WO2019132550A1 - Coating film forming method and coating film formed thereby - Google Patents

Coating film forming method and coating film formed thereby Download PDF

Info

Publication number
WO2019132550A1
WO2019132550A1 PCT/KR2018/016785 KR2018016785W WO2019132550A1 WO 2019132550 A1 WO2019132550 A1 WO 2019132550A1 KR 2018016785 W KR2018016785 W KR 2018016785W WO 2019132550 A1 WO2019132550 A1 WO 2019132550A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
powder
yttrium oxide
yof
fluoride
Prior art date
Application number
PCT/KR2018/016785
Other languages
French (fr)
Korean (ko)
Inventor
김병기
박재혁
석혜원
Original Assignee
아이원스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아이원스 주식회사 filed Critical 아이원스 주식회사
Priority claimed from KR1020180170812A external-priority patent/KR20190082119A/en
Publication of WO2019132550A1 publication Critical patent/WO2019132550A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings

Definitions

  • An embodiment of the present invention relates to a method of forming a coating film and a coating film therefor.
  • a problem to be solved according to an embodiment of the present invention is to provide a coating film having high etching resistance against corrosive gas and / or high-speed impact ion particles due to high hardness, And a coating film therefor.
  • a problem to be solved according to an embodiment of the present invention is to provide a display device which has a very low porosity (or an extremely high filling rate) and / or a nanostructure and a high light transmittance as well as a high hardness and / A method of forming a coating film capable of protecting a window, and a coating film therefor.
  • a method of forming a coating film according to an embodiment of the present invention includes the steps of: providing a mixed powder including yttrium (Y), oxygen (O), and fluorine (F); And forming an YOF coating film on the base material by using the mixed powder, wherein the YOF coating film has a composition ratio of Y: O: F of 1: 1 by X-ray photoelectron spectroscopy (XPS) : It can be 1: 1.
  • XPS X-ray photoelectron spectroscopy
  • the thickness of the YOF coating film may be 100 nm to 100,000 nm.
  • the mixed powder may be formed by mixing YF 3 and Y 2 O 3.
  • the weight ratio of YF3 may be 90 to 60 wt.%, And the weight ratio of Y2O3 may be 10 to 40 wt.%.
  • the mixed powder may be formed by mixing at least two types of YOF having different component ratios.
  • the YOF may comprise a first YF and a second YF, wherein the Y: O: F component ratio of the first YF may be 5: 4: 7 and the Y: O: F component ratio of the second YF may be 1: Lt; / RTI >
  • the first YOF may have a weight ratio of 60 to 80 wt.%
  • the second YOF may have a weight ratio of 40 to 20 wt.%.
  • the mixed powder may be formed by mixing YF 3 and YOF.
  • the weight ratio of YF3 may be 20 to 50 wt.%, And the weight ratio of YOF may be 10 to 60 wt.%.
  • the mixed powder may be formed by mixing YF 3, YOF, and Y 2 O 3.
  • the weight ratio of YF3 may be 30 to 40 wt.%, The weight ratio of YOF may be 15 to 50 wt.%, And the weight ratio of Y2O3 may be 20 to 45 wt.%.
  • An embodiment of the present invention is an YOF coating film formed on a substrate, wherein the YOF coating film has a composition ratio of Y: O: F of 1: 1: 1 by X-ray photoelectron spectroscopy (XPS) have.
  • the YOF coating film may have a thickness of 100 nm to 100,000 nm.
  • Embodiments of the present invention are directed to a method of treating a mixed powder comprising yttrium fluoride (YF3), yttrium oxide (Y2O3) and / or yttrium oxide fluoride (YOF) by aerosol deposition, air plasma spray,
  • a yttrium oxide fluoride (YOF) coating film having an atomic ratio and / or a crystal property (a three-way crystal structure) suited to the process environment is formed by a sputtering method, a sputtering method and /
  • a method of forming a coating film which can be implemented at a low cost and a coating film therefor are provided.
  • the Y: O: F atomic ratio of the yttrium oxide fluoride coating film according to the embodiment of the present invention is formed to be 1: 1: 1, which is an additional long time stabilization process in the etching chamber Is equal to the composition ratio of the coating film formed. Therefore, with the yttrium oxide fluoride coating film formed as in the present invention, the long time stabilization process time of the conventional etching chamber can be eliminated.
  • embodiments of the present invention provide a method of forming a coating film capable of protecting a semiconductor / display part during an etching process and a coating film having high etching resistance to a corrosive gas and high-impact ion particles due to high hardness . That is, since the yttrium oxide fluoride coating layer according to an embodiment of the present invention has a high hardness in a high density plasma etching environment, the yttrium oxide fluoride coating layer can be sufficiently used as a protective layer for a component exposed to a plasma etching process environment such as semiconductor / display parts. In addition, since the coating film according to the present invention has high withstand voltage characteristics, it is possible to satisfactorily satisfy the withstand voltage range required during the manufacturing process of semiconductor / display parts.
  • Embodiments of the present invention provide transparent yttrium (yttrium) nanoparticles capable of protecting the transparent window of a display device due to the extremely low porosity (or extremely high filling rate) and / or nanostructure and high light transmittance as well as high hardness and / A method for forming an oxide fluoride coating film and a transparent yttrium oxide fluoride coating film therefor. That is, the transparent yttrium oxide fluoride coating film according to the present invention has low porosity and high light transmittance and / or hardness, so that it can be sufficiently used as a transparent protective film of a transparent window.
  • FIG. 2 is a flowchart illustrating a method of forming a yttrium oxide fluoride coating film according to an embodiment of the present invention.
  • FIGS. 3A, 3B, and 3C are cross-sectional views illustrating a yttrium oxide fluoride coating film, an SEM (Scanning Electron Microscope) image, and an EDS (Energy-dispersive X-ray spectroscopy) image according to an embodiment of the present invention.
  • FIG. 4 is a graph showing the hardness characteristics of the yttrium oxide fluoride coating film according to the embodiment of the present invention.
  • FIG. 5 is a graph showing the transmittance characteristics of the yttrium oxide fluoride coating film according to an embodiment of the present invention.
  • 6A, 6B, and 6C are graphs showing intensity of binding energy of Y, O, F obtained by X-ray photoelectron spectroscopy (XPS) analysis of a yttrium oxide fluoride coating film according to an embodiment of the present invention Graph.
  • XPS X-ray photoelectron spectroscopy
  • etching equipment components in semiconductor and / or display fabrication processes are coated with materials of high plasma resistivity Y 2 O 3 and / or YF 3 to extend service life time in plasma etch environments.
  • the Y 2 O 3 and / or YF 3 coating layer (layer) having high plasma resistance reacts with CF 4, which is an etch gas during the etching process, to form a surface layer composed of YOF.
  • CF 4 is an etch gas during the etching process
  • the YOF formed in the etching process was analyzed by XPS analysis.
  • the composition ratio of Y: O: F (At.%) was close to 1: 1: 1
  • the Y: O: F component ratio was not formed to 1: 1: 1.
  • the reason why the Y: O: F component ratio is not formed at a ratio of 1: 1: 1 when a YOF material having a composition ratio of 1: 1: 1 is directly coated on a component is not yet known.
  • the most popular Y5O4F7 material was also found to be close to 1: 1: 1 as a result of analyzing the composition ratio by XPS after forming a coating film using the same.
  • the inventors of the present invention have found that when the composition ratio of the YOF coating film is analyzed by XPS analysis, a mixed powder of YF 3, Y 2 O 3, and / or YOF having a composition ratio of Y: O: F close to 1: A method of forming a coating film and a structure of the coating film have been proposed.
  • yttrium oxide is mainly described on the basis of Y2O3, but it should be understood that various yttrium oxides such as Y5O4F7, Y6O5F8, Y7O6F9, or Y17O14F23 can also be used.
  • FIG. 1 is a schematic view showing an apparatus for forming a yttrium oxide fluoride coating film according to an embodiment of the present invention
  • FIG. 2 is a flowchart showing a method of forming a yttrium oxide fluoride coating film according to an embodiment of the present invention.
  • the aerosol means that a mixed powder of yttrium fluoride powder, yttrium oxide powder and / or yttrium oxide flouride powder having a particle size range of approximately 0.1 to 12 ⁇ ⁇ is dispersed in the carrier gas.
  • the mixed powder of the yttrium fluoride powder, the yttrium oxide powder and / or the yttrium oxide flouride powder may be pretreated and supplied to the powder supply unit 220, for example, but not limited to, , Yttrium fluoride powder, yttrium oxide powder and / or yttrium oxide flouride powder at a temperature of about 100 ° C to 1000 ° C.
  • mixed powders of pre-pretreatment yttrium fluoride powder, yttrium oxide powder and / or yttrium oxide flouride powder may be blended with a high purity zirconia ball, alumina ball and / or alumina ball having a diameter of approximately 5 mm to 20 mm Can be milled for about 1 to 30 hours by a ball mill process with an alloy ball. Further, the mixed powder of the yttrium fluoride powder, the yttrium oxide powder and / or the yttrium oxide fluoride powder may be heat-treated at a temperature of about 100 ° C to 1000 ° C for about 1 hour to 30 hours.
  • the weight ratio of the yttrium fluoride powder, the yttrium oxide powder and / or the yttrium oxide fluoride powder in the mixed powder for forming the yttrium oxide fluoride coating film having the predetermined component ratio may be variously adjusted. This is described below again.
  • yttrium fluoride powder examples include, but are not limited to, high purity zirconia balls, pretreated yttrium fluoride powder, yttrium oxide powder and / or yttrium oxide flouride powder each having a diameter of about 5 mm to 20 mm independently, alumina balls and / Can be milled for about 1 to 30 hours by a ball mill process with an alloy ball.
  • the yttrium fluoride powder, the yttrium oxide powder and / or the yttrium oxide fluoride powder may each independently be heat-treated at a temperature of about 100 ° C to 1000 ° C for about 1 hour to 30 hours.
  • the yttrium fluoride powder, the yttrium oxide powder and / or the yttrium oxide fluoride powder can be mixed with each other in a stirrer. Accordingly, the particle diameter ranges of the yttrium fluoride powder, the yttrium oxide powder and / or the yttrium oxide fluoride powder in the mixed powder may be mutually the same or mutually different. In addition, the weight ratio of the yttrium fluoride powder, the yttrium oxide powder, and / or the yttrium oxide fluoride powder in the mixed powder for forming the yttrium oxide fluoride coating film having a predetermined component ratio may be variously adjusted.
  • a mixed powder of yttrium fluoride powder, yttrium oxide powder and / or yttrium oxide flouride powder is obtained by such a pulverization and / or heat treatment process.
  • yttrium fluoride powder, yttrium oxide powder and / or yttrium oxide A plasma-resistant and / or transparent yttrium oxide fluoride coated thin film is formed by the above-described aerosol deposition, aerosol spray coating or room temperature vacuum spray coating of the mixed powder of the fluoride powder.
  • the transfer gas stored in the transfer gas supply unit 210 may be one or a mixture of two or more selected from the group consisting of oxygen, helium, nitrogen, argon, carbon dioxide, hydrogen, and equivalents thereof. It is not limited.
  • the transfer gas is directly supplied from the transfer gas supply unit 210 to the mixed powder supply unit 220 through the pipe 211 and the flow rate and pressure thereof can be controlled by the flow rate regulator 250.
  • the mixed powder supply unit 220 stores and supplies a mixed powder of a yttrium fluoride powder, a yttrium oxide powder, and / or a yttrium oxide flouride powder after a large amount of pretreatment. After the pretreatment, the yttrium fluoride powder, the yttrium oxide powder, and / The mixed powder of the yttrium oxide fluoride powder is aerosolized by the transfer gas of the transfer gas supply unit 210 described above and transferred to the substrate 232 provided in the process chamber 230 through the transfer pipe 222 and the nozzle 232. [ .
  • the weight ratio of the mixed powder of the yttrium fluoride powder, the yttrium oxide powder and / or the yttrium oxide flouride powder may be the same, but the range of the particle diameters may be different from each other.
  • the yttrium fluoride powder, the yttrium oxide powder and / or the yttrium oxide fluoride powder may have different particle diameters (mu m) as well as different weight ratios (wt%).
  • the process chamber 230 maintains a vacuum during the formation of the yttrium oxide fluoride coating, to which the vacuum unit 240 can be connected. More specifically, the pressure in the process chamber 230 is between about 1 pascal and about 800 pascals, and the pretreatment yttrium fluoride powder, yttrium oxide powder, and / or yttrium oxide flouride powder transported by the high- The pressure of the mixed powder may be from about 500 pascals to about 2000 pascals. However, in any case, the pressure of the high-speed transfer pipe 222 must be higher than the pressure of the process chamber 230.
  • the internal temperature range of the process chamber 230 is maintained at approximately 0 ° C to 30 ° C, so that there is no need for a separate member to increase or decrease the internal temperature of the process chamber 230. That is, the transport gas and / or the substrate may not be separately heated, but may be maintained at a temperature of 0 ° C to 30 ° C. Therefore, in the present invention, when the transparent protective film is formed on the window of the display device, the base material is not thermally shocked.
  • the transport gas and / or the substrate may be heated to a temperature of about 30 ⁇ to 1000 ⁇ for improving the deposition efficiency and densification of the yttrium oxide fluoride coating film. That is, the transfer gas in the transfer gas supply unit 210 may be heated by a heater (not shown), or the substrate 231 in the process chamber 230 may be heated by a separate heater (not shown).
  • the transport gas and / or the substrate is higher than the temperature of about 1000 ⁇ , the mixed powder of the yttrium fluoride powder and the yttrium oxide powder is melted after the pretreatment, causing a rapid phase transition, and the porosity of the yttrium oxide fluoride coating film is increased (The filling rate is lowered) and the internal structure of the yttrium oxide fluoride coating film may become unstable.
  • this temperature range is not limited in the present invention, and the internal temperature range of the transfer gas, the substrate and / or the process chamber may be adjusted between 0 ° C and 1000 ° C depending on the characteristics of the substrate on which the coating film is to be formed. That is, a process temperature of approximately 0 ° C to 30 ° C may be provided to coat the window of the display device as described above, and a process temperature of approximately 0 ° C to 1000 ° C may be provided to coat the semiconductor / display process equipment .
  • the pressure difference between the process chamber 230 and the high-speed transfer pipe 222 may be approximately 1.5 times to 2000 times. If the pressure difference is less than about 1.5 times, it may be difficult to transfer the mixed powder of yttrium fluoride powder, yttrium oxide powder and / or yttrium oxide flouride powder at high speed after the pretreatment, and if the pressure difference is greater than about 2000 times, The surface of the substrate may be excessively etched / etched by the mixed powder of the fluoride powder, the yttrium oxide powder and / or the yttrium oxide fluoride powder.
  • a nozzle 232 connected to the transfer tube 222 is provided in the process chamber 230, and after the pretreatment at a speed of about 100 m / s to 500 m / s, the yttrium fluoride powder, the yttrium oxide powder, and / The mixed powder of the yttrium oxide fluoride powder is collided / crushed on the substrate 231.
  • the mixed powder of the yttrium fluoride powder, the yttrium oxide powder and / or the yttrium oxide fluoride powder after the pretreatment through the nozzle 232 is crushed and / or crushed by the kinetic energy obtained during transportation and the collision energy generated during high-
  • a yttrium oxide fluoride coating film having a predetermined thickness, a composition ratio and a crystal structure is formed on the surface of the substrate 231.
  • the yttrium fluoride powder used in the embodiment of the present invention has a particle size range of approximately 0.1 ⁇ to 12 ⁇ , a purity of 99.99% or more, and can be in the form of a spherical white powder.
  • the current selling price of yttrium fluoride powder is approximately $ 200 / kg.
  • the yttrium oxide powder used in the embodiment of the present invention may have a spherical white powder shape with a particle size range of approximately 0.1 to 12 ⁇ m and a purity of 99.99% or more.
  • the selling price of yttrium oxide powder is now approximately $ 40 / kg.
  • the mixed powder of the yttrium fluoride powder and the yttrium oxide powder is also in the form of a white powder, and the yttrium fluoride powder and the yttrium oxide powder are not distinguished visually.
  • yttrium fluoride powder, yttrium oxide powder and / or yttrium oxide fluoride powder are separately purchased and mixed to form the yttrium oxide fluoride coating film as described above, the formation cost of the coating film is significantly reduced Able to know.
  • XPS is one of the most widely used analytical techniques for surface analysis. It is based on the theory of photoelectric effect published by Einstein in 1905.
  • the core level corresponding to tens to thousands of eV, which is relatively long in wavelength of the X-ray to be analyzed
  • the core level corresponding to tens to thousands of eV, which is relatively long in wavelength of the X-ray to be analyzed
  • the core level corresponding to tens to thousands of eV, which is relatively long in wavelength of the X-ray to be analyzed
  • the core level the core level
  • weakly bound valence level electrons are emitted.
  • the emitted electrons are called photoelectrons, and in order for the photoelectrons to be emitted, kinetic energy is required to go beyond the binding energy and work function of electrons.
  • the energy hv of the incident X-ray is analyzed.
  • the binding energy measured by XPS is the inherent energy of the element
  • the element of the analytical sample can be analyzed.
  • the binding energy changes according to the chemical bonding state, so information on the chemical bonding state can also be obtained.
  • XPS provides chemical information on the chemical structure and oxidation state of the constituent atoms of the sample at the same time, it is called ESCA which is an electron spectroscopy for chemical analysis for chemical analysis.
  • tens of kV electrons collide with the Al anode inherent X-rays are generated from the anode.
  • Al-K ⁇ 3 weak X-ray
  • FWHM half-height width
  • the photoelectrons emitted by irradiating the X-rays from the monochromator onto the sample surface were analyzed by using the current most commonly used Hemispherical Sector Energy Analyzer (HSA) Only electrons with specific kinetic energy reach the detector through the hemisphere.
  • HSA Hemispherical Sector Energy Analyzer
  • the measured binding energy of the optoelectronic device is based on not only the kind of element but also the information about the oxidation state and the chemical bonding state of the atom, which is one of the characteristics of the XPS from the binding energy change according to the change of the charge potential according to the change of the electron distribution of the atom Can also be provided.
  • XPS X-ray photoelectron spectroscopy
  • the XPS spectra of the three elements Y, O and F constituting the yttrium oxide fluoride coating film are determined.
  • the yttrium oxide fluoride coating film does not change the composition ratio depending on the depth, the area of the XPS peak is measured So that the relative component ratio can be calculated.
  • FIG. 6A, 6B, and 6C are graphs showing intensity of binding energy of Y, O, F obtained by X-ray photoelectron spectroscopy (XPS) analysis of the yttrium oxide fluoride coating film according to an embodiment of the present invention
  • XPS X-ray photoelectron spectroscopy
  • the composition ratio of Y: O: F can be calculated from the area of each of the fluoride (F) peaks having a binding energy of 688 eV.
  • the Y: O: F component ratio of the YOF coating film formed by the present invention is, for example, about 1: 1: 1.
  • the substrate on which the yttrium oxide fluoride coating film according to the present invention is formed may be a transparent window of a component and / or a display device exposed to a plasma environment, as described above.
  • the component may be an internal component of a semiconductor or process chamber for manufacturing a display device
  • the transparent window may be a glass substrate, a plastic substrate, a sapphire substrate, or a quartz substrate.
  • the transparent window is a glass substrate or a plastic substrate
  • the yttrium oxide fluoride transparent protective film can be formed at a low temperature (0 ° C to 30 ° C)
  • damage to the glass substrate or the plastic substrate can be prevented .
  • YF3 powder and Y2O3 powder were mixed and an YOF coating film having a composition ratio of Y: O: F of 1: 1: 1 was formed by an aerosol deposition method.
  • the weight ratio of YF 3 powder was set to about 85 to 75 wt.%, And the weight ratio of Y 2 O 3 powder was set to about 25 to 15 wt.%.
  • Y A structure in which the ratio of O: F was close to approximately 1: 1: 1 was obtained.
  • Example 2 (at least two YOF mixed coatings having different composition ratios)
  • At least two kinds of YOF powders having different composition ratios were mixed and an YOF coating film having a composition ratio of Y: O: F of 1: 1: 1 was formed by an aerosol deposition method.
  • the YOF powder comprises a first YF powder and a second YF powder, wherein the Y: O: F component ratio of the first YF powder is approximately 5: 4: 7 and the Y: O: F component ratio of the second YF powder is approximately 1: : 1.
  • the weight ratio of the first and second phosphorescent powders was set to about 65 to 75 wt.%, And the weight ratio of the second and third phosphorescent powders was about 35 to 25 wt.%.
  • YF3 powder and YOF powder were mixed and an YOF coating film having a composition ratio of Y: O: F of 1: 1: 1 was formed by an aerosol deposition method.
  • the weight ratio of the YF 3 powder to the YF 3 powder was about 15 to 25 wt.%, And the weight ratio of the YOF powder was about 85 to 75 wt.%.
  • the mixed powder was used in this weight ratio range, A structure in which the ratio of O: F was close to approximately 1: 1: 1 was obtained.
  • YF3 powder, YOF powder, and Y2O3 powder were mixed to form an YOF coating film having a composition ratio of Y: O: F of 1: 1: 1 in an aerosol deposition system.
  • the weight ratio of YF 3 powder was set to about 30 to 40 wt.%
  • the weight ratio of YOF powder was set to about 15 to 50 wt.%
  • the weight ratio of Y 2 O 3 powder was set to about 20 to 45 wt.
  • the structure in which the Y: O: F component ratio of the YOF coating film was close to 1: 1: 1 was obtained.
  • the thus-completed YOF coating film exhibited a weight ratio (wt.%) And a composition ratio (At.%) As shown in Table 1 below.
  • the hardness of the YOF coating film was approximately 6 GPa to 12 Gpa when the HV was converted into GPa, and the porosity of the YOF coating film was approximately 0.01 to 0.1%.
  • the withstanding voltage of the YOF coating film was thus, the embodiment of the present invention is excellent in all of the hardness, porosity and dielectric strength characteristics of the YOF coating film, so that the YOF coating film is exposed to a plasma environment, It can be seen that it can be used as a protective film and / or a transparent window protective film of a display device.
  • the YOF hardness is measured by cutting the YOF coating film with a diamond quadrilateral, and the porosity is measured by scanning an electron microscope to obtain an image.
  • the image is analyzed by a computer equipped with an image processing software and the withstand voltage is measured
  • a YOF coating film is formed on a metal substrate, and a metal substrate is measured as a lower end electrode, and an electrode is provided on the top of the thin film.
  • 3A, 3B, and 3C are cross-sectional views illustrating a yttrium oxide fluoride coating film, an SEM (Scanning Electron Microscope) image, and an EDS (Energy-dispersive X-ray spectroscopy) image according to an embodiment of the present invention.
  • SEM Sccanning Electron Microscope
  • EDS Electronic X-ray spectroscopy
  • a yttrium oxide fluoride coating film having a YOF composition ratio of 1: 1: 1 through XPS measurement had a porosity of about 0.5%, so that a high density yttrium oxide fluoride coating film was formed by a room temperature vacuum spray coating method.
  • the yttrium oxide fluoride coating film has a porosity of about 0.01% to about 1.0%, so that the filling rate of the yttrium oxide fluoride coating film is about 99.00% to about 99.99%.
  • the X axis is the depth (nm) of the yttrium oxide fluoride coating film pressed by the diamond quadrangular pyramid
  • the Y axis is the force ( ⁇ ⁇ ) pressed by the diamond quadrangular pyramid.
  • a groove having a depth of approximately 402 nm is formed in the yttrium oxide fluoride coating film.
  • a groove having a depth of approximately 395 nm was formed in the case of a coating film having a composition ratio of YOF of 1: 1: 1.
  • the YOF 1: 1: 1 coating film has a hardness value of approximately 10.32 Gpa.
  • the hardness of the YOF coating film varies depending on the density of the thin film formed according to the process conditions of the coating film. Therefore, when the density of the YOF 1: 1: 1 coating film is further increased, the hardness is also expected to increase together, and can exhibit hardness characteristics of approximately 12 GPa.
  • the reason why the yttrium oxide fluoride coating film has a recess having a depth of approximately 395 nm remains is that the yttrium oxide fluoride coating film is plastically deformed.
  • oxygen-fluoride treatment can be performed through oxygen or air heat treatment to further improve the strength of the coating film.
  • oxygen-fluoride treatment can be performed through oxygen or air heat treatment to further improve the strength of the coating film.
  • an yttrium oxide fluoride coating film having an increased oxygen content of not Y: O: F ratio of 1: 1: 1 is formed in the yttrium oxide fluoride coating film, and Y2O3 .
  • post-heat treatment of the coating film improves the mechanical properties by relaxing residual stress inside the coating film, but it is applied to a light-transmitting substrate (glass, quartz, plastic substrate) due to a high temperature heat treatment process (500 to 1000 ° C.) And the light transmittance is remarkably lowered due to the large amount of oxygen existing in the coating film.
  • 5 is a graph showing the transmittance characteristics of the yttrium oxide fluoride coating film according to an embodiment of the present invention.
  • the X-axis is the wavelength range (nm) of the light
  • the Y-axis is the transmittance (%).
  • the thickness of the yttrium oxide fluoride coating film at this time is approximately 1.4 mu m.
  • the yttrium oxide fluoride coating film according to the embodiment of the present invention exhibited a transmittance of about 88.5% at a light transmittance in a wavelength range of about 400 nm to 700 nm (i.e., a visible light range) . Accordingly, it can be seen that the yttrium oxide fluoride coating film according to the embodiment of the present invention is suitable for protecting the transparent window of the display device as well as the plasma plasma field.
  • embodiments of the present invention are directed to a method of treating a mixed powder comprising yttrium fluoride (YF3), yttrium oxide (Y2O3) and / or yttrium oxide fluoride (YOF) with an aerosol deposition (Aerosol Deposition), an air plasma spray
  • a yttrium oxide fluoride (YOF) coating film having a thickness, a composition ratio and / or a crystal property suitable for a process environment can be realized at a low cost by a method such as sputtering, air plasma spraying, suspension plasma spraying, sputtering and / or electron beam And a coating film according to the method.
  • Embodiments of the present invention also provide a method of forming a coating film having high etch resistance to corrosive gases and / or fast impacting ion particles due to high hardness, thereby protecting the semiconductor / display components during the etching process, Coating layer.
  • the embodiment of the present invention can be applied to a display device which can protect a transparent window of a display device because the porosity is extremely small (or the filling rate is extremely high) and / or the nanostructure has a high light transmittance and a high hardness and /
  • a method for forming a coating film and a coating film therefor are provided.

Abstract

An embodiment of the present invention relates to a coating film forming method and a coating film formed thereby. The technical objective is to provide: a coating film forming method for mixing a yttrium oxide (Y2O3) powder and a yttrium fluoride (YF3) powder in predetermined diameter ranges and in a predetermined weight ratio, and pulverizing the mixture powder by allowing the mixture powder to collide with a substrate by aerosol deposition, thereby enabling a yttrium oxide fluoride coating film having desired XRD crystal characteristics and an EDS atomic ratio, which are suitable for a processing environment, to be implemented at low cost; and a coating film formed thereby. To this end, disclosed in an embodiment of the present invention are a coating film forming method and a coating film formed thereby, the method comprising the steps of: providing a mixture powder comprising yttrium (Y), oxygen (O) and fluorine (F); and forming a YOF coating film on a substrate by using the mixture powder, wherein the atomic ratio of Y:O:F according to X-ray photoelectron spectroscopy (XPS), of the YOF coating film, is 1:1:1.

Description

코팅막의 형성 방법 및 이에 따른 코팅막A method of forming a coating film and a coating film
본 발명의 실시예는 코팅막의 형성 방법 및 이에 따른 코팅막에 관한 것이다.An embodiment of the present invention relates to a method of forming a coating film and a coating film therefor.
반도체 및/또는 표시 장치의 제조 공정에서 매우 높은 에칭율과 정교한 선폭을 위해, 염소계, 질소계 및/또는 불소계의 높은 부식성을 가진 가스가 사용되고 있다. 이러한 혹독한 환경 속에서 사용되는 제조 공정 장비는 가동의 이점과 사용 기간의 연장을 위해 공정 장비의 표면에 플라즈마 및/또는 부식 가스에 대한 저항성이 높은 보호 코팅막을 필요로 한다.In order to obtain a very high etching rate and precise line width in semiconductor and / or display device manufacturing processes, chlorine-based, nitrogen-based and / or fluorine-based highly corrosive gases are used. Manufacturing process equipment used in such a harsh environment requires a protective coating that is highly resistant to plasma and / or corrosive gases on the surface of the process equipment in order to benefit from the operation and extend the useful life.
본 발명의 실시예에 따른 해결하고자 하는 과제는 이트륨 플로라이드(YF3), 이트륨 옥사이드(Y2O3) 및/또는 이트륨 옥사이드 플로라이드(YOF)를 포함하는 혼합 분말을 에어로졸 디포지션(Aerosol Deposition), 에어 플라즈마 스프레이(Air Plasma Spray), 서스펜션 플라즈마 스프레이(Suspension Plasma Spray), 스퍼터링 및/또는 전자빔의 방식으로, 공정 환경에 적합한 성분비(atomic ratio) 및/또는 결정 특성(삼방정계 결정 구조)을 갖는 이트륨 옥사이드 플로라이드(YOF) 코팅막을 저비용으로 구현할 수 있는 코팅막의 형성 방법 및 이에 따른 코팅막을 제공하는데 있다.A problem to be solved according to an embodiment of the present invention is to provide a method and apparatus for mixing mixed powder containing yttrium fluoride (YF3), yttrium oxide (Y2O3) and / or yttrium oxide fluoride (YOF) with aerosol deposition, air plasma A yttrium oxide film having an atomic ratio and / or a crystal property (a three-way crystal structure) suitable for the process environment is formed by a method such as spraying (air plasma spraying), suspension plasma spraying, sputtering and / A method of forming a coating film capable of realizing a low cost of a YOF coating film and a coating film therefor.
또한, 본 발명의 실시예에 따른 해결하고자 하는 과제는 높은 경도로 인해 부식성 가스 및/또는 고속 충돌 이온 입자에 대하여 높은 에칭 저항성을 갖고, 이에 따라 에칭 공정 중 반도체/디스플레이 부품을 보호할 수 있는 코팅막의 형성 방법 및 이에 따른 코팅막을 제공하는데 있다.Also, a problem to be solved according to an embodiment of the present invention is to provide a coating film having high etching resistance against corrosive gas and / or high-speed impact ion particles due to high hardness, And a coating film therefor.
또한, 본 발명의 실시예에 따른 해결하고자 하는 과제는 기공율이 극히 작고(또는 충진율이 극히 높고) 그리고/또는 나노 구조를 가져 광 투과율이 높을 뿐만 아니라 경도 및/또는 접합 강도가 높아 표시 장치의 투명 윈도우를 보호할 수 있는 코팅막의 형성 방법 및 이에 따른 코팅막을 제공하는데 있다.In addition, a problem to be solved according to an embodiment of the present invention is to provide a display device which has a very low porosity (or an extremely high filling rate) and / or a nanostructure and a high light transmittance as well as a high hardness and / A method of forming a coating film capable of protecting a window, and a coating film therefor.
본 발명의 실시예에 따른 코팅막의 형성 방법은 이트륨(Y), 산소(O) 및 불소(F)를 포함하는 혼합 분말을 제공하는 단계; 및 상기 혼합 분말을 이용하여 기재에 YOF 코팅막을 형성하는 단계를 포함하고, 상기 YOF 코팅막은 엑스선 광전자 분광법(X-ray Photoelectron Spectroscopy; XPS)에 의한 Y:O:F의 성분비(atomic ratio)가 1:1:1일 수 있다.A method of forming a coating film according to an embodiment of the present invention includes the steps of: providing a mixed powder including yttrium (Y), oxygen (O), and fluorine (F); And forming an YOF coating film on the base material by using the mixed powder, wherein the YOF coating film has a composition ratio of Y: O: F of 1: 1 by X-ray photoelectron spectroscopy (XPS) : It can be 1: 1.
상기 YOF 코팅막의 두께는 100 nm 내지 100,000 nm일 수 있다.The thickness of the YOF coating film may be 100 nm to 100,000 nm.
상기 혼합 분말은 YF3와 Y2O3가 혼합되어 형성될 수 있다.The mixed powder may be formed by mixing YF 3 and Y 2 O 3.
상기 YF3는 중량비가 90~60 wt.%일 수 있고, 상기 Y2O3는 중량비가 10~40 wt.%일 수 있다.The weight ratio of YF3 may be 90 to 60 wt.%, And the weight ratio of Y2O3 may be 10 to 40 wt.%.
상기 혼합 분말은 성분비가 서로 다른 적어도 2종의 YOF가 혼합되어 형성될 수 있다.The mixed powder may be formed by mixing at least two types of YOF having different component ratios.
상기 YOF는 제1YOF 및 제2YOF를 포함할 수 있고, 상기 제1YOF의 Y:O:F 성분비는 5:4:7일 수 있으며, 상기 제2YOF의 Y:O:F 성분비는 1:1:1일 수 있다.Wherein the YOF may comprise a first YF and a second YF, wherein the Y: O: F component ratio of the first YF may be 5: 4: 7 and the Y: O: F component ratio of the second YF may be 1: Lt; / RTI >
상기 제1YOF는 중량비가 60~80 wt.%일 수 있고, 상기 제2YOF는 중량비가 40~20 wt.%일 수 있다.The first YOF may have a weight ratio of 60 to 80 wt.%, And the second YOF may have a weight ratio of 40 to 20 wt.%.
상기 혼합 분말은 YF3와 YOF가 혼합되어 형성될 수 있다.The mixed powder may be formed by mixing YF 3 and YOF.
상기 YF3는 중량비가 20~50 wt.%일 수 있고, 상기 YOF는 중량비가 10~60 wt.%일 수 있다.The weight ratio of YF3 may be 20 to 50 wt.%, And the weight ratio of YOF may be 10 to 60 wt.%.
상기 혼합 분말은 YF3, YOF 및 Y2O3가 혼합되어 형성될 수 있다.The mixed powder may be formed by mixing YF 3, YOF, and Y 2 O 3.
상기 YF3는 중량비가 30~40 wt.%일 수 있고, 상기 YOF는 중량비가 15~50 wt.%일 수 있으며, 상기 Y2O3는 중량비가 20~45 wt.%일 수 있다.The weight ratio of YF3 may be 30 to 40 wt.%, The weight ratio of YOF may be 15 to 50 wt.%, And the weight ratio of Y2O3 may be 20 to 45 wt.%.
본 발명의 실시예는 기재에 형성된 YOF 코팅막으로서, 상기 YOF 코팅막은 엑스선 광전자 분광법(X-ray Photoelectron Spectroscopy; XPS)에 의한 Y:O:F의 성분비(atomic ratio)가 1:1:1일 수 있다. 상기 YOF 코팅막은 두께가 100 nm 내지 100,000 nm일 수 있다.An embodiment of the present invention is an YOF coating film formed on a substrate, wherein the YOF coating film has a composition ratio of Y: O: F of 1: 1: 1 by X-ray photoelectron spectroscopy (XPS) have. The YOF coating film may have a thickness of 100 nm to 100,000 nm.
본 발명의 실시예는 이트륨 플로라이드(YF3), 이트륨 옥사이드(Y2O3) 및/또는 이트륨 옥사이드 플로라이드(YOF)를 포함하는 혼합 분말을 에어로졸 디포지션(Aerosol Deposition), 에어 플라즈마 스프레이(Air Plasma Spray), 서스펜션 플라즈마 스프레이(Suspension Plasma Spray), 스퍼터링 및/또는 전자빔의 방식으로, 공정 환경에 적합한 성분비(atomic ratio) 및/또는 결정 특성(삼방정계 결정 구조)을 갖는 이트륨 옥사이드 플로라이드(YOF) 코팅막을 저비용으로 구현할 수 있는 코팅막의 형성 방법 및 이에 따른 코팅막을 제공한다. 즉, 본 발명의 실시예에 따른 이트륨 옥사이드 플로라이드 코팅막의 Y:O:F 성분비(atomic ratio)는 1:1:1로 형성되는데, 이는 에칭 챔버 내에서 별도의 추가적인 긴 시간 동안의 안정화 공정에 의해 형성되는 코팅막의 성분비와 동일하다. 따라서, 본 발명에서와 같이 형성된 이트륨 옥사이드 플로라이드 코팅막에 의해, 종래와 같은 에칭 챔버의 긴 시간동안의 안정화 공정 시간이 제거될 수 있다.Embodiments of the present invention are directed to a method of treating a mixed powder comprising yttrium fluoride (YF3), yttrium oxide (Y2O3) and / or yttrium oxide fluoride (YOF) by aerosol deposition, air plasma spray, A yttrium oxide fluoride (YOF) coating film having an atomic ratio and / or a crystal property (a three-way crystal structure) suited to the process environment is formed by a sputtering method, a sputtering method and / A method of forming a coating film which can be implemented at a low cost and a coating film therefor are provided. That is, the Y: O: F atomic ratio of the yttrium oxide fluoride coating film according to the embodiment of the present invention is formed to be 1: 1: 1, which is an additional long time stabilization process in the etching chamber Is equal to the composition ratio of the coating film formed. Therefore, with the yttrium oxide fluoride coating film formed as in the present invention, the long time stabilization process time of the conventional etching chamber can be eliminated.
또한, 본 발명의 실시예는 높은 경도로 인해 부식성 가스 및 고속 충돌 이온 입자에 대하여 높은 에칭 저항성을 갖고, 에칭 공정 중 반도체/디스플레이 부품을 보호할 수 있는 코팅막의 형성 방법 및 이에 따른 코팅막을 제공한다. 즉, 본 발명의 실시예에 따른 이트륨 옥사이드 플로라이드 코팅막은 고밀도 플라즈마 에칭 환경에서 높은 경도를 갖기 때문에, 반도체/디스플레이 부품과 같은 플라즈마 에칭 공정 환경에 노출되는 부품의 보호막으로 충분히 이용될 수 있다. 또한, 본 발명에 따른 코팅막은 내전압 특성이 높아 반도체/디스플레이 부품의 제조 공정 중 요구되는 내전압 범위를 충분히 만족시킬 수 있다.In addition, embodiments of the present invention provide a method of forming a coating film capable of protecting a semiconductor / display part during an etching process and a coating film having high etching resistance to a corrosive gas and high-impact ion particles due to high hardness . That is, since the yttrium oxide fluoride coating layer according to an embodiment of the present invention has a high hardness in a high density plasma etching environment, the yttrium oxide fluoride coating layer can be sufficiently used as a protective layer for a component exposed to a plasma etching process environment such as semiconductor / display parts. In addition, since the coating film according to the present invention has high withstand voltage characteristics, it is possible to satisfactorily satisfy the withstand voltage range required during the manufacturing process of semiconductor / display parts.
본 발명의 실시예는 기공율이 극히 작고(또는 충진율이 극히 높고) 그리고/또한 나노 구조를 가져 광 투과율이 높을 뿐만 아니라 경도 및/또는 접합 강도가 높아 표시 장치의 투명 윈도우를 보호할 수 있는 투명 이트륨 옥사이드 플로라이드 코팅막의 형성 방법 및 이에 따른 투명 이트륨 옥사이드 플로라이드 코팅막을 제공한다. 즉, 본 발명에 따른 투명 이트륨 옥사이드 플로라이드 코팅막은 기공율이 낮고, 광 투과율 및/또는 경도가 높아 투명 윈도우의 투명 보호막으로 충분히 이용될 수 있다.Embodiments of the present invention provide transparent yttrium (yttrium) nanoparticles capable of protecting the transparent window of a display device due to the extremely low porosity (or extremely high filling rate) and / or nanostructure and high light transmittance as well as high hardness and / A method for forming an oxide fluoride coating film and a transparent yttrium oxide fluoride coating film therefor. That is, the transparent yttrium oxide fluoride coating film according to the present invention has low porosity and high light transmittance and / or hardness, so that it can be sufficiently used as a transparent protective film of a transparent window.
도 1은 본 발명의 실시예에 따른 이트륨 옥사이드 플로라이드 코팅막 형성을 위한 장치를 도시한 개략도이다.1 is a schematic view showing an apparatus for forming a yttrium oxide fluoride coating film according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 이트륨 옥사이드 플로라이드 코팅막 형성 방법을 도시한 순서도이다.2 is a flowchart illustrating a method of forming a yttrium oxide fluoride coating film according to an embodiment of the present invention.
도 3a, 도 3b 및 도 3c는 본 발명의 실시예에 따른 이트륨 옥사이드 플로라이드 코팅막을 도시한 단면도, SEM(Scanning electron microscope) 이미지 및 EDS(Energy-dispersive X-ray spectroscopy) 이미지이다.FIGS. 3A, 3B, and 3C are cross-sectional views illustrating a yttrium oxide fluoride coating film, an SEM (Scanning Electron Microscope) image, and an EDS (Energy-dispersive X-ray spectroscopy) image according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 이트륨 옥사이드 플로라이드 코팅막의 경도 특성을 도시한 그래프이다.4 is a graph showing the hardness characteristics of the yttrium oxide fluoride coating film according to the embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 이트륨 옥사이드 플로라이드 코팅막의 투과도 특성을 도시한 그래프이다.5 is a graph showing the transmittance characteristics of the yttrium oxide fluoride coating film according to an embodiment of the present invention.
도 6a, 도 6b 및 도 6c는 본 발명의 실시예에 따른 이트륨 옥사이드 플로라이드 코팅막을 엑스선 광전자 분광법(X-ray Photoelectron Spectroscopy; XPS)으로 분석한 Y,O,F의 바인딩에너지별 세기를 도시한 그래프이다.6A, 6B, and 6C are graphs showing intensity of binding energy of Y, O, F obtained by X-ray photoelectron spectroscopy (XPS) analysis of a yttrium oxide fluoride coating film according to an embodiment of the present invention Graph.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.The embodiments of the present invention are described in order to more fully explain the present invention to those skilled in the art, and the following embodiments may be modified into various other forms, The present invention is not limited to the embodiment. Rather, these embodiments are provided so that this disclosure will be more faithful and complete, and will fully convey the scope of the invention to those skilled in the art.
또한, 본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise)" 및/또는 "포함하는(comprising)"은 언급한 형상, 단계, 숫자, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 단계, 숫자, 동작, 부재, 요소 및 /또는 이들 그룹의 존재 또는 부가를 배제하는 것이 아니다. 또한, 본 명세서에서 사용된 바와 같이, 용어 "및/또는"은 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다.In addition, the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting of the invention. As used herein, the singular forms "a," "an," and "the" include singular forms unless the context clearly dictates otherwise. Also, " comprise "and / or" comprising "when used in this specification are taken to specify the presence of stated features, steps, numbers, operations, elements, elements and / Steps, numbers, operations, elements, elements, and / or groups. Also, as used herein, the term "and / or" includes any and all combinations of any of the listed items.
일반적으로, 반도체 및/또는 디스플레이의 제조 공정에서 에칭 장비 부품은 플라즈마 식각 환경에서 사용 수명 시간을 연장하기 위하여 플라즈마 저항성이 높은 Y2O3 및/또는 YF3의 소재를 부품에 코팅하고 있다. 이러한 플라즈마 저항성이 높은 Y2O3 및/또는 YF3 코팅막(층)은 에칭 공정 시 식각 가스인 CF4와 반응하여 YOF로 이루어진 표면층을 형성하며, 이에 따라 부품 표면에 YOF 코팅막이 형성되는 동안 공정 긴 안정화 시간이 소요된다. 이는 결국 반도체 및/또는 디스플레이의 생산 및 제조 시간에 많은 영향을 미친다.In general, etching equipment components in semiconductor and / or display fabrication processes are coated with materials of high plasma resistivity Y 2 O 3 and / or YF 3 to extend service life time in plasma etch environments. The Y 2 O 3 and / or YF 3 coating layer (layer) having high plasma resistance reacts with CF 4, which is an etch gas during the etching process, to form a surface layer composed of YOF. Thus, a long stabilization time is required do. This ultimately affects the production and manufacturing time of semiconductors and / or displays.
또한, 에칭 장비의 주기적인 유지 관리 시, YOF 코팅막이 형성되는 긴 안정화 시간이 항상 소요되므로 안정화 시간을 감축하는 대안이 필요하다.In addition, in the periodic maintenance of the etching equipment, since the long stabilization time for forming the YOF coating film is always required, an alternative to reduce the stabilization time is needed.
이러한 기술 변화의 추세로 Y2O3, YF3 외에 YOF 소재를 직접 부품에 코팅하는 기술 개발이 진행되고 있으나, 에칭 공정 중에 형성된 YOF와 직접 부품에 코팅한 YOF를 비교 분석한 결과 Y:O:F의 성분비(atomic ratio)가 다르게 측정됨을 발견하였다.As a result of this technological change, YF and YF3 materials have been developed to directly coat YOF materials. However, YOF and YF coated on the direct parts were compared with each other. atomic ratio) were measured differently.
일례로, 에칭 공정중 형성된 YOF를 XPS 분석법으로 성분 분석을 진행한 결과, Y:O:F의 성분비(At.%)가 대략 1:1:1에 가까웠으나, 성분비 1:1:1의 YOF 소재를 직접 부품에 코팅하면 Y:O:F 성분비가 1:1:1로 형성되지 않음을 발견하였다. 이와 같이, 성분비 1:1:1의 YOF 소재를 직접 부품에 코팅할 경우 Y:O:F 성분비가 1:1:1로 형성되지 않는 원인은 아직 밝혀지지 않고 있다. 더욱이, 가장 대중적으로 사용되는 Y5O4F7의 소재 역시, 이를 이용하여 코팅막을 형성한 후 XPS로 성분비를 분석한 결과 1:1:1에 근접하지 않음을 확인하였다.For example, the YOF formed in the etching process was analyzed by XPS analysis. As a result, the composition ratio of Y: O: F (At.%) Was close to 1: 1: 1, It was found that when the material was directly coated on the parts, the Y: O: F component ratio was not formed to 1: 1: 1. As described above, the reason why the Y: O: F component ratio is not formed at a ratio of 1: 1: 1 when a YOF material having a composition ratio of 1: 1: 1 is directly coated on a component is not yet known. Furthermore, the most popular Y5O4F7 material was also found to be close to 1: 1: 1 as a result of analyzing the composition ratio by XPS after forming a coating film using the same.
따라서, 본 발명의 발명자(들)는 XPS 분석법을 통해 YOF 코팅막의 성분비를 분석할 경우, Y:O:F의 성분비가 1:1:1에 근접한 YF3, Y2O3 및/또는 YOF 소재의 혼합 분말을 이용한 코팅막의 형성 방법 및 그 코팅막의 구조를 제안하게 되었다.Accordingly, the inventors of the present invention have found that when the composition ratio of the YOF coating film is analyzed by XPS analysis, a mixed powder of YF 3, Y 2 O 3, and / or YOF having a composition ratio of Y: O: F close to 1: A method of forming a coating film and a structure of the coating film have been proposed.
한편, 이하에서 YF3, Y2O3 및/또는 YOF를 포함하는 혼합 분말을 에어로졸 디포지션(Aerosol Deposition) 방식 또는 상온 진공 분사 방식으로 기재에 코팅하는 방법을 일례로 설명하나, 본 발명은 이에 한정되지 않고, 에어 플라즈마 스프레이(Air Plasma Spray), 서스펜션 플라즈마 스프레이(Suspension Plasma Spray), 스퍼터링, 전자빔 및 그 등가 방식중 어느 하나의 방식으로, 공정 환경에 적합한 성분비(atomic ratio) 및/또는 결정 특성을 갖는 YOF 코팅막을 구현할 수 있음을 이해하여야 한다. 더욱이, 이하의 설명에서 이트륨 옥사이드는 주로 Y2O3를 기준으로 설명하나, 이밖에도 Y5O4F7, Y6O5F8, Y7O6F9 또는 Y17O14F23 등의 다양한 이트륨 옥사이드도 사용 가능함을 이해하여야 한다.Hereinafter, a method of coating a mixed powder containing YF 3, Y 2 O 3, and / or YOF on a substrate by an aerosol deposition method or a room temperature vacuum spraying method will be described as an example, but the present invention is not limited thereto, A YOF coating film having an atomic ratio and / or a crystallization characteristic suitable for a process environment in any one of an air plasma spray method, a suspension plasma spray method, a sputtering method, an electron beam method, May be implemented. Further, in the following description, yttrium oxide is mainly described on the basis of Y2O3, but it should be understood that various yttrium oxides such as Y5O4F7, Y6O5F8, Y7O6F9, or Y17O14F23 can also be used.
도 1은 본 발명의 실시예에 따른 이트륨 옥사이드 플로라이드 코팅막 형성을 위한 장치를 도시한 개략도이고, 도 2는 본 발명의 실시예에 따른 이트륨 옥사이드 플로라이드 코팅막 형성 방법을 도시한 순서도이다.FIG. 1 is a schematic view showing an apparatus for forming a yttrium oxide fluoride coating film according to an embodiment of the present invention, and FIG. 2 is a flowchart showing a method of forming a yttrium oxide fluoride coating film according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 본 발명에 따른 이트륨 옥사이드 플로라이드 코팅막 형성 장치(200)는 이송 가스 공급부(210), 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말의 혼합 분말을 보관 및 공급하는 혼합 분말 공급부(220), 혼합 분말 공급부(220)로부터 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말의 혼합 분말을 이송 가스를 이용하여 에어로졸(aerosol) 상태로 고속으로 이송하는 이송관(222), 이송관(222)으로부터의 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말의 혼합 분말을 기재(231)에 코팅/적층 또는 스프레잉/분사하는 노즐(232), 노즐(232)로부터의 전처리 후 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말의 혼합 분말이 기재(231)의 표면에 충돌 및/또는 파쇄되도록 함으로써, 일정 두께(예를 들면, 100 nm 내지 100,000 nm), 소정 성분비(예를 들면, Y:O:F 성분비가 1:1:1) 및/또는 소정 결정 구조(예를 들면, 삼방정계 결정 구조)를 갖는 이트륨 옥사이드 플로라이드 코팅막이 형성되도록 하는 공정 챔버(230)를 포함할 수 있다.1, an apparatus 200 for forming an yttrium oxide fluoride coating film according to the present invention includes a transfer gas supply unit 210, a mixed powder of yttrium fluoride powder, yttrium oxide powder and / or yttrium oxide fluoride powder, A mixed powder of yttrium fluoride powder, yttrium oxide powder, and / or yttrium oxide flouride powder is supplied from the mixed powder supplying unit 220 and the mixed powder supplying unit 220, which store and supply the mixed powder, in a state of aerosol , A coating / laminating or spraying / spraying of a mixed powder of yttrium fluoride powder, yttrium oxide powder and / or yttrium oxide flouride from the transfer tube 222 onto the substrate 231 After pretreatment from nozzle 232, nozzle 232, yttrium fluoride powder, yttrium oxide powder and / (For example, 100 nm to 100,000 nm), a predetermined component ratio (for example, Y: O: F ratio ratio) by causing the mixed powder of the oxide fluoride powder to collide with the surface of the substrate 231 and / (E.g., 1: 1: 1) and / or a yttrium oxide fluoride coating having a predetermined crystal structure (e.g., a triangular crystal structure).
여기서, 에어로졸이란 이송 가스 내에 입경 범위가 대략 0.1 ㎛ 내지 12 ㎛인 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말의 혼합 분말이 분산된 것을 의미한다.Here, the aerosol means that a mixed powder of yttrium fluoride powder, yttrium oxide powder and / or yttrium oxide flouride powder having a particle size range of approximately 0.1 to 12 占 퐉 is dispersed in the carrier gas.
또한, 여기서, 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말의 혼합 분말은 전처리되어 분말 공급부(220)에 제공될 수 있는데, 이러한 전처리 공정은, 예를 들면, 한정하는 것은 아니지만, 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말의 혼합 분말을 대략 100 ℃ 내지 1000 ℃ 온도에서 열처리 및/또는 분쇄하여 이루어질 수 있다.Here, the mixed powder of the yttrium fluoride powder, the yttrium oxide powder and / or the yttrium oxide flouride powder may be pretreated and supplied to the powder supply unit 220, for example, but not limited to, , Yttrium fluoride powder, yttrium oxide powder and / or yttrium oxide flouride powder at a temperature of about 100 ° C to 1000 ° C.
물론, 열처리 공정만 수행되거나, 분쇄 공정만 수행되거나, 열처리 공정 이후 분쇄 공정이 수행되거나, 분쇄 공정 이후 열처리 공정이 수행되거나, 또는 열처리 공정과 분쇄 공정이 동시에 수행될 수 있다.Of course, only the heat treatment process may be performed, only the crushing process may be performed, the crushing process may be performed after the heat treatment process, the heat treatment process may be performed after the crushing process, or the heat treatment process and the crushing process may be simultaneously performed.
일례로, 한정하는 것은 아니지만, 전처리 전 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말의 혼합 분말은 대략 5 mm 내지 20 mm의 직경을 갖는 고순도 지르코니아 볼, 알루미나 볼 및/또는 그 합금 볼에 의한 볼밀 공정에 의해, 대략 1시간 내지 30시간 동안 분쇄될 수 있다. 또한, 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말의 혼합 분말은 대략 100 ℃ 내지 1000 ℃ 온도에서 대략 1시간 내지 30시간 동안 열처리될 수 있다. 여기서, 소정 성분비를 갖는 이트륨 옥사이드 플로라이드 코팅막의 형성을 위해 혼합 분말 내의 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말의 중량비는 다양하게 조정될 수 있다. 이는 아래에서 다시 설명한다.By way of example, and not by way of limitation, mixed powders of pre-pretreatment yttrium fluoride powder, yttrium oxide powder and / or yttrium oxide flouride powder may be blended with a high purity zirconia ball, alumina ball and / or alumina ball having a diameter of approximately 5 mm to 20 mm Can be milled for about 1 to 30 hours by a ball mill process with an alloy ball. Further, the mixed powder of the yttrium fluoride powder, the yttrium oxide powder and / or the yttrium oxide fluoride powder may be heat-treated at a temperature of about 100 ° C to 1000 ° C for about 1 hour to 30 hours. Here, the weight ratio of the yttrium fluoride powder, the yttrium oxide powder and / or the yttrium oxide fluoride powder in the mixed powder for forming the yttrium oxide fluoride coating film having the predetermined component ratio may be variously adjusted. This is described below again.
다른 예로, 한정하는 것은 아니지만, 전처리 전 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말이 각각 독립적으로 대략 5 mm 내지 20 mm의 직경을 갖는 고순도 지르코니아 볼, 알루미나 볼 및/또는 그 합금 볼에 의한 볼밀 공정에 의해, 대략 1시간 내지 30시간 동안 분쇄될 수 있다. 또한, 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말은 각각 독립적으로 대략 100 ℃ 내지 1000 ℃ 온도에서 대략 1시간 내지 30시간 동안 열처리될 수 있다. 물론, 이러한 처리후 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말은 교반기에서 상호간 혼합될 수 있다. 이에 따라, 혼합 분말 내의 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말의 입경 범위는 상호간 동일하거나 또는 상호간 다를 수 있다. 더불어, 소정 성분비를 갖는 이트륨 옥사이드 플로라이드 코팅막의 형성을 위해 혼합 분말 내의 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말의 중량비 역시 다양하게 조정될 수 있다.Other examples include, but are not limited to, high purity zirconia balls, pretreated yttrium fluoride powder, yttrium oxide powder and / or yttrium oxide flouride powder each having a diameter of about 5 mm to 20 mm independently, alumina balls and / Can be milled for about 1 to 30 hours by a ball mill process with an alloy ball. In addition, the yttrium fluoride powder, the yttrium oxide powder and / or the yttrium oxide fluoride powder may each independently be heat-treated at a temperature of about 100 ° C to 1000 ° C for about 1 hour to 30 hours. Of course, after this treatment, the yttrium fluoride powder, the yttrium oxide powder and / or the yttrium oxide fluoride powder can be mixed with each other in a stirrer. Accordingly, the particle diameter ranges of the yttrium fluoride powder, the yttrium oxide powder and / or the yttrium oxide fluoride powder in the mixed powder may be mutually the same or mutually different. In addition, the weight ratio of the yttrium fluoride powder, the yttrium oxide powder, and / or the yttrium oxide fluoride powder in the mixed powder for forming the yttrium oxide fluoride coating film having a predetermined component ratio may be variously adjusted.
이러한 분쇄 및/또는 열처리 공정에 의해 전처리 후 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말의 혼합 분말이 얻어지는데, 이러한 전처리 후 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말의 혼합 분말이 상술한 에어로졸 디포지션, 에어로졸 분사 코팅 또는 상온 진공 분사 코팅에 의해 플라즈마 내식성 및/또는 투명 이트륨 옥사이드 플로라이드 코팅 박막이 형성된다.After the pretreatment, a mixed powder of yttrium fluoride powder, yttrium oxide powder and / or yttrium oxide flouride powder is obtained by such a pulverization and / or heat treatment process. After such pretreatment, yttrium fluoride powder, yttrium oxide powder and / or yttrium oxide A plasma-resistant and / or transparent yttrium oxide fluoride coated thin film is formed by the above-described aerosol deposition, aerosol spray coating or room temperature vacuum spray coating of the mixed powder of the fluoride powder.
도 1 및 도 2를 함께 참조하여, 본 발명에 따른 이트륨 옥사이드 플로라이드 코팅막 형성 방법을 설명한다.Referring to Figures 1 and 2 together, a method for forming a yttrium oxide fluoride coating film according to the present invention will be described.
이송 가스 공급부(210)에 저장된 이송 가스는 산소, 헬륨, 질소, 아르곤, 이산화탄소, 수소 및 그 등가물로 이루어지는 그룹으로부터 선택되는 1종 또는 2종의 혼합물일 수 있지만, 본 발명에서 이송 가스의 종류가 한정되지 않는다. 이송 가스는 이송 가스 공급부(210)로부터 파이프(211)를 통해 혼합 분말 공급부(220)로 직접 공급되며, 유량 조절기(250)에 의해 그 유량 및 압력이 조절될 수 있다.The transfer gas stored in the transfer gas supply unit 210 may be one or a mixture of two or more selected from the group consisting of oxygen, helium, nitrogen, argon, carbon dioxide, hydrogen, and equivalents thereof. It is not limited. The transfer gas is directly supplied from the transfer gas supply unit 210 to the mixed powder supply unit 220 through the pipe 211 and the flow rate and pressure thereof can be controlled by the flow rate regulator 250.
혼합 분말 공급부(220)는 다량의 전처리 후 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말의 혼합 분말을 보관 및 공급하는데, 이러한 전처리 후 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말의 혼합 분말은 상술한 이송 가스 공급부(210)의 이송 가스에 의해 에어로졸 상태로 되어 이송관(222) 및 노즐(232)을 통해 공정 챔버(230)에 구비된 기재(232)에 공급된다.The mixed powder supply unit 220 stores and supplies a mixed powder of a yttrium fluoride powder, a yttrium oxide powder, and / or a yttrium oxide flouride powder after a large amount of pretreatment. After the pretreatment, the yttrium fluoride powder, the yttrium oxide powder, and / The mixed powder of the yttrium oxide fluoride powder is aerosolized by the transfer gas of the transfer gas supply unit 210 described above and transferred to the substrate 232 provided in the process chamber 230 through the transfer pipe 222 and the nozzle 232. [ .
여기서, 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말의 혼합 분말의 입경 범위는 상호간 동일하되, 중량비(wt%)가 서로 다를 수 있다. 예를 들어, 한정하는 것은 아니지만 이트륨 플로라이드 분말과 이트륨 옥사이드 분말의 입경 범위는 각각 0.5 ㎛ 내지 3 ㎛에서 하나의 공통 피크를 갖고, 중량비는 다양하게 조절될 수 있다.Here, the particle diameters of the mixed powder of the yttrium fluoride powder, the yttrium oxide powder and / or the yttrium oxide flouride powder may be the same, but the weight ratios (wt%) may be different from each other. For example and not by way of limitation, the particle size ranges of yttrium fluoride powder and yttrium oxide powder each have one common peak at 0.5 mu m to 3 mu m, and the weight ratio can be varied.
또한, 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말의 혼합 분말의 중량비는 동일하되, 입경 범위가 서로 다를 수도 있다. The weight ratio of the mixed powder of the yttrium fluoride powder, the yttrium oxide powder and / or the yttrium oxide flouride powder may be the same, but the range of the particle diameters may be different from each other.
더불어, 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말의 입경 범위(㎛)가 상호간 다를 뿐만 아니라, 또한 중량비(wt%)도 서로 다를 수 있다. In addition, the yttrium fluoride powder, the yttrium oxide powder and / or the yttrium oxide fluoride powder may have different particle diameters (mu m) as well as different weight ratios (wt%).
공정 챔버(230)는 이트륨 옥사이드 플로라이드 코팅막 형성 중에 진공 상태를 유지하며, 이를 위해 진공 유닛(240)이 연결될 수 있다. 좀 더 구체적으로, 공정 챔버(230)의 압력은 대략 1 파스칼 내지 800 파스칼이고, 고속 이송관(222)에 의해 이송되는 전처리 후 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말의 혼합 분말의 압력은 대략 500 파스칼 내지 2000 파스칼일 수 있다. 다만, 어떠한 경우에도, 공정 챔버(230)의 압력에 비해 고속 이송관(222)의 압력이 높아야 한다.The process chamber 230 maintains a vacuum during the formation of the yttrium oxide fluoride coating, to which the vacuum unit 240 can be connected. More specifically, the pressure in the process chamber 230 is between about 1 pascal and about 800 pascals, and the pretreatment yttrium fluoride powder, yttrium oxide powder, and / or yttrium oxide flouride powder transported by the high- The pressure of the mixed powder may be from about 500 pascals to about 2000 pascals. However, in any case, the pressure of the high-speed transfer pipe 222 must be higher than the pressure of the process chamber 230.
더불어, 공정 챔버(230)의 내부 온도 범위는 대략 0 ℃ 내지 30 ℃로 유지되며, 따라서 별도로 공정 챔버(230)의 내부 온도를 증가시키거나 감소시키기 위한 부재가 없어도 좋다. 즉, 이송 가스 또는/및 기재가 별도로 가열되지 않고, 0 ℃ 내지 30 ℃의 온도로 유지될 수 있다. 따라서, 본 발명에서는 표시 장치의 윈도우에 대한 투명 보호막 형성 시, 기재가 열적으로 충격을 받지 않게 된다.In addition, the internal temperature range of the process chamber 230 is maintained at approximately 0 ° C to 30 ° C, so that there is no need for a separate member to increase or decrease the internal temperature of the process chamber 230. That is, the transport gas and / or the substrate may not be separately heated, but may be maintained at a temperature of 0 ° C to 30 ° C. Therefore, in the present invention, when the transparent protective film is formed on the window of the display device, the base material is not thermally shocked.
그러나, 경우에 따라 이트륨 옥사이드 플로라이드 코팅막의 증착 효율 및 치밀도 향상을 위해, 이송 가스 또는/및 기재가 대략 30 ℃ 내지 1000 ℃의 온도로 가열될 수도 있다. 즉, 별도의 도시되지 않은 히터에 의해 이송 가스 공급부(210) 내의 이송 가스가 가열되거나, 또는 별도의 도시되지 않은 히터에 의해 공정 챔버(230) 내의 기재(231)가 가열될 수 있다. 이러한 이송 가스 또는/및 기재의 가열에 의해 이트륨 옥사이드 플로라이드 코팅막 형성 시 전처리 후 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말의 혼합 분말에 가해지는 스트레스가 감소함으로써, 기공율이 작고 치밀한 이트륨 옥사이드 플로라이드 코팅막이 얻어진다. 여기서, 이송 가스 또는/및 기재가 대략 1000 ℃의 온도보다 높을 경우, 전처리 후 이트륨 플로라이드 분말과 이트륨 옥사이드 분말의 혼합 분말이 용융되면서 급격한 상전이를 일으키고, 이에 따라 이트륨 옥사이드 플로라이드 코팅막의 기공율이 높아지고(충진률이 낮아지고) 이트륨 옥사이드 플로라이드 코팅막의 내부 구조가 불안정해질 수 있다.However, in some cases, the transport gas and / or the substrate may be heated to a temperature of about 30 캜 to 1000 캜 for improving the deposition efficiency and densification of the yttrium oxide fluoride coating film. That is, the transfer gas in the transfer gas supply unit 210 may be heated by a heater (not shown), or the substrate 231 in the process chamber 230 may be heated by a separate heater (not shown). The stress applied to the mixed powder of the yttrium fluoride powder, the yttrium oxide powder and / or the yttrium oxide fluoride powder after the pretreatment in the formation of the yttrium oxide fluoride coating film by heating the transfer gas and / or the substrate reduces the porosity A dense yttrium oxide fluoride coating film is obtained. If the transport gas and / or the substrate is higher than the temperature of about 1000 캜, the mixed powder of the yttrium fluoride powder and the yttrium oxide powder is melted after the pretreatment, causing a rapid phase transition, and the porosity of the yttrium oxide fluoride coating film is increased (The filling rate is lowered) and the internal structure of the yttrium oxide fluoride coating film may become unstable.
그러나, 본 발명에서 이러한 온도 범위를 한정하는 것은 아니며, 코팅막이 형성될 기재의 특성에 따라 이송 가스, 기재 및/또는 공정 챔버의 내부 온도 범위는 0 ℃ 내지 1000 ℃ 사이에서 조정될 수 있다. 즉, 상술한 바와 같이 표시 장치의 윈도우를 코팅하기 위해서는 대략 0 ℃ 내지 30 ℃의 공정 온도가 제공될 수 있고, 반도체/디스플레이 공정 장비를 코팅하기 위해서는 대략 0 ℃ 내지 1000 ℃의 공정 온도가 제공될 수 있다.However, this temperature range is not limited in the present invention, and the internal temperature range of the transfer gas, the substrate and / or the process chamber may be adjusted between 0 ° C and 1000 ° C depending on the characteristics of the substrate on which the coating film is to be formed. That is, a process temperature of approximately 0 ° C to 30 ° C may be provided to coat the window of the display device as described above, and a process temperature of approximately 0 ° C to 1000 ° C may be provided to coat the semiconductor / display process equipment .
한편, 상술한 바와 같이, 공정 챔버(230)와 고속 이송관(222)(또는 이송 가스 공급부(210) 또는 분말 공급부(220)) 사이의 압력 차이는 대략 1.5배 내지 2000배 일 수 있다. 압력 차이가 대략 1.5배보다 작을 경우 전처리 후 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말의 혼합 분말의 고속 이송이 어려울 수 있고, 압력 차이가 대략 2000배보다 클 경우 전처리 후 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말의 혼합 분말에 의해 오히려 기재의 표면이 과도하게 에칭/식각될 수 있다.Meanwhile, as described above, the pressure difference between the process chamber 230 and the high-speed transfer pipe 222 (or the transfer gas supply unit 210 or the powder supply unit 220) may be approximately 1.5 times to 2000 times. If the pressure difference is less than about 1.5 times, it may be difficult to transfer the mixed powder of yttrium fluoride powder, yttrium oxide powder and / or yttrium oxide flouride powder at high speed after the pretreatment, and if the pressure difference is greater than about 2000 times, The surface of the substrate may be excessively etched / etched by the mixed powder of the fluoride powder, the yttrium oxide powder and / or the yttrium oxide fluoride powder.
이러한 공정 챔버(230)와 이송관(222)의 압력 차이에 따라, 혼합 분말 공급부(220)로부터의 전처리 후 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말의 혼합 분말은 이송관(222)을 통해 분사하는 동시에, 고속으로 공정 챔버(230)에 전달된다.The mixed powder of the yttrium fluoride powder, the yttrium oxide powder, and / or the yttrium oxide flouride powder after the pretreatment from the mixed powder supply unit 220, according to the pressure difference between the process chamber 230 and the transfer pipe 222, And is transferred to the process chamber 230 at a high speed.
또한, 공정 챔버(230) 내에는 이송관(222)에 연결된 노즐(232)이 구비되어,대략 100 m/s 내지 500 m/s의 속도로 전처리 후 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말의 혼합 분말을 기재(231)에 충돌/파쇄시킨다. 즉, 노즐(232)을 통한 전처리 후 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말의 혼합 분말은 이송 중 얻은 운동 에너지와 고속 충돌 시 발생하는 충돌 에너지에 의해 파쇄 및/또는 분쇄되면서 기재(231)의 표면에 일정 두께, 성분비 및 결정 구조를 갖는 이트륨 옥사이드 플로라이드 코팅막을 형성하게 된다. In addition, a nozzle 232 connected to the transfer tube 222 is provided in the process chamber 230, and after the pretreatment at a speed of about 100 m / s to 500 m / s, the yttrium fluoride powder, the yttrium oxide powder, and / The mixed powder of the yttrium oxide fluoride powder is collided / crushed on the substrate 231. That is, the mixed powder of the yttrium fluoride powder, the yttrium oxide powder and / or the yttrium oxide fluoride powder after the pretreatment through the nozzle 232 is crushed and / or crushed by the kinetic energy obtained during transportation and the collision energy generated during high- A yttrium oxide fluoride coating film having a predetermined thickness, a composition ratio and a crystal structure is formed on the surface of the substrate 231.
일례로, 본 발명의 실시예에서 사용된 이트륨 플로라이드 분말은 입경 범위가 대략 0.1㎛ 내지 12㎛이고, 순도가 99.99% 이상이며, 구형의 흰색 분말 형태를 할 수 있다. 참고로, 이트륨 플로라이드 분말의 현재 판매 가격은 대략 200달러/kg이다.For example, the yttrium fluoride powder used in the embodiment of the present invention has a particle size range of approximately 0.1 탆 to 12 탆, a purity of 99.99% or more, and can be in the form of a spherical white powder. For reference, the current selling price of yttrium fluoride powder is approximately $ 200 / kg.
또한, 일례로 본 발명의 실시예에서 사용된 이트륨 옥사이드 분말은 입경 범위가 대략 0.1㎛ 내지 12㎛이고, 순도가 99.99% 이상이며, 구형의 흰색 분말 형태를 할 수 있다. 참고로, 이트륨 옥사이드 분말의 판매 가격은 현재 대략 40달러/kg이다.In addition, for example, the yttrium oxide powder used in the embodiment of the present invention may have a spherical white powder shape with a particle size range of approximately 0.1 to 12 μm and a purity of 99.99% or more. For reference, the selling price of yttrium oxide powder is now approximately $ 40 / kg.
더불어, 이트륨 플로라이드 분말과 이트륨 옥사이드 분말의 혼합 분말 역시 흰색 분말 형태로서, 육안으로 각각의 이트륨 플로라이드 분말과 이트륨 옥사이드 분말이 구분되지 않는다. In addition, the mixed powder of the yttrium fluoride powder and the yttrium oxide powder is also in the form of a white powder, and the yttrium fluoride powder and the yttrium oxide powder are not distinguished visually.
여기서, 이트륨 옥사이드 플로라이드 분말 역시 위와 유사한 특성을 가질 수 있는데, 이러한 이트륨 옥사이드 플로라이드 분말의 판매 가격은 현재 대략 500달러/kg이다. 따라서, 이러한 이트륨 옥사이드 플로라이드 분말을 구매하여 이트륨 옥사이드 플로라이드 코팅막을 형성할 경우, 코팅막의 형성 비용이 상당히 증가하게 됨을 알 수 있다.Here, the yttrium oxide flouride powder may also have similar properties as above, and the selling price of such yttrium oxide flouride powder is currently about 500 dollars / kg. Therefore, it can be seen that when the yttrium oxide fluoride powder is purchased to form the yttrium oxide fluoride coating film, the formation cost of the coating film is considerably increased.
그러나, 상술한 바와 같이 이트륨 플로라이드 분말, 이트륨 옥사이드 분말 및/또는 이트륨 옥사이드 플로라이드 분말을 각각 구매하여 혼합한 후, 이를 통해 이트륨 옥사이드 플로라이드 코팅막을 형성할 경우, 코팅막의 형성 비용이 상당히 감소됨을 알 수 있다.However, when yttrium fluoride powder, yttrium oxide powder and / or yttrium oxide fluoride powder are separately purchased and mixed to form the yttrium oxide fluoride coating film as described above, the formation cost of the coating film is significantly reduced Able to know.
한편, 기재 위에 형성된 이트륨 옥사이드 플로라이드 코팅막은 두께가 대략 100 nm 내지 100,000 nm일 수 있고, 특히, 엑스선 광전자 분광법(X-ray Photoelectron Spectroscopy; XPS)에 의한 이트륨 : 옥사이드 : 플로라이드의 성분비(atomic ratio)가 대략 1:1:1이다.On the other hand, the yttrium oxide fluoride coating film formed on the substrate may have a thickness of about 100 nm to 100,000 nm, and in particular, an atomic ratio of yttrium oxide: fluoride by X-ray photoelectron spectroscopy (XPS) ) Is approximately 1: 1: 1.
여기서, XPS는 표면 분석에 있어서 가장 널리 사용되고 있는 분석 기술 중 하나로서 1905년 아인슈타인이 발표한 광전효과의 이론을 기반으로 한 분석법이다. 이는 분석하고자 하는 시료에 X-선 중 상대적으로 파장이 긴 수십에서 수천 eV의 에너지에 해당되는 soft X-선을 시료에 조사하면 분석 시료를 이루고 있는 표면층 원자로부터 강하게 결합되어 있는 내각준위(core level) 또는 약하게 결합되어 있는 외각준위(valence level) 전자가 방출되게 된다. 이때 방출되는 전자를 광전자라고 하고, 광전자가 방출되기 위해서는 전자의 바인딩 에너지(binding energy) 및 일함수(work function)를 뛰어 넘을 수 있는 운동 에너지가 필요하다. 예를 들어, 입사된 X-선의 에너지 hν를 분석 시료의 전자가 전달받아 바인딩 에너지(Eb)를 끊고 물질의 일함수(φ)를 뛰어넘어 광전자가 방출되게 되고 방출된 광전자의 운동 에너지(Ekin)를 측정함으로써 그 물질에 해당하는 전자의 바인딩 에너지를 수학식(예를 들면, Ekin=hν-Eb-φ)을 통해 구할 수 있다.Here, XPS is one of the most widely used analytical techniques for surface analysis. It is based on the theory of photoelectric effect published by Einstein in 1905. When the sample is irradiated with a soft X-ray corresponding to tens to thousands of eV, which is relatively long in wavelength of the X-ray to be analyzed, the core level ) Or weakly bound valence level electrons are emitted. At this time, the emitted electrons are called photoelectrons, and in order for the photoelectrons to be emitted, kinetic energy is required to go beyond the binding energy and work function of electrons. For example, the energy hv of the incident X-ray is analyzed. When electrons of the sample break the binding energy (Eb), the photoelectrons are emitted beyond the work function (φ) of the material, and the kinetic energy (Ekin) The binding energy of electrons corresponding to the substance can be obtained through an equation (for example, Ekin = hv-Eb-phi).
XPS를 이용해 측정된 바인딩 에너지는 원소의 고유한 에너지이므로 분석 시료의 원소를 분석할 수 있으며 바인딩 에너지는 화학적 결합 상태에 따라 변하기 때문에 화학적 결합 상태에 대한 정보도 얻을 수 있다. 이와 같이 XPS는 시료 구성 성분 원자의 화학적 구조와 산화 상태에 대한 화학적 정보를 동시에 제공하기 때문에 화학분석을 위한 전자분광법(Electron Spectroscopy for Chemical Analysis)인 ESCA라고 명명하기도 한다.Since the binding energy measured by XPS is the inherent energy of the element, the element of the analytical sample can be analyzed. The binding energy changes according to the chemical bonding state, so information on the chemical bonding state can also be obtained. Since XPS provides chemical information on the chemical structure and oxidation state of the constituent atoms of the sample at the same time, it is called ESCA which is an electron spectroscopy for chemical analysis for chemical analysis.
시료에서 방출된 광전자의 경우 공기나 다른 분자에 의해 에너지가 잘 흡수되므로 전자의 운동에너지를 측정해야 하는 XPS는 초고진공(Ultra-High Vacuum, UHV)이 필요하게 된다.In the case of photoelectrons emitted from the sample, energy is absorbed well by air or other molecules. Therefore, XPS, which needs to measure kinetic energy of electrons, needs Ultra-High Vacuum (UHV).
X-선 광전자 분광기의 구조는 내각준위 전자를 시료로부터 방출시키기 위해 Al-Kα (hν = 1486.6 eV) 또는 Mg-K α (hν = 1253.6 eV)의 X-선을 주로 사용한다. 수십 kV 전자가 Al anode에 충돌하면 anode로부터 고유 X-선이 발생하게 된다. 발생된 X-선의 반높이너비(FWHM)를 개선하고 세기가 약한 X-선(Al-K α3)에 의한 약 10 eV 정도 큰 운동에너지 영역에서 나타나는 위성 스펙트럼(satellite spectrum)을 제거하기 위해 단색화 장치(monochromator)를 이용한다. 단색화 장치로부터 X-선을 샘플 표면에 조사하여 방출된 광전자는 현재 가장 많이 사용되는 반구형 전자에너지 분석기(Hemispherical Sector energy Analyzer; HSA)를 통해 안쪽과 바깥쪽에 특정 전압을 인가했을때 분석기 안으로 들어온 전자 중 특정 운동에너지를 가진 전자만 반구를 지나 검출기에 도달하게 된다. 이렇게 측정된 광전자의 바인딩 에너지는 원소의 종류 뿐만 아니라 원자의 전자 분포 변화에 따른 전하 포텐셜(charge potential) 변화에 따라 바인딩 에너지 변화로부터 XPS의 특징 중 하나인 원자의 산화 상태 및 화학적 결합 상태에 대한 정보도 제공할 수 있다.The structure of the X-ray photoelectron spectroscopy uses X-rays of Al-Kα (hν = 1486.6 eV) or Mg-K α (hν = 1253.6 eV) in order to release the cabinet-level electrons from the sample. When tens of kV electrons collide with the Al anode, inherent X-rays are generated from the anode. In order to eliminate the satellite spectrum which appears in the kinetic energy region of about 10 eV by the weak X-ray (Al-K α3) which improves the half-height width (FWHM) of the generated X- (monochromator). The photoelectrons emitted by irradiating the X-rays from the monochromator onto the sample surface were analyzed by using the current most commonly used Hemispherical Sector Energy Analyzer (HSA) Only electrons with specific kinetic energy reach the detector through the hemisphere. The measured binding energy of the optoelectronic device is based on not only the kind of element but also the information about the oxidation state and the chemical bonding state of the atom, which is one of the characteristics of the XPS from the binding energy change according to the change of the charge potential according to the change of the electron distribution of the atom Can also be provided.
특히, XPS의 최근 또 다른 응용 분야는 성분 분석이다. 일례로, 본 발명에 의해 형성된 이트륨 옥사이드 플로라이드 코팅막을 이루는 이트륨, 옥사이드 및 플로라이드 각 원소의 성분비를 정확하게 측정해낼 수 있다.In particular, another recent application of XPS is component analysis. For example, the composition ratio of each element of yttrium, oxide, and fluoride constituting the yttrium oxide fluoride coating film formed by the present invention can be accurately measured.
일례로, 이트륨 옥사이드 플로라이드 코팅막을 구성하는 Y, O 및 F의 3가지 원소에 대한 XPS 스펙트럼을 구하되, 여기서 이트륨 옥사이드 플로라이드 코팅막은 깊이에 따라 성분비가 변하지 않으므로, 상기 XPS 피크의 면적을 측정해서 상대적인 성분비를 계산할 수 있다.For example, the XPS spectra of the three elements Y, O and F constituting the yttrium oxide fluoride coating film are determined. Here, since the yttrium oxide fluoride coating film does not change the composition ratio depending on the depth, the area of the XPS peak is measured So that the relative component ratio can be calculated.
여기서, 도 6a, 도 6b 및 도 6c는 본 발명의 실시예에 따른 이트륨 옥사이드 플로라이드 코팅막을 엑스선 광전자 분광법(X-ray Photoelectron Spectroscopy; XPS)으로 분석한 Y,O,F의 바인딩에너지별 세기를 도시한 그래프이다. 도면중 X축은 대상 원소의 바인딩 에너지[eV]를 의미하고, Y축은 세기[Counts/s]를 의미한다.6A, 6B, and 6C are graphs showing intensity of binding energy of Y, O, F obtained by X-ray photoelectron spectroscopy (XPS) analysis of the yttrium oxide fluoride coating film according to an embodiment of the present invention FIG. In the figure, the X axis represents the binding energy [eV] of the target element, and the Y axis represents the intensity [Counts / s].
일례로, XPS에서 대략 155 내지 대략 162 eV의 바인딩 에너지를 가지는 이트륨(Y) 피크, 대략 528 내지 대략 535 eV의 바인딩 에너지를 가지는 옥사이드(O) 피크, 대략 648 내지 대략 688 eV의 바인딩 에너지를 가지는 플로라이드(F) 피크를 나타내며, 이러한 XPS에서 대략 155 내지 대략 162 eV의 바인딩 에너지를 가지는 이트륨(Y) 피크, 대략 528 내지 대략 535 eV의 바인딩 에너지를 가지는 옥사이드(O) 피크, 대략 684 내지 대략 688 eV의 바인딩 에너지를 가지는 플로라이드(F) 피크 각각의 면적으로부터 Y:O:F의 성분비를 계산할 수 있다. 본 발명에 의해 형성된 YOF 코팅막의 Y:O:F 성분비는 일례로 대략 1:1:1이다.By way of example, an oxide (O) peak with a binding energy of about 528 to about 535 eV, a binding energy of about 648 to about 688 eV, (Y) peak having a binding energy of about 155 to about 162 eV in this XPS, an oxide (O) peak having a binding energy of about 528 to about 535 eV, a peak of about 684 to about The composition ratio of Y: O: F can be calculated from the area of each of the fluoride (F) peaks having a binding energy of 688 eV. The Y: O: F component ratio of the YOF coating film formed by the present invention is, for example, about 1: 1: 1.
물론, 이트륨 옥사이드 플로라이드 코팅막의 표면에 있을 수 있는 이물질의 영향을 제거하기 위해, 예를 들면, 한정하는 것은 아니지만, Ar 이온 등으로 이트륨 옥사이드 플로라이드 코팅막의 표면을 스퍼터링하고, 그 표면 거칠기에 따른 분석 오류를 최소화하기 위해 정밀한 회전(Zalar rotation)을 이용하여 깊이에 따른 분포도 그래프를 얻을 수 있다.Of course, in order to remove the influence of the foreign matter that may be present on the surface of the yttrium oxide fluoride coating film, for example, it is possible to sputter the surface of the yttrium oxide fluoride coating film with Ar ions or the like, In order to minimize the analysis error, we can obtain a distribution graph based on depth using Zalar rotation.
계속해서, 본 발명에 따른 이트륨 옥사이드 플로라이드 코팅막이 형성되는 기재는 상술한 바와 같이, 플라즈마 환경에 노출되는 부품 및/또는 표시 장치의 투명 윈도우일 수 있다. 특히, 부품은 반도체 또는 표시 장치 제조용 공정 챔버의 내부 부품일 수 있고, 투명 윈도우는 글래스 기판, 플라스틱 기판, 사파이어 기판 또는 쿼츠 기판일 수 있다. Subsequently, the substrate on which the yttrium oxide fluoride coating film according to the present invention is formed may be a transparent window of a component and / or a display device exposed to a plasma environment, as described above. In particular, the component may be an internal component of a semiconductor or process chamber for manufacturing a display device, and the transparent window may be a glass substrate, a plastic substrate, a sapphire substrate, or a quartz substrate.
여기서, 플라즈마 환경에 노출되는 부품은 정전 척(electro static chuck), 히터(heater), 챔버 라이너(chamber liner), 샤워 헤드(shower head), CVD(Chemical Vapor Deposition)용 보트(boat), 포커스링(focus ring), 월 라이너(wall liner), 쉴드(shield), 콜드 패드(cold pad), 소스 헤드(source head), 아우터 라이너(outer liner), 디포지션 쉴드(deposition shiled), 어퍼 라이너(upper liner), 배출 플레이트(exhaust plate), 엣지링(edge ring), 마스크 프레임(mask frame) 및 그 등가물 중에서 어느 하나일 수 있다. 그러나, 본 발명에서 이러한 박막이 형성되는 기재 또는 부품을 한정하는 것은 아니다.Here, the parts exposed to the plasma environment include an electro static chuck, a heater, a chamber liner, a shower head, a boat for CVD (Chemical Vapor Deposition) a focus ring, a wall liner, a shield, a cold pad, a source head, an outer liner, a deposition shield, an upper liner, liner, an exhaust plate, an edge ring, a mask frame, and the like. However, the present invention does not limit the base material or parts on which such a thin film is formed.
특히, 본 발명은 투명 윈도우가 글래스 기판이나 플라스틱 기판일 경우, 이트륨 옥사이드 플로라이드 투명 보호막을 저온(0℃ 내지 30℃)에서 형성할 수 있으므로, 상술한 글래스 기판이나 플라스틱 기판의 손상 현상을 방지할 수 있다.In particular, when the transparent window is a glass substrate or a plastic substrate, since the yttrium oxide fluoride transparent protective film can be formed at a low temperature (0 ° C to 30 ° C), damage to the glass substrate or the plastic substrate can be prevented .
또한, 투명 플라스틱 기판은 대략 140°C 정도의 Tg(연화점, glass transition temperature)와 대략 340°C 정도의 Tm(녹는점, melting temperature)을 갖는 PET(Polyethylene Terephthalate), PEN(Polyethylene naphthalate), PEEK(Polyetheretherketon) 등의 열가소성 세미결정성 플라스틱(thermoplastic semicrystalline polymer)을 포함할 수 있다. 또한, 플라스틱 기판은 상술한 세미결정성 플라스틱보다 Tg가 높고, Tm을 보이지 않는 대략 150°C의 Tg를 갖는 PC, 220°C의 Tg를 갖는 PES 등의 열가소성 무정형(amorphous) 플라스틱을 포함할 수 있다. 또한, 플라스틱 기판은 상대적으로 높은 내열성을 가진 PI(Polyimide), polyarylate, PAR 등으로 제조된 것일 수 있다.In addition, the transparent plastic substrate is made of PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PEEK (polyethylene terephthalate) having a Tg (glass transition temperature) of about 140 ° C and a Tm And thermoplastic semicrystalline polymers such as polyetheretherketone. The plastic substrate may also include a thermoplastic amorphous plastic, such as a PC having a Tg of about 150 ° C and a Tg of 220 ° C, which has a higher Tg than the semi-crystalline plastic described above and does not show a Tm have. In addition, the plastic substrate may be made of polyimide (PI), polyarylate, PAR or the like having a relatively high heat resistance.
실시예 1(YF3 + Y2O3 혼합 코팅)Example 1 (YF3 + Y2O3 mixed coating)
YF3 분말과 Y2O3 분말을 혼합하여 에어로졸 디포지션 방식으로 Y:O:F의 성분비가 1:1:1인 YOF 코팅막을 형성하였다.YF3 powder and Y2O3 powder were mixed and an YOF coating film having a composition ratio of Y: O: F of 1: 1: 1 was formed by an aerosol deposition method.
여기서, YF3 분말의 중량비는 대략 85~75 wt.%로 하였고, Y2O3 분말의 중량비는 대략 25~15 wt.%로 하였으며, 이러한 중량비 범위의 혼합 분말을 이용하여 코팅할 경우, YOF 코팅막의 Y:O:F 성분비가 대략 1:1:1에 근접하는 구조를 얻을 수 있었다.Here, the weight ratio of YF 3 powder was set to about 85 to 75 wt.%, And the weight ratio of Y 2 O 3 powder was set to about 25 to 15 wt.%. When the mixed powder was used in this weight ratio range, Y: A structure in which the ratio of O: F was close to approximately 1: 1: 1 was obtained.
실시예 2(성분비가 다른 적어도 2종의 YOF 혼합 코팅)Example 2 (at least two YOF mixed coatings having different composition ratios)
성분비가 다른 적어도 2종의 YOF 분말을 혼합하여 에어로졸 디포지션 방식으로 Y:O:F의 성분비가 1:1:1인 YOF 코팅막을 형성하였다.At least two kinds of YOF powders having different composition ratios were mixed and an YOF coating film having a composition ratio of Y: O: F of 1: 1: 1 was formed by an aerosol deposition method.
여기서, YOF 분말은 제1YOF 분말 및 제2YOF 분말을 포함하며, 제1YOF 분말의 Y:O:F 성분비는 대략 5:4:7이고, 제2YOF 분말의 Y:O:F 성분비는 대략 1:1:1이었다.Here, the YOF powder comprises a first YF powder and a second YF powder, wherein the Y: O: F component ratio of the first YF powder is approximately 5: 4: 7 and the Y: O: F component ratio of the second YF powder is approximately 1: : 1.
더욱이, 제1YOF 분말의 중량비는 대략 65~75 wt.%로 하였고, 제2YOF 분말의 중량비는 대략 35~25 wt.%로 하였으며, 이러한 중량비 범위의 혼합 분말을 이용하여 코팅할 경우, YOF 코팅막의 Y:O:F 성분비가 대략 1:1:1에 근접하는 구조를 얻을 수 있었다.Further, the weight ratio of the first and second phosphorescent powders was set to about 65 to 75 wt.%, And the weight ratio of the second and third phosphorescent powders was about 35 to 25 wt.%. A structure in which the ratio of Y: O: F was close to 1: 1: 1 was obtained.
실시예 3(YF3+YOF 혼합 코팅)Example 3 (YF3 + YOF mixed coating)
YF3 분말과 YOF 분말을 혼합하여 에어로졸 디포지션 방식으로 Y:O:F의 성분비가 1:1:1인 YOF 코팅막을 형성하였다.YF3 powder and YOF powder were mixed and an YOF coating film having a composition ratio of Y: O: F of 1: 1: 1 was formed by an aerosol deposition method.
여기서, YF3 분말의 중량비는 대략 15~25 wt.%로 하였고, YOF 분말의 중량비는 대략 85~75 wt.%로 하였으며, 이러한 중량비 범위의 혼합 분말을 이용하여 코팅할 경우, YOF 코팅막의 Y:O:F 성분비가 대략 1:1:1에 근접하는 구조를 얻을 수 있었다.The weight ratio of the YF 3 powder to the YF 3 powder was about 15 to 25 wt.%, And the weight ratio of the YOF powder was about 85 to 75 wt.%. When the mixed powder was used in this weight ratio range, A structure in which the ratio of O: F was close to approximately 1: 1: 1 was obtained.
실시예 4(YF3+YOF+Y2O3 혼합 코팅)Example 4 (YF3 + YOF + Y2O3 mixed coating)
YF3 분말과, YOF 분말과, Y2O3 분말을 혼합하여 에어로졸 디포지션 방식으로 Y:O:F의 성분비가 1:1:1인 YOF 코팅막을 형성하였다.YF3 powder, YOF powder, and Y2O3 powder were mixed to form an YOF coating film having a composition ratio of Y: O: F of 1: 1: 1 in an aerosol deposition system.
여기서, YF3 분말의 중량비는 대략 30~40 wt.%로 하였고, YOF 분말의 중량비는 대략 15~50 wt.%로 하였으며, Y2O3 분말의 중량비는 대략 20~45 wt.%로 하였으며, 이러한 중량비 범위의 혼합 분말을 이용하여 코팅할 경우, YOF 코팅막의 Y:O:F 성분비가 대략 1:1:1에 근접하는 구조를 얻을 수 있었다.Here, the weight ratio of YF 3 powder was set to about 30 to 40 wt.%, The weight ratio of YOF powder was set to about 15 to 50 wt.%, The weight ratio of Y 2 O 3 powder was set to about 20 to 45 wt. , The structure in which the Y: O: F component ratio of the YOF coating film was close to 1: 1: 1 was obtained.
이와 같이 하여 완성된 YOF 코팅막은 아래 표 1과 같은 중량비( wt.%) 및 성분비(At.%)를 나타냈으며, 또한, 결정 구조는 삼방정계로 나타났다.The thus-completed YOF coating film exhibited a weight ratio (wt.%) And a composition ratio (At.%) As shown in Table 1 below.
wt.% wt.% At.%At.% RatioRatio
YY 72.0672.06 33.6433.64 1One
OO 13.0513.05 33.8433.84 1One
FF 14.8914.89 32.5232.52 1One
또한, 아래 표 2에 나타낸 바와 같이, YOF 코팅막의 경도는 HV를 GPa 단위로 환산할 경우, 대략 6 GPa 내지 12 Gpa였고, YOF 코팅막의 기공율은 대략 0.01% 내지 0.1%였으며, YOF 코팅막의 내전압은 대략 50 V/㎛ 내지 150 V/㎛였다.이와 같이 본 발명의 실시예는 YOF 코팅막의 경도, 기공율 및 내전압 특성이 모두 우수하고, 이에 따라 YOF 코팅막이 플라즈마 환경에 노출되는 반도체/표시 장치의 부품 보호막 및/또는 표시 장치의 투명 윈도우 보호막으로 이용될 수 있음을 알 수 있다.Further, as shown in Table 2 below, the hardness of the YOF coating film was approximately 6 GPa to 12 Gpa when the HV was converted into GPa, and the porosity of the YOF coating film was approximately 0.01 to 0.1%. The withstanding voltage of the YOF coating film was Thus, the embodiment of the present invention is excellent in all of the hardness, porosity and dielectric strength characteristics of the YOF coating film, so that the YOF coating film is exposed to a plasma environment, It can be seen that it can be used as a protective film and / or a transparent window protective film of a display device.
여기서, 경도는 다이아몬드 사각뿔로 YOF 코팅막을 눌러서 생긴 자국으로 측정하고, 기공율은 YOF 코팅막을 절단하여 전자 현미경으로 촬영하여 이미지를 얻고, 이러한 이미지를 영상 처리 소프트웨어가 설치된 컴퓨터로 분석하여 측정하며, 내전압은 금속 기판 위에 YOF 코팅막을 제작하여, 금속 기판을 하단부 전극으로 박막의 상단에 전극을 설치하여 측정한다. 이러한 여러가지 측정 방법은 당업자에게 이미 주지된 내용이므로, 이에 대한 상세한 설명은 생략한다.The YOF hardness is measured by cutting the YOF coating film with a diamond quadrilateral, and the porosity is measured by scanning an electron microscope to obtain an image. The image is analyzed by a computer equipped with an image processing software and the withstand voltage is measured A YOF coating film is formed on a metal substrate, and a metal substrate is measured as a lower end electrode, and an electrode is provided on the top of the thin film. These various measuring methods are well known to those skilled in the art, and a detailed description thereof will be omitted.
특성characteristic 범위range
경도Hardness 6 내지 12 GPa6-12 GPa
기공율Porosity 0.01 내지 1.0%0.01 to 1.0%
내전압Withstand voltage 50 내지 150 V/㎛50 to 150 V / m
도 3a, 도 3b 및 도 3c는 본 발명의 실시예에 따른 이트륨 옥사이드 플로라이드 코팅막을 도시한 단면도, SEM(Scanning electron microscope) 이미지 및 EDS(Energy-dispersive X-ray spectroscopy) 이미지이다.도 3a, 도 3b 및 도 3c에 도시된 바와 같이, 본 발명의 실시예에 따라 기재 위에 형성된 내플라즈마성 및/또는 투명 이트륨 옥사이드 플로라이드 코팅막은 표면/단면에 마이크로 크랙이 발견되지 않았으며, 또한 대략 0.01% 내지 1%의 기공율을 보였다. 구체적으로 XPS 측정을 통한 YOF의 성분비가 1:1:1의 이트륨 옥사이드 플로라이드 코팅막은 대략 0.5 % 기공률을 가져 상온 진공 분사 코팅 방법을 통하여 고밀도의 이트륨 옥사이드 플로라이드 코팅막이 형성된 것을 확인하였다.3A, 3B, and 3C are cross-sectional views illustrating a yttrium oxide fluoride coating film, an SEM (Scanning Electron Microscope) image, and an EDS (Energy-dispersive X-ray spectroscopy) image according to an embodiment of the present invention. 3B and 3C, microcracks were not found on the surface / cross section of the plasma-resistant and / or transparent yttrium oxide fluoride coating formed on the substrate according to an embodiment of the present invention, To 1%. Specifically, it was confirmed that a yttrium oxide fluoride coating film having a YOF composition ratio of 1: 1: 1 through XPS measurement had a porosity of about 0.5%, so that a high density yttrium oxide fluoride coating film was formed by a room temperature vacuum spray coating method.
여기서, 상술한 바와 같이 이트륨 옥사이드 플로라이드 코팅막의 기공율이 대략 0.01% 내지 대략 1.0% 의 값을 가짐으로써, 역으로 이트륨 옥사이드 플로라이드 코팅막의 충진율은 대략 99.00% 내지 대략 99.99% 임을 알 수 있다.  Here, as described above, the yttrium oxide fluoride coating film has a porosity of about 0.01% to about 1.0%, so that the filling rate of the yttrium oxide fluoride coating film is about 99.00% to about 99.99%.
또한, YF3 소재와 Y2O3 소재의 혼합 코팅막을 확인하기 위해 EDS 맵핑을 이용하여 분석한 결과, 이트륨 옥사이드 플로라이드 코팅막의 단면 내부에 플로린(Fluorine) 소재가 집중되어 있는 영역을 관찰할 수 있었다. 이는 순수한 YOF 소재를 이용하여 제작한 코팅막이 아닌 YF3 소재와 Y2O3 소재를 혼합하여 제작한 코팅막일 경우, 이러한 EDS 맵핑 결과가 나타남을 확인할 수 있었다. 이때 코팅의 단면 밀도가 대략 99% 이상으로 높을 경우, 플로린 소재가 집중되어 있는 영역을 관찰하는 것이 어려우므로, EDS 분석을 원활히 진행하기 위해 치밀도가 낮은 코팅막으로 분석을 진행하였다.In addition, in order to confirm the mixed coating film of YF3 material and Y2O3 material, analysis using EDS mapping showed that a region of fluorine material concentrated in the cross section of the yttrium oxide fluoride coating film was observed. It can be confirmed that the EDS mapping results are obtained in the case of a coating film made by mixing YF3 material and Y2O3 material, not a coating film made using pure YOF material. At this time, when the cross-sectional density of the coating is higher than about 99%, it is difficult to observe the region where the Florin material is concentrated. Therefore, the analysis was performed with a coating film having a low density to smoothly conduct the EDS analysis.
도 4는 본 발명의 실시예에 따른 이트륨 옥사이드 플로라이드 코팅막의 경도 특성을 도시한 그래프이다. 여기서, X축은 다이아몬드 사각뿔로 눌린 이트륨 옥사이드 플로라이드 코팅막의 깊이(nm)이고, Y축은 다이아몬드 사각뿔에 의해 눌려지는 힘(μN)이다.4 is a graph showing the hardness characteristics of the yttrium oxide fluoride coating film according to the embodiment of the present invention. Here, the X axis is the depth (nm) of the yttrium oxide fluoride coating film pressed by the diamond quadrangular pyramid, and the Y axis is the force (占 눌) pressed by the diamond quadrangular pyramid.
도 4에 도시된 바와 같이, 다이아몬드 사각뿔이 대략 0 ~ 3000 μN 의 힘으로 이트륨 옥사이드 플로라이드 코팅막을 누르면, 이트륨 옥사이드 플로라이드 코팅막에는 대략 402 nm의 깊이를 갖는 요홈이 형성되고, 다시 다이아몬드 사각뿔이 대략 3000~0 μN 의 힘으로 이트륨 옥사이드 플로라이드 코팅막으로부터 분리되면, 이트륨 옥사이드 플로라이드 코팅막에는 대략 395 nm 의 깊이를 갖는 요홈이 형성되었다. 구체적으로, 상술한 바와 같이 YOF의 성분비가 1:1:1의 코팅막의 경우 깊이 395~402nm의 요홈이 형성되었다.As shown in FIG. 4, when the yttrium oxide fluoride coating film is pressed with a diamond quadrangular pyramid having a force of approximately 0 to 3000 N, a groove having a depth of approximately 402 nm is formed in the yttrium oxide fluoride coating film, When separated from the yttrium oxide fluoride coating film at a force of 3000 to 0 μN, a groove having a depth of approximately 395 nm was formed in the yttrium oxide fluoride coating film. Specifically, as described above, a groove having a depth of 395 to 402 nm was formed in the case of a coating film having a composition ratio of YOF of 1: 1: 1.
이러한 특성 그래프의 데이터를 이용하여 이트륨 옥사이드 플로라이드 코팅막의 경도를 계산하면 YOF 1:1:1의 코팅막은 대략 10.32 Gpa 의 경도값이 얻어진다. 여기서, YOF 코팅막의 경도는 코팅막의 공정 조건에 따라 형성된 박막의 치밀도에 따라 변하는 것으로 확인된다. 따라서, YOF 1:1:1 코팅막의 치밀도를 더 증가시키면, 경도 역시 함께 증가할 것으로 예상되며, 대략 12 Gpa의 경도 특성까지 나타낼 수 있다. When the hardness of the yttrium oxide fluoride coating film is calculated using the data of the characteristic graph, the YOF 1: 1: 1 coating film has a hardness value of approximately 10.32 Gpa. Here, it is confirmed that the hardness of the YOF coating film varies depending on the density of the thin film formed according to the process conditions of the coating film. Therefore, when the density of the YOF 1: 1: 1 coating film is further increased, the hardness is also expected to increase together, and can exhibit hardness characteristics of approximately 12 GPa.
여기서, 다이아몬드 사각뿔이 이트륨 옥사이드 플로라이드 코팅막으로부터 분리된 이후에도, 이트륨 옥사이드 플로라이드 코팅막에 대략 395nm 의 깊이를 갖는 요홈이 남은 이유는, 이트륨 옥사이드 플로라이드 코팅막이 소성 변형된 것임을 의미한다.Here, even after the diamond quadrangular pyramid is separated from the yttrium oxide fluoride coating film, the reason why the yttrium oxide fluoride coating film has a recess having a depth of approximately 395 nm remains is that the yttrium oxide fluoride coating film is plastically deformed.
한편, 이트륨 옥사이드 플로라이드 코팅막을 제작한 이후 코팅막의 강도를 더욱 향상시키기 위해 산소 또는 공기 열처리를 통해 산소 불화(Oxy-Fluoride) 처리를 더 할 수 있으나, 이러한 경우 다량의 산소가 더 확산되는 것으로 확인되었다. 즉, 이러한 산소 불화 처리를 수행할 경우 이트륨 옥사이드 플로라이드 코팅막의 Y, O, F의 성분비가 1:1:1이 아닌 산소가 증가한 이트륨 옥사이드 플로라이드 코팅막이 형성되며, 더 높은 고온 공정에서는 Y2O3가 형성될 수 있다. On the other hand, after the yttrium oxide fluoride coating film is formed, oxygen-fluoride treatment can be performed through oxygen or air heat treatment to further improve the strength of the coating film. However, in this case, . That is, when such an oxygen fluorination treatment is performed, an yttrium oxide fluoride coating film having an increased oxygen content of not Y: O: F ratio of 1: 1: 1 is formed in the yttrium oxide fluoride coating film, and Y2O3 .
또한, 코팅막의 후 열처리는 코팅막 내부의 잔존하는 잔류 응력을 완화시켜 기계적 특성을 향상시키기는 하나, 고온 열처리 공정(500 ~ 1000 ℃)으로 인해 광 투과성 기판(글래스, 쿼츠, 플라스틱 기판)에 적용하기 어려우며, 특히 코팅막 내부에 존재하는 다량의 산소로 인해 오히려 광 투과율이 현저히 낮아지는 결과를 갖게 된다.In addition, post-heat treatment of the coating film improves the mechanical properties by relaxing residual stress inside the coating film, but it is applied to a light-transmitting substrate (glass, quartz, plastic substrate) due to a high temperature heat treatment process (500 to 1000 ° C.) And the light transmittance is remarkably lowered due to the large amount of oxygen existing in the coating film.
도 5는 본 발명의 실시예에 따른 이트륨 옥사이드 플로라이드 코팅막의 투과도 특성을 도시한 그래프이다. 도 5에서 X축은 광의 파장 범위(nm)이고, Y축은 투과도(%)이다. 또한, 이때의 이트륨 옥사이드 플로라이드 코팅막의 두께는 대략 1.4 ㎛ 이다. 5 is a graph showing the transmittance characteristics of the yttrium oxide fluoride coating film according to an embodiment of the present invention. 5, the X-axis is the wavelength range (nm) of the light, and the Y-axis is the transmittance (%). In addition, the thickness of the yttrium oxide fluoride coating film at this time is approximately 1.4 mu m.
도 5에 도시된 바와 같이, 본 발명의 실시예에 따른 이트륨 옥사이드 플로라이드 코팅막은, 대략 400 nm 내지 700 nm의 파장 범위(즉, 가시광선 영역)에서, 광 투과율이 대략 88.5 %의 투과율을 나타냈다. 따라서, 본 발명의 실시예에 따른 이트륨 옥사이드 플로라이드 코팅막은 내플라즈마 분야뿐만 아니라 표시 장치의 투명 윈도우를 보호하는데 적합함을 알 수 있다.As shown in FIG. 5, the yttrium oxide fluoride coating film according to the embodiment of the present invention exhibited a transmittance of about 88.5% at a light transmittance in a wavelength range of about 400 nm to 700 nm (i.e., a visible light range) . Accordingly, it can be seen that the yttrium oxide fluoride coating film according to the embodiment of the present invention is suitable for protecting the transparent window of the display device as well as the plasma plasma field.
이와 같이 하여, 본 발명의 실시예는 이트륨 플로라이드(YF3), 이트륨 옥사이드(Y2O3) 및/또는 이트륨 옥사이드 플로라이드(YOF)를 포함하는 혼합 분말을 에어로졸 디포지션(Aerosol Deposition), 에어 플라즈마 스프레이(Air Plasma Spray), 서스펜션 플라즈마 스프레이(Suspension Plasma Spray), 스퍼터링 및/또는 전자빔의 방식으로, 공정 환경에 적합한 두께, 성분비 및/또는 결정 특성을 갖는 이트륨 옥사이드 플로라이드(YOF) 코팅막을 저비용으로 구현할 수 있는 코팅막의 형성 방법 및 이에 따른 코팅막을 제공한다.Thus, embodiments of the present invention are directed to a method of treating a mixed powder comprising yttrium fluoride (YF3), yttrium oxide (Y2O3) and / or yttrium oxide fluoride (YOF) with an aerosol deposition (Aerosol Deposition), an air plasma spray A yttrium oxide fluoride (YOF) coating film having a thickness, a composition ratio and / or a crystal property suitable for a process environment can be realized at a low cost by a method such as sputtering, air plasma spraying, suspension plasma spraying, sputtering and / or electron beam And a coating film according to the method.
또한, 본 발명의 실시예는 높은 경도로 인해 부식성 가스 및/또는 고속 충돌 이온 입자에 대하여 높은 에칭 저항성을 갖고, 이에 따라 에칭 공정 중 반도체/디스플레이 부품을 보호할 수 있는 코팅막의 형성 방법 및 이에 따른 코팅막을 제공한다.Embodiments of the present invention also provide a method of forming a coating film having high etch resistance to corrosive gases and / or fast impacting ion particles due to high hardness, thereby protecting the semiconductor / display components during the etching process, Coating layer.
또한, 본 발명의 실시예는 기공율이 극히 작고(또는 충진율이 극히 높고) 그리고/또는 나노 구조를 가져 광 투과율이 높을 뿐만 아니라 경도 및/또는 접합 강도가 높아 표시 장치의 투명 윈도우를 보호할 수 있는 코팅막의 형성 방법 및 이에 따른 코팅막을 제공한다.In addition, the embodiment of the present invention can be applied to a display device which can protect a transparent window of a display device because the porosity is extremely small (or the filling rate is extremely high) and / or the nanostructure has a high light transmittance and a high hardness and / A method for forming a coating film and a coating film therefor are provided.
이상에서 설명한 것은 본 발명에 따른 코팅막의 형성 방법 및 이에 따른 코팅막을 실시하기 위한 하나의 실시예에 불과한 것으로서, 본 발명은 상기한 실시예에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.It is to be understood that the present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the scope of the present invention as set forth in the appended claims, It will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention.

Claims (13)

  1. 이트륨(Y), 산소(O) 및 불소(F)를 포함하는 혼합 분말을 제공하는 단계; 및Providing a mixed powder comprising yttrium (Y), oxygen (O), and fluorine (F); And
    상기 혼합 분말을 이용하여 기재에 YOF 코팅막을 형성하는 단계를 포함하고,And forming a YOF coating film on the base material by using the mixed powder,
    상기 YOF 코팅막은 엑스선 광전자 분광법(X-ray Photoelectron Spectroscopy; XPS)에 의한 Y:O:F의 성분비(atomic ratio)가 1:1:1인 코팅막의 형성 방법.Wherein the YOF coating film has a Y: O: F atomic ratio of 1: 1: 1 by X-ray photoelectron spectroscopy (XPS).
  2. 제1항에 있어서,The method according to claim 1,
    상기 YOF 코팅막의 두께는 100 nm 내지 100,000 nm인 코팅막의 형성 방법.Wherein the thickness of the YOF coating film is 100 nm to 100,000 nm.
  3. 제1항에 있어서,The method according to claim 1,
    상기 혼합 분말은 YF3와 Y2O3가 혼합되어 형성된 코팅막의 형성 방법.Wherein the mixed powder is formed by mixing YF 3 and Y 2 O 3.
  4. 제3항에 있어서,The method of claim 3,
    상기 YF3는 중량비가 90~60 wt.%이고,The YF 3 has a weight ratio of 90 to 60 wt.%,
    상기 Y2O3는 중량비가 40~10 wt.%인 코팅막의 형성 방법.Wherein the weight ratio of Y2O3 is 40 to 10 wt.%.
  5. 제1항에 있어서,The method according to claim 1,
    상기 혼합 분말은 성분비가 서로 다른 적어도 2종의 YOF가 혼합되어 형성된 코팅막의 형성 방법.Wherein the mixed powder is formed by mixing at least two types of YOF having different composition ratios.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 YOF는 제1YOF 및 제2YOF를 포함하고,Wherein the YOF comprises a first and a second < RTI ID = 0.0 > YOF,
    상기 제1YOF의 Y:O:F 성분비는 5:4:7이고,The Y: O: F component ratio of the first YOF is 5: 4: 7,
    상기 제2YOF의 Y:O:F 성분비는 1:1:1인 코팅막의 형성 방법.Wherein the Y: O: F component ratio of the second YOF is 1: 1: 1.
  7. 제6항에 있어서,The method according to claim 6,
    상기 제1YOF는 중량비가 60~80 wt.%이고,The first YOF has a weight ratio of 60 to 80 wt.%,
    상기 제2YOF는 중량비가 40~20 wt.%인 코팅막의 형성 방법.And the second YOF has a weight ratio of 40 to 20 wt.%.
  8. 제1항에 있어서,The method according to claim 1,
    상기 혼합 분말은 YF3와 YOF가 혼합되어 형성된 코팅막의 형성 방법.Wherein the mixed powder is a mixture of YF 3 and YOF.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 YF3는 중량비가 10~40 wt.%이고,The YF3 has a weight ratio of 10 to 40 wt.%,
    상기 YOF는 중량비가 90~60 wt.%인 코팅막의 형성 방법.Wherein the YOF has a weight ratio of 90 to 60 wt.%.
  10. 제1항에 있어서,The method according to claim 1,
    상기 혼합 분말은 YF3, YOF 및 Y2O3가 혼합되어 형성된 코팅막의 형성 방법.Wherein the mixed powder is a mixture of YF 3, YOF, and Y 2 O 3.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 YF3는 중량비가 20~50 wt.%이고,The YF 3 has a weight ratio of 20 to 50 wt.%,
    상기 YOF는 중량비가 10~60 wt.%이며,The YOF has a weight ratio of 10 to 60 wt.%,
    상기 Y2O3는 중량비가 20~45 wt.%인 코팅막의 형성 방법.And the weight ratio of Y2O3 is 20 to 45 wt.%.
  12. 기재에 형성된 YOF 코팅막으로서,As an YOF coating film formed on a substrate,
    상기 YOF 코팅막은 엑스선 광전자 분광법(X-ray Photoelectron Spectroscopy; XPS)에 의한 Y:O:F의 성분비(atomic ratio)가 1:1:1인 코팅막.The YOF coating film has a Y: O: F atomic ratio of 1: 1: 1 by X-ray photoelectron spectroscopy (XPS).
  13. 제12항에 있어서,13. The method of claim 12,
    상기 YOF 코팅막은 두께가 100 nm 내지 100,000 nm인 코팅막.Wherein the YOF coating film has a thickness of 100 nm to 100,000 nm.
PCT/KR2018/016785 2017-12-29 2018-12-27 Coating film forming method and coating film formed thereby WO2019132550A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170183536 2017-12-29
KR10-2017-0183536 2017-12-29
KR1020180170812A KR20190082119A (en) 2017-12-29 2018-12-27 Forming method of coating film and coating film thereof
KR10-2018-0170812 2018-12-27

Publications (1)

Publication Number Publication Date
WO2019132550A1 true WO2019132550A1 (en) 2019-07-04

Family

ID=67067908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016785 WO2019132550A1 (en) 2017-12-29 2018-12-27 Coating film forming method and coating film formed thereby

Country Status (1)

Country Link
WO (1) WO2019132550A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220349055A1 (en) * 2021-04-28 2022-11-03 Soon Young Kwon Method of forming coating layer of which composition can be controlled

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016211072A (en) * 2015-05-08 2016-12-15 東京エレクトロン株式会社 Material for spray coating, spray coating film, and member with spray coating film
KR20170078842A (en) * 2015-02-10 2017-07-07 닛폰 이트륨 가부시키가이샤 Powder for film formation and material for film formation
JP6189570B2 (en) * 2015-09-07 2017-08-30 三井金属鉱業株式会社 Yttrium oxyfluoride, raw material powder for producing stabilized yttrium oxyfluoride, and method for producing stabilized yttrium oxyfluoride
JP2017190475A (en) * 2016-04-12 2017-10-19 信越化学工業株式会社 Yttrium-based fluoride thermal spray film, thermal spray material for forming said thermal spray film, and anticorrosion film containing said thermal spray film
JP2017534001A (en) * 2014-11-07 2017-11-16 ぺムヴィックス コーポレーションFemvix Corp. Process component with improved plasma etching resistance and method for enhancing plasma etching resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017534001A (en) * 2014-11-07 2017-11-16 ぺムヴィックス コーポレーションFemvix Corp. Process component with improved plasma etching resistance and method for enhancing plasma etching resistance
KR20170078842A (en) * 2015-02-10 2017-07-07 닛폰 이트륨 가부시키가이샤 Powder for film formation and material for film formation
JP2016211072A (en) * 2015-05-08 2016-12-15 東京エレクトロン株式会社 Material for spray coating, spray coating film, and member with spray coating film
JP6189570B2 (en) * 2015-09-07 2017-08-30 三井金属鉱業株式会社 Yttrium oxyfluoride, raw material powder for producing stabilized yttrium oxyfluoride, and method for producing stabilized yttrium oxyfluoride
JP2017190475A (en) * 2016-04-12 2017-10-19 信越化学工業株式会社 Yttrium-based fluoride thermal spray film, thermal spray material for forming said thermal spray film, and anticorrosion film containing said thermal spray film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220349055A1 (en) * 2021-04-28 2022-11-03 Soon Young Kwon Method of forming coating layer of which composition can be controlled
US11618948B2 (en) * 2021-04-28 2023-04-04 Soon Young Kwon Method of forming coating layer of which composition can be controlled

Similar Documents

Publication Publication Date Title
KR20190082119A (en) Forming method of coating film and coating film thereof
US5909354A (en) Electrostatic chuck member having an alumina-titania spray coated layer and a method of producing the same
CN107916399B (en) Ion-assisted deposition of top coat of rare earth oxide
KR102422715B1 (en) Plasma erosion resistant rare-earth oxide based thin film coatings
WO2018217062A1 (en) A method for forming yttrium oxide fluoride coating film and yttrium oxide fluoride coating film prepared thereby
WO2015108277A1 (en) Method for forming ceramic coating having improved plasma resistance and ceramic coating formed thereby
US20090080136A1 (en) Electrostatic chuck member
KR20030063475A (en) Diamond coatings on reactor wall and method of manufacturing thereof
KR20030063486A (en) Carbonitride coated component of semiconductor processing equipment and method of manufacturing thereof
KR102106533B1 (en) Forming method of fluorinated yttrium oxide coating film and fluorinated yttrium oxide coating film thereof
US20170291856A1 (en) Solution precursor plasma spray of ceramic coating for semiconductor chamber applications
JP6005314B1 (en) Film-coated substrate, plasma etching apparatus component, and manufacturing method thereof
WO2019132550A1 (en) Coating film forming method and coating film formed thereby
KR20090125028A (en) Method for manufacturing a ceramic coating material for thermal spray on the parts of semiconductor processing devices
JP2009287058A (en) Film-forming method by direct-current reactive facing target type sputtering, pure yttria corrosion-resistant film formed with the film-forming method, and corrosion-resistant quartz assembly
Kitamura et al. Plasma sprayed coatings of high-purity ceramics for semiconductor and flat-panel-display production equipment
WO2018124739A1 (en) Method for forming transparent fluorine film, and transparent fluorine film formed thereby
WO2019054617A1 (en) Plasma etching apparatus member having improved plasma-resistant properties and manufacturing method therefor
TWI405743B (en) Multi-component thermal spray coating material for semiconductor processing equipment, and manufacturing and coating method thereof
CN115997269A (en) Yttria-based coating and bulk composition
Zhao et al. Phase composition, structural, and plasma erosion properties of ceramic coating prepared by suspension plasma spraying
WO2019124660A1 (en) Spray coating material and spray coating made of same spray coating material
WO2024101102A1 (en) Member and method for producing same
WO2022191428A1 (en) Sputtering target and manufacturing method therefor
KR102062397B1 (en) Forming method of fluorinated oxide film and fluorinated film thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895089

Country of ref document: EP

Kind code of ref document: A1