WO2019131482A1 - 容量制御弁 - Google Patents

容量制御弁 Download PDF

Info

Publication number
WO2019131482A1
WO2019131482A1 PCT/JP2018/047177 JP2018047177W WO2019131482A1 WO 2019131482 A1 WO2019131482 A1 WO 2019131482A1 JP 2018047177 W JP2018047177 W JP 2018047177W WO 2019131482 A1 WO2019131482 A1 WO 2019131482A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve body
control
spool
pressure
Prior art date
Application number
PCT/JP2018/047177
Other languages
English (en)
French (fr)
Inventor
真弘 葉山
小川 義博
啓吾 白藤
康平 福留
貴裕 江島
大千 栗原
▲高▼橋 渉
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to EP18895992.8A priority Critical patent/EP3734068B1/en
Priority to JP2019561630A priority patent/JP7148549B2/ja
Priority to CN201880081056.0A priority patent/CN111492141B/zh
Priority to US16/772,711 priority patent/US11326585B2/en
Publication of WO2019131482A1 publication Critical patent/WO2019131482A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1009Distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • F04B49/225Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves with throttling valves or valves varying the pump inlet opening or the outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1809Controlled pressure
    • F04B2027/1813Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1827Valve-controlled fluid connection between crankcase and discharge chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1831Valve-controlled fluid connection between crankcase and suction chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1845Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/185Discharge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1859Suction pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1863Controlled by crankcase pressure with an auxiliary valve, controlled by
    • F04B2027/1881Suction pressure

Definitions

  • Variable displacement compressors used in air conditioning systems for automobiles and the like include a rotary shaft driven by an engine, a swash plate variably connected to the rotary shaft, and a compression piston connected to the swash plate. And the like, and by changing the inclination angle of the swash plate, the stroke amount of the piston is changed to control the discharge amount of the fluid.
  • the inclination angle of this swash plate is the suction pressure Ps of the suction chamber suctioning the fluid, the discharge pressure Pd of the discharge chamber discharging the fluid pressurized by the piston, and the displacement control valve driven to open and close by the electromagnetic force.
  • the pressure in the control chamber can be continuously changed by appropriately controlling the pressure while using the control pressure Pc of the control chamber in which the swash plate is accommodated.
  • the displacement control valve 100 disclosed in Patent Document 1 is a first valve formed in the middle of the discharge side passages 112a and 112b that communicate the discharge chamber of the variable displacement compressor with the control chamber.
  • the chamber 120 and the second valve chamber 130 formed in the middle of the suction side passages 113a and 113b for communicating the suction chamber and the control chamber, and the second valve chamber 130 is formed opposite to the second valve chamber 130 based on the first valve chamber 120
  • a valve housing 110 having the third valve chamber 140, a first valve portion 152 for opening and closing the discharge side passages 112a and 112b in the first valve chamber 120, and a suction side passage 113a in the second valve chamber 130.
  • valve body 150 that performs opening and closing operations in opposite directions by the reciprocation thereof is communicated with the second valve chamber 130 and the third valve chamber 140.
  • Formed in the valve body 150 It is disposed in the intermediate communication passage 155 (first flow passage) and the third valve chamber 140, and the first valve portion 152 is biased in the opening direction of the main valve by its extension, and suction as ambient pressure is performed.
  • a pressure sensitive body 160 which contracts with an increase in pressure Ps, an adapter 170 provided at the free end of the pressure sensitive body 160 in the expansion / contraction direction and having an annular valve seat, and a valve body 150 in the third valve chamber 140
  • the third valve portion 154 which can move integrally as well as open and close the suction side passages 113a and 113b by seating and releasing with the adapter 170 and the solenoid 180 which exerts a driving force to the valve body 150 are provided. It is done. If the variable displacement compressor is stopped and left in the stopped state for a long time, the control pressure Pc and the suction pressure Ps become much higher than the pressure during continuous driving, so the ambient pressure can cause a sensation.
  • the pressure body 160 is contracted, the third valve portion 154 is disengaged from the adapter 170, and the third valve (relief valve) is opened.
  • variable displacement compressor starts up, when the solenoid 180 of the displacement control valve 100 is energized to move the valve body 150, the first valve portion 152 moves in the closing direction of the main valve and at the same time the second valve portion 153 becomes the second valve.
  • the intermediate communication passage 155 is communicated from the third valve chamber 140 to the second valve chamber 130, so that the suction side passages 113a and 113b are opened.
  • the fluid in the control chamber at high pressure is discharged from the third valve through the intermediate communication passage 155 into the suction chamber.
  • the suction pressure Ps and the control pressure Pc decrease, the pressure-sensitive body 160 elastically recovers and expands, and the adapter 170 is seated with the third valve portion 154 to close the third valve.
  • the present invention has been made in view of such problems, and it is an object of the present invention to provide a displacement control valve capable of rapidly reducing the pressure in the control chamber when the variable displacement compressor is started.
  • a main valve opens and closes communication between a discharge port through which discharge fluid of discharge pressure passes and a control port through which control fluid of control pressure passes.
  • the relief valve is closed due to a decrease in the suction pressure and the control pressure when starting the variable displacement compressor, and the first flow path connecting the control port and the suction port is closed. Also, after the main valve portion of the main valve body is abutted against the main valve seat by the driving force of the solenoid to close the main valve, the spool valve body is further moved to widen the opening degree of the second flow path. The fluid in the control chamber of the variable displacement compressor can be discharged to the suction chamber through the second flow path, so that the pressure in the control chamber can be rapidly reduced. Further, since the communication of the second flow passage is switched by the spool valve, the flow rate of the second flow passage can be controlled with high accuracy.
  • the main valve body and the spool valve body are arranged to be reciprocally movable in the same direction. According to this, the structure of the main valve and the spool valve can be simplified.
  • the first flow passage is a hollow hole axially formed in the main valve body. According to this, since the fluid can be discharged through the first flow passage which is a hollow hole formed in the axial direction in the main valve body when the relief valve is opened, the first flow passage secures a wide flow passage cross-sectional area The pressure in the control chamber of the variable displacement compressor can be reduced quickly.
  • the second flow path includes a through hole provided in the valve housing.
  • the fluid is discharged in parallel from the two flow paths of the first flow path formed in the hollow hole of the main valve body and the second flow path provided in the valve housing separately from the first flow path.
  • the pressure in the control chamber of the variable displacement compressor can be reduced quickly.
  • the main valve body and the spool valve body are engaged in a radial direction. According to this, even if the main valve body is in the open state in the valve housing, the spool valve body engaged in the radial direction exerts a force on the main valve body in the axial direction.
  • the valve portion can be separated from the main valve seat.
  • the relief valve is provided with an orifice portion for constantly communicating the control port and the suction port via the first flow path. According to this, when the relief valve is closed, by constantly communicating the control port and the suction port from the orifice portion via the first flow path, it is possible to balance and adjust the pressure in the suction chamber and the control chamber.
  • FIG. 21 is a cross-sectional view showing a modification 2 of the displacement control valve of the fifth embodiment.
  • FIG. 21 is a cross-sectional view showing a modification 3 of the displacement control valve of the fifth embodiment. It is sectional drawing which shows a mode that the main valve was obstruct
  • a mode for carrying out a displacement control valve according to the present invention will be described below based on an embodiment.
  • the displacement control valve V of the present invention is incorporated in a variable displacement compressor M used for an air conditioning system such as a car and the like, and is a working fluid that is a refrigerant (hereinafter simply referred to as "fluid"
  • the discharge amount of the variable displacement compressor M is controlled by variably controlling the pressure of.
  • the fluid discharged from the variable displacement compressor M is sent to the condenser C that constitutes the refrigeration cycle of the air conditioning system, and is further subjected to heat exchange by passing through the expansion valve EV and the evaporator E.
  • the variable displacement compressor M includes a discharge chamber 2, a suction chamber 3, a control chamber 4, and a plurality of cylinders 4 a, and communicates the discharge chamber 2 with the control chamber 4.
  • a communication passage 5 serving as a discharge side passage
  • a communication passage 6 serving as a suction side passage connecting the suction chamber 3 and the control chamber 4
  • a communication passage 7 serving both as a discharge side passage and a suction side passage.
  • a casing 1 that defines
  • variable displacement compressor M includes a driven pulley 8 connected to a V-belt (not shown) outside the casing 1 and a rotary shaft 8a projecting from inside the control chamber 4 to the outside of the casing 1 and fixing the driven pulley 8
  • the swash plate 8b is connected to the rotary shaft 8a in an eccentric state by the hinge mechanism 8e, the plurality of pistons 8c reciprocably fitted in the respective cylinders 4a, the swash plate 8b and the respective pistons 8c are connected And a spring 8f inserted through the rotation shaft 8a. A force always acts on the swash plate 8b by the spring 8f and the hinge mechanism 8e.
  • the stroke amount of the piston 8c is variable by receiving the control pressure Pc in the control chamber 4 and changing the inclination angle of the swash plate 8b with respect to the rotation shaft 8a. Specifically, the higher the control pressure Pc in the control chamber 4 is, the smaller the inclination angle of the swash plate 8b with respect to the rotating shaft 8a is, and the stroke amount of the piston 8c is reduced.
  • the swash plate 8b is substantially vertical to the shaft 8a (slightly inclined from the vertical).
  • the stroke amount of the piston 8c is minimized, and the pressurization of the fluid in the cylinder 4a by the piston 8c is minimized, so the amount of fluid discharged to the discharge chamber 2 is reduced, and the cooling capacity of the air conditioning system is minimized. It becomes.
  • the lower the control pressure Pc in the control chamber 4 is, the larger the inclination angle of the swash plate 8b with respect to the rotation shaft 8a and the stroke amount of the piston 8c increases.
  • the swash plate 8b has the maximum inclination angle.
  • the second valve portion 54a to be closed is in contact with and separated from the open end face 83g.
  • the relief valve 59 is constituted by the adapter 70 of the pressure sensing body 60 and the valve seat 55a formed at the axial left end of the third valve body 55, and the axial right end 70a of the adapter 70 is in contact with the valve seat 55a. It is supposed to be released.
  • the spool valve 50 is configured of a spool valve body 52 and a fixed iron core 83.
  • the fixed core 83 is formed of a rigid body made of a magnetic material such as iron or silicon steel, and is formed with a cylindrical portion 83a extending in the axial direction and formed with an insertion hole 83b through which the drive rod 84 is inserted, and the axial left end of the cylindrical portion 83a
  • An annular flange portion 83c extending in the outer diameter direction from the outer peripheral surface of the portion, and a recess 83d is formed which is recessed axially rightward from the radial center of the axial left end of the cylindrical portion 83a.
  • the flange portion 83c extends outward in the axial direction from a position axially right of the left end of the cylindrical portion 83a in the axial direction, and the end surface on the left side in the axial direction of the flange portion 83c is continuous with the end surface in the axial direction
  • An annular step 83 e is formed at the axial left end of the fixed core 83 by the outer peripheral surface of the cylindrical portion 83 a extending to the left end.
  • a plurality of through holes 83f extending in the radial direction are formed so as to communicate with the recessed portion 83d formed on the inner diameter side with respect to the cylindrical portion 83a.
  • the flange portion 83c of the fixed core 83 is disposed on the inner diameter side
  • the attachment portion 10a of the valve housing 10 is disposed on the outer diameter side.
  • the fitting portion 10a of the valve housing 10 is fitted into a recess 10b which is recessed leftward in the axial direction from the radial center of the axial right end of the mounting portion 10a.
  • the flange portion 83c of the fixed core 83 is in contact with the bottom surface of the recess 81b of the casing 81, and the outer diameter of the open end face 83g formed at the axial left end of the cylindrical portion 83a (sleeve portion 83s) With the side in contact with the bottom of the recess 10 b of the valve housing 10, the casing is fixed to the casing 81.
  • the valve housing 10 has a bottomed, substantially cylindrical shape by press-fitting the partition adjusting member 11 at the axial left end.
  • a first valve body 53, a second valve body 54, a third valve body 55, and a spool valve body 52 are disposed so as to be capable of reciprocating in the axial direction.
  • a small diameter guide surface 10c is formed in the portion so that the outer peripheral surface of the first valve body 53 can be in sliding contact.
  • the partition adjustment member 11 can adjust the biasing force of the pressure sensitive body 60 by adjusting the installation position of the valve housing 10 in the axial direction.
  • valve housing 10 is provided with a communication passage 12a and a communication passage 12b as a discharge port functioning as a discharge side passage that communicates the discharge chamber 2 and the control chamber 4 of the variable displacement compressor M and a communication passage 14a as a control port.
  • suction to connect the control chamber 4 and the suction chamber 3 of the variable displacement compressor M together with the first communication passage 56 as the first flow passage and the hollow hole and the second communication passage 90 as the second flow passage.
  • a communication passage 13a serving as a suction passage functioning as a side passage, communication passages 13b and 14a, a first valve chamber 20 formed in the middle of the discharge side passage, and a second valve chamber 30 formed in the middle of the suction side passage.
  • the communication passage 13 b is defined by the opening end face 83 g of the sleeve portion 83 s of the fixed core 83, the second valve body 54, and the spool valve body 52.
  • a through hole 90a penetrating in the axial direction on the outer diameter side is formed.
  • the through hole 90 a constitutes a part of a second communication passage 90 communicating the second valve chamber 30 with the third valve chamber 40 inside the valve housing 10.
  • the second communication passage 90 has a through hole 90 a axially penetrating the valve housing 10 and an annular connection space 91 formed by inserting and fitting the flange portion 83 c of the fixed core 83 into the recess 10 b of the valve housing 10. And a through hole 83f penetrating the cylindrical portion 83a of the fixed core 83 in the radial direction, and an annular groove 52b provided on the outer peripheral surface 52a of the spool valve body 52 described later.
  • the connection space 91 is defined by the inner peripheral surface and the bottom surface of the recess 10 b of the valve housing 10 and the annular step 83 e of the fixed core 83.
  • the second communication passage 90 is always in communication with the communication passage 13b functioning as the suction side passage via the spool adjustment passage 92 continuous with the annular groove 52b.
  • the degree of opening adjustment of the spool adjustment flow passage 92 can be adjusted by the spool valve 50 constituted by the spool valve body 52 and the sleeve portion 83s of the fixed iron core 83. The spool valve 50 and the opening adjustment using the same will be described in detail later.
  • a coil spring 53 b in a compressed state is provided between the first valve body 53 and the spool valve body 52.
  • the driving force of the solenoid 80 exceeds the biasing force of the coil spring 53b, the coil spring 53b is compressed.
  • the first valve body 53 has a substantially cylindrical shape, and the substantially cylindrical second valve body 54 is fixed to the axial right end portion, and the substantially cylindrical third valve body 55 is fixed to the axial left end portion. Are fixed, and they move together in the axial direction.
  • a first communication passage 56 is formed which is penetrated in the axial direction and functions as a suction side passage by connecting a hollow hole. It is done.
  • the pressure-sensitive body 60 is mainly composed of a bellows core 61 in which the coil spring 62 is embedded, and an adapter 70 formed at the axial right end of the bellows core 61.
  • the axial left end of the bellows core 61 is divided It is fixed to the adjustment member 11.
  • the pressure sensitive body 60 is disposed in the third valve chamber 40, and the axial right end 70 a of the adapter 70 is moved to the valve seat 55 a of the third valve body 55 by the biasing force of the coil spring 62 and the bellows core 61. I am supposed to sit down.
  • FIG. 2 shows that the suction pressure Ps in the first communication passage 56 is much higher than the pressure at the time of continuous driving because the displacement control valve V is left in the non-energized state for a long time.
  • the axial right end 70a of the adapter 70 is separated from the valve seat 55a of the third valve body 55, and the relief valve 59 is opened.
  • the spool valve body 52 is configured separately from the first valve body 53, and is fixedly coupled to the drive rod 84 which constitutes the solenoid 80 in a state where the axial right end portion is inserted into the recess 83d of the fixed core 83. In response to the driving force of the solenoid 80, it can move axially to the left.
  • the left end side in which the recessed part 83d of the fixed iron core 83 is formed is a sleeve part 83s as a sleeve in which the spool valve body 52 is arranged to be movable in the axial direction.
  • a minute gap is formed between the outer circumferential surface 52a of the spool valve body 52 and the inner circumferential surface of the recess 83d of the fixed core 83 by forming a slight gap in the radial direction, and the smooth movement in the axial direction is achieved. It is possible.
  • the spool valve body 52 is biased to the right in the axial direction by the coil spring 53b inserted into and fitted to the axial direction right end portion of the first valve body 53, and the first valve body 53 is interposed via the coil spring 53b. It is connected to the.
  • the control pressure Pc in the third valve chamber 40 and the suction pressure Ps in the first communication passage 56 are controlled by the displacement control valve V, and the pressure sensitive body 60 can be contracted. Therefore, the first valve 57 can be closed by integrally moving the first valve body 53 and the spool valve body 52 to the left in the axial direction by the driving force of the solenoid 80 (see FIG. 3).
  • the driving force of the solenoid 80 during continuous driving is smaller than the biasing force of the coil spring 53b, and the coil spring 53b is not contracted. Therefore, the first valve body 53 and the spool valve body 52 have an axis It does not move relative to the direction. Further, in a state where the control pressure Pc and the suction pressure Ps are controlled by the displacement control valve V, the pressure sensitive body 60 does not expand and contract at the surrounding pressure, and the relief valve 59 remains closed. It expands and contracts in accordance with the movement of the first valve body 53 and the spool valve body 52.
  • annular groove 52b recessed in the inner diameter direction is formed in the axial direction substantially at the center of the outer peripheral surface 52a.
  • annular flange portion 52c extending in the outer diameter direction is formed at the axial left end of the outer peripheral surface 52a, and an end face on the right side in the axial direction of the flange portion 52c
  • An annular stepped portion 52 d is formed at the axial direction left end portion of the spool valve body 52 by the outwardly extending outer peripheral surface 52 a.
  • the annular step portion 52d of the spool valve body 52 has an end face on the right side in the axial direction of the flange portion 52c as an end face on the left side in the axial direction of the annular protrusion 54b extending inward from the axial right end of the inner peripheral surface of the second valve body 54.
  • the coil spring 53 b urges it to the right in the axial direction.
  • a plurality of through holes 54c extending in the axial direction are formed in the annular projection 54b of the second valve body 54, and functions as a first communication passage 56 formed inside the first valve body 53 and a suction side passage.
  • the communication passage 13 b is in constant communication with the communication passage 13 b via the through hole 54 c.
  • the outer peripheral surface 52a of the spool valve body 52 is configured such that the outer diameter on the axial left side of the annular groove 52b is slightly smaller than the outer diameter on the axial right of the annular groove 52b.
  • the outer peripheral surface 52a on the left side of the annular groove 52b of the valve body 52 in the axial direction and the inner peripheral surface of the recess 83d of the fixed core 83 are radially separated to form an annular spool adjustment channel 92 through which fluid can pass. ing.
  • the opening adjustment of the spool adjusting flow passage 92 is performed by the spool valve 50, and more specifically, the opening relative adjustment of the spool valve body 52 relative to the fixed iron core 83 constituting the spool valve 50 is adjustable. It has become.
  • the outer peripheral surface 52 a on the left side in the axial direction of the annular groove 52 b of the spool valve body 52 is configured to enter into the recess 83 d of the fixed core 83.
  • the opening area of the second communication passage 90 determined by the opening degree of the spool adjustment flow path 92 in the non-energized state of the displacement control valve V is the minimum opening area S1 (see FIG. 7).
  • the minimum opening area S1 of the second communication passage 90 can be freely set by adjusting the radial separation dimension between the outer peripheral surface 52a of the spool valve body 52 and the inner peripheral surface of the recess 83d of the fixed core 83. May be done.
  • the second valve portion 54a of the second valve body 54 is seated on the opening end face 83g of the sleeve portion 83s of the fixed core 83, and the communication paths 13a and 13b, which are suction side passages, are closed.
  • the first valve portion 53a of the first valve body 53 constituting the first valve 57 is separated from the valve seat 12c formed on the inner peripheral surface of the valve housing 10, and the communication passages 12a and 12b serving as the discharge side passage.
  • 14a (shown by dotted arrows in FIG. 2) are open.
  • the fluid in the discharge chamber 2 of the variable displacement compressor M causes the communication passages 12a, 12b, and 14a, which are the discharge side passages, to be opened by the displacement control valve V.
  • the fluid flows from the discharge chamber 2 into the control chamber 4 via the displacement control valve V. This is because the discharge pressure Pd is higher than the control pressure Pc.
  • variable displacement compressor M When the variable displacement compressor M is started up while the discharge pressure Pd, the suction pressure Ps and the control pressure Pc are equalized, the control pressure Pc at this time is much higher than the control pressure Pc at the time of continuous driving Because the swash plate 8b is substantially perpendicular to the rotation shaft 8a, the stroke amount of the piston 8c is minimized.
  • variable displacement compressor M starts energization of the displacement control valve V in accordance with its own activation.
  • the displacement control valve V is energized by energizing the coil 87 of the solenoid 80 from the non-energized state shown in FIG. 2 to generate a magnetic force, and the movable core 85 is attracted to the fixed iron core 83 receiving the magnetic force.
  • the drive rod 84 whose right end in the axial direction is connected to the iron core 85 follows, and the spool valve body 52 connected to the left end in the axial direction of the drive rod 84 moves to the left in the axial direction (see FIG. 4).
  • the first valve body 53, the second valve body 54, the third valve body 55, and the spool valve body 52 integrally move to the left in the axial direction.
  • the displacement control valve V is seated on the valve seat 12 c formed on the inner peripheral surface of the valve housing 10 with the first valve portion 53 a of the first valve body 53, and the discharge side passage
  • the first valve 57 is closed between the communication passages 12a and 12b (shown by dotted arrows in FIG. 4).
  • the second valve portion 54a of the second valve body 54 is separated from the open end face 83g of the sleeve portion 83s of the fixed core 83, and the second valve 58 is opened between the communication passages 13a and 13b which are suction side passages.
  • the first valve portion 53a of the first valve body 53 constituting the first valve 57 is seated on the valve seat 12c formed on the inner peripheral surface of the valve housing 10 by the magnetic force at the time of activation of the displacement control valve V.
  • the opening degree of the second valve 58 is maximum, and the opening area of the suction side passage between the communication paths 13a and 13b determined by the opening degree of the second valve 58 is , Maximum opening area (see FIG. 7).
  • the second valve 58 is opened between the displacement control valve V and the communication passages 13a and 13b, which are suction side passages, so that the communication passage 14a, the third valve chamber 40, and the third valve chamber 40 are sequentially arranged from the control chamber 4. 1 communication passage 14a, third passage from the control chamber 4 to the communication passage 56, the through hole 54c, the communication passage 13b, the second valve chamber 30, and the flow passage to the communication passage 13a (shown by the dashed arrow in FIG.
  • Two flow paths (shown by solid arrows in FIG. 4) are formed in parallel.
  • the driving force of the solenoid 80 is equal to the biasing force of the coil spring 53 b provided between the first valve body 53 and the spool valve body 52.
  • the coil spring 53b provided between the first valve body 53 and the spool valve body 52 does not contract, and from the annular groove 52b of the spool valve body 52 constituting the spool valve 50
  • the axial position of the axial right end of the outer peripheral surface 52a on the left side in the axial direction and the opening end surface 83g of the sleeve portion 83s of the fixed iron core 83 are held substantially the same, so that the opening degree of the spool adjustment flow passage 92
  • the second communication passage 90 is held at the minimum opening area S1 without changing from the non-energized state of the control valve V (see FIG. 7). Therefore, the amount of fluid flowing into the communication passages 13a and 13b, which are the suction side passages, is small (show
  • variable displacement compressor M is controlled to increase the current supplied to the displacement control valve V after the first valve 57 is closed.
  • the displacement control valve V generates a large magnetic force by increasing the current supplied to the coil 87 of the solenoid 80 from the state after the closing of the first valve 57 shown in FIG.
  • the biasing force of the coil spring 53b provided between the valve body 53 and the spool valve body 52 is exceeded, as shown in FIG. 5, the coil spring 53b is contracted to form the annular step portion 52d of the spool valve body 52.
  • the engagement is released by separating the end face on the right side in the axial direction of the flange portion 52c from the end face on the left side in the axial direction of the annular protrusion 54b of the second valve body 54, and the spool valve body 52 with respect to the first valve body 53. Relatively move to the left in the axial direction so that the
  • the displacement control valve V has an outer peripheral surface 52a on the left side in the axial direction of the annular groove 52b of the spool valve body 52 constituting the spool valve 50 and a part of the annular groove 52b fixed iron core
  • the opening 83 of the second communication passage 90 is the spool because the opening degree of the spool adjustment flow path 92 is expanded by coming out of the recessed portion 83 d of the shaft 83 to the left in the axial direction and positioned on the left in the axial direction with respect to the open end face 83 g. It proportionally increases with the stroke of the valve body 52 (see FIG. 7).
  • the opening area is increased by the flow path (shown by the dashed arrow in FIG. 5) via the first communication path 56 communicated by opening the relief valve 59 and the opening of the spool valve 50 Because the fluid can be discharged from the control chamber 4 in a short time by two parallel flow paths of the flow paths (shown by solid arrows in FIG. 5) via the second communication path 90, the variable displacement compressor At the start of M, the control pressure Pc in the control chamber 4 can be rapidly reduced.
  • the closing force of the first valve 57 is maintained by the driving force of the solenoid 80 even if the pressure sensing body 60 is extended and the relief valve 59 is closed.
  • the coil spring 53 b provided between the first valve body 53 and the spool valve body 52 can be contracted and the opening of the spool valve 50 can be maintained.
  • the pressure sensing body 60 when the variable displacement compressor M is activated, the pressure sensing body 60 is expanded due to the decrease of the suction pressure Ps in the first communication passage 56, and the relief valve 59 is closed. And controls the current supplied to the displacement control valve V even if the first communication passage 56 that constitutes the suction side passage connecting the control chamber 4 and the suction chamber 3 is closed, and drives the solenoid 80.
  • the driving force of the solenoid 80 is adjusted so as not to exceed the biasing force of the coil spring 53b, whereby the opening degree of the spool adjusting flow path 92 in the spool valve 50 Since the opening area of the second communication passage 90 defined by the second communication passage 90 can be maintained at the minimum opening area S1, the amount of fluid flowing from the second communication passage 90 into the communication passages 13a and 13b, which are suction side passages, is reduced Pressure control by the control valve V can be facilitated.
  • the spool valve 50 is constituted by the spool valve body 52 movable relative to the fixed iron core 83 in the axial direction, the second communication passage 90 (spool adjustment passage 92) is opened by the driving force of the solenoid 80.
  • the degree can be accurately controlled, and the flow rate of the second communication passage 90 can be variably controlled after the first valve 57 is closed.
  • the opening degree of the second communication passage 90 can be controlled by the spool valve 50 to such an extent that biting-in of foreign matter in the fluid is unlikely to occur, deterioration of foreign matter resistance by installation of the valve You can prevent.
  • the axial right end 70 a of the adapter 70 constituting the pressure sensitive body 60 is separated from the valve seat 55 a of the third valve body 55, and the relief valve 59 is opened, so that the first valve body 53 and the second valve body 54. Since fluid can be discharged from the control chamber 4 to the suction chamber 3 through the first communication passage 56 which is a hollow hole formed in the axial direction in the third valve body 55, the first series in the interior of the volume control valve V The passage 56 can ensure a wide flow passage cross-sectional area, and can quickly reduce the control pressure Pc in the control chamber 4 of the variable displacement compressor M.
  • first communication passage 56 and the second communication passage 90 are parallel flow passages, they do not interfere with each other, and energy loss is unlikely to occur.
  • the fluid can be easily discharged through the second communication passage 90, and the control pressure Pc can be quickly reduced.
  • the annular stepped portion 52d of the spool valve body 52 radially engages the annular protrusion 54b of the second valve body 54 from the inner diameter side, for example, the guide surface 10c of the valve housing 10 and the first valve body Even if the first valve body 53 malfunctions due to the influence of contamination or the like entering between the outer peripheral surface of the 53, the displacement control valve V is engaged in the radial direction by changing the energized state to the de-energized state
  • the spool valve body 52 can exert a force for moving the first valve body 53 to the right in the axial direction, and the first valve 57 by the first valve body 53 (a first valve portion 53 a of the first valve body 53 a And opening of the valve seat 12c of the valve housing 10 and closing of the second valve 58 (the open end face 83g of the second valve portion 54a of the second valve body 54 and the sleeve portion 83s of the fixed iron core 83) can be reliably performed. .
  • control is performed to increase the current supplied to the displacement control valve V, and the spool valve body 52 is relatively moved leftward in the axial direction by the driving force of the solenoid 80 with respect to the first valve body 53 causing the malfunction.
  • the coil spring 53b provided between the first valve body 53 and the spool valve body 52 to increase the spring load, a force for moving the first valve body 53 to the left in the axial direction is obtained. Therefore, the closing of the first valve 57 by the first valve body 53 and the opening of the second valve 58 by the spool valve body 52 can be reliably performed.
  • the fixed core 83 is a sleeve constituting the spool valve 50, the structure is simple.
  • the spool valve body 252 is configured separately from the first valve body 53, and is axially left so that the axial direction right end portion of the coil spring 53 b is externally fitted from the axial direction left end
  • a cylindrical convex portion 252e extending in the direction is provided.
  • the protrusion 252 e is not limited to one in which a separate member is fixed to the spool valve body 252, and may be integrally formed with the spool valve body 252.
  • the convex portion 252e is not limited to the cylindrical shape, and the flow of the fluid in the first communication passage 56 may be hard to be disturbed by being configured by a plurality of protrusions separated in the circumferential direction.
  • the maximum distance L between the first valve body 53 and the spool valve body 252 in the axial direction is the axial movable distance of the spool valve body 252 relative to the first valve body 53 (see FIGS. 5 and 6). It is configured shorter than).
  • the displacement control valve V The convex portion 252e of the spool valve body 252 moved relatively to the left in the axial direction by the driving force of the solenoid 80 with respect to the axial right end of the first valve body 53 is controlled to increase the current supplied to the
  • the first valve 57 (the first valve portion 53 a of the first valve body 53 and the valve seat 12 c of the valve housing 10) of the first valve body 53 can be brought into contact and force applied to the left in the axial direction.
  • the closing and the opening of the second valve 58 (the opening end face 83g of the second valve portion 54a of the second valve body 54 and the sleeve portion 83s of the fixed core 83) can be reliably performed.
  • the first valve body 353 is formed in a substantially cylindrical shape, and is configured by fixing a substantially cylindrical third valve body 55 to the axial left end portion.
  • the first valve body 353 has an annular groove 353b recessed in the circumferential direction at the axial right end portion of the outer peripheral surface along the circumferential direction, and the recess in the annular direction of the annular groove 353b is formed on the axial right side of the annular groove 353b.
  • a flange portion 353c is formed.
  • the spool valve body 352 is configured separately from the first valve body 353, and a flange portion 352 c extending in the outer diameter direction is formed at the axial left end portion, and an end face on the axial right side of the flange portion 352 c
  • the second valve portion 352f is formed so as to be seated on the open end face 83g of the sleeve portion 83s of the fixed core 83 constituting the second valve 358.
  • a plurality of through holes 352g extending in the axial direction are formed in the flange portion 352c, and the first communication passage 56 and the second valve chamber 30 formed inside the first valve body 353 are formed through the through holes 352g. Communication is possible.
  • a cylindrical convex portion 352e extending leftward in the axial direction so as to externally fit the axial right end of the first valve body 353 is formed.
  • An annular groove 352h recessed in the outer diameter direction is formed on the inner peripheral surface of the convex portion 352e in the circumferential direction, and the flange 352k is formed on the axial left side of the annular groove 352h due to the recess in the radial direction of the annular groove 352h. It is formed.
  • the first valve body 353 and the spool valve body 352 have the convex portion 352e of the spool valve body 352 externally fitted on the axial direction right end portion of the first valve body 353, and the flange portion 353c of the first valve body 353 and the spool valve It is connected by causing the flange portion 352k of the body 352 to engage in a radial direction.
  • the displacement control valve V Is switched from the energized state to the non-energized state, the flange portion 352k of the spool valve body 352, which engages with the flange portion 353c of the first valve body 353 in the radial direction, Of the first valve body 353 (the opening of the first valve portion 353a of the first valve body 353 and the valve seat 12c of the valve housing 10) and the spool valve body 352.
  • the second valve 358 (the opening end face 83g of the second valve portion 352f of the spool valve body 352 and the sleeve portion 83s of the fixed core 83) can be reliably closed.
  • the closing of the first valve 357 by the first valve body 353 and The second valve 358 can be reliably opened by the spool valve body 352.
  • the axial right end of the annular groove 352 h of the spool valve body 352 moved relatively axially to the left with respect to the axial right end of the first valve body 353 abuts against the axial left direction. You may make it act.
  • the spool valve body 452 is configured separately from the first valve body 53 and extends axially rightward from the radial center of the axial left end surface and the shaft of the spool valve body 452
  • a second communication passage 490 is formed as a second flow passage for connecting the first communication passage 56 and the annular groove portion 452 b by bending in the radial direction from substantially the center of the direction.
  • the pressure-sensitive body 460 is mainly composed of a bellows core 61 in which the coil spring 62 is embedded, and an adapter 470 formed at the axial right end of the bellows core 61, and the adapter 470 penetrates in the radial direction.
  • An auxiliary communication passage 470 b communicating the inside of the third valve chamber 40 with the first communication passage 56 is formed.
  • the displacement control valve V has a flow passage through the first communication passage 56 communicated by opening the relief valve 459, and a flow passage through the second communication passage 490 whose opening area increases by opening the spool valve 50.
  • the two flow paths can discharge the fluid from the control chamber 4 in a short time, so that the control pressure Pc in the control chamber 4 can be rapidly reduced when the variable displacement compressor M is started.
  • the pressure-sensitive body 460 is expanded by the decrease of the control pressure Pc in the control chamber 4, the relief valve 459 is closed, and the suction side communicates the control chamber 4 and the suction chamber 3. Even when the first communication passage 56 constituting the passage is closed, the fluid in the high pressure state of the control chamber 4 can be made to flow from the auxiliary communication passage 470 b formed in the adapter 470 into the first communication passage 56. While controlling the current supplied to the displacement control valve V, the first valve portion 53a of the first valve body 53 is seated on the valve seat 12c formed on the inner peripheral surface of the valve housing 10 by the driving force of the solenoid 80.
  • the coil spring 53b provided between the first valve body 53 and the spool valve body 452 is contracted to further move the spool valve body 452 to the left in the axial direction. 2 communication Since the fluid in the high pressure state of the control chamber 4 of the variable displacement compressor M can be discharged to the suction chamber 3 through the second communication passage 490 by widening the opening degree of the 490 (spool adjustment flow passage 92), The control pressure Pc in the control chamber 4 can be reduced quickly.
  • the second valve 558 is a sleeve portion 83s as a sleeve of the fixed iron core 83 forming the communication passage 13b with the second valve portion 554a formed at the axial right end of the second valve body 554. It is comprised by the opening end surface 83g. Further, a plurality of slits 554d extending in the radial direction are formed in the second valve portion 554a, and the communication paths 13a and 13b functioning as the suction side passage are always in communication via the slits 554d. The amount of fluid passing through the slit 554 d is very small and does not affect the pressure control during continuous operation by the volume control valve V.
  • the second valve body 554 may be provided with a through hole that penetrates in the radial direction instead of the slit.
  • the second valve body has a cylindrical shape in which the slit and the through hole are not provided, and a concave extending in the radial direction on the open end face 83g of the sleeve portion 83s of the fixed iron core 83 facing the end of the cylindrical portion of the second valve body A groove may be provided.
  • the relief valve 559 is composed of a valve seat 555a formed on the outer peripheral surface of the left end in the axial direction of the third valve body 555, and an inner peripheral surface 570a of an adapter 570 constituting the pressure sensitive body 560.
  • the inner peripheral surface 570a of the adapter 570 is formed with slits 570b as a plurality of orifices extending in the direction of the recess axis on the outer diameter side and the third valve chamber 40 and the first communication passage 56 via the slits 570b. It is always in communication.
  • the amount of fluid passing through the slit 570 b is very small and does not affect the pressure control by the volume control valve V.
  • the outer peripheral surface of the third valve body 555 at the left end in the axial direction is provided with a plurality of slits extending in the inner diameter side and extending in the axial direction. Good.
  • the relief valve 559 is an axis between the third valve body 555 and the adapter 570 by the movement of the third valve body 555 and the expansion and contraction of the pressure sensitive body 560.
  • the valve seat 555a of the third valve body 555 is configured not to come out of the inner circumferential surface 570a of the adapter 570 even when the relative position in the direction is changed. That is, the opening area of the relief valve 559 is defined by the slit 570 b and kept constant during continuous driving.
  • the valve seat 555a of the third valve body 555 comes out of the inner circumferential surface 570a of the adapter 570, and the relief valve 559 is opened.
  • the opening area of the second valve 558 is configured to be always larger than the sum of the opening areas of the relief valve 559 (slit 570b) and the second communication passage 90 (spool adjustment passage 92). There is.
  • the fluid in the control chamber 4 flows from the slit 570b of the adapter 570 to the first communication passage 56, By flowing into the suction chamber 3 through the slit 554d of the two-valve portion 554a, the pressures in the suction chamber 3 and the control chamber 4 can be balanced and adjusted.
  • the fluid in the control chamber 4 can also be made to flow from the second communication passage 90 into the suction chamber 3 via the spool valve 50 and the slit 554 d of the second valve portion 554 a without passing through the slit 570 b of the adapter 570. .
  • the relief valve 659 includes the valve seat 655 a formed on the outer peripheral surface of the third valve body 655 in the axial direction and the inner periphery of the adapter 670 constituting the pressure sensitive body 660. And a surface 670a.
  • the outer diameter of the valve seat 655a of the third valve body 655 is slightly smaller than the inner diameter of the inner circumferential surface 670a of the adapter 670, so that the valve seat 655a of the third valve body 655 and the inside of the adapter 670 are configured.
  • a minute gap 670b as an orifice portion extending in the axial direction is formed between the peripheral surface 670a and the third valve chamber 40 and the first communication passage 56 are always in communication via the minute gap 670b.
  • the amount of fluid passing through the minute gap 670b is very small, and does not affect the control of the control pressure Pc at the time of control of the displacement control valve V.
  • the relief valve 759 includes a valve seat 755 a formed on the outer peripheral surface of the third valve body 755 in the axial direction and the adapter 770 configuring the pressure sensitive body 760. It is comprised by the internal peripheral surface 770a.
  • a through hole 770b is formed as an orifice portion extending in the radial direction, and the third valve chamber 40 and the first communication passage 56 are always in communication via the through hole 770b. The amount of fluid passing through the through hole 770b is very small, and does not affect the control of the control pressure Pc at the time of control of the displacement control valve V.
  • the present invention is not limited thereto. 10 may be formed only, for example, the axial direction hole and the radial direction hole connected to the axial direction hole may be drilled in the valve housing 10. Further, the second communication passage 90 may be formed in another member different from the valve housing 10 and the fixed iron core 83.
  • a plurality of through holes 90a constituting the second communication passage 90 may be formed as long as the structural strength of the valve housing 10 permits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Magnetically Actuated Valves (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

容量可変型圧縮機の起動時に制御室内の圧力を迅速に低下させることができる容量制御弁を提供する。 バルブハウジング10と、主弁座12cと接離する主弁部53aを有しソレノイド80の駆動力により吐出ポート12aと制御ポート14aとの連通を開閉する主弁体53と、圧力により開放するリリーフ弁59と、リリーフ弁59の開放により制御ポート14aと吸入ポート13aとを連通させる第1流路56と、制御ポート14aと吸入ポート13aとを連通させる第2流路90と、を備える容量制御弁Vであって、スリーブ83s内に往復移動可能に配置され第2流路90の連通を切り換えるスプール弁体52を有し、スプール弁体52は、主弁部53aが主弁座12cに当接した後、ソレノイド80の駆動力によりさらに移動して第2流路90の開度を広げる。

Description

容量制御弁
 本発明は、作動流体の容量または圧力を可変制御する容量制御弁に関し、例えば、自動車の空調システムに用いられる容量可変型圧縮機の吐出量を圧力に応じて制御する容量制御弁に関する。
 自動車等の空調システムに用いられる容量可変型圧縮機は、エンジンにより回転駆動される回転軸、回転軸に対して傾斜角度を可変に連結された斜板、斜板に連結された圧縮用のピストン等を備え、斜板の傾斜角度を変化させることにより、ピストンのストローク量を変化させて流体の吐出量を制御するものである。この斜板の傾斜角度は、電磁力により開閉駆動される容量制御弁を用いて、流体を吸入する吸入室の吸入圧力Ps、ピストンにより加圧された流体を吐出する吐出室の吐出圧力Pd、斜板を収容した制御室の制御圧力Pcを利用しつつ、制御室内の圧力を適宜制御することで連続的に変化させ得るようになっている。
 このような容量可変型圧縮機は、容量可変型圧縮機が停止した後、長時間停止状態に放置されると、容量可変型圧縮機の吸入圧力Ps、吐出圧力Pdおよび制御圧力Pcが均圧となり、制御圧力Pcおよび吸入圧力Psは容量可変型圧縮機の連続駆動時(以下、単に「連続駆動時」と表記することもある)における制御圧力Pcおよび吸入圧力Psよりもはるかに高い状態となる。連続駆動時よりもはるかに高い状態にある制御圧力Pcでは、吐出量を適切に制御できないため、制御室内の流体を排出し制御圧力Pcを低下させる必要がある。このことから、容量可変型圧縮機の起動時に、容量可変型圧縮機の制御室内から流体を短時間で排出するようにした容量制御弁がある。
 特許文献1に示される容量制御弁100は、図15に示されるように、容量可変型圧縮機の吐出室と制御室とを連通させる吐出側通路112a,112bの途中に形成された第1弁室120と、吸入室と制御室とを連通させる吸入側通路113a,113bの途中に形成された第2弁室130と、第1弁室120を基準として第2弁室130と反対側に形成された第3弁室140と、を備えるバルブハウジング110と、第1弁室120にて吐出側通路112a,112bを開閉する第1弁部152と、第2弁室130にて吸入側通路113a,113bを開閉する第2弁部153と、を一体的に有し、その往復動により互いに逆向きの開閉動作を行う弁体150と、第2弁室130と第3弁室140とを連通させる弁体150内に形成された中間連通路155(第1流路)と、第3弁室140内に配置されてその伸長により第1弁部152を主弁の開放方向に付勢力を及ぼすとともに、周囲の圧力としての吸入圧力Psの増加に伴って収縮する感圧体160と、感圧体160の伸縮方向の自由端に設けられて環状の弁座を有するアダプタ170と、第3弁室140にて弁体150と一体的に移動するとともにアダプタ170との着座および離脱により吸入側通路113a,113bを開閉し得る第3弁部154と、弁体150に駆動力を及ぼすソレノイド180と、が備えられたものが知られている。尚、容量可変型圧縮機が停止した後、長時間停止状態に放置されると、制御圧力Pcおよび吸入圧力Psは連続駆動時における圧力よりもはるかに高い状態となるため、周囲の圧力により感圧体160が収縮され、第3弁部154がアダプタ170から離脱して第3弁(リリーフ弁)が開放した状態となる。
 容量可変型圧縮機の起動時に、容量制御弁100のソレノイド180に通電され弁体150が移動すると、第1弁部152が主弁の閉塞方向に移動すると同時に第2弁部153が第2弁の開放方向に移動することで、中間連通路155によって第3弁室140から第2弁室130にかけて連通されるため、吸入側通路113a,113bが開放された状態となる。これにより、制御室の高圧状態にある流体が第3弁から中間連通路155を通って吸入室に排出される。その後、吸入圧力Ps、制御圧力Pcが低下すると、感圧体160は弾性復帰して伸長し、アダプタ170は第3弁部154と着座して第3弁を閉塞するようになっている。
特開2014-47661号公報(第4頁、第1図)
 しかしながら、特許文献1にあっては、容量可変型圧縮機の起動時に、第1弁部152が主弁を閉塞すると同時に第2弁部153が第2弁を開放することで、制御室の高圧状態にある流体は、第3弁から中間連通路155を通って第2弁部153により開放された吸入側通路113a,113bを通って吸入室に排出され、制御室の制御圧力Pcが容量可変型圧縮機の起動とともに低下していくが、制御圧力Pcが連続駆動時の圧力近傍まで低下する前に感圧体160が弾性復帰して伸長し、アダプタ170が第3弁部154と着座して第3弁を閉塞してしまうと、それ以上流体を制御室から吸入室に排出できなくなり、制御圧力Pcを迅速に低下させられないことがあった。
 本発明は、このような問題点に着目してなされたもので、容量可変型圧縮機の起動時に制御室内の圧力を迅速に低下させることができる容量制御弁を提供することを目的とする。
 前記課題を解決するために、本発明の容量制御弁は、
 バルブハウジングと、主弁座と接離する主弁部を有しソレノイドの駆動力により吐出圧の吐出流体が通過する吐出ポートと制御圧の制御流体が通過する制御ポートとの連通を開閉する主弁体と、圧力により開放するリリーフ弁と、前記リリーフ弁の開放により前記制御ポートと吸入圧の吸入流体が通過する吸入ポートとを連通させる第1流路と、前記制御ポートと前記吸入ポートとを連通させる第2流路と、を備える容量制御弁であって、
 スリーブ内に往復移動可能に配置され前記第2流路の連通を切り換えるスプール弁体を有し、
 前記スプール弁体は、前記主弁部が前記主弁座に当接した後、前記ソレノイドの駆動力によりさらに移動して前記第2流路の開度を広げることを特徴としている。
 この特徴によれば、容量可変型圧縮機の起動時における吸入圧力、制御圧力の低下によりリリーフ弁が閉塞され、制御ポートと吸入ポートとを連通させる第1流路が閉塞された状態であっても、ソレノイドの駆動力により、主弁体の主弁部を主弁座に当接させて主弁を閉塞した後、スプール弁体をさらに移動させて第2流路の開度を広げることで、容量可変型圧縮機の制御室の高圧状態にある流体を第2流路を通して吸入室に排出することができるため、制御室内の圧力を迅速に低下させることができる。また、スプール弁により第2流路の連通を切り換えているため、第2流路の流量を精度よく制御できる。
 好適には、前記スプール弁体は、前記主弁部が前記主弁座に当接したときに、前記第2流路を最小開口面積に保持する位置となっている。
 これによれば、容量可変型圧縮機の連続駆動時において、主弁部を主弁座に当接させて主弁を閉塞するために必要なソレノイドの駆動力は、スプール弁体を主弁体に対して相対移動させる駆動力よりも小さい。このことから、スプール弁体は、主弁部が主弁座に当接した状態からさらに移動することがなく、第2流路が最小開口面積に保持されるため、容量制御弁による圧力制御を行いやすい。
 好適には、前記主弁体と前記スプール弁体は、同方向に往復移動可能に配置されている。
 これによれば、主弁およびスプール弁の構造を単純にできる。
 好適には、前記第1流路は、前記主弁体に軸方向に形成される中空孔である。
 これによれば、リリーフ弁の開放時に主弁体に軸方向に形成された中空孔である第1流路を通して流体を排出することができるため、第1流路は広い流路断面積を確保することができ、容量可変型圧縮機の制御室内の圧力を迅速に低下させることができる。
 好適には、前記第2流路は、前記バルブハウジングに設けられる貫通孔を含んで構成されている。
 これによれば、主弁体の中空孔に形成された第1流路と、当該第1流路とは別にバルブハウジングに設けられる第2流路との2つの流路から並列に流体を排出することができるため、容量可変型圧縮機の制御室内の圧力を迅速に低下させることができる。
 好適には、前記主弁体と前記スプール弁体とは、径方向で係合している。
 これによれば、バルブハウジング内において主弁体が開状態の動作不良を起こしても、径方向に係合するスプール弁体により主弁体に対して軸方向に力を作用させることにより、主弁部を主弁座から離間させることができる。
 好適には、前記主弁体と前記スプール弁体との軸方向の最大離間距離は、前記主弁体に対する前記スプール弁体の軸方向の相対的な移動可能距離よりも短くなっている。
 これによれば、バルブハウジング内において主弁体が閉状態の動作不良を起こしても、主弁体に対して軸方向に相対的にスプール弁体を移動させて主弁体に当接させて軸方向に力を作用させることができるため、主弁体を主弁座に確実に当接させて主弁を閉塞することができる。
 好適には、前記リリーフ弁には、前記第1流路を介して前記制御ポートと前記吸入ポートとを常時連通させるオリフィス部が設けられている。
 これによれば、リリーフ弁の閉塞時においてオリフィス部から第1流路を介して制御ポートと吸入ポートとを常時連通させることにより、吸入室と制御室との圧力を平衡調整することができる。
本発明に係る実施例1の容量制御弁を備えた斜板式容量可変型圧縮機を示す概略構成図である。 実施例1の容量制御弁の非通電状態(リリーフ弁の開放時)において主弁が開放された様子を示す断面図である。 実施例1の容量制御弁の通電状態(連続駆動時)において主弁が閉塞されて第2弁が開放された様子を示す断面図である。 実施例1の容量制御弁の通電状態(リリーフ弁の開放時)においてソレノイドの駆動力により第1弁体に対してスプール弁体が軸方向に相対移動することなく、スプール弁が閉塞された状態を示す断面図である。 実施例1の容量制御弁の通電状態(リリーフ弁の開放時)においてソレノイドの駆動力により第1弁体に対してスプール弁体が軸方向に相対移動するとともに、スプール弁が開放された状態を示す断面図である。 実施例1の容量制御弁の通電状態(リリーフ弁の閉塞時)においてソレノイドの駆動力により第1弁体に対してスプール弁体が軸方向に相対移動するとともに、スプール弁が開放された状態を示す断面図である。 実施例1の容量制御弁の第2弁体およびスプール弁体により開度調整される第2連通路(スプール弁)および吸入側通路(第2弁)の開口面積の変化を示すグラフであり、横軸はソレノイドによる第2弁体およびスプール弁体のストローク、縦軸は第2連通路および吸入側通路の開口面積である。 本発明に係る実施例2の容量制御弁の非通電状態において主弁が開放された様子を示す断面図である。 本発明に係る実施例3の容量制御弁の非通電状態において主弁が開放された様子を示す断面図である。 本発明に係る実施例4の容量制御弁の非通電状態において主弁が開放された様子を示す断面図である。 本発明に係る実施例5の容量制御弁の非通電状態において主弁が開放された様子を示す断面図である。 実施例5の容量制御弁の変形例1を示す断面図である。 実施例5の容量制御弁の変形例2を示す断面図である。 実施例5の容量制御弁の変形例3を示す断面図である。 従来技術を示す特許文献1の容量制御弁の通電状態において主弁が閉塞された様子を示す断面図である。
 本発明に係る容量制御弁を実施するための形態を実施例に基づいて以下に説明する。
 実施例1に係る容量制御弁につき、図1から図7を参照して説明する。以下、図2の正面側から見て左右側を容量制御弁の左右側として説明する。
 図1に示されるように、本発明の容量制御弁Vは、自動車等の空調システムに用いられる容量可変型圧縮機Mに組み込まれ、冷媒である作動流体(以下、単に「流体」と表記する)の圧力を可変制御することにより、容量可変型圧縮機Mの吐出量を制御している。尚、容量可変型圧縮機Mから吐出された流体は、空調システムの冷凍サイクルを構成する凝縮器Cに送られ、さらに膨張弁EV、蒸発器Eを通過することにより熱交換される。
 先ず、容量可変型圧縮機Mについて説明する。図1に示されるように、容量可変型圧縮機Mは、吐出室2と、吸入室3と、制御室4と、複数のシリンダ4aと、を備え、吐出室2と制御室4とを連通させる吐出側通路としての連通路5と、吸入室3と制御室4とを連通させる吸入側通路としての連通路6と、吐出側通路としての役割および吸入側通路としての役割を兼ねる連通路7とを画定するケーシング1を有している。
 また、容量可変型圧縮機Mには、制御室4と吸入室3とを直接連通する連通路9が設けられており、連通路9には吸入室3と制御室4との圧力を平衡調整させるための固定オリフィス9aが設けられている。
 また、容量可変型圧縮機Mは、ケーシング1の外部において図示しないVベルトに接続される被動プーリ8と、制御室4内からケーシング1の外部に突出し被動プーリ8が固定される回転軸8aと、ヒンジ機構8eにより偏心状態で回転軸8aに連結される斜板8bと、各々のシリンダ4a内において往復動自在に嵌合された複数のピストン8cと、斜板8bと各々のピストン8cを連結する複数の連結部材8dと、回転軸8aに挿通されるスプリング8fと、を備えている。尚、斜板8bには、スプリング8fとヒンジ機構8eにより常時力が作用している。
 容量可変型圧縮機Mにおいては、制御室4内の制御圧力Pcを受けて回転軸8aに対する斜板8bの傾斜角度が変化することでピストン8cのストローク量が可変となっている。具体的には、制御室4内の制御圧力Pcが高圧であるほど、回転軸8aに対する斜板8bの傾斜角度は小さくなりピストン8cのストローク量が減少するが、一定以上の圧力となると、回転軸8aに対して斜板8bが略垂直状態(垂直よりわずかに傾斜した状態)となる。このとき、ピストン8cのストローク量は最小となり、ピストン8cによるシリンダ4a内の流体に対する加圧が最小となることで、吐出室2への流体の吐出量が減少し、空調システムの冷却能力は最小となる。一方で、制御室4内の制御圧力Pcが低圧であるほど、回転軸8aに対する斜板8bの傾斜角度は大きくなりピストン8cのストローク量が増加するが、一定以下の圧力となると、回転軸8aに対して斜板8bが最大傾斜角度となる。このとき、ピストン8cのストローク量は最大となり、ピストン8cによるシリンダ4a内の流体に対する加圧が最大となることで、吐出室2への流体の吐出量が増加し、空調システムの冷却能力は最大となる。
 容量可変型圧縮機Mに組み込まれる容量制御弁Vは、ソレノイド80を構成するコイル87に通電する電流を調整し、容量制御弁Vにおける主弁としての第1弁57、第2弁58、スプール弁50の開閉制御を行うとともに、周囲の流体圧によりリリーフ弁59の開閉制御を行い、制御室4内に流入する、または制御室4から流出する流体を制御することで制御室4内の制御圧力Pcを可変制御している。
 本実施例において、第1弁57は、主弁体としての第1弁体53と連通路12bを形成するバルブハウジング10の内周面に形成された主弁座としての弁座12cとにより構成されており、第1弁体53の軸方向左端に形成される主弁部としての第1弁部53aが弁座12cに接離するようになっている。第2弁58は、第2弁体54と連通路13bを形成する固定鉄心83のスリーブとしてのスリーブ部83sの開口端面83gとにより構成されており、第2弁体54の軸方向右端に形成される第2弁部54aが開口端面83gに接離するようになっている。リリーフ弁59は、感圧体60のアダプタ70と第3弁体55の軸方向左端部に形成される弁座55aとにより構成されており、アダプタ70の軸方向右端70aが弁座55aに接離するようになっている。スプール弁50は、スプール弁体52と固定鉄心83とにより構成されている。
 次いで、容量制御弁Vの構造について説明する。図2に示されるように、容量制御弁Vは、金属材料または樹脂材料により形成されたバルブハウジング10と、バルブハウジング10内に軸方向に往復動自在に配置された第1弁体53、第2弁体54、第3弁体55、スプール弁体52と、これら第1弁体53、第2弁体54、第3弁体55、スプール弁体52に軸方向右方への付勢力を付与する感圧体60と、バルブハウジング10に接続され第1弁体53、第2弁体54、第3弁体55、スプール弁体52に駆動力を及ぼすソレノイド80と、から主に構成されている。
 図2に示されるように、ソレノイド80は、軸方向左方に開放する開口部81aを有するケーシング81と、ケーシング81の内径側に固定される有底円筒形状のスリーブ82と、ケーシング81の開口部81aに対して軸方向左方から挿入されケーシング81およびスリーブ82の内径側に固定される略円筒形状の固定鉄心83と、固定鉄心83の内径側において軸方向に往復動自在、かつその軸方向左端部がスプール弁体52と連結される駆動ロッド84と、スリーブ82の内径側に配置され駆動ロッド84の軸方向右端部に固着される可動鉄心85と、固定鉄心83と可動鉄心85との間に設けられ可動鉄心85を軸方向右方に付勢するコイルスプリング86と、スリーブ82の外側にボビンを介して巻き付けられた励磁用のコイル87と、から主に構成されている。
 ケーシング81には、軸方向左端の径方向中心から軸方向右方に凹む凹部81bが形成され、この凹部81bに対してバルブハウジング10の軸方向右端に形成される取付部10aが挿嵌されている。
 固定鉄心83は、鉄やケイ素鋼等の磁性材料である剛体から形成され、軸方向に延び駆動ロッド84が挿通される挿通孔83bが形成される円筒部83aと、円筒部83aの軸方向左端部の外周面から外径方向に延びる環状のフランジ部83cとを備え、円筒部83aの軸方向左端の径方向中心から軸方向右方に凹む凹部83dが形成されている。尚、フランジ部83cは、円筒部83aの軸方向左端よりも軸方向右側の位置から外径方向に延びており、フランジ部83cの軸方向左側の端面と、この端面に直交して連なり軸方向左端まで延びる円筒部83aの外周面とにより、固定鉄心83の軸方向左端部には、環状段部83eが形成されている。
 環状段部83eにおいては、円筒部83aに対して内径側に形成される凹部83dと連通するように径方向に延びる複数の貫通孔83fが形成されている。
 また、ケーシング81の凹部81bには、内径側に固定鉄心83のフランジ部83cが配置され、外径側にバルブハウジング10の取付部10aが配置されているとともに、固定鉄心83のフランジ部83cは、バルブハウジング10の取付部10aの軸方向右端の径方向中心から軸方向左方に凹む凹部10bに挿嵌されている。このとき、固定鉄心83のフランジ部83cは、ケーシング81の凹部81bの底面に当接させられているとともに、円筒部83a(スリーブ部83s)の軸方向左端に形成される開口端面83gの外径側をバルブハウジング10の凹部10bの底面に当接させた状態で、ケーシング81に対して固定される。
 図2に示されるように、バルブハウジング10は、軸方向左端部に仕切調整部材11が圧入されることにより有底略円筒形状を成している。バルブハウジング10の内部には、第1弁体53、第2弁体54、第3弁体55、スプール弁体52が軸方向に往復動自在に配置され、バルブハウジング10の内周面の一部には、第1弁体53の外周面が摺接可能な小径のガイド面10cが形成されている。尚、仕切調整部材11は、バルブハウジング10の軸方向における設置位置を調整することで、感圧体60の付勢力を調整できるようになっている。
 また、バルブハウジング10は、容量可変型圧縮機Mの吐出室2と制御室4とを連通させる吐出側通路として機能する吐出ポートとしての連通路12a、連通路12b、制御ポートとしての連通路14aと、後述する第1流路および中空孔としての第1連通路56および第2流路としての第2連通路90とともに容量可変型圧縮機Mの制御室4と吸入室3とを連通させる吸入側通路として機能する吸入ポートとしての連通路13a、連通路13b,14aと、吐出側通路の途中に形成された第1弁室20と、吸入側通路の途中に形成された第2弁室30と、第1弁室20を基準として第2弁室30とは反対側の位置に形成された第3弁室40と、を備えている。尚、連通路13bは、固定鉄心83のスリーブ部83sの開口端面83gと、第2弁体54と、スプール弁体52とにより画成されている。
 また、バルブハウジング10には、外径側において軸方向に貫通する貫通孔90aが形成されている。貫通孔90aは、バルブハウジング10の内部で第2弁室30と第3弁室40とを連通する第2連通路90の一部を構成している。
 第2連通路90は、バルブハウジング10を軸方向に貫通する貫通孔90aと、バルブハウジング10の凹部10bに固定鉄心83のフランジ部83cが挿嵌されることにより形成された環状の連結空間91と、固定鉄心83の円筒部83aを径方向に貫通する貫通孔83fと、後述するスプール弁体52の外周面52aに設けられる環状溝部52bと、から主に構成されている。尚、連結空間91は、バルブハウジング10の凹部10bの内周面および底面と、固定鉄心83の環状段部83eとにより画成されている。また、第2連通路90は、環状溝部52bと連続するスプール調整流路92を介して吸入側通路として機能する連通路13bと常時連通している。スプール調整流路92(第2連通路90)は、スプール弁体52と固定鉄心83のスリーブ部83sとにより構成されるスプール弁50によって開度調整可能となっている。スプール弁50およびこれを用いた開度調整については、後段にて詳述する。
 図2に示されるように、第1弁体53とスプール弁体52との間には、圧縮状態のコイルスプリング53bが設けられている。尚、コイルスプリング53bの付勢力をソレノイド80の駆動力が上回ると、コイルスプリング53bは圧縮される。
 第1弁体53は、略円筒形状に構成されており、軸方向右端部に略円筒形状の第2弁体54が固定されており、軸方向左端部に略円筒形状の第3弁体55が固定されており、これらは一体に軸方向に移動するようになっている。第1弁体53、第2弁体54および第3弁体55の内部には、中空孔が接続されることにより軸方向に亘って貫通し吸入側通路として機能する第1連通路56が形成されている。
 感圧体60は、コイルスプリング62が内蔵されるベローズコア61と、ベローズコア61の軸方向右端部に形成されるアダプタ70と、から主に構成され、ベローズコア61の軸方向左端は、仕切調整部材11に固定されている。
 また、感圧体60は、第3弁室40内に配置されており、コイルスプリング62とベローズコア61の付勢力により、アダプタ70の軸方向右端70aは第3弁体55の弁座55aに着座するようになっている。尚、図2は、容量制御弁Vが非通電状態で長時間放置されることにより、第1連通路56における吸入圧力Psが連続駆動時における圧力よりもはるかに高い状態となり、感圧体60が収縮してアダプタ70の軸方向右端70aが第3弁体55の弁座55aから離間しリリーフ弁59が開放された状態を示している。
 スプール弁体52は、第1弁体53とは別体に構成されており、軸方向右端部を固定鉄心83の凹部83dに挿嵌された状態でソレノイド80を構成する駆動ロッド84に連結固定され、ソレノイド80の駆動力を受けて軸方向左方に移動可能となっている。このように、固定鉄心83の凹部83dが形成された左端側は、スプール弁体52が軸方向に移動可能に配置されるスリーブとしてのスリーブ部83sとなっている。尚、スプール弁体52の外周面52aと固定鉄心83の凹部83dの内周面との間は、径方向に僅かに離間することにより微小な隙間が形成されており、軸方向にスムーズに移動可能となっている。
 また、スプール弁体52は、第1弁体53の軸方向右端部に挿嵌されるコイルスプリング53bにより、軸方向右方に付勢された状態でコイルスプリング53bを介して第1弁体53に接続されている。尚、連続駆動時においては、容量制御弁Vにより第3弁室40内における制御圧力Pcおよび第1連通路56における吸入圧力Psが制御されており、感圧体60が収縮可能な状態となっているため、ソレノイド80の駆動力により第1弁体53とスプール弁体52とを軸方向左方に一体に移動させて第1弁57を閉塞することができる(図3参照)。尚、連続駆動時におけるソレノイド80の駆動力は、コイルスプリング53bの付勢力よりも小さくなっており、コイルスプリング53bを収縮させることがないため、第1弁体53とスプール弁体52とは軸方向に相対移動しない。また、容量制御弁Vにより制御圧力Pcおよび吸入圧力Psが制御されている状態においては、感圧体60は周囲の圧力で伸縮することはなく、リリーフ弁59は閉塞された状態を維持したまま第1弁体53とスプール弁体52の移動に合わせて伸縮する。
 また、スプール弁体52には、外周面52aの軸方向略中央に周方向に亘って内径方向に凹む環状溝部52bが形成されている。さらに、外周面52aの軸方向左端には、外径方向に延びる環状のフランジ部52cが形成されており、このフランジ部52cの軸方向右側の端面と、この端面に直交して連なり軸方向右方に延びる外周面52aとにより、スプール弁体52の軸方向左端部には、環状段部52dが形成されている。
 スプール弁体52の環状段部52dは、フランジ部52cの軸方向右側の端面を第2弁体54の内周面の軸方向右端部から内径方向に延びる環状突起54bの軸方向左側の端面に対して内径側から径方向で係合させた状態で、コイルスプリング53bにより軸方向右方に付勢されている。尚、第2弁体54の環状突起54bには、軸方向に延びる複数の貫通孔54cが形成され、第1弁体53の内部に形成される第1連通路56と吸入側通路として機能する連通路13bとが貫通孔54cを介して常時連通している。
 また、スプール弁体52の外周面52aは、環状溝部52bよりも軸方向左側の外径が、環状溝部52bよりも軸方向右側の外径よりも僅かに小径に構成されていることにより、スプール弁体52の環状溝部52bよりも軸方向左側の外周面52aと固定鉄心83の凹部83dの内周面とが径方向に離間し、流体が通過可能な環状のスプール調整流路92が形成されている。スプール調整流路92は、スプール弁50により開度調整が行われ、詳しくは、スプール弁50を構成する固定鉄心83に対するスプール弁体52の軸方向相対位置が変化することによって開度調整可能となっている。尚、図2に示されるように、容量制御弁Vの非通電状態(第2弁58が閉塞された状態)においては、スプール弁体52の環状溝部52bよりも軸方向左側の外周面52aの軸方向の所定範囲が固定鉄心83の凹部83d内に入り込むように構成されている。また、容量制御弁Vの非通電状態におけるスプール調整流路92の開度により定められる第2連通路90の開口面積は、最小開口面積S1となっている(図7参照)。さらに尚、第2連通路90の最小開口面積S1は、スプール弁体52の外周面52aと固定鉄心83の凹部83dの内周面との径方向の離間寸法を調整することにより、自由に設定されてよい。
 次いで、容量制御弁Vの非通電状態が継続された状態の態様について詳しく説明する。図2に示されるように、容量制御弁Vは、非通電状態において、可動鉄心85がソレノイド80を構成するコイルスプリング86の付勢力やコイルスプリング62とベローズコア61の付勢力により軸方向右方へと押圧されることで、駆動ロッド84、第1弁体53、第2弁体54、第3弁体55、スプール弁体52が軸方向右方へ移動し、第2弁58を構成する第2弁体54の第2弁部54aが固定鉄心83のスリーブ部83sの開口端面83gに着座し、吸入側通路である連通路13a,13bが閉塞される。このとき、第1弁57を構成する第1弁体53の第1弁部53aがバルブハウジング10の内周面に形成された弁座12cから離間し、吐出側通路である連通路12a,12b,14a(図2において点線の矢印で図示)が開放されている。
 このように、容量制御弁Vの非通電状態において、容量可変型圧縮機Mの吐出室2内の流体は、容量制御弁Vにより吐出側通路である連通路12a,12b,14aが開放されることで、吐出室2から容量制御弁Vを経由して制御室4に流入していく。これは、吐出圧力Pdが制御圧力Pcより高い圧力であるためである。
 制御圧力Pcは、制御室4に吐出圧力Pdが流入することで非通電状態前の制御圧力Pcよりも高く、吸入圧力Psよりも高い圧力となっており、関係式で表すとPs<Pc≦Pdとなっている。そのため、制御室4内の流体は、連通路9および固定オリフィス9aを経由して吸入室3に流入していく。これら流体の流入は、吐出圧力Pdと吸入圧力Psと制御圧力Pcが平衡するまで行われる。そのため、容量制御弁Vが非通電状態で長時間放置されると、吐出圧力Pdと吸入圧力Psと制御圧力Pcが平衡し均圧(Ps=Pc=Pd)となり、吸入圧力Psと制御圧力Pcは、連続駆動時における圧力よりもはるかに高い状態となる。このように、吸入圧力Psが連続駆動時における圧力よりもはるかに高い状態となることにより、感圧体60が収縮してリリーフ弁59が開放する。
 連続駆動時よりもはるかに高い状態にある制御圧力Pcでは、容量可変型圧縮機Mの吐出量を適切に制御できないため、制御室4内から流体を排出し制御圧力Pcを低下させる必要がある。
 次いで、容量可変型圧縮機Mの起動時において、制御室4から流体が排出されるまでの態様について図1、図2、図4~図6を用いて詳しく説明する。
 容量可変型圧縮機Mは、吐出圧力Pdと吸入圧力Psと制御圧力Pcが均圧である状態で起動させると、このときの制御圧力Pcが連続駆動時の制御圧力Pcよりもはるかに高い状態にあるため、回転軸8aに対して斜板8bが略垂直状態となっており、ピストン8cのストローク量が最小となっている。また、容量可変型圧縮機Mは、自身の起動に合わせて容量制御弁Vに通電を開始する。
 容量制御弁Vは、図2に示される非通電状態からソレノイド80のコイル87に通電されることで励磁され磁力を発生させ、この磁力を受けた固定鉄心83に可動鉄心85が吸引され、可動鉄心85に軸方向右端部が連結された駆動ロッド84が従動し、駆動ロッド84の軸方向左端部に連結されたスプール弁体52が軸方向左方へと移動する(図4参照)。このとき、第1弁体53、第2弁体54、第3弁体55、スプール弁体52は軸方向左方に一体に移動する。
 これにより、容量制御弁Vは、図4に示されるように、第1弁体53の第1弁部53aがバルブハウジング10の内周面に形成された弁座12cに着座し、吐出側通路である連通路12a,12bの間で第1弁57が閉塞される(図4において点線の矢印で図示)。このとき、第2弁体54の第2弁部54aが固定鉄心83のスリーブ部83sの開口端面83gから離間し吸入側通路である連通路13a,13bとの間で第2弁58が開放される。尚、容量制御弁Vの起動時の磁力により第1弁57を構成する第1弁体53の第1弁部53aがバルブハウジング10の内周面に形成された弁座12cに着座し、第1弁57が閉塞された時点において、第2弁58の開度は最大となっており、第2弁58の開度により定められる連通路13a,13bとの間の吸入側通路の開口面積は、最大開口面積となっている(図7参照)。
 また、容量制御弁Vは、吸入側通路である連通路13a,13bとの間で第2弁58が開放されることで、制御室4から順に、連通路14a、第3弁室40、第1連通路56、貫通孔54c、連通路13b、第2弁室30、連通路13aまでの流路(図4において鎖線の矢印で図示)と、制御室4から順に、連通路14a、第3弁室40、第2連通路90(貫通孔90a,連結空間91,貫通孔83f,環状溝部52b,スプール調整流路92)、第2弁室30、連通路13b、連通路13aまでの流路(図4において実線の矢印で図示)の2つの流路が並列に形成される。
 尚、図4に示されるように、第1弁57が閉塞された時点(ソレノイド80の駆動力が第1弁体53とスプール弁体52との間に設けられるコイルスプリング53bの付勢力をと略同一または下回っている状態)においては、第1弁体53とスプール弁体52との間に設けられるコイルスプリング53bが収縮せず、スプール弁50を構成するスプール弁体52の環状溝部52bよりも軸方向左側の外周面52aの軸方向右端と固定鉄心83のスリーブ部83sの開口端面83gとの軸方向の位置が略同一に保持されることにより、スプール調整流路92の開度が容量制御弁Vの非通電状態から変化することなく、第2連通路90が最小開口面積S1に保持される(図7参照)。そのため、吸入側通路である連通路13a,13bに流入する流体は微量となっている(図4の拡大部において実線の矢印で図示)。
 次に、容量可変型圧縮機Mは、第1弁57の閉塞後に容量制御弁Vに通電する電流を大きくするように制御される。容量制御弁Vは、図4に示される第1弁57の閉塞後の状態からソレノイド80のコイル87に通電される電流が大きくなることで大きな磁力を発生させ、ソレノイド80の駆動力が第1弁体53とスプール弁体52との間に設けられるコイルスプリング53bの付勢力を上回ると、図5に示されるように、コイルスプリング53bが収縮してスプール弁体52の環状段部52dを構成するフランジ部52cの軸方向右側の端面が、第2弁体54の環状突起54bの軸方向左側の端面から離間することにより係合が解除され、スプール弁体52が第1弁体53に対して近づくように軸方向左方に相対移動する。
 これにより、容量制御弁Vは、図5に示されるように、スプール弁50を構成するスプール弁体52の環状溝部52bよりも軸方向左側の外周面52aおよび環状溝部52bの一部が固定鉄心83の凹部83dから軸方向左方に抜け出し、開口端面83gよりも軸方向左方に位置した状態となり、スプール調整流路92の開度が広がることで、第2連通路90の開口面積はスプール弁体52のストロークとともに比例的に増加する(図7参照)。
 これによれば、容量制御弁Vは、リリーフ弁59の開放により連通する第1連通路56を介する流路(図5において鎖線の矢印で図示)と、スプール弁50の開放により開口面積が増加する第2連通路90を介する流路(図5において実線の矢印で図示)の2つの並列な流路により制御室4内から流体を短時間で排出することができるため、容量可変型圧縮機Mの起動時に制御室4内の制御圧力Pcを迅速に低下させることができる。
 次に、制御室4内の制御圧力Pcの低下により感圧体60の周囲の圧力が低下するとともに吸入室3内の吸入圧力Psが低下することにより、感圧体60が伸長し、アダプタ70の軸方向右端70aが第3弁体55の弁座55aに着座しリリーフ弁59が閉塞される(図6参照)。
 また、容量制御弁Vに通電する電流の大きさを保持することにより、感圧体60が伸長してリリーフ弁59が閉塞されても、ソレノイド80の駆動力により第1弁57の閉塞を維持できるとともに、第1弁体53とスプール弁体52との間に設けられるコイルスプリング53bを収縮させ、スプール弁50の開放を維持することができる。
 これによれば、本実施例の容量制御弁Vは、容量可変型圧縮機Mの起動時に第1連通路56内の吸入圧力Psの低下により感圧体60が伸長し、リリーフ弁59が閉塞され、制御室4と吸入室3とを連通させる吸入側通路を構成する第1連通路56が閉塞された状態であっても、容量制御弁Vに通電する電流を制御し、ソレノイド80の駆動力により、第1弁体53の第1弁部53aをバルブハウジング10の内周面に形成された弁座12cに着座させ、第1弁57を閉塞させた後、第1弁体53とスプール弁体52との間に設けられるコイルスプリング53bを収縮させてスプール弁体52を軸方向左方にさらに移動させスプール弁50を開放し、第2連通路90(スプール調整流路92)の開度を広げることで、容量可変型圧縮機Mの制御室4の高圧状態にある流体を第2連通路90を通して吸入室3に排出することができるため、制御室4内の制御圧力Pcを迅速に低下させることができる。尚、第3弁室40内の制御圧力Pc、第1連通路56内の吸入圧力Psが連続駆動時の圧力近傍まで低下すると、感圧体60が伸長し、アダプタ70の軸方向右端70aが第3弁体55の弁座55aに着座しリリーフ弁59が閉塞される。
 また、容量可変型圧縮機Mの連続駆動時においては、ソレノイド80の駆動力がコイルスプリング53bの付勢力を上回らないように調整されることにより、スプール弁50におけるスプール調整流路92の開度により定められる第2連通路90の開口面積を最小開口面積S1に維持することができるため、第2連通路90から吸入側通路である連通路13a,13bに流入する流体を微量に抑え、容量制御弁Vによる圧力制御を行いやすくすることができる。
 また、スプール弁50は、固定鉄心83に対して軸方向に相対移動可能なスプール弁体52から構成されるため、ソレノイド80の駆動力により第2連通路90(スプール調整流路92)の開度を精度よく制御することができ、かつ第1弁57を閉塞した後に第2連通路90の流量を可変制御することができる。さらに、スプール弁50により第2連通路90(スプール調整流路92)の開度を流体中の異物の食い込みが発生し難い程度に制御することができるため、弁の設置による耐異物性の低下を防ぐことができる。
 また、感圧体60を構成するアダプタ70の軸方向右端70aが第3弁体55の弁座55aから離間しリリーフ弁59が開放されることにより、第1弁体53、第2弁体54、第3弁体55に軸方向に形成される中空孔である第1連通路56を通して制御室4から吸入室3に流体を排出することができるため、容量制御弁Vの内部において第1連通路56は広い流路断面積を確保することができ、容量可変型圧縮機Mの制御室4内の制御圧力Pcを迅速に低下させることができる。
 また、第1連通路56および第2連通路90は、並列な流路であることから互いに干渉し合うことがなく、エネルギ損失が生じ難いため、制御室4内から第1連通路56および第2連通路90を通って流体が排出されやすく、制御圧力Pcを迅速に低下させることができる。
 また、スプール弁体52の環状段部52dが第2弁体54の環状突起54bに対して内径側から径方向で係合しているため、例えばバルブハウジング10のガイド面10cと第1弁体53の外周面との間に入り込んだコンタミ等の影響で第1弁体53が動作不良を起こしても、容量制御弁Vを通電状態から非通電状態とすることで、径方向に係合するスプール弁体52により第1弁体53に対して軸方向右方に移動する力を作用させることができ、第1弁体53による第1弁57(第1弁体53の第1弁部53aとバルブハウジング10の弁座12c)の開放および第2弁58(第2弁体54の第2弁部54aと固定鉄心83のスリーブ部83sの開口端面83g)の閉塞を確実に行うことができる。
 また、容量制御弁Vに通電する電流を大きくするように制御し、動作不良を起こした第1弁体53に対してソレノイド80の駆動力によりスプール弁体52を軸方向左方に相対的に移動させ、第1弁体53とスプール弁体52との間に設けられるコイルスプリング53bを撓ませてバネ荷重を高めることにより、第1弁体53に対して軸方向左方に移動する力を作用させることができ、第1弁体53による第1弁57の閉塞およびスプール弁体52による第2弁58の開放を確実に行うことができる。
 また、固定鉄心83を、スプール弁50を構成するスリーブとしているため構造が単純である。
 次に、実施例2に係るソレノイドバルブにつき、図8を参照して説明する。尚、前記実施例に示される構成部分と同一構成部分については同一符号を付して重複する説明を省略する。
 実施例2における容量制御弁Vについて説明する。図8に示されるように、スプール弁体252は、第1弁体53とは別体に構成されており、軸方向左端からコイルスプリング53bの軸方向右端部を外嵌するように軸方向左方に延びる円筒形状の凸部252eが設けられている。尚、凸部252eは、スプール弁体252に別体の部材が固定されるものに限らず、スプール弁体252と一体に形成されていてもよい。また、凸部252eは、円筒形状のものに限らず、周方向に離間する複数の突起から構成することにより、第1連通路56における流体の流れを妨げ難くしてもよい。
 また、第1弁体53とスプール弁体252との軸方向の最大離間距離Lは、第1弁体53に対するスプール弁体252の軸方向の相対的な移動可能距離(図5および図6参照)よりも短く構成されている。
 これによれば、例えばバルブハウジング10のガイド面10cと第1弁体53の外周面との間に入り込んだコンタミ等の影響で第1弁体53が動作不良を起こしても、容量制御弁Vに通電する電流を大きくするように制御して第1弁体53の軸方向右端に対してソレノイド80の駆動力により軸方向左方に相対的に移動させたスプール弁体252の凸部252eを当接させて軸方向左方に力を作用させることができるため、第1弁体53による第1弁57(第1弁体53の第1弁部53aとバルブハウジング10の弁座12c)の閉塞および第2弁58(第2弁体54の第2弁部54aと固定鉄心83のスリーブ部83sの開口端面83g)の開放を確実に行うことができる。
 次に、実施例3に係るソレノイドバルブにつき、図9を参照して説明する。尚、前記実施例に示される構成部分と同一構成部分については同一符号を付して重複する説明を省略する。
 実施例3における容量制御弁Vについて説明する。図9に示されるように、第1弁体353は、略円筒形状に構成されており、軸方向左端部に略円筒形状の第3弁体55が固定されることにより構成されている。
 第1弁体353は、外周面の軸方向右端部に周方向に亘って内径方向に凹む環状溝部353bが形成され、この環状溝部353bの軸方向右側には環状溝部353bの内径方向の凹みによりフランジ部353cが形成されている。
 スプール弁体352は、第1弁体353とは別体に構成されており、軸方向左端部には、外径方向に延びるフランジ部352cが形成され、このフランジ部352cの軸方向右側の端面には、第2弁358を構成する固定鉄心83のスリーブ部83sの開口端面83gに着座する第2弁部352fが形成されている。尚、フランジ部352cには、軸方向に延びる複数の貫通孔352gが形成され、第1弁体353の内部に形成される第1連通路56と第2弁室30とを貫通孔352gを介して連通可能となっている。
 また、フランジ部352cの軸方向左端部には、第1弁体353の軸方向右端部を外嵌するように軸方向左方に延びる円筒形状の凸部352eが形成されている。凸部352eの内周面には、周方向に亘って外径方向に凹む環状溝部352hが形成され、この環状溝部352hの軸方向左側には環状溝部352hの内径方向の凹みによりフランジ部352kが形成されている。
 第1弁体353とスプール弁体352は、第1弁体353の軸方向右端部に対してスプール弁体352の凸部352eを外嵌させ、第1弁体353のフランジ部353cとスプール弁体352のフランジ部352kとを径方向に係合させることにより接続されている。
 これによれば、例えばバルブハウジング10のガイド面10cと第1弁体353の外周面との間に入り込んだコンタミ等の影響で第1弁体353が動作不良を起こしても、容量制御弁Vを通電状態から非通電状態とすることで、第1弁体353のフランジ部353cと径方向に係合するスプール弁体352のフランジ部352kにより、第1弁体353に対して軸方向右方に移動する力を作用させることができ、第1弁体353による第1弁357(第1弁体353の第1弁部353aとバルブハウジング10の弁座12c)の開放およびスプール弁体352による第2弁358(スプール弁体352の第2弁部352fと固定鉄心83のスリーブ部83sの開口端面83g)の閉塞を確実に行うことができる。
 また、第1弁体353の環状溝部353bまたはスプール弁体352の環状溝部352hの軸方向の形成範囲を調整することで、第1弁体353に対するスプール弁体352の軸方向の相対的な移動可能距離を調整することができるため、容量制御弁Vに通電する電流を大きくするように制御して第1弁体353の環状溝部353bの軸方向左端部に対してソレノイド80の駆動力により軸方向左方に相対的に移動させたスプール弁体352のフランジ部352kを当接させて軸方向左方に力を作用させることができるため、第1弁体353による第1弁357の閉塞およびスプール弁体352による第2弁358の開放を確実に行うことができる。尚、第1弁体353の軸方向右端に対して軸方向左方に相対的に移動させたスプール弁体352の環状溝部352hの軸方向右端部を当接させて軸方向左方に力を作用させるようにしてもよい。
 次に、実施例4に係るソレノイドバルブにつき、図10を参照して説明する。尚、前記実施例に示される構成部分と同一構成部分については同一符号を付して重複する説明を省略する。
 実施例4における容量制御弁Vについて説明する。図10に示されるように、スプール弁体452は、第1弁体53とは別体に構成されており、軸方向左端面の径方向中心から軸方向右方に延びスプール弁体452の軸方向略中央から径方向に屈曲することにより第1連通路56と環状溝部452bとを連通する第2流路としての第2連通路490が形成されている。
 感圧体460は、コイルスプリング62が内蔵されるベローズコア61と、ベローズコア61の軸方向右端部に形成されるアダプタ470と、から主に構成され、アダプタ470には、径方向に貫通し第3弁室40内と第1連通路56とを連通する補助連通路470bが形成されている。
 これによれば、容量制御弁Vは、リリーフ弁459の開放により連通する第1連通路56を介する流路と、スプール弁50の開放により開口面積が増加する第2連通路490を介する流路の2つの流路により制御室4内から流体を短時間で排出することができるため、容量可変型圧縮機Mの起動時に制御室4内の制御圧力Pcを迅速に低下させることができる。
 また、容量可変型圧縮機Mの起動時に制御室4内の制御圧力Pcの低下により感圧体460が伸長し、リリーフ弁459が閉塞され、制御室4と吸入室3とを連通させる吸入側通路を構成する第1連通路56が閉塞された状態であっても、制御室4の高圧状態にある流体をアダプタ470に形成される補助連通路470bから第1連通路56に流入させることができるとともに、容量制御弁Vに通電する電流を制御し、ソレノイド80の駆動力により、第1弁体53の第1弁部53aをバルブハウジング10の内周面に形成された弁座12cに着座させ、第1弁57を閉塞させた後、第1弁体53とスプール弁体452との間に設けられるコイルスプリング53bを収縮させてスプール弁体452を軸方向左方にさらに移動させて第2連通路490(スプール調整流路92)の開度を広げることで、容量可変型圧縮機Mの制御室4の高圧状態にある流体を第2連通路490を通して吸入室3に排出することができるため、制御室4内の制御圧力Pcを迅速に低下させることができる。
 次に、実施例5に係るソレノイドバルブにつき、図11を参照して説明する。尚、前記実施例に示される構成部分と同一構成部分については同一符号を付して重複する説明を省略する。
 実施例5における容量制御弁Vについて説明する。図11に示されるように、第2弁558は、第2弁体554の軸方向右端に形成される第2弁部554aと連通路13bを形成する固定鉄心83のスリーブとしてのスリーブ部83sの開口端面83gとにより構成されている。また、第2弁部554aには、径方向に延びる複数のスリット554dが形成され、吸入側通路として機能する連通路13a,13bがスリット554dを介して常時連通している。尚、スリット554dを通過する流体は微量であり、容量制御弁Vによる連続運転時の圧力制御に影響を与えることはない。さらに尚、第2弁体554には、スリットでなく径方向に貫通する貫通孔が設けられていてもよい。また、第2弁体をスリットや貫通孔が設けられない筒形状として、第2弁体の筒状部の端部に対向する固定鉄心83のスリーブ部83sの開口端面83gに径方向に延びる凹溝が設けられていてもよい。
 リリーフ弁559は、第3弁体555の軸方向左端部の外周面に形成される弁座555aと感圧体560を構成するアダプタ570の内周面570aとにより構成されている。尚、アダプタ570の内周面570aには、外径側に凹み軸方向に延びる複数のオリフィス部としてのスリット570bが形成され、第3弁室40と第1連通路56とがスリット570bを介して常時連通している。尚、スリット570bを通過する流体は微量であり、容量制御弁Vによる圧力制御に影響を与えることはない。さらに尚、アダプタ570の内周面570aをスリットが設けられない形状として、第3弁体555の軸方向左端部の外周面に内径側に凹み軸方向に延びる複数のスリットが設けられていてもよい。
 また、リリーフ弁559は、容量制御弁Vの制御時において吸入圧力Psが低い状態では、第3弁体555の移動および感圧体560の伸縮により、第3弁体555とアダプタ570との軸方向の相対位置が変化した状態であっても、第3弁体555の弁座555aがアダプタ570の内周面570a内から抜け出すことがないように構成されている。すなわち、リリーフ弁559における開口面積は、スリット570bにより規定され、連続駆動時において一定に維持されている。尚、吸入圧力Psが連続駆動時における圧力よりもはるかに高い状態においては、第3弁体555の弁座555aがアダプタ570の内周面570a内から抜け出してリリーフ弁559が開放される。
 また、第2弁558(スリット554d)における開口面積は、リリーフ弁559(スリット570b)と第2連通路90(スプール調整流路92)の開口面積の合計よりも常に大きくなるように構成されている。
 これによれば、容量制御弁Vの非通電状態において、第2弁558およびリリーフ弁559が閉塞されたときに、制御室4内の流体がアダプタ570のスリット570bから第1連通路56、第2弁部554aのスリット554dを介して吸入室3に流入していくことにより、吸入室3と制御室4との圧力を平衡調整することができる。尚、制御室4内の流体は、アダプタ570のスリット570bを介することなく、第2連通路90からスプール弁50、第2弁部554aのスリット554dを介して吸入室3に流入させることもできる。
 また、リリーフ弁のオリフィス部の変形例として次のようなものがある。図12に示されるように、変形例1のリリーフ弁659は、第3弁体655の軸方向左端部の外周面に形成される弁座655aと感圧体660を構成するアダプタ670の内周面670aとにより構成されている。尚、第3弁体655の弁座655aの外径は、アダプタ670の内周面670aにおける内径よりも僅かに小さく構成されることにより、第3弁体655の弁座655aとアダプタ670の内周面670aとの間には、軸方向に延びるオリフィス部としての微小間隙670bが形成され、第3弁室40と第1連通路56とが微小間隙670bを介して常時連通している。尚、微小間隙670bを通過する流体は微量であり、容量制御弁Vの制御時において制御圧力Pcの制御に影響を与えることはない。
 さらに、図13に示されるように、変形例2のリリーフ弁759は、第3弁体755の軸方向左端部の外周面に形成される弁座755aと感圧体760を構成するアダプタ770の内周面770aとにより構成されている。尚、アダプタ770には、径方向に延びるオリフィス部としての貫通孔770bが形成され、第3弁室40と第1連通路56とが貫通孔770bを介して常時連通している。尚、貫通孔770bを通過する流体は微量であり、容量制御弁Vの制御時において制御圧力Pcの制御に影響を与えることはない。
 さらに、図14に示されるように、変形例3のリリーフ弁859は、第3弁体855の軸方向左端部の外周面に形成される弁座855aと感圧体860を構成するアダプタ870の内周面870aとにより構成されている。尚、第3弁体855には、径方向に延びるオリフィス部としての貫通孔855bが形成され、第3弁室40と第1連通路56とが貫通孔855bを介して常時連通している。尚、貫通孔855bを通過する流体は微量であり、容量制御弁Vの制御時において制御圧力Pcの制御に影響を与えることはない。
 これによれば、容量制御弁Vの非通電状態において、第2弁558および変形例1~3のリリーフ弁659,759,859が閉塞されたときに、制御室4内の流体が第3弁体655の弁座655aとアダプタ670の内周面670aとの間の微小間隙670b、アダプタ770の貫通孔770b、第3弁体855の貫通孔855bからそれぞれ第1連通路56、第2弁部554aのスリット554dを介して吸入室3に流入していくことにより、吸入室3と制御室4との圧力を平衡調整することができる。
 以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。
 また、前記実施例1~3、5では、第3弁室40は、リリーフ弁および感圧体等を備える態様として説明したが、これに限らず、感圧体等を省き、流体を第2弁室30に流入させるための第2連通路90の一端だけを備える圧力室であってもよく、この時、第1弁体に第1連通路が形成されていなくてもよい。
 また、実施例1~4において第2弁は設けなくともよい。実施例5のように、第2弁体は、軸方向の荷重を受ける支持部材として機能すればよく、必ずしも密閉機能は必要ではない。
 また、第2弁室30はソレノイド80と軸方向反対側に設けられるとともに第3弁室40はソレノイド80側に設けられていてもよい。
 また、第2連通路90の一部は、バルブハウジング10の一端を閉塞する固定鉄心83の端部に形成されている態様として説明したが、これに限らず、第2連通路90はバルブハウジング10にのみ形成されていてもよく、例えばバルブハウジング10に軸方向の孔と該軸方向の孔に連通する径方向の孔が穿設される態様としてもよい。また、第2連通路90はバルブハウジング10および固定鉄心83とは異なる別部材に形成されていてもよい。
 また、第2連通路90を構成する貫通孔90aは、バルブハウジング10の構造強度が許す限り複数形成されていてもよい。
 また、連通路12a,13aは、バルブハウジング10の同じ側にそれぞれ一つだけ形成されている態様のように説明したが、これに限らず、バルブハウジング10の周方向に構造強度が許す限り複数形成されていてもよい。
 容量可変型圧縮機Mは、長時間放置されると吐出圧力Pdと吸入圧力Psと制御圧力Pcが均圧である態様として説明したが、これに限らず、吸入圧力Psのみが常時わずかに低い態様であってもよい。
 また、感圧体は、ベローズコアの内部にコイルスプリングを使用しないものであってもよい。
1        ケーシング
2        吐出室
3        吸入室
4        制御室
10       バルブハウジング
12a      連通路(吐出ポート,吐出側通路)
12b      連通路(吐出側通路)
12c      弁座(主弁座)
13a      連通路(吸入ポート,吸入側通路)
13b      連通路(吸入側通路)
14a      連通路(制御ポート,吐出側通路および吸入側通路)
20       第1弁室
30       第2弁室
40       第3弁室
50       スプール弁
52       スプール弁体
52b      環状溝部(第2連通路)
53       第1弁体(主弁体)
53a      第1弁部(主弁部)
53b      コイルスプリング(スプリング)
54       第2弁体
55       第3弁体
56       第1連通路(第1流路,中空孔)
57       第1弁(主弁)
58       第2弁
59       リリーフ弁
60       感圧体
61       ベローズコア
62       コイルスプリング
70       アダプタ
80       ソレノイド
83       固定鉄心
83f      貫通孔(第2連通路)
83s      スリーブ部(スリーブ)
90       第2連通路(第2流路)
90a      貫通孔(第2連通路)
91       連結空間(第2連通路)
92       スプール調整流路(第2連通路)
252      スプール弁体
352      スプール弁体
353      第1弁体(主弁体)
452      スプール弁体
459      リリーフ弁
460      感圧体
470      アダプタ
470b     補助連通路
490      第2連通路(第2流路)
554      第2弁体
554d     スリット
559      リリーフ弁
570      アダプタ
570b     スリット(オリフィス部)
659      リリーフ弁
670b     微小間隙(オリフィス部)
759      リリーフ弁
770      アダプタ
770b     貫通孔(オリフィス部)
855      第3弁体
855b     貫通孔(オリフィス部)
859      リリーフ弁
L        最大離間距離
Pc       制御圧力
Pd       吐出圧力
Ps       吸入圧力
V        容量制御弁

Claims (8)

  1.  バルブハウジングと、主弁座と接離する主弁部を有しソレノイドの駆動力により吐出ポートと制御ポートとの連通を開閉する主弁体と、圧力により開放するリリーフ弁と、前記リリーフ弁の開放により前記制御ポートと吸入ポートとを連通させる第1流路と、前記制御ポートと前記吸入ポートとを連通させる第2流路と、を備える容量制御弁であって、
     スリーブ内に往復移動可能に配置され前記第2流路の連通を切り換えるスプール弁体を有し、
     前記スプール弁体は、前記主弁部が前記主弁座に当接した後、前記ソレノイドの駆動力によりさらに移動して前記第2流路の開度を広げることを特徴とする容量制御弁。
  2.  前記スプール弁体は、前記主弁部が前記主弁座に当接したときに、前記第2流路を最小開口面積に保持する位置となっている請求項1に記載の容量制御弁。
  3.  前記主弁体と前記スプール弁体は、同方向に往復移動可能に配置されている請求項1または2に記載の容量制御弁。
  4.  前記第1流路は、前記主弁体に軸方向に形成される中空孔である請求項1ないし3のいずれかに記載の容量制御弁。
  5.  前記第2流路は、前記バルブハウジングに設けられる貫通孔を含んで構成されている請求項1ないし4のいずれかに記載の容量制御弁。
  6.  前記主弁体と前記スプール弁体とは、径方向で係合している請求項1ないし5のいずれかに記載の容量制御弁。
  7.  前記主弁体と前記スプール弁体との軸方向の最大離間距離は、前記主弁体に対する前記スプール弁体の軸方向の相対的な移動可能距離よりも短くなっている請求項1ないし6のいずれかに記載の容量制御弁。
  8.  前記リリーフ弁には、前記第1流路を介して前記制御ポートと前記吸入ポートとを常時連通させるオリフィス部が設けられている請求項1ないし7のいずれかに記載の容量制御弁。
PCT/JP2018/047177 2017-12-25 2018-12-21 容量制御弁 WO2019131482A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18895992.8A EP3734068B1 (en) 2017-12-25 2018-12-21 Capacity control valve
JP2019561630A JP7148549B2 (ja) 2017-12-25 2018-12-21 容量制御弁
CN201880081056.0A CN111492141B (zh) 2017-12-25 2018-12-21 容量控制阀
US16/772,711 US11326585B2 (en) 2017-12-25 2018-12-21 Capacity control valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-248434 2017-12-25
JP2017248434 2017-12-25

Publications (1)

Publication Number Publication Date
WO2019131482A1 true WO2019131482A1 (ja) 2019-07-04

Family

ID=67067201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047177 WO2019131482A1 (ja) 2017-12-25 2018-12-21 容量制御弁

Country Status (5)

Country Link
US (1) US11326585B2 (ja)
EP (1) EP3734068B1 (ja)
JP (1) JP7148549B2 (ja)
CN (1) CN111492141B (ja)
WO (1) WO2019131482A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215345A1 (ja) * 2020-04-23 2021-10-28 イーグル工業株式会社 容量制御弁
WO2022065410A1 (ja) * 2020-09-28 2022-03-31 イーグル工業株式会社
JP7504989B2 (ja) 2020-04-23 2024-06-24 イーグル工業株式会社 容量制御弁

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112334654B (zh) 2018-07-12 2022-09-20 伊格尔工业股份有限公司 容量控制阀
WO2020032087A1 (ja) 2018-08-08 2020-02-13 イーグル工業株式会社 容量制御弁
WO2020204131A1 (ja) 2019-04-03 2020-10-08 イーグル工業株式会社 容量制御弁
EP3951172A4 (en) 2019-04-03 2022-11-16 Eagle Industry Co., Ltd. CAPACITY CONTROL VALVE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119380A1 (ja) * 2006-03-15 2007-10-25 Eagle Industry Co., Ltd. 容量制御弁
JP2014047661A (ja) 2012-08-30 2014-03-17 Eagle Industry Co Ltd 容量制御弁
JP2014095463A (ja) * 2012-10-09 2014-05-22 Tgk Co Ltd 複合弁
WO2014119594A1 (ja) * 2013-01-31 2014-08-07 イーグル工業株式会社 容量制御弁

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3503417A (en) * 1967-08-07 1970-03-31 Toyota Motor Co Ltd Control valve for regulating flow of blow-by gas
JP2001165055A (ja) * 1999-12-09 2001-06-19 Toyota Autom Loom Works Ltd 制御弁及び容量可変型圧縮機
JP4246975B2 (ja) * 2002-02-04 2009-04-02 イーグル工業株式会社 容量制御弁
JP4162419B2 (ja) * 2002-04-09 2008-10-08 サンデン株式会社 可変容量圧縮機
JP4700048B2 (ja) * 2005-02-24 2011-06-15 イーグル工業株式会社 容量制御弁
WO2011065114A1 (ja) * 2009-11-27 2011-06-03 イーグル工業株式会社 ソレノイドバルブ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119380A1 (ja) * 2006-03-15 2007-10-25 Eagle Industry Co., Ltd. 容量制御弁
JP2014047661A (ja) 2012-08-30 2014-03-17 Eagle Industry Co Ltd 容量制御弁
JP2014095463A (ja) * 2012-10-09 2014-05-22 Tgk Co Ltd 複合弁
WO2014119594A1 (ja) * 2013-01-31 2014-08-07 イーグル工業株式会社 容量制御弁

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3734068A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215345A1 (ja) * 2020-04-23 2021-10-28 イーグル工業株式会社 容量制御弁
JP7504989B2 (ja) 2020-04-23 2024-06-24 イーグル工業株式会社 容量制御弁
WO2022065410A1 (ja) * 2020-09-28 2022-03-31 イーグル工業株式会社

Also Published As

Publication number Publication date
JP7148549B2 (ja) 2022-10-05
EP3734068A4 (en) 2021-07-14
EP3734068B1 (en) 2022-07-20
US20200325881A1 (en) 2020-10-15
US11326585B2 (en) 2022-05-10
EP3734068A1 (en) 2020-11-04
CN111492141A (zh) 2020-08-04
CN111492141B (zh) 2022-06-03
JPWO2019131482A1 (ja) 2020-12-10

Similar Documents

Publication Publication Date Title
WO2019146674A1 (ja) 容量制御弁
WO2019131482A1 (ja) 容量制御弁
JP7007299B2 (ja) 容量制御弁
JP7139084B2 (ja) 容量制御弁
JP7242663B2 (ja) 容量制御弁
JPWO2019107377A1 (ja) 容量制御弁及び容量制御弁の制御方法
JP7191957B2 (ja) 容量制御弁
WO2019117225A1 (ja) 容量制御弁及び容量制御弁の制御方法
JPWO2019131693A1 (ja) 容量制御弁及び容量制御弁の制御方法
JPH05288150A (ja) 電磁式制御弁
JP7162995B2 (ja) 容量制御弁
WO2019044759A1 (ja) 電磁弁
WO2020013155A1 (ja) 容量制御弁
JP7237919B2 (ja) 容量制御弁
WO2020013154A1 (ja) 容量制御弁
JP7438643B2 (ja) 容量制御弁
US20210381610A1 (en) Capacity control valve
JP6953102B2 (ja) 容量制御弁
JP7504989B2 (ja) 容量制御弁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561630

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018895992

Country of ref document: EP

Effective date: 20200727