WO2019135273A1 - Flight control system and flight plan creation method - Google Patents

Flight control system and flight plan creation method Download PDF

Info

Publication number
WO2019135273A1
WO2019135273A1 PCT/JP2018/000044 JP2018000044W WO2019135273A1 WO 2019135273 A1 WO2019135273 A1 WO 2019135273A1 JP 2018000044 W JP2018000044 W JP 2018000044W WO 2019135273 A1 WO2019135273 A1 WO 2019135273A1
Authority
WO
WIPO (PCT)
Prior art keywords
flight
information
power feeding
battery
feeding device
Prior art date
Application number
PCT/JP2018/000044
Other languages
French (fr)
Japanese (ja)
Inventor
和磨 沖段
博昭 谷川
大久保 典浩
靖 佐藤
森山 功
Original Assignee
中国電力株式会社
株式会社エネルギア・コミュニケーションズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社, 株式会社エネルギア・コミュニケーションズ filed Critical 中国電力株式会社
Priority to JP2018530180A priority Critical patent/JP6475899B1/en
Priority to PCT/JP2018/000044 priority patent/WO2019135273A1/en
Publication of WO2019135273A1 publication Critical patent/WO2019135273A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/37Charging when not in flight
    • B64U50/38Charging when not in flight by wireless transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/60UAVs specially adapted for particular uses or applications for transporting passengers; for transporting goods other than weapons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a flight control system and a flight planning method.
  • Unmanned air vehicles such as multicopter (drone) are expected to be applied to various fields such as aerial photography, transportation, surveying, collection of geographical information, environmental measurement, agriculture, and the like.
  • a battery for generating thrust and the like is used as the unmanned air vehicle.
  • Patent Document 2 describes a miniature flight system that precisely manages a miniature flight vehicle in flight.
  • Patent No. 6156605 gazette JP, 2017-77879, A
  • Patent Document 1 does not describe the creation of a flight plan for an unmanned air vehicle.
  • the miniature flight system of Patent Document 2 determines the next waypoint based on the remaining battery capacity and information on surrounding landing points. For this reason, in the small flight system of Patent Document 2, it is difficult to create an efficient flight plan beforehand at the time of departure.
  • An object of the present invention is to provide a flight control system and a flight plan creation method capable of solving the above problems and creating an efficient flight plan.
  • a flight control system includes an unmanned air vehicle having a battery, a power feeding device for supplying power to the unmanned air vehicle, flight object information on the unmanned air vehicle, battery information on the battery, and power feeding on the power supply device.
  • a flight management device that receives device information and manages the flight of the unmanned air vehicle; and a flight plan of the unmanned air vehicle based on the air vehicle information from the flight management device, the battery information, and the power feeding device information.
  • the flight plan creation device creates a flight path from a departure point to a destination via the power feeding device, and the first one is smaller than the maximum charge amount of the battery. Setting a charge amount and creating a flight plan in which the unmanned air vehicle resumes flight when the first charge amount is charged in the power feeding device .
  • the flight control system can reduce the time required from the departure point to the destination, and can create an efficient flight plan.
  • the first charge amount is a charge amount of the battery necessary for flight from the power feeding device to the destination. According to this, it is possible to fly the unmanned air vehicle from the power feeding device to the destination while shortening the charging time. Thus, the flight control system can create a safe and efficient flight plan.
  • a plurality of the power feeding devices are provided, and the flight plan creation device selects the power feeding device which can be reached by the first charge amount among the plurality of power feeding devices and the flight plan Decide. According to this, it is possible to reduce the number of times the battery of the unmanned aerial vehicle is charged to the maximum charge amount, and it is possible to extend the life of the battery. As a result, it is possible to reduce the performance of the battery during flight and maintenance such as battery replacement, and to create an efficient flight plan.
  • a flight control system includes: an unmanned air vehicle having a battery; a plurality of power feeding devices for supplying power to the unmanned air vehicle; airborne vehicle information about the unmanned air vehicle; battery information about the battery; A flight management device for receiving power supply device information relating to the flight control of the unmanned air vehicle, and based on the flight object information from the flight management device, the battery information, and the power supply device information; And a flight plan creation device for creating a flight plan, wherein the flight plan creation device creates a plurality of different flight paths passing from at least one of the plurality of power feeding devices from the origin to the destination. And the total time of flight time and charging time for each of the plurality of flight paths, based on the airframe information and the feeding device information. Is calculated, to create the flight plan on the basis of the total time is shorter the flight path.
  • a flight control system includes an unmanned air vehicle having a motor drive circuit for controlling the operation of a motor, a battery, a power feeding device for supplying power to the unmanned air vehicle, and air vehicle information on the unmanned air vehicle.
  • a flight management device for managing the flight of the unmanned aerial vehicle by receiving battery information on the battery and power feeding device information on the power feeding device, the airframe information from the flight management device, the battery information, and the power feeding device And a flight plan creation device for creating a flight plan of the unmanned air vehicle based on the information, the flight plan creation device creating a flight path from the departure place to the destination via the power feeding device.
  • the flight control system creates a flight plan in which the unmanned air vehicle stands by until the temperature of the motor drive circuit drops to an appropriate temperature, even when charging is completed in the power feeding device. Therefore, it is possible to suppress the decline in flight performance of the unmanned aerial vehicle and the occurrence of a failure, and as a result, to create an efficient flight plan.
  • the flight object information includes information on the motor drive circuit
  • the flight plan creation device is based on information on the motor drive circuit and information on flight conditions to the power feeding device.
  • the cooling time is calculated. According to this, when leaving the departure place, it is possible to predict in advance the waiting time (charging time and cooling time) of the unmanned air vehicle in the power feeding device. Therefore, it is possible to suppress the change of the flight path and the change of the arrival time during the flight.
  • the unmanned aerial vehicle has a power receiving coil which receives power by non-contact power feeding
  • the power feeding device has a power feeding coil which transmits power to the power receiving coil.
  • the battery of the unmanned air vehicle is charged by non-contact power feeding.
  • the feeding device it is not necessary to connect a power cable or the like to the unmanned air vehicle. Therefore, autonomous flight of the aircraft is possible according to the flight plan from the departure place to the destination.
  • a flight plan creation method relates to an unmanned air vehicle having a battery, a power feeding device for supplying power to the unmanned air vehicle, flight object information on the unmanned air vehicle, battery information on the battery, and the power feeding device.
  • a flight management device that receives power supply device information and manages the flight of the unmanned aerial vehicle; and flying the unmanned air vehicle based on the flight object information from the flight management device, the battery information, and the power supply device information
  • a method of creating a flight plan for a flight control system comprising: a flight plan creation device for creating a plan, wherein the flight plan creation device creates a flight path from a departure place to a destination via the power feeding device. And setting a first charge amount smaller than the maximum charge amount of the battery, and charging the first charge amount in the power feeding device. Having the steps of the unmanned air vehicle to create a resume flight plan to fly when.
  • the charge amount to the battery in the power feeding device is regulated to the first charge amount smaller than the maximum charge amount, the charge time can be shortened. Therefore, according to the flight plan creation method of the flight control system, it is possible to shorten the time required from the departure place to the destination, and it is possible to create an efficient flight plan.
  • a flight planning method comprising: an unmanned air vehicle having a battery; a plurality of power feeding devices for supplying power to the unmanned air vehicle; airframe information about the unmanned air vehicle; battery information about the battery; A flight management device for receiving power supply device information about the device and managing the flight of the unmanned aerial vehicle, and the unmanned air vehicle based on the flight object information from the flight management device, the battery information, and the power supply device information A flight plan creation device for creating a flight plan of the flight control system, wherein the flight plan creation device comprises at least one of the plurality of power feeding devices from a departure place to a destination.
  • Creating a plurality of different flight paths via a feeding device and based on the aircraft information and the feeding device information , For each of the plurality of the flight path, it calculates the total time of the flight time and the charging time, and a step of creating the flight plan on the basis of the total time is shorter the flight path.
  • a flight planning method comprising: an unmanned air vehicle having a motor drive circuit for controlling the operation of a motor; a battery; a power feeding device for supplying power to the unmanned air vehicle; A flight management device for managing the flight of the unmanned aerial vehicle by receiving information, battery information on the battery, and power feeding device information on the power feeding device; the airframe information from the flight management device, the battery information, and the power feeding; A flight plan creation method of a flight control system having a flight plan creation device for creating a flight plan of the unmanned air vehicle based on device information, wherein the flight plan creation device comprises Step of creating a flight path to the destination via the route, and feeding time of the feeding Creating a flight plan for causing the power feeding apparatus to wait until the cooling time elapses when the temperature of the motor drive circuit is shorter than the cooling time until the temperature falls below the predetermined temperature.
  • the flight plan creation device comprises Step of creating a flight path to the destination via the route, and feeding time of the feeding Creating a flight plan for causing the power feeding apparatus
  • the flight plan in which the unmanned air vehicle waits until the temperature of the motor drive circuit falls to a proper temperature even when the charging in the power feeding apparatus is completed. create. Therefore, it is possible to suppress the decline in flight performance of the unmanned aerial vehicle and the occurrence of a failure, and as a result, to create an efficient flight plan.
  • flight control system and flight plan creation method of the present invention it is possible to create an efficient flight plan.
  • FIG. 1 is a block diagram showing the configuration of the flight control system according to the first embodiment.
  • FIG. 2 is a perspective view of the flying object according to the first embodiment.
  • FIG. 3 is a block diagram showing the configuration of the flying object according to the first embodiment.
  • FIG. 4 is a block diagram showing the configuration of the power supply device according to the first embodiment.
  • FIG. 5 is a block diagram showing the configuration of the flight management device according to the first embodiment.
  • FIG. 6 is a block diagram showing the configuration of the flight plan creation device according to the first embodiment.
  • FIG. 7 is a block diagram showing a configuration of an information acquisition unit included in the flight plan creation device according to the first embodiment.
  • FIG. 8 is a flowchart of the flight plan creation method according to the first embodiment.
  • FIG. 1 is a block diagram showing the configuration of the flight control system according to the first embodiment.
  • FIG. 2 is a perspective view of the flying object according to the first embodiment.
  • FIG. 3 is a block diagram showing the configuration of the flying object
  • FIG. 9 is an explanatory view for explaining a flight plan according to the first embodiment.
  • FIG. 10 is a flowchart of a flight plan creation method according to the second embodiment.
  • FIG. 11 is an explanatory view for explaining a flight plan according to the second embodiment.
  • FIG. 12 is an explanatory diagram for explaining another example of the flight plan according to the second embodiment.
  • FIG. 13 is a flowchart of a flight plan creation method according to the third embodiment.
  • FIG. 14 is an explanatory view for explaining a flight plan according to the third embodiment.
  • FIG. 15 is a flowchart of a flight plan creation method according to the fourth embodiment.
  • FIG. 16 is an explanatory view for explaining a flight plan according to the fourth embodiment.
  • FIG. 1 is a block diagram showing the configuration of the flight control system according to the first embodiment.
  • the flight control system 1 includes a flying object 2, a power feeding device 3, a flight management device 4, and a flight plan creation device 5.
  • the airframe 2 is an unmanned airborne body that travels unmannedly and autonomously in accordance with a flight command Sh transmitted from the flight management device 4.
  • the flying object 2 is, for example, a multicopter, a helicopter, an airplane, a flying robot or the like.
  • the flying object 2 is used for various applications such as, for example, the transportation of luggage and aerial photography.
  • the aircraft 2 transmits to the flight management device 4 aircraft information Sa which is information on the aircraft 2.
  • the flying object 2 has a battery 251 (see FIGS. 2 and 3) for generating thrust and the like.
  • the flying object 2 transmits battery information Sb, which is information on the battery 251, to the flight management device 4.
  • the flying object 2 can also transmit the flying object information Sa and the battery information Sb during flight to the flight plan creation device 5.
  • the flight control system 1 has a plurality of flying objects 2-1,.
  • the plurality of airframes 2-1,..., 2-m respectively transmit airframe information Sa and battery information Sb to the flight management device 4.
  • flying object 2 when there is no need to distinguish between a plurality of flying objects 2-1,..., 2-m, they are simply referred to as flying object 2.
  • the power feeding device 3 supplies power to the flying object 2 by non-contact power feeding.
  • the non-contact power feeding system of the power feeding device 3 is, for example, a magnetic field resonance system (AC resonance system or DC resonance system).
  • AC resonance system or DC resonance system AC resonance system or DC resonance system
  • a plurality of power feeding devices 3-1,..., 3-n are provided.
  • the plurality of power feeding devices 3-1,..., 3-n transmit, to the flight management device 4, power feeding device information Sc which is information on the power feeding device 3, respectively.
  • the plurality of power feeding devices 3-1,..., 3-n can transmit the power feeding device information Sc to the flight plan creation device 5 while the flying body 2 is flying or charging.
  • the power feeding devices 3 are simply referred to.
  • the flight management device 4 transmits a flight command Sh to each of the plurality of flying objects 2-1,..., 2-m to manage the flight of the flying objects 2-1,.
  • the flight management device 4 is, for example, a PC (personal computer) or the like.
  • the flight management device 4 transmits the flight object information Sa, the battery information Sb, and the power feeding device information Sc to the flight plan creation device 5.
  • the flight management device 4 transmits flight performance information Sd, which is information about the past flight results of each of the aircraft 2, to the flight plan creation device 5.
  • the flight plan creation device 5 creates a flight plan of the flying body 2 based on the flying body information Sa from the flight management device 4, the battery information Sb, the power feeding device information Sc, the flight record information Sd, and the like. Also, the flight plan creation device 5 receives the meteorological observation information Se from the meteorological observation device 7. Further, the flight plan creation device 5 receives the weather prediction information Sf from the weather prediction system 71. The flight plan creation device 5 can also create a flight plan based on the meteorological observation information Se and the meteorological forecast information Sf. The weather observation device 7 and the weather prediction system 71 may be included in the flight control system 1 or may use an external weather information provision service. The flight plan creation device 5 transmits flight plan information Sg, which is information on a flight plan, to the flight management device 4. The flight management device 4 generates a flight command Sh based on the flight plan information Sg and transmits it to the aircraft 2.
  • FIG. 2 is a perspective view of the flying object according to the first embodiment.
  • FIG. 3 is a block diagram showing the configuration of the flying object according to the first embodiment.
  • the flying object 2 includes a pedestal 21, an arm 22, a leg 23, a flight control device 24, a power receiving device 25, a motor 26, a propeller 27, and a sensor group 28.
  • the pedestal portion 21 is a plate-like member, and a plurality of pedestal portions 21 are provided in the vertical direction (z direction).
  • the four arms 22 are provided on the pedestal portion 21 and radially extend when viewed from the z direction.
  • the leg portion 23 has a leg support 231 and a horizontal leg 232.
  • the leg support 231 extends downward from the pedestal 21 while extending in the ⁇ x direction.
  • the horizontal leg 232 is fixed to the lower end of the leg support 231 and extends in the y direction.
  • the flight control device 24 is provided on the pedestal 21.
  • the flight control device 24 is a control circuit that supplies control signals to the power receiving device 25 and the motor 26 to control the flight of the flying object 2.
  • the power receiving device 25 is provided below the pedestal portion 21.
  • the power reception device 25 includes a battery 251, a power reception control device 252, and a power reception coil 253.
  • a motor 26 and a propeller 27 are provided near the respective ends of the four arms 22.
  • the motor 26 is provided with the direction of the rotation axis directed in the vertical direction (z-axis direction).
  • a propeller 27 is attached to the rotation shaft of the motor 26.
  • An ESC (Electrical Speed Controller) 261 and a motor controller 262 (see FIG. 3) are connected to each motor 26.
  • the sensor group 28 is provided on the pedestal 21.
  • the sensor group 28 includes, for example, a three-axis gyro sensor (angular velocity sensor), a three-axis acceleration sensor, an air pressure sensor, a magnetic sensor, an ultrasonic sensor, a pressure sensor, and the like.
  • a load 110 of the flying object 2 is mounted below the pedestal 21.
  • the load 110 is disposed in a space surrounded by the lower portion of the pedestal 21 and the two leg struts 231.
  • the load 110 is, for example, a delivery when the aircraft 2 is used for collecting and delivering luggage, or, for example, a shooting equipment (camera, video camera, stabilizer, gimbal when the aircraft 2 is used for aerial imaging). , Vibration buffer etc.).
  • the configuration of the flying object 2 shown in FIG. 2 is merely an example, and can be changed as appropriate.
  • four arms 22 and four propellers 27 are provided, they may be two, three or five or more.
  • the receiving coil 253 is provided under the base part 21, it is not limited to this, What is necessary is just a position which can face the feed coil 313 (refer FIG. 4).
  • the flying object 2 further includes a communication unit 29, an ESC temperature sensor 281, and a GPS receiving unit 282.
  • the communication unit 29 includes a transmission / reception circuit that performs wireless communication with the flight management device 4 and the flight plan creation device 5. This wireless communication is performed, for example, using a 2.4 GHz band radio wave or the like.
  • the ESC temperature sensor 281 is a temperature sensor that detects the temperature of the ESC 261.
  • the GPS receiving unit 282 includes a receiving antenna, a receiving circuit, and the like that receive GPS signals in a GPS (Global Positioning System).
  • the flight control device 24 includes a control circuit 241 and a storage unit 242.
  • the control circuit 241 outputs a control signal to the power receiving device 25 and the motor control device 262 based on the flight command Sh from the flight management device 4 to control the flight of the flying object 2.
  • the control circuit 241 is, for example, a CPU (Central Processing Unit).
  • the storage unit 242 stores flight object information Sa related to the flight object 2, battery information Sb, flight plan information Sg required for flight, and the like.
  • the storage unit 242 is, for example, a read only memory (ROM), a random access memory (RAM), or the like.
  • the motor control device 262 outputs a drive signal to the ESC 261 based on the control signal from the control circuit 241.
  • the ESC 261 outputs a voltage signal to the motor 26 by magnitude control of electric resistance value or PWM (Pulse Width Modulation) control.
  • PWM Pulse Width Modulation
  • the ESC 261 controls the rotation of the motor 26.
  • the ESC 261 is a motor drive circuit that controls the operation of the motor 26.
  • the control circuit 241 controls the number of rotations of the plurality of motors 26 based on the information from the sensor group 28, the ESC temperature sensor 281, and the GPS receiving unit 282.
  • control circuit 241 controls the operation (attitude (pitch, roll, yaw), movement (forward, backward, left-right movement, up, down), etc.) of the flying object 2.
  • the motor 26 is an electric motor, for example, a brushless motor.
  • the control circuit 241 also has a function of performing wireless communication with the power feeding device 3 and performing authentication between the flying object 2 and the power feeding device 3.
  • the power reception device 25 includes a charge amount detection circuit 254 in addition to the battery 251, the power reception control device 252, and the power reception coil 253.
  • the power reception control device 252 is a circuit that controls charging of the battery 251 based on a control signal from the control circuit 241.
  • the battery 251 is, for example, a lithium polymer secondary battery, an electric double layer capacitor (electric double layer capacitor), a lithium ion secondary battery or the like.
  • the charge amount detection circuit 254 is a circuit that detects the charge amount based on the voltage between the terminals of the battery 251. In addition, the charge amount detection circuit 254 can also detect the remaining voltage capacity of the battery 251 based on the voltage between terminals of the battery 251.
  • the control circuit 241 calculates the power consumption of the battery 251 based on the information of the remaining voltage capacity.
  • the power receiving coil 253 is, for example, a spiral coil.
  • the receiving coil 253 is provided to face the feeding coil 313 (see FIG. 4) of the feeding device 3 when the flying object 2 lands on the feeding device 3.
  • the battery 251 is charged from the feeding device 3 by non-contact power feeding.
  • the power of the battery 251 is supplied to the control circuit 241 and the ESC 261.
  • FIG. 4 is a block diagram showing the configuration of the power supply device according to the first embodiment.
  • the power feeding device 3 includes a power feeding circuit 31, a power feeding control device 32, a storage unit 33, a timer 34, a flying object detection sensor 35, and a communication unit 39.
  • the power supply control device 32 is a circuit that controls the non-contact power supply from the power supply device 3 to the power reception device 25 by controlling the power supply circuit 31, the storage unit 33, the timer 34, the flying object detection sensor 35, the communication unit 39, and the like. .
  • the feed circuit 31 includes a feed coil 313, a power measurement circuit 312, and a power supply circuit 311.
  • the power supply circuit 311 includes, for example, an AC / DC converter and a regulator.
  • the power supply circuit 311 supplies, for example, power supplied from a commercial power supply or the like to the feed coil 313 via the power measurement circuit 312.
  • the power measurement circuit 312 measures the power supplied to the feed coil 313.
  • the power measurement circuit 312 includes, for example, a voltmeter and an ammeter.
  • the feeding coil 313 is, for example, a spiral coil, and supplies power to the receiving coil 253 contactlessly.
  • the storage unit 33 stores power supply device information Sc that is information related to the power supply device 3.
  • the storage unit 33 also stores feed conditions such as feed time and feed amount for the flying object 2 and conditions regarding past feed results.
  • the timer 34 measures the feeding time for the flying object 2, that is, the time from when the feeding circuit 31 starts feeding to when feeding is completed.
  • the flying object detection sensor 35 determines whether the flying object 2 exists at a fixed position of the power feeding device 3 (whether the power feeding region of the power feeding coil 313 and the power receiving region of the power receiving coil 253 face each other). Detect The flying object detection sensor 35 is configured using, for example, a photoelectric sensor, a pressure sensor, a distance measurement sensor, and the like.
  • the communication unit 39 includes a transmission / reception circuit that wirelessly communicates with the aircraft 2, the flight management device 4 and the flight plan creation device 5.
  • the power supply control device 32 transmits various information such as the power supply device information Sc to the flight management device 4 and the flight plan creation device 5 via the communication unit 39. Further, the power supply control device 32 receives the flying object information Sa and the battery information Sb from the flying object 2 via the communication unit 39, and authenticates the flying object 2.
  • FIG. 5 is a block diagram showing the configuration of the flight management device according to the first embodiment.
  • the flight management device 4 includes a control device 41, a storage unit 42, an input unit 43, an output unit 44, and a communication unit 45.
  • the input unit 43 is an interface that receives input of information and instructions from the user, and is, for example, a keyboard, a mouse, a touch panel, or the like. The user can input information such as the identification name of the flying object 2, the departure place of the flight path, the destination, etc. from the input unit 43 to the control device 41.
  • the output unit 44 is an interface that provides information to the user, and is, for example, a liquid crystal display (LCD), a light emitting diode (LED), a speaker, or the like.
  • the communication unit 45 includes a transmission / reception circuit that performs wireless communication with the flying object 2, the power feeding device 3, and the flight plan creating device 5.
  • the control device 41 controls the flight of one or more flight vehicles 2 based on various information.
  • the control device 41 is, for example, a CPU.
  • the control device 41 includes a flying object identification unit 411, a battery identification unit 412, an information acquisition unit 413, and a flight command output unit 414.
  • the information acquisition unit 413 acquires various types of information from the aircraft 2, the power feeding device 3, and the flight plan creation device 5.
  • the storage unit 42 stores various types of information acquired by the information acquisition unit 413 as a database.
  • the storage unit 42 includes an aircraft information database 421, a battery information database 422, a flight plan information database 423, a power feeding device information database 424, a weather information database 425, a flight results database 426, and the like.
  • the flying object identification unit 411 determines whether the flying object 2 is the flight object 2 to be managed. Identify Similarly, the battery identification unit 412 identifies whether the battery 251 is a battery 251 to be managed, based on the battery information Sb from the battery 251 and the flight plan information Sg from the flight plan creation device 5. .
  • the flight command output unit 414 transmits the flight plan information Sg as a flight command Sh to the flight object 2 to be managed.
  • FIG. 6 is a block diagram showing the configuration of the flight plan creation device according to the first embodiment.
  • FIG. 7 is a block diagram showing a configuration of an information acquisition unit included in the flight plan creation device according to the first embodiment.
  • the flight plan creation device 5 includes a control device 51, a storage unit 52, a communication unit 53, an input unit 54, and an output unit 55.
  • the input unit 54 is an interface that receives input of information and instructions from the user, and is, for example, a keyboard, a mouse, a touch panel, or the like. The user can input information regarding flight plan creation from the input unit 43 to the control device 51.
  • the output unit 55 is an interface for providing information to the user, and is, for example, a liquid crystal display (LCD), a light emitting diode (LED), a speaker, or the like.
  • the communication unit 53 includes a transmission / reception circuit that performs wireless communication with the flying object 2, the power feeding device 3 and the flight management device 4.
  • the control device 51 includes an information acquisition unit 511 and a flight plan creation unit 512.
  • the control device 51 is, for example, a CPU.
  • the information acquisition unit 511 acquires various types of information from the aircraft 2, the power feeding device 3, and the flight management device 4. As shown in FIG. 7, the information acquiring unit 511 includes an aircraft information acquiring unit 511A, a battery information acquiring unit 511B, a flight condition acquiring unit 511C, a power feeding device information acquiring unit 511D, a weather information acquiring unit 511E, and a flight results information acquiring unit. 511F and the like.
  • the airframe information acquisition unit 511A acquires information such as the airframe identification name, airframe specification information, mounted battery identification name, position information, flight speed, flight direction, flight time, ESC temperature, motor temperature, etc., as the airframe information Sa. Do.
  • the battery information acquisition unit 511B acquires information such as a battery identification name, battery specification information, remaining voltage capacity, output current value, and battery temperature as the battery information Sb.
  • the flight condition acquisition unit 511C acquires information such as the departure place, the destination, the load weight, the load capacity, the load shape, and the flight method.
  • the feeding device information acquisition unit 511D acquires information such as a feeding device identification name, an installation place, and feeding device specification information as the feeding device information Sc.
  • the weather information acquisition unit 511E acquires information such as the air temperature, the wind speed, and the wind direction as the weather observation information Se and the weather prediction information Sf.
  • the flight record information acquisition unit 511F acquires information such as a flight path, required time, power consumption, weather conditions, ESC temperature, motor temperature, battery temperature and the like as the flight record information Sd.
  • the storage unit 52 illustrated in FIG. 6 stores the information acquired by the information acquisition unit 511.
  • the storage unit 52 is, for example, a ROM, a RAM, a hard disk or the like.
  • the flight plan creation unit 512 is a circuit that creates a flight plan based on the various information acquired by the information acquisition unit 511.
  • the flight plan creation unit 512 includes a flight route creation unit 513, a flight time calculation unit 514, a charge time calculation unit 515, a flight distance calculation unit 516, a required time calculation unit 517, an ESC cooling time calculation unit 518, and a determination unit 519.
  • the flight plan creation unit 512 may be configured by an arithmetic circuit individually formed for each of the above functions. Alternatively, each function of the flight plan creation unit 512 may be formed by one semiconductor integrated circuit (IC: Integrated Circuit).
  • IC semiconductor integrated circuit
  • FIG. 8 is a flowchart of the flight plan creation method according to the first embodiment.
  • FIG. 9 is an explanatory view for explaining a flight plan according to the first embodiment.
  • the flight plan creation device 5 receives the information of the departure place P1 and the destination P2 (see FIG. 9) from the flight management device 4 (step ST11).
  • the information on the departure point P1 and the destination P2 is the respective position information.
  • the flight plan creation device 5 starts to create a flight plan.
  • the flight plan creation device 5 further acquires various types of information such as the aircraft information Sa, the battery information Sb, and the power supply device information Sc from the flight management device 4 (step ST12).
  • the flight distance calculation unit 516 calculates the distance that can be fly by one flight based on the flying object information Sa and the battery information Sb. In other words, the flight distance calculation unit 516 calculates the flightable distance without charging the battery 251 by the power feeding device 3. Determination unit 519 determines whether or not flight object 2 can not reach destination P2 in one flight, based on the information of departure place P1 and destination P2 and the information from flight distance calculation unit 516. (Step ST13).
  • the determining unit 519 determines that the flying object 2 does not need to pass through the power feeding device 3 (see FIG. 9). Do.
  • the flight path creation unit 513 and the flight time calculation unit 514 create a flight plan from the departure place P1 to the destination P2 (step ST14).
  • the flight plan in step ST14 includes the flight path from the departure place P1 to the destination P2 not via the power feeding device 3 and the flight time required from the departure place P1 to the destination P2.
  • the flight plan creation device 5 transmits flight plan information Sg to the flight management device 4 (step ST18). Thereby, the flying body 2 flies according to the flight plan by the flight command Sh based on the flight plan information Sg.
  • the determining unit 519 determines that the flying object 2 needs to pass through the power feeding device 3 (see FIG. 9). Do. Then, the flight path creation unit 513 creates the first flight path FP1, and the flight distance calculation unit 516 calculates the flight distance of the second partial flight path FP1-2 from the feeding device 3 to the destination P2 (step ST15). Specifically, the flight path creation unit 513 creates a first flight path FP1 that reaches the destination P2 from the departure point P1 shown in FIG. 9 via the power feeding device 3.
  • the first flight path FP1 includes a first partial flight path FP1-1 and a second partial flight path FP1-2.
  • the first partial flight path FP1-1 is a flight path from the departure point P1 to the feeding device 3.
  • the second partial flight path FP1-2 is a flight path from the feeding device 3 to the destination P2. Then, the flight distance calculation unit 516 calculates the flight distance of the first partial flight path FP1-1 and the flight distance of the second partial flight path FP1-2.
  • the charge time calculation unit 515 calculates the necessary charge amount of the battery 251 necessary for the flight of the second partial flight path FP1-2 (step ST16).
  • the charge time calculation unit 515 can calculate the required charge amount based on the flight information Sa, the battery information Sb, and the flight distance of the second partial flight path FP1-2. In this case, the required charge of the battery 251 is smaller than the maximum charge.
  • the charging time calculation unit 515 calculates the charging time in the power feeding device 3 based on the necessary charge amount of the battery 251 and the power feeding device information Sc.
  • the flight plan creating unit 512 receives the required amount of charge from the power feeding device 3 based on the first flight path FP1 created by the flight route creating unit 513 and the charge time calculated by the charge time calculation unit 515.
  • a flight plan for resuming flight to the destination P2 is created (step ST17).
  • the flight plan in step ST17 includes a first flight path FP1 from the departure place P1 to the destination P2 via the power feeding device 3 and a time required from the departure place P1 to the destination P2.
  • the required time is the total time required for the flight from the departure point P1 to the destination P2, and includes the flight time required for the first flight path FP1 and the charging time of the power feeding device 3.
  • the required time calculation unit 517 calculates the required time.
  • the flight plan creation device 5 transmits flight plan information Sg to the flight management device 4 (step ST18).
  • the flight control system 1 includes the flying object 2 (unmanned flying object) having the battery 251, the power feeding device 3 for supplying power to the flying object 2, the flight information Sa about the flying object 2, and the battery A flight management apparatus 4 that receives battery information Sb related to 251 and power supply apparatus information Sc related to the power supply apparatus 3 and manages the flight of the flying object 2, flight object information Sa from the flight management apparatus 4, battery information Sb and power supply apparatus information And a flight plan creation device 5 that creates a flight plan of the flying object 2 based on Sc.
  • the flight plan creating device 5 creates a first flight path FP1 from the place of departure P1 to the destination P2 via the power feeding device 3, sets a first charge amount smaller than the maximum charge amount of the battery 251, and feeds the power. Create a flight plan in which the aircraft 2 resumes flight when the first charge amount is charged in the device 3.
  • the first charge amount is a charge amount of the battery 251 necessary for the flight from the power feeding device 3 to the destination P2.
  • the charge amount to the battery 251 in the power feeding device 3 is regulated to the necessary charge amount (first charge amount) smaller than the maximum charge amount, the charging time in the power feeding device 3 is shortened. Can. Further, in the power feeding device 3, the necessary charge amount necessary for the flight from the power feeding device 3 to the destination P2 is charged. Therefore, it is possible to fly the flying object 2 from the power feeding device 3 to the destination P2 while shortening the charging time. Therefore, the flight control system 1 can shorten the time required from the departure point P1 to the destination P2, and can create a safe and efficient flight plan.
  • the flying object 2 has a power receiving coil 253 that receives power by non-contact power feeding
  • the power feeding device 3 has a power feeding coil 313 that transmits power to the power receiving coil 253.
  • the battery 251 of the flying object 2 is charged by non-contact power feeding.
  • connection of a power cable or the like to the flying object 2 is unnecessary. Therefore, autonomous flight of the airframe 2 is possible according to the flight plan from the departure place P1 to the destination P2.
  • FIG. 10 is a flowchart of a flight plan creation method according to the second embodiment.
  • FIG. 11 is an explanatory view for explaining a flight plan according to the second embodiment.
  • FIG. 12 is an explanatory diagram for explaining another example of the flight plan according to the second embodiment. Steps ST21 to ST24 shown in FIG. 10 are the same as steps ST11 to ST14 shown in FIG. 8, and the detailed description will be omitted.
  • the determining unit 519 determines that the flying object 2 needs to pass through the power feeding device 3.
  • the flight path creation unit 513 determines whether there are a plurality of power feeding devices 3 available between the starting point P1 and the destination P2 based on the information of the starting point P1 and the destination P2 and the power feeding device information Sc. It judges (step ST25).
  • the flight path creation unit 513 creates a flight path passing through one available power feeding device 3.
  • the flight plan creation unit 512 creates a flight plan passing through the power feeding device 3 based on the flight path created by the flight path creation unit 513 and the charging time calculated by the charging time calculation unit 515 (step ST26). Then, the flight plan creation device 5 transmits flight plan information Sg to the flight management device 4 (step ST30).
  • the flight path creation unit 513 creates a flight path for each of the plurality of available power feeding devices 3 (step ST27).
  • the flight path creation unit 513 creates a second flight path FP2 (see FIG. 11) and a third flight path FP3 (see FIG. 12).
  • the second flight path FP2 is a flight path from the departure point P1 to the destination P2 via the first power feeding device 3-1.
  • the third flight path FP3 is a flight path from the departure point P1 to the destination P2 via the second power feeding device 3-2.
  • the required time calculation unit 517 calculates the required time from the information on the flight time and the charging time for each of the second flight path FP2 and the third flight path FP3 (step ST28). Specifically, the flight distance calculation unit 516 calculates the flight distance of the second flight path FP2 and the flight distance of the third flight path FP3. The flight time calculation unit 514 calculates the flight time for each of the second flight path FP2 and the third flight path FP3 based on the flight distance information and the aircraft information Sa.
  • the flight time on the first partial flight path FP2-1 is 10 minutes
  • the flight time on the second partial flight path FP2-2 is 20 minutes. That is, the flight time of the second flight path FP2 is 30 minutes in total.
  • the flight time on the first partial flight path FP3-1 is 20 minutes
  • the flight time on the second partial flight path FP3-2 is 10 minutes. That is, the flight time of the third flight path FP3 is also 30 minutes in total.
  • the charging time calculation unit 515 is a first power feeding device based on the information of the flight distance of the second partial flight path FP2-2, the information of the flight distance of the second partial flight path FP3-2, and the feeding device information Sc.
  • Each charging time of 3-1 and the 2nd electric power feeder 3-2 is calculated.
  • the charging time in the first power feeding device 3-1 is 10 minutes.
  • the charging time in the second power feeding device 3-2 is 5 minutes.
  • the flight distance of the second partial flight path FP3-2 shown in FIG. 12 is shorter than that of the second partial flight path FP2-2 shown in FIG. Therefore, the charging time in the second power feeding device 3-2 is shorter than the power feeding time in the first power feeding device 3-1.
  • the feeding device information Sc includes information on the feeding performance of each feeding device 3.
  • the first power feeding device 3-1 and the second power feeding device 3-2 may have power feeding performances different from each other.
  • the first power feeding device 3-1 and the second power feeding device 3-2 charge the same amount of charge of the battery 251 in different charging times.
  • the required time calculation unit 517 calculates the required time which is the total of the flight time (30 minutes) and the charging time (10 minutes) on the second flight path FP2.
  • the duration of the second flight path FP2 is 40 minutes.
  • the required time calculation unit 517 calculates the required time which is the sum of the flight time (30 minutes) and the charging time (5 minutes) on the third flight path FP3.
  • the time required for the third flight path FP3 is calculated to be 35 minutes.
  • the flight plan creation unit 512 creates a flight plan with the shortest required time (step ST29). Specifically, the determination unit 519 compares the required time of the second flight path FP2 with the required time of the third flight path FP3, and selects a flight path with the shortest required time. In the example shown in FIGS. 11 and 12, the required time of the third flight path FP3 is the shortest.
  • the flight plan creation unit 512 creates a flight plan based on the third flight path FP3 passing through the second power feeding device 3-2. Then, the flight plan creation device 5 transmits flight plan information Sg to the flight management device 4 (step ST30).
  • the flight control system 1 relates to the flying object 2 having the battery 251, the plurality of power feeding devices 3 for feeding power to the flying object 2, the flying object information Sa on the flying object 2, and the battery 251.
  • the flight management device 4 that receives the battery information Sb and the feeding device information Sc related to the feeding device 3 and manages the flight of the flying object 2, the flying object information Sa from the flight management device 4, the battery information Sb, and the feeding device information Sc
  • a flight plan creation device 5 for creating a flight plan of the flying object 2 on the basis thereof.
  • the flight plan creation device 5 has a plurality of different flight paths (the second flight path FP2 and the third flight path FP3) passing through at least one of the plurality of feeding devices 3 from the departure place P1 to the destination P2. Create and calculate the total time of flight time and charging time for each of a plurality of flight paths based on the flying object information Sa and the feeding device information Sc, and create as a flight plan based on the flight path whose total time is short .
  • the flight control system 1 can create an efficient flight plan by reducing the required time from the departure place P1 to the destination P2 including the flight time and the charging time.
  • FIG. 13 is a flowchart of a flight plan creation method according to the third embodiment.
  • FIG. 14 is an explanatory view for explaining a flight plan according to the third embodiment. Steps ST31 and ST32 shown in FIG. 13 are the same as steps ST11 and ST12 shown in FIG. 8, and the detailed description will be omitted.
  • a first charge amount smaller than the maximum charge amount of the battery 251 is set.
  • the first charge amount of each of the first power feeding device 3-1 and the second power feeding device 3-2 is set as a charge amount of 80% of the maximum charge amount.
  • the first charge amount is a set value input from the user to the flight management device 4 via the input unit 43 (see FIG. 5).
  • the information acquisition unit 511 (see FIG. 6) acquires information of the first charge amount as the battery information Sb or information regarding flight conditions.
  • the flight distance calculation unit 516 calculates the flight distance that can be fly with the first charge amount (step ST33).
  • the flight plan creating unit 512 selects the power feeding device 3 that can be reached by the first charge amount among the plurality of power feeding devices 3 and creates a flight plan (step ST34). In other words, the flight plan creation unit 512 creates a flight plan such that one flight distance is shorter than the flight distance that can be traveled with the first charge amount.
  • the flight path creation unit 513 reaches the destination P2 from the departure point P1 via the first power feeding device 3-1 and the second power feeding device 3-2.
  • the first partial flight path FP4-1, the second partial flight path FP4-2, and the third partial flight path FP4-3 are shorter than the flight distance that can be fly with the first charge amount.
  • the first partial flight path FP4-1 is a flight path from the departure point P1 to the first power feeding device 3-1.
  • the second partial flight path FP4-2 is a flight path from the first power feeding device 3-1 to the second power feeding device 3-2.
  • the third partial flight path FP4-3 is a flight path from the second power feeding device 3-2 to the destination P2.
  • the charge time calculation unit 515 calculates the charge time of the first power supply device 3-1 and the second power supply device 3-2 as the time when the first charge amount smaller than the maximum charge amount is charged.
  • the flight time calculation unit 514 calculates the flight times of the first partial flight path FP4-1, the second partial flight path FP4-2, and the third partial flight path FP4-3.
  • the required time calculation unit 517 calculates the required time required for the flight of the fourth flight path FP4 from the information on the charging time and the flight time. In this way, the flight plan creation unit 512 creates a flight plan that can fly with the first charge amount.
  • the flight plan creation device 5 transmits flight plan information Sg based on the flight plan capable of flying with the first charge amount to the flight management device 4 (step ST35).
  • the flight plan creation device 5 is a power feeding device capable of reaching the first charge amount among the plurality of power feeding devices 3. Select 3 to determine the flight plan. According to this, it is possible to reduce the number of times of charging the battery 251 of the flying object 2 to the maximum charge amount, and it is possible to extend the life of the battery 251. As a result, performance degradation of the battery 251 during flight, maintenance such as battery replacement can be reduced, and an efficient flight plan can be created.
  • the first charge amount is set to a charge amount of 80% of the maximum charge amount, the present invention is not limited to this. Depending on the position and the number of the available power supply devices 3, the first charge amount may be smaller than 80% of the maximum charge amount, and may be larger than 80%.
  • FIG. 15 is a flowchart of a flight plan creation method according to the fourth embodiment.
  • FIG. 16 is an explanatory view for explaining a flight plan according to the fourth embodiment. Steps ST41 and ST42 shown in FIG. 15 are the same as steps ST11 and ST12 shown in FIG. 8, and the detailed description will be omitted.
  • the flight path creation unit 513 creates a fifth flight path FP5 that reaches the destination P2 from the departure place P1 via the power feeding device 3 (step ST43).
  • the fifth flight path FP5 includes a first partial flight path FP5-1 and a second partial flight path FP5-2.
  • the first partial flight path FP5-1 is a flight path from the departure point P1 to the power feeding device 3.
  • the second partial flight path FP5-2 is a flight path from the feeding device 3 to the destination P2.
  • the charge time calculation unit 515 calculates the charge time based on the battery information Sb and the power feeding device information Sc. Further, the ESC cooling time calculation unit 518 calculates the ESC cooling time based on the information on the ESC temperature included in the flying object information Sa (step ST44).
  • the ESC cooling time is the time until the temperature of the ESC 261 (see FIG. 3) falls below a predetermined temperature after the flight vehicle 2 lands on the power feeding device 3 and the motor 26 stops.
  • the charging time may be the time required to charge the maximum charge of the battery 251, or may be the time required to charge the first charge smaller than the maximum charge.
  • the ESC cooling time calculation unit 518 of the flight plan creation device 5 calculates the cooling time based on the information on the flight conditions of the first partial flight path FP 5-1 in addition to the information on the ESC temperature.
  • the flight conditions of the first partial flight path FP5-1 include information such as the flight distance, flight speed, flight time, and the like of the flying object 2.
  • the flight conditions of the first partial flight path FP5-1 may further include weather conditions such as wind direction.
  • Determination unit 519 determines whether the ESC cooling time is longer than the charging time (step ST45). If the ESC cooling time is shorter than the charging time (No in step ST45), a flight plan is created based on the charging time (step ST49). That is, when the charging time in the power feeding device 3 has elapsed, a flight plan for resuming the flight from the power feeding device 3 to the destination P2 is created. In this case, since the ESC cooling time is shorter than the charging time, the temperature of the ESC 261 is cooled during charging by the power feeding device 3.
  • the required time calculation unit 517 calculates the required time so that the flying object 2 stands by until the ESC cooling time in the power feeding device 3 elapses (step ST 46). That is, even when the charging time in the power feeding device 3 has elapsed, the flight from the power feeding device 3 to the destination P2 is suspended, and standby is performed until the temperature of the ESC 261 is cooled.
  • the flight plan creation unit 512 creates a flight plan based on the fifth flight path FP5 and the ESC cooling time (step ST47). Then, the flight plan creation device 5 transmits the flight plan information Sg to the flight management device 4 (step ST48).
  • the flight control system 1 of the present embodiment includes the flying object 2 having the ESC 261 (motor drive circuit) for controlling the operation of the motor, the battery 251, and the power feeding device 3 for feeding the flying object 2
  • a flight management device 4 for managing the flight of the flying object 2 by receiving the flying object information Sa on the flying object 2, the battery information Sb on the battery 251, and the power feeding device information Sc on the power feeding device 3;
  • the flight plan creation device 5 creates the flight plan of the flying object 2 based on the body information Sa, the battery information Sb, and the power feeding device information Sc.
  • the flight plan creation device 5 creates a fifth flight path FP5 from the departure place P1 to the destination P2 via the power feeding device 3, and the power feeding time in the power feeding device 3 is ESC261 after the motor 26 is stopped. In the case where the temperature is shorter than the cooling time until the temperature drops below the predetermined temperature, a flight plan is created in which the power feeding device 3 waits until the cooling time elapses.
  • the flight control system 1 creates a flight plan in which the flying object 2 stands by until the temperature of the ESC 261 drops to an appropriate temperature, even when the charging by the power feeding device 3 is completed. Therefore, it is possible to suppress the deterioration of the flight performance of the flying object 2 and the occurrence of a failure, and as a result, create an efficient flight plan.
  • the flight plan creation device 5 calculates the cooling time based on the information on the ESC temperature and the information on the flight conditions from the departure point P1 to the power feeding device 3. Thereby, when the flight body 2 leaves the departure place P1, it is possible to predict in advance the waiting time (charging time and cooling time) of the flight body 2 in the power feeding device 3. Therefore, it is possible to suppress the change of the flight path and the change of the arrival time during the flight.
  • the flight plan creation methods of the above-described embodiments can be combined as appropriate.
  • the configuration of the flight management device 4 shown in FIG. 5 and the configuration of the flight plan creation device 5 shown in FIG. 6 are merely examples.
  • the flight management device 4 and the flight plan creation device 5 may omit some of the components shown in FIGS. 5 and 6, respectively.
  • the flight management device 4 and the flight plan creation device 5 may add another component to the configuration shown in FIGS. 5 and 6, respectively.
  • the various types of information of the information acquisition unit 511 illustrated in FIG. 7 are also merely examples, and some information may be omitted or other information may be added.
  • Flight Control System 2 Flight Vehicle 24 Flight Control Device 25 Power Receiving Device 251 Battery 252 Power Receiving Control Device 253 Receiving Coil 26
  • Motor 261 ESC 281 ESC temperature sensor 3 feeding device 31 feeding circuit 313 feeding coil 32 feeding control device 4 flight management device 5 flight plan creating device 7 weather observation device 71 weather forecasting system Sa flight object information Sb battery information Sc feeding device information Sd flight results information Se Weather observation information Sf Weather forecast information Sg Flight plan information Sh Flight command 110 Loaded material

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Navigation (AREA)
  • Selective Calling Equipment (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

A flight control system that has: an unmanned aircraft that has a battery; power supply devices that supply power to the unmanned aircraft; a flight management device that receives aircraft information about the unmanned aircraft, battery information about the battery, and power supply device information about the power supply devices and manages the flight of the unmanned aircraft; and a flight plan creation device that creates a flight plan for the unmanned aircraft on the basis of aircraft information, battery information, and power supply device information from the flight management device. The flight plan creation device creates a flight path that goes from a departure point to a destination point via power supply devices, establishes a first charge amount that is lower than the maximum charge amount of the battery, and creates the flight plan such that the unmanned aircraft resumes flight when charged to the first charge amount at a power supply device.

Description

飛行制御システム及び飛行計画作成方法Flight control system and flight planning method
 本発明は、飛行制御システム及び飛行計画作成方法に関する。 The present invention relates to a flight control system and a flight planning method.
 マルチコプタ(ドローン)等の無人飛行体は、空撮、輸送、測量、地理情報の収集、環境測定、農業等、様々な分野への応用が期待されている。無人飛行体は、推力等を発生するためのバッテリーが用いられる(例えば、特許文献1参照)。特許文献2には、飛行中の小型飛行体を的確に管理する小型飛行システムについて記載されている。 Unmanned air vehicles such as multicopter (drone) are expected to be applied to various fields such as aerial photography, transportation, surveying, collection of geographical information, environmental measurement, agriculture, and the like. As the unmanned air vehicle, a battery for generating thrust and the like is used (see, for example, Patent Document 1). Patent Document 2 describes a miniature flight system that precisely manages a miniature flight vehicle in flight.
特許第6156605号公報Patent No. 6156605 gazette 特開2017-77879号公報JP, 2017-77879, A
 無人飛行体は、出発地から目的地までの所要時間の短縮、バッテリーの消費電力の低減、モータ等の機器の発熱の抑制等を考慮して安全且つ効率的に飛行させる必要がある。特許文献1には、無人飛行体の飛行計画の作成について記載されていない。特許文献2の小型飛行システムは、出発地から目的地までの途中の中継地点に着陸すると、バッテリー残容量と、周囲の着陸地点の情報と、に基づいて次の中継地点を決定する。このため、特許文献2の小型飛行システムでは、出発の際にあらかじめ効率的な飛行計画を作成することは困難である。 The unmanned air vehicle needs to be made to fly safely and efficiently in consideration of shortening of the time required from the departure place to the destination, reduction of the power consumption of the battery, suppression of heat generation of devices such as a motor and the like. Patent Document 1 does not describe the creation of a flight plan for an unmanned air vehicle. When landing on the way point from the departure point to the destination point, the miniature flight system of Patent Document 2 determines the next waypoint based on the remaining battery capacity and information on surrounding landing points. For this reason, in the small flight system of Patent Document 2, it is difficult to create an efficient flight plan beforehand at the time of departure.
 本発明は、上記課題を解決して、効率的な飛行計画を作成することが可能な飛行制御システム及び飛行計画作成方法を提供することを目的とする。 An object of the present invention is to provide a flight control system and a flight plan creation method capable of solving the above problems and creating an efficient flight plan.
 本発明の一態様による飛行制御システムは、バッテリーを有する無人飛行体と、前記無人飛行体に給電する給電装置と、前記無人飛行体に関する飛行体情報、前記バッテリーに関するバッテリー情報及び前記給電装置に関する給電装置情報を受け取って、前記無人飛行体の飛行を管理する飛行管理装置と、前記飛行管理装置からの前記飛行体情報、前記バッテリー情報及び前記給電装置情報に基づいて、前記無人飛行体の飛行計画を作成する飛行計画作成装置とを有し、前記飛行計画作成装置は、出発地から前記給電装置を経由して目的地までの飛行経路を作成し、前記バッテリーの最大充電量よりも小さい第1充電量を設定し、前記給電装置において前記第1充電量が充電された場合に前記無人飛行体が飛行を再開する飛行計画を作成する。 A flight control system according to an aspect of the present invention includes an unmanned air vehicle having a battery, a power feeding device for supplying power to the unmanned air vehicle, flight object information on the unmanned air vehicle, battery information on the battery, and power feeding on the power supply device. A flight management device that receives device information and manages the flight of the unmanned air vehicle; and a flight plan of the unmanned air vehicle based on the air vehicle information from the flight management device, the battery information, and the power feeding device information. The flight plan creation device creates a flight path from a departure point to a destination via the power feeding device, and the first one is smaller than the maximum charge amount of the battery. Setting a charge amount and creating a flight plan in which the unmanned air vehicle resumes flight when the first charge amount is charged in the power feeding device .
 これによれば、給電装置でのバッテリーへの充電量が、最大充電量よりも小さい第1充電量に規制されるため、給電装置での充電時間を短縮することができる。したがって、飛行制御システムは、出発地から目的地までの所要時間を短縮でき、効率的な飛行計画を作成することが可能である。 According to this, since the charge amount to the battery in the power feeding device is regulated to the first charge amount smaller than the maximum charge amount, the charging time in the power feeding device can be shortened. Therefore, the flight control system can reduce the time required from the departure point to the destination, and can create an efficient flight plan.
 本発明の望ましい態様として、前記第1充電量は、前記給電装置から前記目的地までの飛行に必要な、前記バッテリーの充電量である。これによれば、充電時間を短縮しつつ、給電装置から目的地まで無人飛行体を飛行させることができる。したがって、飛行制御システムは、安全で且つ効率的な飛行計画を作成することが可能である。 As a desirable mode of the present invention, the first charge amount is a charge amount of the battery necessary for flight from the power feeding device to the destination. According to this, it is possible to fly the unmanned air vehicle from the power feeding device to the destination while shortening the charging time. Thus, the flight control system can create a safe and efficient flight plan.
 本発明の望ましい態様として、前記給電装置は複数設けられており、前記飛行計画作成装置は、複数の前記給電装置のうち前記第1充電量で到達可能な前記給電装置を選択して前記飛行計画を決定する。これによれば、無人飛行体のバッテリーを最大充電量まで充電する回数を少なくすることができ、バッテリーの長寿命化を図ることができる。この結果、飛行中のバッテリーの性能低下や、バッテリー交換等のメンテナンスを少なくでき、効率的な飛行計画を作成することができる。 As a desirable mode of the present invention, a plurality of the power feeding devices are provided, and the flight plan creation device selects the power feeding device which can be reached by the first charge amount among the plurality of power feeding devices and the flight plan Decide. According to this, it is possible to reduce the number of times the battery of the unmanned aerial vehicle is charged to the maximum charge amount, and it is possible to extend the life of the battery. As a result, it is possible to reduce the performance of the battery during flight and maintenance such as battery replacement, and to create an efficient flight plan.
 本発明の一態様による飛行制御システムは、バッテリーを有する無人飛行体と、前記無人飛行体に給電する複数の給電装置と、前記無人飛行体に関する飛行体情報、前記バッテリーに関するバッテリー情報及び前記給電装置に関する給電装置情報を受け取って、前記無人飛行体の飛行を管理する飛行管理装置と、前記飛行管理装置からの前記飛行体情報、前記バッテリー情報及び前記給電装置情報に基づいて、前記無人飛行体の飛行計画を作成する飛行計画作成装置とを有し、前記飛行計画作成装置は、出発地から目的地まで複数の前記給電装置のうち少なくとも1つの前記給電装置を経由する複数の異なる飛行経路を作成し、前記飛行体情報及び前記給電装置情報に基づいて、複数の前記飛行経路ごとに、飛行時間と充電時間との合計時間を算出し、前記合計時間が短い前記飛行経路に基づいて前記飛行計画を作成する。 A flight control system according to an aspect of the present invention includes: an unmanned air vehicle having a battery; a plurality of power feeding devices for supplying power to the unmanned air vehicle; airborne vehicle information about the unmanned air vehicle; battery information about the battery; A flight management device for receiving power supply device information relating to the flight control of the unmanned air vehicle, and based on the flight object information from the flight management device, the battery information, and the power supply device information; And a flight plan creation device for creating a flight plan, wherein the flight plan creation device creates a plurality of different flight paths passing from at least one of the plurality of power feeding devices from the origin to the destination. And the total time of flight time and charging time for each of the plurality of flight paths, based on the airframe information and the feeding device information. Is calculated, to create the flight plan on the basis of the total time is shorter the flight path.
 これによれば、出発地から目的地までの、飛行時間と充電時間とを含む所要時間を短縮して、効率的な飛行計画を作成することができる。 According to this, it is possible to create an efficient flight plan by reducing the time required from the departure point to the destination, including the flight time and the charging time.
 本発明の一態様による飛行制御システムは、モータの動作を制御するモータ駆動回路と、バッテリーとを有する無人飛行体と、前記無人飛行体に給電する給電装置と、前記無人飛行体に関する飛行体情報、前記バッテリーに関するバッテリー情報及び前記給電装置に関する給電装置情報を受け取って、前記無人飛行体の飛行を管理する飛行管理装置と、前記飛行管理装置からの前記飛行体情報、前記バッテリー情報及び前記給電装置情報に基づいて、前記無人飛行体の飛行計画を作成する飛行計画作成装置とを有し、前記飛行計画作成装置は、出発地から前記給電装置を経由して目的地までの飛行経路を作成し、前記給電装置での給電時間が、前記モータが停止してから、前記モータ駆動回路の温度が所定の温度以下に低下するまでの冷却時間よりも短い場合に、前記無人飛行体を前記冷却時間が経過するまで、前記給電装置に待機させる飛行計画を作成する。 A flight control system according to one aspect of the present invention includes an unmanned air vehicle having a motor drive circuit for controlling the operation of a motor, a battery, a power feeding device for supplying power to the unmanned air vehicle, and air vehicle information on the unmanned air vehicle. A flight management device for managing the flight of the unmanned aerial vehicle by receiving battery information on the battery and power feeding device information on the power feeding device, the airframe information from the flight management device, the battery information, and the power feeding device And a flight plan creation device for creating a flight plan of the unmanned air vehicle based on the information, the flight plan creation device creating a flight path from the departure place to the destination via the power feeding device. The cooling of the motor drive circuit until the temperature of the motor drive circuit falls below a predetermined temperature after the motor is stopped for the feeding time of the feeding device If shorter than during, the unmanned air vehicle until the cooling time has elapsed, creating a flight plan to wait to the power supply device.
 これによれば、飛行制御システムは、給電装置において充電が完了した場合であっても、モータ駆動回路の温度が適正な温度に低下するまで無人飛行体が待機する飛行計画を作成する。したがって、無人飛行体の飛行性能の低下や、故障の発生を抑制し、結果として効率的な飛行計画を作成することができる。 According to this, the flight control system creates a flight plan in which the unmanned air vehicle stands by until the temperature of the motor drive circuit drops to an appropriate temperature, even when charging is completed in the power feeding device. Therefore, it is possible to suppress the decline in flight performance of the unmanned aerial vehicle and the occurrence of a failure, and as a result, to create an efficient flight plan.
 本発明の望ましい態様として、前記飛行体情報は、前記モータ駆動回路に関する情報を含み、前記飛行計画作成装置は、前記モータ駆動回路に関する情報と、前記給電装置までの飛行条件に関する情報とに基づいて前記冷却時間を算出する。これによれば、出発地を出発する際に、あらかじめ給電装置での無人飛行体の待機時間(充電時間及び冷却時間)を予測できる。このため、飛行中での飛行経路の変更や到着時刻の変更を抑制することができる。 As a desirable mode of the present invention, the flight object information includes information on the motor drive circuit, and the flight plan creation device is based on information on the motor drive circuit and information on flight conditions to the power feeding device. The cooling time is calculated. According to this, when leaving the departure place, it is possible to predict in advance the waiting time (charging time and cooling time) of the unmanned air vehicle in the power feeding device. Therefore, it is possible to suppress the change of the flight path and the change of the arrival time during the flight.
 本発明の望ましい態様として、前記無人飛行体は、非接触給電により電力を受電する受電コイルを有し、前記給電装置は、前記受電コイルに電力を送電する給電コイルを有する。これによれば、給電装置において、無人飛行体のバッテリーは非接触給電により充電される。このため、給電装置において、無人飛行体への電力ケーブル等の接続が不要である。したがって、出発地から目的地まで、飛行計画にしたがって飛行体の自律飛行が可能である。 As a desirable mode of the present invention, the unmanned aerial vehicle has a power receiving coil which receives power by non-contact power feeding, and the power feeding device has a power feeding coil which transmits power to the power receiving coil. According to this, in the power feeding device, the battery of the unmanned air vehicle is charged by non-contact power feeding. For this reason, in the feeding device, it is not necessary to connect a power cable or the like to the unmanned air vehicle. Therefore, autonomous flight of the aircraft is possible according to the flight plan from the departure place to the destination.
 本発明の一態様による飛行計画作成方法は、バッテリーを有する無人飛行体と、前記無人飛行体に給電する給電装置と、前記無人飛行体に関する飛行体情報、前記バッテリーに関するバッテリー情報及び前記給電装置に関する給電装置情報を受け取って、前記無人飛行体の飛行を管理する飛行管理装置と、前記飛行管理装置からの前記飛行体情報、前記バッテリー情報及び前記給電装置情報に基づいて、前記無人飛行体の飛行計画を作成する飛行計画作成装置とを有する、飛行制御システムの飛行計画作成方法であって、前記飛行計画作成装置が、出発地から前記給電装置を経由して目的地までの飛行経路を作成するステップと、前記バッテリーの最大充電量よりも小さい第1充電量を設定し、前記給電装置において前記第1充電量が充電された場合に前記無人飛行体が飛行を再開する飛行計画を作成するステップと、を有する。 A flight plan creation method according to an aspect of the present invention relates to an unmanned air vehicle having a battery, a power feeding device for supplying power to the unmanned air vehicle, flight object information on the unmanned air vehicle, battery information on the battery, and the power feeding device. A flight management device that receives power supply device information and manages the flight of the unmanned aerial vehicle; and flying the unmanned air vehicle based on the flight object information from the flight management device, the battery information, and the power supply device information A method of creating a flight plan for a flight control system, comprising: a flight plan creation device for creating a plan, wherein the flight plan creation device creates a flight path from a departure place to a destination via the power feeding device. And setting a first charge amount smaller than the maximum charge amount of the battery, and charging the first charge amount in the power feeding device. Having the steps of the unmanned air vehicle to create a resume flight plan to fly when.
 これによれば、給電装置でのバッテリーへの充電量が、最大充電量よりも小さい第1充電量に規制されるため、充電時間を短縮することができる。したがって、飛行制御システムの飛行計画作成方法によれば、出発地から目的地までの所要時間を短縮でき、効率的な飛行計画を作成することが可能である。 According to this, since the charge amount to the battery in the power feeding device is regulated to the first charge amount smaller than the maximum charge amount, the charge time can be shortened. Therefore, according to the flight plan creation method of the flight control system, it is possible to shorten the time required from the departure place to the destination, and it is possible to create an efficient flight plan.
 本発明の一態様による飛行計画作成方法は、バッテリーを有する無人飛行体と、前記無人飛行体に給電する複数の給電装置と、前記無人飛行体に関する飛行体情報、前記バッテリーに関するバッテリー情報及び前記給電装置に関する給電装置情報を受け取って、前記無人飛行体の飛行を管理する飛行管理装置と、前記飛行管理装置からの前記飛行体情報、前記バッテリー情報及び前記給電装置情報に基づいて、前記無人飛行体の飛行計画を作成する飛行計画作成装置とを有する、飛行制御システムの飛行計画作成方法であって、前記飛行計画作成装置は、出発地から目的地まで複数の前記給電装置のうち少なくとも1つの前記給電装置を経由する複数の異なる飛行経路を作成するステップと、前記飛行体情報及び前記給電装置情報に基づいて、複数の前記飛行経路ごとに、飛行時間と充電時間との合計時間を算出し、前記合計時間が短い前記飛行経路に基づいて前記飛行計画を作成するステップとを有する。 According to one aspect of the present invention, there is provided a flight planning method comprising: an unmanned air vehicle having a battery; a plurality of power feeding devices for supplying power to the unmanned air vehicle; airframe information about the unmanned air vehicle; battery information about the battery; A flight management device for receiving power supply device information about the device and managing the flight of the unmanned aerial vehicle, and the unmanned air vehicle based on the flight object information from the flight management device, the battery information, and the power supply device information A flight plan creation device for creating a flight plan of the flight control system, wherein the flight plan creation device comprises at least one of the plurality of power feeding devices from a departure place to a destination. Creating a plurality of different flight paths via a feeding device; and based on the aircraft information and the feeding device information , For each of the plurality of the flight path, it calculates the total time of the flight time and the charging time, and a step of creating the flight plan on the basis of the total time is shorter the flight path.
 これによれば、出発地から目的地までの、飛行時間と充電時間とを含む所要時間を短縮して、効率的な飛行計画を作成することができる。 According to this, it is possible to create an efficient flight plan by reducing the time required from the departure point to the destination, including the flight time and the charging time.
 本発明の一態様による飛行計画作成方法は、モータの動作を制御するモータ駆動回路と、バッテリーとを有する無人飛行体と、前記無人飛行体に給電する給電装置と、前記無人飛行体に関する飛行体情報、前記バッテリーに関するバッテリー情報及び前記給電装置に関する給電装置情報を受け取って、前記無人飛行体の飛行を管理する飛行管理装置と、前記飛行管理装置からの前記飛行体情報、前記バッテリー情報及び前記給電装置情報に基づいて、前記無人飛行体の飛行計画を作成する飛行計画作成装置とを有する、飛行制御システムの飛行計画作成方法であって、前記飛行計画作成装置は、出発地から前記給電装置を経由して目的地までの飛行経路を作成するステップと、前記給電装置での給電時間が、前記モータが停止してから、前記モータ駆動回路の温度が所定の温度以下に低下するまでの冷却時間よりも短い場合に、前記無人飛行体を前記冷却時間が経過するまで、前記給電装置に待機させる飛行計画を作成するステップとを有する。 According to one aspect of the present invention, there is provided a flight planning method comprising: an unmanned air vehicle having a motor drive circuit for controlling the operation of a motor; a battery; a power feeding device for supplying power to the unmanned air vehicle; A flight management device for managing the flight of the unmanned aerial vehicle by receiving information, battery information on the battery, and power feeding device information on the power feeding device; the airframe information from the flight management device, the battery information, and the power feeding A flight plan creation method of a flight control system having a flight plan creation device for creating a flight plan of the unmanned air vehicle based on device information, wherein the flight plan creation device comprises Step of creating a flight path to the destination via the route, and feeding time of the feeding Creating a flight plan for causing the power feeding apparatus to wait until the cooling time elapses when the temperature of the motor drive circuit is shorter than the cooling time until the temperature falls below the predetermined temperature. Have.
 これによれば、飛行制御システムの飛行計画作成方法は、給電装置において充電が完了した場合であっても、モータ駆動回路の温度が適正な温度に低下するまで無人飛行体が待機する飛行計画を作成する。したがって、無人飛行体の飛行性能の低下や、故障の発生を抑制し、結果として効率的な飛行計画を作成することができる。 According to this, in the flight control method of the flight control system, the flight plan in which the unmanned air vehicle waits until the temperature of the motor drive circuit falls to a proper temperature even when the charging in the power feeding apparatus is completed. create. Therefore, it is possible to suppress the decline in flight performance of the unmanned aerial vehicle and the occurrence of a failure, and as a result, to create an efficient flight plan.
 本発明の飛行制御システム及び飛行計画作成方法によれば、効率的な飛行計画を作成することが可能である。 According to the flight control system and flight plan creation method of the present invention, it is possible to create an efficient flight plan.
図1は、第1実施形態に係る飛行制御システムの構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of the flight control system according to the first embodiment. 図2は、第1実施形態に係る飛行体の斜視図である。FIG. 2 is a perspective view of the flying object according to the first embodiment. 図3は、第1実施形態に係る飛行体の構成を示すブロック図である。FIG. 3 is a block diagram showing the configuration of the flying object according to the first embodiment. 図4は、第1実施形態に係る給電装置の構成を示すブロック図である。FIG. 4 is a block diagram showing the configuration of the power supply device according to the first embodiment. 図5は、第1実施形態に係る飛行管理装置の構成を示すブロック図である。FIG. 5 is a block diagram showing the configuration of the flight management device according to the first embodiment. 図6は、第1実施形態に係る飛行計画作成装置の構成を示すブロック図である。FIG. 6 is a block diagram showing the configuration of the flight plan creation device according to the first embodiment. 図7は、第1実施形態に係る飛行計画作成装置が有する情報取得部の構成を示すブロック図である。FIG. 7 is a block diagram showing a configuration of an information acquisition unit included in the flight plan creation device according to the first embodiment. 図8は、第1実施形態に係る飛行計画作成方法のフローチャートである。FIG. 8 is a flowchart of the flight plan creation method according to the first embodiment. 図9は、第1実施形態に係る飛行計画を説明するための説明図である。FIG. 9 is an explanatory view for explaining a flight plan according to the first embodiment. 図10は、第2実施形態に係る飛行計画作成方法のフローチャートである。FIG. 10 is a flowchart of a flight plan creation method according to the second embodiment. 図11は、第2実施形態に係る飛行計画を説明するための説明図である。FIG. 11 is an explanatory view for explaining a flight plan according to the second embodiment. 図12は、第2実施形態に係る飛行計画の他の例を説明するための説明図である。FIG. 12 is an explanatory diagram for explaining another example of the flight plan according to the second embodiment. 図13は、第3実施形態に係る飛行計画作成方法のフローチャートである。FIG. 13 is a flowchart of a flight plan creation method according to the third embodiment. 図14は、第3実施形態に係る飛行計画を説明するための説明図である。FIG. 14 is an explanatory view for explaining a flight plan according to the third embodiment. 図15は、第4実施形態に係る飛行計画作成方法のフローチャートである。FIG. 15 is a flowchart of a flight plan creation method according to the fourth embodiment. 図16は、第4実施形態に係る飛行計画を説明するための説明図である。FIG. 16 is an explanatory view for explaining a flight plan according to the fourth embodiment.
 以下、本発明に係る飛行制御システム及び飛行計画作成方法の実施形態について、図面を参照して詳細に説明する。なお、以下の実施形態によりこの発明が限定されるものではない。また、実施形態の構成要素には、発明の同一性を維持しつつ置換可能かつ置換自明なものが含まれる。また、実施形態に記載された方法、装置及び変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。 Hereinafter, embodiments of a flight control system and a flight plan creation method according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited by the following embodiments. Further, constituent elements of the embodiment include substitutable and substitutable ones while maintaining the identity of the invention. In addition, the methods, apparatuses and modifications described in the embodiments can be arbitrarily combined within the scope of one skilled in the art.
(第1実施形態)
 図1は、第1実施形態に係る飛行制御システムの構成を示すブロック図である。図1に示すように、飛行制御システム1は、飛行体2と、給電装置3と、飛行管理装置4と、飛行計画作成装置5と、を有する。
First Embodiment
FIG. 1 is a block diagram showing the configuration of the flight control system according to the first embodiment. As shown in FIG. 1, the flight control system 1 includes a flying object 2, a power feeding device 3, a flight management device 4, and a flight plan creation device 5.
 図1に示すように、飛行体2は、飛行管理装置4から送信された飛行指令Shにしたがって、無人で自律飛行する無人飛行体である。飛行体2は、例えば、マルチコプタ、ヘリコプタ、飛行機、飛行ロボット等である。飛行体2は、例えば、荷物の運搬や、空撮等、様々な用途に用いられる。飛行体2は、飛行体2に関する情報である飛行体情報Saを飛行管理装置4に送信する。また、飛行体2は、推力等を発生するためのバッテリー251(図2、図3参照)を有する。飛行体2は、バッテリー251に関する情報であるバッテリー情報Sbを飛行管理装置4に送信する。また、飛行体2は、飛行中の飛行体情報Sa及びバッテリー情報Sbを飛行計画作成装置5に送信することもできる。図1に示すように、飛行制御システム1は、複数の飛行体2-1、…、2-mを有する。複数の飛行体2-1、…、2-mは、それぞれ、飛行体情報Sa及びバッテリー情報Sbを飛行管理装置4に送信する。なお、以下の説明では、複数の飛行体2-1、…、2-mを区別して説明する必要がない場合には、単に飛行体2と表す。 As shown in FIG. 1, the airframe 2 is an unmanned airborne body that travels unmannedly and autonomously in accordance with a flight command Sh transmitted from the flight management device 4. The flying object 2 is, for example, a multicopter, a helicopter, an airplane, a flying robot or the like. The flying object 2 is used for various applications such as, for example, the transportation of luggage and aerial photography. The aircraft 2 transmits to the flight management device 4 aircraft information Sa which is information on the aircraft 2. Further, the flying object 2 has a battery 251 (see FIGS. 2 and 3) for generating thrust and the like. The flying object 2 transmits battery information Sb, which is information on the battery 251, to the flight management device 4. In addition, the flying object 2 can also transmit the flying object information Sa and the battery information Sb during flight to the flight plan creation device 5. As shown in FIG. 1, the flight control system 1 has a plurality of flying objects 2-1,. The plurality of airframes 2-1,..., 2-m respectively transmit airframe information Sa and battery information Sb to the flight management device 4. In the following description, when there is no need to distinguish between a plurality of flying objects 2-1,..., 2-m, they are simply referred to as flying object 2.
 給電装置3は、非接触給電により飛行体2に電力を供給する。給電装置3の非接触給電の方式は、例えば磁界共鳴方式(交流共鳴方式又は直流共鳴方式)である。なお、これに限定されず、給電装置3は、例えば、電磁誘導方式やマイクロ波方式等の他の非接触給電の方式により実現することも可能である。図1に示すように複数の給電装置3-1、…、3-nが設けられている。複数の給電装置3-1、…、3-nは、それぞれ給電装置3に関する情報である給電装置情報Scを飛行管理装置4に送信する。また、複数の給電装置3-1、…、3-nは、飛行体2の飛行中や充電中に、給電装置情報Scを飛行計画作成装置5に送信することもできる。なお、以下の説明では、複数の給電装置3-1、…、3-nを区別して説明する必要がない場合には、単に給電装置3と表す。 The power feeding device 3 supplies power to the flying object 2 by non-contact power feeding. The non-contact power feeding system of the power feeding device 3 is, for example, a magnetic field resonance system (AC resonance system or DC resonance system). In addition, it is not limited to this, For example, it is also possible to implement | achieve the electric power feeder 3 by the system of other non-contact electric power feeding, such as an electromagnetic induction system and a microwave system. As shown in FIG. 1, a plurality of power feeding devices 3-1,..., 3-n are provided. The plurality of power feeding devices 3-1,..., 3-n transmit, to the flight management device 4, power feeding device information Sc which is information on the power feeding device 3, respectively. Further, the plurality of power feeding devices 3-1,..., 3-n can transmit the power feeding device information Sc to the flight plan creation device 5 while the flying body 2 is flying or charging. In the following description, when it is not necessary to distinguish and describe the plurality of power feeding devices 3-1,..., 3-n, the power feeding devices 3 are simply referred to.
 飛行管理装置4は、複数の飛行体2-1、…、2-mに、それぞれ飛行指令Shを送信して、飛行体2-1、…、2-mの飛行を管理する。飛行管理装置4は、例えばPC(パーソナルコンピュータ)等である。飛行管理装置4は、飛行体情報Sa、バッテリー情報Sb及び給電装置情報Scを飛行計画作成装置5に送信する。また、飛行管理装置4は、過去の各飛行体2の飛行実績に関する情報である飛行実績情報Sdを飛行計画作成装置5に送信する。 The flight management device 4 transmits a flight command Sh to each of the plurality of flying objects 2-1,..., 2-m to manage the flight of the flying objects 2-1,. The flight management device 4 is, for example, a PC (personal computer) or the like. The flight management device 4 transmits the flight object information Sa, the battery information Sb, and the power feeding device information Sc to the flight plan creation device 5. In addition, the flight management device 4 transmits flight performance information Sd, which is information about the past flight results of each of the aircraft 2, to the flight plan creation device 5.
 飛行計画作成装置5は、飛行管理装置4からの飛行体情報Sa、バッテリー情報Sb、給電装置情報Sc及び飛行実績情報Sd等に基づいて、飛行体2の飛行計画を作成する。また、飛行計画作成装置5は、気象観測装置7から気象観測情報Seを受け取る。また、飛行計画作成装置5は、気象予測システム71から気象予測情報Sfを受け取る。飛行計画作成装置5は、気象観測情報Se及び気象予測情報Sfに基づいて飛行計画を作成することもできる。気象観測装置7及び気象予測システム71は、飛行制御システム1に含まれていてもよく、或いは、外部の気象情報提供サービスを利用することも可能である。飛行計画作成装置5は、飛行計画に関する情報である飛行計画情報Sgを飛行管理装置4に送信する。飛行管理装置4は、飛行計画情報Sgに基づいて飛行指令Shを生成し、飛行体2に送信する。 The flight plan creation device 5 creates a flight plan of the flying body 2 based on the flying body information Sa from the flight management device 4, the battery information Sb, the power feeding device information Sc, the flight record information Sd, and the like. Also, the flight plan creation device 5 receives the meteorological observation information Se from the meteorological observation device 7. Further, the flight plan creation device 5 receives the weather prediction information Sf from the weather prediction system 71. The flight plan creation device 5 can also create a flight plan based on the meteorological observation information Se and the meteorological forecast information Sf. The weather observation device 7 and the weather prediction system 71 may be included in the flight control system 1 or may use an external weather information provision service. The flight plan creation device 5 transmits flight plan information Sg, which is information on a flight plan, to the flight management device 4. The flight management device 4 generates a flight command Sh based on the flight plan information Sg and transmits it to the aircraft 2.
 次に、飛行体2、給電装置3、飛行管理装置4及び飛行計画作成装置5の詳細な構成について説明する。図2は、第1実施形態に係る飛行体の斜視図である。図3は、第1実施形態に係る飛行体の構成を示すブロック図である。 Next, detailed configurations of the flying object 2, the power feeding device 3, the flight management device 4, and the flight plan creation device 5 will be described. FIG. 2 is a perspective view of the flying object according to the first embodiment. FIG. 3 is a block diagram showing the configuration of the flying object according to the first embodiment.
 図2に示すように、飛行体2は、台座部21と、アーム22と、脚部23と、飛行制御装置24と、受電装置25と、モータ26と、プロペラ27と、センサ群28と、を含む。台座部21は、板状の部材であり、上下方向(z方向)に複数設けられている。アーム22は、台座部21に4つ設けられており、z方向から見たときに放射状に延出する。 As shown in FIG. 2, the flying object 2 includes a pedestal 21, an arm 22, a leg 23, a flight control device 24, a power receiving device 25, a motor 26, a propeller 27, and a sensor group 28. including. The pedestal portion 21 is a plate-like member, and a plurality of pedestal portions 21 are provided in the vertical direction (z direction). The four arms 22 are provided on the pedestal portion 21 and radially extend when viewed from the z direction.
 脚部23は、脚支柱231と、水平脚232とを有する。脚支柱231は、台座部21からそれぞれ±x方向に開脚しつつ下方に延出する。水平脚232は、脚支柱231の下端に固定されy方向に延出する。 The leg portion 23 has a leg support 231 and a horizontal leg 232. The leg support 231 extends downward from the pedestal 21 while extending in the ± x direction. The horizontal leg 232 is fixed to the lower end of the leg support 231 and extends in the y direction.
 飛行制御装置24は、台座部21の上に設けられている。飛行制御装置24は、受電装置25やモータ26に制御信号を供給して飛行体2の飛行を制御する制御回路である。また、受電装置25は、台座部21の下に設けられている。受電装置25は、バッテリー251、受電制御装置252及び受電コイル253を有する。 The flight control device 24 is provided on the pedestal 21. The flight control device 24 is a control circuit that supplies control signals to the power receiving device 25 and the motor 26 to control the flight of the flying object 2. Further, the power receiving device 25 is provided below the pedestal portion 21. The power reception device 25 includes a battery 251, a power reception control device 252, and a power reception coil 253.
 4つのアーム22の夫々の端部近傍には、モータ26及びプロペラ27が設けられている。モータ26は、その回転軸の方向を上下方向(z軸方向)に向けて設けられている。モータ26の回転軸にはプロペラ27が取り付けられている。なお、各モータ26には、ESC(Electrical Speed Controller)261及びモータ制御装置262(図3参照)が接続されている。 A motor 26 and a propeller 27 are provided near the respective ends of the four arms 22. The motor 26 is provided with the direction of the rotation axis directed in the vertical direction (z-axis direction). A propeller 27 is attached to the rotation shaft of the motor 26. An ESC (Electrical Speed Controller) 261 and a motor controller 262 (see FIG. 3) are connected to each motor 26.
 センサ群28は、台座部21の上に設けられている。センサ群28は、例えば、3軸ジャイロセンサ(角速度センサ)、3軸加速度センサ、気圧センサ、磁気センサ、超音波センサ、感圧センサ等を含む。 The sensor group 28 is provided on the pedestal 21. The sensor group 28 includes, for example, a three-axis gyro sensor (angular velocity sensor), a three-axis acceleration sensor, an air pressure sensor, a magnetic sensor, an ultrasonic sensor, a pressure sensor, and the like.
 図2に示すように、台座部21の下方には、飛行体2の積載物110が搭載されている。積載物110は、台座部21の下段と2本の脚支柱231とで囲まれる空間に配置される。積載物110は、例えば、飛行体2が荷物の集配に用いられる場合は集配物であり、また例えば、飛行体2が空撮目的で用いられる場合は撮影機材(カメラ、ビデオカメラ、スタビライザ、ジンバル、振動緩衝体等)である。 As shown in FIG. 2, a load 110 of the flying object 2 is mounted below the pedestal 21. The load 110 is disposed in a space surrounded by the lower portion of the pedestal 21 and the two leg struts 231. The load 110 is, for example, a delivery when the aircraft 2 is used for collecting and delivering luggage, or, for example, a shooting equipment (camera, video camera, stabilizer, gimbal when the aircraft 2 is used for aerial imaging). , Vibration buffer etc.).
 なお、図2に示す飛行体2の構成は、あくまで一例であり、適宜変更することができる。例えば、アーム22及びプロペラ27は、それぞれ4つ設けられているが、2つ、3つ又は5つ以上であってもよい。また、受電コイル253は台座部21の下に設けられているが、これに限定されず、給電コイル313(図4参照)と対面できる位置であればよい。 The configuration of the flying object 2 shown in FIG. 2 is merely an example, and can be changed as appropriate. For example, although four arms 22 and four propellers 27 are provided, they may be two, three or five or more. Moreover, although the receiving coil 253 is provided under the base part 21, it is not limited to this, What is necessary is just a position which can face the feed coil 313 (refer FIG. 4).
 図3に示すように、飛行体2は、更に通信部29と、ESC温度センサ281と、GPS受信部282とを含む。通信部29は、飛行管理装置4及び飛行計画作成装置5と無線通信を行う送受信回路を含む。この無線通信は、例えば、2.4GHz帯の電波等を用いて行われる。ESC温度センサ281は、ESC261の温度を検出する温度センサである。GPS受信部282は、GPS(Global Positioning System)におけるGPS信号を受信する受信アンテナ、受信回路等を含む。 As shown in FIG. 3, the flying object 2 further includes a communication unit 29, an ESC temperature sensor 281, and a GPS receiving unit 282. The communication unit 29 includes a transmission / reception circuit that performs wireless communication with the flight management device 4 and the flight plan creation device 5. This wireless communication is performed, for example, using a 2.4 GHz band radio wave or the like. The ESC temperature sensor 281 is a temperature sensor that detects the temperature of the ESC 261. The GPS receiving unit 282 includes a receiving antenna, a receiving circuit, and the like that receive GPS signals in a GPS (Global Positioning System).
 飛行制御装置24は、制御回路241と、記憶部242と、を含む。制御回路241は、飛行管理装置4からの飛行指令Shに基づいて、受電装置25及びモータ制御装置262に制御信号を出力して、飛行体2の飛行を制御する。制御回路241は、例えばCPU(Central Processing Unit)である。記憶部242は、飛行体2に関する飛行体情報Saや、バッテリー情報Sbや、飛行に必要な飛行計画情報Sg等を記憶する。記憶部242は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)等である。 The flight control device 24 includes a control circuit 241 and a storage unit 242. The control circuit 241 outputs a control signal to the power receiving device 25 and the motor control device 262 based on the flight command Sh from the flight management device 4 to control the flight of the flying object 2. The control circuit 241 is, for example, a CPU (Central Processing Unit). The storage unit 242 stores flight object information Sa related to the flight object 2, battery information Sb, flight plan information Sg required for flight, and the like. The storage unit 242 is, for example, a read only memory (ROM), a random access memory (RAM), or the like.
 モータ制御装置262は、制御回路241からの制御信号に基づいて、ESC261に駆動信号を出力する。ESC261は、電気抵抗値の大きさ制御やPWM(Pulse Width Modulation)制御によって、モータ26に電圧信号を出力する。これにより、ESC261は、モータ26の回転を制御する。ESC261は、モータ26の動作を制御するモータ駆動回路である。制御回路241は、センサ群28、ESC温度センサ281及びGPS受信部282からの情報に基づいて、複数のモータ26の回転数を制御する。これにより、制御回路241は、飛行体2の動作(姿勢(ピッチ、ロール、ヨー)、移動(前進、後退、左右移動、上昇、下降)等)を制御する。モータ26は、電動モータであり、例えば、ブラシレスモータである。また、制御回路241は、給電装置3と無線通信を行い、飛行体2と給電装置3との間の認証を行う機能も有する。 The motor control device 262 outputs a drive signal to the ESC 261 based on the control signal from the control circuit 241. The ESC 261 outputs a voltage signal to the motor 26 by magnitude control of electric resistance value or PWM (Pulse Width Modulation) control. Thus, the ESC 261 controls the rotation of the motor 26. The ESC 261 is a motor drive circuit that controls the operation of the motor 26. The control circuit 241 controls the number of rotations of the plurality of motors 26 based on the information from the sensor group 28, the ESC temperature sensor 281, and the GPS receiving unit 282. Thereby, the control circuit 241 controls the operation (attitude (pitch, roll, yaw), movement (forward, backward, left-right movement, up, down), etc.) of the flying object 2. The motor 26 is an electric motor, for example, a brushless motor. The control circuit 241 also has a function of performing wireless communication with the power feeding device 3 and performing authentication between the flying object 2 and the power feeding device 3.
 受電装置25は、バッテリー251、受電制御装置252及び受電コイル253に加え、充電量検出回路254を有する。受電制御装置252は、制御回路241からの制御信号に基づいて、バッテリー251への充電を制御する回路である。バッテリー251は、例えば、リチウムポリマー二次電池、電気二重層キャパシタ(電気二重層コンデンサ)、リチウムイオン二次電池等である。充電量検出回路254は、バッテリー251の端子間電圧に基づいて、充電量を検出する回路である。また、充電量検出回路254は、バッテリー251の端子間電圧に基づいて、バッテリー251の残電圧容量を検出することもできる。制御回路241は、残電圧容量の情報に基づいて、バッテリー251の消費電力を算出する。 The power reception device 25 includes a charge amount detection circuit 254 in addition to the battery 251, the power reception control device 252, and the power reception coil 253. The power reception control device 252 is a circuit that controls charging of the battery 251 based on a control signal from the control circuit 241. The battery 251 is, for example, a lithium polymer secondary battery, an electric double layer capacitor (electric double layer capacitor), a lithium ion secondary battery or the like. The charge amount detection circuit 254 is a circuit that detects the charge amount based on the voltage between the terminals of the battery 251. In addition, the charge amount detection circuit 254 can also detect the remaining voltage capacity of the battery 251 based on the voltage between terminals of the battery 251. The control circuit 241 calculates the power consumption of the battery 251 based on the information of the remaining voltage capacity.
 受電コイル253は、例えばスパイラル型のコイルである。受電コイル253は、飛行体2が給電装置3に着陸した場合に、給電装置3の給電コイル313(図4参照)と対面するように設けられる。受電コイル253と給電コイル313とが磁気結合することにより、給電装置3から非接触給電によりバッテリー251が充電される。バッテリー251の電力は、制御回路241及びESC261に供給される。 The power receiving coil 253 is, for example, a spiral coil. The receiving coil 253 is provided to face the feeding coil 313 (see FIG. 4) of the feeding device 3 when the flying object 2 lands on the feeding device 3. By magnetically coupling the power receiving coil 253 and the feeding coil 313, the battery 251 is charged from the feeding device 3 by non-contact power feeding. The power of the battery 251 is supplied to the control circuit 241 and the ESC 261.
 図4は、第1実施形態に係る給電装置の構成を示すブロック図である。図4に示すように給電装置3は、給電回路31と、給電制御装置32と、記憶部33と、タイマー34と、飛行体検知センサ35と、通信部39とを有する。給電制御装置32は、給電回路31、記憶部33、タイマー34、飛行体検知センサ35、通信部39等を制御して、給電装置3から受電装置25への非接触給電を制御する回路である。 FIG. 4 is a block diagram showing the configuration of the power supply device according to the first embodiment. As shown in FIG. 4, the power feeding device 3 includes a power feeding circuit 31, a power feeding control device 32, a storage unit 33, a timer 34, a flying object detection sensor 35, and a communication unit 39. The power supply control device 32 is a circuit that controls the non-contact power supply from the power supply device 3 to the power reception device 25 by controlling the power supply circuit 31, the storage unit 33, the timer 34, the flying object detection sensor 35, the communication unit 39, and the like. .
 給電回路31は、給電コイル313と、電力計測回路312と、電源回路311とを有する。電源回路311は、例えば、AC/DCコンバータやレギュレータを含む。電源回路311は、例えば、商用電源等から供給される電力を、電力計測回路312を介して給電コイル313に供給する。電力計測回路312は、給電コイル313に供給される電力を計測する。電力計測回路312は、例えば、電圧計や電流計等を含む。給電コイル313は、例えばスパイラル型コイルであり、受電コイル253に非接触で電力を供給する。 The feed circuit 31 includes a feed coil 313, a power measurement circuit 312, and a power supply circuit 311. The power supply circuit 311 includes, for example, an AC / DC converter and a regulator. The power supply circuit 311 supplies, for example, power supplied from a commercial power supply or the like to the feed coil 313 via the power measurement circuit 312. The power measurement circuit 312 measures the power supplied to the feed coil 313. The power measurement circuit 312 includes, for example, a voltmeter and an ammeter. The feeding coil 313 is, for example, a spiral coil, and supplies power to the receiving coil 253 contactlessly.
 記憶部33は、給電装置3に関する情報である給電装置情報Scを記憶する。また、記憶部33は、飛行体2に対する給電時間や給電量等の給電条件や、過去の給電実績に関する条件も記憶する。タイマー34は、飛行体2に対する給電時間、すなわち給電回路31が給電を開始してから、給電を完了するまでの時間を計測する。 The storage unit 33 stores power supply device information Sc that is information related to the power supply device 3. The storage unit 33 also stores feed conditions such as feed time and feed amount for the flying object 2 and conditions regarding past feed results. The timer 34 measures the feeding time for the flying object 2, that is, the time from when the feeding circuit 31 starts feeding to when feeding is completed.
 飛行体検知センサ35は、飛行体2が給電装置3の定位置に存在するか否か(給電コイル313の給電領域と受電コイル253の受電領域とが対面した状態になっているか否か)を検知する。飛行体検知センサ35は、例えば、光電式センサ、感圧センサ、測距センサ等を用いて構成される。 The flying object detection sensor 35 determines whether the flying object 2 exists at a fixed position of the power feeding device 3 (whether the power feeding region of the power feeding coil 313 and the power receiving region of the power receiving coil 253 face each other). Detect The flying object detection sensor 35 is configured using, for example, a photoelectric sensor, a pressure sensor, a distance measurement sensor, and the like.
 通信部39は、飛行体2、飛行管理装置4及び飛行計画作成装置5と無線通信を行う送受信回路を含む。給電制御装置32は、通信部39を介して、飛行管理装置4及び飛行計画作成装置5に給電装置情報Sc等の各種情報を送信する。また、給電制御装置32は、通信部39を介して、飛行体2から飛行体情報Sa、バッテリー情報Sbを受信して、飛行体2の認証を行う。 The communication unit 39 includes a transmission / reception circuit that wirelessly communicates with the aircraft 2, the flight management device 4 and the flight plan creation device 5. The power supply control device 32 transmits various information such as the power supply device information Sc to the flight management device 4 and the flight plan creation device 5 via the communication unit 39. Further, the power supply control device 32 receives the flying object information Sa and the battery information Sb from the flying object 2 via the communication unit 39, and authenticates the flying object 2.
 図5は、第1実施形態に係る飛行管理装置の構成を示すブロック図である。図5に示すように、飛行管理装置4は、制御装置41と、記憶部42と、入力部43と、出力部44と、通信部45とを有する。入力部43は、ユーザから情報や指示の入力を受け付けるインタフェースであり、例えば、キーボード、マウス、タッチパネル等である。ユーザは、飛行体2の識別名、飛行経路の出発地、目的地等の情報を入力部43から制御装置41に入力することができる。出力部44は、ユーザに情報を提供するインタフェースであり、例えば、液晶パネル(Liquid Crystal Display)、LED(Light Emitting Diode)、スピーカ等である。通信部45は、飛行体2、給電装置3及び飛行計画作成装置5と無線通信を行う送受信回路を含む。 FIG. 5 is a block diagram showing the configuration of the flight management device according to the first embodiment. As shown in FIG. 5, the flight management device 4 includes a control device 41, a storage unit 42, an input unit 43, an output unit 44, and a communication unit 45. The input unit 43 is an interface that receives input of information and instructions from the user, and is, for example, a keyboard, a mouse, a touch panel, or the like. The user can input information such as the identification name of the flying object 2, the departure place of the flight path, the destination, etc. from the input unit 43 to the control device 41. The output unit 44 is an interface that provides information to the user, and is, for example, a liquid crystal display (LCD), a light emitting diode (LED), a speaker, or the like. The communication unit 45 includes a transmission / reception circuit that performs wireless communication with the flying object 2, the power feeding device 3, and the flight plan creating device 5.
 制御装置41は、各種情報に基づいて1又は複数の飛行体2の飛行を制御する。制御装置41は、例えばCPUである。制御装置41は、飛行体識別部411と、バッテリー識別部412と、情報取得部413と、飛行指令出力部414と、を有する。 The control device 41 controls the flight of one or more flight vehicles 2 based on various information. The control device 41 is, for example, a CPU. The control device 41 includes a flying object identification unit 411, a battery identification unit 412, an information acquisition unit 413, and a flight command output unit 414.
 情報取得部413は、飛行体2、給電装置3及び飛行計画作成装置5から各種情報を取得する。記憶部42は、情報取得部413が取得した各種情報をデータベースとして記憶する。記憶部42は、飛行体情報データベース421、バッテリー情報データベース422、飛行計画情報データベース423、給電装置情報データベース424、気象情報データベース425及び飛行実績データベース426等を含む。 The information acquisition unit 413 acquires various types of information from the aircraft 2, the power feeding device 3, and the flight plan creation device 5. The storage unit 42 stores various types of information acquired by the information acquisition unit 413 as a database. The storage unit 42 includes an aircraft information database 421, a battery information database 422, a flight plan information database 423, a power feeding device information database 424, a weather information database 425, a flight results database 426, and the like.
 飛行体識別部411は、飛行体2からの飛行体情報Saと、飛行計画作成装置5からの飛行計画情報Sgとに基づいて、飛行体2が、管理対象の飛行体2であるかどうかを識別する。同様に、バッテリー識別部412は、バッテリー251からのバッテリー情報Sbと、飛行計画作成装置5からの飛行計画情報Sgとに基づいて、バッテリー251が、管理対象のバッテリー251であるかどうかを識別する。飛行指令出力部414は、管理対象の飛行体2に対して、飛行計画情報Sgを飛行指令Shとして送信する。 Based on the flying object information Sa from the flying object 2 and the flight plan information Sg from the flight planning device 5, the flying object identification unit 411 determines whether the flying object 2 is the flight object 2 to be managed. Identify Similarly, the battery identification unit 412 identifies whether the battery 251 is a battery 251 to be managed, based on the battery information Sb from the battery 251 and the flight plan information Sg from the flight plan creation device 5. . The flight command output unit 414 transmits the flight plan information Sg as a flight command Sh to the flight object 2 to be managed.
 図6は、第1実施形態に係る飛行計画作成装置の構成を示すブロック図である。図7は、第1実施形態に係る飛行計画作成装置が有する情報取得部の構成を示すブロック図である。図6に示すように、飛行計画作成装置5は、制御装置51と、記憶部52と、通信部53と、入力部54と、出力部55とを有する。 FIG. 6 is a block diagram showing the configuration of the flight plan creation device according to the first embodiment. FIG. 7 is a block diagram showing a configuration of an information acquisition unit included in the flight plan creation device according to the first embodiment. As shown in FIG. 6, the flight plan creation device 5 includes a control device 51, a storage unit 52, a communication unit 53, an input unit 54, and an output unit 55.
 入力部54は、ユーザから情報や指示の入力を受け付けるインタフェースであり、例えば、キーボード、マウス、タッチパネル等である。ユーザは、飛行計画作成に関する情報を入力部43から制御装置51に入力することができる。出力部55は、ユーザに情報を提供するインタフェースであり、例えば、液晶パネル(Liquid Crystal Display)、LED(Light Emitting Diode)、スピーカ等である。通信部53は、飛行体2、給電装置3及び飛行管理装置4と無線通信を行う送受信回路を含む。 The input unit 54 is an interface that receives input of information and instructions from the user, and is, for example, a keyboard, a mouse, a touch panel, or the like. The user can input information regarding flight plan creation from the input unit 43 to the control device 51. The output unit 55 is an interface for providing information to the user, and is, for example, a liquid crystal display (LCD), a light emitting diode (LED), a speaker, or the like. The communication unit 53 includes a transmission / reception circuit that performs wireless communication with the flying object 2, the power feeding device 3 and the flight management device 4.
 制御装置51は、情報取得部511と、飛行計画作成部512とを含む。制御装置51は、例えばCPUである。情報取得部511は、飛行体2、給電装置3及び飛行管理装置4から各種情報を取得する。図7に示すように、情報取得部511は、飛行体情報取得部511A、バッテリー情報取得部511B、飛行条件取得部511C、給電装置情報取得部511D、気象情報取得部511E及び飛行実績情報取得部511F等を含む。 The control device 51 includes an information acquisition unit 511 and a flight plan creation unit 512. The control device 51 is, for example, a CPU. The information acquisition unit 511 acquires various types of information from the aircraft 2, the power feeding device 3, and the flight management device 4. As shown in FIG. 7, the information acquiring unit 511 includes an aircraft information acquiring unit 511A, a battery information acquiring unit 511B, a flight condition acquiring unit 511C, a power feeding device information acquiring unit 511D, a weather information acquiring unit 511E, and a flight results information acquiring unit. 511F and the like.
 飛行体情報取得部511Aは、飛行体情報Saとして、飛行体識別名、機体スペック情報、搭載バッテリー識別名、位置情報、飛行速度、飛行方向、飛行時間、ESC温度、モータ温度等の情報を取得する。バッテリー情報取得部511Bは、バッテリー情報Sbとして、バッテリー識別名、バッテリースペック情報、残電圧容量、出力電流値、バッテリー温度等の情報を取得する。飛行条件取得部511Cは、出発地、目的地、積載物重量、積載物容量、積載物形状、飛行方法等の情報を取得する。給電装置情報取得部511Dは、給電装置情報Scとして、給電装置識別名、設置場所、給電装置スペック情報等の情報を取得する。気象情報取得部511Eは、気象観測情報Se及び気象予測情報Sfとして、気温、風速、風向等の情報を取得する。飛行実績情報取得部511Fは、飛行実績情報Sdとして、飛行経路、所要時間、消費電力、気象条件、ESC温度、モータ温度、バッテリー温度等の情報を取得する。 The airframe information acquisition unit 511A acquires information such as the airframe identification name, airframe specification information, mounted battery identification name, position information, flight speed, flight direction, flight time, ESC temperature, motor temperature, etc., as the airframe information Sa. Do. The battery information acquisition unit 511B acquires information such as a battery identification name, battery specification information, remaining voltage capacity, output current value, and battery temperature as the battery information Sb. The flight condition acquisition unit 511C acquires information such as the departure place, the destination, the load weight, the load capacity, the load shape, and the flight method. The feeding device information acquisition unit 511D acquires information such as a feeding device identification name, an installation place, and feeding device specification information as the feeding device information Sc. The weather information acquisition unit 511E acquires information such as the air temperature, the wind speed, and the wind direction as the weather observation information Se and the weather prediction information Sf. The flight record information acquisition unit 511F acquires information such as a flight path, required time, power consumption, weather conditions, ESC temperature, motor temperature, battery temperature and the like as the flight record information Sd.
 図6に示す記憶部52は、情報取得部511が取得した情報を記憶する。記憶部52は、例えば、ROM、RAM、ハードディスク等である。 The storage unit 52 illustrated in FIG. 6 stores the information acquired by the information acquisition unit 511. The storage unit 52 is, for example, a ROM, a RAM, a hard disk or the like.
 飛行計画作成部512は、情報取得部511が取得した各種情報に基づいて飛行計画を作成する回路である。飛行計画作成部512は、飛行経路作成部513、飛行時間算出部514、充電時間算出部515、飛行距離算出部516、所要時間算出部517、ESC冷却時間算出部518及び判定部519を備える。飛行計画作成部512は、上記の機能ごとに個別に形成された演算回路により構成されていてもよい。或いは、飛行計画作成部512の各機能は、1つの半導体集積回路(IC:Integrated Circuit)により形成されていてもよい。飛行計画作成部512が作成した飛行計画は、飛行計画情報Sgとして、通信部53を介して、飛行管理装置4に送信される。 The flight plan creation unit 512 is a circuit that creates a flight plan based on the various information acquired by the information acquisition unit 511. The flight plan creation unit 512 includes a flight route creation unit 513, a flight time calculation unit 514, a charge time calculation unit 515, a flight distance calculation unit 516, a required time calculation unit 517, an ESC cooling time calculation unit 518, and a determination unit 519. The flight plan creation unit 512 may be configured by an arithmetic circuit individually formed for each of the above functions. Alternatively, each function of the flight plan creation unit 512 may be formed by one semiconductor integrated circuit (IC: Integrated Circuit). The flight plan created by the flight plan creation unit 512 is transmitted to the flight management device 4 via the communication unit 53 as flight plan information Sg.
 次に、図6、図8、図9等を参照しつつ、飛行計画作成装置5による飛行計画作成方法について説明する。図8は、第1実施形態に係る飛行計画作成方法のフローチャートである。図9は、第1実施形態に係る飛行計画を説明するための説明図である。 Next, a flight plan creation method by the flight plan creation device 5 will be described with reference to FIGS. FIG. 8 is a flowchart of the flight plan creation method according to the first embodiment. FIG. 9 is an explanatory view for explaining a flight plan according to the first embodiment.
 図8に示すように、飛行計画作成装置5は、飛行管理装置4から出発地P1及び目的地P2(図9参照)の情報を受信する(ステップST11)。出発地P1及び目的地P2の情報は、それぞれの位置情報である。これにより、飛行計画作成装置5は飛行計画の作成を開始する。飛行計画作成装置5は、さらに、飛行管理装置4から飛行体情報Sa、バッテリー情報Sb及び給電装置情報Sc等の各種情報を取得する(ステップST12)。 As shown in FIG. 8, the flight plan creation device 5 receives the information of the departure place P1 and the destination P2 (see FIG. 9) from the flight management device 4 (step ST11). The information on the departure point P1 and the destination P2 is the respective position information. Thus, the flight plan creation device 5 starts to create a flight plan. The flight plan creation device 5 further acquires various types of information such as the aircraft information Sa, the battery information Sb, and the power supply device information Sc from the flight management device 4 (step ST12).
 飛行距離算出部516は、飛行体情報Sa及びバッテリー情報Sbに基づいて、1回の飛行で飛行可能な距離を算出する。言い換えると、飛行距離算出部516は、給電装置3でのバッテリー251の充電を行わずに飛行可能な距離を算出する。判定部519は、出発地P1及び目的地P2の情報と、飛行距離算出部516からの情報に基づいて、飛行体2が1回の飛行で目的地P2まで到達不可であるかどうかを判定する(ステップST13)。 The flight distance calculation unit 516 calculates the distance that can be fly by one flight based on the flying object information Sa and the battery information Sb. In other words, the flight distance calculation unit 516 calculates the flightable distance without charging the battery 251 by the power feeding device 3. Determination unit 519 determines whether or not flight object 2 can not reach destination P2 in one flight, based on the information of departure place P1 and destination P2 and the information from flight distance calculation unit 516. (Step ST13).
 飛行体2が1回の飛行で目的地P2まで到達不可ではない(ステップST13、No)場合、判定部519は、飛行体2が給電装置3(図9参照)を経由する必要がないと判定する。これにより、飛行経路作成部513及び飛行時間算出部514は、出発地P1から目的地P2までの飛行計画を作成する(ステップST14)。ステップST14での飛行計画は、給電装置3を経由しない出発地P1から目的地P2までの飛行経路と、出発地P1から目的地P2までに要する飛行時間と、を含む。そして、飛行計画作成装置5は、飛行計画情報Sgを飛行管理装置4に送信する(ステップST18)。これにより、飛行体2は、飛行計画情報Sgに基づく飛行指令Shにより、飛行計画にしたがって飛行する。 If the flying object 2 can not reach the destination P2 in one flight (step ST13, No), the determining unit 519 determines that the flying object 2 does not need to pass through the power feeding device 3 (see FIG. 9). Do. Thus, the flight path creation unit 513 and the flight time calculation unit 514 create a flight plan from the departure place P1 to the destination P2 (step ST14). The flight plan in step ST14 includes the flight path from the departure place P1 to the destination P2 not via the power feeding device 3 and the flight time required from the departure place P1 to the destination P2. Then, the flight plan creation device 5 transmits flight plan information Sg to the flight management device 4 (step ST18). Thereby, the flying body 2 flies according to the flight plan by the flight command Sh based on the flight plan information Sg.
 飛行体2が1回の飛行で目的地P2まで到達不可である(ステップST13、Yes)場合、判定部519は、飛行体2が給電装置3(図9参照)を経由する必要があると判定する。そして、飛行経路作成部513は、第1飛行経路FP1を作成し、飛行距離算出部516は、給電装置3から目的地P2までの第2部分飛行経路FP1-2の飛行距離を算出する(ステップST15)。具体的には、飛行経路作成部513は、図9に示す出発地P1から給電装置3を経由して目的地P2まで到達する第1飛行経路FP1を作成する。ここで、第1飛行経路FP1は、第1部分飛行経路FP1-1と、第2部分飛行経路FP1-2とを含む。第1部分飛行経路FP1-1は、出発地P1から給電装置3までの飛行経路である。第2部分飛行経路FP1-2は、給電装置3から目的地P2までの飛行経路である。そして、飛行距離算出部516は、第1部分飛行経路FP1-1の飛行距離と、第2部分飛行経路FP1-2の飛行距離とを算出する。 If the flying object 2 can not reach the destination P2 in one flight (Step ST13, Yes), the determining unit 519 determines that the flying object 2 needs to pass through the power feeding device 3 (see FIG. 9). Do. Then, the flight path creation unit 513 creates the first flight path FP1, and the flight distance calculation unit 516 calculates the flight distance of the second partial flight path FP1-2 from the feeding device 3 to the destination P2 (step ST15). Specifically, the flight path creation unit 513 creates a first flight path FP1 that reaches the destination P2 from the departure point P1 shown in FIG. 9 via the power feeding device 3. Here, the first flight path FP1 includes a first partial flight path FP1-1 and a second partial flight path FP1-2. The first partial flight path FP1-1 is a flight path from the departure point P1 to the feeding device 3. The second partial flight path FP1-2 is a flight path from the feeding device 3 to the destination P2. Then, the flight distance calculation unit 516 calculates the flight distance of the first partial flight path FP1-1 and the flight distance of the second partial flight path FP1-2.
 充電時間算出部515は、第2部分飛行経路FP1-2の飛行に必要な、バッテリー251の必要充電量を算出する(ステップST16)。充電時間算出部515は、飛行体情報Sa、バッテリー情報Sb及び第2部分飛行経路FP1-2の飛行距離に基づいて、必要充電量を算出できる。この場合、バッテリー251の必要充電量は、最大充電量よりも小さい。そして、充電時間算出部515は、バッテリー251の必要充電量と、給電装置情報Scとに基づいて、給電装置3での充電時間を算出する。 The charge time calculation unit 515 calculates the necessary charge amount of the battery 251 necessary for the flight of the second partial flight path FP1-2 (step ST16). The charge time calculation unit 515 can calculate the required charge amount based on the flight information Sa, the battery information Sb, and the flight distance of the second partial flight path FP1-2. In this case, the required charge of the battery 251 is smaller than the maximum charge. Then, the charging time calculation unit 515 calculates the charging time in the power feeding device 3 based on the necessary charge amount of the battery 251 and the power feeding device information Sc.
 飛行計画作成部512は、飛行経路作成部513が作成した第1飛行経路FP1と、充電時間算出部515が算出した充電時間とに基づいて、必要充電量を充電した場合に、給電装置3から目的地P2へ飛行再開する飛行計画を作成する(ステップST17)。ステップST17での飛行計画は、出発地P1から給電装置3を経由して目的地P2まで到達する第1飛行経路FP1と、出発地P1から目的地P2までに要する所要時間とを含む。所要時間は、出発地P1から目的地P2までの飛行に要する合計時間であり、第1飛行経路FP1に要する飛行時間と、給電装置3での充電時間とを含む。所要時間は所要時間算出部517が算出する。そして、飛行計画作成装置5は、飛行計画情報Sgを飛行管理装置4に送信する(ステップST18)。 The flight plan creating unit 512 receives the required amount of charge from the power feeding device 3 based on the first flight path FP1 created by the flight route creating unit 513 and the charge time calculated by the charge time calculation unit 515. A flight plan for resuming flight to the destination P2 is created (step ST17). The flight plan in step ST17 includes a first flight path FP1 from the departure place P1 to the destination P2 via the power feeding device 3 and a time required from the departure place P1 to the destination P2. The required time is the total time required for the flight from the departure point P1 to the destination P2, and includes the flight time required for the first flight path FP1 and the charging time of the power feeding device 3. The required time calculation unit 517 calculates the required time. Then, the flight plan creation device 5 transmits flight plan information Sg to the flight management device 4 (step ST18).
 以上説明したように本実施形態の飛行制御システム1は、バッテリー251を有する飛行体2(無人飛行体)と、飛行体2に給電する給電装置3と、飛行体2に関する飛行体情報Sa、バッテリー251に関するバッテリー情報Sb及び給電装置3に関する給電装置情報Scを受け取って、飛行体2の飛行を管理する飛行管理装置4と、飛行管理装置4からの飛行体情報Sa、バッテリー情報Sb及び給電装置情報Scに基づいて、飛行体2の飛行計画を作成する飛行計画作成装置5とを有する。飛行計画作成装置5は、出発地P1から給電装置3を経由して目的地P2までの第1飛行経路FP1を作成し、バッテリー251の最大充電量よりも小さい第1充電量を設定し、給電装置3において第1充電量が充電された場合に飛行体2が飛行を再開する飛行計画を作成する。 As described above, the flight control system 1 according to the present embodiment includes the flying object 2 (unmanned flying object) having the battery 251, the power feeding device 3 for supplying power to the flying object 2, the flight information Sa about the flying object 2, and the battery A flight management apparatus 4 that receives battery information Sb related to 251 and power supply apparatus information Sc related to the power supply apparatus 3 and manages the flight of the flying object 2, flight object information Sa from the flight management apparatus 4, battery information Sb and power supply apparatus information And a flight plan creation device 5 that creates a flight plan of the flying object 2 based on Sc. The flight plan creating device 5 creates a first flight path FP1 from the place of departure P1 to the destination P2 via the power feeding device 3, sets a first charge amount smaller than the maximum charge amount of the battery 251, and feeds the power. Create a flight plan in which the aircraft 2 resumes flight when the first charge amount is charged in the device 3.
 また、第1充電量は、給電装置3から目的地P2までの飛行に必要な、バッテリー251の充電量である。 The first charge amount is a charge amount of the battery 251 necessary for the flight from the power feeding device 3 to the destination P2.
 これによれば、給電装置3でのバッテリー251への充電量が、最大充電量よりも小さい必要充電量(第1充電量)に規制されるため、給電装置3での充電時間を短縮することができる。また、給電装置3において、給電装置3から目的地P2までの飛行に必要な必要充電量が充電される。このため、充電時間を短縮しつつ、給電装置3から目的地P2まで飛行体2を飛行させることができる。したがって、飛行制御システム1は、出発地P1から目的地P2までの所要時間を短縮でき、安全で且つ効率的な飛行計画を作成することが可能である。 According to this, since the charge amount to the battery 251 in the power feeding device 3 is regulated to the necessary charge amount (first charge amount) smaller than the maximum charge amount, the charging time in the power feeding device 3 is shortened. Can. Further, in the power feeding device 3, the necessary charge amount necessary for the flight from the power feeding device 3 to the destination P2 is charged. Therefore, it is possible to fly the flying object 2 from the power feeding device 3 to the destination P2 while shortening the charging time. Therefore, the flight control system 1 can shorten the time required from the departure point P1 to the destination P2, and can create a safe and efficient flight plan.
 また、飛行体2は、非接触給電により電力を受電する受電コイル253を有し、給電装置3は、受電コイル253に電力を送電する給電コイル313を有する。これによれば、給電装置3において、飛行体2のバッテリー251は非接触給電により充電される。このため、給電装置3において、飛行体2への電力ケーブル等の接続が不要である。したがって、出発地P1から目的地P2まで、飛行計画にしたがって飛行体2の自律飛行が可能である。 Further, the flying object 2 has a power receiving coil 253 that receives power by non-contact power feeding, and the power feeding device 3 has a power feeding coil 313 that transmits power to the power receiving coil 253. According to this, in the power feeding device 3, the battery 251 of the flying object 2 is charged by non-contact power feeding. For this reason, in the feeding device 3, connection of a power cable or the like to the flying object 2 is unnecessary. Therefore, autonomous flight of the airframe 2 is possible according to the flight plan from the departure place P1 to the destination P2.
(第2実施形態)
 図10は、第2実施形態に係る飛行計画作成方法のフローチャートである。図11は、第2実施形態に係る飛行計画を説明するための説明図である。図12は、第2実施形態に係る飛行計画の他の例を説明するための説明図である。図10に示すステップST21からステップST24は、図8に示すステップST11からステップST14と同様であり、詳細な説明は省略する。
Second Embodiment
FIG. 10 is a flowchart of a flight plan creation method according to the second embodiment. FIG. 11 is an explanatory view for explaining a flight plan according to the second embodiment. FIG. 12 is an explanatory diagram for explaining another example of the flight plan according to the second embodiment. Steps ST21 to ST24 shown in FIG. 10 are the same as steps ST11 to ST14 shown in FIG. 8, and the detailed description will be omitted.
 飛行体2が1回の飛行で目的地P2まで到達不可である(ステップST23、Yes)場合、判定部519は、飛行体2が給電装置3を経由する必要があると判定する。飛行経路作成部513は、出発地P1及び目的地P2の情報と、給電装置情報Scとに基づいて、出発地P1と目的地P2との間で利用可能な複数の給電装置3があるかどうか判断する(ステップST25)。 If the flying object 2 can not reach the destination P2 in one flight (Step ST23, Yes), the determining unit 519 determines that the flying object 2 needs to pass through the power feeding device 3. The flight path creation unit 513 determines whether there are a plurality of power feeding devices 3 available between the starting point P1 and the destination P2 based on the information of the starting point P1 and the destination P2 and the power feeding device information Sc. It judges (step ST25).
 複数の給電装置3がない場合(ステップST25、No)、飛行経路作成部513は、利用可能な1つの給電装置3を経由する飛行経路を作成する。飛行計画作成部512は、飛行経路作成部513が作成した飛行経路と、充電時間算出部515が算出した充電時間とに基づいて、給電装置3を経由する飛行計画を作成する(ステップST26)。そして、飛行計画作成装置5は、飛行計画情報Sgを飛行管理装置4に送信する(ステップST30)。 When there is not a plurality of power feeding devices 3 (Step ST25, No), the flight path creation unit 513 creates a flight path passing through one available power feeding device 3. The flight plan creation unit 512 creates a flight plan passing through the power feeding device 3 based on the flight path created by the flight path creation unit 513 and the charging time calculated by the charging time calculation unit 515 (step ST26). Then, the flight plan creation device 5 transmits flight plan information Sg to the flight management device 4 (step ST30).
 複数の給電装置3が有る場合(ステップST25、Yes)、飛行経路作成部513は、利用可能な複数の給電装置3ごとに飛行経路を作成する(ステップST27)。一例として、図11及び図12に示すように、出発地P1と目的地P2との間に、利用可能な2つの第1給電装置3-1と、第2給電装置3-2とが存在する場合での飛行計画作成方法を説明する。飛行経路作成部513は、第2飛行経路FP2(図11参照)と、第3飛行経路FP3(図12参照)とを作成する。第2飛行経路FP2は、出発地P1から第1給電装置3-1を経由して目的地P2に到達する飛行経路である。第3飛行経路FP3は、出発地P1から第2給電装置3-2を経由して目的地P2に到達する飛行経路である。 When there are a plurality of power feeding devices 3 (Yes in step ST25), the flight path creation unit 513 creates a flight path for each of the plurality of available power feeding devices 3 (step ST27). As an example, as shown in FIG. 11 and FIG. 12, two available first power feeding devices 3-1 and a second power feeding device 3-2 exist between the departure place P1 and the destination P2 Explain how to create a flight plan in the case. The flight path creation unit 513 creates a second flight path FP2 (see FIG. 11) and a third flight path FP3 (see FIG. 12). The second flight path FP2 is a flight path from the departure point P1 to the destination P2 via the first power feeding device 3-1. The third flight path FP3 is a flight path from the departure point P1 to the destination P2 via the second power feeding device 3-2.
 次に、所要時間算出部517は、第2飛行経路FP2及び第3飛行経路FP3ごとに、飛行時間と充電時間の情報から、所要時間を算出する(ステップST28)。具体的には、飛行距離算出部516は、第2飛行経路FP2の飛行距離と、第3飛行経路FP3の飛行距離をそれぞれ算出する。飛行時間算出部514は、第2飛行経路FP2及び第3飛行経路FP3のそれぞれについて、飛行距離の情報と飛行体情報Saとに基づいて、飛行時間を算出する。 Next, the required time calculation unit 517 calculates the required time from the information on the flight time and the charging time for each of the second flight path FP2 and the third flight path FP3 (step ST28). Specifically, the flight distance calculation unit 516 calculates the flight distance of the second flight path FP2 and the flight distance of the third flight path FP3. The flight time calculation unit 514 calculates the flight time for each of the second flight path FP2 and the third flight path FP3 based on the flight distance information and the aircraft information Sa.
 例えば、図11に示す、第2飛行経路FP2では、第1部分飛行経路FP2-1での飛行時間は10分であり、第2部分飛行経路FP2-2での飛行時間は20分である。つまり、第2飛行経路FP2の飛行時間は、合計30分である。また、図12に示す、第3飛行経路FP3では、第1部分飛行経路FP3-1での飛行時間は20分であり、第2部分飛行経路FP3-2での飛行時間は10分である。つまり、第3飛行経路FP3の飛行時間も、合計30分である。 For example, in the second flight path FP2 shown in FIG. 11, the flight time on the first partial flight path FP2-1 is 10 minutes, and the flight time on the second partial flight path FP2-2 is 20 minutes. That is, the flight time of the second flight path FP2 is 30 minutes in total. Further, in the third flight path FP3 shown in FIG. 12, the flight time on the first partial flight path FP3-1 is 20 minutes, and the flight time on the second partial flight path FP3-2 is 10 minutes. That is, the flight time of the third flight path FP3 is also 30 minutes in total.
 充電時間算出部515は、第2部分飛行経路FP2-2の飛行距離の情報と、第2部分飛行経路FP3-2の飛行距離の情報と、給電装置情報Scとに基づいて、第1給電装置3-1及び第2給電装置3-2のそれぞれの充電時間を算出する。図11に示すように、第1給電装置3-1での充電時間は、10分である。図12に示すように、第2給電装置3-2での充電時間は、5分である。図12に示す第2部分飛行経路FP3-2の飛行距離は、図11に示す第2部分飛行経路FP2-2よりも短い。このため、第2給電装置3-2での充電時間は、第1給電装置3-1での給電時間よりも短い。なお、給電装置情報Scは、給電装置3ごとの給電性能に関する情報を含む。例えば、第1給電装置3-1と第2給電装置3-2は、互いに異なる給電性能を有していてもよい。この場合、第1給電装置3-1と第2給電装置3-2は、バッテリー251の同じ充電量に対し異なる充電時間で充電する。 The charging time calculation unit 515 is a first power feeding device based on the information of the flight distance of the second partial flight path FP2-2, the information of the flight distance of the second partial flight path FP3-2, and the feeding device information Sc. Each charging time of 3-1 and the 2nd electric power feeder 3-2 is calculated. As shown in FIG. 11, the charging time in the first power feeding device 3-1 is 10 minutes. As shown in FIG. 12, the charging time in the second power feeding device 3-2 is 5 minutes. The flight distance of the second partial flight path FP3-2 shown in FIG. 12 is shorter than that of the second partial flight path FP2-2 shown in FIG. Therefore, the charging time in the second power feeding device 3-2 is shorter than the power feeding time in the first power feeding device 3-1. The feeding device information Sc includes information on the feeding performance of each feeding device 3. For example, the first power feeding device 3-1 and the second power feeding device 3-2 may have power feeding performances different from each other. In this case, the first power feeding device 3-1 and the second power feeding device 3-2 charge the same amount of charge of the battery 251 in different charging times.
 所要時間算出部517は、第2飛行経路FP2での飛行時間(30分)と充電時間(10分)とを合計した所要時間を算出する。第2飛行経路FP2の所要時間は40分である。また、所要時間算出部517は、第3飛行経路FP3での飛行時間(30分)と充電時間(5分)とを合計した所要時間を算出する。第3飛行経路FP3の所要時間は35分であると算出する。 The required time calculation unit 517 calculates the required time which is the total of the flight time (30 minutes) and the charging time (10 minutes) on the second flight path FP2. The duration of the second flight path FP2 is 40 minutes. Further, the required time calculation unit 517 calculates the required time which is the sum of the flight time (30 minutes) and the charging time (5 minutes) on the third flight path FP3. The time required for the third flight path FP3 is calculated to be 35 minutes.
 飛行計画作成部512は、所要時間が最短となる飛行計画を作成する(ステップST29)。具体的には、判定部519が、第2飛行経路FP2の所要時間と第3飛行経路FP3の所要時間を比較し、所要時間が最短となる飛行経路を選択する。図11及び図12に示す例では、第3飛行経路FP3の所要時間が最短である。飛行計画作成部512は、第2給電装置3-2を経由する第3飛行経路FP3に基づいて飛行計画を作成する。そして、飛行計画作成装置5は、飛行計画情報Sgを飛行管理装置4に送信する(ステップST30)。 The flight plan creation unit 512 creates a flight plan with the shortest required time (step ST29). Specifically, the determination unit 519 compares the required time of the second flight path FP2 with the required time of the third flight path FP3, and selects a flight path with the shortest required time. In the example shown in FIGS. 11 and 12, the required time of the third flight path FP3 is the shortest. The flight plan creation unit 512 creates a flight plan based on the third flight path FP3 passing through the second power feeding device 3-2. Then, the flight plan creation device 5 transmits flight plan information Sg to the flight management device 4 (step ST30).
 以上説明したように、本実施形態の飛行制御システム1は、バッテリー251を有する飛行体2と、飛行体2に給電する複数の給電装置3と、飛行体2に関する飛行体情報Sa、バッテリー251に関するバッテリー情報Sb及び給電装置3に関する給電装置情報Scを受け取って、飛行体2の飛行を管理する飛行管理装置4と、飛行管理装置4からの飛行体情報Sa、バッテリー情報Sb及び給電装置情報Scに基づいて、飛行体2の飛行計画を作成する飛行計画作成装置5とを有する。飛行計画作成装置5は、出発地P1から目的地P2まで複数の給電装置3のうち少なくとも1つの給電装置3を経由する複数の異なる飛行経路(第2飛行経路FP2及び第3飛行経路FP3)を作成し、飛行体情報Sa及び給電装置情報Scに基づいて、複数の飛行経路ごとに、飛行時間と充電時間との合計時間を算出し、合計時間が短い飛行経路に基づいて飛行計画として作成する。 As described above, the flight control system 1 according to the present embodiment relates to the flying object 2 having the battery 251, the plurality of power feeding devices 3 for feeding power to the flying object 2, the flying object information Sa on the flying object 2, and the battery 251. To the flight management device 4 that receives the battery information Sb and the feeding device information Sc related to the feeding device 3 and manages the flight of the flying object 2, the flying object information Sa from the flight management device 4, the battery information Sb, and the feeding device information Sc And a flight plan creation device 5 for creating a flight plan of the flying object 2 on the basis thereof. The flight plan creation device 5 has a plurality of different flight paths (the second flight path FP2 and the third flight path FP3) passing through at least one of the plurality of feeding devices 3 from the departure place P1 to the destination P2. Create and calculate the total time of flight time and charging time for each of a plurality of flight paths based on the flying object information Sa and the feeding device information Sc, and create as a flight plan based on the flight path whose total time is short .
 これによれば、飛行制御システム1は、出発地P1から目的地P2までの、飛行時間と充電時間とを含む所要時間を短縮して、効率的な飛行計画を作成することができる。 According to this, the flight control system 1 can create an efficient flight plan by reducing the required time from the departure place P1 to the destination P2 including the flight time and the charging time.
(第3実施形態)
 図13は、第3実施形態に係る飛行計画作成方法のフローチャートである。図14は、第3実施形態に係る飛行計画を説明するための説明図である。図13に示すステップST31、ST32は、図8に示すステップST11、ステップST12と同様であり、詳細な説明は省略する。
Third Embodiment
FIG. 13 is a flowchart of a flight plan creation method according to the third embodiment. FIG. 14 is an explanatory view for explaining a flight plan according to the third embodiment. Steps ST31 and ST32 shown in FIG. 13 are the same as steps ST11 and ST12 shown in FIG. 8, and the detailed description will be omitted.
 本実施形態では、バッテリー251の最大充電量よりも少ない第1充電量が設定される。例えば図14に示すように、第1給電装置3-1及び第2給電装置3-2でのそれぞれの第1充電量を、最大充電量の80%の充電量として設定する。ここで、第1充電量は、ユーザから入力部43(図5参照)を介して飛行管理装置4に入力された設定値である。情報取得部511(図6参照)は、バッテリー情報Sb、或いは、飛行条件に関する情報として第1充電量の情報を取得する。 In the present embodiment, a first charge amount smaller than the maximum charge amount of the battery 251 is set. For example, as shown in FIG. 14, the first charge amount of each of the first power feeding device 3-1 and the second power feeding device 3-2 is set as a charge amount of 80% of the maximum charge amount. Here, the first charge amount is a set value input from the user to the flight management device 4 via the input unit 43 (see FIG. 5). The information acquisition unit 511 (see FIG. 6) acquires information of the first charge amount as the battery information Sb or information regarding flight conditions.
 図13に示すように、飛行距離算出部516は、第1充電量で飛行可能な飛行距離を算出する(ステップST33)。飛行計画作成部512は、複数の給電装置3のうち第1充電量で到達可能な給電装置3を選択して飛行計画を作成する(ステップST34)。言い換えると、飛行計画作成部512は、1回の飛行距離が、第1充電量で飛行可能な飛行距離よりも短くなるように飛行計画を作成する。 As shown in FIG. 13, the flight distance calculation unit 516 calculates the flight distance that can be fly with the first charge amount (step ST33). The flight plan creating unit 512 selects the power feeding device 3 that can be reached by the first charge amount among the plurality of power feeding devices 3 and creates a flight plan (step ST34). In other words, the flight plan creation unit 512 creates a flight plan such that one flight distance is shorter than the flight distance that can be traveled with the first charge amount.
 具体的には、飛行経路作成部513は、図14に示すように、出発地P1から第1給電装置3-1及び第2給電装置3-2を経由して目的地P2に到達する第4飛行経路FP4を作成する。第1部分飛行経路FP4-1、第2部分飛行経路FP4-2及び第3部分飛行経路FP4-3は、第1充電量で飛行可能な飛行距離よりも短い。ここで、第1部分飛行経路FP4-1は、出発地P1から第1給電装置3-1までの飛行経路である。第2部分飛行経路FP4-2は、第1給電装置3-1から第2給電装置3-2までの飛行経路である。第3部分飛行経路FP4-3は、第2給電装置3-2から目的地P2までの飛行経路である。 Specifically, as shown in FIG. 14, the flight path creation unit 513 reaches the destination P2 from the departure point P1 via the first power feeding device 3-1 and the second power feeding device 3-2. Create a flight path FP4. The first partial flight path FP4-1, the second partial flight path FP4-2, and the third partial flight path FP4-3 are shorter than the flight distance that can be fly with the first charge amount. Here, the first partial flight path FP4-1 is a flight path from the departure point P1 to the first power feeding device 3-1. The second partial flight path FP4-2 is a flight path from the first power feeding device 3-1 to the second power feeding device 3-2. The third partial flight path FP4-3 is a flight path from the second power feeding device 3-2 to the destination P2.
 また、充電時間算出部515は、第1給電装置3-1及び第2給電装置3-2での充電時間を、最大充電量よりも少ない第1充電量が充電される時間で算出する。飛行時間算出部514は、第1部分飛行経路FP4-1、第2部分飛行経路FP4-2及び第3部分飛行経路FP4-3のそれぞれの飛行時間を算出する。所要時間算出部517は、充電時間及び飛行時間の情報から、第4飛行経路FP4の飛行に必要な所要時間を算出する。このようにして、飛行計画作成部512は、第1充電量で飛行可能な飛行計画を作成する。 Further, the charge time calculation unit 515 calculates the charge time of the first power supply device 3-1 and the second power supply device 3-2 as the time when the first charge amount smaller than the maximum charge amount is charged. The flight time calculation unit 514 calculates the flight times of the first partial flight path FP4-1, the second partial flight path FP4-2, and the third partial flight path FP4-3. The required time calculation unit 517 calculates the required time required for the flight of the fourth flight path FP4 from the information on the charging time and the flight time. In this way, the flight plan creation unit 512 creates a flight plan that can fly with the first charge amount.
 そして、飛行計画作成装置5は、第1充電量で飛行できる飛行計画に基づく飛行計画情報Sgを飛行管理装置4に送信する(ステップST35)。 Then, the flight plan creation device 5 transmits flight plan information Sg based on the flight plan capable of flying with the first charge amount to the flight management device 4 (step ST35).
 以上説明したように、本実施形態の飛行制御システム1において、給電装置3は複数設けられており、飛行計画作成装置5は、複数の給電装置3のうち第1充電量で到達可能な給電装置3を選択して飛行計画を決定する。これによれば、飛行体2のバッテリー251を最大充電量まで充電する回数を少なくすることができ、バッテリー251の長寿命化を図ることができる。この結果、飛行中のバッテリー251の性能低下や、バッテリー交換等のメンテナンスを少なくでき、効率的な飛行計画を作成することができる。 As described above, in the flight control system 1 of the present embodiment, a plurality of power feeding devices 3 are provided, and the flight plan creation device 5 is a power feeding device capable of reaching the first charge amount among the plurality of power feeding devices 3. Select 3 to determine the flight plan. According to this, it is possible to reduce the number of times of charging the battery 251 of the flying object 2 to the maximum charge amount, and it is possible to extend the life of the battery 251. As a result, performance degradation of the battery 251 during flight, maintenance such as battery replacement can be reduced, and an efficient flight plan can be created.
 なお、本実施形態では、第1充電量を、最大充電量の80%の充電量としたが、これに限定されない。利用可能な給電装置3の位置や数に応じて、第1充電量は、最大充電量の80%よりも小さくすることもでき、80%よりも大きくすることもできる。 In the present embodiment, although the first charge amount is set to a charge amount of 80% of the maximum charge amount, the present invention is not limited to this. Depending on the position and the number of the available power supply devices 3, the first charge amount may be smaller than 80% of the maximum charge amount, and may be larger than 80%.
(第4実施形態)
 図15は、第4実施形態に係る飛行計画作成方法のフローチャートである。図16は、第4実施形態に係る飛行計画を説明するための説明図である。図15に示すステップST41、ST42は、図8に示すステップST11、ステップST12と同様であり、詳細な説明は省略する。
Fourth Embodiment
FIG. 15 is a flowchart of a flight plan creation method according to the fourth embodiment. FIG. 16 is an explanatory view for explaining a flight plan according to the fourth embodiment. Steps ST41 and ST42 shown in FIG. 15 are the same as steps ST11 and ST12 shown in FIG. 8, and the detailed description will be omitted.
 上述した例と同様に、飛行経路作成部513は、出発地P1から給電装置3を経由して目的地P2に到達する第5飛行経路FP5を作成する(ステップST43)。第5飛行経路FP5は、第1部分飛行経路FP5-1と、第2部分飛行経路FP5-2とを含む。第1部分飛行経路FP5-1は、出発地P1から給電装置3までの飛行経路である。第2部分飛行経路FP5-2は、給電装置3から目的地P2までの飛行経路である。 Similar to the example described above, the flight path creation unit 513 creates a fifth flight path FP5 that reaches the destination P2 from the departure place P1 via the power feeding device 3 (step ST43). The fifth flight path FP5 includes a first partial flight path FP5-1 and a second partial flight path FP5-2. The first partial flight path FP5-1 is a flight path from the departure point P1 to the power feeding device 3. The second partial flight path FP5-2 is a flight path from the feeding device 3 to the destination P2.
 充電時間算出部515は、バッテリー情報Sb及び給電装置情報Scに基づいて充電時間を算出する。さらに、ESC冷却時間算出部518は、飛行体情報Saに含まれるESC温度に関する情報に基づいて、ESC冷却時間を算出する(ステップST44)。ここで、ESC冷却時間は、飛行体2が給電装置3に着陸してモータ26が停止してから、ESC261(図3参照)の温度が、所定の温度以下に低下するまでの時間である。また、充電時間は、バッテリー251の最大充電量の充電に要する時間であってもよく、最大充電量よりも少ない第1充電量の充電に要する時間であってもよい。 The charge time calculation unit 515 calculates the charge time based on the battery information Sb and the power feeding device information Sc. Further, the ESC cooling time calculation unit 518 calculates the ESC cooling time based on the information on the ESC temperature included in the flying object information Sa (step ST44). Here, the ESC cooling time is the time until the temperature of the ESC 261 (see FIG. 3) falls below a predetermined temperature after the flight vehicle 2 lands on the power feeding device 3 and the motor 26 stops. Further, the charging time may be the time required to charge the maximum charge of the battery 251, or may be the time required to charge the first charge smaller than the maximum charge.
 ここで、飛行計画作成装置5のESC冷却時間算出部518は、ESC温度に関する情報に加え、第1部分飛行経路FP5-1の飛行条件に関する情報に基づいて冷却時間を算出する。第1部分飛行経路FP5-1の飛行条件は、飛行体2の飛行距離、飛行速度、飛行時間等の情報を含む。第1部分飛行経路FP5-1の飛行条件は、さらに、風向等の気象条件を含んでいてもよい。 Here, the ESC cooling time calculation unit 518 of the flight plan creation device 5 calculates the cooling time based on the information on the flight conditions of the first partial flight path FP 5-1 in addition to the information on the ESC temperature. The flight conditions of the first partial flight path FP5-1 include information such as the flight distance, flight speed, flight time, and the like of the flying object 2. The flight conditions of the first partial flight path FP5-1 may further include weather conditions such as wind direction.
 判定部519は、ESC冷却時間が充電時間よりも長いかどうかを判定する(ステップST45)。ESC冷却時間が充電時間よりも短い場合(ステップST45、No)、充電時間に基づいて飛行計画を作成する(ステップST49)。つまり、給電装置3での充電時間が経過した場合に、給電装置3から目的地P2への飛行を再開する飛行計画を作成する。この場合、ESC冷却時間が充電時間よりも短いため、給電装置3での充電中にESC261の温度が冷却される。 Determination unit 519 determines whether the ESC cooling time is longer than the charging time (step ST45). If the ESC cooling time is shorter than the charging time (No in step ST45), a flight plan is created based on the charging time (step ST49). That is, when the charging time in the power feeding device 3 has elapsed, a flight plan for resuming the flight from the power feeding device 3 to the destination P2 is created. In this case, since the ESC cooling time is shorter than the charging time, the temperature of the ESC 261 is cooled during charging by the power feeding device 3.
 ESC冷却時間が充電時間よりも長い場合(ステップST45、Yes)、所要時間算出部517は、給電装置3でESC冷却時間が経過するまで飛行体2が待機するように所要時間を算出する(ステップST46)。すなわち、給電装置3での充電時間が経過した場合であっても、給電装置3から目的地P2への飛行を保留して、ESC261の温度が冷却するまで待機する。飛行計画作成部512は、第5飛行経路FP5及びESC冷却時間に基づいて飛行計画を作成する(ステップST47)。そして、飛行計画作成装置5は、飛行計画情報Sgを飛行管理装置4に送信する(ステップST48)。 If the ESC cooling time is longer than the charging time (step ST45, Yes), the required time calculation unit 517 calculates the required time so that the flying object 2 stands by until the ESC cooling time in the power feeding device 3 elapses (step ST 46). That is, even when the charging time in the power feeding device 3 has elapsed, the flight from the power feeding device 3 to the destination P2 is suspended, and standby is performed until the temperature of the ESC 261 is cooled. The flight plan creation unit 512 creates a flight plan based on the fifth flight path FP5 and the ESC cooling time (step ST47). Then, the flight plan creation device 5 transmits the flight plan information Sg to the flight management device 4 (step ST48).
 以上説明したように、本実施形態の飛行制御システム1は、モータの動作を制御するESC261(モータ駆動回路)と、バッテリー251とを有する飛行体2と、飛行体2に給電する給電装置3と、飛行体2に関する飛行体情報Sa、バッテリー251に関するバッテリー情報Sb及び給電装置3に関する給電装置情報Scを受け取って、飛行体2の飛行を管理する飛行管理装置4と、飛行管理装置4からの飛行体情報Sa、バッテリー情報Sb及び給電装置情報Scに基づいて、飛行体2の飛行計画を作成する飛行計画作成装置5とを有する。飛行計画作成装置5は、出発地P1から給電装置3を経由して目的地P2までの第5飛行経路FP5を作成し、給電装置3での給電時間が、モータ26が停止してから、ESC261の温度が所定の温度以下に低下するまでの冷却時間よりも短い場合に、飛行体2を冷却時間が経過するまで給電装置3に待機させる飛行計画を作成する。 As described above, the flight control system 1 of the present embodiment includes the flying object 2 having the ESC 261 (motor drive circuit) for controlling the operation of the motor, the battery 251, and the power feeding device 3 for feeding the flying object 2 A flight management device 4 for managing the flight of the flying object 2 by receiving the flying object information Sa on the flying object 2, the battery information Sb on the battery 251, and the power feeding device information Sc on the power feeding device 3; The flight plan creation device 5 creates the flight plan of the flying object 2 based on the body information Sa, the battery information Sb, and the power feeding device information Sc. The flight plan creation device 5 creates a fifth flight path FP5 from the departure place P1 to the destination P2 via the power feeding device 3, and the power feeding time in the power feeding device 3 is ESC261 after the motor 26 is stopped. In the case where the temperature is shorter than the cooling time until the temperature drops below the predetermined temperature, a flight plan is created in which the power feeding device 3 waits until the cooling time elapses.
 これによれば、飛行制御システム1は、給電装置3において充電が完了した場合であっても、ESC261の温度が適正な温度に低下するまで飛行体2が待機する飛行計画を作成する。したがって、飛行体2の飛行性能の低下や、故障の発生を抑制し、結果として効率的な飛行計画を作成することができる。 According to this, the flight control system 1 creates a flight plan in which the flying object 2 stands by until the temperature of the ESC 261 drops to an appropriate temperature, even when the charging by the power feeding device 3 is completed. Therefore, it is possible to suppress the deterioration of the flight performance of the flying object 2 and the occurrence of a failure, and as a result, create an efficient flight plan.
 また、飛行計画作成装置5は、ESC温度に関する情報と、出発地P1から給電装置3までの飛行条件に関する情報とに基づいて冷却時間を算出する。これにより、飛行体2が出発地P1を出発する際に、あらかじめ給電装置3での飛行体2の待機時間(充電時間及び冷却時間)を予測できる。このため、飛行中での飛行経路の変更や到着時刻の変更を抑制することができる。 In addition, the flight plan creation device 5 calculates the cooling time based on the information on the ESC temperature and the information on the flight conditions from the departure point P1 to the power feeding device 3. Thereby, when the flight body 2 leaves the departure place P1, it is possible to predict in advance the waiting time (charging time and cooling time) of the flight body 2 in the power feeding device 3. Therefore, it is possible to suppress the change of the flight path and the change of the arrival time during the flight.
 以上、本発明の実施形態について説明したが、この実施形態の内容によりこの発明が限定されるものではなく、適宜変更することができる。例えば、上述した各実施形態の飛行計画作成方法は、適宜組み合わせることができる。図5に示す飛行管理装置4の構成及び図6に示す飛行計画作成装置5の構成は、あくまで一例である。飛行管理装置4及び飛行計画作成装置5は、それぞれ、図5及び図6に示す構成要素の一部を省略してもよい。或いは、飛行管理装置4及び飛行計画作成装置5は、それぞれ、図5及び図6に示す構成に別の構成要素を追加してもよい。また、図7に示す情報取得部511の各種情報についても、あくまで一例であり、一部の情報を省略してもよく、或いは他の情報を追加してもよい。 As mentioned above, although embodiment of this invention was described, this invention is not limited by the content of this embodiment, It can change suitably. For example, the flight plan creation methods of the above-described embodiments can be combined as appropriate. The configuration of the flight management device 4 shown in FIG. 5 and the configuration of the flight plan creation device 5 shown in FIG. 6 are merely examples. The flight management device 4 and the flight plan creation device 5 may omit some of the components shown in FIGS. 5 and 6, respectively. Alternatively, the flight management device 4 and the flight plan creation device 5 may add another component to the configuration shown in FIGS. 5 and 6, respectively. Further, the various types of information of the information acquisition unit 511 illustrated in FIG. 7 are also merely examples, and some information may be omitted or other information may be added.
 1 飛行制御システム
 2 飛行体
 24 飛行制御装置
 25 受電装置
 251 バッテリー
 252 受電制御装置
 253 受電コイル
 26 モータ
 261 ESC
 281 ESC温度センサ
 3 給電装置
 31 給電回路
 313 給電コイル
 32 給電制御装置
 4 飛行管理装置
 5 飛行計画作成装置
 7 気象観測装置
 71 気象予測システム
 Sa 飛行体情報
 Sb バッテリー情報
 Sc 給電装置情報
 Sd 飛行実績情報
 Se 気象観測情報
 Sf 気象予測情報
 Sg 飛行計画情報
 Sh 飛行指令
 110 積載物
1 Flight Control System 2 Flight Vehicle 24 Flight Control Device 25 Power Receiving Device 251 Battery 252 Power Receiving Control Device 253 Receiving Coil 26 Motor 261 ESC
281 ESC temperature sensor 3 feeding device 31 feeding circuit 313 feeding coil 32 feeding control device 4 flight management device 5 flight plan creating device 7 weather observation device 71 weather forecasting system Sa flight object information Sb battery information Sc feeding device information Sd flight results information Se Weather observation information Sf Weather forecast information Sg Flight plan information Sh Flight command 110 Loaded material

Claims (10)

  1.  バッテリーを有する無人飛行体と、
     前記無人飛行体に給電する給電装置と、
     前記無人飛行体に関する飛行体情報、前記バッテリーに関するバッテリー情報及び前記給電装置に関する給電装置情報を受け取って、前記無人飛行体の飛行を管理する飛行管理装置と、
     前記飛行管理装置からの前記飛行体情報、前記バッテリー情報及び前記給電装置情報に基づいて、前記無人飛行体の飛行計画を作成する飛行計画作成装置とを有し、
     前記飛行計画作成装置は、出発地から前記給電装置を経由して目的地までの飛行経路を作成し、前記バッテリーの最大充電量よりも小さい第1充電量を設定し、前記給電装置において前記第1充電量が充電された場合に前記無人飛行体が飛行を再開する飛行計画を作成する飛行制御システム。
    A drone with a battery,
    A feeding device for feeding power to the unmanned air vehicle;
    A flight management device that receives flight body information on the unmanned air vehicle, battery information on the battery, and power feeding device information on the power feeding device, and manages the flight of the unmanned air vehicle;
    A flight plan creation device for creating a flight plan of the unmanned air vehicle based on the airframe information from the flight management device, the battery information, and the power feeding device information,
    The flight plan creation device creates a flight path from a departure point to a destination via the power supply device, sets a first charge amount smaller than the maximum charge amount of the battery, and the power supply device sets the first charge amount. A flight control system for creating a flight plan in which the unmanned air vehicle resumes flight when one charge amount is charged.
  2.  前記第1充電量は、前記給電装置から前記目的地までの飛行に必要な、前記バッテリーの充電量である請求項1に記載の飛行制御システム。 The flight control system according to claim 1, wherein the first charge amount is a charge amount of the battery necessary for flight from the power feeding device to the destination.
  3.  前記給電装置は複数設けられており、
     前記飛行計画作成装置は、複数の前記給電装置のうち前記第1充電量で到達可能な前記給電装置を選択して前記飛行計画を決定する請求項1に記載の飛行制御システム。
    A plurality of the power feeding devices are provided,
    The flight control system according to claim 1, wherein the flight plan creation device selects the power feeding device which can be reached by the first charge amount among a plurality of the power feeding devices to determine the flight plan.
  4.  バッテリーを有する無人飛行体と、
     前記無人飛行体に給電する複数の給電装置と、
     前記無人飛行体に関する飛行体情報、前記バッテリーに関するバッテリー情報及び前記給電装置に関する給電装置情報を受け取って、前記無人飛行体の飛行を管理する飛行管理装置と、
     前記飛行管理装置からの前記飛行体情報、前記バッテリー情報及び前記給電装置情報に基づいて、前記無人飛行体の飛行計画を作成する飛行計画作成装置とを有し、
     前記飛行計画作成装置は、出発地から目的地まで複数の前記給電装置のうち少なくとも1つの前記給電装置を経由する複数の異なる飛行経路を作成し、前記飛行体情報及び前記給電装置情報に基づいて、複数の前記飛行経路ごとに、飛行時間と充電時間との合計時間を算出し、前記合計時間が短い前記飛行経路に基づいて前記飛行計画を作成する、飛行制御システム。
    A drone with a battery,
    A plurality of feeding devices for feeding the unmanned air vehicle;
    A flight management device that receives flight body information on the unmanned air vehicle, battery information on the battery, and power feeding device information on the power feeding device, and manages the flight of the unmanned air vehicle;
    A flight plan creation device for creating a flight plan of the unmanned air vehicle based on the airframe information from the flight management device, the battery information, and the power feeding device information,
    The flight plan creation device creates a plurality of different flight paths passing from the departure place to the destination via at least one of the plurality of power feeding devices, and based on the airframe information and the power feeding device information. A flight control system for calculating a total time of flight time and charging time for each of the plurality of flight paths, and creating the flight plan based on the flight path for which the total time is short.
  5.  モータの動作を制御するモータ駆動回路と、バッテリーとを有する無人飛行体と、
     前記無人飛行体に給電する給電装置と、
     前記無人飛行体に関する飛行体情報、前記バッテリーに関するバッテリー情報及び前記給電装置に関する給電装置情報を受け取って、前記無人飛行体の飛行を管理する飛行管理装置と、
     前記飛行管理装置からの前記飛行体情報、前記バッテリー情報及び前記給電装置情報に基づいて、前記無人飛行体の飛行計画を作成する飛行計画作成装置とを有し、
     前記飛行計画作成装置は、出発地から前記給電装置を経由して目的地までの飛行経路を作成し、前記給電装置での給電時間が、前記モータが停止してから、前記モータ駆動回路の温度が所定の温度以下に低下するまでの冷却時間よりも短い場合に、前記無人飛行体を前記冷却時間が経過するまで前記給電装置に待機させる飛行計画を作成する、飛行制御システム。
    An unmanned air vehicle having a motor drive circuit for controlling the operation of the motor, and a battery;
    A feeding device for feeding power to the unmanned air vehicle;
    A flight management device that receives flight body information on the unmanned air vehicle, battery information on the battery, and power feeding device information on the power feeding device, and manages the flight of the unmanned air vehicle;
    A flight plan creation device for creating a flight plan of the unmanned air vehicle based on the airframe information from the flight management device, the battery information, and the power feeding device information,
    The flight plan creation device creates a flight path from a departure point to a destination via the power feeding device, and the feeding time of the power feeding device causes the temperature of the motor drive circuit to stop after the motor is stopped. A flight control system for creating a flight plan for causing the power feeding device to stand by until the cooling time elapses when the cooling time is shorter than the cooling time until the temperature drops below a predetermined temperature.
  6.  前記飛行体情報は、前記モータ駆動回路に関する情報を含み、
     前記飛行計画作成装置は、前記モータ駆動回路に関する情報と、前記給電装置までの飛行条件に関する情報とに基づいて前記冷却時間を算出する請求項5に記載の飛行制御システム。
    The airframe information includes information on the motor drive circuit,
    The flight control system according to claim 5, wherein the flight plan creation device calculates the cooling time based on information on the motor drive circuit and information on flight conditions to the power feeding device.
  7.  前記無人飛行体は、非接触給電により電力を受電する受電コイルを有し、
     前記給電装置は、前記受電コイルに電力を送電する給電コイルを有する請求項1から請求項6のいずれか1項に記載の飛行制御システム。
    The unmanned aerial vehicle has a power receiving coil for receiving power by non-contact power feeding,
    The flight control system according to any one of claims 1 to 6, wherein the feeding device has a feeding coil for transmitting power to the receiving coil.
  8.  バッテリーを有する無人飛行体と、
     前記無人飛行体に給電する給電装置と、
     前記無人飛行体に関する飛行体情報、前記バッテリーに関するバッテリー情報及び前記給電装置に関する給電装置情報を受け取って、前記無人飛行体の飛行を管理する飛行管理装置と、
     前記飛行管理装置からの前記飛行体情報、前記バッテリー情報及び前記給電装置情報に基づいて、前記無人飛行体の飛行計画を作成する飛行計画作成装置とを有する、飛行制御システムの飛行計画作成方法であって、
     前記飛行計画作成装置が、出発地から前記給電装置を経由して目的地までの飛行経路を作成するステップと、
     前記バッテリーの最大充電量よりも小さい第1充電量を設定し、前記給電装置において前記第1充電量が充電された場合に前記無人飛行体が飛行を再開する飛行計画を作成するステップと、を有する飛行計画作成方法。
    A drone with a battery,
    A feeding device for feeding power to the unmanned air vehicle;
    A flight management device that receives flight body information on the unmanned air vehicle, battery information on the battery, and power feeding device information on the power feeding device, and manages the flight of the unmanned air vehicle;
    A flight plan creation method for a flight control system, comprising: a flight plan creation device for creating a flight plan of the unmanned aerial vehicle based on the airframe information from the flight management device, the battery information, and the power feeding device information. There,
    The flight plan creation device creates a flight path from a departure point to a destination via the power feeding device;
    Setting a first charge amount smaller than the maximum charge amount of the battery, and creating a flight plan in which the unmanned air vehicle resumes flight when the first charge amount is charged in the power feeding device; How to make a flight plan.
  9.  バッテリーを有する無人飛行体と、
     前記無人飛行体に給電する複数の給電装置と、
     前記無人飛行体に関する飛行体情報、前記バッテリーに関するバッテリー情報及び前記給電装置に関する給電装置情報を受け取って、前記無人飛行体の飛行を管理する飛行管理装置と、
     前記飛行管理装置からの前記飛行体情報、前記バッテリー情報及び前記給電装置情報に基づいて、前記無人飛行体の飛行計画を作成する飛行計画作成装置とを有する、飛行制御システムの飛行計画作成方法であって、
     前記飛行計画作成装置は、出発地から目的地まで複数の前記給電装置のうち少なくとも1つの前記給電装置を経由する複数の異なる飛行経路を作成するステップと、
     前記飛行体情報及び前記給電装置情報に基づいて、複数の前記飛行経路ごとに、飛行時間と充電時間との合計時間を算出し、前記合計時間が短い前記飛行経路に基づいて前記飛行計画を作成するステップとを有する、飛行計画作成方法。
    A drone with a battery,
    A plurality of feeding devices for feeding the unmanned air vehicle;
    A flight management device that receives flight body information on the unmanned air vehicle, battery information on the battery, and power feeding device information on the power feeding device, and manages the flight of the unmanned air vehicle;
    A flight plan creation method for a flight control system, comprising: a flight plan creation device for creating a flight plan of the unmanned aerial vehicle based on the airframe information from the flight management device, the battery information, and the power feeding device information. There,
    The flight plan creation device creates a plurality of different flight paths from the departure point to the destination via at least one of the plurality of power feeding devices;
    The total time of flight time and charging time is calculated for each of the plurality of flight paths based on the airframe information and the power feeding device information, and the flight plan is created based on the flight path for which the total time is short A flight planning method, comprising:
  10.  モータの動作を制御するモータ駆動回路と、バッテリーとを有する無人飛行体と、
     前記無人飛行体に給電する給電装置と、
     前記無人飛行体に関する飛行体情報、前記バッテリーに関するバッテリー情報及び前記給電装置に関する給電装置情報を受け取って、前記無人飛行体の飛行を管理する飛行管理装置と、
     前記飛行管理装置からの前記飛行体情報、前記バッテリー情報及び前記給電装置情報に基づいて、前記無人飛行体の飛行計画を作成する飛行計画作成装置とを有する、飛行制御システムの飛行計画作成方法であって、
     前記飛行計画作成装置は、出発地から前記給電装置を経由して目的地までの飛行経路を作成するステップと、
     前記給電装置での給電時間が、前記モータが停止してから、前記モータ駆動回路の温度が所定の温度以下に低下するまでの冷却時間よりも短い場合に、前記無人飛行体を前記冷却時間が経過するまで、前記給電装置に待機させる飛行計画を作成するステップとを有する、飛行計画作成方法。
    An unmanned air vehicle having a motor drive circuit for controlling the operation of the motor, and a battery;
    A feeding device for feeding power to the unmanned air vehicle;
    A flight management device that receives flight body information on the unmanned air vehicle, battery information on the battery, and power feeding device information on the power feeding device, and manages the flight of the unmanned air vehicle;
    A flight plan creation method for a flight control system, comprising: a flight plan creation device for creating a flight plan of the unmanned aerial vehicle based on the airframe information from the flight management device, the battery information, and the power feeding device information. There,
    The flight plan creation device creates a flight path from a departure point to a destination via the power feeding device;
    The cooling time of the unmanned air vehicle is reduced when the feeding time of the feeding device is shorter than the cooling time until the temperature of the motor drive circuit falls below a predetermined temperature after the motor stops. And f. Creating a flight plan for the feeding device to wait until it elapses.
PCT/JP2018/000044 2018-01-04 2018-01-04 Flight control system and flight plan creation method WO2019135273A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018530180A JP6475899B1 (en) 2018-01-04 2018-01-04 Flight control system and flight plan creation method
PCT/JP2018/000044 WO2019135273A1 (en) 2018-01-04 2018-01-04 Flight control system and flight plan creation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/000044 WO2019135273A1 (en) 2018-01-04 2018-01-04 Flight control system and flight plan creation method

Publications (1)

Publication Number Publication Date
WO2019135273A1 true WO2019135273A1 (en) 2019-07-11

Family

ID=65516921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000044 WO2019135273A1 (en) 2018-01-04 2018-01-04 Flight control system and flight plan creation method

Country Status (2)

Country Link
JP (1) JP6475899B1 (en)
WO (1) WO2019135273A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113997803A (en) * 2021-10-26 2022-02-01 南京壮大智能科技研究院有限公司 Aircraft flight control method based on non-contact network wireless power supply

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021145215A1 (en) * 2020-01-15 2021-07-22 ソニーグループ株式会社 Information processing device, information processing method, program, and information processing system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013210281A (en) * 2012-03-30 2013-10-10 Hitachi Automotive Systems Ltd Route search system and method for electric vehicle
JP6219461B1 (en) * 2016-07-29 2017-10-25 本田技研工業株式会社 Information processing system, information processing method, and program
JP6241579B1 (en) * 2016-12-07 2017-12-06 中国電力株式会社 Method for controlling unmanned air vehicle and unmanned air vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013210281A (en) * 2012-03-30 2013-10-10 Hitachi Automotive Systems Ltd Route search system and method for electric vehicle
JP6219461B1 (en) * 2016-07-29 2017-10-25 本田技研工業株式会社 Information processing system, information processing method, and program
JP6241579B1 (en) * 2016-12-07 2017-12-06 中国電力株式会社 Method for controlling unmanned air vehicle and unmanned air vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113997803A (en) * 2021-10-26 2022-02-01 南京壮大智能科技研究院有限公司 Aircraft flight control method based on non-contact network wireless power supply
CN113997803B (en) * 2021-10-26 2023-11-03 南京壮大智能科技研究院有限公司 Aircraft flight control method based on non-contact network wireless power supply

Also Published As

Publication number Publication date
JPWO2019135273A1 (en) 2020-01-16
JP6475899B1 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
JP6518392B1 (en) Flight control system and flight planning method
JP6475898B1 (en) Unmanned air vehicle reservation system
WO2019135272A1 (en) Flight control system and flight plan creation method
CN111279371B (en) Control system and method for a plurality of unmanned aerial vehicles
US9902495B2 (en) Data center powered by a hybrid generator system
US9421869B1 (en) Deployment and adjustment of airborne unmanned aerial vehicles
US20190088145A1 (en) Decentralized air traffic management system for unmanned aerial vehicles
US20190197643A1 (en) Distribution of Aerial Vehicle Transport Capacity
US20180244386A1 (en) Weather sensing
WO2019079394A2 (en) Portable launch system
KR101884402B1 (en) Unmaned aerial vehicle accuracy landing system
WO2019135273A1 (en) Flight control system and flight plan creation method
JP6589908B2 (en) Control device, flight control method, and program
US20230294552A1 (en) Systems and Methods for Battery Capacity Management in a Fleet of UAVs
US20210107643A1 (en) Aerial vehicle and control method for aerial vehicle
KR20210014830A (en) Drone battery management method and apparatus performing the same
JP7270440B2 (en) WIRELESS POWER TRANSMISSION SYSTEM AND WIRELESS POWER TRANSMISSION METHOD
JP7275612B2 (en) Aircraft landing port and aircraft landing method
JP2019113467A (en) Unmanned air vehicle information collection device, unmanned air vehicle information collection method, and program
Anumula et al. Wireless power charging of drone using vision-based navigation
Špinka et al. Energy-aware navigation and guidance algorithms for unmanned aerial vehicles
JP7327668B2 (en) POWER SUPPLY INFORMATION DETERMINATION DEVICE, POWER SUPPLY INFORMATION DETERMINATION METHOD, AND PROGRAM
JP7364728B1 (en) Power supply management device, program, system, aircraft, and method
US20240094721A1 (en) Backend Automation System for Simulation of Drone Deliveries through Virtual Fleets
US20230312134A1 (en) Power supply apparatus and power supply management system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018530180

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18898870

Country of ref document: EP

Kind code of ref document: A1