WO2019134684A1 - 示波器信号处理方法、装置及示波器 - Google Patents

示波器信号处理方法、装置及示波器 Download PDF

Info

Publication number
WO2019134684A1
WO2019134684A1 PCT/CN2019/070474 CN2019070474W WO2019134684A1 WO 2019134684 A1 WO2019134684 A1 WO 2019134684A1 CN 2019070474 W CN2019070474 W CN 2019070474W WO 2019134684 A1 WO2019134684 A1 WO 2019134684A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
waveform image
oscilloscope
digital signal
low level
Prior art date
Application number
PCT/CN2019/070474
Other languages
English (en)
French (fr)
Inventor
杨亮亮
周先冲
Original Assignee
深圳市道通科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通科技股份有限公司 filed Critical 深圳市道通科技股份有限公司
Publication of WO2019134684A1 publication Critical patent/WO2019134684A1/zh
Priority to US16/918,710 priority Critical patent/US11280809B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R13/00Arrangements for displaying electric variables or waveforms
    • G01R13/02Arrangements for displaying electric variables or waveforms for displaying measured electric variables in digital form
    • G01R13/0209Arrangements for displaying electric variables or waveforms for displaying measured electric variables in digital form in numerical form
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R13/00Arrangements for displaying electric variables or waveforms
    • G01R13/02Arrangements for displaying electric variables or waveforms for displaying measured electric variables in digital form
    • G01R13/0218Circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R13/00Arrangements for displaying electric variables or waveforms
    • G01R13/02Arrangements for displaying electric variables or waveforms for displaying measured electric variables in digital form
    • G01R13/029Software therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R13/00Arrangements for displaying electric variables or waveforms
    • G01R13/02Arrangements for displaying electric variables or waveforms for displaying measured electric variables in digital form
    • G01R13/0218Circuits therefor
    • G01R13/0272Circuits therefor for sampling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04845Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range for image manipulation, e.g. dragging, rotation, expansion or change of colour

Definitions

  • the present application relates to the field of oscilloscope technology, and in particular, to an oscilloscope signal processing method, apparatus, and oscilloscope
  • the oscilloscope is a basic test and measurement device in the electronics industry. It can transform the invisible electrical signals into visible images, so that people can study the changes of various electrical phenomena. Using an oscilloscope, you can observe waveforms of various signal amplitudes over time. You can also use an oscilloscope to measure different parameters of an electrical signal, such as voltage, current, frequency, phase, and amplitude. Oscilloscopes are usually divided into analog oscilloscopes and digital oscilloscope
  • a conventional digital oscilloscope generally needs to convert an analog signal into a digital signal through a hardware device such as an analog-to-digital converter (ADC) to capture a series of samples and display the series of samples.
  • ADC analog-to-digital converter
  • the traditional digital oscilloscope is expensive and unintelligible.
  • the oscilloscope has complicated ammonium buttons and display screens, which makes the oscilloscope cumbersome and difficult to carry.
  • the main object of the present invention is to provide an oscilloscope signal processing method, device and oscilloscope, which can realize the conversion of a voltage signal into a digital signal by means of software, reduce the cost of the oscilloscope, and facilitate user operation and carrying.
  • an embodiment of the present invention provides an oscilloscope signal processing method, where the method includes:
  • a waveform image of the digital signal is displayed.
  • the determining a valid digital signal from the high and low level signals includes:
  • the determining, according to the acquisition frequency and the baud rate, a valid digital signal from the high and low level signals including:
  • a signal extracted from the high-low level signal at medium intervals is used as the digital signal.
  • the method further includes:
  • the waveform image is processed in accordance with the user operation.
  • the processing the waveform image according to the user operation comprises:
  • the waveform image is scaled
  • an embodiment of the present invention provides an oscilloscope signal processing apparatus, where the apparatus includes:
  • a voltage signal acquisition module configured to acquire a voltage signal
  • a high and low level signal determining module configured to determine a high and low level signal in the voltage signal according to a reference voltage
  • a digital signal determining module configured to determine a valid digital signal from the high and low level signals
  • a waveform image display module for displaying a waveform image of the digital signal.
  • the digital signal determining module comprises:
  • a baud rate acquisition unit configured to acquire a baud rate of the device under test
  • An acquisition frequency acquisition unit configured to acquire an acquisition frequency of the high and low level signals
  • a digital signal determining unit configured to determine a valid digital signal from the high and low level signals according to the acquisition frequency and the baud rate.
  • the digital signal determining unit is specifically configured to:
  • a signal extracted from the high-low level signal at medium intervals is used as the digital signal.
  • the apparatus further includes:
  • a user operation receiving module configured to receive a user operation on a waveform image of the digital signal
  • a waveform image processing module configured to process the waveform image according to the user operation.
  • the waveform image processing module is specifically configured to:
  • the waveform image is scaled
  • an oscilloscope including:
  • At least one processor and,
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to enable the at least one processor to perform an oscilloscope signal processing method as described above.
  • an embodiment of the present invention provides a computer program product, the computer program product comprising a computer program stored on a non-transitory computer readable storage medium, the computer program comprising program instructions, when the program When the instructions are executed by the oscilloscope, the oscilloscope is caused to perform the oscilloscope signal processing method as described above.
  • an embodiment of the present invention provides a non-transitory computer readable storage medium storing computer executable instructions for causing an oscilloscope to perform the above Oscilloscope signal processing method.
  • the embodiment of the present invention determines a high-low level signal in the voltage signal according to a reference voltage and determines a valid digital signal from the high-low level signal, In order to convert the voltage signal into a digital signal without digitally processing the voltage signal by means of a hardware device such as an analog converter, the cost of the oscilloscope can be reduced, and the user can operate and carry it.
  • FIG. 1 is a schematic diagram of an application environment of an oscilloscope signal processing method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a specific implementation principle of oscilloscope signal processing according to an embodiment of the present invention
  • FIG. 3 is a schematic flow chart of an oscilloscope signal processing method according to an embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of an oscilloscope signal processing method according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a waveform image of a digital signal according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an oscilloscope signal processing apparatus according to another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an oscilloscope signal processing apparatus according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an oscilloscope hardware according to an embodiment of the present invention.
  • the embodiment of the invention provides an oscilloscope signal processing method, device and oscilloscope.
  • the oscilloscope signal processing method, device and oscilloscope can realize conversion of a voltage signal into a digital signal without relying on hardware devices, thereby reducing the cost of the oscilloscope and facilitating user operation and carry.
  • the following is an example of the application environment of the above method.
  • FIG. 1 is a schematic diagram of an application environment of an oscilloscope signal processing method according to an embodiment of the present invention.
  • the application scenario includes: the device under test 10 and the oscilloscope 20 and the terminal device 30.
  • the oscilloscope 20 is connected to the device under test 10 and the terminal device 30, respectively.
  • the oscilloscope 20 interacts with the device under test 10 to obtain a voltage signal; then, the oscilloscope 20 processes the voltage signal, that is, determines the level of the voltage signal according to the reference voltage. Level signal, and determining a valid digital signal from the high and low level signals; finally, displaying a waveform image of the digital signal.
  • the waveform image of the digital signal may be displayed on the oscilloscope 20 to display a waveform image of the digital signal; or the waveform image of the digital signal is sent to the terminal device 30, so that the The terminal device 30 displays a waveform image of the digital signal.
  • the waveform image of the digital signal is transmitted to the terminal device 30 to cause the terminal device 30 to display a waveform image of the digital signal.
  • the device under test comprises an electronic control unit in the vehicle.
  • the oscilloscope can be integrated into the terminal device 30 as a module or unit.
  • the terminal device 30 can have an oscilloscope function that can directly communicate with the device under test 10.
  • the oscilloscope can be configured with a display device such as a display screen, and the oscilloscope can display the signal.
  • FIG. 2 is a schematic diagram of a specific implementation principle of an oscilloscope signal processing provided by the application environment shown in FIG. 1 according to an embodiment of the present invention.
  • the terminal device may implement the following method performed by the oscilloscope, or the oscilloscope may implement the following method performed by the terminal device, which is not limited herein. Among them, including:
  • the oscilloscope 20 interacts with the device under test 10, and the voltage signal is acquired. Specifically, the oscilloscope 20 can perform data acquisition at a preset sampling frequency to obtain the voltage signal.
  • the voltage signal is an analog signal, and the voltage signal can be displayed on the oscilloscope 20 and can be represented as a display waveform of an analog signal.
  • the oscilloscope 20 processes the voltage signal.
  • the specific method for processing the voltage signal may include:
  • the oscilloscope 20 determines a high and low level signal in the voltage signal according to a reference voltage. Specifically, the oscilloscope 20 acquires a reference voltage, and determines a high and low level signal in the voltage signal according to the reference voltage, and the high and low electrical signals include a high level signal and a low level signal.
  • the reference voltage may be preset, or the user input reference voltage may be received by the terminal device 30, and then the reference voltage is sent to the oscilloscope 20 to acquire the reference voltage.
  • the terminal device 30 provides an interface for inputting a reference voltage to receive a reference voltage input by a user, such as the reference voltage being OV, the terminal device 30 transmitting the reference voltage to the oscilloscope 20, the oscilloscope 20
  • the reference voltage (0 V) is compared with all of the data in the voltage signal, wherein a point less than 0 V in all data is considered to be a low level signal, and a point greater than 0 V is a high level signal.
  • the value of the high level signal is represented by the number "1”
  • the value of the low level signal is represented by the number "0".
  • the oscilloscope 20 determines a valid digital signal from the high and low level signals. Since the amount of data generated by the device under test 10 per second may be inconsistent or even very different from the amount of data collected by the oscilloscope 20 per second, when the two are inconsistent or greatly different, the oscilloscope 20 may be caused to collect. There is a lot of invalid duplicate data in the data, so it is necessary to reject the invalid data and obtain valid data, that is, it is necessary to determine a valid digital signal from the high and low level signals.
  • the determining the valid digital signal from the high and low level signals may include: acquiring a baud rate of the device under test; acquiring an acquisition frequency of the high and low level signals; and according to the collection frequency and the The baud rate determines a valid digital signal from the high and low level signals.
  • the baud rate of the device under test 10 refers to the amount of data generated by the device under test 10 per second. Since the high and low level signals are determined based on the reference voltage, the high and low level signals are equal to the frequency of the voltage signals, that is, the sampling frequency at which the oscilloscope 20 performs sampling.
  • the acquisition frequency of the high and low level signals is equal to the amount of data collected by the oscilloscope per second.
  • the oscilloscope 20 can obtain the baud rate of the device under test based on an operation of setting a baud rate of the device under test by the user.
  • the oscilloscope 20 can also acquire the sampling frequency of the oscilloscope 20, that is, the acquisition frequency of the high and low level signals, based on the operation of setting the sampling frequency of the oscilloscope by the user.
  • the determining the valid digital signal from the high and low level signals according to the acquisition frequency and the baud rate may specifically include:
  • the device under test 10 has a baud rate of 100 Baud (Baud is a unit of baud rate), and the sampling frequency of the oscilloscope 20 is 1000 Hz (frequency), that is, the device under test 10 generates 100 per second.
  • Data the oscilloscope 20 collects data of 1000 per second. Calculating, according to the acquisition frequency and the baud rate, a ratio of the two is 10:1, according to the ratio, extracting 1 data for every 10 data from all the high and low level signals to obtain The signal is used as the digital signal. If the number of data of all the high and low level signals is 2000, and one data is extracted every 10 data, the number of data of the obtained signals is 200, and the signal is used as the digital signal, that is, high and low level. A valid signal in the signal.
  • the digital signal Determining the digital signal by using the acquisition frequency and the baud rate, and setting a sampling frequency of the oscilloscope 20 for different devices to be tested, so that the sampling frequency of the oscilloscope 20 and the device under test 10 are
  • the baud rate is close to achieve a large amount of invalid data, improve effective data acquisition, and improve data processing efficiency.
  • the digital signal may be binary data, such as "110101110000" or the like.
  • the oscilloscope 20 transmits a waveform image of the digital signal to the terminal device 30 to cause the terminal device 30 to display a waveform image of the digital signal.
  • a waveform image of the digital signal is displayed on a user interface of the terminal device 30, for example, a square map to characterize the digital signal.
  • the waveform image of the digital signal may be superimposed with the waveform image of the voltage signal, and then displayed on the user interface of the terminal device 30.
  • the device under test 10 may be various types of electronic components, such as electronic components of automobiles.
  • the terminal device 30 may be a personal computer (PC), a tablet, a smart phone, or the like.
  • the functions of the oscilloscope 20 and the terminal device 30 described above may be integrated into the same device, that is, the device may implement all the functions of the oscilloscope 20 and the terminal device 30 described above.
  • the oscilloscope 20 determines a high-low level signal in the voltage signal according to a reference voltage and determines a valid digital signal from the high-low level signal to convert the voltage signal into a digital signal.
  • the digital signal is not digitally processed by means of a hardware device such as an analog converter, thereby reducing the cost of the oscilloscope and facilitating user operation and carrying.
  • FIG. 3 is a schematic flowchart diagram of an oscilloscope signal processing method according to an embodiment of the present invention.
  • An oscilloscope signal processing method provided by one embodiment of the present invention is applied to an oscilloscope, and the method can be performed by the oscilloscope 20 in FIG.
  • the oscilloscope signal processing method includes:
  • the oscilloscope is connected to the device under test to obtain the voltage signal.
  • the voltage signal is an analog signal, and the voltage signal is a voltage that changes with time and can be represented as a waveform.
  • the reference voltage may be a user-defined voltage value, for example, receiving a user input operation to obtain a reference voltage.
  • the reference voltage can also be a system predefined voltage value.
  • a high and low level signal in the voltage signal is determined by comparing the reference voltage to all of the voltage signals.
  • the reference voltage is OV, and the reference voltage is compared with all voltage values in the voltage signal, wherein the voltage value is less than OV and is set to a low level signal, and the voltage value is greater than OV to a high level signal.
  • the value of the high level signal is represented by the number "1”
  • the value of the low level signal is represented by the number "0".
  • the valid digital signal is determined based on the baud rate of the device under test and the frequency at which the oscilloscope acquires the voltage signal.
  • the baud rate of the device under test refers to the amount of data generated by the device under test every second
  • the frequency at which the voltage signal is collected refers to the amount of data collected by the oscilloscope per second, that is, an oscilloscope.
  • the device under test has a baud rate of 100 Baud, and the sampling frequency of the oscilloscope is 1000 Hz, that is, the device under test generates 100 data per second, and the oscilloscope collects data of 1000 per second.
  • a ratio of the two is 10:1, according to the ratio, extracting 1 data for every 10 data from all the high and low level signals as the An effective digital signal, such as all of the high and low level signals is 2000, and one data is extracted from every 10 data as a valid digital signal, and 200 valid digital signals are obtained.
  • Determining the effective digital signal by using a sampling frequency of the oscilloscope and a baud rate of the device under test, and setting a sampling frequency of the oscilloscope for different devices to be tested, thereby making a sampling frequency of the oscilloscope It is close to the baud rate of the device under test, so as to eliminate a large amount of invalid data, improve the acquisition of effective data, and improve data processing efficiency.
  • the voltage signal may also be a waveform image and displayed on the oscilloscope. Therefore, the waveform image and the voltage signal of the digital signal may be displayed on the oscilloscope. The waveform image is superimposed on the image.
  • FIG. 4 is a schematic flowchart diagram of an oscilloscope signal processing method according to another embodiment of the present invention.
  • An oscilloscope signal processing method provided by another embodiment of the present invention is applied to an oscilloscope, and the method can be performed by the oscilloscope 20 in FIG.
  • the oscilloscope signal processing method includes:
  • the oscilloscope is connected to the device under test to obtain the voltage signal.
  • the voltage signal is an analog signal, and the voltage signal is a voltage that changes with time and can be expressed as a waveform.
  • the reference voltage may be a user-defined voltage value, for example, receiving a user input operation to obtain a reference voltage.
  • the reference voltage can also be a system predefined voltage value.
  • a high and low level signal in the voltage signal is determined by comparing the reference voltage to all of the voltage signals.
  • the reference voltage is OV, and the reference voltage is compared with all voltage values in the voltage signal, wherein the voltage value is less than OV and is set to a low level signal, and the voltage value is greater than OV to a high level signal.
  • the value of the high level signal is represented by the number "1”
  • the value of the low level signal is represented by the number "0".
  • the determining the valid digital signal from the high and low level signals may include: acquiring a baud rate of the device under test; acquiring an acquisition frequency of the high and low level signals; and according to the collection frequency and the The baud rate determines a valid digital signal from the high and low level signals.
  • determining the valid digital signal from the high and low level signals according to the acquisition frequency and the baud rate may include: calculating a ratio of the frequency to the baud rate; The ratio is a signal obtained by extracting the medium and low intervals of the high and low level signals as the digital signal.
  • the device under test has a baud rate of 100 Baud, that is, the device under test generates 100 data per second; the sampling frequency of the oscilloscope is 1000 Hz, that is, the data collected by the oscilloscope per second is 1000, due to the high and low levels.
  • the signal is determined based on the reference voltage, and therefore, the high and low level signals are equal to the frequency of the voltage signal, that is, the high and low level signals are collected at a frequency of 1000 Hz.
  • a ratio of the two is 10:1, according to the ratio, extracting 1 data for every 10 data from all the high and low level signals to obtain The signal is used as the digital signal.
  • the number of data of all the high and low level signals is 2000, and one data is extracted every 10 data, the number of data of the obtained signals is 200, and the signal is used as the digital signal.
  • the digital signal may be binary data, such as "110101110000" or the like. Determining the digital signal by using the acquisition frequency and the baud rate, and setting a sampling frequency of the oscilloscope for different devices to be tested, so that the sampling frequency of the oscilloscope and the baud of the device under test The rates are close to each other, in order to eliminate a large amount of invalid data, improve the acquisition of effective data, and improve the efficiency of data processing.
  • the digital signal includes binary data, such as "110101110000” and the like.
  • each of the digital signals has a corresponding time and amplitude ("1" or "0"), and each of the digital signals corresponds to a pixel on an interface of the oscilloscope, and is a waveform image of the digital signal. And displaying the waveform image of the digital signal on the interface.
  • the waveform image may be a square wave or the like. And it can display the waveform image of the multi-channel digital signal. Specifically, as shown in FIG. 5, a schematic diagram of the waveform image of the digital signal is displayed on the interface of the oscilloscope, wherein waveform images of four different channels of A, B, C, and D are displayed in FIG. 5.
  • the voltage signal can also be a waveform image and can be displayed on the oscilloscope, an image obtained by superimposing the waveform image of the digital signal and the waveform image of the voltage signal can be displayed on the oscilloscope. Furthermore, the correspondence between the digital signal and the voltage signal can be more clearly expressed.
  • the oscilloscope can receive a user operation of a waveform image of the digital signal to effect processing of a waveform image of the digital signal.
  • the processing of the waveform image according to the user operation includes: if the user operates to perform a scaling operation on the waveform image, performing scaling processing on the waveform image; or, if the user operates Adjusting a display segment of the waveform image for a moving operation of the waveform image; or displaying the waveform image as indicated by the viewing operation if the user operates as a viewing operation of the waveform image Signal parameters related to the image area.
  • the entire waveform image may be scaled, or some portion of the waveform image may be scaled.
  • the oscilloscope provides a frame selection tool, and the frame selection tool can realize zoom display of the framed image of the corresponding time period, and when the waveform image of the time period is displayed densely, the zoom can be performed. Operation, the waveform image of the time period is enlarged to facilitate observation; when the waveform image display of the time period is relatively loose, the waveform image of the time period may be reduced by the scaling operation, thereby The image is adjusted to a display range suitable for the user to observe.
  • the waveform image When the user operates to move the waveform image, the waveform image may be dragged to adjust a display segment of the waveform image.
  • the waveform image may be dragged left and right, or the waveform image may be dragged up and down to adjust the display segment of the waveform image.
  • the user By dragging the waveform image, the user can conveniently observe the waveform image of different time periods as needed.
  • the signal parameter may include a pulse width of a level signal corresponding to the image area indicated by the viewing operation.
  • the pulse width of the level signal refers to the time during which the level signal lasts.
  • the oscilloscope pre-records the time between the start point and the end point of the high-level signal or the low-level signal continuously appearing in the valid digital signal, when detecting that the mouse pointer is located at the image indicated by the viewing operation
  • the area (the image area may be a high-level signal in the waveform image or a position in the vicinity of the low-level signal or a position in the waveform image in which the low-level signal is located), and the image area indicated by the viewing operation is displayed.
  • the pulse width of the level signal is displayed.
  • the high level signal lasts for 9 us, that is, the pulse width of the high level signal is 9 us, so that the mouse pointer is located at the When the high level signal is on, the pulse width of the high level signal is triggered.
  • the mouse pointer is used to identify the mouse position on the interface.
  • the steps 405-406 may not be mandatory steps in different embodiments, and in addition, those skilled in the art may understand that, according to the description of the embodiments of the present invention, In different embodiments, the steps 401-406 may have different execution orders without contradiction.
  • FIG. 6 is a schematic diagram of an oscilloscope signal processing apparatus according to an embodiment of the present invention.
  • An oscilloscope signal processing device provided by one embodiment of the present invention can be configured in an oscilloscope.
  • the oscilloscope signal processing device 60 includes:
  • the voltage signal acquisition module 601 is configured to acquire a voltage signal.
  • the voltage signal is an analog signal, and the voltage signal is a voltage that changes with time and can be represented as a waveform.
  • the high and low level signal determining module 602 is configured to determine a high and low level signal in the voltage signal according to a reference voltage.
  • the reference voltage may be a user-defined voltage value, for example, receiving a user input operation to obtain a reference voltage.
  • the reference voltage can also be a pre-configured voltage value.
  • the high and low level signal determination module 602 determines a high and low level signal in the voltage signal by comparing the reference voltage to all of the voltage signals.
  • the reference voltage is OV
  • the high and low level signal determining module 602 compares the reference voltage with all voltage values in the voltage signal, wherein the voltage value is less than OV and is set to a low level signal, and the voltage value is greater than OV. Set to a high level signal.
  • the value of the high level signal is represented by the number "1”
  • the value of the low level signal is represented by the number "0”.
  • the digital signal determining module 603 is configured to determine a valid digital signal from the high and low level signals.
  • the digital signal determination module 603 Since the amount of data generated per unit time of the device under test is inconsistent with the amount of data collected by the oscilloscope per unit time, the digital signal determination module 603 is required to determine a valid number from the high and low signals in the voltage signal. Signal, rejecting invalid high and low signals.
  • the digital signal determination module 603 can obtain a valid digital signal by any suitable method. For example, the digital signal determination module 603 determines the valid digital signal according to the baud rate of the device under test and the frequency at which the oscilloscope acquires the voltage signal.
  • the baud rate of the device under test refers to the amount of data generated by the device under test every second, and the frequency at which the voltage signal is collected refers to the amount of data collected by the oscilloscope per second, that is, an oscilloscope. Sampling frequency.
  • the device under test has a baud rate of 100 Baud, and the sampling frequency of the oscilloscope is 1000 Hz, that is, the device under test generates 100 data per second, and the oscilloscope collects data of 1000 per second.
  • the digital signal determining module 603 calculates, according to the frequency and the baud rate, that the ratio of the two is 10:1, according to the ratio, the digital signal determining module 603 selects from all of the high and low signals.
  • 10 data extracts 1 data as the valid digital signal. If all of the high and low level signals are 2000, and 1 data is extracted as 10 valid data signals, 200 valid numbers are obtained. signal.
  • the digital signal determining module 603 determines the valid digital signal by using a sampling frequency of the oscilloscope and a baud rate of the device under test, and setting a sampling frequency of the oscilloscope for different devices to be tested, thereby The sampling frequency of the oscilloscope is close to the baud rate of the device under test, so as to eliminate a large amount of invalid data, improve the acquisition of effective data, and improve the data processing efficiency.
  • the waveform image display module 604 is configured to display a waveform image of the digital signal.
  • the waveform image display module 604 displays the waveform image of the digital signal. Since the voltage signal can also be a waveform image, and can be displayed by the waveform image display module 604, the digital signal can be displayed by the waveform image display module 604. An image obtained by superimposing a waveform image and a waveform image of a voltage signal.
  • the oscilloscope signal processing device 60 can perform the oscilloscope signal processing method provided by Embodiment 2 of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • the oscilloscope signal processing method provided by embodiment 2 of the present invention can perform the oscilloscope signal processing method provided by Embodiment 2 of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • FIG. 7 is a schematic diagram of an oscilloscope signal processing apparatus according to another embodiment of the present invention. Another embodiment of the present invention provides an oscilloscope signal processing device that can be configured in an oscilloscope.
  • the oscilloscope signal processing device 70 includes:
  • the voltage signal acquisition module 701 is configured to acquire a voltage signal.
  • the voltage signal is an analog signal, and the voltage signal is a voltage that changes with time and can be represented as a waveform.
  • the high and low level signal determining module 702 is configured to determine a high and low level signal in the voltage signal according to a reference voltage.
  • the reference voltage may be a user-defined voltage value, for example, receiving a user input operation to obtain a reference voltage.
  • the reference voltage can also be a pre-configured voltage value.
  • the high and low level signal determination module 702 determines the high and low level signals in the voltage signal by comparing the reference voltage to all of the voltage signals.
  • the reference voltage is OV
  • the high and low level signal determining module 702 compares the reference voltage with all voltage values in the voltage signal, wherein the voltage value is less than OV and is set to a low level signal, and the voltage value is greater than OV. Set to a high level signal.
  • the high and low level signal determining module 702 determines the high and low level signals in the voltage signal by the reference voltage, and converts the amplitude of each data point of the voltage signal into a high and low level signal.
  • the digital signal determining module 703 is configured to determine a valid digital signal from the high and low level signals.
  • the digital signal determination module 703 is required to determine a valid digital signal from the high and low level signals.
  • the digital signal determining module 703 includes: a baud rate acquiring unit 7031, configured to acquire a baud rate of the device under test; an acquiring frequency acquiring unit 7032, configured to acquire an acquisition frequency of the high and low level signals; The determining unit 7033 is configured to determine a valid digital signal from the high and low level signals according to the acquisition frequency and the baud rate. Further, the digital signal determining unit 7033 is specifically configured to: calculate a ratio of the frequency to the baud rate; and, according to the ratio, a signal that is extracted from the high-low level signal at an intermediate interval as the number signal.
  • the device under test has a baud rate of 100 Baud, that is, the device under test generates 100 data per second; the sampling frequency of the oscilloscope is 1000 Hz, that is, the data collected by the oscilloscope per second is 1000, due to the high and low levels.
  • the signal is determined based on the reference voltage, and therefore, the high and low level signals are equal to the frequency of the voltage signal, that is, the high and low level signals are collected at a frequency of 1000 Hz.
  • the digital signal determining unit 7033 calculates a ratio of the two to 10:1 according to the acquisition frequency and the baud rate, and according to the ratio, the digital signal determining unit 7033 receives all the low and low powers.
  • the flat signal one data is extracted every 10 data to obtain a signal as the digital signal. If the number of data of all the high and low level signals is 2000, and one data is extracted every 10 data, the number of data of the obtained signals is 200, and the signal is used as the digital signal.
  • the digital signal may be binary data, such as "110101110000" or the like. Determining the digital signal by using the acquisition frequency and the baud rate, and setting a sampling frequency of the oscilloscope for different devices to be tested, so that the sampling frequency of the oscilloscope and the baud of the device under test The rates are close to each other, in order to eliminate a large amount of invalid data, improve the acquisition of effective data, and improve the efficiency of data processing.
  • the waveform image display module 704 is configured to display a waveform image of the digital signal.
  • the digital signal includes binary data, such as "110101110000” and the like. And, each of the digital signals has a corresponding time and amplitude ("1" or "0"), and the waveform image of the digital signal is displayed by the waveform image display module 704.
  • the waveform image may be a square wave or the like. And it can display the waveform image of the multi-channel digital signal. Since the voltage signal can also be a waveform image and can be displayed by the waveform image display module 704, the waveform image display module 704 can display an image obtained by superimposing the waveform image of the digital signal and the waveform image of the voltage signal. Furthermore, the correspondence between the digital signal and the voltage signal can be more clearly expressed.
  • the user operates the receiving module 705 for receiving a user operation of the waveform image of the digital signal.
  • the user operation receiving module 705 can receive a user operation of a waveform image of the digital signal to effect processing of a waveform image of the digital signal.
  • the waveform image processing module 706 is configured to process the waveform image according to the user operation.
  • the waveform image processing module is specifically configured to: if the user operates as a zoom operation on the waveform image, perform a scaling process on the waveform image; or if the user operates as a waveform image a moving operation of adjusting a display segment of the waveform image; or, if the user operates as a viewing operation of the waveform image, displaying a signal parameter in the waveform image related to an image region indicated by the viewing operation.
  • the waveform image processing module 706 may scale the entire waveform image, or may zoom some portion of the waveform image.
  • a frame selection tool is provided, by which the waveform image processing module 706 can perform scaling display on the framed image of the corresponding time period, and when the waveform image of the time period is displayed densely, the The zooming operation is performed to enlarge the waveform image of the time period for observation; when the waveform image display of the time period is relatively loose, the waveform image of the time period can be reduced by the zooming operation, thereby The waveform image is adjusted to a display range suitable for the user to observe.
  • the waveform image processing module 706 may drag the waveform image to adjust a display segment of the waveform image.
  • the waveform image processing module 706 may drag the waveform image to the left or right, or drag the waveform image up and down to adjust the display segment of the waveform image. By dragging the waveform image, the user can conveniently observe the waveform image of different time periods as needed.
  • the waveform image processing module 706 displays signal parameters in the waveform image that are related to the image region indicated by the viewing operation.
  • the signal parameter may include a pulse width of a level signal corresponding to the image area indicated by the viewing operation.
  • the pulse width of the level signal refers to the time during which the level signal lasts.
  • pre-recording the time between the start point and the end point of the high-level signal or the low-level signal continuously appearing in the valid digital signal when the waveform image processing module 706 detects that the mouse pointer is located in the viewing operation Image area (the image area may be a high-level signal in a waveform image or a position near a low-level signal or a position in a waveform image in which the low-level signal is located) or the image area indicated by the viewing operation
  • the pulse width of the corresponding level signal when the waveform image processing module 706 detects that the mouse pointer is located in the viewing operation Image area (the image area may be a high-level signal in a waveform image or a position near a low-level signal or a position in a waveform image in which the low-level signal is located) or the image area indicated by the viewing operation.
  • the high level signal lasts for 9 us, that is, the pulse width of the high level signal is 9 us, so that the mouse pointer is located at the When the high level signal is on, the pulse width of the high level signal is triggered.
  • the mouse pointer is used to identify the mouse position on the interface.
  • the oscilloscope signal processing device 70 can perform the oscilloscope signal processing method provided by Embodiment 3 of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • the oscilloscope signal processing method provided by Embodiment 3 of the present invention can perform the oscilloscope signal processing method provided by Embodiment 3 of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • FIG. 8 is a schematic structural diagram of an oscilloscope hardware according to an embodiment of the present invention. As shown in FIG. 8, the oscilloscope 80 includes:
  • One or more processors 801 and memory 802, one processor 801 is taken as an example in FIG.
  • the processor 801 and the memory 802 may be connected by a bus or other means, and the bus connection is taken as an example in FIG.
  • the memory 802 is used as a non-volatile computer readable storage medium for storing non-volatile software programs, non-volatile computer-executable programs, and modules, such as the oscilloscope signals provided by Embodiment 2 or Embodiment 3 of the present invention.
  • the program instruction/module corresponding to the processing method for example, the voltage signal acquisition module 701, the high-low level signal determination module 702, the digital signal determination module 703, the waveform image display module 704, the user operation receiving module 705, and the waveform shown in FIG. 7 Image processing module 706).
  • the processor 801 executes various functional applications and data processing of the oscilloscope by running non-volatile software programs, instructions, and modules stored in the memory 802, that is, implementing the oscilloscope signals provided by the method embodiment 2 or the embodiment 3. Approach.
  • the memory 802 can include a storage program area and an storage data area, wherein the storage program area can store an operating system, an application required for at least one function; the storage data area can store data created according to the use of the oscilloscope, and the like.
  • memory 802 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the memory 802 can optionally include a memory remotely located relative to the processor 801 that can be connected to the oscilloscope via a network.
  • Embodiments of the network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the one or more modules are stored in the memory 802, and when executed by the one or more processors 801, perform an oscilloscope signal processing method provided by Embodiment 2 or Embodiment 3 of the present invention, for example, performing the above The method steps 401 to 406 in FIG. 4 or the functions of the 701-706 modules in FIG. 7 are described.
  • the oscilloscope 80 can also include a communication interface for enabling communication with a terminal device or other device, such as a server or the like.
  • a communication interface for enabling communication with a terminal device or other device, such as a server or the like.
  • Other devices included in the oscilloscope 80 are not limited herein.
  • the oscilloscope can perform the oscilloscope signal processing method provided by the embodiment 2 or the embodiment 3 of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • the oscilloscope signal processing method provided by Embodiment 2 or Embodiment 3 of the present invention.
  • An embodiment of the present invention provides a computer program product, the computer program product comprising a computer program stored on a non-transitory computer readable storage medium, the computer program comprising program instructions, when the program instruction is When the oscilloscope is executed, the oscilloscope is caused to perform the oscilloscope signal processing method provided by Embodiment 2 or Embodiment 3 of the present invention.
  • the method steps 401 to 406 in FIG. 4 described above, or the functions of the 701-706 modules in FIG. 7 are performed.
  • Embodiments of the present invention provide a non-transitory computer readable storage medium storing computer-executable instructions for causing an oscilloscope to perform Embodiment 2 or implementation of the present invention.
  • Example 3 provides an oscilloscope signal processing method. For example, the method steps 401 to 406 in FIG. 4 described above, or the functions of the 701-706 modules in FIG. 7 are performed.
  • modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical. Modules can be located in one place or distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the embodiments can be implemented by means of software plus a general hardware platform, and of course, by hardware.
  • One of ordinary skill in the art can understand that all or part of the process of implementing the embodiment method can be completed by computer program related hardware, the program can be stored in a computer readable storage medium, and the program is executed.
  • the flow of an embodiment of the methods as described may be included.
  • the storage medium may be a read-only memory (ROM) or a random access memory (RAM).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Dc Digital Transmission (AREA)

Abstract

一种示波器信号处理方法、装置(60、70)及示波器(20)。其中,示波器信号处理方法包括:获取电压信号(301、401);根据基准电压确定电压信号(301、401)中的高低电平信号(302、402);从高低电平信号(302、402)中确定出有效的数字信号(303、403);显示数字信号的波形图像(304、404)。示波器信号处理方法、装置(60、70)及示波器(20)实现将电压信号(301、401)转换为数字信号,而无需借助模拟转换器等硬件设备对电压信号(301、401)进行数字化处理,从而降低示波器(20)成本,方便用户操作及携带。

Description

示波器信号处理方法、装置及示波器
本申请要求于2018年1月5日提交中国专利局、申请号为201810010439.0、申请名称为“一种示波器信号处理方法、装置及示波器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及示波器技术领域,尤其涉及一种示波器信号处理方法、装置及示波器。
背景技术
示波器是电子行业里一种基础的测试测量设备,可以把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用示波器测量电信号的不同参数,如电压、电流、频率、相位和幅度等参数。示波器通常可以分为模拟示波器和数字示波器。
目前,数字示波器作为一种高性能示波器被广泛应用于电子产品的研发与维修中。但是,传统的数字示波器一般需要通过模拟转换器(Analog-to-Digital Converter,ADC)等硬件设备把模拟信号转换为数字信号,从而捕获得到一系列样值的波形,并显示该一系列样值。并且,传统的数字示波器价格昂贵、操作也不直观,该示波器中有复杂的铵钮和显示屏,导致该示波器的笨重不易携带。
因此,迫切需要提供一种通过软件的方式实现将模拟信号转换为数字信号来解决上述问题,降低示波器成本,方便用户操作及携带。
发明内容
本发明的主要目的在于提供一种示波器信号处理方法、装置及示波器,能够实现通过软件的方式实现将电压信号转换为数字信号,降低示波器成本,方便用户操作及携带。
本发明实施例公开了如下技术方案:
第一方面,本发明实施例提供了一种示波器信号处理方法,所述方法包括:
获取电压信号;
根据基准电压确定所述电压信号中的高低电平信号;
从所述高低电平信号中确定出有效的数字信号;
显示所述数字信号的波形图像。
在一些实施例中,所述从所述高低电平信号中确定出有效的数字信号,包括:
获取被测设备的波特率;
获取所述高低电平信号的采集频率;
根据所述采集频率及所述波特率,从所述高低电平信号中确定出有效的数字信号。
在一些实施例中,所述根据所述采集频率及所述波特率,从所述高低电平信号中确定出有效的数字信号,包括:
计算所述频率与所述波特率的比值;
根据所述比值,将从所述高低电平信号中等间隔抽取得到的信号作为所述数字信号。
在一些实施例中,所述方法还包括:
接收对所述数字信号的波形图像的用户操作;
根据所述用户操作对所述波形图像进行处理。
在一些实施例中,所述根据所述用户操作对所述波形图像进行处理,包括:
若所述用户操作为对所述波形图像的缩放操作,对所述波形图像进行缩放处理;或者,
若所述用户操作为对所述波形图像的移动操作,调整所述波形图像的显示片段;或者,
若所述用户操作为对所述波形图像的查看操作,显示所述波形图像中与所述查看操作所指示的图像区域相关的信号参数。
第二方面,本发明实施例提供了一种示波器信号处理装置,所述装置包括:
电压信号获取模块,用于获取电压信号;
高低电平信号确定模块,用于根据基准电压确定所述电压信号中的高低电平信号;
数字信号确定模块,用于从所述高低电平信号中确定出有效的数字信号;
波形图像显示模块,用于显示所述数字信号的波形图像。
在一些实施例中,所述数字信号确定模块包括:
波特率获取单元,用于获取被测设备的波特率;
采集频率获取单元,用于获取所述高低电平信号的采集频率;
数字信号确定单元,用于根据所述采集频率及所述波特率,从所述高低电平信号中确定出有效的数字信号。
在一些实施例中,所述数字信号确定单元具体用于:
计算所述频率与所述波特率的比值;
根据所述比值,将从所述高低电平信号中等间隔抽取得到的信号作为所述数字信号。
在一些实施例中,所述装置还包括:
用户操作接收模块,用于接收对所述数字信号的波形图像的用户操作;
波形图像处理模块,用于根据所述用户操作对所述波形图像进行处理。
在一些实施例中,所述波形图像处理模块具体用于:
若所述用户操作为对所述波形图像的缩放操作,对所述波形图像进行缩放处理;或者,
若所述用户操作为对所述波形图像的移动操作,调整所述波形图像的显示片段;或者,
若所述用户操作为对所述波形图像的查看操作,显示所述波形图像中与所述查看操作所指示的图像区域相关的信号参数。
第三方面,本发明实施例提供了一种示波器,包括:
至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上所述的示波器信号处理方法。
第四方面,本发明实施例提供了一种计算机程序产品,所述计算机程序产 品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被示波器执行时,使所述示波器执行如上所述的示波器信号处理方法。
第五方面,本发明实施例提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使示波器执行如上所述的示波器信号处理方法。
本发明实施例的有益效果是:与现有技术相比较,本发明实施例根据基准电压确定所述电压信号中的高低电平信号并从所述高低电平信号中确定出有效的数字信号,以实现将电压信号转换为数字信号,而无需借助模拟转换器等硬件设备对电压信号进行数字化处理,从而降低示波器成本,方便用户操作及携带。
附图说明
图1是本发明实施例提供的示波器信号处理方法的应用环境的示意图;
图2是本发明实施例提供的示波器信号处理的具体实现原理的示意图;
图3是本发明其中一实施例提供的一种示波器信号处理方法的流程示意图;
图4是本发明另一实施例提供的一种示波器信号处理方法的流程示意图;
图5是本发明另一实施例提供的显示数字信号的波形图像的示意图;
图6是本发明另一实施例提供的一种示波器信号处理装置的示意图;
图7是本发明另一实施例提供的一种示波器信号处理装置的示意图;
图8是本发明其中一实施例提供的示波器硬件结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳 动前提下所获得的所有其他实施例,都属于本发明保护的范围。
此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1:
本发明实施例提供了一种示波器信号处理方法、装置及示波器,所述示波器信号处理方法、装置及示波器无需依赖硬件设备便可实现将电压信号转换为数字信号,降低示波器成本,方便用户操作及携带。以下举例说明上述方法的应用环境。
请参阅图1,为本发明实施例提供的示波器信号处理方法的应用环境的示意图。其中,应用场景中包括:被测设备10及示波器20及终端设备30。使用时,所述示波器20分别与所述被测设备10及所述终端设备30连接。首先,所述示波器20与所述被测设备10进行交互,从而获取的到电压信号;然后,所述示波器20对所述电压信号进行处理,也即根据基准电压确定所述电压信号中的高低电平信号,并从所述高低电平信号中确定出有效的数字信号;最后,显示所述数字信号的波形图像。其中,显示所述数字信号的波形图像可以是:在所述示波器20上显示所述数字信号的波形图像;或者,将所述数字信号的波形图像发送给所述终端设备30,以使所述终端设备30显示所述数字信号的波形图像。下面以将所述数字信号的波形图像发送给所述终端设备30,以使所述终端设备30显示所述数字信号的波形图像为例进行说明。其中,所述被测设备包括车辆中的电子控制单元。
在另一种应用场景下,示波器可以作为模块或单元,集成在上述终端设备30中。
在又一种应用场景下,终端设备30可以具备示波器功能,其可直接与被测设备10实现通信。
或者,在又一种应用场景下,示波器可以配置有显示屏等显示装置,示波器可以实现对信号进行显示。
请参阅图2,为本发明实施例基于图1所示的应用环境提供的示波器信号处理的具体实现原理示意图。当然,对于其他应用环境,终端设备可以实现示 波器执行的下述方法,或者,示波器可以实现终端设备执行的下述方法,在此不予限定。其中,包括:
1、所述示波器20与所述被测设备10进行交互,所述从而采集得到电压信号。具体的,所述示波器20可以预设的采样频率进行数据采集,以获得所述电压信号。其中,所述电压信号为模拟信号,所述电压信号可在所述示波器20上进行显示,并可表示为一段模拟信号的显示波形。
2、所述示波器20对所述电压信号进行处理。其中,对所述电压信号进行处理具体的方法可以包括:
首先,所述示波器20根据基准电压确定所述电压信号中的高低电平信号。具体的,所述示波器20获取基准电压,并根据所述基准电压确定所述电压信号中的高低电平信号,所述高低电信号平包括高电平信号和低电平信号。其中,基准电压可以是预设置的,或者,可以通过所述终端设备30接收用户输入基准电压,再将所述基准电压发送至所述示波器20,从而获取所述基准电压。例如,所述终端设备30提供输入基准电压的界面,以便接收用户输入的基准电压,如该基准电压为OV,所述终端设备30在将该基准电压传递给所述示波器20,所述示波器20用该基准电压(0V)与所述电压信号中的所有的数据进行比较,其中所有数据中小于0V的点认为是低电平信号,大于0V的点是高电平信号。其中,高电平信号的值用数字“1”表示,低电平信号的值用数字“0”表示。
然后,所述示波器20从所述高低电平信号中确定出有效的数字信号。由于所述被测设备10每秒产生的数据量与所述示波器20每秒采集的数据量可能存在不一致甚至相差很大的情况,当两者不一致或者相差很大时会导致所述示波器20采集的数据存在许多无效的重复数据,因此需要剔除无效数据,获取有效的数据,也即需要从所述高低电平信号中确定出有效的数字信号。
其中,所述从所述高低电平信号中确定出有效的数字信号,可以包括:获取被测设备的波特率;获取所述高低电平信号的采集频率;根据所述采集频率及所述波特率,从所述高低电平信号中确定出有效的数字信号。
所述被测设备10的波特率是指所述被测设备10每秒产生的数据量。由于所述高低电平信号是基于基准电压确定的,因此,所述高低电平信号与所述电压信号的频率相等,也即所述示波器20进行采样的采样频率。
具体的,所述高低电平信号的采集频率等于所述示波器每秒采集的数据量。其中,所述示波器20可以基于用户进行设置被测设备的波特率的操作,获取所述被测设备的波特率。
类似的,所述示波器20也可以基于用户进行设置示波器的采样频率的操作,获取采集所述示波器20的采样频率,也即所述高低电平信号的采集频率。
进一步地,所述根据所述采集频率及所述波特率,从所述高低电平信号中确定出有效的数字信号,具体可以包括:
计算所述采集频率与所述波特率的比值;根据所述比值,将从所述高低电平信号中进行等间隔抽取得到的信号作为所述数字信号。
例如,所述被测设备10的波特率为100Baud(Baud为波特率的单位),所述示波器20的采样频率为1000Hz(频率),也即所述被测设备10每秒产生100个数据,所述示波器20每秒采集的数据是1000。根据所述采集频率与所述波特率,计算得到两者的比值为10:1,则根据所述比值,从所有的所述高低电平信号中,每10个数据抽取1个数据以得到的信号作为所述数字信号。如所有的所述高低电平信号的数据数量为2000,每10个数据中抽取1个数据,则得到的信号的数据数量为200个,并将该信号作为所述数字信号,即高低电平信号中的有效信号。
通过所述采集频率及所述波特率,确定所述数字信号,可以针对不同的被测设备,设置所述示波器20的采样频率,从而使得所述示波器20的采样频率与该被测设备10的波特率相接近,以实现剔除大量无效数据,提高有效的数据的获取,提升数据处理效率。其中,所述数字信号可以为二进制数据,如“110101110000”等。
3、所述示波器20将所述数字信号的波形图像发送给所述终端设备30,以使所述终端设备30显示所述数字信号的波形图像。例如,在所述终端设备30的用户界面上显示所述数字信号的波形图像,例如,用以表征数字信号的方形图。可选地,所述数字信号的波形图像可以与电压信号的波形图像进行叠加后,在所述终端设备30的用户界面上进行显示。
需要说明的是,在本发明实施例中,所述被测设备10可以是各种类型的电子元器件,例如,汽车的电子元器件等。所述终端设备30可以是个人计算机(Personal Computer,PC)、平板、智能手机等。
还需要说明的是,在一些其它实施例中,上述示波器20与上述终端设备30的功能可以集成到同一设备中,也即该设备可以实现上述示波器20与上述终端设备30的所有功能。
在本发明实施例中,所述示波器20根据基准电压确定所述电压信号中的高低电平信号并从所述高低电平信号中确定出有效的数字信号,以实现将电压信号转换为数字信号,而无需借助模拟转换器等硬件设备对电压信号进行数字化处理,从而降低示波器成本,方便用户操作及携带。
实施例2:
图3为本发明其中一实施例提供的一种示波器信号处理方法的流程示意图。本发明其中一实施例提供的一种示波器信号处理方法应用于示波器,所述方法可由图1中的示波器20执行。
参照图3,所述示波器信号处理方法包括:
301:获取电压信号。
其中,示波器与被测设备连接,以获取所述电压信号。所述电压信号为模拟信号,所述电压信号是随着时间而变化的电压,可表示为一段波形。
302:根据基准电压确定所述电压信号中的高低电平信号。
所述基准电压可以为用户自定义的电压值,例如,接收用户输入操作以获取基准电压。在一些实施例中,所述基准电压还可以是***预先定义的电压值。通过将所述基准电压与所述电压信号中的所有的数据进行比较,以确定所述电压信号中的高低电平信号。例如,所述基准电压为OV,将该基准电压与所述电压信号中的所有电压值进行比较,其中,电压值小于OV设为低电平信号,电压值大于OV设为高电平信号。其中,高电平信号的值用数字“1”表示,低电平信号的值用数字“0”表示。通过基准电压确定所述电压信号中的高低电平信号,便可将电压信号每个数据点的幅值转化为高低电平信号。
303:从所述高低电平信号中确定出有效的数字信号。
由于存在被测设备单位时间内产生的数据量,与示波器单位时间内采集的数据量不一致的情况,因此,需要从所述电压信号中的高低电平信号中确定有效的数字信号,剔除无效的高低电平信号。其中,获取有效的数字信号可以通过任何合适的方法。例如,根据被测设备的波特率及示波器采集所述电压信号 的频率,确定所述有效的数字信号。其中,所述被测设备的波特率是指所述被测设备每秒产生的数据量,所述采集所述电压信号的频率是指所述示波器每秒采集的数据量,也即示波器的采样频率。例如,所述被测设备的波特率为100Baud,所述示波器的采样频率为1000Hz,也即所述被测设备每秒产生100个数据,所述示波器每秒采集的数据是1000。根据所述频率与所述波特率,计算得到两者的比值为10:1,则根据所述比值,从所有的所述高低电平信号中,每10个数据抽取1个数据作为所述有效的数字信号,如所有的所述高低电平信号数量为2000,每10个数据中抽取1个数据作为有效的数字信号,则得到200个有效的数字信号。通过所述示波器的采样频率及所述被测设备的波特率,确定所述有效的数字信号,可以针对不同的被测设备,设置所述示波器的采样频率,从而使得所述示波器的采样频率与该被测设备的波特率相接近,以实现剔除大量无效数据,提高有效数据的获取,提升数据处理效率。
304:显示所述数字信号的波形图像。
在所述示波器上显示所述数字信号的波形图像,由于电压信号也可为波形图像,并显示在所述示波器上,因此,可以在所述示波器上显示所述数字信号的波形图像与电压信号的波形图像进行叠加后的图像。
需要说明的是,本发明实施例中所述步骤301-304中未详尽描述的技术细节,可参考上述实施例的具体描述。
在本发明实施例中,根据基准电压确定所述电压信号中的高低电平信号并从所述高低电平信号中确定出有效的数字信号,以实现将电压信号转换为数字信号,而无需借助模拟转换器等硬件设备对电压信号进行数字化处理,从而降低示波器成本,方便用户操作及携带。
实施例3:
图4为本发明另一实施例提供的一种示波器信号处理方法的流程示意图。本发明另一实施例提供的一种示波器信号处理方法应用于示波器,所述方法可由图1中的示波器20执行。
参照图4,所述示波器信号处理方法包括:
401:获取电压信号。
其中,示波器与被测设备连接,以获取所述电压信号。所述电压信号为模 拟信号,所述电压信号是随着时间而变化的电压,可表示为一段波形。
402:根据基准电压确定所述电压信号中的高低电平信号。
所述基准电压可以为用户自定义的电压值,例如,接收用户输入操作以获取基准电压。在一些实施例中,所述基准电压还可以是***预先定义的电压值。通过将所述基准电压与所述电压信号中的所有的数据进行比较,以确定所述电压信号中的高低电平信号。例如,所述基准电压为OV,将该基准电压与所述电压信号中的所有电压值进行比较,其中,电压值小于OV设为低电平信号,电压值大于OV设为高电平信号。其中,高电平信号的值用数字“1”表示,低电平信号的值用数字“0”表示。通过基准电压确定所述电压信号中的高低电平信号,便可将电压信号每个数据点的幅值转化为高低电平信号。
403:从所述高低电平信号中确定出有效的数字信号。
由于所述被测设备每秒产生的数据量与所述示波器每秒采集的数据量可能存在不一致甚至相差很大的情况,当两者不一致或者相差很大时会导致所述示波器采集的数据存在许多无效的重复数据,因此需要剔除无效数据,获取有效数据,也即需要从所述高低电平信号中确定出有效的数字信号。其中,所述从所述高低电平信号中确定出有效的数字信号,可以包括:获取被测设备的波特率;获取所述高低电平信号的采集频率;根据所述采集频率及所述波特率,从所述高低电平信号中确定出有效的数字信号。进一步的,所述根据所述采集频率及所述波特率,从所述高低电平信号中确定出有效的数字信号,可以包括:计算所述频率与所述波特率的比值;根据所述比值,将从所述高低电平信号中等间隔抽取得到的信号作为所述数字信号。
例如,被测设备的波特率为100Baud,即所述被测设备每秒产生100个数据;示波器的采样频率为1000Hz,即所述示波器每秒采集的数据是1000,由于所述高低电平信号是基于基准电压确定的,因此,所述高低电平信号与所述电压信号的频率相等,也即所述高低电平信号的采集频率为1000Hz。根据所述采集频率与所述波特率,计算得到两者的比值为10:1,则根据所述比值,从所有的所述高低电平信号中,每10个数据抽取1个数据以得到的信号作为所述数字信号。如所有的所述高低电平信号的数据数量为2000,每10个数据中抽取1个数据,则得到的信号的数据数量为200个,并将该信号作为所述数字信号。其中,所述数字信号可以为二进制数据,如“110101110000”等。 通过所述采集频率及所述波特率,确定所述数字信号,可以针对不同的被测设备,设置所述示波器的采样频率,从而使得所述示波器的采样频率与该被测设备的波特率相接近,以实现剔除大量无效数据,提高有效的数据的获取,提升数据处理效率。
404:显示所述数字信号的波形图像。
其中,所述数字信号包括二进制数据,如“110101110000”等。并且,每个所述数字信号都有对应的时间和幅值(“1”或“0”),将各个所述数字信号对应于示波器的界面上的像素,便为所述数字信号的波形图像,并将所述数字信号的波形图像在界面上进行显示。该波形图像可以为方形波等。并且可以显示多通道数字信号的波形图像。具体的,如图5所示,为所述数字信号的波形图像显示于示波器的界面的示意图,其中,在图5中显示了A、B、C、D四个不同通道的波形图像。
由于电压信号也可为波形图像,并可在所述示波器进行显示,因此,可以在所述示波器上显示所述数字信号的波形图像与电压信号的波形图像进行叠加后的图像。进而可以更清晰的表示出数字信号与电压信号的对应关系。
405:接收对所述数字信号的波形图像的用户操作。
所述示波器可以接收对所述数字信号的波形图像的用户操作,以实现对所述数字信号的波形图像的处理。
406:根据所述用户操作对所述波形图像进行处理。
其中,所述根据所述用户操作对所述波形图像进行处理,包括:若所述用户操作为对所述波形图像的缩放操作,对所述波形图像进行缩放处理;或者,若所述用户操作为对所述波形图像的移动操作,调整所述波形图像的显示片段;或者,若所述用户操作为对所述波形图像的查看操作,显示所述波形图像中与所述查看操作所指示的图像区域相关的信号参数。
具体的,当所述用户操作为对所述波形图像的缩放操作时,可以对整个所述波形图像进行缩放,也可以对所述波形图像中的某部分进行缩放。例如,所述示波器提供框选工具,通过该框选工具可实现对被框选的相应的时间段的波形图像进行缩放显示,当该时间段的波形图像显示比较密集时,可通过所述缩放操作,对该时间段的波形图像进行放大,以便于观察;当该时间段的波形图像显示比较松散时,可通过所述缩放操作,对该时间段的波形图像进行缩小, 从而将所述波形图像调整为适于用户观察的显示范围。
当所述用户操作为对所述波形图像的移动操作时,可以对所述波形图像进行拖动,以调整所述波形图像的显示片段。其中,可以对所述波形图像进行左右拖动,也可以对所述波形图像进行上下拖动,以调整所述波形图像的显示片段。通过对所述波形图像的拖动可以方便用户根据需要观察不同时间段的波形图像。
当所述用户操作为对所述波形图像的查看操作时,显示所述波形图像中与所述查看操作所指示的图像区域相关的信号参数。其中,所述信号参数可以包括所述查看操作所指示的图像区域所对应的电平信号的脉宽。其中,所述电平信号的脉宽是指该电平信号持续的时间。当所述示波器检测到鼠标指针或者用户的触控操作位于所述查看操作所指示的图像区域时,可显示所述查看操作所指示的图像区域所对应的电平信号的脉宽,以实现自动显示脉宽,而无需对高低电平信号脉宽的进行测量以得到其脉宽。
例如,所述示波器预先记录所述有效的数字信号中连续出现高电平信号或者低电平信号的起始点和结束点之间的时间,当检测到鼠标指针位于所述查看操作所指示的图像区域(图像区域可以是波形图像中高电平信号或者低电平信号附近位置或高电平信号或者低电平信号所在波形图像中的位置)时,显示所述查看操作所指示的图像区域所对应的电平信号的脉宽。例如,高电平信号起始点时间是1us,结束点的时间是10us,那么该高电平信号就持续了9us的时间,也即该高电平信号的脉宽为9us,这样鼠标指针位于该高电平信号上时就触发显示该高电平信号的脉宽。其中,所述鼠标指针用于在界面上标识出鼠标位置。
可以理解的是,在一些其它实施例中,所述步骤405-406在不同的实施例中,可以不是必选步骤,另外,本领域普通技术人员,根据本发明实施例的描述可以理解,在不同实施例中,在不矛盾的情况下,所述步骤401-406可以有不同的执行顺序。
需要说明的是,本发明实施例中所述步骤401-406中未详尽描述的技术细节,可参考上述实施例的具体描述。
在本发明实施例中,根据基准电压确定所述电压信号中的高低电平信号并从所述高低电平信号中确定出有效的数字信号,以实现将电压信号转换为数字 信号,而无需借助模拟转换器等硬件设备对电压信号进行数字化处理,从而降低示波器成本,方便用户操作及携带。
实施例4:
图6为本发明其中一实施例提供的一种示波器信号处理装置的示意图。本发明其中一实施例提供的一种示波器信号处理装置可配置于示波器中。
参照图6,所述示波器信号处理装置60包括:
电压信号获取模块601,用于获取电压信号。
其中,所述电压信号为模拟信号,所述电压信号是随着时间而变化的电压,可表示为一段波形。
高低电平信号确定模块602,用于根据基准电压确定所述电压信号中的高低电平信号。
所述基准电压可以为用户自定义的电压值,例如,接收用户输入操作以获取基准电压。在一些实施例中,所述基准电压还可以是预先配置的电压值。高低电平信号确定模块602通过将所述基准电压与所述电压信号中的所有的数据进行比较,以确定所述电压信号中的高低电平信号。例如,所述基准电压为OV,高低电平信号确定模块602将该基准电压与所述电压信号中的所有电压值进行比较,其中,电压值小于OV设为低电平信号,电压值大于OV设为高电平信号。其中,高电平信号的值用数字“1”表示,低电平信号的值用数字“0”表示。通过基准电压确定所述电压信号中的高低电平信号,便可将电压信号每个数据点的幅值转化为高低电平信号。
数字信号确定模块603,用于从所述高低电平信号中确定出有效的数字信号。
由于存在被测设备单位时间内产生的数据量,与示波器单位时间内采集的数据量不一致的情况,因此,需要数字信号确定模块603从所述电压信号中的高低电平信号中确定有效的数字信号,剔除无效的高低电平信号。其中,数字信号确定模块603获取有效的数字信号可以通过任何合适的方法。例如,数字信号确定模块603根据被测设备的波特率及示波器采集所述电压信号的频率,确定所述有效的数字信号。其中,所述被测设备的波特率是指所述被测设备每秒产生的数据量,所述采集所述电压信号的频率是指所述示波器每秒采集的数 据量,也即示波器的采样频率。例如,所述被测设备的波特率为100Baud,所述示波器的采样频率为1000Hz,也即所述被测设备每秒产生100个数据,所述示波器每秒采集的数据是1000。数字信号确定模块603根据所述频率与所述波特率,计算得到两者的比值为10:1,则根据所述比值,数字信号确定模块603从所有的所述高低电平信号中,每10个数据抽取1个数据作为所述有效的数字信号,如所有的所述高低电平信号数量为2000,每10个数据中抽取1个数据作为有效的数字信号,则得到200个有效的数字信号。数字信号确定模块603通过所述示波器的采样频率及所述被测设备的波特率,确定所述有效的数字信号,可以针对不同的被测设备,设置所述示波器的采样频率,从而使得所述示波器的采样频率与该被测设备的波特率相接近,以实现剔除大量无效数据,提高有效数据的获取,提升数据处理效率。
波形图像显示模块604,用于显示所述数字信号的波形图像。
通过波形图像显示模块604显示所述数字信号的波形图像,由于电压信号也可为波形图像,并可通过波形图像显示模块604进行显示,因此,可以通过波形图像显示模块604显示所述数字信号的波形图像与电压信号的波形图像进行叠加后的图像。
需要说明的是,在本发明实施例中,所述示波器信号处理装置60可执行本发明实施例2提供的的示波器信号处理方法,具备执行方法相应的功能模块和有益效果。未在示波器信号处理装置60的实施例中详尽描述的技术细节,可参见本发明实施例2提供的示波器信号处理方法。
实施例5:
图7为本发明另一实施例提供的一种示波器信号处理装置的示意图。本发明另一实施例提供的一种示波器信号处理装置可配置于示波器中。
参照图7,所述示波器信号处理装置70包括:
电压信号获取模块701,用于获取电压信号。
其中,所述电压信号为模拟信号,所述电压信号是随着时间而变化的电压,可表示为一段波形。
高低电平信号确定模块702,用于根据基准电压确定所述电压信号中的高低电平信号。
所述基准电压可以为用户自定义的电压值,例如,接收用户输入操作以获取基准电压。在一些实施例中,所述基准电压还可以是预先配置的电压值。高低电平信号确定模块702通过将所述基准电压与所述电压信号中的所有的数据进行比较,以确定所述电压信号中的高低电平信号。例如,所述基准电压为OV,高低电平信号确定模块702将该基准电压与所述电压信号中的所有电压值进行比较,其中,电压值小于OV设为低电平信号,电压值大于OV设为高电平信号。其中,高电平信号的值用数字“1”表示,低电平信号的值用数字“0”表示。高低电平信号确定模块702通过基准电压确定所述电压信号中的高低电平信号,便可将电压信号每个数据点的幅值转化为高低电平信号。
数字信号确定模块703,用于从所述高低电平信号中确定出有效的数字信号。
由于所述被测设备每秒产生的数据量与所述示波器每秒采集的数据量可能存在不一致甚至相差很大的情况,当两者不一致或者相差很大时会导致所述示波器采集的数据存在许多无效的重复数据,因此需要剔除无效数据,获取有效数据,也即需要数字信号确定模块703从所述高低电平信号中确定出有效的数字信号。其中,所述数字信号确定模块703包括:波特率获取单元7031,用于获取被测设备的波特率;采集频率获取单元7032,用于获取所述高低电平信号的采集频率;数字信号确定单元7033,用于根据所述采集频率及所述波特率,从所述高低电平信号中确定出有效的数字信号。进一步的,所述数字信号确定单元7033具体用于:计算所述频率与所述波特率的比值;根据所述比值,将从所述高低电平信号中等间隔抽取得到的信号作为所述数字信号。
例如,被测设备的波特率为100Baud,即所述被测设备每秒产生100个数据;示波器的采样频率为1000Hz,即所述示波器每秒采集的数据是1000,由于所述高低电平信号是基于基准电压确定的,因此,所述高低电平信号与所述电压信号的频率相等,也即所述高低电平信号的采集频率为1000Hz。所述数字信号确定单元7033根据所述采集频率与所述波特率,计算得到两者的比值为10:1,则根据所述比值,所述数字信号确定单元7033从所有的所述高低电平信号中,每10个数据抽取1个数据以得到的信号作为所述数字信号。如所有的所述高低电平信号的数据数量为2000,每10个数据中抽取1个数据,则得到的信号的数据数量为200个,并将该信号作为所述数字信号。其中,所 述数字信号可以为二进制数据,如“110101110000”等。通过所述采集频率及所述波特率,确定所述数字信号,可以针对不同的被测设备,设置所述示波器的采样频率,从而使得所述示波器的采样频率与该被测设备的波特率相接近,以实现剔除大量无效数据,提高有效的数据的获取,提升数据处理效率。
波形图像显示模块704,用于显示所述数字信号的波形图像。
其中,所述数字信号包括二进制数据,如“110101110000”等。并且,每个所述数字信号都有对应的时间和幅值(“1”或“0”),通过波形图像显示模块704显示所述数字信号的波形图像。该波形图像可以为方形波等。并且可以显示多通道数字信号的波形图像。由于电压信号也可为波形图像,并可通过波形图像显示模块704进行显示,因此,可以通过波形图像显示模块704显示所述数字信号的波形图像与电压信号的波形图像进行叠加后的图像。进而可以更清晰的表示出数字信号与电压信号的对应关系。
用户操作接收模块705,用于接收对所述数字信号的波形图像的用户操作。
所述用户操作接收模块705可以接收对所述数字信号的波形图像的用户操作,以便实现对所述数字信号的波形图像的处理。
波形图像处理模块706,用于根据所述用户操作对所述波形图像进行处理。
其中,所述波形图像处理模块具体用于:若所述用户操作为对所述波形图像的缩放操作,对所述波形图像进行缩放处理;或者,若所述用户操作为对所述波形图像的移动操作,调整所述波形图像的显示片段;或者,若所述用户操作为对所述波形图像的查看操作,显示所述波形图像中与所述查看操作所指示的图像区域相关的信号参数。
具体的,当所述用户操作为对所述波形图像的缩放操作时,波形图像处理模块706可以对整个所述波形图像进行缩放,也可以对所述波形图像中的某部分进行缩放。例如,提供框选工具,通过该框选工具可实现波形图像处理模块706对被框选的相应的时间段的波形图像进行缩放显示,当该时间段的波形图像显示比较密集时,可通过所述缩放操作,对该时间段的波形图像进行放大,以便于观察;当该时间段的波形图像显示比较松散时,可通过所述缩放操作,对该时间段的波形图像进行缩小,从而将所述波形图像调整为适于用户观察的 显示范围。
当所述用户操作为对所述波形图像的移动操作时,波形图像处理模块706可以对所述波形图像进行拖动,以调整所述波形图像的显示片段。其中,波形图像处理模块706可以对所述波形图像进行左右拖动,也可以对所述波形图像进行上下拖动,以调整所述波形图像的显示片段。通过对所述波形图像的拖动可以方便用户根据需要观察不同时间段的波形图像。
当所述用户操作为对所述波形图像的查看操作时,波形图像处理模块706显示所述波形图像中与所述查看操作所指示的图像区域相关的信号参数。其中,所述信号参数可以包括所述查看操作所指示的图像区域所对应的电平信号的脉宽。其中,所述电平信号的脉宽是指该电平信号持续的时间。当所述示波器检测到鼠标指针或者用户的触控操作位于所述查看操作所指示的图像区域时,可显示所述查看操作所指示的图像区域所对应的电平信号的脉宽,以实现自动显示脉宽,而无需对高低电平信号脉宽的进行测量以得到其脉宽。例如,预先记录所述有效的数字信号中连续出现高电平信号或者低电平信号的起始点和结束点之间的时间,当波形图像处理模块706检测到鼠标指针位于所述查看操作所指示的图像区域(图像区域可以是波形图像中高电平信号或者低电平信号附近位置或高电平信号或者低电平信号所在波形图像中的位置)时,显示所述查看操作所指示的图像区域所对应的电平信号的脉宽。例如,高电平信号起始点时间是1us,结束点的时间是10us,那么该高电平信号就持续了9us的时间,也即该高电平信号的脉宽为9us,这样鼠标指针位于该高电平信号上时就触发显示该高电平信号的脉宽。其中,所述鼠标指针用于在界面上标识出鼠标位置。
需要说明的是,在本发明实施例中,所述示波器信号处理装置70可执行本发明实施例3提供的示波器信号处理方法,具备执行方法相应的功能模块和有益效果。未在示波器信号处理装置70的实施例中详尽描述的技术细节,可参见本发明实施例3提供的示波器信号处理方法。
实施例6:
图8为本发明其中一实施例提供的示波器硬件结构示意图,如图8所示,所述示波器80包括:
一个或多个处理器801以及存储器802,图8中以一个处理器801为例。
处理器801和存储器802可以通过总线或者其他方式连接,图8中以通过总线连接为例。
存储器802作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本发明实施例2或实施例3提供的示波器信号处理方法对应的程序指令/模块(例如,附图7所示的电压信号获取模块701、高低电平信号确定模块702、数字信号确定模块703、波形图像显示模块704、用户操作接收模块705以及波形图像处理模块706)。处理器801通过运行存储在存储器802中的非易失性软件程序、指令以及模块,从而执行示波器的各种功能应用以及数据处理,即实现所述方法实施例2或实施例3提供的示波器信号处理方法。
存储器802可以包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需要的应用程序;存储数据区可存储根据示波器使用所创建的数据等。此外,存储器802可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器802可选包括相对于处理器801远程设置的存储器,这些远程存储器可以通过网络连接至示波器。所述网络的实施例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器802中,当被所述一个或者多个处理器801执行时,执行本发明实施例2或实施例3提供的示波器信号处理方法,例如,执行以上描述的图4中的方法步骤401至步骤406,或图7中的701-706模块的功能。
示例性地,所述示波器80还可以包括通信接口,该通信接口用以实现与终端设备或其他设备,如服务器等,进行通信。所述示波器80包括的其他装置在此不予限定。
所述示波器可执行本发明实施例2或实施例3提供的示波器信号处理方法,具备执行方法相应的功能模块和有益效果。未在示波器实施例中详尽描述的技术细节,可参见本发明实施例2或实施例3提供的示波器信号处理方法。
本发明实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指 令,当所述程序指令被所述示波器执行时,使所述示波器执行本发明实施例2或实施例3提供的示波器信号处理方法。例如,执行以上描述的图4中的方法步骤401至步骤406,或图7中的701-706模块的功能。
本发明实施例提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使示波器执行本发明实施例2或实施例3提供的示波器信号处理方法。例如,执行以上描述的图4中的方法步骤401至步骤406,或图7中的701-706模块的功能。
需要说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施例的描述,本领域普通技术人员可以清楚地了解到各实施例可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现所述实施例方法中的全部或部分流程是可以通过计算机程序指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如所述各方法的实施例的流程。其中,所述的存储介质可为只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (11)

  1. 一种示波器信号处理方法,其特征在于,所述方法包括:
    获取来自被测设备的电压信号;其中,所述被测设备包括车辆中的电子控制单元;
    根据基准电压确定所述电压信号中的高低电平信号;
    从所述高低电平信号中确定出有效的数字信号;
    显示所述数字信号的波形图像。
  2. 根据权利要求1所述的方法,其特征在于,所述从所述高低电平信号中确定出有效的数字信号,包括:
    获取所述被测设备的波特率;
    获取所述高低电平信号的采集频率;
    根据所述采集频率及所述波特率,从所述高低电平信号中确定出有效的数字信号。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述采集频率及所述波特率,从所述高低电平信号中确定出有效的数字信号,包括:
    计算所述频率与所述波特率的比值;
    根据所述比值,将从所述高低电平信号中等间隔抽取得到的信号作为所述数字信号。
  4. 根据权利要求1-3所述的方法,其特征在于,所述方法还包括:
    接收对所述数字信号的波形图像的用户操作;
    根据所述用户操作对所述波形图像进行处理。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述用户操作对 所述波形图像进行处理,包括:
    若所述用户操作为对所述波形图像的缩放操作,对所述波形图像进行缩放处理;或者,
    若所述用户操作为对所述波形图像的移动操作,调整所述波形图像的显示片段;或者,
    若所述用户操作为对所述波形图像的查看操作,显示所述波形图像中与所述查看操作所指示的图像区域相关的信号参数。
  6. 一种示波器信号处理装置,其特征在于,所述装置包括:
    电压信号获取模块,用于获取电压信号;
    高低电平信号确定模块,用于根据基准电压确定所述电压信号中的高低电平信号;
    数字信号确定模块,用于从所述高低电平信号中确定出有效的数字信号;
    波形图像显示模块,用于显示所述数字信号的波形图像。
  7. 根据权利要求6所述的装置,其特征在于,所述数字信号确定模块包括:
    波特率获取单元,用于获取被测设备的波特率;
    采集频率获取单元,用于获取所述高低电平信号的采集频率;
    数字信号确定单元,用于根据所述采集频率及所述波特率,从所述高低电平信号中确定出有效的数字信号。
  8. 根据权利要求7所述的装置,其特征在于,所述数字信号确定单元具体用于:
    计算所述频率与所述波特率的比值;
    根据所述比值,将从所述高低电平信号中等间隔抽取得到的信号作为所述数字信号。
  9. 根据权利要求6-8任一项所述的装置,其特征在于,所述装置还包括:
    用户操作接收模块,用于接收对所述数字信号的波形图像的用户操作;
    波形图像处理模块,用于根据所述用户操作对所述波形图像进行处理。
  10. 根据权利要求9所述的装置,其特征在于,所述波形图像处理模块具体用于:
    若所述用户操作为对所述波形图像的缩放操作,对所述波形图像进行缩放处理;或者,
    若所述用户操作为对所述波形图像的移动操作,调整所述波形图像的显示片段;或者,
    若所述用户操作为对所述波形图像的查看操作,显示所述波形图像中与所述查看操作所指示的图像区域相关的信号参数。
  11. 一种示波器,其特征在于,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-5任一项所述的方法。
PCT/CN2019/070474 2018-01-05 2019-01-04 示波器信号处理方法、装置及示波器 WO2019134684A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/918,710 US11280809B2 (en) 2018-01-05 2020-07-01 Method and apparatus for processing oscilloscope signal and oscilloscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810010439.0 2017-01-05
CN201810010439.0A CN108181492B (zh) 2018-01-05 2018-01-05 一种示波器信号处理方法、装置及示波器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/918,710 Continuation US11280809B2 (en) 2018-01-05 2020-07-01 Method and apparatus for processing oscilloscope signal and oscilloscope

Publications (1)

Publication Number Publication Date
WO2019134684A1 true WO2019134684A1 (zh) 2019-07-11

Family

ID=62549872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070474 WO2019134684A1 (zh) 2018-01-05 2019-01-04 示波器信号处理方法、装置及示波器

Country Status (3)

Country Link
US (1) US11280809B2 (zh)
CN (1) CN108181492B (zh)
WO (1) WO2019134684A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108181492B (zh) 2018-01-05 2020-08-18 深圳市道通科技股份有限公司 一种示波器信号处理方法、装置及示波器
CN108226598B (zh) * 2018-01-05 2020-11-10 深圳市道通科技股份有限公司 一种示波器信号译码方法、装置及示波器
US11143679B2 (en) * 2019-04-01 2021-10-12 Rohde & Schwarz Gmbh & Co. Kg Method and apparatus for processing a measurement signal
CN112600561A (zh) * 2020-12-15 2021-04-02 深圳市道通科技股份有限公司 示波器中的信号处理***、示波器及信号处理方法
CN113295900A (zh) * 2021-05-26 2021-08-24 华北电力大学 一种基于5g技术的云数字存储示波器***及测量方法
CN113466521A (zh) * 2021-06-30 2021-10-01 深圳市道通科技股份有限公司 基于数字示波器的波形展示方法和数字示波器
CN114252672A (zh) * 2021-11-12 2022-03-29 普源精电科技股份有限公司 信号处理方法、芯片、信号显示装置和存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030115003A1 (en) * 2001-12-18 2003-06-19 Yokogawa Electric Corporation Waveform measuring instrument using interpolated data
CN1618082A (zh) * 2001-12-11 2005-05-18 勒克罗伊公司 用户定义处理功能
CN201909804U (zh) * 2010-11-26 2011-07-27 北京工业大学 网络虚拟数字示波器
CN102841229A (zh) * 2012-09-24 2012-12-26 东南大学 一种用于虚拟示波器的波形显示方法
CN103018514A (zh) * 2012-04-11 2013-04-03 湖南科技学院 基于声卡的虚拟示波器装置
CN103604966A (zh) * 2013-11-29 2014-02-26 青岛汉泰电子有限公司 一种具有汽车测试功能的虚拟示波器
CN107436377A (zh) * 2016-05-27 2017-12-05 特克特朗尼克公司 多时基示波器
CN107483053A (zh) * 2017-05-16 2017-12-15 深圳市鼎阳科技有限公司 实现高分辨率采样的方法、装置及计算机可读存储介质
CN108181492A (zh) * 2018-01-05 2018-06-19 深圳市道通科技股份有限公司 一种示波器信号处理方法、装置及示波器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4743845A (en) * 1986-09-17 1988-05-10 Tektronix, Inc. Oscilloscope-based signal level measurement system
US4972138A (en) * 1987-05-11 1990-11-20 Hewlett Packard Co. Oscilloscope-like user-interface for a logic analyzer
US5245324A (en) * 1990-09-24 1993-09-14 Snap-On Tools Corporation Digital engine analyzer
US5162723A (en) * 1991-02-11 1992-11-10 Hewlett-Packard Company Sampling signal analyzer
US6545852B1 (en) * 1998-10-07 2003-04-08 Ormanco System and method for controlling an electromagnetic device
US6571185B1 (en) * 1999-04-20 2003-05-27 Tektronix, Inc. Continually responsive and anticipating automatic setup function for a digital oscilloscope
US6624829B1 (en) * 1999-10-29 2003-09-23 Agilent Technologies, Inc. System and method for specifying trigger conditions of a signal measurement system using hierarchical structures on a graphical user interface
US6570592B1 (en) * 1999-10-29 2003-05-27 Agilent Technologies, Inc. System and method for specifying trigger conditions of a signal measurement system using graphical elements on a graphical user interface
US6418386B1 (en) * 1999-12-06 2002-07-09 Koninklijke Philips Electronics N.V. High and low voltage measurement in waveform analysis
US7741960B1 (en) * 2008-03-26 2010-06-22 Active Technology II, LLC Vehicle communication method and apparatus
CN101650377A (zh) * 2008-08-11 2010-02-17 鸿富锦精密工业(深圳)有限公司 信号测量***及方法
TW201028315A (en) * 2009-01-16 2010-08-01 All Win Green Battery Gorp Power energy supply system with ultracapacitor for vehicle
JP2015089184A (ja) * 2013-10-29 2015-05-07 アイシン精機株式会社 車両用開閉体の制御装置、制御方法、及び該制御装置を備えた車両用開閉体
CN108226598B (zh) * 2018-01-05 2020-11-10 深圳市道通科技股份有限公司 一种示波器信号译码方法、装置及示波器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1618082A (zh) * 2001-12-11 2005-05-18 勒克罗伊公司 用户定义处理功能
US20030115003A1 (en) * 2001-12-18 2003-06-19 Yokogawa Electric Corporation Waveform measuring instrument using interpolated data
CN201909804U (zh) * 2010-11-26 2011-07-27 北京工业大学 网络虚拟数字示波器
CN103018514A (zh) * 2012-04-11 2013-04-03 湖南科技学院 基于声卡的虚拟示波器装置
CN102841229A (zh) * 2012-09-24 2012-12-26 东南大学 一种用于虚拟示波器的波形显示方法
CN103604966A (zh) * 2013-11-29 2014-02-26 青岛汉泰电子有限公司 一种具有汽车测试功能的虚拟示波器
CN107436377A (zh) * 2016-05-27 2017-12-05 特克特朗尼克公司 多时基示波器
CN107483053A (zh) * 2017-05-16 2017-12-15 深圳市鼎阳科技有限公司 实现高分辨率采样的方法、装置及计算机可读存储介质
CN108181492A (zh) * 2018-01-05 2018-06-19 深圳市道通科技股份有限公司 一种示波器信号处理方法、装置及示波器

Also Published As

Publication number Publication date
CN108181492B (zh) 2020-08-18
US11280809B2 (en) 2022-03-22
CN108181492A (zh) 2018-06-19
US20200333378A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
WO2019134684A1 (zh) 示波器信号处理方法、装置及示波器
CN104834597B (zh) 应用响应时长的测量方法和***
JP2000321307A (ja) オシロスコープの動作方法
EP4060352A1 (en) Automatic trigger type identification method and device, and oscilloscope
CN102128962A (zh) 用于提供采集后触发控制和呈现的测试与测量仪器和方法
CN102012445A (zh) 用于提供采集后触发控制和呈现的测试与测量仪器和方法
KR101526168B1 (ko) 정전용량 터치 센서에서 효과적인 노이즈 제거 방법 및 이를 이용한 터치스크린 장치
JP6619545B2 (ja) 試験測定装置及び波形取込み方法
US20200348342A1 (en) Method and apparatus for processing oscilloscope data and oscilloscope
US20170347898A1 (en) Pulse measuring device and control method thereof
CN106846433B (zh) 一种信号变化图绘制方法及装置,电子设备
EP3506316A1 (en) Biological function measurement and analysis system, biological function measurement and analysis method, and carrier means storing program code
JP2004258032A (ja) 測定機器及びそれに用いる方法
US10288679B2 (en) System and method for providing temporal visualization of signal relationships in a coherent time-domain ATE test execution environment
CN115290299A (zh) 确定屏幕漏光的跌落深度的方法、装置及电子设备
CN111710347B (zh) 音频数据分析方法、电子设备及存储介质
US20170285902A1 (en) Modifying Settings of an Electronic Test or Measurement Instrument
US10580175B2 (en) Apparatus, method and system for resolution dependent graphical representation of signals
CN113692012A (zh) 无线噪声检测***、方法、装置、电子设备、存储介质
JPH09168128A (ja) 液晶テレビの共通電極電位調整装置
CN108254607A (zh) 数字示波器波形显示方法及装置
CN111766423A (zh) 一种示波器的信号显示方法及示波器
CN109471578B (zh) 一种波形局部显示方法、装置、设备以及存储介质
CN105249930B (zh) 一种数据处理方法和装置
JP2020141367A (ja) 画像処理装置、画像処理方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19735905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19735905

Country of ref document: EP

Kind code of ref document: A1