WO2019137037A1 - 一种基于机械诱导的宽频俘能器 - Google Patents

一种基于机械诱导的宽频俘能器 Download PDF

Info

Publication number
WO2019137037A1
WO2019137037A1 PCT/CN2018/105964 CN2018105964W WO2019137037A1 WO 2019137037 A1 WO2019137037 A1 WO 2019137037A1 CN 2018105964 W CN2018105964 W CN 2018105964W WO 2019137037 A1 WO2019137037 A1 WO 2019137037A1
Authority
WO
WIPO (PCT)
Prior art keywords
cantilever beam
base
spring
damper
damper mechanism
Prior art date
Application number
PCT/CN2018/105964
Other languages
English (en)
French (fr)
Inventor
***
高仁璟
刘龙卫
彭雅慧
王奇
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Publication of WO2019137037A1 publication Critical patent/WO2019137037A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/186Vibration harvesters

Definitions

  • the invention belongs to the field of piezoelectric vibration energy collection, and particularly relates to a wide frequency energy harvester based on mechanical induction.
  • the piezoelectric energy capture technology is widely used in the collection of environmental vibration energy because it has high energy conversion efficiency, no external power supply, no heat, no electromagnetic interference, no pollution, and easy to realize miniaturization and integration of the structure.
  • the traditional captive energy structure has problems such as narrow working frequency band and low energy collection efficiency. It is difficult to exert the piezoelectric characteristics of piezoelectric materials, and the power generation efficiency is low, which is difficult to meet the energy supply requirements of electronic products.
  • the technical problem to be solved by the present invention is to provide a wide-band energy harvester based on mechanical induction for the problems of narrow working band and low energy collection efficiency of the conventional captive energy structure.
  • the technical means adopted by the present invention are as follows:
  • a mechanically induced wideband energy harvester comprising:
  • the base is a frame structure
  • the captive mechanism includes a cantilever beam having one end fixedly connected to the inner side wall of the base and the other end being free, and a piezoelectric wafer is pasted on the upper surface of the side of the cantilever beam near the fixed end thereof, on the piezoelectric wafer The surface is electrically connected to a positive electrode lead, and a lower surface of the side of the cantilever beam near the fixed end thereof is electrically connected to a negative electrode lead;
  • the mechanical induction mechanism includes an upper spring-damper mechanism and a lower spring-damper mechanism symmetrically disposed on both sides of the free end of the cantilever beam and having axes perpendicular to a length of the cantilever beam, the upper spring-damper mechanism Located directly above the upper surface of the free end of the cantilever beam, the lower spring-damper mechanism is located directly below the lower end surface of the free end of the cantilever beam, the upper spring-damper mechanism and the lower spring-damper mechanism One end away from the cantilever beam is fixedly connected to the inner side wall of the base.
  • the base is a rectangular frame structure and is placed perpendicular to the ground;
  • the fixed end of the cantilever beam is fixedly connected to the left inner side wall or the right inner side wall of the base;
  • the fixed end of the upper spring-damper mechanism is fixedly connected to the inner side wall of the base;
  • the fixed end of the lower spring-damper mechanism is fixedly connected to the lower inner side wall of the base;
  • the cantilever beam is a rectangular parallelepiped plate structure whose upper surface and lower surface are the largest faces thereof and are parallel to the ground.
  • the upper spring-damper mechanism and the lower spring-damper mechanism each include a spring, a mass, and a damper having one end fixedly coupled to the inner side wall of the base;
  • the spring is nested on the outer surface of the damper, and both ends of the spring are respectively fixed to both ends of the damper, and the mass is fixed at the center of the free end of the damper.
  • the mass is a hollow cube structure, and a surface of the mass near the cantilever beam is parallel to an upper surface of the cantilever beam, and a side length of the mass is greater than or equal to a width of the cantilever beam, the mass of the mass
  • the center is opposite to the center of the free end of the cantilever beam; the mass is made of a lightweight metal material.
  • the piezoelectric wafer has a rectangular cross section and is equal to the width of the cantilever beam, and the length of the piezoelectric wafer is smaller than the length of the cantilever beam; the piezoelectric wafer is made of piezoelectric ceramics and piezoelectric A fiber composite material or a piezoelectric film, the cantilever beam is made of a metal material.
  • the vibration of the susceptor When the susceptor is excited by external vibrations, the vibration of the susceptor will drive the cantilever beam to vibrate, and the piezoelectric wafer attached to the upper surface of the cantilever beam will be strained.
  • the strain generated by the piezoelectric wafer causes positive and negative charges to be generated on the upper and lower surfaces of the piezoelectric wafer, and charges are drawn through the positive electrode lead and the negative electrode lead.
  • the vibration of the susceptor drives the cantilever beam to vibrate.
  • the free end of the cantilever beam collides with the mass, thereby driving the upper spring-damper mechanism to move upward and the lower spring-damper mechanism to move downward.
  • a mechanical collision of the free end of the cantilever beam with the mechanical induction mechanism increases the vibration amplitude of the cantilever beam, and the vibration of the cantilever beam is caused by the continuous collision of the cantilever beam with the mechanical induction mechanism
  • the amplitude continues to increase, and when the upper spring-damper mechanism and the lower spring-damper mechanism move a certain distance to a steady state, the cantilever beam enters a constant amplitude vibration process.
  • the upper spring-damper mechanism and the lower spring-damper mechanism can automatically coordinate to reach a new stable position when external factors cause the vibration amplitude of the cantilever beam to change, the cantilever beam at the mechanical induction mechanism The mass can still be collided under the action to stabilize the amplitude.
  • the invention can significantly increase the amplitude of the cantilever beam under the same excitation, increase the trapping energy bandwidth of the cantilever beam, and thereby output more energy; when the environmental excitation frequency is greater than the natural frequency of the cantilever beam, the present invention
  • the mechanical induction mechanism can greatly increase the amplitude of the cantilever beam vibration, so that the piezoelectric wafer has a wider frequency response range and higher output power; the invention has simple structure and strong practicability, and can be widely applied to various types.
  • Electronic products enable self-powering of low-power devices by collecting vibrational energy from the environment.
  • the present invention can be widely spread in the fields of piezoelectric vibration energy collection and the like.
  • FIG. 1 is a schematic view showing the structure of a wide-frequency energy harvester based on a mechanical induction in a specific embodiment of the present invention.
  • FIG. 2 is a schematic view showing the structure of a captive mechanism in a specific embodiment of the present invention.
  • FIG 3 is a schematic view showing the structure of an upper spring-damper mechanism or a lower spring-damper mechanism in a specific embodiment of the present invention.
  • FIG. 4 is a graph showing the energy capture effect of a mechanically induced wide frequency energy harvester in a simulation experiment in a specific embodiment of the present invention.
  • a mechanically induced wide-band energy absorbing device includes: a susceptor 1 having a frame-like structure;
  • the captive mechanism 2 includes a cantilever beam 4 whose one end is fixedly connected to the inner side wall of the base 1 and whose other end is free, and the piezoelectric wafer 5 is adhered to the upper surface of the side of the cantilever beam 4 near the fixed end thereof.
  • the upper surface of the piezoelectric wafer 5 is electrically connected to a positive electrode lead 6, and the lower surface of the side of the cantilever 4 near the fixed end thereof is electrically connected to a negative electrode lead 7;
  • the mechanical induction mechanism 3 includes an upper spring-damper mechanism and a lower spring-damper mechanism symmetrically disposed on both sides of the free end of the cantilever beam 4 and having axes perpendicular to the length of the cantilever beam 4, the upper spring a damping mechanism located directly above the upper surface of the free end of the cantilever beam 4, the lower spring-damper mechanism being located directly below the lower end surface of the free end of the cantilever beam 4, the upper spring-damper mechanism and the One end of the lower spring-damping mechanism away from the cantilever beam 4 is fixedly connected to the inner side wall of the base 1.
  • the base 1 has a rectangular frame structure and is placed perpendicular to the ground;
  • the fixed end of the cantilever beam 4 is fixedly connected to the left inner side wall of the base 1;
  • the fixed end of the upper spring-damper mechanism is fixedly connected to the inner side wall of the base 1;
  • the fixed end of the lower spring-damper mechanism is fixedly connected to the lower inner side wall of the base 1;
  • the cantilever beam 4 is a rectangular parallelepiped plate structure whose upper surface and lower surface are the largest faces thereof and are parallel to the ground.
  • the upper spring-damper mechanism and the lower spring-damper mechanism each include a spring 8, a mass 10 and a damper 9 having one end fixedly connected to the inner side wall of the base 1;
  • the spring 8 is nested on the outer surface of the damper 9, and both ends of the spring 8 are respectively fixed to both ends of the damper 9, and the mass 10 is fixed to the free end of the damper 9. The center.
  • the mass 10 is a hollow cube structure, and the surface of the mass 10 adjacent to the cantilever beam 4 is parallel to the upper surface of the cantilever beam 4, and the side length of the mass 10 is greater than or equal to the width of the cantilever beam 4.
  • the center of the mass 10 is opposite to the center of the free end of the cantilever beam 4; the mass 10 is made of a lightweight metal material.
  • the piezoelectric wafer 5 has a rectangular cross section and is equal to the width of the cantilever beam 4, and the length of the piezoelectric wafer 5 is smaller than the length of the cantilever beam 4; the piezoelectric wafer 5 is made of a pressure An electric ceramic, a piezoelectric fiber composite material or a piezoelectric film, wherein the cantilever beam 4 is made of a metal material.
  • ADAMS software to establish a dynamic model of wide-band energy absorbing device based on mechanical induction: given the constant displacement excitation of susceptor 1, set the corresponding position of cantilever beam 4, mechanical induction mechanism 3 and fix it with susceptor 1 to set piezoelectric wafer 5 is bonded to the cantilever beam 4, and the swept beam beam 4 is subjected to frequency sweep analysis to extract the free end displacement value of the cantilever beam 4; the data is imported into ANSYS software to calculate the open circuit voltage values of the upper and lower surfaces of the piezoelectric wafer 5, and a mechanical based machine is obtained. The relationship between the excitation frequency of the induced broadband trap and the output voltage.
  • a set of comparative simulation experiments was set up: the mechanical induction mechanism was removed from a wide-frequency energy harvester based on mechanical induction, and the relationship between the excitation frequency and the output voltage of the conventional piezoelectric cantilever type energy harvester was obtained by the above method.
  • Fig. 4 The simulation experiment results are shown in Fig. 4. As can be seen from Fig. 4, compared with the conventional piezoelectric cantilever type energy harvester, the invention can effectively widen the working frequency band and greatly improve the energy capture efficiency of the energy harvester.

Landscapes

  • Micromachines (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

一种基于机械诱导的宽频俘能器,包括:基座,位于基座内的俘能机构和机械诱导机构;俘能机构包括悬臂梁,悬臂梁的靠近其固定端的一侧的上表面粘贴有压电晶片,压电晶片上表面与一正电极引线导通固连,悬臂梁的靠近其固定端的一侧的下表面与一负电极引线导通固连;机械诱导机构包括对称设置在悬臂梁的自由端的两侧且轴线均垂直于悬臂梁的长度方向的上弹簧-阻尼机构和下弹簧-阻尼机构,上弹簧-阻尼机构和下弹簧-阻尼机构远离悬臂梁的一端均与基座内侧壁固定连接。

Description

一种基于机械诱导的宽频俘能器 技术领域
本发明属于压电振动能量收集领域,具体涉及一种基于机械诱导的宽频俘能器。
背景技术
随着信息时代的到来,MEMS、无线传感网络和植入式精密微器件等低功耗产品得到了大力发展,目前它们的供能方式主要是电池,但是电池供电存在诸多弊端,如电池寿命有限,需要及时更换,有时会受到使用环境的限制而造成电池更换困难。为了克服电池供电带来的问题,一些研究提出能量收集技术,通过收集环境中耗散的能量为低耗能电子产品供电。环境中存在丰富的低频振动能量,振动能量收集技术对适用环境要求低,能量密度高,能提供稳定的电能供给。由于压电俘能技术能量转化效率高,无需外界电源,不发热、无电磁干扰、无污染和易于实现结构的小型化、集成化等优点,被广泛应用于环境振动能量的收集。而传统俘能结构存在工作频带较窄、能量收集效率低等问题,难以发挥压电材料的压电特性,发电效率较低难以满足电子产品的供能需求。
发明内容
本发明所要解决的技术问题是针对传统俘能结构存在的工作频带较窄、能量收集效率低等问题,提供了一种基于机械诱导的宽频俘能器。本发明采用的技术手段如下:
一种基于机械诱导的宽频俘能器,包括:
基座,所述基座为框状结构;
位于所述基座内的俘能机构和机械诱导机构;
所述俘能机构包括一端与所述基座内侧壁固定连接、另一端自由的悬臂梁,所述悬臂梁的靠近其固定端的一侧的上表面粘贴有压电晶片,所述压电晶片上表面与一正电极引线导通固连,所述悬臂梁的靠近其固定端的一侧的下表面与一负电极引线导通固连;
所述机械诱导机构包括对称设置在所述悬臂梁的自由端的两侧且轴线均垂直于所述悬臂梁的长度方向的上弹簧-阻尼机构和下弹簧-阻尼机构,所述上弹簧-阻尼机构位于所述悬臂梁的自由端上表面的正上方,所述下弹簧-阻尼机构位于 所述悬臂梁的自由端下表面的正下方,所述上弹簧-阻尼机构和所述下弹簧-阻尼机构远离所述悬臂梁的一端均与所述基座内侧壁固定连接。
所述基座为长方形框状结构,且垂直于地面放置;
所述悬臂梁的固定端与所述基座左内侧壁或右内侧壁固定连接;
所述上弹簧-阻尼机构的固定端与所述基座上内侧壁固定连接;
所述下弹簧-阻尼机构的固定端与所述基座下内侧壁固定连接;
所述悬臂梁为长方体板状结构,其上表面和下表面为其最大面且与地面平行。
所述上弹簧-阻尼机构和所述下弹簧-阻尼机构均包括弹簧、质量块和一端与所述基座内侧壁固定连接的阻尼器;
所述弹簧嵌套在所述阻尼器外表面,且所述弹簧的两端分别与所述阻尼器的两端固定,所述质量块固定于所述阻尼器的自由端的正中央。
所述质量块为空心正方体结构,所述质量块靠近所述悬臂梁的面与所述悬臂梁上表面平行,所述质量块的边长大于等于所述悬臂梁的宽度,所述质量块的中心正对所述悬臂梁的自由端的中心;所述质量块的材质为轻质金属材料。
所述压电晶片的截面为矩形,且与所述悬臂梁的宽度相等,且所述压电晶片的长度小于所述悬臂梁的长度;所述压电晶片的材质为压电陶瓷、压电纤维复合材料或压电薄膜,所述悬臂梁的材质为金属材料。
当所述基座受到外界振动激励时,所述基座的振动将带动所述悬臂梁振动,粘贴在所述悬臂梁上表面的所述压电晶片随之产生应变。所述压电晶片产生的应变使得所述压电晶片的上、下表面产生正、负电荷,电荷将通过正电极引线和负电极引线引出。
所述基座振动带动所述悬臂梁振动,此时所述悬臂梁的自由端碰撞所述质量块,从而带动所述上弹簧-阻尼机构向上运动、所述下弹簧-阻尼机构向下运动,所述悬臂梁的自由端与所述机械诱导机构的机械碰撞,增加了所述悬臂梁的振动幅值,由于所述悬臂梁与所述机械诱导机构的持续碰撞,使所述悬臂梁的振动幅值持续增加,当所述上弹簧-阻尼机构和所述下弹簧-阻尼机构运动一定距离达到稳态时,所述悬臂梁进入恒定振幅的振动过程。
当外界因素导致所述悬臂梁的振动幅值改变时,所述上弹簧-阻尼机构和所述下弹簧-阻尼机构能自动协调达到新的稳定位置,所述悬臂梁在所述机械诱导机构的作用下仍可持续碰撞所述质量块,从而稳定振幅。
与现有技术相比,本发明在相同激励下可显著增大悬臂梁的振幅,增大悬臂梁的俘能带宽,从而输出更多能量;当环境激励频率大于悬臂梁固有频率时,本发明所具有的机械诱导机构能大大提升悬臂梁振动的幅值,从而使压电晶片具有更宽的频率响应范围和更高的输出功率;本发明结构简单,实用性强,可广泛应用于各类电子产品,通过收集环境中的振动能量,实现低功耗器件的自供能。
基于上述理由本发明可在压电振动能量收集等领域广泛推广。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的具体实施方式中一种基于机械诱导的宽频俘能器的结构示意图。
图2是本发明的具体实施方式中俘能机构的结构示意图。
图3是本发明的具体实施方式中上弹簧-阻尼机构或下弹簧-阻尼机构的结构示意图。
图4是本发明的具体实施方式中仿真实验中一种基于机械诱导的宽频俘能器的能量俘获效果图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1-图4所示,一种基于机械诱导的宽频俘能器,包括;基座1,所述基座1为框状结构;
位于所述基座1内的俘能机构2和机械诱导机构3;
所述俘能机构2包括一端与所述基座1内侧壁固定连接、另一端自由的悬臂梁4,所述悬臂梁4的靠近其固定端的一侧的上表面粘贴有压电晶片5,所述 压电晶片5上表面与一正电极引线6导通固连,所述悬臂梁4的靠近其固定端的一侧的下表面与一负电极引线7导通固连;
所述机械诱导机构3包括对称设置在所述悬臂梁4的自由端的两侧且轴线均垂直于所述悬臂梁4的长度方向的上弹簧-阻尼机构和下弹簧-阻尼机构,所述上弹簧-阻尼机构位于所述悬臂梁4的自由端上表面的正上方,所述下弹簧-阻尼机构位于所述悬臂梁4的自由端下表面的正下方,所述上弹簧-阻尼机构和所述下弹簧-阻尼机构远离所述悬臂梁4的一端均与所述基座1内侧壁固定连接。
所述基座1为长方形框状结构,且垂直于地面放置;
所述悬臂梁4的固定端与所述基座1左内侧壁固定连接;
所述上弹簧-阻尼机构的固定端与所述基座1上内侧壁固定连接;
所述下弹簧-阻尼机构的固定端与所述基座1下内侧壁固定连接;
所述悬臂梁4为长方体板状结构,其上表面和下表面为其最大面且与地面平行。
所述上弹簧-阻尼机构和所述下弹簧-阻尼机构均包括弹簧8、质量块10和一端与所述基座1内侧壁固定连接的阻尼器9;
所述弹簧8嵌套在所述阻尼器9外表面,且所述弹簧8的两端分别与所述阻尼器9的两端固定,所述质量块10固定于所述阻尼器9的自由端的正中央。
所述质量块10为空心正方体结构,所述质量块10靠近所述悬臂梁4的面与所述悬臂梁4上表面平行,所述质量块10的边长大于等于所述悬臂梁4的宽度,所述质量块10的中心正对所述悬臂梁4的自由端的中心;所述质量块10的材质为轻质金属材料。
所述压电晶片5的截面为矩形,且与所述悬臂梁4的宽度相等,且所述压电晶片5的长度小于所述悬臂梁4的长度;所述压电晶片5的材质为压电陶瓷、压电纤维复合材料或压电薄膜,所述悬臂梁4的材质为金属材料。
仿真实验、本发明的一种基于机械诱导的宽频俘能器能量俘获方法研究。
仿真方法:
利用ADAMS软件建立一种基于机械诱导的宽频俘能器动力学模型:给定基座1恒定位移激励,设置悬臂梁4、机械诱导机构3相应位置并与基座1固连,设置压电晶片5与悬臂梁4粘结,对悬臂梁4进行扫频分析,提取悬臂梁4的自由端位移值;将数据导入ANSYS软件计算压电晶片5上、下表面开路电压值,得到一种基于机械诱导的宽频俘能器的激励频率与输出电压间的关系曲线。
设置一组对比仿真实验:在一种基于机械诱导的宽频俘能器中去掉机械诱导机构,利用上述方法得到传统压电悬臂梁式俘能器的激励频率与输出电压间的关系曲线。
实验结果:
仿真实验结果如图4所示,从图4可以看出:相对于传统压电悬臂梁式俘能器,本发明能有效拓宽工作频带,大幅提升俘能器的俘能效率。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (5)

  1. 一种基于机械诱导的宽频俘能器,其特征在于,包括:
    基座,所述基座为框状结构;
    位于所述基座内的俘能机构和机械诱导机构;
    所述俘能机构包括一端与所述基座内侧壁固定连接、另一端自由的悬臂梁,所述悬臂梁的靠近其固定端的一侧的上表面粘贴有压电晶片,所述压电晶片上表面与一正电极引线导通固连,所述悬臂梁的靠近其固定端的一侧的下表面与一负电极引线导通固连;
    所述机械诱导机构包括对称设置在所述悬臂梁的自由端的两侧且轴线均垂直于所述悬臂梁的长度方向的上弹簧-阻尼机构和下弹簧-阻尼机构,所述上弹簧-阻尼机构位于所述悬臂梁的自由端上表面的正上方,所述下弹簧-阻尼机构位于所述悬臂梁的自由端下表面的正下方,所述上弹簧-阻尼机构和所述下弹簧-阻尼机构远离所述悬臂梁的一端均与所述基座内侧壁固定连接。
  2. 根据权利要求1所述的一种基于机械诱导的宽频俘能器,其特征在于:
    所述基座为长方形框状结构,且垂直于地面放置;
    所述悬臂梁的固定端与所述基座左内侧壁或右内侧壁固定连接;
    所述上弹簧-阻尼机构的固定端与所述基座上内侧壁固定连接;
    所述下弹簧-阻尼机构的固定端与所述基座下内侧壁固定连接;
    所述悬臂梁为长方体板状结构,其上表面和下表面为其最大面且与地面平行。
  3. 根据权利要求2所述的一种基于机械诱导的宽频俘能器,其特征在于:所述上弹簧-阻尼机构和所述下弹簧-阻尼机构均包括弹簧、质量块和一端与所述基座内侧壁固定连接的阻尼器;
    所述弹簧嵌套在所述阻尼器外表面,且所述弹簧的两端分别与所述阻尼器的两端固定,所述质量块固定于所述阻尼器的自由端的正中央。
  4. 根据权利要求3所述的一种基于机械诱导的宽频俘能器,其特征在于:所述质量块为空心正方体结构,所述质量块靠近所述悬臂梁的面与所述悬臂梁上表面平行,所述质量块的边长大于等于所述悬臂梁的宽度,所述质量块的中心正对所述悬臂梁的自由端的中心;所述质量块的材质为轻质金属材料。
  5. 根据权利要求2所述的一种基于机械诱导的宽频俘能器,其特征在于: 所述压电晶片的截面为矩形,且与所述悬臂梁的宽度相等,且所述压电晶片的长度小于所述悬臂梁的长度;所述压电晶片的材质为压电陶瓷、压电纤维复合材料或压电薄膜,所述悬臂梁的材质为金属材料。
PCT/CN2018/105964 2018-01-09 2018-09-17 一种基于机械诱导的宽频俘能器 WO2019137037A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810018710.5 2018-01-09
CN201810018710.5A CN107959440A (zh) 2018-01-09 2018-01-09 一种基于机械诱导的宽频俘能器

Publications (1)

Publication Number Publication Date
WO2019137037A1 true WO2019137037A1 (zh) 2019-07-18

Family

ID=61957354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105964 WO2019137037A1 (zh) 2018-01-09 2018-09-17 一种基于机械诱导的宽频俘能器

Country Status (2)

Country Link
CN (1) CN107959440A (zh)
WO (1) WO2019137037A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107959440A (zh) * 2018-01-09 2018-04-24 大连理工大学 一种基于机械诱导的宽频俘能器
CN112582035B (zh) * 2020-12-01 2024-02-13 大连理工大学 一种可回复六向缓冲吸能超材料及其设计方法
CN113193786A (zh) * 2021-05-20 2021-07-30 全球能源互联网研究院有限公司 一种振动取能装置、供电电源及温度传感器
CN114039509B (zh) * 2021-11-02 2024-02-06 上海交通大学 双稳态压电能量收集装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110204752A1 (en) * 2011-05-03 2011-08-25 Hong Kong Applied Science and Technology Research Institute Company Limited Self-powered impulse detection system
CN102495914A (zh) * 2011-10-31 2012-06-13 中南大学 一种实现宽频响应的二自由度压电振子的设计方法
CN103516257A (zh) * 2012-06-21 2014-01-15 通用电气公司 可调振动能量采集装置和方法
CN103532434A (zh) * 2013-11-01 2014-01-22 重庆大学 基于碰撞机理的宽频多维能量采集器
CN107959440A (zh) * 2018-01-09 2018-04-24 大连理工大学 一种基于机械诱导的宽频俘能器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594204B (zh) * 2012-03-29 2015-04-29 浙江师范大学 基于火车振动能量回收的手机充电用发电装置
CN103036478A (zh) * 2013-01-11 2013-04-10 浙江工商大学 带有弹性放大机构的高效宽频带振动能量采集器
US9118187B1 (en) * 2013-03-14 2015-08-25 Amazon Technologies, Inc. Vibrational energy harvester
KR101489151B1 (ko) * 2013-05-29 2015-02-03 우리산업 주식회사 비대칭 구조의 진동 기반 에너지 하베스터 및, 타이어 공기압 감지 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110204752A1 (en) * 2011-05-03 2011-08-25 Hong Kong Applied Science and Technology Research Institute Company Limited Self-powered impulse detection system
CN102495914A (zh) * 2011-10-31 2012-06-13 中南大学 一种实现宽频响应的二自由度压电振子的设计方法
CN103516257A (zh) * 2012-06-21 2014-01-15 通用电气公司 可调振动能量采集装置和方法
CN103532434A (zh) * 2013-11-01 2014-01-22 重庆大学 基于碰撞机理的宽频多维能量采集器
CN107959440A (zh) * 2018-01-09 2018-04-24 大连理工大学 一种基于机械诱导的宽频俘能器

Also Published As

Publication number Publication date
CN107959440A (zh) 2018-04-24

Similar Documents

Publication Publication Date Title
WO2019137037A1 (zh) 一种基于机械诱导的宽频俘能器
Rezaei et al. Wideband PZT energy harvesting from the wake of a bluff body in varying flow speeds
Yang et al. High-efficiency compressive-mode energy harvester enhanced by a multi-stage force amplification mechanism
CN102013837B (zh) 蒲公英状多方向、宽频带压电振动能量收集装置
CN107707155A (zh) 一种超宽带高能效压电振动能量收集装置
CN103036478A (zh) 带有弹性放大机构的高效宽频带振动能量采集器
CN105553331B (zh) 一种低频压电振动能量收集器
CN106899234A (zh) 一种压电式多向振动能量收集装置
CN105226994A (zh) 多频耦合振动能量俘获器
CN106685263B (zh) 基于模态分离技术的带宽可调n×3点阵式振动能量采集器
CN103414379A (zh) 基于线性谐振器和非线性激振器的压电能量收集器
CN103296923A (zh) 免磁铁双稳态压电换能器
Berdy et al. Increased-bandwidth, meandering vibration energy harvester
CN108712108A (zh) 一种双稳态压电振动能量采集器阵列装置
Wang et al. Design and analysis of a hollow triangular piezoelectric cantilever beam harvester for vibration energy collection
Junwu et al. Modeling and simulation of piezoelectric composite diaphragms for energy harvesting
Ralib et al. Theoretical modeling and simulation of MEMS piezoelectric energy harvester
Pawar et al. Piezoelectric transducer as a renewable energy source: A review
CN207460030U (zh) 一种三维多方向宽频带能量采集器
Krishnasamy et al. Distributed parameter modeling for autonomous charge extraction of various multilevel segmented piezoelectric energy harvesters
Pan et al. A piezoelectric wind energy harvesting device with right-angle cantilever beam
Khalatkar et al. Modeling and simulation of cantilever beam for optimal placement of piezoelectric actuators for maximum energy harvesting
CN104811091B (zh) 一种基于环形海尔贝克阵列的多方向振动能量采集器
CN108270370B (zh) 一种多向宽频的压电式能量收集装置
Feng et al. Optimal Design of a Novel Piezoelectric Vibration Energy Harvester

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18899324

Country of ref document: EP

Kind code of ref document: A1