WO2019135498A1 - Method for designing and manufacturing double-sided aspherical surface of customized progressive multifocal lens, and device for manufacturing double-sided aspheric lens by using same - Google Patents

Method for designing and manufacturing double-sided aspherical surface of customized progressive multifocal lens, and device for manufacturing double-sided aspheric lens by using same Download PDF

Info

Publication number
WO2019135498A1
WO2019135498A1 PCT/KR2018/015116 KR2018015116W WO2019135498A1 WO 2019135498 A1 WO2019135498 A1 WO 2019135498A1 KR 2018015116 W KR2018015116 W KR 2018015116W WO 2019135498 A1 WO2019135498 A1 WO 2019135498A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
concave
design
infrared
progressive multifocal
Prior art date
Application number
PCT/KR2018/015116
Other languages
French (fr)
Korean (ko)
Inventor
진재홍
Original Assignee
한미스위스광학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한미스위스광학 주식회사 filed Critical 한미스위스광학 주식회사
Publication of WO2019135498A1 publication Critical patent/WO2019135498A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/0018Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor for plane optical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/06Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor grinding of lenses, the tool or work being controlled by information-carrying means, e.g. patterns, punched tapes, magnetic tapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
    • B24B55/02Equipment for cooling the grinding surfaces, e.g. devices for feeding coolant

Definitions

  • the present invention relates to a double-sided aspherical spectacle lens manufacturing method, and more particularly, to a double-sided aspherical surface design and manufacturing method of a personalized progressive multifocal lens and an apparatus for manufacturing a double-sided aspheric lens using the same.
  • PAL Progressive Multi-Focussing / Addition Lenses
  • Presbyopia is a condition in which a person wearing a spectacle lens progresses from age 40 onwards, and when the lens is losing its elasticity, when the distance between the lens and the lens must be closely monitored, adjustment of the focus distance is not smooth, It refers to the symptom that the person in the department or the near field is not able to recognize correctly.
  • presbyopia has been emerged as a young preschool population after 30 years of age.
  • new products for the young preschool population are being developed in the field of eyeglass lenses.
  • Modern people have many social activities, TV, computer, game machine, smart phone, etc.
  • modern people can use devices such as computers, game machines, mobile phones and other environmental factors,
  • the risk of eye disease and eye disease is very high due to factors such as presbyopia symptoms are coming soon, and research results are coming out, Recently, there are also many primitive presbyopia population.
  • the progressive multifocal lens has an area for viewing a distance called a " far vision viewing portion ", an area for viewing an intermediate distance called an " intermediate vision viewing portion " (near vision viewing portion) " exists.
  • intermediate distance refers to a distance of about 50 cm to 2 m. In many cases, a distance farther away is called a near distance, and a distance shorter than that is called a near distance, but the reference is not clearly defined.
  • the progressive multifocal lens has different dioptric powers for the far-field portion, the middle portion, and the near-field portion, and the incidence of astigmatism varies depending on the dioptric power.
  • the visual field of the middle portion and the near portion may be narrowed depending on the degree of astigmatism. Particularly, in the case of a diopter having a large astigmatism, the middle portion is significantly narrowed. (The middle distance area).
  • the progressive multifocal lens has a variation in dioptric power through various curves on the lens surface, and thus, in the case of wearing a spectacle lens having high myopia / intensity astigmatism, in which the diopter varies from the distance portion to the near portion, The use rate of the multifocal lens is rapidly lowered.
  • the wearer of the existing progressive multifocal lens has a preconceived notion that the progressive multifocal lens is difficult and expensive, so it relies heavily on foreign products, and it suffers from the inconvenience of using the ready-made article
  • progressive multifocal lenses for example bifocal lenses
  • the upper region of the lens is designed to have adequate optical power for the primitive, and the lower region is designed for near vision (e.g., reading).
  • near vision e.g., reading
  • wearers often experience discomfort due to sudden changes between different lens areas.
  • progressive multifocal lenses have been developed to provide a smooth transition of optical power between regions of the lenses.
  • the conventional aspherical lens is manufactured by inserting a glass product, which is a raw material, into a metal mold and putting it in a molding apparatus.
  • a glass product is directly inserted into a cavity of a mold by using a mechanism such as a tweezers, so that the production amount is short compared with a long production time, a labor cost due to manual work is generated, Since the size of the glass product which is the raw material of the lens is very small, it is difficult for the person to be identified, and thus the glass product is lost in the process of inserting the glass product into the cavity of the metal mold.
  • Japanese Patent Application Laid-Open No. 10-1396334 discloses a raw material and molded lens automatic multi-magazine device and a raw material inputting and molding lens taking out automation device.
  • a plurality of raw material holders (2) a lens holder magazine for storing a plurality of lens holders accommodating the two forming lenses in the first axial direction, (3) a lens holder magazine for holding the lens holder magazines in the first axial direction, A magazine elevator for individually moving the original material holder magazines at regular intervals along the first axis direction, (4) holder grippers for holding one of the work object lens holders and one of the work target raw material holders, and (5) Robot transfers to which the holder grippers are mounted and which move the holder grippers in a second axial direction orthogonal to the first axial direction;
  • said raw material holder magazines are made up of at
  • the present invention has been developed to solve the above-mentioned problems.
  • the present invention has been developed to solve the above-mentioned problems, and it is possible to design and manufacture double-sided aspherical surfaces of a personalized progressive multifocal lens that improves the adaptation rate of the wearer by applying preform design using individual parameters and double- And an apparatus for manufacturing a double-sided aspheric lens using the same.
  • the object of the present invention is to provide an eyeglass lens in which both the object-side convex surface and the visual-field-side concave surface of the spectacle lens are made of an aspheric lens using a preform processing method so that a person having an ultra-high myopia or astigmatism can obtain a satisfactory visual field And at the same time check the dust to securely produce the lens.
  • a personalized progressive multifocal lens having a personalized progressive multifocal lens by applying a preform design using personal parameters (characteristics / habits) ; Minimizing distortion, controlling astigmatism, and minimizing wearer 's maladjustment condition through aspherical design of myopic and astigmatic aspheric design using CC (convex surface) / CV (concave surface).
  • a method for producing a bi-aspherical surface of a progressively progressive progressive multifocal lens there is provided a method of designing a CC (convex surface) which is a front surface of a blank product (semi-finished product) as an aspherical surface and applying an aspherical surface design to the inner surface of the lens by a preforming method .
  • a CC convex surface
  • both sides of a blank product (semi-finished product) or a blank product (finished product), that is, a front CC (convex surface) / a rear surface CV (concave surface) A method of applying the design is provided.
  • the present invention provides a spectacle lens system that calculates an average curvature of a lens surface to be machined of a spectacle lens and calculates a spiral processing locus that continuously increases in accordance with an average curvature from a lens outer circumference to a center on a XY projection plane
  • a calculator terminal (28) for calculating an output value
  • a cutting means (27) for receiving data from the computer terminal and cutting the surface of the lens to be processed into a spiral shape
  • a control unit (32) for controlling the cutting means so that the cutting means cuts the surface of the lens to be processed along the spiral processing locus
  • Dust measuring means 2000 installed at one end of the cutting means for measuring dust
  • a communication signal automatic output unit 1000 for outputting a notification signal to the outside when dust is detected by the dust measuring unit.
  • the present invention provides a personalized progressive multifocal lens using a preform design and a double-sided aspheric design using individual parameters (personal characteristics, habits, etc.) So that the wearer can receive the best spectacle lens.
  • the present invention it is possible to have a more comfortable and wide field of view due to the advantages of the aspherical surface design as well as the wearer of the progressive multifocal lens having both the myopia degree and the astigmatic power, It is possible to minimize distortion even in different fields of view such as the distance portion, the middle portion, and the near portion, so that the adaptation rate can be increased when the lens is worn, and even if the wearer has a frequency with a large amount of astigmatism, A much better effect can be obtained.
  • FIG. 1 is a block diagram showing a method for designing a double-sided aspheric surface of a progressive progressive multifocal lens according to the present invention.
  • FIG. 2 is a block diagram showing a method for manufacturing an aspherical surface on both sides of a personalized progressive multifocal lens according to the present invention.
  • FIG. 3 is a sectional view of a spectacle lens after cutting according to the present invention.
  • FIG. 4 is a block diagram for explaining a manufacturing apparatus of the present invention
  • FIG. 5 is a block diagram of a lens manufacturing apparatus according to the present invention.
  • FIG. 6 is a flowchart of a manufacturing method of the present invention.
  • FIG. 7 is a block diagram of a dust measuring means and a communication signal automatic output section of the present invention.
  • FIG. 8 is a conceptual diagram of infrared transmitting means and infrared receiving means constituting the dust measuring means of the present invention.
  • FIG. 9 is a conceptual diagram for measuring dust using the infrared ray transmitting means and the infrared ray receiving means of the present invention.
  • 10 is a conceptual diagram of operation for the flow of the infrared ray transmitting means of the present invention.
  • FIG. 11 is a conceptual diagram illustrating the angle measurement of the concave lens of the present invention.
  • FIG. 12 is a configuration view of a first negative lens according to the present invention.
  • 13 is a second negative lens configuration applied to the present invention.
  • FIG. 14 is a third negative lens configuration applied to the present invention.
  • 15 is a fourth negative lens configuration applied to the present invention.
  • 16 is a fifth negative lens configuration applied to the present invention.
  • 17 is a graph showing the optical intensity graph according to the concave lens center depression angle of the present invention.
  • FIG. 18 is a circuit diagram of a communication signal automatic output section of the present invention.
  • Fig. 19 is an enlarged view of the main part of Fig. 18;
  • 20 is an exemplary operational example of a communication signal automatic output section of the present invention.
  • Fig. 21 is a diagram showing an example of installing recessed portion cooling means of the present invention.
  • FIG. 22 is an operation drawing of the recessed portion cooling means of the present invention.
  • FIG. 24 is an exploded perspective view of the recessed portion cooling means of the present invention.
  • 25 is a block diagram of a partial cooling device circuit of the present invention.
  • a progressive multifocal lens is designed to have both spherical surfaces or only one aspheric surface.
  • there are limitations in controlling astigmatism and distortion Many cases occurred. This is mainly due to the fact that most of the progressive multifocal lens wearers have nearsightedness and astigmatic dioptric power.
  • the progressive multifocal lens designed to be spherical in both sides has an aspheric surface on one side, The wearer feels uncomfortable due to the astigmatism and the distortion phenomenon more than the designed product, so that the wearer who avoids even the wearer who necessarily requires the progressive multifocal lens is created.
  • the present invention provides a personalized progressive multifocal lens to which a preform design utilizing individual parameters (e.g., individual characteristics or habits) is applied.
  • a personalized progressive multifocal lens can minimize maladjustment due to astigmatism or distortion of the progressive multifocal lens wearer.
  • the present invention is characterized in that aspheric design is applied to both sides of a progressive multifocal lens, that is, CC (convex surface) / CV (concave surface)
  • CC convex surface
  • CV concave surface
  • Such a double-sided aspheric design provides the myopia and astigmatism wearer with an enlargement of the field of view such as viewing a flat-screen TV, as well as reducing the thickness of the lens.
  • the thickness of the lens is reduced, the weight and thinning thickness And the effect can be improved in terms of beauty.
  • the aspherical design of both sides is applied to the range corresponding to the distance portion, the middle portion, and the near portion, so that the effect of expanding the field of view and minimizing the astigmatism, as well as the sudden The jumping phenomenon due to the change of the frequency can be reduced, so that the movement of the visual line is smooth, so that the wearer's adaptability to the spectacle lens is enhanced and the visual field is wider.
  • the present invention applies the aspherical surface design to both the myopic surface and the astigmatism surface, thereby limiting the distortion of the astigmatism surface by applying the aspherical surface design only to the inner surface of the existing lens.
  • Lt; / RTI > In particular, for those wearing progressive multifocal lenses with both nearsightedness and astigmatism and those with progressive myopia / astigmatic astigmatism, those with aspheric design on both sides of the lens have little or no astigmatism or distortion The effect of increasing the adaptation rate of the wearer of the progressive multifocal lens and improving the quality of daily life is provided.
  • the present invention is characterized in that it is applied to the near portion in a divided manner (Di (unit: diopter): the difference between the near vision power and the far vision power).
  • the degree of addition Di refers to a difference in surface refractive power between the original application number measurement position F and the near-use number measurement position N.
  • the addition degree is +2.00 diopter
  • Apply +1.00 diopter to CC (convex) and +1.00 diopter to CV (concave) back when applying +1.00 diopters to each CC (convex surface) / CV (concave surface), the wearer feels astigmatism to +1.00 diopters. Therefore, the wearer felt astigmatism to +2.00 in the conventional product It is possible to reduce the wearer's maladjustment by half, and the field of view can be made much wider and more comfortable. This effect can be felt larger at larger frequencies.
  • the above-mentioned joining of the near portion can be applied differently to the CC (convex) / CV (concave) depending on the condition of the wearer of glasses.
  • +0.25 diopter is applied to the front CC If you apply +1.75 diopter to the CV (concave side) on the back and +1.75 diopter on the front CC (convex side), you can apply +0.25 diopter to the CV (concave side) on the back side. You can even apply +0.00 diopters to the front CC (convex) and +2.00 diopters to the back CV (concave).
  • the aspheric design When the aspheric design is applied to the myopia and astigmatism of the progressive multifocal lens, the aspheric design is applied to all the surfaces of the distal portion, the middle portion, and the near portion. At this time, The distortion can be minimized even in different fields of view of the near portion, and the adaptation rate can be increased when the lens is worn.
  • the present invention can have a more comfortable and wide field of view due to the advantages of aspheric design in any condition as well as a wearer of a progressive multifocal lens having both myopia and astigmatism, It is possible to obtain a much better effect than a conventional product even if the wearer has the frequency.
  • the aspherical surface design method of the personalized progressive multifocal lens of the present invention can be applied to the preform design application step using personal parameters (characteristic / habit), the aspherical surface design of CC (convex surface) / CV
  • the application step, the progressive multifocal lens thickness minimization design application step and at least one step of applying the joining degree (Di, unit: diopter) to the CC (convex side) and the back side CV (concave side) do not necessarily have to be performed sequentially.
  • the present invention provides a personalized progressive multifocal lens employing a preform design using a personal parameter and a double-sided aspherical design, and the following three types of manufacturing methods can be selectively applied to the lens.
  • the first method is to design the CC (convex surface), which is the front side of the blank semi-finished product, as the aspherical surface, and apply the aspherical surface design to the inner surface of the lens by the preforming method.
  • CC convex surface
  • the second method is to apply a double-sided aspheric design to the blank product (semi-finished product) to make both sides CC (convex side) / back side CV (asymmetric) aspheric.
  • the third method is to apply a double-sided aspherical design to the blank product (finished product) to make the front face CC (convex face) / rear face CV (concave face) both sides aspheric.
  • the present invention relates to a progressive multifocal design lens, an anti-putty type progressive multifocal design lens for early presbyopic patients, a progressive multifocal design lens for indoor / office office design, a key topographic progressive multifocal design , It is possible to expect many effects ranging from the viewpoint of the wearer to minimize the astigmatism, the weight reduction of the spectacle lens due to the thickness reduction, and the cosmetic effect thereof.
  • the eye movement can be smooth and a more comfortable view can be provided.
  • the aspherical design double-sided aspherical design
  • both the CC (convex) / CV (concave) surfaces it is possible to apply the optimal aspherical design to both wearers with myopic / astigmatic or primitive.
  • the spectacle lens to which the present invention is applied is a lens used as a progressive-power lens for presbyopia.
  • the progressive-power lens is generally used for reasons of being a spectacle lens for a nose, but being advantageous in that it can not be easily perceived by a magnifying lens in appearance, but is advantageous in that it can be continuously brightened without disturbance from a long distance to a near distance .
  • the progressive-power lens processed by the present invention is, for example, a one-side progressive-power lens having a progressive surface on either the first refractive surface, which is the object side surface, or the second refractive surface, which is the eyeball side surface.
  • the second surface has a progressive power action divided and divided into a first refractive surface and a second refractive surface.
  • the first surface and the second surface are matched to each other, and the dioptric power and the degree of addition Which is a bi-aspherical type progressive-power lens having a configuration that gives a spherical aberration.
  • the lens base material of the spectacle lens is preferably a plastic lens base material, more preferably a plastic lens base material for spectacles.
  • a copolymer of methyl methacrylate and one or more other monomers a copolymer of diethylene glycol bisallyl carbonate and one or more other monomers
  • copolymers are not limited to, copolymers, polycarbonates, polystyrenes, polythiourethanes, sulfido resins using ene-thiol reactions, vinyl aggregates including sulfur, But is not limited thereto.
  • the spectacle lens manufacturing system includes an order terminal 21 and a main frame (spectacle lens designing apparatus) 22, which are connected via a public communication line 23 .
  • the order terminal 21 is disposed in an optician 20 as an order source.
  • the main frame 22 is disposed in a factory 24 as a manufacturer of glasses.
  • the ordering terminal 21 of the optician 20 supports inputting of various kinds of data required for ordering the spectacle lens and displays them.
  • the input unit of the order terminal 21 allows at least the prescription value data of the eye to be examined to be inputted.
  • the prescription value data and the like inputted to the ordering terminal 21 are transmitted to the main frame 22 of the factory 24 via the communication line 23.
  • the main frame 22 stores prescription value data or the like as order receipt data.
  • the main frame 22 stores a spectacle lens design program, a machining data generation program, and the like. Upon receiving prescription value data and the like from the order terminal 21, .
  • the design program has a function of creating design data of each spectacle lens based on the acquired prescription value data.
  • the machining data generation program has a function of generating machining data required when the cutting means 27 performs actual lens machining based on the design data created by the design program.
  • This processing data includes the surface design data of the spectacle lens, the prescription value data, the type of the blank to be processed, and the like.
  • the main frame 22 generates the machining data as the control information of the cutting means 27 by executing the spectacle lens designing program and the machining data generating program and simultaneously transmits the machining data generated to the factory server 26 .
  • the factory server 26 stores the process data together with the order number of the order data. Each processed data to be stored is given a manufacturing number used only in the manufacturing factory for each order data for identification, and associated with each processing data.
  • the cutting means 27 obtains the machining data from the factory server 26 via the LAN 29 and carries out cutting processing of the lens surfaces 3 and 5 of the spectacle lens 1 on the basis of the machining data sequentially .
  • the processing order of the lens surfaces 3 and 5 to be processed may be either of the first or second order.
  • all requests for information in the manufacturing process to the factory server 26 executed by the calculator terminal 28 are made through the serial number information.
  • the calculator terminal 28 creates the cutting related information corresponding to the manufacturing number information And requests the factory server 26 to process the data.
  • the factory server 26 transmits the processed data to the communication control unit 30 of the calculator terminal 28 via the LAN 29 in accordance with the request.
  • the processed data to be transmitted includes, for example, the surface design data of the spectacle lens, the prescribed value data, the kind of the spectacle lens, and the like.
  • the communication control unit 30, the arithmetic processing unit 31 and the control unit 32 are connected by the LAN 36.
  • the calculation processing section 31 calculates the details of the data for machining from the received machining data.
  • the cutting means 27 shown in Fig. 5 has a lower axis E and a higher axis D by three-axis control by NC control.
  • the lower shaft E is axially rotated without the spectacle lens 1 being installed.
  • the upper shaft D has a first shaft portion G provided with a first byte F for roughness cutting and a second shaft portion I provided with a second byte H for finishing cutting, And the upper shaft D is slid in the X direction with respect to the fixed lower shaft E so that the first and second upper shaft portions G and I are changed.
  • the material of the cutting blade B of the first and second bytes F and H for example, sintered diamond or single crystal diamond is used.
  • the computer terminal 28 sends the design height data of the concave surface represented by the matrix to the control unit 32).
  • the calculator terminal 28 also transfers the spiral machining locus 4 corresponding to the concave shape to the control unit 32.
  • the control section 32 controls the upper axis D and the first and second upper axis portions G and I so that the cutting blade B of the bytes F and H is positioned at the spiral machining locus 4,
  • the working lens surface 5 is cut by moving according to the above-mentioned processing point K.
  • the machining accuracy of the cutting means 27 is within 3 ⁇ ⁇ (lens diameter: 50 mm), and the maximum surface roughness Rmax is about 03 to 05 ⁇ ⁇ .
  • the machining locus is shown in Fig.
  • the cut lens surface 2 is polished by a polishing apparatus to complete an optical surface having a predetermined curved surface.
  • a polishing apparatus As a polishing apparatus, a polishing apparatus as disclosed in FIG. 3 of Japanese Unexamined Patent Publication No. 2003-266287 and a general polishing apparatus (TORO series) of a commercially available LOH company are used .
  • TORO series general polishing apparatus
  • the lens is cut by the cutting means 27 in the same manner as in the case of the convex lens surface 3, Optical surface.
  • the main frame 22 of the factory 24 receives a request for making a spectacle lens from the optician 20.
  • the optician 20 before ordering the spectacle lens, Specification information of the spectacle lens necessary for designing other lenses is inputted to the ordering terminal 21.
  • the specification information includes the type of spectacle lens and specific information.
  • prescription data includes spherical power of the left and right eyes of the customer, cylindrical power of the circumference, astigmatism axis, degree of joining, distance of the same space, and naked eye. Then, the ordering terminal 21 transmits the entered spectacle lens information and prescription value to the main frame 22 via the communication line 23 online to request the manufacture of the spectacle lens.
  • Step 2 Calculate the surface shape data of the lens convex surface
  • the main frame 22 calculates the machining data used by the cutting means 27 rather than the received data and stores it in the factory server 26 or stores it on the LAN 29 To the cutting means (27).
  • the machining data is output in a format used in each of the machining apparatuses and the inspection apparatuses and includes at least concave and convex shape data of the spectacle lens.
  • Step 3 Calculation of average curvature of lens convex surface
  • the calculator terminal 28 obtains the average curvature radius R (RT) of the convex surface shape data of the spectacle lens.
  • the average curvature radius RT is a radius of curvature in which the most difference is small when the entire surface shape of the spectacle lens is approximated to a spherical shape.
  • the difference between the lens shape value and the approximate spherical surface is calculated by a least squares method in a computer or the like, and the radius of curvature at which the difference becomes the smallest is defined as the average radius of curvature RT.
  • an average curvature CT is obtained from the obtained average radius of curvature RT.
  • Step 4 Calculation of trajectory of convex surface spiral shape
  • Step 5 Computation of convex surface machining locus (3D)
  • the surface shape data of the spectacle lens is represented by a function of three-dimensional data (X, Y, Z).
  • the two-dimensional data (X, Y) values of the helical processing locus are substituted into the surface shape data composed of the three-dimensional data (X, Y, Z)
  • the machining point K on the corresponding lens surface is specified,
  • the three-dimensional machining point position coordinate values (X, Y, Z) are determined.
  • the three-dimensional machining point position coordinate values (X, Y, Z) are sent to the cutting means 27.
  • the cutting means 27 controls the cutting tool to move on the spiral machining locus 4 calculated in step 4 according to the specified three-dimensional machining point position coordinate values (X, Y, Z) 3) is cut to form a desired surface shape.
  • Step 7 Convex surface polishing
  • the cut convex surface 3 is polished.
  • polishing the convex surface 3 of the spectacle lens is cut into a predetermined shape by the cutting means 27, the spectacle lens is removed from the cutting means 27 and attached to the polishing apparatus, Polish.
  • Step S8 Calculating the surface shape data of the lens concave surface
  • the main frame 22 calculates the machining data to be used by the cutting means 27 in the received data and stores it in the factory server 26 or transmits it to the cutting means 27 via the LAN 29.
  • the machining data is output in a format used in each of the machining apparatuses and the inspection apparatuses and includes at least concave surface shape data of the spectacle lens.
  • Step S9 Calculation of the average curvature of the lens concave surface
  • the calculator terminal 28 requests the average curvature radius R (RO) of the concave surface shape data of the spectacle lens.
  • the average radius of curvature RO of the concave surface 2 is a radius of curvature which is the smallest when the entire surface shape of the spectacle lens 1 is approximated to a spherical shape.
  • the difference between the lens shape value and the approximate spherical surface is calculated by the least square method, and the radius of curvature where the difference becomes the smallest is set as the average curvature radius RO.
  • Step S10 Calculation of Trajectory of Concave Spiral Machining
  • Step S11 Calculation of concave surface machining locus (3D)
  • the concave surface shape data of the spectacle lens 1 is displayed as a function of the three-dimensional data (X, Y, Z), and the two-dimensional data (X, Y)
  • the respective machining points K on the corresponding concave surface 2 are specified and the respective three-dimensional position coordinate values (X, Y, Z) are sent to the cutting means 27.
  • the concave surface 2 of the spectacle lens 1 is cut by the cutting means 27.
  • Step S13 concave surface polishing process
  • the cutting process of the concave surface 2 is completed, the cutting process of the concave surface 2 is performed next.
  • a polishing apparatus used for convex surface polishing is used for the polishing of the concave surface 2.
  • the convex face 3 and the concave face 2 are subjected to dyeing, surface treatment, inspection, and the like, and the spectacle lens 1 passed the inspection is released as a product to the optician of the client.
  • a dust measuring means is installed at one end of a cutting means (27), dust is detected through the dust measuring means (2000), and when dust above a reference level is detected, the dust is outputted through an alarm signal, To remove the dust present in the surface.
  • the data measured by the dust measuring means 2000 is transmitted to the dust measurement calculation unit 3000.
  • the dust measurement calculation unit 3000 calculates the data measured by the dust measurement means and displays the data on the display 4000 do.
  • the dust measuring means 2000 of the present invention includes an infrared transmitting means (A) for emitting infrared rays, a receiving means for receiving the light emitted from the infrared transmitting means and positioned to face the infrared transmitting means, (D) for controlling the input voltage of the infrared ray transmitting means (A) to increase when the output voltage of the infrared ray receiving means (B) is smaller than a predetermined value, an infrared ray receiving means (C).
  • A infrared transmitting means
  • D for controlling the input voltage of the infrared ray transmitting means (A) to increase when the output voltage of the infrared ray receiving means (B) is smaller than a predetermined value
  • an infrared ray receiving means (C) for controlling the input voltage of the infrared ray transmitting means (A) to increase when the output voltage of the infrared ray receiving means (B) is smaller than a predetermined value
  • the infrared transmitting unit A receives the infrared transmitting control signal from the dust measuring control unit C, determines the infrared transmitting amount, and outputs the changed infrared transmitting amount.
  • the dust measurement control section C predicts the dust generation amount based on the data of the infrared ray receiving means B, And outputs a control signal to the infrared ray transmitting means (A) to adjust the infrared ray transmission amount to induce the output.
  • the light amount data outputted from the infrared ray receiving means is read by the dust measurement control unit, and the light amount of the infrared light emitting means is automatically controlled based on the read light amount data, so that the sensitivity adjustment is automatically maintained constant. So that the measurement can be performed while maintaining the sensitivity state.
  • the dust measurement control section C determines that the degree of contamination is high when the amount of received light of the infrared ray receiving means B is low, and outputs a control signal to increase the light amount of the infrared ray transmitting means A If the amount of light received by the infrared ray receiving means C is too high, a contamination-free state or a precise measurement becomes difficult. Therefore, a control signal is outputted so as to lower the light amount of the infrared ray transmitting means A That is, it is necessary to keep the amount of infrared transmission light in an appropriate state.
  • the infrared ray amount measured through the infrared ray receiving means is accurate and the dust amount can be more precisely predicted.
  • the dust amount data measured by the dust measurement control unit of the present invention can output the dust measurement result with high reliability.
  • the transmission control unit 11 recognizes the control signal and drives the infrared ray transmitter conversion unit to perform the most appropriate infrared ray transmission .
  • the infrared transmitter converting means 12 includes a plurality of floating electromagnets 12a, 12b and 12c which are wound around the actuator 13 and are mounted to be spaced apart from each other by a predetermined distance and fixed to a position adjacent to the floating electromagnets 12a, 12b and 12c 12b and 12c and the fixing electromagnets 12d, 12e, and 12f, when the signal from the transmission control unit 11 is applied, And magnetic force is generated between the floating electromagnets 12a, 12b, and 12c and the fixing electromagnets 12d, 12e, and 12f by the magnetism to drive the actuator 13.
  • the actuator 13 is provided with a plurality of concave lens groups for limiting the infrared ray output by the flow of the infrared transmitter converting means 12.
  • the infrared transmitter flow unit 14 for performing this operation includes an infrared ray transmitting element 14a for outputting infrared rays to the outside in the vicinity of the concave lens group 15 formed in the longitudinal direction at the outer peripheral edge of one side of the actuator 13, A moving bar 14b for moving the infrared ray transmitting element 14a and a solenoid 14c for moving the infrared ray transmitting element to the left and right by moving the moving bar.
  • the infrared transmitting lens group 15 is designed so that a plurality of the infrared transmitting lens groups 15 are arranged on the working rod, and the output power of the infrared ray light is varied according to the depression angle of the center portion.
  • the infrared ray of different intensity can be outputted.
  • the infrared ray is to be output with higher light output
  • light is output through the fourth concave lens 15d provided below the third concave lens 15c.
  • a fifth concave lens 15e provided below the second concave lens 15d.
  • the concave lens group is designed to have a different degree of output of infrared light depending on the depression angle of the central portion, and a lens having different degrees of depression can be selected by the movement of the infrared transmitter conversion means to output infrared light of different intensity
  • the third concave lens 15c is basically provided at the center of the working rod and forms a depression angle of 25 degrees.
  • the second concave lens 15b is used for outputting a slightly reduced amount of infrared light.
  • the second concave lens 15b is provided above the third concave lens 15c and forms a depression angle of 15 degrees.
  • the first concave lens 15a is used when it is necessary to further reduce the amount of infrared light and is disposed above the second concave lens 15b and forms a depression angle of 5 degrees.
  • the fourth concave lens 15d is used when the infrared ray is to be output with higher light output, and is provided at the lower side of the third concave lens 15c to form a depression angle of 35 degrees.
  • the fifth concave lens 15e is used when the infrared ray is to be outputted with a higher light output, and is provided at the lower side of the fourth concave lens 15d and forms a depression angle of 45 degrees.
  • the actuator 13 When the infrared light needs to be increased, the actuator 13 is moved up and the actuator 13 is lowered when the infrared light needs to be reduced.
  • the first fixed electromagnet 12d-the first movable electromagnet 12a, the second fixed electromagnet 12e-the second movable electromagnet 12b, and the second fixed electromagnet 12b are controlled by the transmission control unit 11 in the control for descending one step of the working rod.
  • the first stationary electromagnet 2f and the third stationary electromagnet 2c are provided with a repulsive force signal and the second stationary electromagnet 12e and the first and second stationary electromagnets 12a and 12f, When the attracting signal is applied to the electromagnet 12b, the actuator 13 is lowered to place the first mounting electromagnet 12a at the position of the second fixing electromagnet 12e and the second mounting electromagnet 12b at the position of the third fixing electromagnet 12f.
  • the mounting electromagnet 12b is located. Accordingly, when the operating rod is lowered by one step, the infrared ray transmission element 14a comes close to the second concave lens 15b and outputs infrared light through the second concave lens 15b.
  • the first fixing electromagnet 12d-the first moving electromagnet 12a, the second fixing electromagnet 12e-the second floating electromagnet 12b, and the second fixing electromagnet 12b are controlled by the transmission control unit 11 in the control for the one-
  • the third fixed electromagnet 12f and the third floating electromagnet 12c are given a repulsive force signal and the first fixed electromagnet 12d-the second floating electromagnet 12b and the second fixed dedicated magnet 12d-
  • the actuator 13 rises to place the second mounting electromagnet 12b at the position of the first fixing electromagnet 12d and the second mounting electromagnet 12b at the position of the second fixing electromagnet 12e
  • the third mounting electromagnet 12c is positioned. Accordingly, when the operating rod is raised by one step, the infrared transmitting element comes close to the fourth concave lens 15d and outputs infrared light through the fourth concave lens 15d.
  • the first moving electromagnet 12a is positioned at the same position as the third fixing electromagnet 12f when the operation rod is lowered for two steps and accordingly the infrared transmitting element 14a is moved to the first concave lens 15a, And the third moving electromagnet 12c is positioned at the same position as the first fixing electromagnet 12d under the control for raising the actuator 13 in two steps, And outputs the light through the fifth concave lens 15e.
  • the present invention is further characterized in that a motion speed adjusting means 16 is further provided and is formed at the lower end of the actuator 13 so as to form a plurality of fitting holes 16a in the actuator 13,
  • the movement speed of the actuator 13 can be adjusted by inserting a weight adjusting pin 16b for adjusting the weight of the actuator in the hole.
  • the weight adjusting pin 16b is inserted into the fitting hole 16a. If one weight adjusting pin is installed, the weight of the operating rod is high, Slow flow is possible.
  • the movement speed adjusting means controls whether the movement of the actuator 13 is fast or slow. If the actuator 13 moves too fast, the sensitivity increases. If the actuator 13 moves too slowly, So that the user can selectively control the movement of the actuator 13.
  • the number of the fitting holes 16a and the number of the weight adjusting pins 16b can be varied according to need. In the embodiment of the present invention, three fitting holes 16a and three weight adjusting pins 16b ), So that the explanation can be made more convenient.
  • the dust measurement unit (3000) displays the notification status through the communication signal automatic output unit (1000)
  • the automatic output unit 1000 includes a power supply unit 1110, a first switching transistor, a second switching transistor, a third switching transistor, a fourth switching transistor, a relay switch, a first circuit connection switch sw1, A second circuit connection switch sw2, and a communication control unit 1120.
  • the power source unit 1110 applies power to its own power source.
  • the first switching transistor Q1 switches the circuit according to a switching signal input to the base.
  • the second switching transistor Q2 operates in accordance with the operation of the first switching transistor and switches the power source output from the power source unit.
  • the third switching transistor Q3 switches the circuit according to a switching signal input to the base.
  • the fourth switching transistor Q4 is provided on the other side of the output terminal of the power supply unit to switch the power supply unit output from the power supply unit.
  • the relay switch RL1 is coupled to the output terminal of the fourth switching transistor and generates a magnetic force when the fourth switching transistor is switched.
  • the first circuit connection switch sw1 performs a function of energizing the circuit by pulling the iron piece by the relay switch.
  • the second communication signal output power switch sw2 serves to induce a communication signal to be output through the communication signal output unit 1150 by supplying power to the communication signal output control unit 1140 while the iron wire is pulled by the relay switch do.
  • the communication controller 1120 switches the third switching transistor and the fourth switching transistor to switch the relay switch so that the first circuit connection switch and the second communication signal output power switch are switched,
  • a first circuit connection switch configured to switch the first switching transistor and the second switching transistor while turning off the switching transistor and the fourth switching transistor and to turn off the relay switch and simultaneously to be interlocked with the first switching transistor and the second switching transistor And maintains the communication state by continuing the switching state of the second communication signal output power switch.
  • the present invention is characterized in that it comprises a circuit board 1131 for operation, a wire piece 1132 for connection to a power supply for operating a communication signal control unit, a first resilient holding means 1133, a second resilient holding means 1134, (1133a), and a manual operation switch (1135).
  • the circuit-operating piece 1131 contacts the first circuit connection switch sw1 and relays the power delivered from the second switching transistor to continue the flow of power.
  • the communication signal output control unit power connection iron piece 1132 is designed to operate in conjunction with the circuit operation iron piece 1131. When the circuit operation iron piece 1131 is turned on, power is supplied to the communication signal output control unit 1140 Thereby inducing the communication device to operate.
  • the first elastic holding means 1133 is provided at the lower end of the circuit operation steel plate 1131 so that the first circuit connection switch sw1 and the circuit operation wire 1131 are always kept in the off state when the relay switch is not operated .
  • the second elastic holding means 1134 is installed on the upper portion of the first circuit connecting switch sw1 and is spaced apart from the first elastic holding means by a predetermined distance.
  • the circuit breaker 1131 is pulled to be coupled with the first resilient holding means 1133 while the first resilient holding means is overlapped, and at the same time, the first circuit connecting switch sw1 is switched Even if the operation of the relay switch is stopped, the state of attaching the circuit breaker 1131 continues to maintain the power supply state through the first switching transistor and the second switching transistor.
  • the communication piece 1132 is automatically operated to output the communication signal to the outside.
  • the gap maintaining means 1133a guides the second elastic holding means 1134 and the first elastic holding means 1133 to be engaged with each other while maintaining a constant gap without being directly coupled to each other when the first elastic holding means 1134 and the first elastic holding means 1133 are engaged, 1133 and the second resilient holding means 1134 can be more smoothly separated from each other by the action of the gap maintaining means at the time of disassembly. If the gap maintaining means is not present, the first elastic holding means 1133 and the second elastic holding means 1134 are directly attached to each other, so that mutual separation becomes difficult later. Accordingly, in the present invention, the first elastic holding means 1133 and the second elastic holding means 1134 can be easily separated by further providing the gap holding means 1133a.
  • the manual operation switch 1135 is connected to a wire for circuit operation and a wire for connection to a communication signal output control unit.
  • a wire for circuit operation and a wire for connection to a communication signal output control unit.
  • a control relation for outputting a communication signal will be described.
  • a power is applied to the third switching transistor and the fourth switching transistor to operate the relay switch RL1. Accordingly, the first circuit connection switch sw1 and the communication signal output power switch sw2 are turned on by the operation of the relay switch, and the power is applied to the communication signal output control unit 1140 to display the communication signal.
  • the control unit interrupts the operation of the third switching transistor and the fourth switching transistor to cut off the operation of the relay switch, and simultaneously operates the first switching transistor and the second switching transistor.
  • the control unit recognizes this, and then the third switching transistor and the fourth switching transistor are operated, It is possible to keep the closed circuit while moving the iron piece and at the same time return the power outputted to the communication signal control part 1140 to continuously operate the communication signal output part 1150.
  • the communication signal is continuously output to induce the notification factor to be solved.
  • the communication signal is automatically output by returning the power source again, It is possible to induce the operator to reliably solve the cause of the communication signal.
  • control unit If it is no longer necessary to output a communication signal, the control unit no longer applies a power supply signal to the first switching transistor, the second switching transistor, the third switching transistor, and the fourth switching transistor. ) Can be manually operated by a user to interrupt the communication signal.
  • the concave cooling means (400) is installed around the controller (30), and the heat generated in the controller (30) is supplied to the controller Detect and cool necessary parts.
  • the recessed portion cooling means 400 includes a cooling panel 410, a thermoelectric element 420, a heat dissipation panel 430, a heat dissipation fan 440, a cooling panel and a thermoelectric element transfer portion 450, (460), and a control unit (470).
  • the cooling panel 410 is made of aluminum metal and is located at one end of a speed-only announcement wireless terminal.
  • thermoelectric element 420 is attached to a lower portion of the cooling panel and transmits cooling heat to the cooling panel according to external electric power supply to rapidly cool the inside of the enclosure.
  • the heat dissipation panel 430 is slidingly connected to the lower portion of the thermoelectric element and is made of aluminum and collects heat generated by the action of the thermoelectric elements.
  • the heat-dissipating blower fan 440 attaches to the heat-dissipating panel and transfers the heat generated from the heat-dissipating panel to the outside through the rotation of the fan to cool the heat-dissipating panel.
  • the cooling panel and the thermoelectric-element transferring unit 450 are connected to a cooling panel, which is connected with a screw.
  • the cooling panel and the thermoelectric-element transferring unit 450 transfer the cooling panel and the thermoelectric element to a required point by self-
  • the temperature sensing unit 460 is installed at a predetermined interval to determine whether there is a temperature higher than a reference temperature and transmit the information.
  • the control unit 470 drives the cooling panel and the thermoelectric element transfer unit based on the information result of the temperature sensing unit, and controls the cooling unit and the thermoelectric element transfer unit so as to be located at the point where the cooling is required to cool the part.
  • the control unit 470 cools the required section according to the information of the temperature sensing unit and drives the driving motor 450b to rotate the screw 450a to transfer the cooling panel 410 and the thermoelectric element 420 to a required point .
  • the cooling panel 410 and the portion where the thermoelectric element 420 is present are cooled, thereby preventing a safety accident due to overheating.
  • the cooling heat is transferred to the portion where the cooling panel 410 and the thermoelectric element 420 are positioned and rapidly cooled.
  • Heat generated from the thermoelectric element 420 is moved through the heat dissipation panel 430, The heat is dissipated to the outside by the heat-dissipating blower fan 440 attached to the heat exchanger 430 to maintain the partially cooled state more strongly.
  • thermoelectric module 420 can slide the heat dissipation panel more easily.
  • the surface of the thermoelectric module 420 corresponds to the rail groove So that the thermoelectric element 420 can flow more smoothly from side to side on the rail 430a.
  • the rails 430a and the rail grooves 420a can form a plurality of pieces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Eyeglasses (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

The present invention relates to a method for designing and manufacturing a double-sided aspherical surface of a customized progressive multifocal lens, and provided are: a design method comprising at least one of a step of providing a customized progressive multifocal lens by applying a preform design utilizing individual parameters (characteristics/habits), a step of minimizing a distortion phenomenon, controlling astigmatism and minimizing maladaptive conditions of a wearer through an aspheric design for a myopic surface and an astigmatic surface, in which a double-sided aspherical surface design is applied to a convex surface (CC)/concave surface (CV), a step of applying a progressive multifocal lens thickness minimization design so as to increase wearing comfort and improve an aesthetic effect, and a step of dividedly applying an addition (Di, unit: diopter) to a convex surface (CC), which is a front surface, and a concave surface (CV), which is a back surface, in a near vision viewing part, so as to respectively reduce the astigmatism and maladaptation of the wearer; and a manufacturing method comprising a method for designing, as an aspherical surface, a convex surface (CC) which is a front surface of a blank product (half-finished product), and applying an aspheric design to an inner surface of the lens through a preform processing method, and a method for applying a design for producing, as aspherical surfaces, both surfaces of a blank product (half-finished product) or a blank product (finished product), that is a convex surface (CC), which is a front surface, and a concave surface (CV), which is a back surface.

Description

개인 맞춤형 누진 다초점 렌즈의 양면 비구면 설계 및 제조 방법과 이를 이용한 양면 비구면 렌즈 제조장치Aspheric design and manufacturing method of a personalized progressive multifocal lens and a device for manufacturing a double-sided aspheric lens using the same
본 발명은 양면 비구면 안경 렌즈 제조에 관한 것으로, 보다 상세하게는 개인 맞춤형 누진 다초점 렌즈의 양면 비구면 설계 및 제조 방법과 이를 이용한 양면 비구면 렌즈 제조장치에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double-sided aspherical spectacle lens manufacturing method, and more particularly, to a double-sided aspherical surface design and manufacturing method of a personalized progressive multifocal lens and an apparatus for manufacturing a double-sided aspheric lens using the same.
일반적으로 이상 시안(ametropia)을 교정하기 위한 렌즈의 하나인 누진 다초점 렌즈(Progressive Multi-focussing/Addition Lenses; PAL)는 하나의 렌즈로 근거리와 원거리를 모두 볼 수 있도록 설계한 렌즈를 가리키는 것으로, 주로 노안 증상을 다루기 위해 개발된 안경렌즈를 말한다. 여기서, 노안 증상이란, 안경렌즈 착용자가 나이가 들어감에 따라 흔히 40세 이후부터 진행이 되며 수정체가 탄력을 잃게 되면 멀리 또는 가까이 보아야 할 때 초점의 거리조정이 순조롭지 못하여 가까운 물체가 흐리게 보이거나 중간부 또는 근용부의 사물을 제대로 인지하지 못하게 되는 증상을 말한다. Progressive Multi-Focussing / Addition Lenses (PAL), which is one of the lenses for correcting ametropia, is a lens designed to view both near and far distance with one lens, It refers to a spectacle lens developed mainly to deal with presbyopia symptoms. Presbyopia is a condition in which a person wearing a spectacle lens progresses from age 40 onwards, and when the lens is losing its elasticity, when the distance between the lens and the lens must be closely monitored, adjustment of the focus distance is not smooth, It refers to the symptom that the person in the department or the near field is not able to recognize correctly.
최근에는 노안 증상에 대해 30세이후 젊은 노안 인구라는 표현도 나오고 있는데, 이를 위해 안경렌즈 분야에서는 이들 젊은 노안 인구를 위한 신제품들도 속속 개발되고 있다. 현대인들은 다양한 사회활동과 함께 TV, 컴퓨터, 게임기, 스마트폰 등의 기기들을 많이 접하고 있는데, 최근 각종 매체와 학회 발표 등에 따르면 현대인들은 컴퓨터나 게임기, 휴대폰 등의 기기들과 기타 환경적인 요인 또는 유전적인 요인 등으로 인해 시기능 이상과 안질환 등에 걸릴 위험이 매우 높으며 노안 증상도 더 빨리 오고 있다는 연구결과가 나오고 있고, 최근에는 원시성 노안 인구들도 많이 발견되고 있다. Recently, the expression of presbyopia has been emerged as a young preschool population after 30 years of age. To this end, new products for the young preschool population are being developed in the field of eyeglass lenses. Modern people have many social activities, TV, computer, game machine, smart phone, etc. Recently, according to various media and academic presentations, modern people can use devices such as computers, game machines, mobile phones and other environmental factors, And the risk of eye disease and eye disease is very high due to factors such as presbyopia symptoms are coming soon, and research results are coming out, Recently, there are also many primitive presbyopia population.
일반적으로, 누진 다초점 렌즈에는 「원용부(far vision viewing portion)」라고 불리는 원거리를 보기 위한 영역과, 「중간부(intermediate vision viewing portion)」라고 불리는 중간거리를 보기 위한 영역과, 「근용부(near vision viewing portion)」라고 불리는 근거리를 보기 위한 영역이 존재한다. 여기서, 중간거리라는 것은 대략 50cm 내지 2m 거리를 가리키는 것으로, 그보다 먼 거리를 원거리, 그보다 가까운 거리를 근거리라고 부르는 경우가 많으나, 그 기준이 명확하게 정의되어 있지는 않다. Generally, the progressive multifocal lens has an area for viewing a distance called a " far vision viewing portion ", an area for viewing an intermediate distance called an " intermediate vision viewing portion " (near vision viewing portion) " exists. Here, the term "intermediate distance" refers to a distance of about 50 cm to 2 m. In many cases, a distance farther away is called a near distance, and a distance shorter than that is called a near distance, but the reference is not clearly defined.
누진 다초점 렌즈는 원용부, 중간부 및 근용부에 각기 상이한 도수를 갖는 것으로, 그 도수에 따라 비점수차의 발생률이 다르기 때문에 안경 착용자가 쉽게 적응하지 못하는 경우가 많이 발생한다. 예를 들면, 비점수차의 정도 차이에 따라 중간부와 근용부의 시야가 좁아질 수 있으며, 특히 비점수차가 많이 발생하는 도수에서는 중간부 영역이 현저히 폭이 좁아지기 때문에 대체로 중간부(80cm∼5m 해당하는 중간거리 영역)에서 시생활에 불편함을 많이 호소한다. The progressive multifocal lens has different dioptric powers for the far-field portion, the middle portion, and the near-field portion, and the incidence of astigmatism varies depending on the dioptric power. For example, the visual field of the middle portion and the near portion may be narrowed depending on the degree of astigmatism. Particularly, in the case of a diopter having a large astigmatism, the middle portion is significantly narrowed. (The middle distance area).
또한, 누진 다초점 렌즈는 렌즈의 면에 다양한 커브를 통해 도수의 변화가 있게 되므로 원용부로부터 근용부까지 도수의 변화가 많은 고도 근시/강도 난시를 가진 안경렌즈 착용자의 경우 특히 부적응률이 높아 누진 다초점 렌즈의 사용률을 급격히 떨어뜨리는 요인이 되고 있다. In addition, the progressive multifocal lens has a variation in dioptric power through various curves on the lens surface, and thus, in the case of wearing a spectacle lens having high myopia / intensity astigmatism, in which the diopter varies from the distance portion to the near portion, The use rate of the multifocal lens is rapidly lowered.
한편, 이러한 비점수차의 발생으로 인한 부적응 사유에 대한 해결책으로 많은 제조사들이 렌즈 비구면 설계를 적용하고 있지만, 아직 안경렌즈 착용자들의 부적응 문제를 완전히 해결하지는 못하고 있는 실정이다. Meanwhile, many manufacturers have applied lens aspherical design to solve the problem of maladjustment due to the occurrence of astigmatism, but they have not yet completely solved the problem of maladaptation of spectacle lens wearers.
아울러, 기존 누진 다초점렌즈의 착용자들에서는 대부분이 누진 다초점렌즈는 어렵고 비싸다 라는 선입견을 가지고 있어 외국 제품에 대한 의존도가 높은 편이며, 기성품을 사용하면서 눈을 제품에 맞춰야만 하는 불편함을 감수하면서도 어떤 점이 불편한지도 모르는 상태로 제조사 또는 안경원에서 적응하여야 한다고 하면 그대로 받아들여야 하는 불편함이 있었다. In addition, the wearer of the existing progressive multifocal lens has a preconceived notion that the progressive multifocal lens is difficult and expensive, so it relies heavily on foreign products, and it suffers from the inconvenience of using the ready-made article However, there was an inconvenience to accept as it is if the manufacturer or the optician should adjust in a state in which the point is uncomfortable.
또한, 기존 누진 다초점렌즈, 예를 들어 이중 초점 렌즈들은 각각 상이한 광학력(optical power)을 갖는 2개의 영역들로 그 렌즈들을 수평으로 분할함으로써 해결책을 제공한다. 그 렌즈의 상부 영역은 원시에 대한 적절한 광학력을 갖도록 설계되고, 하부 영역은 근시(예를 들어, 독서)를 위해 설계된다. 이는 착용자가 단순히 응시하는 위치를 바꿈으로써, 착용자가 다른 거리들에 대해 초점을 맞출 수 있게 한다. 그러나, 착용자들은 자주 상이한 렌즈 영역들 간의 갑작스러운 변화 때문에 불편함을 경험한다. 따라서, 누진 다초점 렌즈들은 그 렌즈들의 영역들 간에 광학력의 매끄러운 변화를 제공하도록 개발되었다.In addition, existing progressive multifocal lenses, for example bifocal lenses, provide a solution by horizontally dividing the lenses into two regions, each having a different optical power. The upper region of the lens is designed to have adequate optical power for the primitive, and the lower region is designed for near vision (e.g., reading). This allows the wearer to focus on different distances by simply changing the position at which the wearer is staring. However, wearers often experience discomfort due to sudden changes between different lens areas. Thus, progressive multifocal lenses have been developed to provide a smooth transition of optical power between regions of the lenses.
그리고, 종래의 비구면 렌즈는 원재료인 유리곱을 금형에 삽입한 뒤 성형장치에 넣어 제작하였다. 그러나 이와 같은 방법을 통해 제작되는 비구면 렌즈를 성형제작할 경우, 사람이 핀셋과 같은 기구를 이용하여 유리곱을 금형의 캐비티에 직접 삽입하기 때문에 긴 제작시간에 비해 생산량은 적고, 수작업으로 인한 인건비가 생겨나며, 렌즈의 원재료인 유리곱의 크기가 매우 작아 사람이 식별하기 어려워 유리곱을 금형의 캐비티에 삽입하는 과정에서 유리곱을 분실하게 되어 추가비용이 발생할 수 있다. The conventional aspherical lens is manufactured by inserting a glass product, which is a raw material, into a metal mold and putting it in a molding apparatus. However, when an aspheric lens manufactured through such a method is molded, a glass product is directly inserted into a cavity of a mold by using a mechanism such as a tweezers, so that the production amount is short compared with a long production time, a labor cost due to manual work is generated, Since the size of the glass product which is the raw material of the lens is very small, it is difficult for the person to be identified, and thus the glass product is lost in the process of inserting the glass product into the cavity of the metal mold.
한편, 등록특허공보 제10-1396334호에서는 원소재 및 성형렌즈 자동 멀티 매거진 장치와 원소재 투입및 성형렌즈 취출 자동화 장치에 대해 기재하고 있다. 이 기술은, 금형과 렌즈 정렬대 또는 금형과 원소재 정렬대 사이에서 작업하는 제2 로봇 핸들러 및 제3 로봇 핸들러의 작업 대기시간을 줄이기 위하여, (1) 원소재를 수용하는 복수의 원소재 홀더들을 제1축 방향인 상하방향으로 적재 수납하는 원소재 홀더 매거진, (2 성형렌즈를 수용하는 복수의 렌즈 홀더들을 상기 제1축 방향으로 적재 수납하는 렌즈 홀더 매거진, (3) 상기 렌즈 홀더 매거진과 상기 원소재 홀더 매거진을 상기 제1축 방향을 따라 일정 간격씩 개별적으로 이동시키는 매거진 엘리베이터, (4) 어느 하나의 작업 대상 렌즈 홀더와 어느 하나의 작업 대상 원소재 홀더를 각각 잡는 홀더 그립퍼들; 및 (5) 상기 각 홀더 그립퍼가 각각 장착되며, 상기 각 홀더 그립퍼를 상기 제1축 방향과 직교하는 제2축 방향으로 이동시키는 로보 트랜스퍼들;을 포함하며, 상기 원소재 홀더 매거진은 서로 나란하게 배치되는 적어도 두 개의 원소재 홀더 매거진으로 이루어지고, 상기 렌즈 홀더 매거진은 서로 나란하게 배치되는 적어도 두 개의 렌즈 홀더 매거진으로 이루어지며, 상기 로보 트랜스퍼의 홀더 그립퍼가 작업 대상 홀더를 홀더 매거진으로부터 상기 성형 장치 쪽으로 잡아당겨서 빼내도록, 상기 로보 트랜스퍼와 상기 홀더 그립퍼가 배치되는 원소재 및 성형렌즈 자동 멀티 매거진 장치, 및 이를 포함한 원소재 투입 및 렌즈 취출 자동화 장치를 개시하는 것을 특징으로 하는 원소재 투입및 성형렌즈 취출 자동화 장치를 기재하고 있다.On the other hand, Japanese Patent Application Laid-Open No. 10-1396334 discloses a raw material and molded lens automatic multi-magazine device and a raw material inputting and molding lens taking out automation device. In order to reduce the work waiting time of the second robot handler and the third robot handler working between the mold and the lens aligning stand or between the mold and the original material aligning stand, there are (1) a plurality of raw material holders (2) a lens holder magazine for storing a plurality of lens holders accommodating the two forming lenses in the first axial direction, (3) a lens holder magazine for holding the lens holder magazines in the first axial direction, A magazine elevator for individually moving the original material holder magazines at regular intervals along the first axis direction, (4) holder grippers for holding one of the work object lens holders and one of the work target raw material holders, and (5) Robot transfers to which the holder grippers are mounted and which move the holder grippers in a second axial direction orthogonal to the first axial direction; Wherein said raw material holder magazines are made up of at least two raw material holder magazines arranged side by side, said lens holder magazines being made up of at least two lens holder magazines arranged side by side, A raw material and a molded lens automatic multi-magazine device in which the robot transfer and the holder gripper are arranged so that the gripper pulls the workpiece holder from the holder magazine to the molding device and pulls out the workpiece holder, and a raw material inputting and lens- And an automatic device for injecting a raw material and a molded lens are disclosed.
그러나, 현재까지 양면 비구면을 정확하게 실현하고 작업자를 보호하면서 양질의 렌즈를 생산하는 기술개념은 전무한 실정이다. However, until now, there has been no concept of a technology to accurately produce a double-sided aspheric surface and to produce a high-quality lens while protecting the operator.
이에 본 발명은 상기와 같은 문제점을 해결하기 위한 개발된 것으로, 개인별 매개변수를 활용한 프리폼 설계와 양면 비구면 설계를 적용하여 착용자의 적응률을 개선한 개인 맞춤형 누진 다초점 렌즈의 양면 비구면 설계 및 제조 방법과 이를 이용한 양면 비구면 렌즈 제조장치를 제공하는데 그 목적이 있다. Accordingly, the present invention has been developed to solve the above-mentioned problems. The present invention has been developed to solve the above-mentioned problems, and it is possible to design and manufacture double-sided aspherical surfaces of a personalized progressive multifocal lens that improves the adaptation rate of the wearer by applying preform design using individual parameters and double- And an apparatus for manufacturing a double-sided aspheric lens using the same.
또한, 본 발명은 프리폼 가공방식을 이용하여 안경렌즈의 사물측 볼록면과 시야측 오목면을 모두 비구면 렌즈로 제작하여 초고도 근시를 가진 사람이나 난시를 가진 사람이 모두 만족할만한 시야를 확보할 수 있도록 하고, 동시에 먼지를 채크하여 안전하게 렌즈를 생산하는데 그 목적이 있다.The object of the present invention is to provide an eyeglass lens in which both the object-side convex surface and the visual-field-side concave surface of the spectacle lens are made of an aspheric lens using a preform processing method so that a person having an ultra-high myopia or astigmatism can obtain a satisfactory visual field And at the same time check the dust to securely produce the lens.
위와 같은 목적을 달성하기 위한 본 발명의 한 형태에 따르면, 개인 맞춤형 누진 다초점 렌즈의 양면 비구면 설계 방법으로 개인별 매개변수(특징/습관)를 활용한 프리폼 설계를 적용하여 개인 맞춤형 누진 다초점 렌즈를 제공하는 단계; CC(볼록면)/CV(오목면)에 양면 비구면 설계를 적용한 근시면과 난시면 비구면 설계를 통해 왜곡현상을 최소화하고 비점수차를 제어하며 착용자의 부적응 조건을 최소화하는 단계; 누진 다초점 렌즈 두께 최소화 설계를 적용하여 착용감 상승 및 미용효과 개선을 제공하는 단계; 및 근용부에서 앞면인 CC(볼록면)와 뒷면인 CV(오목면)에 가입도(Di, 단위:디옵터)를 분할 적용하여 비점수차와 착용자의 부적응도를 각각 절감시키는 단계를 적어도 하나 이상 포함하는 방법이 제공된다. According to an aspect of the present invention, there is provided a personalized progressive multifocal lens having a personalized progressive multifocal lens by applying a preform design using personal parameters (characteristics / habits) ; Minimizing distortion, controlling astigmatism, and minimizing wearer 's maladjustment condition through aspherical design of myopic and astigmatic aspheric design using CC (convex surface) / CV (concave surface). Applying a progressive multifocal lens thickness minimization design to provide increased comfort and improved cosmetic effects; And at least one step of reducing the astigmatism and the degree of maladjustment of the wearer by applying the addition degree Di (unit: diopter) to the CC (convexity) on the front side and the CV (concave side) Is provided.
또한, 개인 맞춤형 누진 다초점 렌즈의 양면 비구면 제조 방법으로서 블랭크 제품(반제품)의 앞면인 CC(볼록면)을 비구면으로 설계하고, 프리폼 가공 방식으로 렌즈의 내면에 비구면 설계를 적용하는 방법이 제공된다. Also, as a method for producing a bi-aspherical surface of a progressively progressive progressive multifocal lens, there is provided a method of designing a CC (convex surface) which is a front surface of a blank product (semi-finished product) as an aspherical surface and applying an aspherical surface design to the inner surface of the lens by a preforming method .
또한, 개인 맞춤형 누진 다초점 렌즈의 양면 비구면 제조 방법으로서 블랭크 제품(반제품) 또는 블랭크 제품(완제품)의 양쪽 면, 즉 전면인 CC(볼록면)/후면인 CV(오목면)을 비구면으로 제작하는 설계를 적용하는 방법이 제공된다. Further, as a method for producing a double-sided aspheric surface of a progressive progressive progressive multifocal lens, both sides of a blank product (semi-finished product) or a blank product (finished product), that is, a front CC (convex surface) / a rear surface CV (concave surface) A method of applying the design is provided.
또한, 본 발명은 안경렌즈의 피(被)가공 렌즈면의 평균곡률을 산출하고, 평균곡률에 대응하여 나선간격이 XY투영면 위에서 렌즈 바깥 둘레로부터 중심으로 향함에 따라서 연속적으로 증가하는 나선모양 가공궤적을 산출하는 계산기 단말(28)과; 상기 계산기 단말로부터 데이터를 전송받아 피가공 렌즈면을 나선모양으로 절삭가공하는 절삭수단(27)과; 상기 절삭수단이 상기 피가공 렌즈면을 상기 나선모양 가공궤적에 따라서 절삭하도록 상기 절삭수단을 제어하는 제어부(32)와; 상기 절삭수단의 일단에 설치되어 먼지를 측정하는 먼지 측정수단(2000)과; 상기 먼지 측정수단에 의해서 먼지가 기준이상 검출되면 알림신호를 외부로 출력하는 통신신호 자동 출력부(1000)를 포함하여 구성되는 양면 비구면 렌즈 제조장치를 제공한다. Further, the present invention provides a spectacle lens system that calculates an average curvature of a lens surface to be machined of a spectacle lens and calculates a spiral processing locus that continuously increases in accordance with an average curvature from a lens outer circumference to a center on a XY projection plane A calculator terminal (28) for calculating an output value; A cutting means (27) for receiving data from the computer terminal and cutting the surface of the lens to be processed into a spiral shape; A control unit (32) for controlling the cutting means so that the cutting means cuts the surface of the lens to be processed along the spiral processing locus; Dust measuring means 2000 installed at one end of the cutting means for measuring dust; And a communication signal automatic output unit 1000 for outputting a notification signal to the outside when dust is detected by the dust measuring unit.
상술된 특징들로부터 본 발명은 각 개인별 매개변수(개인별 특징이나 습관 등)를 활용한 프리폼 설계와 양면 비구면 설계를 적용한 개인 맞춤형 누진 다초점 렌즈를 제공하는 것으로, 프리폼 기술과 더불어 양면 비구면 설계의 시너지 효과를 가지게 되어 착용자는 최상의 안경렌즈를 제공받을 수 있게 된다. 또한, 본 발명에 따르면, 근시도수와 난시도수를 모두 가진 누진 다초점 렌즈 착용자는 물론 그 어떤 조건의 경우에도 비구면 설계의 장점으로 인해 더욱 편안하고 넓은 시야의 범위를 가질 수 있으며, 비구면 최적화를 통해 원용부/중간부/근용부의 각기 다른 시야에서도 왜곡현상을 최소화할 수 있어 렌즈의 착용시 적응률을 높일 수 있을 뿐만 아니라, 비록 비점수차가 많이 발생하는 도수를 가진 착용자라 하더라도 기존 제품에 비해 훨씬 더 나은 효과를 얻을 수 있게 된다. From the above-mentioned characteristics, the present invention provides a personalized progressive multifocal lens using a preform design and a double-sided aspheric design using individual parameters (personal characteristics, habits, etc.) So that the wearer can receive the best spectacle lens. Further, according to the present invention, it is possible to have a more comfortable and wide field of view due to the advantages of the aspherical surface design as well as the wearer of the progressive multifocal lens having both the myopia degree and the astigmatic power, It is possible to minimize distortion even in different fields of view such as the distance portion, the middle portion, and the near portion, so that the adaptation rate can be increased when the lens is worn, and even if the wearer has a frequency with a large amount of astigmatism, A much better effect can be obtained.
도 1은 본 발명에 따른 개인 맞춤형 누진 다초점 렌즈의 양면 비구면 설계 방법을 나타낸 블럭도.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a method for designing a double-sided aspheric surface of a progressive progressive multifocal lens according to the present invention. FIG.
도 2는 본 발명에 따른 개인 맞춤형 누진 다초점 렌즈의 양면 비구면 제조 방법을 나타낸 블럭도.FIG. 2 is a block diagram showing a method for manufacturing an aspherical surface on both sides of a personalized progressive multifocal lens according to the present invention. FIG.
도 3은 본 발명의 절삭가공 후의 안경렌즈의 단면도.3 is a sectional view of a spectacle lens after cutting according to the present invention.
도 4는 본 발명의 제조 장치를 설명하기 위한 블록 다이어그램4 is a block diagram for explaining a manufacturing apparatus of the present invention
도 5는 본 발명의 렌즈 제조장치 구성도.5 is a block diagram of a lens manufacturing apparatus according to the present invention.
도 6은 본 발명의 제조방법 플로우챠트.6 is a flowchart of a manufacturing method of the present invention.
도 7은 본 발명의 먼지측정수단 및 통신신호 자동 출력부 구성 블록도.FIG. 7 is a block diagram of a dust measuring means and a communication signal automatic output section of the present invention. FIG.
도 8은 본 발명의 먼지 측정수단을 구성하는 적외선 송신수단과 적외선 수신수단 개념도.8 is a conceptual diagram of infrared transmitting means and infrared receiving means constituting the dust measuring means of the present invention.
도 9는 본 발명의 적외선 송신수단과 적외선 수신수단을 이용하여 먼지를 측정하는 개념도.9 is a conceptual diagram for measuring dust using the infrared ray transmitting means and the infrared ray receiving means of the present invention.
도 10은 본 발명의 적외선 송신수단의 유동을 위한 동작 개념도.10 is a conceptual diagram of operation for the flow of the infrared ray transmitting means of the present invention.
도 11은 본 발명의 오목렌즈 각도 측정 개념도.11 is a conceptual diagram illustrating the angle measurement of the concave lens of the present invention.
도 12는 본 발명에 적용되는 제1 오목렌즈 구성도.12 is a configuration view of a first negative lens according to the present invention.
도 13은 본 발명에 적용되는 제2 오목렌즈 구성도.13 is a second negative lens configuration applied to the present invention.
도 14는 본 발명에 적용되는 제3 오목렌즈 구성도.FIG. 14 is a third negative lens configuration applied to the present invention. FIG.
도 15는 본 발명에 적용되는 제4 오목렌즈 구성도.15 is a fourth negative lens configuration applied to the present invention.
도 16은 본 발명에 적용되는 제5 오목렌즈 구성도.16 is a fifth negative lens configuration applied to the present invention.
도 17은 본 발명의 오목렌즈 중심부 함몰각에 따른 광세기 그래프 구성도.17 is a graph showing the optical intensity graph according to the concave lens center depression angle of the present invention.
도 18은 본 발명의 통신신호 자동 출력부 회로도.18 is a circuit diagram of a communication signal automatic output section of the present invention.
도 19는 도 18의 요부 확대도.Fig. 19 is an enlarged view of the main part of Fig. 18;
도 20은 본 발명의 통신신호 자동 출력부 동작 예시도.20 is an exemplary operational example of a communication signal automatic output section of the present invention.
도 21은 본 발명의 요부 냉각수단 설치 예시도.Fig. 21 is a diagram showing an example of installing recessed portion cooling means of the present invention; Fig.
도 22는 본 발명의 요부 냉각수단을 상승시킨 동작도면.FIG. 22 is an operation drawing of the recessed portion cooling means of the present invention; FIG.
도 23은 본 발명의 요부 냉각수단을 하강시킨 동작도면.23 is an operation diagram of the recessed portion cooling means of the present invention being lowered;
도 24는 본 발명의 요부 냉각수단 분해사시도.24 is an exploded perspective view of the recessed portion cooling means of the present invention.
도 25는 본 발명의 부분 냉각장치 회로구성 블록도.25 is a block diagram of a partial cooling device circuit of the present invention;
이하 첨부된 도면과 실시예들을 통해 본 발명을 보다 구체적으로 설명한다. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings and embodiments.
아래의 설명에서는 발명을 설명함에 있어서 필연적인 부분들을 제외하고 그 도시와 설명을 생략하였으며, 명세서 전체를 걸쳐 동일 유사한 요소에 대하여는 동일한 부호를 부여하고 그에 대한 상세한 설명은 반복하지 않고 생략하기로 한다. In the following description, the same or similar elements are denoted by the same reference numerals throughout the specification and the detailed description thereof will not be repeated unless otherwise stated.
일반적으로 누진 다초점 렌즈는 양면이 모두 구면으로 설계되어 있거나 한쪽 면만 비구면으로 설계되어 있는 경우가 많은데, 이 경우 비점수차나 왜곡현상 등을 제어하는데 한계가 있으며, 그로 인해 누진 다초점 렌즈 착용자들의 부적응 사례가 많이 발생하였다. 이는 누진 다초점 렌즈 착용자들의 대부분이 근시와 난시 도수를 함께 가진 경우가 많은 것이 주된 원인으로, 이 경우 양면이 다 구면으로 설계된 누진 다초점 렌즈에서는 한쪽 면이 비구면으로 설계된 제품이나 양쪽 면이 모두 비구면으로 설계된 제품보다 비점수차나 왜곡현상을 더 많이 느끼게 되기 때문에 착용자들은 왠지 모를 불편함을 호소하며 누진 다초점 렌즈가 반드시 필요한 착용자조차도 기피하는 상황이 만들어지게 된다. In general, a progressive multifocal lens is designed to have both spherical surfaces or only one aspheric surface. In this case, there are limitations in controlling astigmatism and distortion, Many cases occurred. This is mainly due to the fact that most of the progressive multifocal lens wearers have nearsightedness and astigmatic dioptric power. In this case, the progressive multifocal lens designed to be spherical in both sides has an aspheric surface on one side, The wearer feels uncomfortable due to the astigmatism and the distortion phenomenon more than the designed product, so that the wearer who avoids even the wearer who necessarily requires the progressive multifocal lens is created.
이에 본 발명은 각 개인별 매개변수(예: 개인별 특징이나 습관 등)를 활용한 프리폼 설계가 적용된 개인 맞춤형 누진 다초점 렌즈를 제공한다. 이러한 개인 맞춤형 누진 다초점 렌즈는 누진 다초점 렌즈 착용자들의 비점수차나 왜곡현상 등으로 인한 부적응 사례를 최소화할 수 있게 된다. 또한, 본 발명은 누진 다초점 렌즈의 양쪽면, 즉 CC(볼록면)/CV(오목면)에 모두 비구면 설계를 적용하고 두께를 최소화하여 미용적인 면을 한 단계 더 끌어올릴 수 있도록 한 것에 특징이 있는데, 이때 근시면과 난시면을 모두 비구면으로 설계함으로써 왜곡현상 자체를 최소화하고 비점수차를 제어하여 착용자가 느끼는 부적응의 조건을 최소화할 수 있다. Accordingly, the present invention provides a personalized progressive multifocal lens to which a preform design utilizing individual parameters (e.g., individual characteristics or habits) is applied. Such a personalized progressive multifocal lens can minimize maladjustment due to astigmatism or distortion of the progressive multifocal lens wearer. In addition, the present invention is characterized in that aspheric design is applied to both sides of a progressive multifocal lens, that is, CC (convex surface) / CV (concave surface) In this case, by designing both myopic and astigmatism surfaces as the aspherical surface, the distortion phenomenon itself can be minimized and the astigmatism can be controlled to minimize the condition of the maladaptive sensation of the wearer.
이러한 양면 비구면 설계는 근시와 난시 착용자에게 평면 TV를 보는 것과 같은 시야의 확장을 제공함과 더불어 렌즈의 두께를 감소시키는 효과도 있는데, 렌즈의 두께가 얇아지면 안경렌즈 착용시 가벼워진 무게와 얇아진 두께로 인해 착용감이 좋아지고 미용적인 면에서도 효과를 높일 수 있다. Such a double-sided aspheric design provides the myopia and astigmatism wearer with an enlargement of the field of view such as viewing a flat-screen TV, as well as reducing the thickness of the lens. When the thickness of the lens is reduced, the weight and thinning thickness And the effect can be improved in terms of beauty.
또한, 양면 비구면 설계는 원용부, 중간부 및 근용부에 각각 해당되는 범위만큼 적용이 되기 때문에 시야의 확장 효과, 비점수차의 최소화 효과와 더불어 원용부에서 중간부를 거쳐 근용부로 시선이 움직일 때 갑작스러운 도수의 변화로 인한 점프현상을 줄일 수 있어 시선의 이동을 부드럽게 하므로 착용자의 안경렌즈 적응률이 높아지고 시야도 보다 넓게 느끼게 하는 효과가 있다. In addition, since the aspherical design of both sides is applied to the range corresponding to the distance portion, the middle portion, and the near portion, the effect of expanding the field of view and minimizing the astigmatism, as well as the sudden The jumping phenomenon due to the change of the frequency can be reduced, so that the movement of the visual line is smooth, so that the wearer's adaptability to the spectacle lens is enhanced and the visual field is wider.
이와 같이 본 발명은 근시면과 난시면에 모두 비구면 설계를 적용함으로써 기존 렌즈가 내면 쪽에만 비구면 설계를 적용하여 난시면의 왜곡현상을 줄이는데 한계가 있었음에 비해, 고도근시 착용자나 원시 착용자에게 큰 효과를 가져올 수 있다. 특히, 근시와 난시를 모두 가진 누진 다초점 렌즈 착용자나 고도 근시/강도 난시를 가진 누진 다초점 렌즈 착용자에게는 렌즈의 양면에 비구면 설계가 적용된 제품의 경우 비점수차나 왜곡현상을 거의 느끼지 못하거나 최소로 느끼게 되는 장점이 있기 때문에 누진 다초점 렌즈 착용자의 적응률을 높이고 일상 생활의 질이 나아지는 효과를 제공하게 되는 것이다. As described above, the present invention applies the aspherical surface design to both the myopic surface and the astigmatism surface, thereby limiting the distortion of the astigmatism surface by applying the aspherical surface design only to the inner surface of the existing lens. On the other hand, Lt; / RTI > In particular, for those wearing progressive multifocal lenses with both nearsightedness and astigmatism and those with progressive myopia / astigmatic astigmatism, those with aspheric design on both sides of the lens have little or no astigmatism or distortion The effect of increasing the adaptation rate of the wearer of the progressive multifocal lens and improving the quality of daily life is provided.
또한, 본 발명은 근용부에 가입도(Di(단위:디옵터): 근거리 시력 굴절력과 원거리 시력 굴절력 사이의 차이)를 양쪽으로 분할하여 적용하는 것에 특징이 있다. 일반적으로 가입도(Di)란, 원용도수 측정위치 F와 근용도수 측정위치 N 사이의 표면 굴절력차를 일컫는 것으로, 본 발명에 따르면, 예를 들어 가입도가 +2.00 디옵터일 경우, 앞면인 CC(볼록면)에 +1.00 디옵터를 적용하고 뒷면인 CV(오목면)에 +1.00 디옵터를 적용한다. 이와 같이 CC(볼록면)/CV(오목면)에 각각 +1.00 디옵터씩을 적용할 경우, 착용자는 +1.00 디옵터에 대한 비점수차 만을 느끼게 되기 때문에 기존 제품에서 착용자가 +2.00에 대한 비점수차를 전부 느꼈다면 본 발명에서는 그것의 절반 수준으로 줄일 수 있으므로 착용자의 부적응도 반으로 줄일 수 있으며 시야도 훨씬 넓고 편하게 느낄 수 있게 된다. 이같은 효과는 더 큰 도수들에서 더 크게 느낄 수가 있다. In addition, the present invention is characterized in that it is applied to the near portion in a divided manner (Di (unit: diopter): the difference between the near vision power and the far vision power). In general, the degree of addition Di refers to a difference in surface refractive power between the original application number measurement position F and the near-use number measurement position N. According to the present invention, for example, when the addition degree is +2.00 diopter, Apply +1.00 diopter to CC (convex) and +1.00 diopter to CV (concave) back. When applying +1.00 diopters to each CC (convex surface) / CV (concave surface), the wearer feels astigmatism to +1.00 diopters. Therefore, the wearer felt astigmatism to +2.00 in the conventional product It is possible to reduce the wearer's maladjustment by half, and the field of view can be made much wider and more comfortable. This effect can be felt larger at larger frequencies.
물론 상술한 근용부의 가입도 분할은 안경착용자의 상태에 따라 CC(볼록면)/CV(오목면)에 각기 다르게 적용될 수 있는데, 예를 들면 앞면인 CC(볼록면)에 +0.25 디옵터를 적용할 경우 뒷면인 CV(오목면)에 +1.75 디옵터를 적용하고, 앞면인 CC(볼록면)에 +1.75 디옵터를 적용할 경우 뒷면인 CV(오목면)에 +0.25 디옵터를 적용할 수도 있다. 심지어, 앞면인 CC(볼록면)에 +0.00 디옵터를 적용하고 뒷면인 CV(오목면)에 +2.00 디옵터를 적용할 수도 있다. Of course, the above-mentioned joining of the near portion can be applied differently to the CC (convex) / CV (concave) depending on the condition of the wearer of glasses. For example, +0.25 diopter is applied to the front CC If you apply +1.75 diopter to the CV (concave side) on the back and +1.75 diopter on the front CC (convex side), you can apply +0.25 diopter to the CV (concave side) on the back side. You can even apply +0.00 diopters to the front CC (convex) and +2.00 diopters to the back CV (concave).
이와 같이 누진 다초점 렌즈의 근시와 난시 부분에 양면 비구면 설계를 적용할 경우 원용부, 중간부 및 근용부의 모든 면에 비구면 설계를 적용하게 되는데, 이때 상술한 비구면 최적화를 통해 원용부/중간부/근용부의 각기 다른 시야에서도 왜곡현상을 최소화할 수 있어 렌즈의 착용시 적응률을 높일 수 있게 된다. When the aspheric design is applied to the myopia and astigmatism of the progressive multifocal lens, the aspheric design is applied to all the surfaces of the distal portion, the middle portion, and the near portion. At this time, The distortion can be minimized even in different fields of view of the near portion, and the adaptation rate can be increased when the lens is worn.
또한, 본 발명은 근시도수와 난시도수를 모두 가진 누진 다초점 렌즈 착용자는 물론 그 어떤 조건에서도 비구면 설계의 장점으로 인해 더욱 편안하고 넓은 시야의 범위를 가질 수 있으며, 비록 비점수차가 많이 발생하는 도수를 가진 착용자라 하더라도 기존 제품에 비해 훨씬 더 나은 효과를 얻을 수 있게 된다. In addition, the present invention can have a more comfortable and wide field of view due to the advantages of aspheric design in any condition as well as a wearer of a progressive multifocal lens having both myopia and astigmatism, It is possible to obtain a much better effect than a conventional product even if the wearer has the frequency.
이상 설명한 바와 같이 본 발명의 개인 맞춤형 누진 다초점 렌즈의 양면 비구면 설계 방법은 개인별 매개변수(특징/습관)를 활용한 프리폼 설계 적용 단계, CC(볼록면)/CV(오목면)의 양면 비구면 설계 적용 단계, 누진 다초점 렌즈 두께 최소화 설계 적용 단계, 및 근용부에서 앞면인 CC(볼록면)와 뒷면인 CV(오목면)에 가입도(Di, 단위:디옵터) 분할 적용 단계를 적어도 하나 이상 포함하는 것으로, 이들 단계가 반드시 순차적으로 수행되어야 하는 것은 아니다. As described above, the aspherical surface design method of the personalized progressive multifocal lens of the present invention can be applied to the preform design application step using personal parameters (characteristic / habit), the aspherical surface design of CC (convex surface) / CV The application step, the progressive multifocal lens thickness minimization design application step and at least one step of applying the joining degree (Di, unit: diopter) to the CC (convex side) and the back side CV (concave side) These steps do not necessarily have to be performed sequentially.
또한, 본 발명은 각 개인별 매개변수를 활용한 프리폼 설계와 양면 비구면 설계를 적용한 개인 맞춤형 누진 다초점 렌즈를 제공하는 것으로, 여기에는 다음과 같은 3가지 형태의 제작 방법이 선택적으로 적용될 수 있다. In addition, the present invention provides a personalized progressive multifocal lens employing a preform design using a personal parameter and a double-sided aspherical design, and the following three types of manufacturing methods can be selectively applied to the lens.
첫 번째 방법은 블랭크 반제품의 앞면인 CC(볼록면)을 비구면으로 설계하고, 프리폼 가공 방식으로 렌즈의 내면에 비구면 설계를 적용하여 양쪽 면 모두 양면 비구면 설계를 적용하는 것이다. The first method is to design the CC (convex surface), which is the front side of the blank semi-finished product, as the aspherical surface, and apply the aspherical surface design to the inner surface of the lens by the preforming method.
두 번째 방법은 블랭크 제품(반제품)에 전면인 CC(볼록면)/후면인 CV(오목면)의 양쪽 면을 비구면으로 제작하는 양면 비구면 설계를 적용하는 것이다. The second method is to apply a double-sided aspheric design to the blank product (semi-finished product) to make both sides CC (convex side) / back side CV (asymmetric) aspheric.
세 번째 방법은 블랭크 제품(완제품)에 전면인 CC(볼록면)/후면인 CV(오목면)의 양쪽 면을 비구면으로 제작하는 양면 비구면 설계를 적용하는 것이다.The third method is to apply a double-sided aspherical design to the blank product (finished product) to make the front face CC (convex face) / rear face CV (concave face) both sides aspheric.
본 발명은 일반적인 누진 다초점 설계의 렌즈, 초기 노안환자를 위한 안티퍼티그형 누진 다초점 설계의 렌즈, 실내/사무용 오피스 설계의 누진 다초점 설계의 렌즈, 근시 진행 완화에 효과적인 키지형 누진 다초점 설계의 렌즈 등 다양한 제품에 양면 비구면 설계를 적용할 수 있어 착용자의 시야 확장 및 비점수차의 최소화, 두께 감소로 인한 안경렌즈의 무게 감소 및 그로 인한 미용적인 효과에 이르기까지 많은 효과를 기대할 수 있다. The present invention relates to a progressive multifocal design lens, an anti-putty type progressive multifocal design lens for early presbyopic patients, a progressive multifocal design lens for indoor / office office design, a key topographic progressive multifocal design , It is possible to expect many effects ranging from the viewpoint of the wearer to minimize the astigmatism, the weight reduction of the spectacle lens due to the thickness reduction, and the cosmetic effect thereof.
특히, 본 발명은 원용부와 중간부, 근용부 각각의 위치에 비구면 설계를 적용함으로써 시선의 이동이 부드럽고 더 편안한 시야를 제공받을 수 있다. 또한, CC(볼록면)/CV(오목면)에 해당되는 양면 모두에 비구면 설계(양면 비구면 설계)를 적용함으로써 근시/난시 또는 원시를 가진 착용자 모두에게 최적의 비구면 설계를 적용할 수 있게 된다. In particular, by applying the aspherical design to the positions of the far-end portion, the middle portion, and the near portion, the eye movement can be smooth and a more comfortable view can be provided. In addition, by applying the aspherical design (double-sided aspherical design) to both the CC (convex) / CV (concave) surfaces, it is possible to apply the optimal aspherical design to both wearers with myopic / astigmatic or primitive.
다음은 본 발명에 따른 양면 비구면 렌즈 제조장치에 대하여 설명한다.Next, an apparatus for manufacturing a double-sided aspheric lens according to the present invention will be described.
상술한 바와 같이 본 발명이 대상으로 하는 안경렌즈는 노안용 누진 굴절력 렌즈로서 이용되는 렌즈이다. 누진 굴절력 렌즈는 노시용 안경렌즈이면서 외관상은 용이하게 돋보기로 찰지(察知)되지 않는 이점이나, 원거리로부터 근거리까지 끊어짐 없이 연속적으로 명시(明視)할 수 있는 이점 등의 이유로 일반적으로 널리 이용되고 있다.As described above, the spectacle lens to which the present invention is applied is a lens used as a progressive-power lens for presbyopia. The progressive-power lens is generally used for reasons of being a spectacle lens for a nose, but being advantageous in that it can not be easily perceived by a magnifying lens in appearance, but is advantageous in that it can be continuously brightened without disturbance from a long distance to a near distance .
또한, 본 발명으로 가공하는 누진 굴절력 렌즈는 예를 들면 제1에는 물체 측 표면인 제1 굴절표면과 안구 측 표면인 제2 굴절표면 중 어느 한쪽에 누진면을 가지는 한면 누진 굴절력 렌즈이다. 또, 제2에는 제1 굴절표면과 제2 굴절표면으로 분할 배분되어 있는 누진 굴절력작용을 구비하고, 상기 제1 표면과 제2 표면을 맞추어 처방값에 근거한 원용(遠用)도수와 가입도수를 주는 구성으로 되어 있는 양면 비구면형 누진 굴절력 렌즈이다. 안경렌즈의 렌즈기재(基材)로서는 플라스틱 렌즈기재인 것이 바람직하고, 안경용 플라스틱 렌즈기재인 것이 더욱 바람직하다. 예를 들면, 메타크릴산메틸(methyl methacrylate)과 1종 이상의 다른 모노머(monomer)와의 공중합체(共重合體), 디에틸렌 글리콜 비살릴 카보네이트(diethylene glycol bisallyl carbonate)와 1종 이상의 다른 모노머와의 공중합체, 폴리카보네이트(polycarbonate), 폴리스티렌(polystyrene), 폴리티오우레탄(polythiourethane), 엔-티올(ene-thiol) 반응을 이용한 설피도(sulfido) 수지, 유황을 포함한 비닐 집합체 등을 들 수 있지만, 이것들로 한정되는 것은 아니다.Further, the progressive-power lens processed by the present invention is, for example, a one-side progressive-power lens having a progressive surface on either the first refractive surface, which is the object side surface, or the second refractive surface, which is the eyeball side surface. The second surface has a progressive power action divided and divided into a first refractive surface and a second refractive surface. The first surface and the second surface are matched to each other, and the dioptric power and the degree of addition Which is a bi-aspherical type progressive-power lens having a configuration that gives a spherical aberration. The lens base material of the spectacle lens is preferably a plastic lens base material, more preferably a plastic lens base material for spectacles. For example, a copolymer of methyl methacrylate and one or more other monomers, a copolymer of diethylene glycol bisallyl carbonate and one or more other monomers, But are not limited to, copolymers, polycarbonates, polystyrenes, polythiourethanes, sulfido resins using ene-thiol reactions, vinyl aggregates including sulfur, But is not limited thereto.
도 4에 있어서, 안경렌즈 제조 시스템은 발주단말(發注端末 : order terminal)(21)과, 메인프레임(안경렌즈 설계장치)(22)을 구비하고, 이들을 공중통신회선(23)을 통하여 접속하고 있다. 발주단말(21)은 발주원으로서의 안경점(optician)(20)에 배치되어 있다. 메인프레임(22)은 안경의 제조 메이커 측으로서의 공장(24)에 배치되어 있다. 그리고, 이 공장(24) 측에 있어서, 메인프레임(22)과 공장서버(26)가 LAN(25)을 통하여 접속되고, 또 이 공장서버(26)와 계산기 단말(28)이 LAN(29)에 의해서 접속되고 있다.4, the spectacle lens manufacturing system includes an order terminal 21 and a main frame (spectacle lens designing apparatus) 22, which are connected via a public communication line 23 . The order terminal 21 is disposed in an optician 20 as an order source. The main frame 22 is disposed in a factory 24 as a manufacturer of glasses. When the main frame 22 and the factory server 26 are connected via the LAN 25 and the factory server 26 and the computer terminal 28 are connected to the LAN 29, As shown in Fig.
안경점(20)의 발주단말(21)은 안경렌즈를 발주할 때에 필요한 각종의 데이터의 입력을 지원하여 표시한다. 이 발주단말(21)의 입력부는 적어도 피검안(被檢眼)의 처방값 데이터 등을 입력 가능하게 한다. 발주단말(21)에 입력된 처방값 데이터 등은 통신회선(23)을 통하여 공장(24)의 메인프레임(22)에 송신된다. The ordering terminal 21 of the optician 20 supports inputting of various kinds of data required for ordering the spectacle lens and displays them. The input unit of the order terminal 21 allows at least the prescription value data of the eye to be examined to be inputted. The prescription value data and the like inputted to the ordering terminal 21 are transmitted to the main frame 22 of the factory 24 via the communication line 23. [
메인프레임(22)은 처방값 데이터 등을 수신하면 수주(受注) 데이터로서 보존한다. The main frame 22 stores prescription value data or the like as order receipt data.
또, 메인프레임(22)은 안경렌즈 설계프로그램이나 가공 데이터 생성프로그램 등을 격납하고 있고, 발주단말(21)으로부터 처방값 데이터 등을 수신하면, 해당 처방값에 적합하도록 프로그램에 따라서 안경렌즈의 설계를 행한다.The main frame 22 stores a spectacle lens design program, a machining data generation program, and the like. Upon receiving prescription value data and the like from the order terminal 21, .
설계프로그램은 취득한 처방값 데이터에 근거하여 각 안경렌즈의 설계 데이터를 작성하는 기능을 가지고 있다.  The design program has a function of creating design data of each spectacle lens based on the acquired prescription value data.
가공 데이터 생성프로그램은 설계프로그램에 의해서 작성된 설계 데이터에 근거하여 절삭수단(27)이 실제의 렌즈 가공을 실시할 때에 필요한 가공 데이터를 생성하는 기능을 가지고 있다. 이 가공 데이터에는 안경렌즈의 표면설계 데이터, 처방값 데이터 및 가공 블랭크의 종류 등이 포함되어 있다.The machining data generation program has a function of generating machining data required when the cutting means 27 performs actual lens machining based on the design data created by the design program. This processing data includes the surface design data of the spectacle lens, the prescription value data, the type of the blank to be processed, and the like.
메인프레임(22)은 안경렌즈 설계프로그램 및 가공 데이터 생성프로그램을 실행하는 것에 의해, 절삭수단(27)의 제어정보로서의 가공 데이터를 생성함과 동시에 생성한 가공 데이터를 공장서버(26)로 송신한다. 공장서버(26)는 수주데이터의 수주번호와 함께 가공 데이터를 보존한다. 보존되는 각 가공 데이터는 식별을 위해 수주 데이터마다 제조공장 내에서만 사용되는 제조번호가 주어져 각 가공 데이터와의 관련 지음을 행한다.The main frame 22 generates the machining data as the control information of the cutting means 27 by executing the spectacle lens designing program and the machining data generating program and simultaneously transmits the machining data generated to the factory server 26 . The factory server 26 stores the process data together with the order number of the order data. Each processed data to be stored is given a manufacturing number used only in the manufacturing factory for each order data for identification, and associated with each processing data.
절삭수단(27)은 LAN(29)을 통하여 공장서버(26)로부터 가공 데이터를 취득하면, 이 가공 데이터에 근거하여 안경렌즈(1)의 피가공 렌즈면(3, 5)의 절삭가공을 순차적으로 행한다. 피가공 렌즈면(3, 5)의 가공 순서는 어느 쪽을 먼저 하여도 좋다.The cutting means 27 obtains the machining data from the factory server 26 via the LAN 29 and carries out cutting processing of the lens surfaces 3 and 5 of the spectacle lens 1 on the basis of the machining data sequentially . The processing order of the lens surfaces 3 and 5 to be processed may be either of the first or second order.
제1 실시예에서는 계산기 단말(28)이 실행하는 공장서버(26)로의 제조공정에 있어서의 정보의 리퀘스트는 모두 제조번호정보를 통하여 행해진다. 계산기 단말(28)은 미가공 렌즈에 부여되어 있는 제조 지시서의 제조번호정보 또는 제조번호정보를 포함한 바코드가 스캐너 등의 입력장치에 의해서 읽어 내어져 입력되면, 제조번호정보에 대응하는 절삭관련정보를 작성하기 위한 가공 데이터를 공장서버(26)에 요구한다. 요구에 따라서 공장서버(26)는 가공 데이터를 계산기 단말(28)의 통신제어부(30)에 LAN(29)을 통하여 송신한다. 송신되는 가공 데이터에는, 예를 들면 안경렌즈의 표면설계 데이터, 처방값 데이터, 안경렌즈의 종류 등이 포함된다.In the first embodiment, all requests for information in the manufacturing process to the factory server 26 executed by the calculator terminal 28 are made through the serial number information. When the barcode containing the manufacturing number information or the manufacturing number information of the manufacturing instruction sheet given to the raw lens is read and input by the input device such as the scanner, the calculator terminal 28 creates the cutting related information corresponding to the manufacturing number information And requests the factory server 26 to process the data. The factory server 26 transmits the processed data to the communication control unit 30 of the calculator terminal 28 via the LAN 29 in accordance with the request. The processed data to be transmitted includes, for example, the surface design data of the spectacle lens, the prescribed value data, the kind of the spectacle lens, and the like.
통신제어부(30), 연산처리부(31) 및 제어부(32)를 LAN(36)에 의해서 접속하고 있다.The communication control unit 30, the arithmetic processing unit 31 and the control unit 32 are connected by the LAN 36. [
그리고, 연산처리부(31)는 수신한 가공 데이터로부터 가공을 위한 데이터의 상세를 연산한다.Then, the calculation processing section 31 calculates the details of the data for machining from the received machining data.
도 5에 나타내는 절삭수단(27)은 NC제어에 의해서 3축 제어함으로써 하축(E)와 상축(D)를 구비하고 있다.The cutting means 27 shown in Fig. 5 has a lower axis E and a higher axis D by three-axis control by NC control.
하축(E)는 안경렌즈(1)가 설치되어 이동하지 않고 축회전한다. 한편, 상축(D)는 거칠기 절삭용의 제1 바이트(F)가 설치된 제1 상축부(G)와, 마무리 절삭용의 제2 바이트(H)가 설치된 제2 상축부(I)의 2축을 구비하고, 고정된 하축(E)에 대해서 상축(D)가 X방향으로 슬라이드하여 제1과 제2 상축부(G, I)를 바꾸는 구조로 되어 있다.The lower shaft E is axially rotated without the spectacle lens 1 being installed. On the other hand, the upper shaft D has a first shaft portion G provided with a first byte F for roughness cutting and a second shaft portion I provided with a second byte H for finishing cutting, And the upper shaft D is slid in the X direction with respect to the fixed lower shaft E so that the first and second upper shaft portions G and I are changed.
제1, 제2 바이트(F, H)의 절삭칼날(B)의 재질로서는, 예를 들면 소결 한 다이아몬드나 단결정 다이아몬드가 이용된다.As the material of the cutting blade B of the first and second bytes F and H, for example, sintered diamond or single crystal diamond is used.
안경렌즈(1)의 오목면으로 이루어진 피가공 렌즈면(5)을 절삭칼날(B)에 의해서 절삭가공하는 경우는 계산기 단말(28)이 매트릭스로 나타내진 오목면의 설계 형상 높이 데이터를 제어부(32)로 전송한다. 또한 계산기 단말(28)이 오목면 형상에 대응하는 나선모양 가공궤적(4)을 제어부(32)에 전송한다. 이것에 의해, 제어부(32)가 상축(D), 제1, 제2 상축부(G, I)를 제어하고, 바이트(F, H)의 절삭칼날(B)이 나선모양 가공궤적(4) 위의 가공점 K에 따라 이동하는 것에 의해 피가공 렌즈면(5)을 절삭가공한다. 이와 같은 절삭수단(27)의 가공 정밀도는 3㎛이 내(렌즈, 지름 50㎜), 최대표면조도 Rmax는 O3 ~ 05㎛정도이다. 가공궤적은 도 9에 도시하였다.When the working lens surface 5 made of the concave surface of the spectacle lens 1 is cut by the cutting blade B, the computer terminal 28 sends the design height data of the concave surface represented by the matrix to the control unit 32). The calculator terminal 28 also transfers the spiral machining locus 4 corresponding to the concave shape to the control unit 32. [ This allows the control section 32 to control the upper axis D and the first and second upper axis portions G and I so that the cutting blade B of the bytes F and H is positioned at the spiral machining locus 4, The working lens surface 5 is cut by moving according to the above-mentioned processing point K. The machining accuracy of the cutting means 27 is within 3 占 퐉 (lens diameter: 50 mm), and the maximum surface roughness Rmax is about 03 to 05 占 퐉. The machining locus is shown in Fig.
이후, 절삭가공된 렌즈면(2)을 연마장치에 의해서 연마하고, 소정의 곡면으로 이루어진 광학면으로 완성한다.Thereafter, the cut lens surface 2 is polished by a polishing apparatus to complete an optical surface having a predetermined curved surface.
연마장치로서는 종래 공지의 장치, 예를 들면 일본국 특개2003-266287호 공보의 도 3에 개시되어 있는 연마장치나, 일반적으로 시판되고 있는 LOH사 제품의 범용의 연마장치(TORO 시리즈)가 이용된다. As a polishing apparatus, a polishing apparatus as disclosed in FIG. 3 of Japanese Unexamined Patent Publication No. 2003-266287 and a general polishing apparatus (TORO series) of a commercially available LOH company are used .
오목면으로 이루어진 렌즈면(2)의 연마가공이 종료하면, 이어서 볼록면으로 이루어진 피가공 렌즈면(3)과 마찬가지로 절삭수단(27)에 의해서 절삭가공하고, 또한 연마장치에 의해서 연마하여 소정의 광학면으로 완성한다.When the polishing of the concave lens surface 2 is completed, the lens is cut by the cutting means 27 in the same manner as in the case of the convex lens surface 3, Optical surface.
다음에, 안경렌즈의 수주로부터 납품까지의 흐름을 도 6을 참조하여 설명한다.Next, the flow from order reception to delivery of the spectacle lens will be described with reference to Fig.
스텝 1 : 발주Step 1: Ordering
우선, 공장(24)의 메인프레임(22)은 안경점(20)으로부터의 안경렌즈의 제작 의뢰를 받는다(수주) 안경점(20)은 안경렌즈의 발주에 앞서 고객의 피검안의 처리 데이터, 렌즈 종별, 그 외의 렌즈의 설계에 필요한 안경렌즈의 사양 정보를 발주단말(21)에 입력한다.First, the main frame 22 of the factory 24 receives a request for making a spectacle lens from the optician 20. (Orders) The optician 20, before ordering the spectacle lens, Specification information of the spectacle lens necessary for designing other lenses is inputted to the ordering terminal 21. [
여기서, 사양 정보에는 안경렌즈의 종류와 특정 정보가 포함된다. 또, 처방 데이터에는 고객의 좌우 양눈의 구면 굴절력, 원주 굴절력, 난시축, 가입도, 동공간 거리, 나안 시력 등이 포함된다. 그리고, 발주단말(21)은 입력된 안경렌즈 정보, 처방값을 통신회선(23)을 통하여 메인프레임(22)에 온라인으로 송신하여 안경렌즈의 제작을 의뢰한다.Here, the specification information includes the type of spectacle lens and specific information. In addition, prescription data includes spherical power of the left and right eyes of the customer, cylindrical power of the circumference, astigmatism axis, degree of joining, distance of the same space, and naked eye. Then, the ordering terminal 21 transmits the entered spectacle lens information and prescription value to the main frame 22 via the communication line 23 online to request the manufacture of the spectacle lens.
스텝 2 : 렌즈 볼록면의 표면형상 데이터 산출Step 2: Calculate the surface shape data of the lens convex surface
메인프레임(22)은 안경점(20)으로부터의 안경렌즈의 제작 의뢰를 수주하면, 수신한 데이터보다 절삭수단(27)에서 사용하는 가공 데이터를 연산하고, 공장서버(26)에서 보관 또는 LAN(29)을 통하여 절삭수단(27)에 전송한다. 가공 데이터는 각 가공장치, 검사장치에서 사용하는 형식으로 출력되고, 적어도 안경렌즈의 오목, 볼록면 형상 데이터를 포함한다.The main frame 22 calculates the machining data used by the cutting means 27 rather than the received data and stores it in the factory server 26 or stores it on the LAN 29 To the cutting means (27). The machining data is output in a format used in each of the machining apparatuses and the inspection apparatuses and includes at least concave and convex shape data of the spectacle lens.
스텝 3 : 렌즈 볼록면의 평균곡률산출Step 3: Calculation of average curvature of lens convex surface
다음에, 계산기 단말(28)은 안경렌즈의 볼록면 형상 데이터의 평균곡률반경 R(RT)을 구한다. 평균곡률반경 RT는 안경렌즈의 표면형상 전체를 구면형상으로 근사 한 경우, 가장 차이가 작게 되는 곡률반경이다. 실제로는 계산기 등에서 렌즈형상값과 근사 구면과의 차이를 최소 2승법으로 산출하고, 차이가 가장 작게 되는 곡률반경을 평균곡률반경 RT로 한다. 그리고, 구한 평균곡률반경 RT로부터 평균곡률 CT를 구한다. 평균곡률 CT는 평균 곡률반경 RT의 역수(= 1/RT)이다.Next, the calculator terminal 28 obtains the average curvature radius R (RT) of the convex surface shape data of the spectacle lens. The average curvature radius RT is a radius of curvature in which the most difference is small when the entire surface shape of the spectacle lens is approximated to a spherical shape. In practice, the difference between the lens shape value and the approximate spherical surface is calculated by a least squares method in a computer or the like, and the radius of curvature at which the difference becomes the smallest is defined as the average radius of curvature RT. Then, an average curvature CT is obtained from the obtained average radius of curvature RT. The mean curvature CT is the reciprocal (= 1 / RT) of the mean curvature radius RT.
스텝 4 : 볼록면 나선형상 가공궤적 산출Step 4: Calculation of trajectory of convex surface spiral shape
스텝 5 : 볼록면 가공궤적 산출(3차원)Step 5: Computation of convex surface machining locus (3D)
안경렌즈의 표면형상 데이터는 3차원 데이터(X, Y, Z)의 함수로 표시되어 있다. 이 3차원 데이터(X, Y, Z)로 이루어진 표면형상 데이터에 나선모양 가공궤적의 2차원 데이터(X, Y) 값을 대입하면, 대응하는 렌즈표면 위의 가공점 K가 특정되고, 그 각 3차원 가공점위치 좌표값(X, Y, Z)이 확정된다. 그리고, 이 각 3차원 가공점위치 좌표값(X, Y, Z)은 절삭수단(27)으로 보내진다.The surface shape data of the spectacle lens is represented by a function of three-dimensional data (X, Y, Z). When the two-dimensional data (X, Y) values of the helical processing locus are substituted into the surface shape data composed of the three-dimensional data (X, Y, Z), the machining point K on the corresponding lens surface is specified, The three-dimensional machining point position coordinate values (X, Y, Z) are determined. The three-dimensional machining point position coordinate values (X, Y, Z) are sent to the cutting means 27.
스텝 6 : 절삭가공Step 6: Cutting process
다음에 볼록면을 절삭가공한다.Next, the convex surface is cut.
절삭수단(27)은 절삭공구가 특정한 3차원의 가공점위치 좌표값(X, Y, Z)에 따라서 상기 스텝 4에서 산출한 나선모양 가공궤적(4) 위를 이동하도록 제어하는 것으로 볼록면(3)을 절삭가공해 소망의 표면형상을 창성한다.The cutting means 27 controls the cutting tool to move on the spiral machining locus 4 calculated in step 4 according to the specified three-dimensional machining point position coordinate values (X, Y, Z) 3) is cut to form a desired surface shape.
스텝 7 : 볼록면 연마가공Step 7: Convex surface polishing
다음에, 절삭된 볼록면(3)의 연마가공을 실시한다. 연마가공할 때에는 절삭수단(27)에 의해서 안경렌즈의 볼록면(3)을 소정의 형상으로 절삭가공한 후, 안경렌즈를 절삭수단(27)으로부터 떼어내 연마장치에 부착하여 절삭된 렌즈면을 연마한다.Next, the cut convex surface 3 is polished. In polishing, the convex surface 3 of the spectacle lens is cut into a predetermined shape by the cutting means 27, the spectacle lens is removed from the cutting means 27 and attached to the polishing apparatus, Polish.
스텝 S8 : 렌즈 오목면의 표면형상 데이터 산출Step S8: Calculating the surface shape data of the lens concave surface
볼록면(3)의 연마가 종료하면, 안경렌즈를 연마장치로부터 떼어내고, 다시 절삭수단(27)의 하축(E) 위에 오목면(2)을 위로하여 장착한다. 그리고, 메인프레임(22)은 수신한 데이터에서 절삭수단(27)으로 이용하는 가공 데이터를 연산하고, 공장서버(26)로 보관 또는 LAN(29)을 통해서 절삭수단(27)으로 전송한다. 가공 데이터는 각 가공장치, 검사장치에서 사용하는 형식으로 출력되며, 적어도 안경렌즈의 오목면 형상 데이터를 포함한다.When the polishing of the convex surface 3 is finished, the spectacle lens is removed from the polishing apparatus, and the concave surface 2 is mounted on the lower axis E of the cutting means 27 again. The main frame 22 calculates the machining data to be used by the cutting means 27 in the received data and stores it in the factory server 26 or transmits it to the cutting means 27 via the LAN 29. [ The machining data is output in a format used in each of the machining apparatuses and the inspection apparatuses and includes at least concave surface shape data of the spectacle lens.
스텝 S9 : 렌즈 오목면의 평균곡률산출Step S9: Calculation of the average curvature of the lens concave surface
다음에, 계산기 단말(28)은 안경렌즈의 오목면 형상 데이터의 평균곡률반경 R(RO)을 요구한다. 오목면(2)의 평균곡률반경 RO는 안경렌즈(1)의 표면형상 전체를 구면형상으로 근사한 경우, 가장 차이가 작게 되는 곡률반경이다. 실제로는 컴퓨터 등에서 렌즈형상값과 근사 구면과의 차이를 최소 2승법으로 산출하고, 차이가 가장 작아지는 곡률반경을 평균곡률반경 RO로 한다. 그리고, 구한 평균곡률반경 RO로부터 평균곡률 CO(= 1/R)를 구한다.Next, the calculator terminal 28 requests the average curvature radius R (RO) of the concave surface shape data of the spectacle lens. The average radius of curvature RO of the concave surface 2 is a radius of curvature which is the smallest when the entire surface shape of the spectacle lens 1 is approximated to a spherical shape. Actually, in a computer or the like, the difference between the lens shape value and the approximate spherical surface is calculated by the least square method, and the radius of curvature where the difference becomes the smallest is set as the average curvature radius RO. Then, the average curvature CO (= 1 / R) is obtained from the obtained average radius of curvature RO.
스텝 S10: 오목면 나선형상 가공궤적 산출Step S10: Calculation of Trajectory of Concave Spiral Machining
스텝 S11 : 오목면 가공궤적 산출(3차원)Step S11: Calculation of concave surface machining locus (3D)
다음에, 안경렌즈(1)의 오목면 형상 데이터는 3차원 데이터(X, Y, Z)의 함수로 표시되고 있고, 나선모양 가공궤적(4)의 2차원 데이터(X, Y) 값을 대입하면 대응하는 오목면(2) 위의 각 가공점 K가 특정되며, 그 각 3차원 위치 좌표값(X, Y, Z)가 절삭수단(27)으로 보내진다.Next, the concave surface shape data of the spectacle lens 1 is displayed as a function of the three-dimensional data (X, Y, Z), and the two-dimensional data (X, Y) The respective machining points K on the corresponding concave surface 2 are specified and the respective three-dimensional position coordinate values (X, Y, Z) are sent to the cutting means 27. [
스텝 S12 : 절삭가공Step S12:
다음에, 안경렌즈(1)의 오목면(2)을 절삭수단(27)에 의해서 절삭가공한다.Next, the concave surface 2 of the spectacle lens 1 is cut by the cutting means 27.
스텝 S13 : 오목면 연마가공 Step S13: concave surface polishing process
오목면(2)의 절삭가공이 끝나면, 다음에 절삭된 오목면(2)의 연마가공을 실시한다. 오목면(2)의 연마가공에는 볼록면 연마에 이용한 연마장치가 이용된다.When the cutting process of the concave surface 2 is completed, the cutting process of the concave surface 2 is performed next. For the polishing of the concave surface 2, a polishing apparatus used for convex surface polishing is used.
스텝 S14 : 다음 공정Step S14: Next Step
연마 종료 후에는 볼록면(3)과 오목면(2)의 염색, 표면 처리, 검사 등을 실시하고, 검사에 합격한 안경렌즈(1)가 제품으로서 의뢰처의 안경점에 출시된다.After completion of polishing, the convex face 3 and the concave face 2 are subjected to dyeing, surface treatment, inspection, and the like, and the spectacle lens 1 passed the inspection is released as a product to the optician of the client.
한편, 본 발명은 절삭수단(27)의 일단에 먼지 측정수단을 설치하여 상기 먼지 측정수단(2000)을 통해 먼지를 파악하고, 기준 이상의 먼지가 검출되면 경보신호를 통해 출력하여 사용자로 하여금 절삭수단에 존재하는 먼지를 제거토록 유도한다. Meanwhile, according to the present invention, a dust measuring means is installed at one end of a cutting means (27), dust is detected through the dust measuring means (2000), and when dust above a reference level is detected, the dust is outputted through an alarm signal, To remove the dust present in the surface.
즉, 절삭수단에 먼지가 많이 존재하게 되면 작업하는 환경을 나쁘게 만들 수 있고, 아울러 렌즈 가공 과정에서 안전사고가 발생할 수 있기 때문이다.That is, if there is a large amount of dust on the cutting means, the work environment can be made worse, and a safety accident may occur during lens processing.
다시말해서, 절삭수단의 주변에 먼지가 기준이상이면 작업자에게 알려서 절삭수단으로부터 멀리 떨어져 있도록 유도한다. In other words, if the dust around the cutting means is above the reference, the worker is informed and guided away from the cutting means.
그리고, 먼지 측정수단(2000)에 의해서 측정된 데이터는 먼지 측정 계산부(3000)로 전송되며, 먼지 측정 계산부(3000)는 먼지 측정수단에 의해서 측정된 데이터를 계산하여 디스플레이(4000)에 표시한다.The data measured by the dust measuring means 2000 is transmitted to the dust measurement calculation unit 3000. The dust measurement calculation unit 3000 calculates the data measured by the dust measurement means and displays the data on the display 4000 do.
본 발명의 먼지 측정수단(2000)은 적외선을 방출하기 위한 적외선 송신수단(A)과, 상기 적외선 송신수단과 대향되도록 위치하며 상기 적외선 송신수단으로부터 방출된 빛을 수신하여 그 수신량의 정도에 따라 먼지유입을 판단하도록 하기 위한 적외선 수신수단(B)과, 상기 적외선 수신수단(B)의 출력전압이 설정된 값보다 작으면 상기 적외선 송신수단(A)의 입력전압이 증가되도록 제어하기 위한 먼지 측정 제어부(C)를 포함하여 이루어진다.The dust measuring means 2000 of the present invention includes an infrared transmitting means (A) for emitting infrared rays, a receiving means for receiving the light emitted from the infrared transmitting means and positioned to face the infrared transmitting means, (D) for controlling the input voltage of the infrared ray transmitting means (A) to increase when the output voltage of the infrared ray receiving means (B) is smaller than a predetermined value, an infrared ray receiving means (C).
그리고, 상기 적외선 송신수단(A)은 먼지 측정 제어부(C)로부터 적외선 송신 제어신호를 인가받아 적외선 송신량을 결정하여 변화된 적외선 송신량을 출력한다.The infrared transmitting unit A receives the infrared transmitting control signal from the dust measuring control unit C, determines the infrared transmitting amount, and outputs the changed infrared transmitting amount.
즉, 적외선 수신수단(B)의 결과값을 먼지 측정 제어부(C)에 전송하면, 먼지 측정 제어부(C)는 적외선 수신수단(B)의 데이터를 근거로 먼지 발생량을 예측하고, 먼지 발생량에 따라서 적외선 송신수단(A)에 제어신호를 출력하여 적외선 송신량을 조절하여 출력토록 유도하는 것이다.That is, when the result of the infrared ray receiving means B is transmitted to the dust measurement control section C, the dust measurement control section C predicts the dust generation amount based on the data of the infrared ray receiving means B, And outputs a control signal to the infrared ray transmitting means (A) to adjust the infrared ray transmission amount to induce the output.
즉, 먼지 측정 제어부에서 적외선 수신수단에서 출력되는 광량 데이터를 읽고, 이를 근거로 적외선 발광수단의 광량을 자동 제어하여 감도조절이 자동적으로 일정하게 유지되도록 하여 먼지로 인한 오염 상황에서도 먼지 검출을 최적의 감도상태로 유지하여 측정할 수 있도록 한 것이다.That is, the light amount data outputted from the infrared ray receiving means is read by the dust measurement control unit, and the light amount of the infrared light emitting means is automatically controlled based on the read light amount data, so that the sensitivity adjustment is automatically maintained constant. So that the measurement can be performed while maintaining the sensitivity state.
다시 말해서, 먼지 측정 제어부(C)는 적외선 수신수단(B)의 수신 광량이 미약하면 오염 정도가 높은 것으로 판단하여 보다 정밀한 먼지 측정을 위해서 적외선 송신수단(A)의 광량을 높이도록 제어신호를 출력하며, 적외선 수신수단(C)의 수신 광량이 너무 세면 오염이 없는 상태이나 정밀한 측정이 어려워지므로 적외선 송신수단(A)의 광량을 낮추도록 제어신호를 출력하는 것이다. 즉, 적외선 송신 광량을 적절한 상태로 유지할 필요가 있다. 그래야만 적외선 수신수단을 통해 측정되는 적외선량이 정확해져서 먼지 발생량을 보다 정밀하게 예측할 수 있다.In other words, the dust measurement control section C determines that the degree of contamination is high when the amount of received light of the infrared ray receiving means B is low, and outputs a control signal to increase the light amount of the infrared ray transmitting means A If the amount of light received by the infrared ray receiving means C is too high, a contamination-free state or a precise measurement becomes difficult. Therefore, a control signal is outputted so as to lower the light amount of the infrared ray transmitting means A That is, it is necessary to keep the amount of infrared transmission light in an appropriate state. The infrared ray amount measured through the infrared ray receiving means is accurate and the dust amount can be more precisely predicted.
따라서, 본 발명의 먼지 측정 제어부에 의해서 측정되는 먼지량 데이터는 신뢰도가 높은 먼지 측정 결과를 출력할 수 있게 된다.Therefore, the dust amount data measured by the dust measurement control unit of the present invention can output the dust measurement result with high reliability.
본 발명은 적외선 송신수단의 광량 변화를 용이하게 하기 위해서 먼지 측정 제어부(C)가 제어신호를 출력하면 송신 제어부(11)에서 이를 인지하여 적외선 송신기 변환수단을 구동하여 가장 적절한 적외선 송신이 이루어지도록 하였다.In the present invention, when the dust measurement control unit C outputs a control signal in order to facilitate the change of the light amount of the infrared ray transmission unit, the transmission control unit 11 recognizes the control signal and drives the infrared ray transmitter conversion unit to perform the most appropriate infrared ray transmission .
적외선 송신기 변환수단(12)은 액추에이터(13)에 권취되어 소정거리 이격되게 장착되는 다수의 유동용 전자석(12a,12b,12c)과, 상기 유동용 전자석(12a,12b,12c)과 인접된 위치에 고정 설치되는 다수의 고정용 전자석(12d,12e,12f)으로 이루어져, 송신 제어부(11)의 신호가 인가되면 유동용 전자석((12a,12b,12c)과 고정용 전자석(12d,12e,12f)에 전류가 흘러 자성이 형성되고 이 자성에 의해 유동용 전자석((12a,12b,12c)과 고정용 전자석(12d,12e,12f) 사이에 척력과 인력이 발생하여 액추에이터(13)를 구동하게 된다.The infrared transmitter converting means 12 includes a plurality of floating electromagnets 12a, 12b and 12c which are wound around the actuator 13 and are mounted to be spaced apart from each other by a predetermined distance and fixed to a position adjacent to the floating electromagnets 12a, 12b and 12c 12b and 12c and the fixing electromagnets 12d, 12e, and 12f, when the signal from the transmission control unit 11 is applied, And magnetic force is generated between the floating electromagnets 12a, 12b, and 12c and the fixing electromagnets 12d, 12e, and 12f by the magnetism to drive the actuator 13. [
상기 엑츄에이터(13)는 적외선 송신기 변환수단(12)의 유동에 의해서 적외선 출력을 제한하기 위한 오목렌즈군이 다수 설치되어 이루어진다.The actuator 13 is provided with a plurality of concave lens groups for limiting the infrared ray output by the flow of the infrared transmitter converting means 12.
이를 수행하는 적외선 송신기 유동수단(14)은, 엑츄에이터(13)의 일측 외주연에 길이방향으로 다수 형성된 오목렌즈군(15)에 근접되어 적외선을 외부로 출력하는 적외선 송신용 소자(14a)와, 상기 적외선 송신용 소자(14a)를 유동시키기 위한 이동바(14b)와, 상기 이동바를 움직여서 적외선 송신용 소자를 좌우로 유동시키는 솔레노이드(14c)로 이루어진다.The infrared transmitter flow unit 14 for performing this operation includes an infrared ray transmitting element 14a for outputting infrared rays to the outside in the vicinity of the concave lens group 15 formed in the longitudinal direction at the outer peripheral edge of one side of the actuator 13, A moving bar 14b for moving the infrared ray transmitting element 14a and a solenoid 14c for moving the infrared ray transmitting element to the left and right by moving the moving bar.
상기한 구성에서 엑츄에이터(13)의 이동시 솔레노이드(14c)에 제공되는 전원인가에 의해서 적외선 송신용 소자(14a)가 좌우로 유동된다.In the above configuration, when the actuator 13 is moved, the infrared ray transmitting element 14a is caused to flow to the left and right due to the application of power to the solenoid 14c.
상기 적외선 송신용 렌즈군(15)은 작동봉에 다수개 배열되어 이루어지되, 중심부의 함몰 각도에 따라서 적외선광의 출력 정도를 달리하도록 설계되며, 적외선 송신기 변환수단의 움직임 작동에 의해서 함몰 정도가 다른 렌즈가 선택되면서 다른 강도의 적외선 광을 출력할 수 있다.The infrared transmitting lens group 15 is designed so that a plurality of the infrared transmitting lens groups 15 are arranged on the working rod, and the output power of the infrared ray light is varied according to the depression angle of the center portion. The infrared ray of different intensity can be outputted.
기본적으로 작동봉의 가장 중심에 설치되는 제3 오목렌즈(15c)를 통해 적외선 광을 출력토록하며, 적외선 광을 조금 줄여서 출력해야할 경우 제3 오목렌즈(15c)의 윗쪽에 설치되는 제2 오목렌즈(15b)를 통해 광을 출력하고, 적외선 광을 더 많이 줄여서 출력해야할 경우 제2 오목렌즈(15b)의 윗쪽에 설치되는 제1 오목렌즈(15a)를 통해 광을 출력한다. 그리고, 적외선 광을 더 높여서 출력해야할 경우 제3 오목렌즈(15c)의 아랫쪽에 설치되는 제4 오목렌즈(15d)를 통해 광을 출력하고, 적외선 광을 더 많이 높여서 출력해야할 경우 제4 오목렌즈(15d)의 아랫쪽에 설치되는 제5 오목렌즈(15e)를 통해 광을 출력한다.The second concave lens 15c provided above the third concave lens 15c when the infrared light is to be output a little while the infrared light is output through the third concave lens 15c, 15b, and outputs light through the first concave lens 15a provided above the second concave lens 15b when the infrared ray is to be output by further reducing the amount of infrared light. When the infrared ray is to be output with higher light output, light is output through the fourth concave lens 15d provided below the third concave lens 15c. When the infrared ray is to be output with a higher intensity, And a fifth concave lens 15e provided below the second concave lens 15d.
그리고, 상기 오목렌즈군은 중심부의 함몰 각도에 따라서 적외선 광의 출력 정도를 달리하도록 설계되며, 적외선 송신기 변환수단의 움직임 작동에 의해서 함몰 정도가 다른 렌즈가 선택되면서 다른 강도의 적외선 광을 출력할 수 있도록 구성되는바, 제3 오목렌즈(15c)는 기본적으로 작동봉의 가장 중심에 설치되며 함몰각도를 25도로 형성시킨다.The concave lens group is designed to have a different degree of output of infrared light depending on the depression angle of the central portion, and a lens having different degrees of depression can be selected by the movement of the infrared transmitter conversion means to output infrared light of different intensity The third concave lens 15c is basically provided at the center of the working rod and forms a depression angle of 25 degrees.
그리고, 제2 오목렌즈(15b)는 적외선 광을 조금 줄여서 출력해야할 경우에 사용되고, 제3 오목렌즈(15c)의 윗쪽에 설치되며 함몰각도를 15도로 형성시킨다.The second concave lens 15b is used for outputting a slightly reduced amount of infrared light. The second concave lens 15b is provided above the third concave lens 15c and forms a depression angle of 15 degrees.
그리고, 제1 오목렌즈(15a)는 적외선 광을 더 많이 줄여서 출력해야할 경우에 사용되며 제2 오목렌즈(15b)의 윗쪽에 설치되며 함몰각도를 5도로 형성시킨다.The first concave lens 15a is used when it is necessary to further reduce the amount of infrared light and is disposed above the second concave lens 15b and forms a depression angle of 5 degrees.
그리고, 제4 오목렌즈(15d)는 적외선 광을 더 높여서 출력해야할 경우에 사용되고, 제3 오목렌즈(15c)의 아랫쪽에 설치되며 함몰각도를 35도로 형성시킨다.The fourth concave lens 15d is used when the infrared ray is to be output with higher light output, and is provided at the lower side of the third concave lens 15c to form a depression angle of 35 degrees.
그리고, 제5 오목렌즈(15e)는 적외선 광을 더 많이 높여서 출력해야할 경우에 사용되고, 제4 오목렌즈(15d)의 아랫쪽에 설치되며 함몰각도를 45도로 형성시킨다.The fifth concave lens 15e is used when the infrared ray is to be outputted with a higher light output, and is provided at the lower side of the fourth concave lens 15d and forms a depression angle of 45 degrees.
적외선의 광을 높여야할 경우 엑츄에이터(13)을 상승시키고 적외선 광을 줄여야 할 경우 엑츄에이터(13)를 하강시키는 동작을 실시한다.When the infrared light needs to be increased, the actuator 13 is moved up and the actuator 13 is lowered when the infrared light needs to be reduced.
작동봉의 1단계 하강을 위한 제어시 송신 제어부(11)에서 제1고정용 전자석(12d)-제1유동용 전자석(12a), 제2고정용 전자석(12e)-제2유동용전자석(12b), 제3고정용전자석(2f)-제3유동용전자석(2c)에는 척력 신호를 주고, 제2 고정용전자석(12e)-제1유동용전자석(12a), 제3고정전용자석(12f)-제2유동용전자석(12b)에는 인력 신호를 주면 엑츄에이터(13)가 하강하여 제2고정용전자석(12e)의 위치에 제1장착용전자석(12a)이, 제3고정용전자석(12f)의 위치에 제2장착용전자석(12b)이 위치된다. 이에 따라 작동봉이 1단계 하강하게 되면 적외선 송신용 소자(14a)는 제2 오목렌즈(15b)에 근접하게 되어 제2 오목렌즈(15b)를 통해 적외선 광을 출력하게 된다. The first fixed electromagnet 12d-the first movable electromagnet 12a, the second fixed electromagnet 12e-the second movable electromagnet 12b, and the second fixed electromagnet 12b are controlled by the transmission control unit 11 in the control for descending one step of the working rod. The first stationary electromagnet 2f and the third stationary electromagnet 2c are provided with a repulsive force signal and the second stationary electromagnet 12e and the first and second stationary electromagnets 12a and 12f, When the attracting signal is applied to the electromagnet 12b, the actuator 13 is lowered to place the first mounting electromagnet 12a at the position of the second fixing electromagnet 12e and the second mounting electromagnet 12b at the position of the third fixing electromagnet 12f. The mounting electromagnet 12b is located. Accordingly, when the operating rod is lowered by one step, the infrared ray transmission element 14a comes close to the second concave lens 15b and outputs infrared light through the second concave lens 15b.
그리고, 엑츄에이터의 1단계 상승을 위한 제어시 송신 제어부(11)에서 제1고정용 전자석(12d)-제1유동용 전자석(12a), 제2고정용 전자석(12e)-제2유동용전자석(12b), 제3고정용전자석(12f)-제3유동용전자석(12c)에는 척력 신호를 주고, 제1고정용전자석(12d)-제2유동용전자석(12b), 제2고정전용자석(12d)-제3유동용전자석(12c)에는 인력 신호를 주면 엑츄에이터(13)이 상승하여 제1고정용전자석(12d)의 위치에 제2장착용전자석(12b)이, 제2고정용전자석(12e)의 위치에 제3장착용전자석(12c)이 위치된다. 이에 따라 작동봉이 1단계 상승하게 되면 적외선 송신용 소자는 제4 오목렌즈(15d)에 근접하게 되어 제4 오목렌즈(15d)를 통해 적외선 광을 출력하게 된다. The first fixing electromagnet 12d-the first moving electromagnet 12a, the second fixing electromagnet 12e-the second floating electromagnet 12b, and the second fixing electromagnet 12b are controlled by the transmission control unit 11 in the control for the one- The third fixed electromagnet 12f and the third floating electromagnet 12c are given a repulsive force signal and the first fixed electromagnet 12d-the second floating electromagnet 12b and the second fixed dedicated magnet 12d- When the attraction signal is applied to the 3-way electromagnet 12c, the actuator 13 rises to place the second mounting electromagnet 12b at the position of the first fixing electromagnet 12d and the second mounting electromagnet 12b at the position of the second fixing electromagnet 12e The third mounting electromagnet 12c is positioned. Accordingly, when the operating rod is raised by one step, the infrared transmitting element comes close to the fourth concave lens 15d and outputs infrared light through the fourth concave lens 15d.
그리고 작동봉의 2단계 하강을 위한 제어시 제3고정용전자석(12f)과 같은 위치에 제1유동용전자석(12a)이 위치되고, 이에 따라 적외선 송신용 소자(14a)는 제1 오목렌즈(15a)를 통해 적외선 광을 출력하게 되고, 엑츄에이터(13)의 2단계 상승을 위한 제어시 제1고정용전자석(12d)과 같은 위치에 제3유동용전자석(12c)이 위치되며, 이에 따라 적외선 송신용 소자는 제5 오목렌즈(15e)를 통해 광을 출력하게 된다.The first moving electromagnet 12a is positioned at the same position as the third fixing electromagnet 12f when the operation rod is lowered for two steps and accordingly the infrared transmitting element 14a is moved to the first concave lens 15a, And the third moving electromagnet 12c is positioned at the same position as the first fixing electromagnet 12d under the control for raising the actuator 13 in two steps, And outputs the light through the fifth concave lens 15e.
또한, 본 발명은 움직임 속도 조절수단(16)을 더 부가 설치하는바, 엑츄에이터(13)의 하단에 돌출 성형되며, 상기 엑츄에이터(13)에 다수개의 끼움용 홀(16a)을 형성하고, 상기 끼움용 홀에 엑츄에이터의 무게를 조절할 수 있는 무게조절용 핀(16b)을 삽입 설치하여 엑츄에이터(13)의 움직임 속도를 조절할 수 있다. The present invention is further characterized in that a motion speed adjusting means 16 is further provided and is formed at the lower end of the actuator 13 so as to form a plurality of fitting holes 16a in the actuator 13, The movement speed of the actuator 13 can be adjusted by inserting a weight adjusting pin 16b for adjusting the weight of the actuator in the hole.
즉, 끼움용 홀(16a)에 무게조절핀(16b)을 삽입 설치하되, 1개의 무게조절핀을 설치하면 작동봉이 가볍기 때문에 빠른 유동이 가능하고, 3개의 무게조절핀을 설치하면 작동봉이 무겁기 때문에 느린 유동이 가능하다. That is, the weight adjusting pin 16b is inserted into the fitting hole 16a. If one weight adjusting pin is installed, the weight of the operating rod is high, Slow flow is possible.
상기 움직임 속도 조절수단은 엑츄에이터(13)의 움직임을 빠른게 할 것인지 느리게 할 것인지를 조절하는바, 이는 엑츄에이터(13)가 너무 빠르게 움직이면 민감도가 높아지고, 엑츄에이터(13)가 너무 느리게 움직이면 반응속도가 느려지므로 사용자가 엑츄에이터(13)의 움직임을 선택적으로 조절할 수 있도록 하였다.The movement speed adjusting means controls whether the movement of the actuator 13 is fast or slow. If the actuator 13 moves too fast, the sensitivity increases. If the actuator 13 moves too slowly, So that the user can selectively control the movement of the actuator 13.
즉, 사용자가 민감도를 높이고 싶으면 무게조절핀(16b)을 1개만 삽입 결합시키고, 민감도를 낮추고 싶으면 무게 조절핀(16b)을 3개까지 삽입 결합시키도록 하는 것이다. That is, if the user wants to increase the sensitivity, only one weight control pin 16b is inserted and coupled, and if the sensitivity is to be lowered, up to three weight control pins 16b are inserted and coupled.
상기 끼움용 홀(16a)과 무게조절핀(16b)의 갯수는 필요에 따라 다양화시킬 수 있음은 물론이며, 본 발명의 실시예에서는 3개의 끼움홀(16a)과 3개의 무게조절핀(16b)을 예시하여 설명을 보다 편리하게 진행할 수 있도록 하였다.The number of the fitting holes 16a and the number of the weight adjusting pins 16b can be varied according to need. In the embodiment of the present invention, three fitting holes 16a and three weight adjusting pins 16b ), So that the explanation can be made more convenient.
또한, 본 발명은 먼지가 기준이상 검출되어 알림상황이 발생하면 먼지 측정계산부(3000)가 통신신호 자동출력부(1000)를 통해 알림상황을 디스플레이하여 빠른 시간내에 해결토록 유도하는바, 상기 통신신호 자동 출력부(1000)는, 전원부(1110)와, 제1 스위칭 트랜지스터와, 제2 스위칭 트랜지스터와, 제3 스위칭 트랜지스터와, 제4 스위칭 트랜지스터와, 릴레이 스위치와, 제1 회로 연결 스위치(sw1)와, 제2 회로 연결 스위치(sw2)와, 통신 제어부(1120)를 포함하여 이루어진다. In addition, according to the present invention, when dust is detected as a reference or more and a notification situation occurs, the dust measurement unit (3000) displays the notification status through the communication signal automatic output unit (1000) The automatic output unit 1000 includes a power supply unit 1110, a first switching transistor, a second switching transistor, a third switching transistor, a fourth switching transistor, a relay switch, a first circuit connection switch sw1, A second circuit connection switch sw2, and a communication control unit 1120. [
상기 전원부(1110)는 자체 전원에 의해서 전원을 인가시킨다.The power source unit 1110 applies power to its own power source.
상기 제1 스위칭 트랜지스터(Q1)는 베이스에 입력되는 스위칭 신호에 따라 회로를 스위칭시킨다.The first switching transistor Q1 switches the circuit according to a switching signal input to the base.
상기 제2 스위칭 트랜지스터(Q2)는 제1 스위칭 트랜지스터의 동작에 상응하여 동작하며 전원부로부터 출력되는 전원을 스위칭시킨다.The second switching transistor Q2 operates in accordance with the operation of the first switching transistor and switches the power source output from the power source unit.
상기 제3 스위칭 트랜지스터(Q3)는 베이스에 입력되는 스위칭 신호에 따라 회로를 스위칭 시킨다.The third switching transistor Q3 switches the circuit according to a switching signal input to the base.
상기 제4 스위칭 트랜지스터(Q4)는 전원부의 출력단 타측에 설치되어 전원부로부터 출력되는 전원부를 스위칭시킨다.The fourth switching transistor Q4 is provided on the other side of the output terminal of the power supply unit to switch the power supply unit output from the power supply unit.
상기 릴레이 스위치(RL1)는 제4 스위칭 트랜지스터 출력단에 결합되며 제4 스위칭 트랜지스터 스위칭되면 자기력을 발생시킨다.The relay switch RL1 is coupled to the output terminal of the fourth switching transistor and generates a magnetic force when the fourth switching transistor is switched.
상기 제1 회로 연결 스위치(sw1)는 릴레이 스위치에 의해서 철편이 당겨지면서 회로를 통전시키는 기능을 수행한다.The first circuit connection switch sw1 performs a function of energizing the circuit by pulling the iron piece by the relay switch.
상기 제2 통신 신호 출력용 전원 스위치(sw2)는 릴레이 스위치에 의해서 철편이 당겨지면서 통신신호 출력 제어부(1140)에 전원이 공급되어 통신신호가 통신신호 출력부(1150)를 통해 출력 되도록 유도하는 역할을 한다.The second communication signal output power switch sw2 serves to induce a communication signal to be output through the communication signal output unit 1150 by supplying power to the communication signal output control unit 1140 while the iron wire is pulled by the relay switch do.
상기 통신 제어부(1120)는 제3 스위칭 트랜지스터 및 제4 스위칭 트랜지스터를 스위칭시켜 릴레이 스위치가 스위칭되도록 유도하며, 이에 따라 제1 회로 연결 스위치와 제2 통신신호 출력용 전원 스위치가 스위칭 되도록하고, 이후 제3 스위칭 트랜지스터 및 제4 스위칭 트랜지스터를 오프시킴과 동시에 제1 스위칭 트랜지스터 및 제2 스위칭 트랜지스터를 스위칭시켜, 릴레이 스위치는 오프시키고 동시에 제1 스위칭 트랜지스터 및 제2 스위칭 트랜지스터에 연동되도록 구성된 제1 회로 연결 스위치와 제2 통신신호 출력용 전원 스위치의 스위칭 상태를 지속시켜 통신상태를 지속시키는 역할을 한다.The communication controller 1120 switches the third switching transistor and the fourth switching transistor to switch the relay switch so that the first circuit connection switch and the second communication signal output power switch are switched, A first circuit connection switch configured to switch the first switching transistor and the second switching transistor while turning off the switching transistor and the fourth switching transistor and to turn off the relay switch and simultaneously to be interlocked with the first switching transistor and the second switching transistor And maintains the communication state by continuing the switching state of the second communication signal output power switch.
또한, 본 발명은 회로 작동용 철편(1131)과, 통신신호 작동 제어부 전원 연결용 철편(1132)과, 제1 탄성유지수단(1133)과, 제2 탄성유지수단(1134)과, 간격유지수단(1133a)과, 수동 작동 스위치(1135)를 더 포함하여 구성한다.In addition, the present invention is characterized in that it comprises a circuit board 1131 for operation, a wire piece 1132 for connection to a power supply for operating a communication signal control unit, a first resilient holding means 1133, a second resilient holding means 1134, (1133a), and a manual operation switch (1135).
상기 회로 작동용 철편(1131)은 제1 회로 연결 스위치(sw1)에 접점되어 제2 스위칭 트랜지스터로부터 전달되는 전원을 중계시켜 전원의 흐름을 지속시킨다.The circuit-operating piece 1131 contacts the first circuit connection switch sw1 and relays the power delivered from the second switching transistor to continue the flow of power.
상기 통신신호 출력 제어부 전원 연결용 철편(1132)은 상기 회로 작동용 철편(1131)에 연동하여 동작하도록 설계되며 회로 작동용 철편(1131)이 온 되면 통신신호 출력 제어부(1140)에 전원을 연결하여 통신장치가 작동되도록 유도한다.The communication signal output control unit power connection iron piece 1132 is designed to operate in conjunction with the circuit operation iron piece 1131. When the circuit operation iron piece 1131 is turned on, power is supplied to the communication signal output control unit 1140 Thereby inducing the communication device to operate.
상기 제1 탄성유지수단(1133)은 회로 작동용 철판(1131)의 하단에 설치되며 릴레이 스위치 미작동시 제1 회로연결 스위치(sw1)와 회로 작동용 철편(1131)이 항상 오프상태를 유지하도록 유도한다.The first elastic holding means 1133 is provided at the lower end of the circuit operation steel plate 1131 so that the first circuit connection switch sw1 and the circuit operation wire 1131 are always kept in the off state when the relay switch is not operated .
상기 제2 탄성유지수단(1134)은 제1 회로 연결 스위치(sw1)의 상부에 설치하되 제1 탄성유지수단과 일정거리 이격되어 설치되며, 릴레이 스위치 미작동시 서로 이격된 상태가 유지되면서 전기적으로 오프 상태를 유지시키며, 릴레이 스위치 작동시 회로 작동용 철편(1131)이 끌어당겨져 제1 탄성유지수단이 겹쳐지면서 제1 탄성유지수단(1133)과 결합되고 동시에 제1 회로 연결 스위치(sw1)가 스위칭되어 릴레이 스위치의 작동이 멈추어도 회로 작동용 철편(1131)의 부착 상태가 계속되어 제1 스위칭 트랜지스터 및 제2 스위칭 트랜지스터를 통한 전원공급상태를 유지시킨다. 이때 릴레이 스위치의 작동으로 회로작동용 철편(1131)이 동작하면 통신신호 출력 제어부 전원 연결용 철편(1132)이 자동으로 작동하여 통신신호가 외부로 출력되도록 동작한다.The second elastic holding means 1134 is installed on the upper portion of the first circuit connecting switch sw1 and is spaced apart from the first elastic holding means by a predetermined distance. When the relay switch is operated, the circuit breaker 1131 is pulled to be coupled with the first resilient holding means 1133 while the first resilient holding means is overlapped, and at the same time, the first circuit connecting switch sw1 is switched Even if the operation of the relay switch is stopped, the state of attaching the circuit breaker 1131 continues to maintain the power supply state through the first switching transistor and the second switching transistor. At this time, when the circuit breaker 1131 is operated by the operation of the relay switch, the communication piece 1132 is automatically operated to output the communication signal to the outside.
상기 간격유지수단(1133a)은 제2 탄성유지수단(1134)과 제1 탄성유지수단(1133)이 결합시에 상호 직접 결합되지 않고 일정간극을 유지한체 결합되도록 유도하며, 제1 탄성유지수단(1133)과 제2 탄성유지수단(1134)을 해체시에 상기 간격유지수단의 작용으로 보다 자연스럽게 상호 분리가 가능토록 유도한다. 만약에 간격유지수단이 존재하지 않으면 제1 탄성유지수단(1133)과 제2 탄성유지수단(1134)의 직접 붙게 되므로 나중에 상호 분리가 어렵게 된다. 이에 따라 본 발명에서는 간격유지수단(1133a)을 더 부가 설치하여 제1 탄성유지수단(1133)과 제2 탄성유지수단(1134)이 용이하게 분리될 수 있도록 하였다.The gap maintaining means 1133a guides the second elastic holding means 1134 and the first elastic holding means 1133 to be engaged with each other while maintaining a constant gap without being directly coupled to each other when the first elastic holding means 1134 and the first elastic holding means 1133 are engaged, 1133 and the second resilient holding means 1134 can be more smoothly separated from each other by the action of the gap maintaining means at the time of disassembly. If the gap maintaining means is not present, the first elastic holding means 1133 and the second elastic holding means 1134 are directly attached to each other, so that mutual separation becomes difficult later. Accordingly, in the present invention, the first elastic holding means 1133 and the second elastic holding means 1134 can be easily separated by further providing the gap holding means 1133a.
상기 수동 작동 스위치(1135)는 회로작동용 철편과 통신신호 출력 제어부 전원 연결용 철편에 결합되며, 통신신호 작동을 중단시키기 위해 사용자가 조작하면 회로 작동용 철편과 통신신호 출력 제어부 전원 연결용 철편을 오프되어 통신신호 출력부의 동작을 중단시킴으로서 더이상 통신신호가 출력되지 않토록 한다.The manual operation switch 1135 is connected to a wire for circuit operation and a wire for connection to a communication signal output control unit. When the user operates the wire to interrupt the operation of the communication signal, So that the operation of the communication signal output unit is stopped so that the communication signal is no longer output.
이하에서 통신신호 자동 출력부(1000)의 동작을 살펴보면 다음과 같다.Hereinafter, the operation of the communication signal automatic output unit 1000 will be described.
먼저, 통신신호 출력을 위한 제어관계를 살펴보면, 제어부에서 제3 스위칭 트랜지스터와 제4 스위칭 트랜지스터에 전원을 인가하여 릴레이 스위치(RL1)를 작동시킨다. 이에 따라 릴레이 스위치의 작동으로 제1 회로 연결스위치(sw1) 및 통신신호 출력용 전원 스위치(sw2)가 온 되면서 통신신호 출력 제어부(1140)에 전원이 인가되어 통신신호가 디스플레이 된다.First, a control relation for outputting a communication signal will be described. In the control unit, a power is applied to the third switching transistor and the fourth switching transistor to operate the relay switch RL1. Accordingly, the first circuit connection switch sw1 and the communication signal output power switch sw2 are turned on by the operation of the relay switch, and the power is applied to the communication signal output control unit 1140 to display the communication signal.
상기 제1 회로 연결 스위치(sw1)가 작동하면 제어부는 제3 스위칭 트랜지스터 및 제4 스위칭 트랜지스터의 작동을 차단하여 릴레이 스위치의 작동을 차단시키고, 동시에 제1 스위칭 트랜지스터 및 제2 스위칭 트랜지스터를 작동시킨다.When the first circuit connection switch sw1 is operated, the control unit interrupts the operation of the third switching transistor and the fourth switching transistor to cut off the operation of the relay switch, and simultaneously operates the first switching transistor and the second switching transistor.
한편, 만약 작업자가 통신신호가 출력되는 도중에 제1 회로 연결 스위치 및 통신신호 출력용 전원 스위치를 오프시키게 되면 제어부에서 이를 파악하게 되고, 그러면 제3 스위칭 트랜지스터 및 제4 스위칭 트랜지스터를 작동시켜 릴레이 스위치가 작동되도록하여 철편을 이동시키면서 폐회로를 유지시키고 동시에 통신신호 제어부(1140)로 출력되는 전원을 복귀시켜 계속적으로 통신신호 출력부(1150)를 작동시킬 수 있게 된다.On the other hand, if the operator turns off the first circuit connecting switch and the communication signal output power switch in the middle of outputting the communication signal, the control unit recognizes this, and then the third switching transistor and the fourth switching transistor are operated, It is possible to keep the closed circuit while moving the iron piece and at the same time return the power outputted to the communication signal control part 1140 to continuously operate the communication signal output part 1150.
즉, 본 발명은 알림 요인을 해결하지 않으면 계속적으로 통신신호를 출력시키도록하여 반드시 알림 요인을 해결하도록 유도한다.That is, according to the present invention, if the notification factor is not solved, the communication signal is continuously output to induce the notification factor to be solved.
즉, 제어부에서 제3 스위칭 트랜지스터 및 제4 스위칭 트랜지스터와, 제1 스위칭 트랜지스터 및 제2 스위칭 트랜지스터에 스위칭 신호를 인가하면 다시 전원을 복귀시켜 통신신호가 자동으로 출력되며, 이에 따라 알림 상황이 완전히 제거되는 것을 인지하지 못하여 통신신호를 차단하더라도 다시 재작동되므로 작업자로 하여금 통신신호의 발생원인을 확실하게 해결토록 유도할 수 있다.That is, when a switching signal is applied to the third switching transistor, the fourth switching transistor, the first switching transistor, and the second switching transistor in the control unit, the communication signal is automatically output by returning the power source again, It is possible to induce the operator to reliably solve the cause of the communication signal.
만약에 제어부에서 더이상 통신신호의 출력이 필요없다고 인정되면 제1 스위칭 트랜지스터 및 제2 스위칭 트랜지스터와, 제3 스위칭 트랜지스터 및 제4 스위칭 트랜지스터에 더이상 전원신호를 인가하지 않게 되므로 이때에는 수동 작동 스위치(1135)를 사용자가 조작하여 통신신호를 수동으로 차단시킬 수 있게 된다.If it is no longer necessary to output a communication signal, the control unit no longer applies a power supply signal to the first switching transistor, the second switching transistor, the third switching transistor, and the fourth switching transistor. ) Can be manually operated by a user to interrupt the communication signal.
한편, 컨트롤러(30)는 기판 형태로 이루어지며, 과열이 발생할 수 있는바, 본 발명은 컨트로러(30)의 주변에 요부 냉각수단(400)을 설치하며, 컨트롤러(30)에서 발생하는 열을 감지하여 필요한 부분을 냉각시킨다.In the present invention, the concave cooling means (400) is installed around the controller (30), and the heat generated in the controller (30) is supplied to the controller Detect and cool necessary parts.
이하에서 요부 냉각수단(400)을 보다 상세히 설명하기로 한다.Hereinafter, the recessed portion cooling means 400 will be described in more detail.
상기 요부 냉각수단(400)은 냉각패널(410)과, 열전소자(420)와, 방열패널(430)과, 방열 송풍팬(440)과, 냉각패널 및 열전소자 이송부(450)와, 온도 감지부(460)와, 제어부(470)로 이루어진다.The recessed portion cooling means 400 includes a cooling panel 410, a thermoelectric element 420, a heat dissipation panel 430, a heat dissipation fan 440, a cooling panel and a thermoelectric element transfer portion 450, (460), and a control unit (470).
상기 냉각패널(410)은 알루미늄 금속으로 이루어지며 과속 알림 전용 무선 단말기의 일단에 위치한다.The cooling panel 410 is made of aluminum metal and is located at one end of a speed-only announcement wireless terminal.
상기 열전소자(420)는 냉각패널의 하부에 부착되며 외부 전기공급에 따라 냉각패널에 냉각열을 전달하여 함체 내부를 급속냉각시키는 역할을 한다.The thermoelectric element 420 is attached to a lower portion of the cooling panel and transmits cooling heat to the cooling panel according to external electric power supply to rapidly cool the inside of the enclosure.
상기 방열패널(430)은 열전소자의 하부에 슬라이딩 결합되며 알루미늄재질로 이루어지고 열전소자의 작용에 의해서 발생된 열을 포집한다.The heat dissipation panel 430 is slidingly connected to the lower portion of the thermoelectric element and is made of aluminum and collects heat generated by the action of the thermoelectric elements.
상기 방열 송풍팬(440)은 방열패널에 부착되며 팬의 회전에 의해서 방열패널에서 발생되는 열을 빠른 속도로 외부로 전달시켜 방열패널을 식히는 역할을 한다.The heat-dissipating blower fan 440 attaches to the heat-dissipating panel and transfers the heat generated from the heat-dissipating panel to the outside through the rotation of the fan to cool the heat-dissipating panel.
상기 냉각패널 및 열전소자 이송부(450)는 냉각패널에 연결하되 스크류로 연결하여 자체 회전에 의해서 냉각패널 및 열전소자를 필요한 지점으로 이송하여 그 부분을 급속 냉각시킨다.The cooling panel and the thermoelectric-element transferring unit 450 are connected to a cooling panel, which is connected with a screw. The cooling panel and the thermoelectric-element transferring unit 450 transfer the cooling panel and the thermoelectric element to a required point by self-
상기 온도감지부(460)는 일정간격으로 설치되어 온도가 기준이상 높은 부분이 있는가를 파악하여 정보를 전달한다.The temperature sensing unit 460 is installed at a predetermined interval to determine whether there is a temperature higher than a reference temperature and transmit the information.
상기 제어부(470)는 온도감지부의 정보 결과를 토대로 냉각패널 및 열전소자 이송부를 구동하여 좀더 냉각이 필요한 지점에 위치되어 그부분을 냉각시키도록 제어한다.The control unit 470 drives the cooling panel and the thermoelectric element transfer unit based on the information result of the temperature sensing unit, and controls the cooling unit and the thermoelectric element transfer unit so as to be located at the point where the cooling is required to cool the part.
제어부(470)는 온도감지부의 정보에 따라 필요 구간을 냉각시키는바, 구동모터(450b)를 작동하여 스크류(450a)를 회전시킴으로서 냉각패널(410) 및 열전소자(420)를 필요한 지점으로 이송시킨다.The control unit 470 cools the required section according to the information of the temperature sensing unit and drives the driving motor 450b to rotate the screw 450a to transfer the cooling panel 410 and the thermoelectric element 420 to a required point .
그러면 상기 냉각패널(410)과 열전소자(420)가 존재하는 부분은 냉각이 이루어져 과열로 인한 안전사고를 미연에 방지할 수 있게 된다.The cooling panel 410 and the portion where the thermoelectric element 420 is present are cooled, thereby preventing a safety accident due to overheating.
즉, 냉각패널(410)과 열전소자(420)가 위치한 부분에 냉각열이 전달되어 급속히 냉각되고, 열전소자(420)에서 발생되는 열은 방열패널(430)을 통해 이동하게 되며, 방열패널(430)에 부착된 방열 송풍팬(440)에 의해서 외부로 빠져나가게 되어 보다 더 강력하게 부분 냉각상태를 유지하게 된다.That is, the cooling heat is transferred to the portion where the cooling panel 410 and the thermoelectric element 420 are positioned and rapidly cooled. Heat generated from the thermoelectric element 420 is moved through the heat dissipation panel 430, The heat is dissipated to the outside by the heat-dissipating blower fan 440 attached to the heat exchanger 430 to maintain the partially cooled state more strongly.
상기에서 열전소자(420)가 방열패널을 보다 용이하게 슬라이딩 이동되도록하기 위해 방열패널(430)에 레일(430a)을 설치하는 것이 바람직하며, 이에 상응하여 열전소자(420)의 표면은 레일홈(420a)을 형성하여 상기 열전소자(420)가 레일(430a)을 타고 보다 자연스럽게 좌우 유동이 가능토록 구성할 수 있다. 물론, 레일(430a) 및 레일홈(420a)은 다수개를 형성할 수 있다. It is preferable to provide a rail 430a on the heat dissipation panel 430 so that the thermoelectric module 420 can slide the heat dissipation panel more easily. In this case, the surface of the thermoelectric module 420 corresponds to the rail groove So that the thermoelectric element 420 can flow more smoothly from side to side on the rail 430a. Of course, the rails 430a and the rail grooves 420a can form a plurality of pieces.
이상 본 발명의 다양한 실시예들에 대하여 설명하였으나, 지금까지 설명한 내용들은 본 발명의 바람직한 실시예들 중 그 일부를 예시한 정도에 불과하며, 아래에 첨부된 청구범위에 나타날 수 있는 것을 제외하고는 상술한 내용에 의해 제한되지 않는다. 따라서, 본 발명은 이와 동일한 기술분야에서 통상의 지식을 가진 자라면 이하의 청구범위에 기재된 범위 내에서 발명의 기술적 사상과 요지를 벗어나지 않으면서 균등물의 많은 변화, 수정 및 대체가 이루어질 수 있음을 이해하여야 할 것이다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art without departing from the scope and spirit of the invention as disclosed in the accompanying claims. And are not limited by the above description. Accordingly, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents. .

Claims (8)

  1. 개인 맞춤형 누진 다초점 렌즈의 양면 비구면 설계 방법으로서, As a bi-aspherical surface design method of a personalized progressive multifocal lens,
    개인별 매개변수(특징/습관)를 활용한 프리폼 설계를 적용하여 개인 맞춤형 누진 다초점 렌즈 제공하는 것;Providing personalized progressive multifocal lenses by applying preform designs using individual parameters (features / habits);
    CC(볼록면)/CV(오목면)에 양면 비구면 설계를 적용한 근시면과 난시면 비구면 설계를 통해 왜곡현상을 최소화하고 비점수차를 제어하며 착용자의 부적응 조건을 최소화하는 것,By minimizing distortion, controlling astigmatism, minimizing wearer 's maladjustment condition, it is possible to design aspheric surface with aspheric surface with CC (convex surface) / CV (concave surface)
    누진 다초점 렌즈 두께 최소화 설계를 적용하여 착용감 상승 및 미용효과 개선을 제공하는 것, 및 To provide improved comfort and cosmetic effects by applying a progressive multifocal lens thickness minimization design, and
    근용부에서 앞면인 CC(볼록면)와 뒷면인 CV(오목면)에 가입도(Di, 단위:디옵터)를 분할 적용하여 비점수차와 착용자의 부적응도를 각각 절감시키는 것 중 적어도 적어도 하나 이상을 포함하는 방법. At least one of at least one of reducing the astigmatism and the wearer's malalignment by dividing the joining degree (Di, unit: diopter) to the CC (convexity) on the front side and the CV (concave side) Methods of inclusion.
  2. 개인 맞춤형 누진 다초점 렌즈의 양면 비구면 제조 방법으로서, As a method for producing a bi-aspherical surface of a personalized progressive multifocal lens,
    블랭크 제품(반제품)의 앞면인 CC(볼록면)을 비구면으로 설계하고, 프리폼 가공 방식으로 렌즈의 내면에 비구면 설계를 적용하는 방법.A method of designing aspherical surface CC (convex surface) which is the front surface of blank product (semi-finished product) and applying aspherical surface design to the inner surface of lens by preform working method.
  3. 개인 맞춤형 누진 다초점 렌즈의 양면 비구면 제조 방법으로서, As a method for producing a bi-aspherical surface of a personalized progressive multifocal lens,
    블랭크 제품(반제품) 또는 블랭크 제품(완제품)의 양쪽 면, 즉 전면인 CC(볼록면)/후면인 CV(오목면)을 비구면으로 제작하는 설계를 적용하는 방법. A method of applying aspheric design on both sides of a blank (semi-finished) or blank (finished product), ie CC (convex side) / back side CV (concave side).
  4. 안경렌즈의 피(被)가공 렌즈면의 평균곡률을 산출하고, 평균곡률에 대응하여 나선간격이 XY투영면 위에서 렌즈 바깥 둘레로부터 중심으로 향함에 따라서 연속적으로 증가하는 나선모양 가공궤적을 산출하는 계산기 단말(28)과;A calculator terminal for calculating an average curvature of the lens surface to be machined of the spectacle lens and calculating a spiral machining locus that continuously increases in accordance with the average curvature from the lens outer circumference to the center on the XY projection surface, (28);
    상기 계산기 단말로부터 데이터를 전송받아 피가공 렌즈면을 나선모양으로 절삭가공하는 절삭수단(27)과;A cutting means (27) for receiving data from the computer terminal and cutting the surface of the lens to be processed into a spiral shape;
    상기 절삭수단이 상기 피가공 렌즈면을 상기 나선모양 가공궤적에 따라서 절삭하도록 상기 절삭수단을 제어하는 제어부(32)와; A control unit (32) for controlling the cutting means so that the cutting means cuts the surface of the lens to be processed along the spiral processing locus;
    상기 절삭수단의 일단에 설치되어 먼지를 측정하는 먼지 측정수단(2000)과; Dust measuring means 2000 installed at one end of the cutting means for measuring dust;
    상기 먼지 측정수단에 의해서 먼지가 기준이상 검출되면 알림신호를 외부로 출력하는 통신신호 자동 출력부(1000)를 포함하여 구성함을 특징으로 하는 양면 비구면 렌즈 제조장치.And a communication signal automatic output unit (1000) for outputting a notification signal to the outside when dust is detected by the dust measuring unit.
  5. 제 4항에 있어서,5. The method of claim 4,
    상기 먼지 측정수단(2000)은,The dust measuring means (2000)
    적외선을 방출하기 위한 적외선 송신수단(A)과, 상기 적외선 송신수단과 대향되도록 위치하며 상기 적외선 송신수단으로부터 방출된 빛을 수신하여 그 수신량의 정도에 따라 먼지유입을 판단하도록 하기 위한 적외선 수신수단(B)과, 상기 적외선 수신수단(B)의 출력전압이 설정된 값보다 작으면 상기 적외선 송신수단(A)의 입력전압이 증가되도록 제어하기 위한 먼지 측정 제어부(C)를 포함하는 구성하고; An infrared transmitting means (A) for emitting an infrared ray; an infrared ray receiving means for receiving the light emitted from the infrared ray transmitting means and determining the inflow of dust according to the degree of the receiving amount, (C) for controlling the input voltage of the infrared transmitting means (A) to increase when the output voltage of the infrared receiving means (B) is smaller than a set value;
    상기 적외선 송신수단(A)은,The infrared transmitting means (A)
    액추에이터(13)에 권취되어 소정거리 이격되게 장착되는 다수의 유동용 전자석(12a,12b,12c)과, 상기 유동용 전자석(12a,12b,12c)과 인접된 위치에 고정 설치되는 다수의 고정용 전자석(12d,12e,12f)로 이루어지는 적외선 송신기 변환수단(12)과; A plurality of moving electromagnets 12a, 12b and 12c which are wound around the actuator 13 so as to be spaced apart from each other by a predetermined distance and a plurality of stationary electromagnets fixedly installed at positions adjacent to the moving electromagnets 12a, 12b and 12c 12d, 12e, and 12f;
    상기 유동용 전자석((12a,12b,12c)과 고정용 전자석(12d,12e,12f)에 전류를 흘려 자성을 형성시키고 이 자성에 의해 유동용 전자석(12a,12b,12c)과 고정용 전자석(12d,12e,12f) 사이에 척력과 인력을 발생시켜 액추에이터(13)를 구동시키는 송신 제어부(11)와;12b and 12c and the fixing electromagnets 12d, 12e and 12f to form a magnetic property and the magnetic forces are applied to the moving electromagnets 12a, 12b and 12c and the fixing electromagnets 12d, 12e, and 12f, and drives the actuator 13;
    상기 액츄에이터의 하단에 설치되어 적외선 송신기를 전후로 유동시키는 적외선 송신기 유동수단(14)과;An infrared transmitter flow means (14) installed at the lower end of the actuator to flow the infrared transmitter back and forth;
    상기 적외선 송신기 유동수단에 설치되는 적외선 송신기의 출력을 변동시키기 위한 오목렌즈군(15)을 포함하여 이루어지며;And a concave lens group (15) for varying the output of an infrared transmitter installed in the infrared transmitter flow means;
    상기 적외선 송신기 유동수단(14)은,The infrared transmitter flow means (14)
    엑츄에이터(13)의 일측 외주연에 길이방향으로 다수 형성된 오목렌즈군(15)에 근접되어 적외선을 외부로 출력하는 적외선 송신용 소자(14a)와, 상기 적외선 송신용 소자(14a)를 유동시키기 위한 이동바(14b)와;An infrared ray transmission element 14a for outputting an infrared ray to the outside in proximity to the concave lens group 15 formed on the outer peripheral edge of one side of the actuator 13 in the longitudinal direction, A movement bar 14b;
    상기 이동바를 움직여서 적외선 송신용 소자를 좌우로 유동시키는 솔레노이드(14c)로 이루어지는 것을 특징으로 하는 양면 비구면 렌즈 제조장치.And a solenoid (14c) for moving the infrared transmitting element by moving the moving bar to the left and right.
  6. 제 5항에 있어서,6. The method of claim 5,
    상기 액츄에이터의 하단에는, 작동 민감도를 조절하기 위한 제1 내지 제3 끼움용 홀(16a)과, 상기 끼움용 홀에 삽입 설치되는 제1 내지 제3 무게조절핀(16b)을 포함하는 움직임 속도 조절수단(16)을 더 설치하여 이루어지는 것을 특징으로 하는 양면 비구면 렌즈 제조장치.A first through third fitting holes 16a for adjusting operational sensitivity and first through third weight adjusting pins 16b inserted into the fitting holes are provided at the lower end of the actuator, (16) is further provided on the surface of the aspheric surface.
  7. 제 5항에 있어서,6. The method of claim 5,
    상기 오목렌즈군(15)은,The concave lens group (15)
    중심부의 함몰 각도에 따라서 적외선 광의 출력 정도를 달리하도록 설계되며, 적외선 송신기 변환수단의 움직임 작동에 의해서 함몰 정도가 다른 렌즈가 선택되면서 다른 강도의 적외선 광을 출력할 수 있도록 구성되고, 작동봉의 가장 중심에 설치되며 함몰각도가 25도인 제3 오목렌즈(15c)와;A lens having different degrees of depression is selected by a movement operation of the infrared transmitter converting means so as to be capable of outputting infrared rays of different intensity, A third concave lens 15c provided at the concave lens 15 and having a concave angle of 25 degrees;
    적외선 광을 조금 줄여서 출력해야할 경우에 사용되고, 제3 오목렌즈(15c)의 윗쪽에 설치되며 함몰각도가 15도인 제 2 오목렌즈(15b)와;A second concave lens 15b provided on the third concave lens 15c and having a depression angle of 15 degrees;
    적외선 광을 더 많이 줄여서 출력해야할 경우에 사용되며 제 2 오목렌즈(15b)의 윗쪽에 설치되며 함몰각도가 5도인 제1 오목렌즈(15a)와;A first concave lens 15a provided on the second concave lens 15b and having a depression angle of 5 degrees, which is used when a further reduction in output of infrared light is required;
    적외선 광을 더 높여서 출력해야할 경우에 사용되고, 제3 오목렌즈(15c)의 아랫쪽에 설치되며 함몰각도가 35도인 제4 오목렌즈(15d)와;A fourth concave lens 15d, which is used when the infrared ray is to be outputted with higher light output, and which is provided below the third concave lens 15c and has a concave angle of 35 degrees;
    적외선 광을 더 많이 높여서 출력해야할 경우에 사용되고, 제4 오목렌즈(15d)의 아랫쪽에 설치되며 함몰각도가 45도인 제5 오목렌즈(15e)를 포함하여 이루어짐을 특징으로 하는 양면 비구면 렌즈 제조장치.And a fifth concave lens (15e), which is used when the infrared ray is to be outputted with a higher light output and which is provided below the fourth concave lens (15d) and has a concave angle of 45 degrees.
  8. 제 4항 내지 제 7항 중 어느 한 항에 따른 장치를 통해 양면 비구면 렌즈 제조하는 방법으로서, 8. A method of manufacturing a double-sided aspheric lens through an apparatus according to any one of claims 4 to 7,
    피가공 렌즈면의 표면형상으로부터 평균곡률을 산출하는 공정;Calculating an average curvature from the surface shape of the lens surface to be processed;
    상기 평균곡률에 대응하여 나선간격이 XY투영면 위에서 렌즈 바깥 둘레로부터 중심으로 향함에 따라서 연속적으로 증가하는 나선모양 가공궤적을 산출하는 공정;A step of calculating a spiral processing locus in which a spiral interval corresponding to the average curvature continuously increases from the outer periphery of the lens toward the center on the XY projection plane;
    안경렌즈의 피가공 렌즈면을 절삭수단에 의해서 나선모양으로 절삭가공하는 공정; 및 A step of cutting the lens surface of the spectacle lens into a spiral shape by cutting means; And
    절삭수단의 주변에 존재하는 먼지를 측정하여 기준이상이면 통신신호 자동 출력부를 통해 경보를 출력하는 공정을 포함하는 것을 특징으로 하는 양면 비구면 렌즈 제조방법. Measuring the dust present in the periphery of the cutting means, and outputting an alarm through the communication signal automatic output unit if the dust is present in the vicinity of the reference.
PCT/KR2018/015116 2018-01-05 2018-11-30 Method for designing and manufacturing double-sided aspherical surface of customized progressive multifocal lens, and device for manufacturing double-sided aspheric lens by using same WO2019135498A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0001918 2018-01-05
KR1020180001918A KR101879359B1 (en) 2018-01-05 2018-01-05 Multi-focussing lens and Manufacturing Method

Publications (1)

Publication Number Publication Date
WO2019135498A1 true WO2019135498A1 (en) 2019-07-11

Family

ID=63048846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015116 WO2019135498A1 (en) 2018-01-05 2018-11-30 Method for designing and manufacturing double-sided aspherical surface of customized progressive multifocal lens, and device for manufacturing double-sided aspheric lens by using same

Country Status (2)

Country Link
KR (1) KR101879359B1 (en)
WO (1) WO2019135498A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112987314A (en) * 2021-03-15 2021-06-18 维沃移动通信有限公司 Control method and device of intelligent glasses, intelligent glasses and electronic equipment
CN113189790A (en) * 2021-05-20 2021-07-30 维哲视光科技有限公司 Bat structure ring type multi-point micro-lens out-of-focus lens and design method thereof
WO2022118991A1 (en) * 2020-12-01 2022-06-09 한미스위스광학 주식회사 Customized bi-aspherical lens and manufacturing method therefor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101931164B1 (en) * 2018-07-18 2018-12-20 (주)지에스티 Cloud programming system of machine tool
KR101931162B1 (en) * 2018-07-18 2019-03-13 (주)지에스티 A Embedded System for Information Communition Technolgy
KR102059888B1 (en) * 2018-07-23 2019-12-27 (주)다울 Container type mushroom growing apparatus and method
KR101998197B1 (en) * 2018-09-20 2019-07-11 (주)효성에너지 Solar power generating system
WO2020071569A1 (en) * 2018-10-05 2020-04-09 주식회사 효일 Fitness care system using smart band
KR102222850B1 (en) * 2020-12-01 2021-03-04 한미스위스광학 주식회사 Personalized double-faced non-spherical lenses and manufacturing method thereof
CN117124217B (en) * 2023-10-25 2024-01-30 江苏宝昌特种合金科技有限公司 Surface treatment device for embedded branch pipe nozzle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080056752A (en) * 2005-12-22 2008-06-23 호야 가부시키가이샤 Lens surface cutting device, lens surface cutting method of spectacles, and lens of spectacles
KR20100068501A (en) * 2007-12-04 2010-06-23 호야 가부시키가이샤 Pair of progressive refractive power lens and method for designing same
KR100978799B1 (en) * 2001-04-27 2010-08-30 에씰로아 인터내셔날/콩파니에 제네랄 도프티크 Progressive addition lenses with prism power added to improve wearer comfort
KR20160087243A (en) * 2015-01-13 2016-07-21 임동일 Sanding Booth for low dust type

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2974441B2 (en) * 1991-04-15 1999-11-10 昭和アルミニウム株式会社 Equipment for manufacturing workpieces that require polishing, cleaning, drying and visual inspection
KR101396334B1 (en) 2007-09-20 2014-05-16 삼성전자주식회사 Digital image processing apparatus for inputting GPS information to image file and method of controlling digital image processing apparatus
KR100939167B1 (en) * 2008-03-14 2010-01-28 (재)한국섬유기계연구소 System for predicting life time of grinding roller of heddles polishing device
KR101738418B1 (en) * 2017-03-30 2017-05-22 주식회사 삼흥테크놀리지 Early safety alerting system for setting zero point with respect to the spindle positions of a dicing machine and the method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100978799B1 (en) * 2001-04-27 2010-08-30 에씰로아 인터내셔날/콩파니에 제네랄 도프티크 Progressive addition lenses with prism power added to improve wearer comfort
KR20080056752A (en) * 2005-12-22 2008-06-23 호야 가부시키가이샤 Lens surface cutting device, lens surface cutting method of spectacles, and lens of spectacles
KR20100068501A (en) * 2007-12-04 2010-06-23 호야 가부시키가이샤 Pair of progressive refractive power lens and method for designing same
KR20160087243A (en) * 2015-01-13 2016-07-21 임동일 Sanding Booth for low dust type

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIN, GIL HONG ET AL.: "That's Why the FreeForm Progressive Lens Is Succesful", THE KOREA OPTICAL NEWS, 16 December 2011 (2011-12-16), Retrieved from the Internet <URL:http://www.opticnews.co.kr/news/articleView.html?idxno=18577> [retrieved on 20190128] *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118991A1 (en) * 2020-12-01 2022-06-09 한미스위스광학 주식회사 Customized bi-aspherical lens and manufacturing method therefor
CN112987314A (en) * 2021-03-15 2021-06-18 维沃移动通信有限公司 Control method and device of intelligent glasses, intelligent glasses and electronic equipment
CN113189790A (en) * 2021-05-20 2021-07-30 维哲视光科技有限公司 Bat structure ring type multi-point micro-lens out-of-focus lens and design method thereof

Also Published As

Publication number Publication date
KR101879359B1 (en) 2018-07-17

Similar Documents

Publication Publication Date Title
WO2019135498A1 (en) Method for designing and manufacturing double-sided aspherical surface of customized progressive multifocal lens, and device for manufacturing double-sided aspheric lens by using same
US7934831B2 (en) Low inventory method of making eyeglasses
WO2017146510A2 (en) Aberration corrected optical system for near-eye displays
EP3360001A1 (en) Head mount display device
CN103472595B (en) Liquid crystal eyeglass and liquid crystal glass
KR101397253B1 (en) A layout setting apparatus for processing a spectacles lens and a cup adhering apparatus, a spectacles frame measuring apparatus and a spectacles lens processing apparatus having the layout setting apparatus
US11169397B2 (en) Manufacturing method of spectacle lens, spectacle lens manufacturing system, and spectacle lens
CN103472596A (en) Liquid crystal contact lens
WO2020022625A1 (en) Eyeglasses for providing variable focuses, to which attachable/detachable module is coupled
WO2015183032A1 (en) Eyeglass clip for correcting visual function
WO2021034096A1 (en) Optical apparatus for augmented reality with vision correction function
WO2024025055A1 (en) Vision training apparatus and vision training method
WO2010114306A2 (en) Device for measuring parameters for lens prescription
JPH05172545A (en) Spectacle-frame manufacturing system
EP4270096A1 (en) Semifinished lens
JP2002126984A (en) Optical center measuring method for spectacles lens, and method and device for installing lens holder of spectacles lens
WO2002032604A1 (en) Method and device for machining spectacle lens
WO2021199097A1 (en) Eyeglasses frame for head-mounted display device
JP2000199877A (en) Progressive multifocal lens and spectacles and their production
JPH05183838A (en) Spectacles type video display device
KR101814142B1 (en) Multi-focussing lense and Manufacturing Method
JP2022506983A (en) How to make at least one nose pad for eye tracking eyeglasses
CN217932309U (en) Eye wear
JP2849569B2 (en) Lens meter
WO2023214676A1 (en) Wearable electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18898469

Country of ref document: EP

Kind code of ref document: A1