH resources are determined, and one UCI is selected in the M+1 PUCCH resources according to the selected SR, and the UCI is transmitted.
  • the used PUCCH resource implicitly indicates the SR state of multiple SR configurations, thereby ensuring correct uplink scheduling of the terminal by the network device.
  • this embodiment provides a terminal, including:
  • a processor 31 a processor 31; and a memory 33 connected to the processor 31 via a bus interface 32, the memory 33 for storing programs and data used by the processor 31 when performing operations, when the processor 31 calls and When the program and data stored in the memory 33 are executed, the following process is performed: determining a plurality of physical uplink control channel PUCCH resources corresponding to the uplink control information UCI;
  • a target PUCCH resource for transmitting UCI is determined among a plurality of PUCCH resources according to an SR state of a plurality of SR configurations.
  • the transceiver 34 is connected to the bus interface 32 for receiving and transmitting data under the control of the processor 31, and is specifically configured to: send the UCI through the target PUCCH resource.
  • a plurality of PUCCH resources corresponding to the UCI are determined according to an initial cyclic shift parameter configured for the UCI.
  • each cyclic shift parameter set includes a plurality of cyclic shift parameters, each of each cyclic shift parameter set The cyclic shift parameter corresponds to a feedback state of the UCI; each cyclic shift parameter in the cyclic shift parameter set is determined by performing a predetermined offset on the initial cyclic shift parameter; wherein, one cyclic shift parameter corresponds to one PUCCH resource, M is an integer greater than 1, and one of the M+1 cyclic shift parameter sets is used to transmit the UCI when the SR status of the plurality of scheduling request SR configurations is a negative negative SR, Each of the plurality of cyclic shift parameter sets in the plurality of cyclic shift parameter sets is used to determine an SR state of an SR configuration corresponding to the cyclic shift parameter set in the plurality of SR configurations, respectively.
  • the UCI is transmitted when the positive SR.
  • the cyclic shift parameter set corresponding to the negative SR in the M+1 cyclic shift parameter sets is determined as the target for transmitting the UCI.
  • the cyclic shift parameter set corresponding to one SR configuration in the M+1 cyclic shift parameter sets is determined as a target loop for transmitting the UCI. Shift parameter set.
  • M is an integer greater than 1, and one of the M+1 PUCCH resources is used to transmit the UCI when the SR status of the multiple scheduling request SRs is negative negative SR, the M+1 Each of the remaining PUCCH resources in the PUCCH resource is used to transmit the UCI when the SR state of one SR configuration corresponding to the PUCCH resource in the multiple SR configurations is a positive positive SR.
  • the PUCCH resource indication field indicates the kth PUCCH resource in the UCI corresponding PUCCH resource set
  • the kth PUCCH resource and the (k+i) mod N PUCCH resources in the PUCCH resource set are determined as M+1 PUCCHs.
  • Resource, or, the kth PUCCH resource and the (k+4+i) mod N PUCCH resources in the PUCCH resource set are determined as M+1 PUCCH resources; where i is greater than 0 and less than or equal to M
  • the integer is N, which is the number of PUCCH resources included in the PUCCH resource set.
  • the PUCCH resource indication field indicates a PUCCH resource subset in the PUCCH resource set, where the PUCCH resource subset includes more than one PUCCH resource;
  • the number of PUCCH resources included in the PUCCH resource subset is less than M+1, determining M+1 PUCCH resources from the plurality of PUCCH resource subsets in the PUCCH resource set starting from the PUCCH resource subset;
  • the PUCCH resources in the PUCCH resource subset are used as M+1 PUCCH resources;
  • the M+1 PUCCH resources are determined from the PUCCH resource subset.
  • the J PUCCH resources are configured for high-level signaling, or a set of resources determined from a plurality of PUCCH resource sets pre-configured by the high-layer signaling according to the number of bits of the UCI.
  • the correspondence between the M+1 cyclic shift parameter sets and the positive SR state and the positive SR state of each of the plurality of SR configurations is configured by a predefined or network device or determined according to a predetermined rule.
  • the correspondence between the M+1 PUCCH resources and the negative SR and the positive SR state of each of the plurality of SR configurations is configured by a predefined or network device or determined according to a predetermined rule.
  • the PUCCH resources corresponding to the negative SR in the M+1 PUCCH resources are determined as the target PUCCH resources used for transmitting the UCI;
  • the PUCCH resource corresponding to one SR configuration among the M+1 PUCCH resources is determined as the target PUCCH resource for transmitting the UCI.
  • M is determined according to one of the following:
  • the number indicated by the configuration signaling sent by the network device is the number indicated by the configuration signaling sent by the network device.
  • UCI includes at least one of the following information:
  • the hybrid automatic repeat request acknowledges the HARQ-ACK and channel state information CSI.
  • the current time is the transmission opportunity of the SR; or,
  • the current time is the transmission opportunity of the SR, and there are multiple SR configurations in the transmission opportunity.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 31 and various circuits of memory represented by memory 33.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 34 may be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 35 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 31 is responsible for managing the bus architecture and the usual processing, and the memory 33 can store data used by the processor 31 when performing operations.
  • the information transmission method of the embodiment of the present disclosure is described above from the terminal side.
  • the information transmission method on the network device side will be further described below with reference to the accompanying drawings.
  • an embodiment of the present disclosure provides an information transmission method, including the following steps:
  • Step 41 Determine a plurality of physical uplink control channel PUCCH resources corresponding to the uplink control information UCI.
  • the multiple PUCCH resources are optionally M+1 PUCCH resources, where M is an integer greater than 1, and one of the M+1 PUCCH resources is used when the SR state of multiple SR configurations is negative negative
  • the UCI is transmitted, and each of the remaining PUCCH resources of the M+1 PUCCH resources is used to transmit when the SR state of one SR configuration corresponding to the PUCCH resource in the multiple SR configurations is a positive positive SR.
  • UCI That is, one of the M+1 PUCCH resources corresponds to the negative SR, and the remaining M PUCCH resources correspond to the state in which each SR in the SR configuration is configured as a positive SR.
  • M determines, according to one of the following: the number of maximum SR configurations supported by the terminal; the number of SR configurations configured by the terminal; the number of SR configurations overlapped by the terminal in the same SR transmission opportunity; and the network The number indicated by the configuration signaling sent by the device. That is, M is the maximum number of multiple SR configurations configured in the system and configured for the same terminal; or, M is the number of multiple SR configurations configured for the same terminal; or, M is configured to the same number. The number of overlapping SR configurations exists in the transmission opportunities of the multiple SR configurations of the terminal; or, M is notified to the terminal by the network side through configuration signaling.
  • Step 42 Detect UCI in multiple PUCCH resources, and determine SR states of multiple SR configurations according to PUCCH resources that detect UCI.
  • the remaining PUCCH resources respectively correspond to a state in which each SR in the SR configuration is configured as a positive SR. If the network device detects the UCI on a certain PUCCH, the SR state of the SR configuration may be determined according to the PUCCH, thereby ensuring correct uplink scheduling for the terminal.
  • step 41 can be implemented by referring to the following manners:
  • Manner 4 Determine, according to an initial cyclic shift parameter configured for the UCI, a plurality of PUCCH resources corresponding to the UCI.
  • the step of determining the M+1 PUCCH resources corresponding to the UCI according to the initial cyclic shift parameter configured for the UCI includes: determining, according to the initial cyclic shift parameter configured for the UCI, the M+1 cyclic shift parameter sets .
  • each cyclic shift parameter set includes a plurality of cyclic shift parameters, each cyclic shift parameter in each cyclic shift parameter set corresponds to a UCI feedback state; each cyclic shift in the cyclic shift parameter set
  • the bit parameters are determined by performing a predetermined offset on the initial cyclic shift parameter, one cyclic shift parameter corresponds to one PUCCH resource, M is an integer greater than 1, and one cycle of the M+1 cyclic shift parameter sets
  • the shift parameter set is configured to transmit the UCI when the SR status of the multiple scheduling request SR configurations is a negative negative SR, and each cyclic shift in the remaining cyclic shift parameter sets in the multiple cyclic shift parameter sets
  • the parameter set is respectively configured to transmit the UCI when the SR state of one SR configuration corresponding to the cyclic shift parameter set in the plurality of SR configurations is a positive positive SR.
  • each cyclic shift parameter corresponds to one PUCCH resource
  • each set of cyclic shift parameter sets is obtained by a predetermined offset based on the initial cyclic shift parameter, wherein the cyclic shift parameters in the cyclic shift parameter set correspond to Cyclic shift in the same RB.
  • step 42 can be implemented by: detecting UCI using each of the M+1 cyclic shift parameter sets; using a cyclic shift in the cyclic shift parameter set corresponding to the negative SR
  • the bit parameter detects the UCI it is determined that the SR state of each of the plurality of SR configurations is a negative SR
  • a cyclic shift in the cyclic shift parameter set corresponding to one of the plurality of SR configurations is used
  • the parameter detects the UCI it is determined that the SR state of one of the plurality of SR configurations is a positive SR.
  • the state of the SR is negative, that is, none of the M SR configurations are sent by the positive SR; when the cycle corresponding to the i-th SR configuration is used
  • the state of the SR is determined to be the positive SR of the i-th SR, that is, the i-th SR configuration of the M SR configurations sends a positive SR, according to the requirement of the i-th SR configuration. Perform uplink scheduling.
  • the PUCCH is detected according to the plurality of cyclic shift parameter sets corresponding to the foregoing Table 3, and finally the PUCCH is detected when the cyclic shift parameter “2” or “8” is used, according to the correspondence relationship of the foregoing table, the terminal may determine the transmission time in the positive SR 11, SR 1 according to the corresponding service requirements, the corresponding terminal uplink scheduling; and the cyclic shift parameter according to "2" or "8" HARQ-ACK information is detected Further determine whether to retransmit the corresponding downlink.
  • the correspondence between the M+1 cyclic shift parameter sets and the negative SR and the positive SR state of each of the plurality of SR configurations is predefined or configured by the network device or according to a predetermined rule. definite.
  • Manner 5 Determine, according to the PUCCH resource indication field in the downlink control information DCI, the M+1 PUCCH resources corresponding to the UCI
  • the network device may determine M+1 PUCCH resources from a predetermined one of the PUCCH resource sets according to the PUCCH resource indication field in the DCI. Further, the correspondence between the M+1 PUCCH resources and the positive SR state and the positive SR state of each of the plurality of SR configurations is pre-defined or configured by the network device or determined according to a predetermined rule. For details, refer to Table 4 and Table 5 above, and therefore no further description is provided herein.
  • the PUCCH resource indication field indicates that the UCI corresponds to the kth PUCCH resource in the PUCCH resource set
  • determining the kth PUCCH resource and the (k+i) mod N PUCCH resources in the PUCCH resource set It is M+1 PUCCH resources, or the kth PUCCH resource and the (k+4+i) mod N PUCCH resources in the PUCCH resource set are determined as M+1 PUCCH resources.
  • i is an integer greater than 0 and less than or equal to M
  • N is the number of PUCCH resources included in the PUCCH resource set.
  • the PUCCH is detected on the determined M+1 PUCCH resources, and if only the second resource in the M+1 PUCCH resources, that is, the fourth resource in the PUCCH resource set, is detected, depending on the detected resource of the PUCCH implicitly determines that the terminal transmits a positive SR 1, according to SR 1 corresponding to service requirements, the terminal corresponding uplink scheduling; further receives the HARQ-ACK, and whether HARQ-ACK is determined according to Retransmit the corresponding downlink.
  • the PUCCH resource indication field indicates a PUCCH resource subset in the PUCCH resource set, where the PUCCH resource subset includes more than one PUCCH resource. If the number of PUCCH resources included in the PUCCH resource subset is less than M+1, the M+1 PUCCH resources are determined from the plurality of PUCCH resource subsets in the PUCCH resource set starting from the PUCCH resource subset. That is, when the PUCCH resource indication field corresponding to the PUCCH resource indication field in the first UCI is a PUCCH resource subset, and the PUCCH resource subset includes more than one PUCCH resource, the PUCCH resource indication domain is sequentially taken. A PUCCH resource corresponding to one PUCCH resource subset and a PUCCH resource of a subsequent PUCCH resource subset are selected as the selected M+1 PUCCH resources.
  • the PUCCH resources in the PUCCH resource subset are used as M+1 PUCCH resources. That is, when the PUCCH resource indication field corresponding to the PUCCH resource indication field is one PUCCH resource subset, and the PUCCH resource subset includes M+1 PUCCH resources, the PUCCH resource indication domain corresponds to one PUCCH resource sub- Set as the selected M+1 PUCCH resources.
  • the M+1 PUCCH resources are determined from the PUCCH resource subset. That is, when the PUCCH resource indication field corresponding to the PUCCH resource indication field is one PUCCH resource subset and the PUCCH resource subset contains more than M+1 PUCCH resources, the PUCCH resource indicates a PUCCH resource corresponding to the domain.
  • the subset selects M+1 PUCCH resources (eg, the first M+1 or the last M+1 resources in the subset) as the selected M+1 PUCCH resources.
  • Manner 6 Determine M+1 PUCCH resources from the pre-configured J PUCCH resources as the M+1 PUCCH resources; where J is an integer greater than or equal to M+1
  • the J PUCCH resources are configured for high-level signaling, or a set of resources determined from a plurality of PUCCH resource sets pre-configured by the high-layer signaling according to the number of bits of the UCI.
  • the manner of determining the M+1 PUCCH resources from the pre-configured J PUCCH resources as the M+1 PUCCH resources may include, but is not limited to, selecting the first M+1 or the later of the J PUCCH resources. M+1.
  • M is an integer greater than 1, and one of the M+1 PUCCH resources is used to transmit when the SR state of the multiple scheduling request SR configuration is negative negative SR a UCI, where each of the remaining PUCCH resources of the M+1 PUCCH resources is used to transmit the SR state when one SR configuration of the SR configuration corresponding to the PUCCH resource in the multiple SR configurations is a positive positive SR UCI.
  • the pre-configured J PUCCH resources are configured for high-layer signaling, or one PUCCH resource set is selected from a plurality of PUCCH resource sets pre-configured according to the number of bits of the UCI, and the resources in the PUCCH resource set are used.
  • the network device detects the PUCCH on the determined M+1 PUCCH resources, if only the second resource in the M+1 PUCCH resources, that is, the second resource in the 4 PUCCH resources corresponding to the CSI.
  • the terminal When the PUCCH is detected, the terminal implicitly determines that the terminal transmits the positive SR 1 according to the detected resource of the PUCCH, and performs corresponding uplink scheduling on the terminal according to the service requirement corresponding to the SR 1 to further receive the CSI.
  • the step 42 may be implemented by referring to the following manner: when UCI is detected on the PUCCH resource corresponding to the negative SR in the M+1 PUCCH resources, each of the multiple SR configurations is determined.
  • the SR state of the SR configuration is all a negative SR; when UCI is detected on the PUCCH resource corresponding to one of the plurality of SR configurations in the M+1 PUCCH resources, determining one of the plurality of SR configurations
  • the SR status is positive SR.
  • the UCI includes at least one of the following information: a hybrid automatic repeat request acknowledgement HARQ-ACK and channel state information CSI.
  • CSI channel state information
  • the UCI includes CSI
  • the CSI is composed of the first partial CSI (CSI part1) and the second partial CSI (CSI part2)
  • the CRC corresponding to the CSI part1 is scrambled.
  • the CSI includes one or more of periodic CSI, aperiodic CSI, and semi-persistent scheduling CSI.
  • the method further includes: performing the step of determining the M+1 physical uplink control channel PUCCH resources corresponding to the uplink control information UCI when the one of the following conditions is met: the current time is the SR The transmission opportunity; or, the current time is the transmission opportunity of the SR, and there are multiple SR configurations in the transmission opportunity. That is to say, in the transmission opportunity of the SR, the above operation is performed regardless of whether or not the SR transmission opportunity includes at least two SR configurations. Alternatively, the above operation is performed in an SR transmission opportunity including at least 2 SR configurations, that is, only in an SR transmission opportunity including at least 2 SR configurations.
  • the network device performs UCI detection on the M+1 PUCCH resources corresponding to the UCI, and determines the SR state of the multiple SR configurations according to the detected PUCCH resources of the UCI, thereby ensuring correctness to the terminal.
  • Upstream scheduling is performed on the M+1 PUCCH resources corresponding to the UCI, and determines the SR state of the multiple SR configurations according to the detected PUCCH resources of the UCI, thereby ensuring correctness to the terminal.
  • the network device 500 of the embodiment of the present disclosure includes:
  • the first processing module 510 is configured to determine multiple physical uplink control channel PUCCH resources corresponding to the uplink control information UCI;
  • the second processing module 520 is configured to detect UCI in multiple PUCCH resources, and determine an SR state of multiple SR configurations according to the PUCCH resource that detects the UCI.
  • the first processing module 510 includes:
  • the first processing submodule is configured to determine, according to an initial cyclic shift parameter configured for the UCI, a plurality of PUCCH resources corresponding to the UCI.
  • the first processing submodule includes:
  • a first processing unit configured to determine, according to an initial cyclic shift parameter configured for the UCI, a set of M+1 cyclic shift parameters; wherein each cyclic shift parameter set includes multiple cyclic shift parameters, each cyclic shift Each cyclic shift parameter in the set of bit parameters corresponds to a feedback state of a UCI; each cyclic shift parameter in the set of cyclic shift parameters is determined by predetermined offset of the initial cyclic shift parameter; wherein, a cyclic shift The bit parameter set corresponds to one PUCCH resource;
  • M is an integer greater than 1
  • one of the M+1 cyclic shift parameter sets is used to transmit the UCI when the SR status of the multiple scheduling request SR configurations is a negative negative SR
  • Each of the plurality of cyclic shift parameter sets in the plurality of cyclic shift parameter sets is used for an SR state of one SR configuration corresponding to the cyclic shift parameter set in the plurality of SR configurations, respectively
  • the UCI is transmitted when the positive SR is affirmed.
  • the second processing module 520 includes:
  • a first detecting submodule configured to detect UCI using each of the M+1 cyclic shift parameter sets
  • a second processing submodule configured to determine, when the UCI is detected by using a cyclic shift parameter in a cyclic shift parameter set corresponding to the negative SR, determining that an SR state of each of the plurality of SR configurations is a negative SR;
  • a third processing submodule configured to determine an SR of one of the plurality of SR configurations when the UCI is detected using a cyclic shift parameter in a cyclic shift parameter set corresponding to one of the plurality of SR configurations
  • the status is positive SR.
  • the first processing module 510 further includes:
  • a fourth processing submodule configured to determine, according to the PUCCH resource indication field in the downlink control information DCI, the M+1 PUCCH resources corresponding to the UCI;
  • a fifth processing submodule configured to determine M+1 PUCCH resources from the pre-configured J PUCCH resources as M+1 PUCCH resources; wherein, J is an integer greater than or equal to M+1;
  • M is an integer greater than 1, and one of the M+1 PUCCH resources is used to transmit the UCI when the SR status of the multiple scheduling request SRs is negative negative SR, the M+1 Each of the remaining PUCCH resources in the PUCCH resource is used to transmit the UCI when the SR state of one SR configuration corresponding to the PUCCH resource in the multiple SR configurations is a positive positive SR.
  • the fourth processing submodule includes:
  • a second processing unit configured to determine, according to the PUCCH resource indication field in the DCI, M+1 PUCCH resources from a predetermined one of the PUCCH resource sets.
  • the second processing unit includes:
  • a first processing subunit configured to: if the PUCCH resource indication field indicates the kth PUCCH resource in the UCI corresponding PUCCH resource set, the kth PUCCH resource in the PUCCH resource set and the (k+i) mod N PUCCH
  • the resource is determined to be M+1 PUCCH resources, or the kth PUCCH resource and the (k+4+i) mod N PUCCH resources in the PUCCH resource set are determined as M+1 PUCCH resources; wherein i is An integer greater than 0 and less than or equal to M, where N is the number of PUCCH resources included in the PUCCH resource set.
  • the second processing unit further includes:
  • the PUCCH resource indication field indicates a PUCCH resource subset in the PUCCH resource set, where the PUCCH resource subset includes more than one PUCCH resource;
  • a second processing sub-unit configured to: if the number of PUCCH resources included in the PUCCH resource subset is less than M+1, determine M+1 from the plurality of PUCCH resource subsets in the PUCCH resource set starting from the PUCCH resource subset PUCCH resources;
  • a third processing sub-unit configured to: if the number of PUCCH resources included in the PUCCH resource subset is equal to M+1, use the PUCCH resource in the PUCCH resource subset as the M+1 PUCCH resources;
  • a fourth processing sub-unit configured to determine M+1 PUCCH resources from the PUCCH resource subset if the number of PUCCH resources included in the PUCCH resource subset is greater than M+1.
  • the J PUCCH resources are configured for high-level signaling, or a set of resources determined from a plurality of PUCCH resource sets pre-configured by the high-layer signaling according to the number of bits of the UCI.
  • the correspondence between the M+1 cyclic shift parameter sets and the positive SR state and the positive SR state of each of the plurality of SR configurations is configured by a predefined or network device or determined according to a predetermined rule.
  • the correspondence between the M+1 PUCCH resources and the negative SR and the positive SR state of each of the plurality of SR configurations is predefined or determined by the network device and notified to the terminal or determined according to a predetermined rule. .
  • the second processing module 520 further includes:
  • a sixth processing submodule configured to determine, when the UCI is detected on the PUCCH resource corresponding to the negative SR in the M+1 PUCCH resources, determining that the SR states of each of the multiple SR configurations are negative SRs;
  • a seventh processing submodule configured to determine an SR state of one of the plurality of SR configurations when the UCI is detected on the PUCCH resource corresponding to one of the plurality of SR configurations in the M+1 PUCCH resources Is a positive SR.
  • M is determined according to one of the following:
  • the number indicated by the configuration signaling sent by the network device is the number indicated by the configuration signaling sent by the network device.
  • UCI includes at least one of the following information:
  • the hybrid automatic repeat request acknowledges the HARQ-ACK and channel state information CSI.
  • the network device further includes:
  • the third processing module is configured to: when the one of the following conditions is met, perform the step of determining the M+1 physical uplink control channel PUCCH resources corresponding to the uplink control information:
  • the current time is the transmission opportunity of the SR; or,
  • the current time is the transmission opportunity of the SR, and there are multiple SR configurations in the transmission opportunity.
  • the network device embodiment of the present disclosure corresponds to the embodiment of the foregoing method, and all the implementation methods in the foregoing method embodiments are applicable to the embodiment of the network device, and the same technical effects can be achieved.
  • the network device performs UCI detection on the M+1 PUCCH resources corresponding to the UCI, and determines the SR states of the multiple SR configurations according to the PUCCH resources that are detected by the UCI, thereby ensuring correct uplink scheduling for the terminal.
  • the fourth embodiment of the present disclosure further provides a network device, where the network device includes: a processor 600; and is connected to the processor 600 through a bus interface. a memory 620, and a transceiver 610 coupled to the processor 600 via a bus interface; the memory 620 for storing programs and data used by the processor when performing operations; transmitting data information through the transceiver 610 or The pilot also receives an uplink control channel through the transceiver 610; when the processor 600 calls and executes the program and data stored in the memory 620, the following functions are implemented.
  • the processor 600 is configured to read a program in the memory 620, and perform the following process: determining a plurality of physical uplink control channel PUCCH resources corresponding to the uplink control information UCI;
  • the transceiver 610 is configured to receive and transmit data under the control of the processor 600.
  • a plurality of PUCCH resources corresponding to the UCI are determined according to an initial cyclic shift parameter configured for the UCI.
  • each cyclic shift parameter set includes a plurality of cyclic shift parameters, each of each cyclic shift parameter set The cyclic shift parameter corresponds to a feedback state of the UCI; each cyclic shift parameter in the cyclic shift parameter set is determined by performing a predetermined offset on the initial cyclic shift parameter; wherein, one cyclic shift parameter set corresponds to one PUCCH resource ;
  • M is an integer greater than 1
  • one of the M+1 cyclic shift parameter sets is used to transmit the UCI when the SR status of the multiple scheduling request SR configurations is a negative negative SR
  • Each of the plurality of cyclic shift parameter sets in the plurality of cyclic shift parameter sets is used for an SR state of one SR configuration corresponding to the cyclic shift parameter set in the plurality of SR configurations, respectively
  • the UCI is transmitted when the positive SR is affirmed.
  • M is an integer greater than 1, and one of the M+1 PUCCH resources is used to transmit the UCI when the SR status of the multiple scheduling request SRs is negative negative SR, the M+1 Each of the remaining PUCCH resources in the PUCCH resource is used to transmit the UCI when the SR state of one SR configuration corresponding to the PUCCH resource in the multiple SR configurations is a positive positive SR.
  • the PUCCH resource indication field indicates the kth PUCCH resource in the UCI corresponding PUCCH resource set
  • the kth PUCCH resource and the (k+i) mod N PUCCH resources in the PUCCH resource set are determined as M+1 PUCCHs.
  • Resource, or, the kth PUCCH resource and the (k+4+i) mod N PUCCH resources in the PUCCH resource set are determined as M+1 PUCCH resources; where i is greater than 0 and less than or equal to M
  • the integer is N, which is the number of PUCCH resources included in the PUCCH resource set.
  • the PUCCH resource indication field indicates a PUCCH resource subset in the PUCCH resource set, where the PUCCH resource subset includes more than one PUCCH resource;
  • the number of PUCCH resources included in the PUCCH resource subset is less than M+1, determining M+1 PUCCH resources from the plurality of PUCCH resource subsets in the PUCCH resource set starting from the PUCCH resource subset;
  • the PUCCH resources in the PUCCH resource subset are used as M+1 PUCCH resources;
  • the M+1 PUCCH resources are determined from the PUCCH resource subset.
  • the J PUCCH resources are configured for high-level signaling, or a set of resources determined from a plurality of PUCCH resource sets pre-configured by the high-layer signaling according to the number of bits of the UCI.
  • the correspondence between the M+1 cyclic shift parameter sets and the positive SR state of each of the plurality of SR configurations is pre-defined or configured by the network device or determined according to a predetermined rule. .
  • the correspondence between the M+1 PUCCH resources and the negative SR and the positive SR state of each of the plurality of SR configurations is predefined or determined by the network device and notified to the terminal or determined according to a predetermined rule. .
  • the SR state of one of the plurality of SR configurations is a positive SR.
  • M is determined according to one of the following:
  • the number indicated by the configuration signaling sent by the network device is the number indicated by the configuration signaling sent by the network device.
  • UCI includes at least one of the following information:
  • the hybrid automatic repeat request acknowledges the HARQ-ACK and channel state information CSI.
  • the current time is the transmission opportunity of the SR; or,
  • the current time is the transmission opportunity of the SR, and there are multiple SR configurations in the transmission opportunity.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 600 and various circuits of memory represented by memory 620.
  • the bus architecture can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 610 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 in performing operations.
  • the objects of the present disclosure can also be achieved by running a program or a set of programs on any computing device.
  • the computing device can be a well-known general purpose device.
  • the objects of the present disclosure may also be realized by merely providing a program product including program code for implementing the method or apparatus. That is to say, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any known storage medium or any storage medium developed in the future.
  • various components or steps may be decomposed and/or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

本公开提供了一种信息传输方法、终端及网络设备,其方法包括:确定上行控制信息UCI对应的多个物理上行控制信道PUCCH资源;根据多个SR配置的SR状态,在多个PUCCH资源中确定用于传输UCI的目标PUCCH资源;通过目标PUCCH资源发送UCI。

Description

信息传输方法、终端及网络设备
相关申请的交叉引用
本申请主张在2018年1月12日在中国提交的中国专利申请No.201810032643.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种信息传输方法、终端及网络设备。
背景技术
在新的无线通信(5-th Generation New RAT,5G NR)***中,定义了5种物理上行控制信道(Physical Uplink Control Channel,PUCCH)格式(format),即PUCCH format 0、1、2、3、4,不同的PUCCH format具有不同的传输方案。PUCCH用于传输上行控制信息(Uplink Control Information,UCI),UCI包括混合自动重传请求确认(Hybrid Automatic Repeat reQuest-ACKnowledgement,HARQ-ACK)、信道状态信息(Channel State Information,CSI)、调度请求(Scheduling Request,SR)。其中,PUCCH format 0或1用于承载不超过2比特UCI传输,PUCCH format 2、3或4用于承载2比特以上UCI传输。HARQ-ACK可配置使用5种format中的任何一种传输,CSI至少可配置使用PUCCH format 2、3或4传输,SR至少可以配置使用PUCCH format 0或1传输。
PUCCH format 2、3和4均使用编码和速率匹配方式传输,即将待传输的UCI经过信道编码和速率匹配之后,映射到配置的PUCCH format资源上除了DMRS以外的资源上传输。当HARQ-ACK和CSI中的至少一项被配置使用PUCCH format 2、3或4传输时,如果HARQ-ACK和CSI中的至少一项与SR的传输机会在时域传输位置重叠时,可以采用1比特信息来表示SR的状态,例如该比特信息的值为1表示肯定(positive)SR,该比特信息的值为0表示否定(negative)SR,该1比特信息与HARQ-ACK和CSI的比特信 息级联在一起,进行联合编码,在PUCCH format 2、3或4的资源上同时传输。
在5G NR***中,还支持对终端配置多个SR配置,不同的SR配置对应不同的业务类型和/或传输需求和/或逻辑信道,不同的SR配置的参数不同,如SR资源、周期等等。多个SR配置的传输机会可能存在重叠,当多个SR配置的传输机会重叠时,在一个SR的传输机会中存在多个SR配置,终端传输哪个SR由终端的高层触发,且高层只会触发其中一个SR(被触发的SR为positive SR),因此,终端只会在该SR传输机会中在被触发的SR所对应的SR资源上传输该被触发的SR。网络设备则通过在配置给终端的多个SR配置所分别对应的SR资源上盲检,从而确定终端传输的是哪个SR,在根据盲检到的SR进行合理的上行调度。
但是,当终端有多个SR配置,且多个SR的传输机会重叠时,在重叠的SR传输机会中,若同时存在SR传输和其他UCI传输时,无法确定是多个SR配置中的哪个SR与其他UCI同时传输。
发明内容
本公开的实施例提供一种信息传输方法,应用于终端,包括:
确定上行控制信息UCI对应的多个物理上行控制信道PUCCH资源;
根据多个SR配置的SR状态,在多个PUCCH资源中确定用于传输UCI的目标PUCCH资源;
通过目标PUCCH资源发送UCI。
其中,确定上行控制信息UCI对应的多个物理上行控制信道PUCCH资源的步骤,包括:
根据为UCI配置的初始循环移位参数,确定UCI对应的多个PUCCH资源。
其中,根据为UCI配置的初始循环移位参数,确定UCI对应的多个PUCCH资源的步骤,包括:
根据为UCI配置的初始循环移位参数,确定M+1个循环移位参数集合;其中,每个循环移位参数集合包含多个循环移位参数,每个循环移位参数集 合中的每个循环移位参数对应一个UCI的反馈状态;循环移位参数集合中的每个循环移位参数均通过对初始循环移位参数进行预定偏移确定;
其中,M为大于1的整数,所述M+1个循环移位参数集合中的一个循环移位参数集合用于当多个调度请求SR配置的SR状态为否定negative SR时传输所述UCI,所述多个循环移位参数集合中的其余循环移位参数集合中的每个循环移位参数集合分别用于当多个SR配置中与该循环移位参数集合对应的一个SR配置的SR状态为肯定positive SR时传输所述UCI。
其中,根据多个SR配置的SR状态,在多个PUCCH资源中确定用于传输UCI的目标PUCCH资源的步骤,包括:
当多个SR配置中的每个SR配置的SR状态都为negative SR时,将M+1个循环移位参数集合中与negative SR对应的循环移位参数集合,确定为用于传输UCI的目标循环移位参数集合;
当多个SR配置中的一个SR配置的SR状态为positive SR时,将M+1个循环移位参数集合中与一个SR配置对应的循环移位参数集合,确定为用于传输UCI的目标循环移位参数集合。
其中,确定上行控制信息UCI对应的多个物理上行控制信道PUCCH资源的步骤,包括:
根据下行控制信息DCI中的PUCCH资源指示域,确定UCI对应的M+1个PUCCH资源;或者,
从预先配置的J个PUCCH资源中确定M+1个PUCCH资源作为M+1个PUCCH资源;其中,J为大于或等于M+1的整数;
其中,M为大于1的整数,所述M+1个PUCCH资源中的一个PUCCH资源用于当多个调度请求SR配置的SR状态为否定negative SR时传输所述UCI,所述M+1个PUCCH资源中的其余PUCCH资源中的每个PUCCH资源分别用于当多个SR配置中与该PUCCH资源对应的一个SR配置的SR状态为肯定positive SR时传输所述UCI。
其中,根据下行控制信息DCI中的PUCCH资源指示域,确定UCI对应的M+1个PUCCH资源的步骤,包括:
根据DCI中的PUCCH资源指示域,从预先确定的一个PUCCH资源集 合中确定M+1个PUCCH资源。
其中,根据DCI中的PUCCH资源指示域,从预先确定的一个PUCCH资源集合中确定M+1个PUCCH资源,包括:
若PUCCH资源指示域指示UCI对应PUCCH资源集合中的第k个PUCCH资源,则将PUCCH资源集合中的第k个PUCCH资源以及第(k+i)mod N个PUCCH资源确定为M+1个PUCCH资源,或者,将PUCCH资源集合中的第k个PUCCH资源以及第(k+4+i)mod N个PUCCH资源确定为M+1个PUCCH资源;其中,i为大于0、且小于或等于M的整数,N为PUCCH资源集合中所包含的PUCCH资源的个数。
其中,根据DCI中的PUCCH资源指示域,从预先确定的一个PUCCH资源集合中确定M+1个PUCCH资源,包括:
当PUCCH资源指示域指示PUCCH资源集合中的一个PUCCH资源子集时,其中,PUCCH资源子集包含超过1个PUCCH资源;
若PUCCH资源子集中包含的PUCCH资源数目小于M+1个,则依此从PUCCH资源集合中的从PUCCH资源子集开始的多个PUCCH资源子集中确定M+1个PUCCH资源;
若PUCCH资源子集中包含的PUCCH资源数目等于M+1,则将PUCCH资源子集中的PUCCH资源作为M+1个PUCCH资源;
若PUCCH资源子集中包含的PUCCH资源数目大于M+1个,则从PUCCH资源子集中确定M+1个PUCCH资源。
其中,J个PUCCH资源为高层信令配置的,或者,根据UCI的比特数从高层信令预先配置的多个PUCCH资源集合中确定的一个资源集合。
其中,M+1个循环移位参数集合与negative SR以及多个SR配置中的每个SR配置的positive SR状态的对应关系为预先定义的或者网络设备配置的或者根据预定的规则确定的。
其中,M+1个PUCCH资源与negative SR以及多个SR配置中的每个SR配置的positive SR状态的对应关系为预先定义的或者网络设备配置的或者根据预定的规则确定的。
其中,根据多个SR配置的SR状态,在M+1个PUCCH资源中确定用 于传输UCI的目标PUCCH资源的步骤,包括:
当多个SR配置中的每个SR配置的SR状态都为negative SR时,将M+1个PUCCH资源中与negative SR对应的PUCCH资源,确定为用于传输UCI的目标PUCCH资源;
当多个SR配置中的一个SR配置的SR状态为positive SR时,将M+1个PUCCH资源中与一个SR配置对应的PUCCH资源,确定为用于传输UCI的目标PUCCH资源。
其中,M根据以下中的一项确定:
终端所支持的最大SR配置的数目;
为终端配置的SR配置的数目;
为终端配置的在同一个SR传输机会中重叠的SR配置的数目;
网络设备发送的配置信令所指示的数目。
其中,UCI包括以下信息中的至少一项:
混合自动重传请求确认HARQ-ACK和信道状态信息CSI。
其中,在确定上行控制信息对应的多个物理上行控制信道PUCCH资源之前,方法还包括:
当满足以下条件中的一项时,执行确定上行控制信息UCI对应的M+1个物理上行控制信道PUCCH资源的步骤:
当前时刻为SR的传输机会;或者,
当前时刻为SR的传输机会,且在传输机会中存在多个SR配置。
本公开实施例还提供了一种终端,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,处理器执行程序时实现上述终端侧的信息传输方法的步骤。
本公开实施还提供了一种终端,包括:
第一确定模块,用于确定上行控制信息UCI对应的多个物理上行控制信道PUCCH资源;
第二确定模块,用于根据多个SR配置的SR状态,在多个PUCCH资源中确定用于传输UCI的目标PUCCH资源;
第一发送模块,用于通过目标PUCCH资源发送UCI。
本公开实施例还提供了一种信息传输方法,应用于网络设备,包括:
确定上行控制信息UCI对应的多个物理上行控制信道PUCCH资源;
在多个PUCCH资源中检测UCI,并根据检测到UCI的PUCCH资源,确定多个SR配置的SR状态。
其中,确定上行控制信息UCI对应的多个物理上行控制信道PUCCH资源的步骤,包括:
根据为UCI配置的初始循环移位参数,确定UCI对应的多个PUCCH资源。
其中,根据为UCI配置的初始循环移位参数,确定UCI对应的多个PUCCH资源的步骤,包括:
根据为UCI配置的初始循环移位参数,确定M+1个循环移位参数集合;其中,每个循环移位参数集合包含多个循环移位参数,每个循环移位参数集合中的每个循环移位参数对应一个UCI的反馈状态;循环移位参数集合中的每个循环移位参数均通过对初始循环移位参数进行预定偏移确定;
其中,M为大于1的整数,所述M+1个循环移位参数集合中的一个循环移位参数集合用于当多个调度请求SR配置的SR状态为否定negative SR时传输所述UCI,所述多个循环移位参数集合中的其余循环移位参数集合中的每个循环移位参数集合分别用于当多个SR配置中与该循环移位参数集合对应的一个SR配置的SR状态为肯定positive SR时传输所述UCI。
其中,在M+1个PUCCH资源中检测UCI,并根据检测到UCI的PUCCH资源,确定多个SR配置的SR状态,包括:
使用M+1个循环移位参数集合中的每个循环移位参数检测UCI;
当使用与negative SR对应的循环移位参数集合中的循环移位参数检测到UCI时,确定多个SR配置中的每个SR配置的SR状态都为negative SR;
当使用与多个SR配置中的一个SR配置对应的循环移位参数集合中的循环移位参数检测到UCI时,确定多个SR配置中的一个SR配置的SR状态为positive SR。
其中,确定上行控制信息UCI对应的多个物理上行控制信道PUCCH资源的步骤,包括:
根据下行控制信息DCI中的PUCCH资源指示域,确定UCI对应的M+1个PUCCH资源;或者,
从预先配置的J个PUCCH资源中确定M+1个PUCCH资源作为M+1个PUCCH资源;其中,J为大于或等于M+1的整数;
其中,M为大于1的整数,所述M+1个PUCCH资源中的一个PUCCH资源用于当多个调度请求SR配置的SR状态为否定negative SR时传输所述UCI,所述M+1个PUCCH资源中的其余PUCCH资源中的每个PUCCH资源分别用于当多个SR配置中与该PUCCH资源对应的一个SR配置的SR状态为肯定positive SR时传输所述UCI。
其中,根据下行控制信息DCI中的PUCCH资源指示域,确定UCI对应的M+1个PUCCH资源的步骤,包括:
根据DCI中的PUCCH资源指示域,从预先确定的一个PUCCH资源集合中确定M+1个PUCCH资源。
其中,根据DCI中的PUCCH资源指示域,从预先确定的一个PUCCH资源集合中确定M+1个PUCCH资源,包括:
若PUCCH资源指示域指示UCI对应PUCCH资源集合中的第k个PUCCH资源,则将PUCCH资源集合中的第k个PUCCH资源以及第(k+i)mod N个PUCCH资源确定为M+1个PUCCH资源,或者,将PUCCH资源集合中的第k个PUCCH资源以及第(k+4+i)mod N个PUCCH资源确定为M+1个PUCCH资源;其中,i为大于0、且小于或等于M的整数,N为PUCCH资源集合中所包含的PUCCH资源的个数。
其中,根据DCI中的PUCCH资源指示域,从预先确定的一个PUCCH资源集合中确定M+1个PUCCH资源,包括:
当PUCCH资源指示域指示PUCCH资源集合中的一个PUCCH资源子集时,其中,PUCCH资源子集包含超过1个PUCCH资源;
若PUCCH资源子集中包含的PUCCH资源数目小于M+1个,则依此从PUCCH资源集合中的从PUCCH资源子集开始的多个PUCCH资源子集中确定M+1个PUCCH资源;
若PUCCH资源子集中包含的PUCCH资源数目等于M+1,则将PUCCH 资源子集中的PUCCH资源作为M+1个PUCCH资源;
若PUCCH资源子集中包含的PUCCH资源数目大于M+1个,则从PUCCH资源子集中确定M+1个PUCCH资源。
其中,J个PUCCH资源为高层信令配置的,或者,根据UCI的比特数从高层信令预先配置的多个PUCCH资源集合中确定的一个资源集合。
其中,所述M+1个循环移位参数集合与negative SR以及多个SR配置中的每个SR配置的positive SR状态的对应关系为预先定义的或者网络设备配置的或者根据预定的规则确定的。
其中,M+1个PUCCH资源与negative SR以及多个SR配置中的每个SR配置的positive SR状态的对应关系为预先定义的或者由网络设备确定并通知给终端的或者根据预定的规则确定的。
其中,在M+1个PUCCH资源中检测UCI,并根据检测到UCI的PUCCH资源,确定多个SR配置的SR状态,包括:
当在M+1个PUCCH资源中与negative SR对应的PUCCH资源上检测到UCI时,确定多个SR配置中的每个SR配置的SR状态都为negative SR;
当在M+1个PUCCH资源中与多个SR配置中的一个SR配置对应的PUCCH资源上检测到UCI时,确定多个SR配置中的一个SR配置的SR状态为positive SR。
其中,M根据以下中的一项确定:
终端所支持的最大SR配置的数目;
为终端配置的SR配置的数目;
为终端配置的在同一个SR传输机会中重叠的SR配置的数目;
网络设备发送的配置信令所指示的数目。
其中,UCI包括以下信息中的至少一项:
混合自动重传请求确认HARQ-ACK和信道状态信息CSI。
其中,在确定上行控制信息对应的多个物理上行控制信道PUCCH资源之前,方法还包括:
当满足以下条件中的一项时,执行确定上行控制信息对应的M+1个物理上行控制信道PUCCH资源的步骤:
当前时刻为SR的传输机会;或者,
当前时刻为SR的传输机会,且在传输机会中存在多个SR配置。
本公开实施例还提供了一种网络设备,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,处理器执行程序时实现上述网络设备侧的信息传输方法的步骤。
本公开实施例还提供了一种网络设备,包括:
第一处理模块,用于确定上行控制信息UCI对应的多个物理上行控制信道PUCCH资源;
第二处理模块,用于在多个PUCCH资源中检测UCI,并根据检测到UCI的PUCCH资源,确定多个SR配置的SR状态。
本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时,实现上述终端侧的信息传输方法的步骤。
本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时,实现上述网络设备侧的信息传输方法的步骤。
附图说明
图1表示本公开实施例中终端侧的信息传输方法的流程示意图;
图2表示本公开实施例中终端的模块结构示意图;
图3表示本公开实施例的终端框图;
图4表示本公开实施中网络设备侧的信息传输方法的流程示意图;
图5表示本公开实施例中网络设备的模块结构示意图;
图6表示本公开实施例的网络设备框图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。在下面的描述中,提供诸如具体的配置和组件的特定细节仅仅是为了帮助全面理解本公开的实施例。因此,本领域技术人员应该清楚,可以对这里描述的实施例进行各种改变和修改而不脱离本公开的范围和精神。另外,为了清楚和简洁,省略了对已知功能和构造的描 述。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
在本公开的各种实施例中,应理解,下述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。
另外,本文中术语“***”和“网络”在本文中常可互换使用。
在本申请所提供的实施例中,应理解,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本公开实施例中,网络设备的形式不限,可以是包括宏基站(Macro Base Station)、微基站(Pico Base Station)、Node B(3G移动基站的称呼)、增强型基站(eNB)、家庭增强型基站(Femto eNB或Home eNode B或Home eNB或HeNB)、中继站、接入点、RRU(Remote Radio Unit,远端射频模块)、RRH(Remote Radio Head,射频拉远头)等的接入网。终端可以是移动电话(或手机),或者其他能够发送或接收无线信号的设备,包括用户设备、个人数字助理(PDA)、无线调制解调器、无线通信装置、手持装置、膝上型计算机、无绳电话、无线本地回路(WLL)站、能够将移动信号转换为WiFi信号的CPE(Customer Premise Equipment,客户终端)或移动智能热点、智能家电、或其他不通过人的操作就能自发与移动通信网络通信的设备等。
具体地,本公开的实施例提供了一种信息传输方法,解决了现有技术中当终端同时存在SR传输和其他UCI传输时,无法确定是多个SR配置中的哪个SR与其他UCI同时传输的问题。
如图1所示,本公开的实施例提供了一种信息传输方法,具体包括以下步骤11至13。
步骤11:确定上行控制信息UCI对应的多个物理上行控制信道PUCCH 资源。
其中,多个PUCCH资源可选的为M+1个PUCCH资源。M为大于1的整数,M+1个PUCCH资源中的一个PUCCH资源用于当多个调度请求SR配置的SR状态为否定negative SR时传输UCI,M+1个PUCCH资源中的其余PUCCH资源中的每个PUCCH资源分别用于当多个SR配置中与该PUCCH资源对应的一个SR配置的SR状态为肯定positive SR时传输UCI。也就是说,M+1个PUCCH资源中的1个PUCCH对应negative SR,剩余的M个PUCCH资源分别对应SR配置中的每个SR配置为positive SR的状态。
可选地,M根据以下中的一项确定:终端所支持的最大SR配置的数目;终端配置的SR配置的数目;终端配置的在同一个SR传输机会中重叠的SR配置的数目;以及网络设备发送的配置信令所指示的数目。也就是说,M为***中支持的、配置给同一个终端的多个SR配置的最大个数(此时,如果终端实际被配置的SR配置的个数不足最大值,相当于M+1个PUCCH资源中存在没有对应实际的SR配置的PUCCH资源,这些资源将不会被终端选择使用);或者,M为配置给同一个终端的多个SR配置的个数;或者,M为配置给同一个终端的多个SR配置中传输机会存在重叠的SR配置的个数;或者,M为网络侧通过配置信令通知给终端的。
假设终端有两个SR配置,分别为SR 1和SR 2,且按照SR 1和SR 2的配置周期和偏移值,SR 1与SR 2的传输机会在时刻1重叠。若在时刻1上还存在其他UCI传输,则根据配置的SR配置的个数,或者在同一时刻重叠的SR配置的个数,或者网络设备发送的配置信息,确定M=2,即需要M+1=3个PUCCH资源。若在时刻1,SR 1为positive SR,即需要传输positive SR 1
步骤12:根据多个SR配置的SR状态,在多个PUCCH资源中确定用于传输UCI的目标PUCCH资源。
由于多个PUCCH资源中的1个PUCCH对应negative SR,剩余的PUCCH资源分别对应SR配置中的每个SR配置为positive SR的状态。因此终端在确定SR配置的SR状态后,可确定相应的PUCCH资源,用于目标PUCCH资源隐式指示SR配置的SR状态。
步骤13:通过目标PUCCH资源,将UCI发送至网络设备。
终端通过目标PUCCH资源将UCI发送至网络设备,网络设备通过检测多个PUCCH资源,再根据检测到UCI的PUCCH资源确定终端多个SR配置的SR状态,从而保证网络设备对终端正确的上行调度。
下面本实施例将进一步结合具体实现方式对信息传输方法做进一步介绍。在一种可选的实施例中,步骤11可通过但不限于以下方式实现:
方式一、根据为UCI配置的初始循环移位参数,确定UCI对应的多个PUCCH资源。
在一种可选实施例中,根据为UCI配置的初始循环移位参数,确定M+1个循环移位参数集合。其中,每个循环移位参数集合包含多个循环移位参数,每个循环移位参数集合中的每个循环移位参数对应一个UCI的反馈状态;循环移位参数集合中的每个循环移位参数均通过对所述初始循环移位参数进行预定偏移确定,一个循环移位参数对应一个PUCCH资源。在该方式下,其中,M为大于1的整数,所述M+1个循环移位参数集合中的一个循环移位参数集合用于当多个调度请求SR配置的SR状态为否定negative SR时传输所述UCI,多个循环移位参数集合中的其余循环移位参数集合中的每个循环移位参数集合分别用于当多个SR配置中与该循环移位参数集合对应的一个SR配置的SR状态为肯定positive SR时传输所述UCI。具体地,终端根据配置给UCI的初始循环移位参数CS initial,确定M+1组循环移位参数集合,其中,每个循环移位参数对应一个PUCCH资源,每组循环移位参数集合为基于初始循环移位参数经过预定的偏移得到的,其中,循环移位参数集合中的循环移位参数都对应在同一个RB中的循环移位。
此时终端通过目标PUCCH资源,发送UCI时,根据UCI的反馈状态(ACK和NACK),选择目标循环移位参数集合中对应UCI的反馈状态的1个循环移位参数;使用该1个循环移位参数,发送UCI;相应的,网络设备侧通过使用该循环移位参数集合中的哪个循环移位参数检测到UCI,可以判断UCI的反馈状态;例如UCI为1比特HARQ-ACK反馈,一个循环移位参数集合中的第一个参数对应NACK,第二个参数对应ACK,则如果使用第一个参数检测到UCI,则UCI为1比特NACK,如果使用第二个参数检测到UCI,则UCI为1比特ACK。
可选地,当多个SR配置中的每个SR配置的SR状态都为negative SR时,将M+1个循环移位参数集合中与negative SR对应的循环移位参数集合,确定为用于传输UCI的目标循环移位参数集合;当多个SR配置中的一个SR配置的SR状态为positive SR时,将M+1个循环移位参数集合中与一个SR配置对应的循环移位参数集合,确定为用于传输UCI的目标循环移位参数集合。
其中,M+1个循环移位参数集合与negative SR以及M个SR配置的对应关系为预先定义的,或者为网络侧配置的,或者为根据预定的规则确定的。例如M+1个循环移位参数集合中的第i个循环移位参数集合对应第i个SR配置,最后一个循环移位参数集合对应negative SR,或者反之,M+1个循环移位参数集合中的第一个循环移位参数集合对应negative SR,其余M个循环移位参数集合一次对应编号从小到大的M个SR配置,例如表1或表2所示:
表1
HARQ-ACK/SR state NACK ACK
Negative SR CS initial (CS initial+6)mod12
Positive SR,SR配置1 (CS initial+2)mod12 (CS initial+8)mod12
Positive SR,SR配置2 (CS initial+4)mod12 (CS initial+10)mod12
其中,表1为1比特HARQ-ACK时,循环移位参数集合与SR状态的对应关系表。
表2
Figure PCTCN2018122003-appb-000001
其中,表2为2比特HARQ-ACK时,循环移位参数集合与SR状态的对 应关系表。
在一种实施例中,假设时刻1上存在1比特HARQ-ACK传输,且HARQ-ACK被配置使用PUCCH format 0,被配置了一个初始循环移位参数Cinitial=0,则根据Cinitial=0以及表1,可以得到如表3所示的循环移位参数集合,从而确定SR 1为positive SR时所使用的循环移位参数集合为{2,8}。
表3
HARQ-ACK/SR state NACK ACK
Negative SR 0 6
Positive SR,SR配置1 2 8
Positive SR,SR配置2 4 10
终端生成1比特HARQ-ACK信息,如果HARQ-ACK为NACK,则使用循环移位参数“2”发送HARQ-ACK,如果HARQ-ACK为ACK,则使用循环移位参数“8”发送HARQ-ACK,使用某个循环移位参数Ccs对确定基序列进行循环移位,通过发送该经过循环移位的序列给网络设备,通过发送经过不同的循环移位的序列,来表达HARQ-ACK的反馈状态;通过使用positive SR 1对应的循环移位参数集合才隐式表达存在positive SR 1传输。
其中,值得指出的是,2比特HARQ-ACK传输的过程类似,只是映射表格不同,每个循环移位参数集合中的元素个数不同,其余同上,不再赘述。
其中,值得指出的是,该方式下,M+1个循环移位参数集合与negative SR以及多个SR配置中的每个SR配置的positive SR状态的对应关系为预先定义的或者网络设备配置的或者根据预定的规则确定的。
方式二、根据下行控制信息DCI中的PUCCH资源指示域,确定UCI对应的M+1个PUCCH资源。
在一种可选实施例中,终端可以根据DCI中的PUCCH资源指示域,从预先确定的一个PUCCH资源集合中确定M+1个PUCCH资源。
进一步地,M+1个PUCCH资源与negative SR以及多个SR配置中的每个SR配置的positive SR状态的对应关系为预先定义的或者网络设备配置的或者根据预定的规则确定的。也就是说,M+1个PUCCH资源与negative SR以及M个SR配置的对应关系为预先定义的或者网络侧配置的或者根据预定 的规则确定的。例如M+1个PUCCH资源中的第i个PUCCH资源对应第i个SR配置,最后一个PUCCH资源对应negative SR,或者反之,M+1个PUCCH资源中的第一个PUCCH资源对应negative SR,其余M个PUCCH资源一次对应编号从小到大的M个SR配置,例如表4或表5所示。
表4
HARQ-ACK/SR state PUCCH资源
Negative SR M+1个资源中的第1个资源
Positive SR,SR配置1 M+1个资源中的第2个资源
Positive SR,SR配置2 M+1个资源中的第3个资源
其中,表4为2个SR配置时,PUCCH资源与SR状态的对应关系表。
表5
HARQ-ACK/SR state PUCCH资源
Negative SR M+1个资源中的第1个资源
Positive SR,SR配置1 M+1个资源中的第2个资源
Positive SR,SR配置2 M+1个资源中的第3个资源
Positive SR,SR配置3 M+1个资源中的第4个资源
其中,表5为3个SR配置时,PUCCH资源与SR状态的对应关系表。
可选地,若PUCCH资源指示域指示UCI对应所述PUCCH资源集合中的第k个PUCCH资源,则将PUCCH资源集合中的第k个PUCCH资源以及第(k+i)mod N个PUCCH资源确定为M+1个PUCCH资源,或者,将PUCCH资源集合中的第k个PUCCH资源以及第(k+4+i)mod N个PUCCH资源确定为M+1个PUCCH资源。其中,i为大于0、且小于或等于M的整数,N为PUCCH资源集合中所包含的PUCCH资源的个数。假设PUCCH资源指示域指示UCI对应的PUCCH资源集合中的第k个PUCCH资源,则将UCI对应的PUCCH资源集合中第k个PUCCH资源以及第(k+i)modN个PUCCH资源作为选择的M+1个PUCCH资源,或者,将UCI对应的PUCCH资源集合中第k个PUCCH资源以及第(k+4+i)modN个PUCCH资源作为选择的M+1个PUCCH资源。其中,i=1、2、…、M,N为UCI对应的PUCCH资源集合中所包含的PUCCH资源个数。其中,AmodB表示A除以B得到的余 数。
假设时刻1上还存在HARQ-ACK传输,假设高层信令预先为终端配置了4个PUCCH资源集合,每个PUCCH资源集合对应不同的UCI比特数范围,终端根据当前需要传输的HARQ-ACK比特数,从中选择一个PUCCH资源集合。假设该选择的PUCCH资源集合中包含4个PUCCH资源,其中,2比特PUCCH资源指示域与所指示的PUCCH资源的对应关系如表6所示:
表6
PUCCH resource indicator PUCCH resource
‘00’ PUCCH资源集合中的第1个资源
‘01’ PUCCH资源集合中的第2个资源
‘10’ PUCCH资源集合中的第3个资源
‘11’ PUCCH资源集合中的第4个资源
假设调度需要在时刻1进行HARQ-ACK反馈的下行传输所对应的PDCCH所使用的DCI中的2比特PUCCH资源指示域指示状态为“10”,根据表6所示的PUCCH资源指示域与所指示的PUCCH资源的对应关系,可以确定M+1个资源依次为PUCCH资源集合中的第3、4、1个资源。假设M+1个资源与SR状态的对应关系如表3所示,则PUCCH资源集合中的第3个资源对应negative SR,第4个资源对应SR 1为positive,第1个资源对应SR 2为positive。
终端产生HARQ-ACK反馈信息,根据SR1为positive,确定使用的PUCCH资源为M+1个PUCCH资源中的第2个资源,即PUCCH资源集合中的第4个资源,在确定的PUCCH资源上,按照配置给HARQ-ACK的PUCCH format传输HARQ-ACK;PUCCH format可以是format1或2或3或4,不同的PUCCH format其对应的PUCCH资源不同,一个PUCCH资源具体可以表现为一组PUCCH资源参数,包括该PUCCH传输所需的各种参数,如时域资源大小和位置、频域资源大小和位置、循环移位(如果需要,例如PUCCH format1)、正交扩频OCC序列(如果需要,例如PUCCH format1或4)、跳频参数等中的部分或全部参数。其中,值得指出的是本公开实施例中所有对PUCCH资源的定义均与此处相同。
在另一种实施例中,根据UCI比特数范围确定的PUCCH资源集合中还可以包含超过4个资源,例如包含8个资源,则PUCCH资源指示域与所指示的PUCCH资源的对应关系如表7所示:
表7
PUCCH resource indicator PUCCH resource
‘00’ PUCCH资源集合中的第{1,5}个资源
‘01’ PUCCH资源集合中的第{2,6}个资源
‘10’ PUCCH资源集合中的第{3,7}个资源
‘11’ PUCCH资源集合中的第{4,8}个资源
此时,2比特PUCCH资源指示域指示状态为“10”时,按照类似上述方式,确定PUCCH资源集合中与PUCCH资源指示域对应的第k=3个PUCCH资源(此时实际上PUCCH资源指示域指示了一个PUCCH资源子集合,该子集合包含了2个PUCCH资源,具体指示的是哪个资源可以根据其他因素隐式确定,例如根据对应的物理下行控制信道PDCCH的CCE index确定,本公开实施例仅以该PUCCH资源子集合中的第一个资源为例进行说明)对应negative SR,第(k+i)mod8个资源分别对应不同SR配置,即第(3+1)mod8=4个资源对应positive SR 1,即第(3+2)mod8=1个资源对应positive SR 2
在另一种可选实施例中,当PUCCH资源指示域指示PUCCH资源集合中的一个PUCCH资源子集时,其中,PUCCH资源子集包含超过1个PUCCH资源。
若PUCCH资源子集中包含的PUCCH资源数目小于M+1个,则依此从PUCCH资源集合中的从所述PUCCH资源子集开始的多个PUCCH资源子集中确定M+1个PUCCH资源。也就是说,当第一UCI对应的PUCCH资源集合中与PUCCH资源指示域所对应的为一个PUCCH资源子集,且PUCCH资源子集中包含超过1个PUCCH资源时,依次取与PUCCH资源指示域所对应一个PUCCH资源子集中的PUCCH资源以及后续PUCCH资源子集中的PUCCH资源,作为被选择的M+1个PUCCH资源。假设根据UCI比特数范围确定的PUCCH资源集合中还可以包含超过4个资源,例如包含8个资源,如表7所示,2比特PUCCH资源指示域指示状态为“10”时,确定PUCCH资 源集合中与PUCCH资源指示域指示了一个PUCCH资源子集合,可以确定M+1个PUCCH资源为与PUCCH资源指示域所对应的第三个PUCCH资源子集合中的两个PUCCH资源,以及下一个PUCCH资源子集合中的一个PUCCH资源(例如约定为第一个PUCCH资源),即PUCCH资源集合中的第3个PUCCH资源对应negative SR,第7个PUCCH资源对应positive SR 1,第4个PUCCH资源对应positive SR 2
若PUCCH资源子集中包含的PUCCH资源数目等于M+1,则将PUCCH资源子集中的PUCCH资源作为M+1个PUCCH资源。也就是说,当UCI对应的PUCCH资源集合中与PUCCH资源指示域所对应的为一个PUCCH资源子集,且PUCCH资源子集中包含M+1个PUCCH资源时,将PUCCH资源指示域所对应一个PUCCH资源子集作为被选择的M+1个PUCCH资源。
若PUCCH资源子集中包含的PUCCH资源数目大于M+1个,则从PUCCH资源子集中确定M+1个PUCCH资源。也就是说,当UCI对应的PUCCH资源集合中与PUCCH资源指示域所对应的为一个PUCCH资源子集,且PUCCH资源子集中包含大于M+1个PUCCH资源时,从PUCCH资源指示域所对应一个PUCCH资源子集中选择M+1个PUCCH资源(例如该子集中的前M+1或后M+1个资源)作为被选择的M+1个PUCCH资源。
方式三、从预先配置的J个PUCCH资源中确定M+1个PUCCH资源作为M+1个PUCCH资源。其中,J为大于或等于M+1的整数。
其中,J个PUCCH资源为高层信令配置的,或者,根据UCI的比特数从高层信令预先配置的多个PUCCH资源集合中确定的一个资源集合。具体地,预先配置的J个PUCCH资源为高层信令配置的,或者为根据UCI的比特数从高层信令预先配置的多个PUCCH资源集合中选择一个PUCCH资源集合,将PUCCH资源集合中的资源作为J个PUCCH资源。从预先配置的J个PUCCH资源中确定M+1个PUCCH资源作为M+1个PUCCH资源的方式可以包括但不限于以下方式:选择J个PUCCH资源中的前M+1个或后M+1个。其中,M+1个PUCCH资源与negative SR以及M个SR配置的对应关系为预先定义的或者网络侧配置的或者根据预定的规则确定的。例如M+1个PUCCH资源中的第i个PUCCH资源对应第i个SR配置,最后一个PUCCH 资源对应negative SR,或者反之,M+1个PUCCH资源中的第一个PUCCH资源对应negative SR,其余M个PUCCH资源一次对应编号从小到大的M个SR配置。假设时刻1上还存在CSI传输,且配置支持CSI与HARQ-ACK/SR同时传输,假设高层信令预先为终端配置了4个对应于CSI的PUCCH资源,可以确定M+1个资源依次为CSI对应的4个PUCCH资源中的第1、2、3个资源,其中,CSI对应的4个PUCCH资源中的第1个资源(即M+1个资源中的第1个资源)对应negative SR,CSI对应的4个PUCCH资源中的第2个资源(即M+1个资源中的第2个资源)对应positive SR 1,CSI对应的4个PUCCH资源中的第3个资源(即M+1个资源中的第3个资源)对应positive SR 2
值得指出的是,在方式2和方式3中,M为大于1的整数,所述M+1个PUCCH资源中的一个PUCCH资源用于当多个调度请求SR配置的SR状态为否定negative SR时传输所述UCI,所述M+1个PUCCH资源中的其余PUCCH资源中的每个PUCCH资源分别用于当多个SR配置中与该PUCCH资源对应的一个SR配置的SR状态为肯定positive SR时传输所述UCI。
进一步地,终端如何根据多个SR配置的SR状态确定传输UCI的目标PUCCH资源可通过但不限于以下方式实现:
对应于方式一、步骤12可通过以下方式实现:根据UCI的反馈状态,选择目标循环移位参数集合中对应UCI的反馈状态的1个循环移位参数;使用该1个循环移位参数,发送UCI。具体地,当为negative SR(即M个SR配置中没有positive SR,即不需要传输SR),使用M+1个循环移位参数集合中与negative SR对应的循环移位参数集合发送UCI,即,使用仅存在UCI时,UCI对应的循环移位参数集合发送UCI。另一方面,当M个SR配置中的第i个SR为positive SR时,使用第i个SR对应的循环移位参数集合发送UCI;其中,M+1个循环移位参数集合除了与negative SR对应的循环移位参数集合之外的M个循环移位参数集合中的每个集合分别对应M个SR配置中的一个SR配置。
对应于方式二和三、步骤12可以包括:当多个SR配置中的每个SR配置的SR状态都为negative SR时,将M+1个PUCCH资源中与negative SR 对应的PUCCH资源,确定为用于传输UCI的目标PUCCH资源。也就是说,当为negative SR,使用M+1个PUCCH资源中与negative SR对应的PUCCH资源发送UCI,即,使用仅存在UCI时,UCI对应的PUCCH资源发送UCI。另一方面,当多个SR配置中的一个SR配置的SR状态为positive SR时,将M+1个PUCCH资源中与一个SR配置对应的PUCCH资源,确定为用于传输UCI的目标PUCCH资源。也就是说,当M个SR配置中的第i个SR为positive SR,使用第i个SR对应的PUCCH资源发送UCI;其中,M+1个PUCCH资源中除了与negative SR对应的PUCCH资源以外的M个PUCCH资源中的每个PUCCH资源分别对应M个SR配置中的一个SR配置。
可选地,UCI包括以下信息中的至少一项:混合自动重传请求确认HARQ-ACK和信道状态信息CSI。当UCI包括CSI,且CSI由第一部分CSI(CSI part1)和第二部分CSI(CSI part2)构成时,对CSI part1对应的CRC进行加扰。其中,CSI包括周期CSI、非周期CSI、半持续调度CSI中的一种或多种。
以CSI为例,终端产生CSI反馈信息,根据SR 1为positive,确定使用的PUCCH资源为M+1个PUCCH资源中的第2个资源,即CSI对应的4个PUCCH资源中的第2个资源,在确定的PUCCH资源上,按照配置给CSI的PUCCH format传输CSI;PUCCH format可以是format 2或3或4。
对应于上述方式3,以CSI为例,M+1个资源还可以为CSI对应的4个PUCCH资源中根据配置的码率满足可以承载CSI传输的第一个资源开始的3个资源,例如假设第1个资源不能根据配置的码率承载CSI而第2资源可以,则确定M+1个资源依次为CSI对应的4个PUCCH资源中的第2、3、4个资源。其中,CSI对应的4个PUCCH资源中的第2个资源(即M+1个资源中的第1个资源)对应negative SR,CSI对应的4个PUCCH资源中的第3个资源(即M+1个资源中的第2个资源)对应positive SR 1,CSI对应的4个PUCCH资源中的第4个资源(即M+1个资源中的第3个资源)对应positive SR 2
值得指出的是,上述实施例仅以CSI为例进行说明,UCI在存在CSI的同时还可以存在HARQ-ACK(例如1或2比特),且配置了CSI与HARQ-ACK 同时传输,则上述过程替换为在对应的PUCCH资源上传输HARQ-ACK和CSI,具体过程不再赘述。
在另一种实施例中,步骤11之前还可包括当满足以下条件中的一项时,执行确定上行控制信息UCI对应的M+1个物理上行控制信道PUCCH资源的步骤:当前时刻为SR的传输机会;或者,当前时刻为SR的传输机会,且在所述传输机会中存在多个SR配置。也就是说,在SR的传输机会中,不论该SR传输机会中是否包含至少2个SR配置,都执行上述操作。终端可以在任何一个与其他UCI重叠的SR 1和SR 2的传输机会中都按照上述方式执行SR传输,即如果一个SR传输机会中仅存在一个SR配置,且与其他UCI重叠,也可以执行上述过程,此时,相当于任何一个SR传输机会中,UCI的传输机制都是相同的;该方式可以对任一SR传输机会实现统一的传输方案。
或者,在包含至少2个SR配置的SR传输机会中,即仅在包含至少2个SR配置的SR传输机会中执行上述操作。终端在存在多个SR配置重叠的传输机会且该传输机会中还存在其他UCI时执行上述过程。如果一个SR传输机会中仅存在一个SR配置,且该传输机会中还存在其他UCI,也可以不按照上述方式传输,而使用其他约定的方式传输;例如通过在positive SR对应的SR资源上传输其他UCI来隐式表达positive SR,或者仅1比特SR与其他UCI级联在一起在其他UCI对应的资源上同时传输等;例如,在时刻2中仅为SR 1的传输机会,则:在时刻2中,仅可能存在一个positive SR 1,可以通过在SR 1对应的SR资源上传输其他UCI来隐式表达positive SR 1,或者不论是否positive SR 1,在时刻2中采用1比特SR与其他UCI级联在一起,在其他UCI对应的资源上同时传输,因为时刻2中仅存在一个SR配置,网络设备总是可以判断该1比特SR对应SR 1;又例如,在时刻3中仅为SR 2的传输机会,则:在时刻3中,仅可能存在一个positive SR 2,可以通过在SR 2对应的SR资源上传输其他UCI来隐式表达positive SR 2,或者不论是否positive SR 2,在时刻3中采用1比特SR与其他UCI级联在一起,在其他UCI对应的资源上同时传输,因为时刻3中仅存在一个SR配置,网络设备总是可以判断该1比特SR对应SR 2;此时,相对于在每个SR传输机会中都执行上述操作,仅在包含多个SR的传输机会中执行,降低了对其他UCI的传输资源的占用开 销,但不同的SR传输机会中,所使用的传输方案可能不同,仅一个SR时,不需要确定M+1个资源,其他UCI可以仅确定出一个资源用于传输即可;但由于网络设备和终端预先知道多个SR配置的具体配置信息,例如周期,则可以预先知道每个SR传输机会中的SR配置重叠情况,从而确定选择对应的传输方案进行传输,也不会存在网络设备和终端对传输方案的理解歧义。
本公开实施例的信息传输方法中,当终端存在多个SR配置时,在SR的传输机会中如果存在UCI,则确定M+1个PUCCH资源,并根据被选择的SR在M+1个PUCCH资源中选择一个传输UCI,通过传输UCI所使用的PUCCH资源隐式指示多个SR配置的SR状态,从而保证网络设备对终端正确的上行调度。
以上实施例就本公开终端侧的的信息传输方法做出介绍,下面本实施例将结合附图对其对应的终端做进一步说明。
具体地,如图2所示,本公开实施例的终端200包括:
第一确定模块210,用于确定上行控制信息UCI对应的多个物理上行控制信道PUCCH资源;
第二确定模块220,用于根据多个SR配置的SR状态,在多个PUCCH资源中确定用于传输UCI的目标PUCCH资源;
第一发送模块230,用于通过目标PUCCH资源发送UCI。
其中,第一确定模块210包括:
第一确定子模块,用于根据为UCI配置的初始循环移位参数,确定UCI对应的多个PUCCH资源。
其中,第一确定子模块包括:
第一确定单元,用于根据为UCI配置的初始循环移位参数,确定M+1个循环移位参数集合;其中,每个循环移位参数集合包含多个循环移位参数,每个循环移位参数集合中的每个循环移位参数对应一个UCI的反馈状态;循环移位参数集合中的每个循环移位参数均通过对初始循环移位参数进行预定偏移确定;其中,一个循环移位参数对应一个PUCCH资源,其中,M为大于1的整数,所述M+1个循环移位参数集合中的一个循环移位参数集合用于当多个调度请求SR配置的SR状态为否定negative SR时传输所述UCI,所 述多个循环移位参数集合中的其余循环移位参数集合中的每个循环移位参数集合分别用于当多个SR配置中与该循环移位参数集合对应的一个SR配置的SR状态为肯定positive SR时传输所述UCI。
其中,第一确定单元包括:
第一确定子单元,用于当所述多个SR配置中的每个SR配置的SR状态都为negative SR时,将所述M+1个循环移位参数集合中与negative SR对应的循环移位参数集合,确定为用于传输所述UCI的目标循环移位参数集合;
第二确定子单元,用于当所述多个SR配置中的一个SR配置的SR状态为positive SR时,将所述M+1个循环移位参数集合中与所述一个SR配置对应的循环移位参数集合,确定为用于传输所述UCI的目标循环移位参数集合。
其中,第一确定模块210还包括:
第二确定子模块,用于根据下行控制信息DCI中的PUCCH资源指示域,确定UCI对应的M+1个PUCCH资源;或者,
第三确定子模块,用于从预先配置的J个PUCCH资源中确定M+1个PUCCH资源作为M+1个PUCCH资源;其中,J为大于或等于M+1的整数;
其中,M为大于1的整数,所述M+1个PUCCH资源中的一个PUCCH资源用于当多个调度请求SR配置的SR状态为否定negative SR时传输所述UCI,所述M+1个PUCCH资源中的其余PUCCH资源中的每个PUCCH资源分别用于当多个SR配置中与该PUCCH资源对应的一个SR配置的SR状态为肯定positive SR时传输所述UCI。
其中,第二确定子模块包括:
第三确定单元,用于根据DCI中的PUCCH资源指示域,从预先确定的一个PUCCH资源集合中确定M+1个PUCCH资源。
其中,第二确定子模块还包括:
第四确定单元,用于若PUCCH资源指示域指示UCI对应PUCCH资源集合中的第k个PUCCH资源,则将PUCCH资源集合中的第k个PUCCH资源以及第(k+i)mod N个PUCCH资源确定为M+1个PUCCH资源,或者,将PUCCH资源集合中的第k个PUCCH资源以及第(k+4+i)mod N个PUCCH资源确定为M+1个PUCCH资源;其中,i为大于0、且小于或等于M的整 数,N为PUCCH资源集合中所包含的PUCCH资源的个数。
其中,第二确定子模块还包括:
当PUCCH资源指示域指示PUCCH资源集合中的一个PUCCH资源子集时,其中,PUCCH资源子集包含超过1个PUCCH资源;
第五确定单元,用于若PUCCH资源子集中包含的PUCCH资源数目小于M+1个,则依此从PUCCH资源集合中的从PUCCH资源子集开始的多个PUCCH资源子集中确定M+1个PUCCH资源;
第六确定单元,用于若PUCCH资源子集中包含的PUCCH资源数目等于M+1,则将PUCCH资源子集中的PUCCH资源作为M+1个PUCCH资源;
第七确定单元,用于若PUCCH资源子集中包含的PUCCH资源数目大于M+1个,则从PUCCH资源子集中确定M+1个PUCCH资源。
其中,J个PUCCH资源为高层信令配置的,或者,根据UCI的比特数从高层信令预先配置的多个PUCCH资源集合中确定的一个资源集合。
其中,所述M+1个循环移位参数集合与negative SR以及多个SR配置中的每个SR配置的positive SR状态的对应关系为预先定义的或者网络设备配置的或者根据预定的规则确定的。
其中,M+1个PUCCH资源与negative SR以及多个SR配置中的每个SR配置的positive SR状态的对应关系为预先定义的或者网络设备配置的或者根据预定的规则确定的。
其中,第二确定模块220包括:
第四确定子模块,用于当多个SR配置中的每个SR配置的SR状态都为negative SR时,将M+1个PUCCH资源中与negative SR对应的PUCCH资源,确定为用于传输UCI的目标PUCCH资源;
第五确定子模块,用于当多个SR配置中的一个SR配置的SR状态为positive SR时,将M+1个PUCCH资源中与一个SR配置对应的PUCCH资源,确定为用于传输UCI的目标PUCCH资源。
其中,M根据以下中的一项确定:
终端所支持的最大SR配置的数目;
为终端配置的SR配置的数目;
为终端配置的在同一个SR传输机会中重叠的SR配置的数目;
网络设备发送的配置信令所指示的数目。
其中,UCI包括以下信息中的至少一项:
混合自动重传请求确认HARQ-ACK和信道状态信息CSI。
其中,终端还包括:第三确定模块,用于当满足以下条件中的一项时,执行确定上行控制信息UCI对应的M+1个物理上行控制信道PUCCH资源的步骤:
当前时刻为SR的传输机会;或者,
当前时刻为SR的传输机会,且在传输机会中存在多个SR配置。
本公开的终端实施例是与上述终端侧的信息传输方法的实施例对应的,上述方法实施例中的所有实现手段均适用于该终端的实施例中,也能达到相同的技术效果。当终端存在多个SR配置时,在SR的传输机会中如果存在UCI,则确定M+1个PUCCH资源,并根据被选择的SR在M+1个PUCCH资源中选择一个传输UCI,通过传输UCI所使用的PUCCH资源隐式指示多个SR配置的SR状态,从而保证网络设备对终端正确的上行调度。
如图3所示,本实施例提供一种终端,包括:
处理器31;以及通过总线接口32与所述处理器31相连接的存储器33,所述存储器33用于存储所述处理器31在执行操作时所使用的程序和数据,当处理器31调用并执行所述存储器33中所存储的程序和数据时,执行下列过程:确定上行控制信息UCI对应的多个物理上行控制信道PUCCH资源;
根据多个SR配置的SR状态,在多个PUCCH资源中确定用于传输UCI的目标PUCCH资源。
其中,收发机34与总线接口32连接,用于在处理器31的控制下接收和发送数据,具体用于:通过目标PUCCH资源发送UCI。
其中,处理器31执行计算机程序时实现以下步骤:
根据为UCI配置的初始循环移位参数,确定UCI对应的多个PUCCH资源。
其中,处理器31执行计算机程序时实现以下步骤:
根据为UCI配置的初始循环移位参数,确定M+1个循环移位参数集合; 其中,每个循环移位参数集合包含多个循环移位参数,每个循环移位参数集合中的每个循环移位参数对应一个UCI的反馈状态;循环移位参数集合中的每个循环移位参数均通过对初始循环移位参数进行预定偏移确定;其中,一个循环移位参数对应一个PUCCH资源,M为大于1的整数,所述M+1个循环移位参数集合中的一个循环移位参数集合用于当多个调度请求SR配置的SR状态为否定negative SR时传输所述UCI,所述多个循环移位参数集合中的其余循环移位参数集合中的每个循环移位参数集合分别用于当多个SR配置中与该循环移位参数集合对应的一个SR配置的SR状态为肯定positive SR时传输所述UCI。
其中,处理器31执行计算机程序时实现以下步骤:
当多个SR配置中的每个SR配置的SR状态都为negative SR时,将M+1个循环移位参数集合中与negative SR对应的循环移位参数集合,确定为用于传输UCI的目标循环移位参数集合;
当多个SR配置中的一个SR配置的SR状态为positive SR时,将M+1个循环移位参数集合中与一个SR配置对应的循环移位参数集合,确定为用于传输UCI的目标循环移位参数集合。
其中,处理器31执行计算机程序时实现以下步骤:
根据下行控制信息DCI中的PUCCH资源指示域,确定UCI对应的M+1个PUCCH资源;或者,
从预先配置的J个PUCCH资源中确定M+1个PUCCH资源作为M+1个PUCCH资源;其中,J为大于或等于M+1的整数;
其中,M为大于1的整数,所述M+1个PUCCH资源中的一个PUCCH资源用于当多个调度请求SR配置的SR状态为否定negative SR时传输所述UCI,所述M+1个PUCCH资源中的其余PUCCH资源中的每个PUCCH资源分别用于当多个SR配置中与该PUCCH资源对应的一个SR配置的SR状态为肯定positive SR时传输所述UCI。
其中,处理器31执行计算机程序时实现以下步骤:
根据DCI中的PUCCH资源指示域,从预先确定的一个PUCCH资源集合中确定M+1个PUCCH资源。
其中,处理器31执行计算机程序时实现以下步骤:
若PUCCH资源指示域指示UCI对应PUCCH资源集合中的第k个PUCCH资源,则将PUCCH资源集合中的第k个PUCCH资源以及第(k+i)mod N个PUCCH资源确定为M+1个PUCCH资源,或者,将PUCCH资源集合中的第k个PUCCH资源以及第(k+4+i)mod N个PUCCH资源确定为M+1个PUCCH资源;其中,i为大于0、且小于或等于M的整数,N为PUCCH资源集合中所包含的PUCCH资源的个数。
其中,处理器31执行计算机程序时实现以下步骤:
当PUCCH资源指示域指示PUCCH资源集合中的一个PUCCH资源子集时,其中,PUCCH资源子集包含超过1个PUCCH资源;
若PUCCH资源子集中包含的PUCCH资源数目小于M+1个,则依此从PUCCH资源集合中的从PUCCH资源子集开始的多个PUCCH资源子集中确定M+1个PUCCH资源;
若PUCCH资源子集中包含的PUCCH资源数目等于M+1,则将PUCCH资源子集中的PUCCH资源作为M+1个PUCCH资源;
若PUCCH资源子集中包含的PUCCH资源数目大于M+1个,则从PUCCH资源子集中确定M+1个PUCCH资源。
其中,J个PUCCH资源为高层信令配置的,或者,根据UCI的比特数从高层信令预先配置的多个PUCCH资源集合中确定的一个资源集合。
其中,M+1个循环移位参数集合与negative SR以及多个SR配置中的每个SR配置的positive SR状态的对应关系为预先定义的或者网络设备配置的或者根据预定的规则确定的。
其中,M+1个PUCCH资源与negative SR以及多个SR配置中的每个SR配置的positive SR状态的对应关系为预先定义的或者网络设备配置的或者根据预定的规则确定的。
其中,处理器31执行计算机程序时实现以下步骤:
当多个SR配置中的每个SR配置的SR状态都为negative SR时,将M+1个PUCCH资源中与negative SR对应的PUCCH资源,确定为用于传输UCI的目标PUCCH资源;
当多个SR配置中的一个SR配置的SR状态为positive SR时,将M+1个PUCCH资源中与一个SR配置对应的PUCCH资源,确定为用于传输UCI的目标PUCCH资源。
其中,M根据以下中的一项确定:
终端所支持的最大SR配置的数目;
为终端配置的SR配置的数目;
为终端配置的在同一个SR传输机会中重叠的SR配置的数目;
网络设备发送的配置信令所指示的数目。
其中,UCI包括以下信息中的至少一项:
混合自动重传请求确认HARQ-ACK和信道状态信息CSI。
其中,当满足以下条件中的一项时,处理器31执行计算机程序时实现确定上行控制信息UCI对应的M+1个物理上行控制信道PUCCH资源的步骤:
当前时刻为SR的传输机会;或者,
当前时刻为SR的传输机会,且在传输机会中存在多个SR配置。
需要说明的是,在图3中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器31代表的一个或多个处理器和存储器33代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机34可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的终端,用户接口35还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。处理器31负责管理总线架构和通常的处理,存储器33可以存储处理器31在执行操作时所使用的数据。
以上从终端侧介绍了本公开实施例的信息传输方法,下面将结合附图对网络设备侧的信息传输方法做进一步说明。
如图4所示,本公开实施例提供了一种信息传输方法,包括以下步骤:
步骤41:确定上行控制信息UCI对应的多个物理上行控制信道PUCCH资源。
其中,多个PUCCH资源可选地为M+1个PUCCH资源,其中,M为大于1的整数,M+1个PUCCH资源中的一个PUCCH资源用于当多个SR配置的SR状态为否定negative SR时传输UCI,M+1个PUCCH资源中的其余PUCCH资源中的每个PUCCH资源分别用于当多个SR配置中的与该PUCCH资源对应的一个SR配置的SR状态为肯定positive SR时传输UCI。即,M+1个PUCCH资源中的1个PUCCH对应negative SR,剩余的M个PUCCH资源分别对应SR配置中的每个SR配置为positive SR的状态。
可选地,M根据以下中的一项确定:终端所支持的最大SR配置的数目;终端配置的SR配置的数目;终端配置的在同一个SR传输机会中重叠的SR配置的数目;以及网络设备发送的配置信令所指示的数目。即,M为***中支持的、配置给同一个终端的多个SR配置的最大个数;或者,M为配置给同一个终端的多个SR配置的个数;或者,M为配置给同一个终端的多个SR配置中传输机会存在重叠的SR配置的个数;或者,M为网络侧通过配置信令通知给终端的。
步骤42:在多个PUCCH资源中检测UCI,并根据检测到UCI的PUCCH资源,确定多个SR配置的SR状态。
由于多个PUCCH资源中的1个PUCCH对应negative SR,剩余的PUCCH资源分别对应SR配置中的每个SR配置为positive SR的状态。若网络设备在某个PUCCH上检测到UCI后,可根据该PUCCH确定SR配置的SR状态,从而保证对终端正确的上行调度。
其中,与上述终端侧实施例类似,步骤41可以参照并不限于以下方式实现:
方式四、根据为UCI配置的初始循环移位参数,确定UCI对应的多个PUCCH资源。
可选地,根据为UCI配置的初始循环移位参数,确定UCI对应的M+1个PUCCH资源的步骤包括:根据为UCI配置的初始循环移位参数,确定M+1个循环移位参数集合。其中,每个循环移位参数集合包含多个循环移位参数,每个循环移位参数集合中的每个循环移位参数对应一个UCI的反馈状态;循环移位参数集合中的每个循环移位参数均通过对所述初始循环移位参数进行 预定偏移确定,一个循环移位参数对应一个PUCCH资源,M为大于1的整数,所述M+1个循环移位参数集合中的一个循环移位参数集合用于当多个调度请求SR配置的SR状态为否定negative SR时传输所述UCI,所述多个循环移位参数集合中的其余循环移位参数集合中的每个循环移位参数集合分别用于当多个SR配置中与该循环移位参数集合对应的一个SR配置的SR状态为肯定positive SR时传输所述UCI。即,每个循环移位参数对应一个PUCCH资源,每组循环移位参数集合为基于初始循环移位参数经过预定的偏移得到的,其中,循环移位参数集合中的循环移位参数都对应在同一个RB中的循环移位。
在该方式下,步骤42可参照以下方式实现:使用M+1个循环移位参数集合中的每个循环移位参数检测UCI;当使用与negative SR对应的循环移位参数集合中的循环移位参数检测到UCI时,确定多个SR配置中的每个SR配置的SR状态都为negative SR;当使用与多个SR配置中的一个SR配置对应的循环移位参数集合中的循环移位参数检测到UCI时,确定多个SR配置中的一个SR配置的SR状态为positive SR。也就是说,当使用与negative SR对应的循环移位参数集合接收到UCI时,确定SR的状态为negative,即M个SR配置都没有positive SR发送;当使用与第i个SR配置对应的循环移位参数集合接收到UCI时,确定SR的状态为第i个SR配置为positive SR,即M个SR配置中第i个SR配置发送了positive SR,则根据第i个SR配置对应的需求,进行上行调度。对应于上述方式一,根据上述表3所对应的多个循环移位参数集合检测PUCCH,最终在使用循环移位参数“2”或“8”时检测到PUCCH,则根据上述表格的对应关系,可以确定终端在时刻1中发送了positive SR 1,按照SR 1所对应的业务需求,对终端进行相应的上行调度;并根据使用循环移位参数“2”还是“8”检测到HARQ-ACK信息,进一步确定是否对相应下行进行重传。
在该实施例下,M+1个循环移位参数集合与negative SR以及多个SR配置中的每个SR配置的positive SR状态的对应关系为预先定义的或者网络设备配置的或者根据预定的规则确定的。
方式五、根据下行控制信息DCI中的PUCCH资源指示域,确定所述UCI 对应的M+1个PUCCH资源
在一种可选实施例中,网络设备可以根据DCI中的PUCCH资源指示域,从预先确定的一个PUCCH资源集合中确定M+1个PUCCH资源。进一步地,M+1个PUCCH资源与negative SR以及多个SR配置中的每个SR配置的positive SR状态的对应关系为预先定义的或者网络设备配置的或者根据预定的规则确定的。具体地可参照上述表4和表5所示,故在此不再赘述。
可选地,若PUCCH资源指示域指示UCI对应所述PUCCH资源集合中的第k个PUCCH资源,则将PUCCH资源集合中的第k个PUCCH资源以及第(k+i)mod N个PUCCH资源确定为M+1个PUCCH资源,或者,将PUCCH资源集合中的第k个PUCCH资源以及第(k+4+i)mod N个PUCCH资源确定为M+1个PUCCH资源。其中,i为大于0、且小于或等于M的整数,N为PUCCH资源集合中所包含的PUCCH资源的个数。对应于上述方式二,在确定的M+1个PUCCH资源上检测PUCCH,如果仅在M+1个PUCCH资源中的第2个资源,即PUCCH资源集合中的第4个资源上检测到PUCCH,则根据检测到PUCCH的资源隐式判断出终端传输了positive SR 1,按照SR 1所对应的业务需求,对终端进行相应的上行调度;进一步接收到HARQ-ACK,并根据HARQ-ACK确定是否对相应下行进行重传。
在另一种可选实施例中,当PUCCH资源指示域指示PUCCH资源集合中的一个PUCCH资源子集时,其中,PUCCH资源子集包含超过1个PUCCH资源。若PUCCH资源子集中包含的PUCCH资源数目小于M+1个,则依此从PUCCH资源集合中的从所述PUCCH资源子集开始的多个PUCCH资源子集中确定M+1个PUCCH资源。也就是说,当第一UCI对应的PUCCH资源集合中与PUCCH资源指示域所对应的为一个PUCCH资源子集,且PUCCH资源子集中包含超过1个PUCCH资源时,依次取与PUCCH资源指示域所对应一个PUCCH资源子集中的PUCCH资源以及后续PUCCH资源子集中的PUCCH资源,作为被选择的M+1个PUCCH资源。
若PUCCH资源子集中包含的PUCCH资源数目等于M+1,则将PUCCH资源子集中的PUCCH资源作为M+1个PUCCH资源。即,当UCI对应的PUCCH资源集合中与PUCCH资源指示域所对应的为一个PUCCH资源子集, 且PUCCH资源子集中包含M+1个PUCCH资源时,将PUCCH资源指示域所对应一个PUCCH资源子集作为被选择的M+1个PUCCH资源。
若PUCCH资源子集中包含的PUCCH资源数目大于M+1个,则从PUCCH资源子集中确定M+1个PUCCH资源。即,当UCI对应的PUCCH资源集合中与PUCCH资源指示域所对应的为一个PUCCH资源子集,且PUCCH资源子集中包含大于M+1个PUCCH资源时,从PUCCH资源指示域所对应一个PUCCH资源子集中选择M+1个PUCCH资源(例如该子集中的前M+1或后M+1个资源)作为被选择的M+1个PUCCH资源。
方式六、从预先配置的J个PUCCH资源中确定M+1个PUCCH资源作为所述M+1个PUCCH资源;其中,J为大于或等于M+1的整数
其中,J个PUCCH资源为高层信令配置的,或者,根据UCI的比特数从高层信令预先配置的多个PUCCH资源集合中确定的一个资源集合。具体地,从预先配置的J个PUCCH资源中确定M+1个PUCCH资源作为M+1个PUCCH资源的方式可以包括但不限于以下方式:选择J个PUCCH资源中的前M+1个或后M+1个。
其中,在方式五和方式六下,M为大于1的整数,所述M+1个PUCCH资源中的一个PUCCH资源用于当多个调度请求SR配置的SR状态为否定negative SR时传输所述UCI,所述M+1个PUCCH资源中的其余PUCCH资源中的每个PUCCH资源分别用于当多个SR配置中与该PUCCH资源对应的一个SR配置的SR状态为肯定positive SR时传输所述UCI。
进一步地,预先配置的J个PUCCH资源为高层信令配置的,或者为根据UCI的比特数从高层信令预先配置的多个PUCCH资源集合中选择一个PUCCH资源集合,将PUCCH资源集合中的资源作为J个PUCCH资源。对应于方式三,网络设备在确定的M+1个PUCCH资源上检测PUCCH,如果仅在M+1个PUCCH资源中的第2个资源,即CSI对应的4个PUCCH资源中的第2个资源上检测到PUCCH,则根据检测到PUCCH的资源隐式判断出终端传输了positive SR 1,按照SR 1所对应的业务需求,对终端进行相应的上行调度,进一步接收到CSI。
在方式五和方式六下,步骤42可参照并不限于以下方式实现:当在M+1 个PUCCH资源中与negative SR对应的PUCCH资源上检测到UCI时,确定多个SR配置中的每个SR配置的SR状态都为negative SR;当在M+1个PUCCH资源中与多个SR配置中的一个SR配置对应的PUCCH资源上检测到UCI时,确定多个SR配置中的一个SR配置的SR状态为positive SR。
可选地,UCI包括以下信息中的至少一项:混合自动重传请求确认HARQ-ACK和信道状态信息CSI。当UCI包括CSI,且CSI由第一部分CSI(CSI part1)和第二部分CSI(CSI part2)构成时,对CSI part1对应的CRC进行加扰。其中,CSI包括周期CSI、非周期CSI、半持续调度CSI中的一种或多种。
在另一种实施例中,步骤11之前还可包括当满足以下条件中的一项时,执行确定上行控制信息UCI对应的M+1个物理上行控制信道PUCCH资源的步骤:当前时刻为SR的传输机会;或者,当前时刻为SR的传输机会,且在所述传输机会中存在多个SR配置。也就是说,在SR的传输机会中,不论该SR传输机会中是否包含至少2个SR配置,都执行上述操作。或者,在包含至少2个SR配置的SR传输机会中,即仅在包含至少2个SR配置的SR传输机会中执行上述操作。
本公开实施例的信息传输方法中,网络设备在确定UCI对应的M+1个PUCCH资源上进行UCI检测,根据检测到UCI的PUCCH资源确定多个SR配置的SR状态,从而保证对终端正确的上行调度。
以上实施例就本公开实施例网络设备侧的信息传输方法做出介绍,下面本实施例将结合附图对其对应的网络设备做进一步说明。
如图5所示,本公开实施例的网络设备500包括:
第一处理模块510,用于确定上行控制信息UCI对应的多个物理上行控制信道PUCCH资源;
第二处理模块520,用于在多个PUCCH资源中检测UCI,并根据检测到UCI的PUCCH资源,确定多个SR配置的SR状态。
其中,第一处理模块510包括:
第一处理子模块,用于根据为UCI配置的初始循环移位参数,确定UCI对应的多个PUCCH资源。
其中,第一处理子模块包括:
第一处理单元,用于根据为UCI配置的初始循环移位参数,确定M+1个循环移位参数集合;其中,每个循环移位参数集合包含多个循环移位参数,每个循环移位参数集合中的每个循环移位参数对应一个UCI的反馈状态;循环移位参数集合中的每个循环移位参数均通过对初始循环移位参数进行预定偏移确定;其中,一个循环移位参数集合对应一个PUCCH资源;
其中,M为大于1的整数,所述M+1个循环移位参数集合中的一个循环移位参数集合用于当多个调度请求SR配置的SR状态为否定negative SR时传输所述UCI,所述多个循环移位参数集合中的其余循环移位参数集合中的每个循环移位参数集合分别用于当多个SR配置中与该循环移位参数集合对应的一个SR配置的SR状态为肯定positive SR时传输所述UCI。
其中,第二处理模块520包括:
第一检测子模块,用于使用M+1个循环移位参数集合中的每个循环移位参数检测UCI;
第二处理子模块,用于当使用与negative SR对应的循环移位参数集合中的循环移位参数检测到UCI时,确定多个SR配置中的每个SR配置的SR状态都为negative SR;
第三处理子模块,用于当使用与多个SR配置中的一个SR配置对应的循环移位参数集合中的循环移位参数检测到UCI时,确定多个SR配置中的一个SR配置的SR状态为positive SR。
其中,第一处理模块510还包括:
第四处理子模块,用于根据下行控制信息DCI中的PUCCH资源指示域,确定UCI对应的M+1个PUCCH资源;或者,
第五处理子模块,用于从预先配置的J个PUCCH资源中确定M+1个PUCCH资源作为M+1个PUCCH资源;其中,J为大于或等于M+1的整数;
其中,M为大于1的整数,所述M+1个PUCCH资源中的一个PUCCH资源用于当多个调度请求SR配置的SR状态为否定negative SR时传输所述UCI,所述M+1个PUCCH资源中的其余PUCCH资源中的每个PUCCH资源分别用于当多个SR配置中与该PUCCH资源对应的一个SR配置的SR状态 为肯定positive SR时传输所述UCI。
其中,第四处理子模块包括:
第二处理单元,用于根据DCI中的PUCCH资源指示域,从预先确定的一个PUCCH资源集合中确定M+1个PUCCH资源。
其中,第二处理单元包括:
第一处理子单元,用于若PUCCH资源指示域指示UCI对应PUCCH资源集合中的第k个PUCCH资源,则将PUCCH资源集合中的第k个PUCCH资源以及第(k+i)mod N个PUCCH资源确定为M+1个PUCCH资源,或者,将PUCCH资源集合中的第k个PUCCH资源以及第(k+4+i)mod N个PUCCH资源确定为M+1个PUCCH资源;其中,i为大于0、且小于或等于M的整数,N为PUCCH资源集合中所包含的PUCCH资源的个数。
其中,第二处理单元还包括:
当PUCCH资源指示域指示PUCCH资源集合中的一个PUCCH资源子集时,其中,PUCCH资源子集包含超过1个PUCCH资源;
第二处理子单元,用于若PUCCH资源子集中包含的PUCCH资源数目小于M+1个,则依此从PUCCH资源集合中的从PUCCH资源子集开始的多个PUCCH资源子集中确定M+1个PUCCH资源;
第三处理子单元,用于若PUCCH资源子集中包含的PUCCH资源数目等于M+1,则将PUCCH资源子集中的PUCCH资源作为M+1个PUCCH资源;
第四处理子单元,用于若PUCCH资源子集中包含的PUCCH资源数目大于M+1个,则从PUCCH资源子集中确定M+1个PUCCH资源。
其中,J个PUCCH资源为高层信令配置的,或者,根据UCI的比特数从高层信令预先配置的多个PUCCH资源集合中确定的一个资源集合。
其中,M+1个循环移位参数集合与negative SR以及多个SR配置中的每个SR配置的positive SR状态的对应关系为预先定义的或者网络设备配置的或者根据预定的规则确定的。
其中,M+1个PUCCH资源与negative SR以及多个SR配置中的每个SR配置的positive SR状态的对应关系为预先定义的或者由网络设备确定并通知给终端的或者根据预定的规则确定的。
其中,第二处理模块520还包括:
第六处理子模块,用于当在M+1个PUCCH资源中与negative SR对应的PUCCH资源上检测到UCI时,确定多个SR配置中的每个SR配置的SR状态都为negative SR;
第七处理子模块,用于当在M+1个PUCCH资源中与多个SR配置中的一个SR配置对应的PUCCH资源上检测到UCI时,确定多个SR配置中的一个SR配置的SR状态为positive SR。
其中,M根据以下中的一项确定:
终端所支持的最大SR配置的数目;
为终端配置的SR配置的数目;
为终端配置的在同一个SR传输机会中重叠的SR配置的数目;
网络设备发送的配置信令所指示的数目。
其中,UCI包括以下信息中的至少一项:
混合自动重传请求确认HARQ-ACK和信道状态信息CSI。
其中,网络设备还包括:
第三处理模块,用于当满足以下条件中的一项时,执行确定上行控制信息对应的M+1个物理上行控制信道PUCCH资源的步骤:
当前时刻为SR的传输机会;或者,
当前时刻为SR的传输机会,且在传输机会中存在多个SR配置。
本公开的网络设备实施例是与上述方法的实施例对应的,上述方法实施例中的所有实现手段均适用于该网络设备的实施例中,也能达到相同的技术效果。该网络设备,在确定UCI对应的M+1个PUCCH资源上进行UCI检测,根据检测到UCI的PUCCH资源确定多个SR配置的SR状态,从而保证对终端正确的上行调度。
为了更好的实现上述目的,如图6所示,本公开的第四实施例还提供了一种网络设备,该网络设备包括:处理器600;通过总线接口与所述处理器600相连接的存储器620,以及通过总线接口与处理器600相连接的收发机610;所述存储器620用于存储所述处理器在执行操作时所使用的程序和数据;通过所述收发机610发送数据信息或者导频,还通过所述收发机610接收上 行控制信道;当处理器600调用并执行所述存储器620中所存储的程序和数据时,实现如下的功能。
处理器600用于读取存储器620中的程序,执行下列过程:确定上行控制信息UCI对应的多个物理上行控制信道PUCCH资源;
在多个PUCCH资源中UCI,并根据检测到UCI的PUCCH资源,确定多个SR配置的SR状态。
收发机610,用于在处理器600的控制下接收和发送数据。
其中,处理器600执行计算机程序时实现以下步骤:
根据为UCI配置的初始循环移位参数,确定UCI对应的多个PUCCH资源。
其中,处理器600执行计算机程序时实现以下步骤:
根据为UCI配置的初始循环移位参数,确定M+1个循环移位参数集合;其中,每个循环移位参数集合包含多个循环移位参数,每个循环移位参数集合中的每个循环移位参数对应一个UCI的反馈状态;循环移位参数集合中的每个循环移位参数均通过对初始循环移位参数进行预定偏移确定;其中,一个循环移位参数集合对应一个PUCCH资源;
其中,M为大于1的整数,所述M+1个循环移位参数集合中的一个循环移位参数集合用于当多个调度请求SR配置的SR状态为否定negative SR时传输所述UCI,所述多个循环移位参数集合中的其余循环移位参数集合中的每个循环移位参数集合分别用于当多个SR配置中与该循环移位参数集合对应的一个SR配置的SR状态为肯定positive SR时传输所述UCI。
其中,处理器600执行计算机程序时实现以下步骤:
使用M+1个循环移位参数集合中的每个循环移位参数检测UCI;
当使用与negative SR对应的循环移位参数集合中的循环移位参数检测到UCI时,确定多个SR配置中的每个SR配置的SR状态都为negative SR;
当使用与多个SR配置中的一个SR配置对应的循环移位参数集合中的循环移位参数检测到UCI时,确定多个SR配置中的一个SR配置的SR状态为positive SR。
其中,处理器600执行计算机程序时实现以下步骤:
根据下行控制信息DCI中的PUCCH资源指示域,确定UCI对应的M+1个PUCCH资源;或者,
从预先配置的J个PUCCH资源中确定M+1个PUCCH资源作为M+1个PUCCH资源;其中,J为大于或等于M+1的整数;
其中,M为大于1的整数,所述M+1个PUCCH资源中的一个PUCCH资源用于当多个调度请求SR配置的SR状态为否定negative SR时传输所述UCI,所述M+1个PUCCH资源中的其余PUCCH资源中的每个PUCCH资源分别用于当多个SR配置中与该PUCCH资源对应的一个SR配置的SR状态为肯定positive SR时传输所述UCI。
其中,处理器600执行计算机程序时实现以下步骤:
根据DCI中的PUCCH资源指示域,从预先确定的一个PUCCH资源集合中确定M+1个PUCCH资源。
其中,处理器600执行计算机程序时实现以下步骤:
若PUCCH资源指示域指示UCI对应PUCCH资源集合中的第k个PUCCH资源,则将PUCCH资源集合中的第k个PUCCH资源以及第(k+i)mod N个PUCCH资源确定为M+1个PUCCH资源,或者,将PUCCH资源集合中的第k个PUCCH资源以及第(k+4+i)mod N个PUCCH资源确定为M+1个PUCCH资源;其中,i为大于0、且小于或等于M的整数,N为PUCCH资源集合中所包含的PUCCH资源的个数。
其中,处理器600执行计算机程序时实现以下步骤:
当PUCCH资源指示域指示PUCCH资源集合中的一个PUCCH资源子集时,其中,PUCCH资源子集包含超过1个PUCCH资源;
若PUCCH资源子集中包含的PUCCH资源数目小于M+1个,则依此从PUCCH资源集合中的从PUCCH资源子集开始的多个PUCCH资源子集中确定M+1个PUCCH资源;
若PUCCH资源子集中包含的PUCCH资源数目等于M+1,则将PUCCH资源子集中的PUCCH资源作为M+1个PUCCH资源;
若PUCCH资源子集中包含的PUCCH资源数目大于M+1个,则从PUCCH资源子集中确定M+1个PUCCH资源。
其中,J个PUCCH资源为高层信令配置的,或者,根据UCI的比特数从高层信令预先配置的多个PUCCH资源集合中确定的一个资源集合。
其中,所述M+1个循环移位参数集合与negative SR以及多个SR配置中的每个SR配置的positive SR状态的对应关系为预先定义的或者网络设备配置的或者根据预定的规则确定的。
其中,M+1个PUCCH资源与negative SR以及多个SR配置中的每个SR配置的positive SR状态的对应关系为预先定义的或者由网络设备确定并通知给终端的或者根据预定的规则确定的。
其中,处理器600执行计算机程序时实现以下步骤:
当在M+1个PUCCH资源中与negative SR对应的PUCCH资源上检测到UCI时,确定多个SR配置中的每个SR配置的SR状态都为negative SR;
当在M+1个PUCCH资源中与多个SR配置中的一个SR配置对应的PUCCH资源上检测到UCI时,确定多个SR配置中的一个SR配置的SR状态为positive SR。
其中,M根据以下中的一项确定:
终端所支持的最大SR配置的数目;
为终端配置的SR配置的数目;
为终端配置的在同一个SR传输机会中重叠的SR配置的数目;
网络设备发送的配置信令所指示的数目。
其中,UCI包括以下信息中的至少一项:
混合自动重传请求确认HARQ-ACK和信道状态信息CSI。
其中,当满足以下条件中的一项时,处理器600执行计算机程序时实现确定上行控制信息UCI对应的M+1个物理上行控制信道PUCCH资源的步骤:
当前时刻为SR的传输机会;或者,
当前时刻为SR的传输机会,且在传输机会中存在多个SR配置。
其中,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不 再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
本领域技术人员可以理解,实现上述实施例的全部或者部分步骤可以通过硬件来完成,也可以通过计算机程序来指示相关的硬件来完成,所述计算机程序包括执行上述方法的部分或者全部步骤的指令;且该计算机程序可以存储于一可读存储介质中,存储介质可以是任何形式的存储介质。
本领域技术人员可以理解,实现上述实施例的全部或者部分步骤可以通过硬件来完成,也可以通过计算机程序来指示相关的硬件来完成,所述计算机程序包括执行上述方法的部分或者全部步骤的指令;且该计算机程序可以存储于一可读存储介质中,存储介质可以是任何形式的存储介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以 自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (36)

  1. 一种信息传输方法,应用于终端,包括:
    确定上行控制信息UCI对应的多个物理上行控制信道PUCCH资源;
    根据多个SR配置的SR状态,在所述多个PUCCH资源中确定用于传输所述UCI的目标PUCCH资源;
    通过所述目标PUCCH资源发送所述UCI。
  2. 根据权利要求1所述的信息传输方法,其中,确定上行控制信息UCI对应的多个物理上行控制信道PUCCH资源的步骤,包括:
    根据为所述UCI配置的初始循环移位参数,确定所述UCI对应的多个PUCCH资源。
  3. 根据权利要求2所述的信息传输方法,其中,根据为所述UCI配置的初始循环移位参数,确定所述UCI对应的多个PUCCH资源的步骤,包括:
    根据为所述UCI配置的初始循环移位参数,确定M+1个循环移位参数集合;其中,每个循环移位参数集合包含多个循环移位参数,每个循环移位参数集合中的每个循环移位参数对应一个所述UCI的反馈状态;所述循环移位参数集合中的每个循环移位参数均通过对所述初始循环移位参数进行预定偏移确定;
    其中,M为大于1的整数,所述M+1个循环移位参数集合中的一个循环移位参数集合用于当多个调度请求SR配置的SR状态为否定SR(negative SR)时传输所述UCI,所述多个循环移位参数集合中的其余循环移位参数集合中的每个循环移位参数集合分别用于当多个SR配置中与该循环移位参数集合对应的一个SR配置的SR状态为肯定SR(positive SR)时传输所述UCI。
  4. 根据权利要求3所述的信息传输方法,其中,根据多个SR配置的SR状态,在所述多个PUCCH资源中确定用于传输所述UCI的目标PUCCH资源的步骤,包括:
    当所述多个SR配置中的每个SR配置的SR状态都为negative SR时,将所述M+1个循环移位参数集合中与negative SR对应的循环移位参数集合,确定为用于传输所述UCI的目标循环移位参数集合;
    当所述多个SR配置中的一个SR配置的SR状态为positive SR时,将所述M+1个循环移位参数集合中与所述一个SR配置对应的循环移位参数集合,确定为用于传输所述UCI的目标循环移位参数集合。
  5. 根据权利要求1所述的信息传输方法,其中,确定上行控制信息UCI对应的多个物理上行控制信道PUCCH资源的步骤,包括:
    根据下行控制信息DCI中的PUCCH资源指示域,确定所述UCI对应的M+1个PUCCH资源;或者,
    从预先配置的J个PUCCH资源中确定M+1个PUCCH资源作为所述M+1个PUCCH资源;其中,J为大于或等于M+1的整数;
    其中,M为大于1的整数,所述M+1个PUCCH资源中的一个PUCCH资源用于当多个调度请求SR配置的SR状态为否定negative SR时传输所述UCI,所述M+1个PUCCH资源中的其余PUCCH资源中的每个PUCCH资源分别用于当多个SR配置中与该PUCCH资源对应的一个SR配置的SR状态为肯定positive SR时传输所述UCI。
  6. 根据权利要求5所述的信息传输方法,其中,根据下行控制信息DCI中的PUCCH资源指示域,确定所述UCI对应的M+1个PUCCH资源的步骤,包括:
    根据所述DCI中的PUCCH资源指示域,从预先确定的一个PUCCH资源集合中确定M+1个PUCCH资源。
  7. 根据权利要求6所述的信息传输方法,其中,根据所述DCI中的PUCCH资源指示域,从预先确定的一个PUCCH资源集合中确定M+1个PUCCH资源,包括:
    若所述PUCCH资源指示域指示所述UCI对应所述PUCCH资源集合中的第k个PUCCH资源,则将所述PUCCH资源集合中的第k个PUCCH资源以及第(k+i)mod N个PUCCH资源确定为所述M+1个PUCCH资源,或者,将所述PUCCH资源集合中的第k个PUCCH资源以及第(k+4+i)mod N个PUCCH资源确定为所述M+1个PUCCH资源;其中,i为大于0、且小于或等于M的整数,N为所述PUCCH资源集合中所包含的PUCCH资源的个数。
  8. 根据权利要求6所述的信息传输方法,其中,根据所述DCI中的PUCCH 资源指示域,从预先确定的一个PUCCH资源集合中确定M+1个PUCCH资源,包括:
    当所述PUCCH资源指示域指示所述PUCCH资源集合中的一个PUCCH资源子集时,其中,所述PUCCH资源子集包含超过1个PUCCH资源;
    若所述PUCCH资源子集中包含的PUCCH资源数目小于M+1个,则依此从所述PUCCH资源集合中的从所述PUCCH资源子集开始的多个PUCCH资源子集中确定M+1个PUCCH资源;
    若所述PUCCH资源子集中包含的PUCCH资源数目等于M+1,则将所述PUCCH资源子集中的PUCCH资源作为所述M+1个PUCCH资源;
    若所述PUCCH资源子集中包含的PUCCH资源数目大于M+1个,则从所述PUCCH资源子集中确定M+1个PUCCH资源。
  9. 根据权利要求5所述的信息传输方法,其中,所述J个PUCCH资源为高层信令配置的,或者,根据所述UCI的比特数从高层信令预先配置的多个PUCCH资源集合中确定的一个资源集合。
  10. 根据权利要求3或4所述的信息传输方法,其中,所述M+1个循环移位参数集合与negative SR以及多个SR配置中的每个SR配置的positive SR状态的对应关系为预先定义的或者网络设备配置的或者根据预定的规则确定的。
  11. 根据权利要求5~9任一项所述的信息传输方法,其中,所述M+1个PUCCH资源与negative SR以及多个SR配置中的每个SR配置的positive SR状态的对应关系为预先定义的或者网络设备配置的或者根据预定的规则确定的。
  12. 根据权利要求5~9任一项所述的信息传输方法,其中,根据多个SR配置的SR状态,在所述M+1个PUCCH资源中确定用于传输所述UCI的目标PUCCH资源的步骤,包括:
    当所述多个SR配置中的每个SR配置的SR状态都为negative SR时,将所述M+1个PUCCH资源中与negative SR对应的PUCCH资源,确定为用于传输所述UCI的目标PUCCH资源;
    当所述多个SR配置中的一个SR配置的SR状态为positive SR时,将所 述M+1个PUCCH资源中与所述一个SR配置对应的PUCCH资源,确定为用于传输所述UCI的目标PUCCH资源。
  13. 根据权利要求3~9任一项所述的信息传输方法,其中,所述M根据以下中的一项确定:
    所述终端所支持的最大SR配置的数目;
    为所述终端配置的SR配置的数目;
    为所述终端配置的在同一个SR传输机会中重叠的SR配置的数目;
    网络设备发送的配置信令所指示的数目。
  14. 根据权利要求1~9任一项所述的信息传输方法,其中,所述UCI包括以下信息中的至少一项:
    混合自动重传请求确认HARQ-ACK和信道状态信息CSI。
  15. 根据权利要求1~9任一项所述的信息传输方法,其中,在确定上行控制信息对应的多个物理上行控制信道PUCCH资源之前,所述方法还包括:
    当满足以下条件中的一项时,执行确定上行控制信息UCI对应的M+1个物理上行控制信道PUCCH资源的步骤:
    当前时刻为SR的传输机会;或者,
    当前时刻为SR的传输机会,且在所述传输机会中存在多个SR配置。
  16. 一种终端,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,其中,所述处理器执行所述程序时实现如权利要求1-15中任意一项所述的信息传输方法的步骤。
  17. 一种终端,包括:
    第一确定模块,用于确定上行控制信息UCI对应的多个物理上行控制信道PUCCH资源;
    第二确定模块,用于根据多个SR配置的SR状态,在所述多个PUCCH资源中确定用于传输所述UCI的目标PUCCH资源;
    第一发送模块,用于通过所述目标PUCCH资源发送所述UCI。
  18. 一种信息传输方法,应用于网络设备,包括:
    确定上行控制信息UCI对应的多个物理上行控制信道PUCCH资源;
    在所述多个PUCCH资源中检测所述UCI,并根据检测到所述UCI的 PUCCH资源,确定多个SR配置的SR状态。
  19. 根据权利要求18所述的信息传输方法,其中,确定上行控制信息UCI对应的多个物理上行控制信道PUCCH资源的步骤,包括:
    根据为所述UCI配置的初始循环移位参数,确定所述UCI对应的多个PUCCH资源。
  20. 根据权利要求19所述的信息传输方法,其中,根据为所述UCI配置的初始循环移位参数,确定所述UCI对应的多个PUCCH资源的步骤,包括:
    根据为所述UCI配置的初始循环移位参数,确定M+1个循环移位参数集合;其中,每个循环移位参数集合包含多个循环移位参数,每个循环移位参数集合中的每个循环移位参数对应一个所述UCI的反馈状态;所述循环移位参数集合中的每个循环移位参数均通过对所述初始循环移位参数进行预定偏移确定;
    其中,M为大于1的整数,所述M+1个循环移位参数集合中的一个循环移位参数集合用于当多个调度请求SR配置的SR状态为否定negative SR时传输所述UCI,所述多个循环移位参数集合中的其余循环移位参数集合中的每个循环移位参数集合分别用于当多个SR配置中与该循环移位参数集合对应的一个SR配置的SR状态为肯定positive SR时传输所述UCI。
  21. 根据权利要求20所述的信息传输方法,其中,在所述多个PUCCH资源中检测所述UCI,并根据检测到所述UCI的PUCCH资源,确定多个SR配置的SR状态,包括:
    使用所述M+1个循环移位参数集合中的每个循环移位参数检测所述UCI;
    当使用与negative SR对应的循环移位参数集合中的循环移位参数检测到所述UCI时,确定所述多个SR配置中的每个SR配置的SR状态都为negative SR;
    当使用与所述多个SR配置中的一个SR配置对应的循环移位参数集合中的循环移位参数检测到所述UCI时,确定所述多个SR配置中的所述一个SR配置的SR状态为positive SR。
  22. 根据权利要求18所述的信息传输方法,其中,确定上行控制信息 UCI对应的多个物理上行控制信道PUCCH资源的步骤,包括:
    根据下行控制信息DCI中的PUCCH资源指示域,确定所述UCI对应的M+1个PUCCH资源;或者,
    从预先配置的J个PUCCH资源中确定M+1个PUCCH资源作为所述M+1个PUCCH资源;其中,J为大于或等于M+1的整数;
    其中,M为大于1的整数,所述M+1个PUCCH资源中的一个PUCCH资源用于当多个调度请求SR配置的SR状态为否定negative SR时传输所述UCI,所述M+1个PUCCH资源中的其余PUCCH资源中的每个PUCCH资源分别用于当多个SR配置中与该PUCCH资源对应的一个SR配置的SR状态为肯定positive SR时传输所述UCI。
  23. 根据权利要求22所述的信息传输方法,其中,根据下行控制信息DCI中的PUCCH资源指示域,确定所述UCI对应的M+1个PUCCH资源的步骤,包括:
    根据所述DCI中的PUCCH资源指示域,从预先确定的一个PUCCH资源集合中确定M+1个PUCCH资源。
  24. 根据权利要求23所述的信息传输方法,其中,根据所述DCI中的PUCCH资源指示域,从预先确定的一个PUCCH资源集合中确定M+1个PUCCH资源,包括:
    若所述PUCCH资源指示域指示所述UCI对应所述PUCCH资源集合中的第k个PUCCH资源,则将所述PUCCH资源集合中的第k个PUCCH资源以及第(k+i)mod N个PUCCH资源确定为所述M+1个PUCCH资源,或者,将所述PUCCH资源集合中的第k个PUCCH资源以及第(k+4+i)mod N个PUCCH资源确定为所述M+1个PUCCH资源;其中,i为大于0、且小于或等于M的整数,N为所述PUCCH资源集合中所包含的PUCCH资源的个数。
  25. 根据权利要求23所述的信息传输方法,其中,根据DCI中的PUCCH资源指示域,从预先确定的一个PUCCH资源集合中确定M+1个PUCCH资源,包括:
    当所述PUCCH资源指示域指示所述PUCCH资源集合中的一个PUCCH资源子集时,其中,所述PUCCH资源子集包含超过1个PUCCH资源;
    若所述PUCCH资源子集中包含的PUCCH资源数目小于M+1个,则依此从所述PUCCH资源集合中的从所述PUCCH资源子集开始的多个PUCCH资源子集中确定M+1个PUCCH资源;
    若所述PUCCH资源子集中包含的PUCCH资源数目等于M+1,则将所述PUCCH资源子集中的PUCCH资源作为所述M+1个PUCCH资源;
    若所述PUCCH资源子集中包含的PUCCH资源数目大于M+1个,则从所述PUCCH资源子集中确定M+1个PUCCH资源。
  26. 根据权利要求22所述的信息传输方法,其中,所述J个PUCCH资源为高层信令配置的,或者,根据所述UCI的比特数从高层信令预先配置的多个PUCCH资源集合中确定的一个资源集合。
  27. 根据权利要求20或21所述的信息传输方法,其中,所述M+1个循环移位参数集合与negative SR以及多个SR配置中的每个SR配置的positive SR状态的对应关系为预先定义的或者网络设备配置的或者根据预定的规则确定的。
  28. 根据权利要求18~26任一项所述的信息传输方法,其中,所述M+1个PUCCH资源与negative SR以及多个SR配置中的每个SR配置的positive SR状态的对应关系为预先定义的或者由网络设备确定并通知给终端的或者根据预定的规则确定的。
  29. 根据权利要求22~26任一项所述的信息传输方法,其中,在所述M+1个PUCCH资源中检测所述UCI,并根据检测到所述UCI的PUCCH资源,确定多个SR配置的SR状态,包括:
    当在所述M+1个PUCCH资源中与negative SR对应的PUCCH资源上检测到所述UCI时,确定所述多个SR配置中的每个SR配置的SR状态都为negative SR;
    当在所述M+1个PUCCH资源中与所述多个SR配置中的一个SR配置对应的PUCCH资源上检测到所述UCI时,确定所述多个SR配置中的所述一个SR配置的SR状态为positive SR。
  30. 根据权利要求20~26任一项所述的信息传输方法,其中,所述M根据以下中的一项确定:
    所述终端所支持的最大SR配置的数目;
    为所述终端配置的SR配置的数目;
    为所述终端配置的在同一个SR传输机会中重叠的SR配置的数目;
    网络设备发送的配置信令所指示的数目。
  31. 根据权利要求18~26任一项所述的信息传输方法,其中,所述UCI包括以下信息中的至少一项:
    混合自动重传请求确认HARQ-ACK和信道状态信息CSI。
  32. 根据权利要求18~26任一项所述的信息传输方法,其中,在确定上行控制信息对应的多个物理上行控制信道PUCCH资源之前,所述方法还包括:
    当满足以下条件中的一项时,执行确定上行控制信息对应的M+1个物理上行控制信道PUCCH资源的步骤:
    当前时刻为SR的传输机会;或者,
    当前时刻为SR的传输机会,且在所述传输机会中存在多个SR配置。
  33. 一种网络设备,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,其中,所述处理器执行所述程序时实现如权利要求18-32中任意一项所述的信息传输方法的步骤。
  34. 一种网络设备,包括:
    第一处理模块,用于确定上行控制信息UCI对应的多个物理上行控制信道PUCCH资源;
    第二处理模块,用于在所述多个PUCCH资源中检测所述UCI,并根据检测到所述UCI的PUCCH资源,确定多个SR配置的SR状态。
  35. 一种计算机可读存储介质,其上存储有计算机程序,其中该程序被处理器执行时,实现如权利要求1-15中任意一项所述的信息传输方法的步骤。
  36. 一种计算机可读存储介质,其上存储有计算机程序,其中该程序被处理器执行时,实现如权利要求18-32中任意一项所述的信息传输方法的步骤。
PCT/CN2018/122003 2018-01-12 2018-12-19 信息传输方法、终端及网络设备 WO2019137168A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207023025A KR102449523B1 (ko) 2018-01-12 2018-12-19 정보 전송 방법, 단말 및 네트워크 기기
US16/961,863 US11497003B2 (en) 2018-01-12 2018-12-19 Information transmission method, terminal and network device
EP18899254.9A EP3739779A4 (en) 2018-01-12 2018-12-19 INFORMATION TRANSMISSION PROCESS, TERMINAL AND NETWORK DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810032643.2 2018-01-12
CN201810032643.2A CN110034850B (zh) 2018-01-12 2018-01-12 一种信息传输方法、终端及网络设备

Publications (1)

Publication Number Publication Date
WO2019137168A1 true WO2019137168A1 (zh) 2019-07-18

Family

ID=67218486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122003 WO2019137168A1 (zh) 2018-01-12 2018-12-19 信息传输方法、终端及网络设备

Country Status (5)

Country Link
US (1) US11497003B2 (zh)
EP (1) EP3739779A4 (zh)
KR (1) KR102449523B1 (zh)
CN (1) CN110034850B (zh)
WO (1) WO2019137168A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102609731B1 (ko) * 2018-01-05 2023-12-05 삼성전자 주식회사 무선 통신 시스템에서 서로 다른 상향 제어 정보를 전송하기 위한 방법 및 장치
CN115118394A (zh) * 2021-03-19 2022-09-27 ***通信有限公司研究院 混合自动重传请求信息的处理方法、装置和通信设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010133042A1 (zh) * 2009-05-22 2010-11-25 华为技术有限公司 一种sr信息与ack/nack信息反馈或多个sr信息反馈的方法和设备
CN102158326A (zh) * 2011-05-20 2011-08-17 电信科学技术研究院 Ack/nack反馈信息的传输方法和设备
WO2012036533A1 (ko) * 2010-09-19 2012-03-22 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
CN103178926A (zh) * 2011-12-21 2013-06-26 华为技术有限公司 传输控制信息的方法、用户设备和基站
US20130279454A1 (en) * 2008-08-12 2013-10-24 Lg Electronics Inc. Method and apparatus of transmitting scheduling request in wireless communication system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087674A2 (en) 2009-01-30 2010-08-05 Samsung Electronics Co., Ltd. Transmitting uplink control information over a data channel or over a control channel
WO2010123893A1 (en) * 2009-04-22 2010-10-28 Interdigital Patent Holdings, Inc. Method and apparatus for transmitting uplink control information for carrier aggregated spectrums
CN105187174B (zh) 2010-03-10 2018-11-16 Lg电子株式会社 发送控制信息的方法和装置
CN102238737B (zh) * 2011-07-21 2015-07-15 电信科学技术研究院 Ack/nack/sr资源映射方法和设备
CN106160929A (zh) * 2015-04-09 2016-11-23 北京三星通信技术研究有限公司 对uci进行编码、确定uci的传输功率的方法和设备
CN113438060A (zh) * 2015-04-09 2021-09-24 北京三星通信技术研究有限公司 一种增强载波聚合***的harq-ack传输方法和设备
CN110945934B (zh) * 2017-05-31 2023-08-01 株式会社Ntt都科摩 无线基站以及无线通信方法
JP6937202B2 (ja) 2017-09-14 2021-09-22 シャープ株式会社 端末装置、基地局装置、および、通信方法
US10966223B2 (en) * 2018-01-22 2021-03-30 Apple Inc. Handling overlapping of PUCCH and PUSCH for new radio systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130279454A1 (en) * 2008-08-12 2013-10-24 Lg Electronics Inc. Method and apparatus of transmitting scheduling request in wireless communication system
WO2010133042A1 (zh) * 2009-05-22 2010-11-25 华为技术有限公司 一种sr信息与ack/nack信息反馈或多个sr信息反馈的方法和设备
WO2012036533A1 (ko) * 2010-09-19 2012-03-22 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
CN102158326A (zh) * 2011-05-20 2011-08-17 电信科学技术研究院 Ack/nack反馈信息的传输方法和设备
CN103178926A (zh) * 2011-12-21 2013-06-26 华为技术有限公司 传输控制信息的方法、用户设备和基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3739779A4 *

Also Published As

Publication number Publication date
KR102449523B1 (ko) 2022-09-29
US11497003B2 (en) 2022-11-08
CN110034850A (zh) 2019-07-19
KR20200108033A (ko) 2020-09-16
EP3739779A1 (en) 2020-11-18
CN110034850B (zh) 2020-10-30
US20200359374A1 (en) 2020-11-12
EP3739779A4 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
WO2022083767A1 (zh) 资源选择方法、装置及终端设备
WO2019144833A1 (zh) Dai的指示方法、用户终端和网络侧设备
WO2019174486A1 (zh) 资源指示、确定方法及装置
WO2021027627A1 (zh) 上行控制信息uci的处理方法、终端及基站
WO2020192609A1 (zh) 资源的确定、接收方法、装置、电子装置及存储介质
WO2021022976A1 (zh) Uci的传输方法、装置、终端及基站
WO2019192544A1 (zh) 一种发送、接收上行控制信息的方法及装置
WO2018201829A1 (zh) 一种传输方法、终端设备及基站
WO2020221078A1 (zh) 激活/去激活配置的方法、网络设备及终端
WO2019095945A1 (zh) 数据传输方法、终端、基站及存储介质
WO2019154126A1 (zh) 反馈码本确定方法及装置
CN111432476B (zh) 一种波束方向的指示方法、基站及终端
US11539493B2 (en) HARQ-ACK transmission method, user equipment, and network side device
WO2019109765A1 (zh) 传输方法和设备
WO2020221131A1 (zh) 上行信道传输方法、终端及基站
WO2019137168A1 (zh) 信息传输方法、终端及网络设备
WO2021023186A1 (zh) 信息传输方法、终端及基站
EP3823383A1 (en) Communication method and device
WO2019114504A1 (zh) 传输方法、终端及基站
WO2021031754A1 (zh) 传输反馈信息的方法和装置
WO2021023218A1 (zh) 上行控制信息的传输方法、装置、终端及基站
WO2020143813A1 (zh) 传输信息的方法和装置
WO2020228588A1 (zh) Pucch资源确定方法和通信设备
WO2020030080A1 (zh) 信息传输方法、基站及终端
WO2020156002A1 (zh) 通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207023025

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018899254

Country of ref document: EP

Effective date: 20200812