WO2019131228A1 - Power control device, power control method, program - Google Patents

Power control device, power control method, program Download PDF

Info

Publication number
WO2019131228A1
WO2019131228A1 PCT/JP2018/046184 JP2018046184W WO2019131228A1 WO 2019131228 A1 WO2019131228 A1 WO 2019131228A1 JP 2018046184 W JP2018046184 W JP 2018046184W WO 2019131228 A1 WO2019131228 A1 WO 2019131228A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
frequency
storage system
management system
storage
Prior art date
Application number
PCT/JP2018/046184
Other languages
French (fr)
Japanese (ja)
Inventor
篠崎 聡
工藤 貴弘
渡辺 健一
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019131228A1 publication Critical patent/WO2019131228A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells

Definitions

  • the present disclosure relates to a power control apparatus that controls power, a power control method, and a program.
  • the apparatus includes, for example, a solar battery, a storage battery, a distributed power supply such as a fuel cell, and a home appliance.
  • a control device is connected to the upper level smart server.
  • the smart server centrally manages a plurality of consumers (see, for example, Patent Document 1).
  • the power management system controls the storage system connected to the power system in the customer, but when the group management system further controls a plurality of power management systems, the group management system goes through the power management system according to the increase or decrease of the power demand. Charge and discharge each storage system. However, if a plurality of power storage systems are charged and discharged together, power fluctuations may become large and the power system may become unstable. Therefore, control of the fluctuation speed of the power according to the fluctuation of the power demand is required.
  • the present disclosure has been made in view of such circumstances, and an object thereof is to provide a technique for controlling the rate of change of power according to the change in power demand.
  • a power control apparatus installed in a customer and controlling a storage system connected to a power system, the power control system comprising: Alternatively, a frequency detection unit that detects a difference in frequency of the power system with respect to the reference frequency, power for charging and discharging the storage system based on the frequency or difference detected in the frequency detection unit, and power value for charging and discharging the storage system And a generation unit that generates information related to the change ratio.
  • This method is a control method in a power control apparatus that controls a power storage system installed in a customer and connected to a power system, and detects a difference in power system frequency relative to a power system frequency or a reference frequency. And a step of generating information relating to the change ratio of the power value to be charged and discharged to the storage system based on the detected frequency or the difference.
  • An embodiment relates to a power management system that controls charging and discharging of a storage system connected to a power system according to an increase or decrease in power demand in the power system.
  • the storage system is installed in each customer along with devices such as a solar power generation system and a fuel cell system.
  • the customer is a facility receiving power supply from a power company or the like, and is, for example, a house, an office, a store, a factory, a park, or the like.
  • the power management system discharges the storage system in a time zone in which the consumer consumes a large amount of power, or charges the storage system at night when the electricity bill of the power system is inexpensive.
  • VPP Virtual Power Plant
  • VPP integrates and controls equipment such as small-scale solar power generation systems, power storage systems, fuel cell systems, etc., which are scattered, with power demand suppression.
  • the VPP controls devices such as a photovoltaic power generation system, a storage system, and a fuel cell system via a network to make them function as a single power plant.
  • VPP multiple power management systems are connected to a group management system.
  • the group management system is connected to a host system which is an aggregator that integrates a plurality of group management systems.
  • a VPP is equivalent to the upper system and the group management system plus equipment such as a storage system installed in the customer.
  • the higher-level system trades power in the market or in a relative contract with the business operator.
  • the higher-level system provides integrated coordination power to the power exchange market, the power transmission and distribution department of the power company, the retail power company, and the like. Therefore, the higher-level system determines the coordination power to be provided to the market or each business operator, and distributes the coordination power to each group management system.
  • Each group management system further distributes coordination to each customer.
  • the group management system instructs each of the plurality of power management systems to control to sell or buy power in response to a request from the upper system. For example, the group management system requests the power management system to control the storage system to be discharged or to reduce the power consumption of the customer when the power generated by the power plant becomes tight.
  • a plurality of power management systems are connected to the group management system, and one or more power storage systems are connected to each power management system, which are arranged hierarchically. Therefore, it can be said that the group management system controls fluctuations in power due to a plurality of power storage systems (hereinafter also referred to as "power storage system group").
  • the fluctuation of the power demand in the electric power system is indicated by the combination of a minute fluctuation, a short cycle component and a long cycle component in which fluctuation cycles are mutually different. The proportions of these combinations vary depending on the situation, for example, the power demand fluctuates and increases.
  • the group management system charges and discharges a plurality of power storage systems simultaneously in response to the increase and decrease of the power demand, the fluctuation of the power becomes large and the power system becomes unstable. Therefore, it is desirable that the rate of change of the power be adjusted according to the rate of increase or decrease of the power demand.
  • each power management system in the present embodiment detects the frequency of the power system, and adjusts the rate of change in power based on the detected frequency.
  • the power system frequency detected in each power management system is common, and uses a table generated in the upper system or the group management server. Therefore, control in each power management system is common.
  • FIG. 1 shows the configuration of the VPP system 100.
  • the VPP system 100 includes a host system server 10 and a group management system server 12 collectively referred to as a first group management system server 12a, a second group management system server 12b, an Mth group management system server 12m and a power management system server 14 generically.
  • the first power management system server 14a is installed in the first customer 16a
  • the second power management system server 14b is installed in the second customer 16b
  • the Nth power management system server 14n is the Nth customer 16n.
  • the first customer 16a, the second customer 16b, and the N-th customer 16n are collectively referred to as the customer 16.
  • the number of group management system servers 12 is not limited to "M”
  • the number of power management system servers 14 and customers 16 is not limited to "N".
  • the customer 16 is, for example, a single-family house, an apartment house such as an apartment, a store such as a convenience store or a supermarket, a commercial facility such as a building, a factory. It is an existing facility.
  • the customer 16 is provided with equipment such as an air conditioner (air conditioner), a television receiver (television), a lighting device, a storage system, and a heat pump water heater. These devices receive the supply of commercial power and consume power by being connected to a power system such as a power company.
  • a power system such as a power company.
  • the device may include a renewable energy generator such as a solar cell system or a fuel cell system.
  • the power management system server 14 is a computer for executing the processing of the power management system, and is installed, for example, in the customer 16.
  • the power management system server 14 has, for example, a function as a home energy management system (HEMS) controller. Therefore, the power management system server 14 can communicate with various devices in the customer 16 by HAN (Home Area Network), and controls these devices.
  • the power management system server 14 controls the operation of the storage system, for example, discharge and charge.
  • the power management system server 14 may control the interconnection between the devices installed in the customer 16 and the power system.
  • the power management system server 14 disconnects between the device and the power system at the time of power failure, and interconnects between the device and the power system at the time of power recovery.
  • the group management system server 12 is a computer for executing the processing of the group management system.
  • the group management system server 12 manages a plurality of power management system servers 14 by connecting a plurality of power management system servers 14.
  • the group management system server 12 centrally manages a plurality of devices connected to each of the plurality of power management system servers 14.
  • the group management system server 12 may transmit a control command to a storage system group including a storage system installed in each of the plurality of customers 16.
  • the plurality of group management system servers 12 are connected to the upper system server 10.
  • the upper system server 10 is a computer for executing the processing of the upper system which is an aggregator.
  • the VPP including the upper system and the group management system trades power in the market or in a relative contract with the business operator, and the upper system server 10 sends the group management system server 12 a request according to the contract. Output.
  • One group management system server 12 may be connected to a plurality of upper system servers 10.
  • the group management system server 12 when the power demand in the power system is tight, the group management system server 12 causes the power discharged from the storage system to be consumed in the customer 16 or suppresses the power consumption in the customer 16. Control the power management system server 14 to In addition, when the power supply in the power system exceeds the power demand, the group management system server 12 increases the charge to the storage system or increases the demand in the customer 16. Control.
  • FIG. 2 shows the configuration of the customer 16.
  • the customer 16 is provided with a power system 30, a smart meter 32, a distribution board 34, a load 36, a storage system 40, and a power management system server 14, for example, a first power management system server 14a.
  • the storage system 40 includes a storage battery (SB) 210, a DC / DC 212 for SB, a bi-directional DC / AC inverter 214, and a control device 216.
  • the first power management system server 14a includes a service cooperation unit 300 and a control unit 302.
  • the service cooperation unit 300 includes a reception unit 510 and a transmission unit 512.
  • the control unit 302 includes a frequency detection unit 600, a storage unit 602, A generation unit 604, a transmission unit 606, and a reception unit 608 are included. Furthermore, a group management system server 12, for example, a first group management system server 12a is connected to the first power management system server 14a via the network 18. Although a solar cell system, a heat pump water heater, etc. may be installed in the customer 16, these are omitted here.
  • the power demand in the power system 30 is indicated by the combination of a minute variation, a short period component, and a long period component, which have different variation cycles.
  • the minute change component has a change period of about several tens of seconds
  • the short period component has a change period of about several minutes
  • the long period component has a change period of about several tens of minutes. That is, the variation period of the minute variation is the shortest, and the variation period of the long period component is the longest.
  • the smart meter 32 is connected to the power system 30 and is a digital power meter.
  • the smart meter 32 can measure the amount of power of the current flowing from the power system 30 and the amount of power of the reverse current flowing out of the power system 30.
  • the smart meter 32 has a communication function and can communicate with the power management system server 14.
  • the distribution line 42 connects the smart meter 32 and the distribution board 34.
  • the distribution board 34 is connected to the distribution line 42 and also connects the load 36.
  • the distribution board 34 supplies power to the load 36.
  • the load 36 is a device that consumes the power supplied via the distribution line 42.
  • the load 36 includes equipment such as a refrigerator, an air conditioner, and lighting.
  • one load 36 is connected to the distribution board 34, a plurality of loads 36 may be connected to the distribution board 34.
  • the SB 210 is a storage battery capable of charging and discharging electric power, and includes a lithium ion storage battery, a nickel hydrogen storage battery, a lead storage battery, an electric double layer capacitor, a lithium ion capacitor, and the like.
  • the SB 210 is connected to the DC / DC 212 for SB.
  • the SB DC / DC 212 is a DC-DC converter, and performs conversion between the DC power on the SB 210 side and the DC power on the bidirectional DC / AC inverter 214 side.
  • the bi-directional DC / AC inverter 214 is connected between the DC / DC 212 for SB and the distribution board 34.
  • the bidirectional DC / AC inverter 214 converts AC power from the distribution board 34 into DC power, and outputs the converted DC power to the SB DC / DC 212.
  • the bidirectional DC / AC inverter 214 converts the DC power from the SB DC / DC 212 into AC power, and outputs the converted AC power to the distribution board 34. That is, the SB 210 is charged and discharged by the bi-directional DC / AC inverter 214.
  • the control of the bi-directional DC / AC inverter 214 is performed by the controller 216.
  • the SB 210, the SB DC / DC 212, the bidirectional DC / AC inverter 214, and the control device 216 may be stored in one case, and even in that case, this is referred to as a storage system 40.
  • the first power management system server 14 a is connected to the smart meter 32 and the storage system 40 via a network such as HAN, can communicate with each other, and controls the storage system 40 connected to the power system 30. It can be said that such a first power management system server 14a is a power control device. In the following, the communication between the first power management system server 14a and the smart meter 32 will not be described.
  • the frequency detection unit 600 is connected to the power system 30.
  • Frequency detection unit 600 detects the frequency of AC power in power system 30 (hereinafter, also referred to as “frequency of power system 30”).
  • the frequency of the power system 30 becomes lower than the commercial power frequency when the power demand increases and runs short of power, and becomes higher than the commercial power frequency when the power demand decreases and the power becomes excessive.
  • the commercial power supply frequency is, for example, a reference frequency defined at 50 Hz and 60 Hz.
  • the frequency detection unit 600 may detect the difference in frequency of the power system 30 with respect to the commercial power supply frequency.
  • the frequency detection unit 600 may be connected to the smart meter 32 or the distribution line 42 to detect the frequency of the power system 30.
  • the frequency detection unit 600 may be provided in the storage system 40, and may transmit the detected frequency to the first power management system server 14a.
  • Storage unit 602 holds related information in which the electric power to be charged / discharged to storage system 40 and the change ratio of the power value to be charged / discharged to storage system 40 are associated with the frequency of power system 30.
  • the related information instead of the frequency of the power system 30, the difference of the frequency of the power system 30 with respect to the commercial power supply frequency may be used.
  • the related information is held, for example, in the form of a table, but may be held in the form of a relational expression.
  • FIG. 3 shows the data structure of a table stored in the storage unit 602. As shown, the relationship between the charge / discharge power and the power change rate with respect to the detection frequency is shown.
  • the power change rate is indicated as an increase or decrease in power per unit time, and can be said to be the slope of the change in power.
  • the commercial power supply frequency is 60 Hz.
  • charge / discharge power is defined that causes the storage system 40 to perform charging.
  • charge / discharge power is defined that causes storage system 40 to perform discharge.
  • the degree of the power shortage differs according to the magnitude of the deviation of these frequencies. For example, when the deviation of these frequencies is large, it can be said that the degree of the power shortage is larger than when the deviation of these frequencies is small. That is, when the frequency shift is large, the absolute value of the charge / discharge power is made larger than when the frequency shift is small, and the rate of change of the power by the storage system 40 (hereinafter, “power change rate Should be made faster. Therefore, as the absolute value of the difference between the frequency of power system 30 and the commercial power source frequency is increased, the absolute value of the charge / discharge power and the absolute value of the power change rate are defined to be increased. As the power change speed, two types of speeds having different values, such as the adjustment power type A and the adjustment power type B, are defined. However, only one type of power change rate may be defined, or three or more types may be defined. Return to FIG.
  • the generation unit 604 refers to the table held in the storage unit 602 based on the frequency or the difference detected by the frequency detection unit 600 to cause the power storage system 40 to charge and discharge, and the storage system 40 to charge and discharge. Generate information on the rate of change of the power value.
  • the former corresponds to charge and discharge power, and the latter corresponds to the power change rate.
  • Whether to use the adjustment power type A or the adjustment power type B of the table held in the storage unit 602 is set in advance in the generation unit 604.
  • the generation unit 604 outputs the generated information to the transmission unit 606. Transmission unit 606 outputs a message including the generated information to power storage system 40.
  • the control device 216 in the storage system 40 charges or discharges the charge / discharge power according to the power change rate according to the message from the first power management system server 14 a.
  • the controller 216 may transmit a message indicating completion to the first power management system server 14a when performing charging or discharging according to the message. This message is received by the receiver 608 in the controller 302 of the first power management system server 14a.
  • FIG. 4 shows an example of control of the storage system 40.
  • the horizontal axis shows time, and the vertical axis shows output.
  • the detection frequency corresponds to “59.8 Hz ⁇ ” in FIG. 3, and it is assumed that the adjustment power type B is used.
  • the discharge power gradually increases with time, and increases by 2 kW over one second.
  • the discharge power may increase continuously with the passage of time. Return to FIG.
  • FIG. 3 shows an example in which a predetermined charge / discharge power value is reached in one second
  • the change rate is not limited to this, and is changed to reach in a period of 10 seconds, 20 seconds, 30 seconds, 60 seconds, etc. May be Further, in FIG. 3, the absolute value of the power to be finally charged and discharged by the storage system 40 is shown as the charge / discharge power, but the relative change amount from the output before the start of the control may be shown.
  • charge and discharge power is stored as “+ ⁇ 2 kW (increase 2 kW output in the discharge direction)”, and when charging is 1 kW before the start of control, the rate of change of power until the discharge output reaches 1 kW
  • the output may be changed according to
  • the service linkage unit 300 of the first power management system server 14a is connected to the first group management system server 12a via the network 18, and executes communication with the first group management system server 12a.
  • the receiving unit 510 receives a message from the first group management system server 12a.
  • the message includes, for example, a table to be held in the storage unit 602.
  • This table is generated in the first group management system server 12a, and is updated, for example, when the number of the plurality of power storage systems 40 managed by the first group management system server 12a changes.
  • the group management system server 12 collectively manages a plurality of devices connected to each of the plurality of power management system servers 14.
  • the table may be generated in the upper system server 10. In that case, it can be said that the receiving unit 510 receives a message including a table from the upper system server 10 via the first group management system server 12a.
  • the message received by the receiving unit 510 may include information for specifying which of the adjustment power type A and the adjustment power type B of the table to use.
  • the generation unit 604 uses the adjustment power type A or the adjustment power type B based on the designated information included in the message.
  • the transmission unit 512 transmits a message to the first group management system server 12a.
  • the subject matter of the apparatus, system or method in the present disclosure comprises a computer.
  • the computer executes the program to implement the functions of the apparatus, system, or method in the present disclosure.
  • the computer includes, as a main hardware configuration, a processor that operates according to a program.
  • the processor may be of any type as long as the function can be realized by executing a program.
  • the processor is configured of one or more electronic circuits including a semiconductor integrated circuit (IC) or an LSI (Large Scale Integration).
  • the plurality of electronic circuits may be integrated on one chip or may be provided on a plurality of chips.
  • the plurality of chips may be integrated into one device or may be provided to a plurality of devices.
  • the program is recorded in a non-transitory recording medium such as a computer readable ROM, an optical disc, a hard disk drive and the like.
  • the program may be stored in advance in a recording medium, or may be supplied to the recording medium via a wide area communication network including the Internet and the like.
  • FIG. 5 is a flowchart showing a control procedure by the first power management system server 14a.
  • the frequency detection unit 600 detects the frequency of the power system 30 (S10). Based on the detected frequency, the generation unit 604 identifies the charge / discharge power and the power change rate (S12). The transmitting unit 606 outputs an instruction including the charge / discharge power and the power change rate to the storage system 40 (S14).
  • the frequency of the electric power system 30 is detected, and based on this, the electric power for charging / discharging the storage system 40 and the information on the change ratio of the power value for charging / discharging the storage system 40 are generated. , It is possible to control the rate of change of the power according to the change of the power demand. Further, the difference in the frequency of power system 30 with respect to the commercial power supply frequency is detected, and based on this, information regarding the change ratio of the power for charging and discharging storage system 40 and the value of the power for charging and discharging storage system 40 is generated. Therefore, it is possible to control the rate of change of the power according to the fluctuation of the power demand. Further, since the rate of change of the power is controlled according to the change of the power demand, it is possible to suppress the power system becoming unstable.
  • the power for charging / discharging storage system 40 and the change ratio of the power value for charging / discharging storage system 40 are associated. Since related information is held, processing can be simplified.
  • the power for charging / discharging storage system 40 and the change ratio of the power value for charging / discharging storage system 40 are associated. Since related information is received, related information can be updated. Further, since the related information is updated, even if the configuration of the VPP system 100 changes, the related information suitable for it can be used.
  • the outline of one aspect of the present disclosure is as follows.
  • the power management system server 14 according to an aspect of the present disclosure is the power management system server 14 installed in the customer 16 and controlling the power storage system 40 connected to the power system 30.
  • the frequency detection unit 600 detects a difference in frequency of the power system 30 with respect to the reference frequency, the power to be charged and discharged in the storage system 40 based on the frequency or difference detected in the frequency detection unit 600, and the charge and discharge in the storage system 40
  • a generation unit 604 configured to generate information related to the change ratio of the power value to be generated.
  • the related information in which the power for charging / discharging the storage system 40 and the change rate of the power for charging / discharging the storage system 40 are associated You may further provide the memory
  • generation unit 604 Based on the frequency or difference detected by frequency detection unit 600 and the related information stored in storage unit 602, generation unit 604 generates power for charging / discharging storage system 40 and the power value for charging / discharging storage system 40. Generate information on the rate of change of
  • the related information in which the power for charging / discharging the storage system 40 and the change rate of the power for charging / discharging the storage system 40 are associated With respect to the frequency of the power system 30 or the difference in the frequency of the power system 30 with respect to the reference frequency, the related information in which the power for charging / discharging the storage system 40 and the change rate of the power for charging / discharging the storage system 40 are associated , And a receiving unit 510 that receives power from the upper system monitoring the power system 30.
  • This method is a control method in the power management system server 14 that controls the power storage system 40 installed in the customer 16 and connected to the power system 30, and the power system 30 for the frequency of the power system 30 or the reference frequency. Detecting a difference between the frequencies of the two, and generating information on the rate of change of the power for charging / discharging the storage system 40 and the value of the power for charging / discharging the storage system 40 based on the detected frequency or difference; Equipped with
  • the frequency detection unit 600 to the transmission unit 606 are included in the first power management system server 14a.
  • the frequency detection unit 600 to the transmission unit 606 may be included in the control device 216 of the storage system 40. In that case, it can be said that the control device 216 is a power control device. According to this modification, the degree of freedom of the configuration can be expanded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A first power management system server 14a controls a power storage system 40 that is installed at a customer site 16 and connected to a power system 30. A frequency detector 600 detects the frequency of the power system 30 or a difference between a reference frequency and the frequency of the power system 30. A generator 604 generates information related to the power charged to or discharged from the power storage system 40 and a rate of change in a value of the power charged to or discharged from the power storage system 40 on the basis of the frequency or the difference detected by the frequency detector 600.

Description

電力制御装置、電力制御方法、プログラムPOWER CONTROL DEVICE, POWER CONTROL METHOD, PROGRAM
 本開示は、電力を制御する電力制御装置、電力制御方法、プログラムに関する。 The present disclosure relates to a power control apparatus that controls power, a power control method, and a program.
 需要家に設置された機器を制御する制御装置を備える電力管理システムが提案されている。機器は、例えば、太陽電池、蓄電池、燃料電池等の分散電源、家電機器を含む。このような制御装置は、上位のスマートサーバに接続される。スマートサーバは、複数の需要家を統括的に管理する(例えば、特許文献1参照)。 There has been proposed a power management system provided with a control device that controls equipment installed at a customer. The apparatus includes, for example, a solar battery, a storage battery, a distributed power supply such as a fuel cell, and a home appliance. Such a control device is connected to the upper level smart server. The smart server centrally manages a plurality of consumers (see, for example, Patent Document 1).
特開2014-33591号公報JP 2014-33591 A
 需要家において電力系統に接続された蓄電システムを電力管理システムが制御するが、さらに複数の電力管理システムを群管理システムが制御する場合、電力需要の増減に応じて群管理システムは電力管理システム経由で各蓄電システムを充放電させる。しかしながら、複数の蓄電システムをまとめて充放電させると、電力の変動が大きくなって電力系統が不安定になる可能性がある。そのため、電力需要の変動に応じた電力の変動速度の制御が求められる。 The power management system controls the storage system connected to the power system in the customer, but when the group management system further controls a plurality of power management systems, the group management system goes through the power management system according to the increase or decrease of the power demand. Charge and discharge each storage system. However, if a plurality of power storage systems are charged and discharged together, power fluctuations may become large and the power system may become unstable. Therefore, control of the fluctuation speed of the power according to the fluctuation of the power demand is required.
 本開示はこうした状況に鑑みなされたものであり、その目的は、電力需要の変動に応じて電力の変動速度を制御する技術を提供することにある。 The present disclosure has been made in view of such circumstances, and an object thereof is to provide a technique for controlling the rate of change of power according to the change in power demand.
 上記課題を解決するために、本開示のある態様の、電力制御装置は、需要家に設置され、かつ電力系統に接続された蓄電システムを制御する電力制御装置であって、電力系統の周波数、あるいは基準周波数に対する電力系統の周波数の差異を検出する周波数検出部と、周波数検出部において検出した周波数あるいは差異をもとに、蓄電システムに充放電させる電力と、蓄電システムに充放電させる電力値の変化割合に関する情報を生成する生成部と、を備える。 In order to solve the above problems, a power control apparatus according to an aspect of the present disclosure is a power control apparatus installed in a customer and controlling a storage system connected to a power system, the power control system comprising: Alternatively, a frequency detection unit that detects a difference in frequency of the power system with respect to the reference frequency, power for charging and discharging the storage system based on the frequency or difference detected in the frequency detection unit, and power value for charging and discharging the storage system And a generation unit that generates information related to the change ratio.
 本開示の別の態様は、電力制御方法である。この方法は、需要家に設置され、かつ電力系統に接続された蓄電システムを制御する電力制御装置における制御方法であって、電力系統の周波数、あるいは基準周波数に対する電力系統の周波数の差異を検出するステップと、検出した周波数あるいは差異をもとに、蓄電システムに充放電させる電力と、蓄電システムに充放電させる電力値の変化割合に関する情報を生成するステップと、を備える。 Another aspect of the present disclosure is a power control method. This method is a control method in a power control apparatus that controls a power storage system installed in a customer and connected to a power system, and detects a difference in power system frequency relative to a power system frequency or a reference frequency. And a step of generating information relating to the change ratio of the power value to be charged and discharged to the storage system based on the detected frequency or the difference.
 なお、以上の構成要素の任意の組合せ、本開示の表現を方法、装置、システム、コンピュータプログラム、またはコンピュータプログラムを記録した記録媒体などの間で変換したものもまた、本開示の態様として有効である。 It is to be noted that any combination of the above-described components, and the expression of the present disclosure converted between a method, an apparatus, a system, a computer program, or a recording medium having a computer program recorded thereon is also effective as an aspect of the present disclosure. is there.
 本開示によれば、電力需要の変動に応じて電力の変動速度を制御できる。 According to the present disclosure, it is possible to control the rate of change of power according to the change in power demand.
実施例に係るVPPシステムの構成を示す図である。It is a figure showing the composition of the VPP system concerning an example. 図1の需要家の構成を示す図である。It is a figure which shows the structure of the consumer of FIG. 図2の記憶部に記憶されるテーブルのデータ構造を示す図である。It is a figure which shows the data structure of the table memorize | stored in the memory | storage part of FIG. 図2の蓄電システムの制御例を示す図である。It is a figure which shows the example of control of the electrical storage system of FIG. 図2の第1電力管理システムサーバによる制御手順を示すフローチャートである。It is a flowchart which shows the control procedure by the 1st power management system server of FIG.
 本開示の実施例を具体的に説明する前に、本実施例の概要を説明する。実施例は、電力系統における電力需要の増減に応じて、電力系統に接続された蓄電システムの充放電を制御する電力管理システムに関する。蓄電システムは、太陽光発電システム、燃料電池システム等の機器とともに各需要家に設置される。需要家は、電力会社等からの電力の供給を受けている施設であり、例えば、住宅、事務所、店舗、工場、公園などである。電力管理システムは、需要家における電力の消費量が大きい時間帯において蓄電システムを放電させたり、電力系統の電気料金が安価である夜間において蓄電システムを充電させたりする。ここでは、電力管理システムがVPP(Virtual Power Plant)に含まれることを想定する。VPPは、点在する小規模な太陽光発電システム、蓄電システム、燃料電池システム等の機器と、電力の需要抑制を統合して制御する。VPPは、太陽光発電システム、蓄電システム、燃料電池システム等の機器をネットワークを介して制御することによって、これらを1つの発電所のようにまとめて機能させる。 Before specifically describing the embodiments of the present disclosure, an outline of the present embodiment will be described. An embodiment relates to a power management system that controls charging and discharging of a storage system connected to a power system according to an increase or decrease in power demand in the power system. The storage system is installed in each customer along with devices such as a solar power generation system and a fuel cell system. The customer is a facility receiving power supply from a power company or the like, and is, for example, a house, an office, a store, a factory, a park, or the like. The power management system discharges the storage system in a time zone in which the consumer consumes a large amount of power, or charges the storage system at night when the electricity bill of the power system is inexpensive. Here, it is assumed that the power management system is included in a VPP (Virtual Power Plant). VPP integrates and controls equipment such as small-scale solar power generation systems, power storage systems, fuel cell systems, etc., which are scattered, with power demand suppression. The VPP controls devices such as a photovoltaic power generation system, a storage system, and a fuel cell system via a network to make them function as a single power plant.
 このようなVPPを実現するために、複数の電力管理システムは、群管理システムに接続される。また、群管理システムは、複数の群管理システムを統合するアグリゲータである上位システムに接続される。上位システムと群管理システムに、需要家に設置された蓄電システム等の機器を加えたものがVPPに相当する。上位システムは、市場で、あるいは事業者と相対契約で電力を取引する。また、上位システムは、電力取引市場や電力会社の送配電部門、小売電気事業者等に集約した調整力を提供する。そのため、上位システムは、市場あるいは各事業者に提供する調整力を決定し、調整力を各群管理システムに配分する。各群管理システムは、さらに調整力を各需要家に配分する。これより、群管理システムは、上位システムからの要求に応じて売電あるいは買電するように、複数の電力管理システムのそれぞれに対して制御を指示する。例えば、群管理システムは、発電所において発電される電力が逼迫する場合、蓄電システムを放電させたり、需要家における電力消費を抑制させたりするように制御することを電力管理システムに要求する。 In order to realize such VPP, multiple power management systems are connected to a group management system. In addition, the group management system is connected to a host system which is an aggregator that integrates a plurality of group management systems. A VPP is equivalent to the upper system and the group management system plus equipment such as a storage system installed in the customer. The higher-level system trades power in the market or in a relative contract with the business operator. In addition, the higher-level system provides integrated coordination power to the power exchange market, the power transmission and distribution department of the power company, the retail power company, and the like. Therefore, the higher-level system determines the coordination power to be provided to the market or each business operator, and distributes the coordination power to each group management system. Each group management system further distributes coordination to each customer. Thus, the group management system instructs each of the plurality of power management systems to control to sell or buy power in response to a request from the upper system. For example, the group management system requests the power management system to control the storage system to be discharged or to reduce the power consumption of the customer when the power generated by the power plant becomes tight.
 群管理システムに複数の電力管理システムが接続され、各電力管理システムに1つ以上の蓄電システムが接続されることによって、これらは階層的に配置されている。そのため、複数の蓄電システム(以下、「蓄電システム群」ともいう)による電力の変動を群管理システムが制御するといえる。一方、電力系統における電力需要の変動は、変動周期が互いに異なった微少変動分、短周期成分、長周期成分の合成によって示される。これらの合成の割合は状況に応じて異なり、例えば、電力需要は変動しながら増加する。電力需要の増減に応じて、群管理システムが複数の蓄電システムを一斉に充放電させると、電力の変動が大きくなり電力系統が不安定となる。そのため、電力需要の増減の速度に応じて、電力の変動速度も調節されることが望ましい。 A plurality of power management systems are connected to the group management system, and one or more power storage systems are connected to each power management system, which are arranged hierarchically. Therefore, it can be said that the group management system controls fluctuations in power due to a plurality of power storage systems (hereinafter also referred to as "power storage system group"). On the other hand, the fluctuation of the power demand in the electric power system is indicated by the combination of a minute fluctuation, a short cycle component and a long cycle component in which fluctuation cycles are mutually different. The proportions of these combinations vary depending on the situation, for example, the power demand fluctuates and increases. When the group management system charges and discharges a plurality of power storage systems simultaneously in response to the increase and decrease of the power demand, the fluctuation of the power becomes large and the power system becomes unstable. Therefore, it is desirable that the rate of change of the power be adjusted according to the rate of increase or decrease of the power demand.
 このような状況に対応するために、本実施例における各電力管理システムは、電力系統の周波数を検出し、検出した周波数をもとに電力変化速度を調節する。各電力管理システムにおいて独立した制御がなされるが、各電力管理システムにおいて検出される電力系統の周波数は共通であり、かつ上位システムあるいは群管理サーバにおいて生成されたテーブルを使用する。そのため、各電力管理システムにおける制御は共通になる。 In order to cope with such a situation, each power management system in the present embodiment detects the frequency of the power system, and adjusts the rate of change in power based on the detected frequency. Although independent control is performed in each power management system, the power system frequency detected in each power management system is common, and uses a table generated in the upper system or the group management server. Therefore, control in each power management system is common.
 図1は、VPPシステム100の構成を示す。VPPシステム100は、上位システムサーバ10、群管理システムサーバ12と総称される第1群管理システムサーバ12a、第2群管理システムサーバ12b、第M群管理システムサーバ12m、電力管理システムサーバ14と総称される第1電力管理システムサーバ14a、第2電力管理システムサーバ14b、第N電力管理システムサーバ14nを含む。ここで、第1電力管理システムサーバ14aは第1需要家16aに設置され、第2電力管理システムサーバ14bは第2需要家16bに設置され、第N電力管理システムサーバ14nは第N需要家16nに設置され、第1需要家16a、第2需要家16b、第N需要家16nは需要家16と総称される。群管理システムサーバ12の数は「M」に限定されず、電力管理システムサーバ14と需要家16の数は「N」に限定されない。 FIG. 1 shows the configuration of the VPP system 100. The VPP system 100 includes a host system server 10 and a group management system server 12 collectively referred to as a first group management system server 12a, a second group management system server 12b, an Mth group management system server 12m and a power management system server 14 generically. First power management system server 14a, a second power management system server 14b, and an Nth power management system server 14n. Here, the first power management system server 14a is installed in the first customer 16a, the second power management system server 14b is installed in the second customer 16b, and the Nth power management system server 14n is the Nth customer 16n. The first customer 16a, the second customer 16b, and the N-th customer 16n are collectively referred to as the customer 16. The number of group management system servers 12 is not limited to "M", and the number of power management system servers 14 and customers 16 is not limited to "N".
 需要家16は、例えば、一戸建ての住宅、マンションなどの集合住宅、コンビニエンスストアまたはスーパーマーケットなどの店舗、ビルなどの商用施設、工場であり、前述のごとく、電力会社等からの電力の供給を受けている施設である。需要家16には、空調機器(エアコン)、テレビジョン受信装置(テレビ)、照明装置、蓄電システム、ヒートポンプ給湯機等の機器が設置される。これらの機器は、電力事業者等の電力系統に接続されることによって、商用電力の供給を受けて、電力を消費する。機器として、電力使用の削減量が比較的大きいと想定されるものが有用であるが、削減量があまり大きくないと想定されてもよい。機器に、太陽電池システム、燃料電池システム等の再生可能エネルギー発電装置が含まれてもよい。 The customer 16 is, for example, a single-family house, an apartment house such as an apartment, a store such as a convenience store or a supermarket, a commercial facility such as a building, a factory. It is an existing facility. The customer 16 is provided with equipment such as an air conditioner (air conditioner), a television receiver (television), a lighting device, a storage system, and a heat pump water heater. These devices receive the supply of commercial power and consume power by being connected to a power system such as a power company. As an apparatus, although what is assumed that the reduction amount of electric power consumption is comparatively large is useful, it may be assumed that the reduction amount is not so large. The device may include a renewable energy generator such as a solar cell system or a fuel cell system.
 電力管理システムサーバ14は、電力管理システムの処理を実行するためのコンピュータであり、例えば、需要家16内に設置される。電力管理システムサーバ14は、例えば、HEMS(Home Energy Management System)コントローラとしての機能を有する。そのため、電力管理システムサーバ14は、HAN(Home Area Network)により需要家16内の各種機器と通信可能であり、これらの機器を制御する。電力管理システムサーバ14は、蓄電システムの動作、例えば、放電、充電を制御する。また、電力管理システムサーバ14は、需要家16に設置された機器と電力系統との間の連系を制御してもよい。電力管理システムサーバ14は、停電時に機器と電力系統との間を解列し、復電時に機器と電力系統との間を連系する。 The power management system server 14 is a computer for executing the processing of the power management system, and is installed, for example, in the customer 16. The power management system server 14 has, for example, a function as a home energy management system (HEMS) controller. Therefore, the power management system server 14 can communicate with various devices in the customer 16 by HAN (Home Area Network), and controls these devices. The power management system server 14 controls the operation of the storage system, for example, discharge and charge. In addition, the power management system server 14 may control the interconnection between the devices installed in the customer 16 and the power system. The power management system server 14 disconnects between the device and the power system at the time of power failure, and interconnects between the device and the power system at the time of power recovery.
 群管理システムサーバ12は、群管理システムの処理を実行するためのコンピュータである。群管理システムサーバ12は、複数の電力管理システムサーバ14を接続することによって、複数の電力管理システムサーバ14を管理する。その結果、群管理システムサーバ12は、複数の電力管理システムサーバ14のそれぞれに接続される複数の機器を統括的に管理する。例えば、群管理システムサーバ12は、複数の需要家16の各々に設置された蓄電システムを含む蓄電システム群に制御指令を送信してもよい。複数の群管理システムサーバ12は、上位システムサーバ10に接続される。上位システムサーバ10は、アグリゲータである上位システムの処理を実行するためのコンピュータである。前述のごとく、上位システムと群管理システムを含むVPPは、市場で、あるいは事業者と相対契約で電力を取引しており、上位システムサーバ10は、契約に応じた要求を群管理システムサーバ12に出力する。1つの群管理システムサーバ12が複数の上位システムサーバ10に接続されてもよい。 The group management system server 12 is a computer for executing the processing of the group management system. The group management system server 12 manages a plurality of power management system servers 14 by connecting a plurality of power management system servers 14. As a result, the group management system server 12 centrally manages a plurality of devices connected to each of the plurality of power management system servers 14. For example, the group management system server 12 may transmit a control command to a storage system group including a storage system installed in each of the plurality of customers 16. The plurality of group management system servers 12 are connected to the upper system server 10. The upper system server 10 is a computer for executing the processing of the upper system which is an aggregator. As described above, the VPP including the upper system and the group management system trades power in the market or in a relative contract with the business operator, and the upper system server 10 sends the group management system server 12 a request according to the contract. Output. One group management system server 12 may be connected to a plurality of upper system servers 10.
 このような構成によって、電力系統における電力需要が逼迫する場合、群管理システムサーバ12は、蓄電システムから放電した電力を需要家16内で消費させたり、需要家16内での電力消費を抑制させたりするように電力管理システムサーバ14を制御する。また、電力系統における電力供給が電力需要を上まわる場合、群管理システムサーバ12は、蓄電システムへの充電を増やしたり、需要家16内での需要を増大させたりするように電力管理システムサーバ14を制御する。 With such a configuration, when the power demand in the power system is tight, the group management system server 12 causes the power discharged from the storage system to be consumed in the customer 16 or suppresses the power consumption in the customer 16. Control the power management system server 14 to In addition, when the power supply in the power system exceeds the power demand, the group management system server 12 increases the charge to the storage system or increases the demand in the customer 16. Control.
 図2は、需要家16の構成を示す。需要家16には、電力系統30、スマートメータ32、分電盤34、負荷36、蓄電システム40、電力管理システムサーバ14、例えば第1電力管理システムサーバ14aが設置される。また、蓄電システム40は、SB(Storage Battery)210、SB用DC/DC212、双方向DC/ACインバータ214、制御装置216を含む。第1電力管理システムサーバ14aは、サービス連携部300、制御部302を含み、サービス連携部300は、受信部510、送信部512を含み、制御部302は、周波数検出部600、記憶部602、生成部604、送信部606、受信部608を含む。さらに、第1電力管理システムサーバ14aには、ネットワーク18を介して群管理システムサーバ12、例えば第1群管理システムサーバ12aが接続される。需要家16には、太陽電池システム、ヒートポンプ給湯機等が設置されてもよいが、ここではこれらを省略する。 FIG. 2 shows the configuration of the customer 16. The customer 16 is provided with a power system 30, a smart meter 32, a distribution board 34, a load 36, a storage system 40, and a power management system server 14, for example, a first power management system server 14a. Further, the storage system 40 includes a storage battery (SB) 210, a DC / DC 212 for SB, a bi-directional DC / AC inverter 214, and a control device 216. The first power management system server 14a includes a service cooperation unit 300 and a control unit 302. The service cooperation unit 300 includes a reception unit 510 and a transmission unit 512. The control unit 302 includes a frequency detection unit 600, a storage unit 602, A generation unit 604, a transmission unit 606, and a reception unit 608 are included. Furthermore, a group management system server 12, for example, a first group management system server 12a is connected to the first power management system server 14a via the network 18. Although a solar cell system, a heat pump water heater, etc. may be installed in the customer 16, these are omitted here.
 電力系統30における電力需要は、変動周期が互いに異なった微少変動分、短周期成分、長周期成分の合成によって示される。微少変動分は数十秒程度の変動周期を有し、短周期成分は数分程度の変動周期を有し、長周期成分は数十分程度の変動周期を有する。つまり、微少変動分の変動周期が最も短く、長周期成分の変動周期が最も長い。スマートメータ32は、電力系統30に接続され、デジタル式の電力量計である。スマートメータ32は、電力系統30から入ってくる潮流の電力量と、電力系統30へ出て行く逆潮流の電力量とを計測可能である。スマートメータ32は、通信機能を有し、電力管理システムサーバ14と通信可能である。 The power demand in the power system 30 is indicated by the combination of a minute variation, a short period component, and a long period component, which have different variation cycles. The minute change component has a change period of about several tens of seconds, the short period component has a change period of about several minutes, and the long period component has a change period of about several tens of minutes. That is, the variation period of the minute variation is the shortest, and the variation period of the long period component is the longest. The smart meter 32 is connected to the power system 30 and is a digital power meter. The smart meter 32 can measure the amount of power of the current flowing from the power system 30 and the amount of power of the reverse current flowing out of the power system 30. The smart meter 32 has a communication function and can communicate with the power management system server 14.
 配電線42は、スマートメータ32と分電盤34とを結ぶ。分電盤34は、配電線42に接続されるとともに、負荷36を接続する。分電盤34は、負荷36に電力を供給する。負荷36は、配電線42を介して供給される電力を消費する機器である。負荷36は、冷蔵庫、エアコン、照明等の機器を含む。ここでは、分電盤34に1つの負荷36が接続されているが、分電盤34に複数の負荷36が接続されてもよい。 The distribution line 42 connects the smart meter 32 and the distribution board 34. The distribution board 34 is connected to the distribution line 42 and also connects the load 36. The distribution board 34 supplies power to the load 36. The load 36 is a device that consumes the power supplied via the distribution line 42. The load 36 includes equipment such as a refrigerator, an air conditioner, and lighting. Here, although one load 36 is connected to the distribution board 34, a plurality of loads 36 may be connected to the distribution board 34.
 SB210は、電力を充放電可能な蓄電池であり、リチウムイオン蓄電池、ニッケル水素蓄電池、鉛蓄電池、電気二重層キャパシタ、リチウムイオンキャパシタ等を含む。SB210はSB用DC/DC212に接続される。SB用DC/DC212は、DC-DCコンバータであり、SB210側の直流電力と、双方向DC/ACインバータ214側の直流電力との間の変換を実行する。 The SB 210 is a storage battery capable of charging and discharging electric power, and includes a lithium ion storage battery, a nickel hydrogen storage battery, a lead storage battery, an electric double layer capacitor, a lithium ion capacitor, and the like. The SB 210 is connected to the DC / DC 212 for SB. The SB DC / DC 212 is a DC-DC converter, and performs conversion between the DC power on the SB 210 side and the DC power on the bidirectional DC / AC inverter 214 side.
 双方向DC/ACインバータ214は、SB用DC/DC212と分電盤34との間に接続される。双方向DC/ACインバータ214は、分電盤34からの交流電力を直流電力に変換し、変換した直流電力をSB用DC/DC212に出力する。また、双方向DC/ACインバータ214は、SB用DC/DC212からの直流電力を交流電力に変換し、変換した交流電力を分電盤34に出力する。つまり、双方向DC/ACインバータ214によってSB210は充放電される。このような双方向DC/ACインバータ214の制御は制御装置216によってなされる。ここで、SB210、SB用DC/DC212、双方向DC/ACインバータ214、制御装置216は1つの筐体に格納されてもよく、その場合であっても、これを蓄電システム40と呼ぶ。 The bi-directional DC / AC inverter 214 is connected between the DC / DC 212 for SB and the distribution board 34. The bidirectional DC / AC inverter 214 converts AC power from the distribution board 34 into DC power, and outputs the converted DC power to the SB DC / DC 212. The bidirectional DC / AC inverter 214 converts the DC power from the SB DC / DC 212 into AC power, and outputs the converted AC power to the distribution board 34. That is, the SB 210 is charged and discharged by the bi-directional DC / AC inverter 214. The control of the bi-directional DC / AC inverter 214 is performed by the controller 216. Here, the SB 210, the SB DC / DC 212, the bidirectional DC / AC inverter 214, and the control device 216 may be stored in one case, and even in that case, this is referred to as a storage system 40.
 第1電力管理システムサーバ14aは、HAN等のネットワークを介して、スマートメータ32、蓄電システム40に接続され、それぞれと通信可能であり、電力系統30に接続された蓄電システム40を制御する。このような第1電力管理システムサーバ14aは電力制御装置であるといえる。以下では、第1電力管理システムサーバ14aとスマートメータ32との間の通信は説明を省略する。 The first power management system server 14 a is connected to the smart meter 32 and the storage system 40 via a network such as HAN, can communicate with each other, and controls the storage system 40 connected to the power system 30. It can be said that such a first power management system server 14a is a power control device. In the following, the communication between the first power management system server 14a and the smart meter 32 will not be described.
 周波数検出部600は、電力系統30に接続される。周波数検出部600は、電力系統30における交流電力の周波数(以下、「電力系統30の周波数」ともいう)を検出する。電力系統30の周波数は、電力需要が増加して電力が不足すると商用電源周波数より低くなり、電力需要が減少して電力が過剰になると商用電源周波数より高くなる。商用電源周波数は、例えば、50Hz、60Hzに定められる基準周波数である。周波数検出部600は、商用電源周波数に対する電力系統30の周波数の差異を検出してもよい。周波数検出部600は、スマートメータ32あるいは配電線42に接続されて、電力系統30の周波数を検出してもよい。さらに、周波数検出部600は蓄電システム40内に設けられ、検出した周波数を第1電力管理システムサーバ14aに送信してもよい。 The frequency detection unit 600 is connected to the power system 30. Frequency detection unit 600 detects the frequency of AC power in power system 30 (hereinafter, also referred to as “frequency of power system 30”). The frequency of the power system 30 becomes lower than the commercial power frequency when the power demand increases and runs short of power, and becomes higher than the commercial power frequency when the power demand decreases and the power becomes excessive. The commercial power supply frequency is, for example, a reference frequency defined at 50 Hz and 60 Hz. The frequency detection unit 600 may detect the difference in frequency of the power system 30 with respect to the commercial power supply frequency. The frequency detection unit 600 may be connected to the smart meter 32 or the distribution line 42 to detect the frequency of the power system 30. Furthermore, the frequency detection unit 600 may be provided in the storage system 40, and may transmit the detected frequency to the first power management system server 14a.
 記憶部602は、電力系統30の周波数に対して、蓄電システム40に充放電させる電力と、蓄電システム40に充放電させる電力値の変化割合とを関連づけた関連情報を保持する。関連情報では、電力系統30の周波数の代わりに、商用電源周波数に対する電力系統30の周波数の差異が使用されてもよい。関連情報は例えばテーブルの形式で保持されるが、関係式の形式で保持されてもよい。図3は、記憶部602に記憶されるテーブルのデータ構造を示す。図示のごとく、検出周波数に対する充放電電力と電力変化速度との関連が示される。電力変化速度は、単位時間あたりの電力の増加量あるいは減少量として示され、電力の変化の傾きといえる。ここでは、商用電源周波数が60Hzであるとされる。検出周波数が60Hzよりも高い場合、つまり電力系統30の周波数が商用電源周波数よりも高い場合、蓄電システム40に充電を実行させるような充放電電力が規定される。一方、検出周波数が60Hzよりも低い場合、つまり電力系統30における交流電力の周波数が商用電源周波数よりも低い場合、蓄電システム40に放電を実行させるような充放電電力が規定される。 Storage unit 602 holds related information in which the electric power to be charged / discharged to storage system 40 and the change ratio of the power value to be charged / discharged to storage system 40 are associated with the frequency of power system 30. In the related information, instead of the frequency of the power system 30, the difference of the frequency of the power system 30 with respect to the commercial power supply frequency may be used. The related information is held, for example, in the form of a table, but may be held in the form of a relational expression. FIG. 3 shows the data structure of a table stored in the storage unit 602. As shown, the relationship between the charge / discharge power and the power change rate with respect to the detection frequency is shown. The power change rate is indicated as an increase or decrease in power per unit time, and can be said to be the slope of the change in power. Here, it is assumed that the commercial power supply frequency is 60 Hz. When the detection frequency is higher than 60 Hz, that is, when the frequency of the power system 30 is higher than the commercial power supply frequency, charge / discharge power is defined that causes the storage system 40 to perform charging. On the other hand, when the detection frequency is lower than 60 Hz, that is, when the frequency of AC power in power system 30 is lower than the commercial power source frequency, charge / discharge power is defined that causes storage system 40 to perform discharge.
 電力系統30の周波数が商用電源周波数よりも低い場合であっても、これらの周波数のずれの大きさに応じて、電力不足の程度が異なる。例えば、これらの周波数のずれが大きい場合は、これらの周波数のずれが小さい場合よりも、電力不足の程度が大きいといえる。つまり、これらの周波数のずれが大きい場合には、これらの周波数のずれが小さい場合よりも、充放電電力の絶対値を大きくするとともに、蓄電システム40による電力の変動速度(以下、「電力変化速度」という)を速くしなければならない。そのため、電力系統30の周波数と商用電源周波数との差異の絶対値が大きくなるほど、充放電電力の絶対値、電力変化速度の絶対値が大きくなるような規定がなされる。電力変化速度として、調整力種別Aと調整力種別Bのごとく、値が互いに異なった2種類の速度が規定される。しかしながら、電力変化速度は1種類だけ規定されてもよいし、3種類以上規定されてもよい。図2に戻る。 Even when the frequency of the power system 30 is lower than the commercial power supply frequency, the degree of the power shortage differs according to the magnitude of the deviation of these frequencies. For example, when the deviation of these frequencies is large, it can be said that the degree of the power shortage is larger than when the deviation of these frequencies is small. That is, when the frequency shift is large, the absolute value of the charge / discharge power is made larger than when the frequency shift is small, and the rate of change of the power by the storage system 40 (hereinafter, “power change rate Should be made faster. Therefore, as the absolute value of the difference between the frequency of power system 30 and the commercial power source frequency is increased, the absolute value of the charge / discharge power and the absolute value of the power change rate are defined to be increased. As the power change speed, two types of speeds having different values, such as the adjustment power type A and the adjustment power type B, are defined. However, only one type of power change rate may be defined, or three or more types may be defined. Return to FIG.
 生成部604は、周波数検出部600において検出した周波数または差異をもとに、記憶部602において保持したテーブルを参照することによって、蓄電システム40に充放電させる電力と、蓄電システム40に充放電させる電力値の変化割合に関する情報を生成する。前者が充放電電力に相当し、後者が電力変化速度に相当する。記憶部602に保持されたテーブルの調整力種別Aと調整力種別Bのどちらを使用するかは、生成部604に予め設定されている。生成部604は、生成した情報を送信部606に出力する。送信部606は、生成した情報が含まれたメッセージを蓄電システム40に出力する。 The generation unit 604 refers to the table held in the storage unit 602 based on the frequency or the difference detected by the frequency detection unit 600 to cause the power storage system 40 to charge and discharge, and the storage system 40 to charge and discharge. Generate information on the rate of change of the power value. The former corresponds to charge and discharge power, and the latter corresponds to the power change rate. Whether to use the adjustment power type A or the adjustment power type B of the table held in the storage unit 602 is set in advance in the generation unit 604. The generation unit 604 outputs the generated information to the transmission unit 606. Transmission unit 606 outputs a message including the generated information to power storage system 40.
 蓄電システム40における制御装置216は、第1電力管理システムサーバ14aからのメッセージに応じて、電力変化速度にしたがいながら充放電電力を充電あるいは放電する。制御装置216は、メッセージにしたがった充電あるは放電を実行した場合、完了が示されたメッセージを第1電力管理システムサーバ14aに送信してもよい。このメッセージは、第1電力管理システムサーバ14aの制御部302における受信部608に受信される。図4は、蓄電システム40の制御例を示す。横軸が時間を示し、縦軸が出力を示す。検出周波数は図3の「59.8Hz~」に該当するとともに、調整力種別Bが使用されるとする。放電電力が時間の経過とともに段階的に増加し、1秒間にわたって2kW増加する。放電電力は、時間の経過とともに連続的にして増加してもよい。図2に戻る。 The control device 216 in the storage system 40 charges or discharges the charge / discharge power according to the power change rate according to the message from the first power management system server 14 a. The controller 216 may transmit a message indicating completion to the first power management system server 14a when performing charging or discharging according to the message. This message is received by the receiver 608 in the controller 302 of the first power management system server 14a. FIG. 4 shows an example of control of the storage system 40. The horizontal axis shows time, and the vertical axis shows output. The detection frequency corresponds to “59.8 Hz ̃” in FIG. 3, and it is assumed that the adjustment power type B is used. The discharge power gradually increases with time, and increases by 2 kW over one second. The discharge power may increase continuously with the passage of time. Return to FIG.
 図3では1秒間で所定の充放電電力の値に達する例を示したが、変化速度はこれに限られず、10秒、20秒、30秒、60秒でなどの期間で達するように変化させてもよい。また、図3では、充放電電力として蓄電システム40が最終的に充電・放電すべき電力の絶対値を示しているが、制御開始前の出力からの相対的な変化量を示してもよい。例えば、充放電電力として「+Δ2kW(放電方向に2kW出力を増加させる)」のように記憶されており、制御開始前に1kW充電している場合には、放電出力が1kWに達するまで電力変化速度に従って出力を変化させるようにしてもよい。 Although FIG. 3 shows an example in which a predetermined charge / discharge power value is reached in one second, the change rate is not limited to this, and is changed to reach in a period of 10 seconds, 20 seconds, 30 seconds, 60 seconds, etc. May be Further, in FIG. 3, the absolute value of the power to be finally charged and discharged by the storage system 40 is shown as the charge / discharge power, but the relative change amount from the output before the start of the control may be shown. For example, charge and discharge power is stored as “+ Δ2 kW (increase 2 kW output in the discharge direction)”, and when charging is 1 kW before the start of control, the rate of change of power until the discharge output reaches 1 kW The output may be changed according to
 第1電力管理システムサーバ14aのサービス連携部300は、ネットワーク18を介して第1群管理システムサーバ12aに接続され、第1群管理システムサーバ12aとの間で通信を実行する。受信部510は、第1群管理システムサーバ12aからのメッセージを受信する。メッセージには、例えば、記憶部602において保持すべきテーブルが含まれる。このテーブルは、第1群管理システムサーバ12aにおいて生成されており、例えば、第1群管理システムサーバ12aによって管理される複数の蓄電システム40の数が変わった場合に更新される。このように各電力管理システムサーバ14において共通のテーブルが使用されるので、群管理システムサーバ12は、複数の電力管理システムサーバ14のそれぞれに接続される複数の機器を統括的に管理するといえる。テーブルは上位システムサーバ10において生成されてもよい。その場合、受信部510は、第1群管理システムサーバ12a経由で上位システムサーバ10から、テーブルが含まれたメッセージを受信するといえる。 The service linkage unit 300 of the first power management system server 14a is connected to the first group management system server 12a via the network 18, and executes communication with the first group management system server 12a. The receiving unit 510 receives a message from the first group management system server 12a. The message includes, for example, a table to be held in the storage unit 602. This table is generated in the first group management system server 12a, and is updated, for example, when the number of the plurality of power storage systems 40 managed by the first group management system server 12a changes. As described above, since the common table is used in each power management system server 14, it can be said that the group management system server 12 collectively manages a plurality of devices connected to each of the plurality of power management system servers 14. The table may be generated in the upper system server 10. In that case, it can be said that the receiving unit 510 receives a message including a table from the upper system server 10 via the first group management system server 12a.
 また、受信部510が受信するメッセージには、テーブルの調整力種別Aと調整力種別Bのうちの使用する方を指定するための情報が含まれていてもよい。生成部604は、メッセージに含まれた指定の情報をもとに、調整力種別Aあるいは調整力種別Bを使用する。送信部512は、第1群管理システムサーバ12aにメッセージを送信する。 Further, the message received by the receiving unit 510 may include information for specifying which of the adjustment power type A and the adjustment power type B of the table to use. The generation unit 604 uses the adjustment power type A or the adjustment power type B based on the designated information included in the message. The transmission unit 512 transmits a message to the first group management system server 12a.
 本開示における装置、システム、または方法の主体は、コンピュータを備えている。このコンピュータがプログラムを実行することによって、本開示における装置、システム、または方法の主体の機能が実現される。コンピュータは、プログラムにしたがって動作するプロセッサを主なハードウェア構成として備える。プロセッサは、プログラムを実行することによって機能を実現することができれば、その種類は問わない。プロセッサは、半導体集積回路(IC)、またはLSI(Large Scale Integration)を含む1つまたは複数の電子回路で構成される。複数の電子回路は、1つのチップに集積されてもよいし、複数のチップに設けられてもよい。複数のチップは1つの装置に集約されていてもよいし、複数の装置に備えられていてもよい。プログラムは、コンピュータが読み取り可能なROM、光ディスク、ハードディスクドライブなどの非一時的記録媒体に記録される。プログラムは、記録媒体に予め格納されていてもよいし、インターネット等を含む広域通信網を介して記録媒体に供給されてもよい。 The subject matter of the apparatus, system or method in the present disclosure comprises a computer. The computer executes the program to implement the functions of the apparatus, system, or method in the present disclosure. The computer includes, as a main hardware configuration, a processor that operates according to a program. The processor may be of any type as long as the function can be realized by executing a program. The processor is configured of one or more electronic circuits including a semiconductor integrated circuit (IC) or an LSI (Large Scale Integration). The plurality of electronic circuits may be integrated on one chip or may be provided on a plurality of chips. The plurality of chips may be integrated into one device or may be provided to a plurality of devices. The program is recorded in a non-transitory recording medium such as a computer readable ROM, an optical disc, a hard disk drive and the like. The program may be stored in advance in a recording medium, or may be supplied to the recording medium via a wide area communication network including the Internet and the like.
 以上の構成による電力管理システムサーバ14の動作を説明する。図5は、第1電力管理システムサーバ14aによる制御手順を示すフローチャートである。周波数検出部600は電力系統30の周波数を検出する(S10)。生成部604は、検出した周波数をもとに、充放電電力と電力変化速度を特定する(S12)。送信部606は、充放電電力と電力変化速度が含まれた指示を蓄電システム40に出力する(S14)。 The operation of the power management system server 14 having the above configuration will be described. FIG. 5 is a flowchart showing a control procedure by the first power management system server 14a. The frequency detection unit 600 detects the frequency of the power system 30 (S10). Based on the detected frequency, the generation unit 604 identifies the charge / discharge power and the power change rate (S12). The transmitting unit 606 outputs an instruction including the charge / discharge power and the power change rate to the storage system 40 (S14).
 本実施例によれば、電力系統30の周波数を検出して、これをもとに蓄電システム40に充放電させる電力と、蓄電システム40に充放電させる電力値の変化割合に関する情報を生成するので、電力需要の変動に応じて電力の変動速度を制御できる。また、商用電源周波数に対する電力系統30の周波数の差異を検出して、これをもとに蓄電システム40に充放電させる電力と、蓄電システム40に充放電させる電力値の変化割合に関する情報を生成するので、電力需要の変動に応じて電力の変動速度を制御できる。また、電力需要の変動に応じて電力の変動速度が制御されるので、電力系統が不安定になることを抑制できる。 According to the present embodiment, the frequency of the electric power system 30 is detected, and based on this, the electric power for charging / discharging the storage system 40 and the information on the change ratio of the power value for charging / discharging the storage system 40 are generated. , It is possible to control the rate of change of the power according to the change of the power demand. Further, the difference in the frequency of power system 30 with respect to the commercial power supply frequency is detected, and based on this, information regarding the change ratio of the power for charging and discharging storage system 40 and the value of the power for charging and discharging storage system 40 is generated. Therefore, it is possible to control the rate of change of the power according to the fluctuation of the power demand. Further, since the rate of change of the power is controlled according to the change of the power demand, it is possible to suppress the power system becoming unstable.
 また、電力系統30の周波数、あるいは商用電源周波数に対する電力系統30の周波数の差異に対して、蓄電システム40に充放電させる電力と、蓄電システム40に充放電させる電力値の変化割合とを関連づけた関連情報を保持するので、処理を簡易にできる。また、電力系統30の周波数、あるいは商用電源周波数に対する電力系統30の周波数の差異に対して、蓄電システム40に充放電させる電力と、蓄電システム40に充放電させる電力値の変化割合とを関連づけた関連情報を受信するので、関連情報を更新できる。また、関連情報が更新されるので、VPPシステム100の構成が変わっても、それに適した関連情報を使用できる。 In addition, with respect to the frequency of power system 30 or the difference in the frequency of power system 30 with respect to the commercial power supply frequency, the power for charging / discharging storage system 40 and the change ratio of the power value for charging / discharging storage system 40 are associated. Since related information is held, processing can be simplified. In addition, with respect to the frequency of power system 30 or the difference in the frequency of power system 30 with respect to the commercial power supply frequency, the power for charging / discharging storage system 40 and the change ratio of the power value for charging / discharging storage system 40 are associated. Since related information is received, related information can be updated. Further, since the related information is updated, even if the configuration of the VPP system 100 changes, the related information suitable for it can be used.
 本開示の一態様の概要は、次の通りである。本開示のある態様の電力管理システムサーバ14は、需要家16に設置され、かつ電力系統30に接続された蓄電システム40を制御する電力管理システムサーバ14であって、電力系統30の周波数、あるいは基準周波数に対する電力系統30の周波数の差異を検出する周波数検出部600と、周波数検出部600において検出した周波数あるいは差異をもとに、蓄電システム40に充放電させる電力と、蓄電システム40に充放電させる電力値の変化割合に関する情報を生成する生成部604と、を備える。 The outline of one aspect of the present disclosure is as follows. The power management system server 14 according to an aspect of the present disclosure is the power management system server 14 installed in the customer 16 and controlling the power storage system 40 connected to the power system 30. The frequency detection unit 600 detects a difference in frequency of the power system 30 with respect to the reference frequency, the power to be charged and discharged in the storage system 40 based on the frequency or difference detected in the frequency detection unit 600, and the charge and discharge in the storage system 40 And a generation unit 604 configured to generate information related to the change ratio of the power value to be generated.
 電力系統30の周波数、あるいは基準周波数に対する電力系統30の周波数の差異に対して、蓄電システム40に充放電させる電力と、蓄電システム40に充放電させる電力値の変化割合とを関連づけた関連情報を保持する記憶部602をさらに備えてもよい。生成部604は、周波数検出部600において検出した周波数あるいは差異と、記憶部602において保持した関連情報とをもとに、蓄電システム40に充放電させる電力と、蓄電システム40に充放電させる電力値の変化割合に関する情報を生成する。 With respect to the frequency of the power system 30 or the difference in the frequency of the power system 30 with respect to the reference frequency, the related information in which the power for charging / discharging the storage system 40 and the change rate of the power for charging / discharging the storage system 40 are associated You may further provide the memory | storage part 602 to hold | maintain. Based on the frequency or difference detected by frequency detection unit 600 and the related information stored in storage unit 602, generation unit 604 generates power for charging / discharging storage system 40 and the power value for charging / discharging storage system 40. Generate information on the rate of change of
 電力系統30の周波数、あるいは基準周波数に対する電力系統30の周波数の差異に対して、蓄電システム40に充放電させる電力と、蓄電システム40に充放電させる電力値の変化割合とを関連づけた関連情報を、電力系統30を監視する上位のシステムから受信する受信部510をさらに備える。 With respect to the frequency of the power system 30 or the difference in the frequency of the power system 30 with respect to the reference frequency, the related information in which the power for charging / discharging the storage system 40 and the change rate of the power for charging / discharging the storage system 40 are associated , And a receiving unit 510 that receives power from the upper system monitoring the power system 30.
 本開示の別の態様は、電力制御方法である。この方法は、需要家16に設置され、かつ電力系統30に接続された蓄電システム40を制御する電力管理システムサーバ14における制御方法であって、電力系統30の周波数、あるいは基準周波数に対する電力系統30の周波数の差異を検出するステップと、検出した周波数あるいは差異をもとに、蓄電システム40に充放電させる電力と、蓄電システム40に充放電させる電力値の変化割合に関する情報を生成するステップと、を備える。 Another aspect of the present disclosure is a power control method. This method is a control method in the power management system server 14 that controls the power storage system 40 installed in the customer 16 and connected to the power system 30, and the power system 30 for the frequency of the power system 30 or the reference frequency. Detecting a difference between the frequencies of the two, and generating information on the rate of change of the power for charging / discharging the storage system 40 and the value of the power for charging / discharging the storage system 40 based on the detected frequency or difference; Equipped with
 以上、本開示を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。 The present disclosure has been described above based on the examples. It is understood by those skilled in the art that this embodiment is an exemplification, and that various modifications can be made to their respective components or combinations of processing processes, and such modifications are also within the scope of the present disclosure. .
 本実施例において、周波数検出部600から送信部606は第1電力管理システムサーバ14aに含まれている。しかしながらこれに限らず例えば、周波数検出部600から送信部606は、蓄電システム40の制御装置216に含まれてもよい。その場合、制御装置216が電力制御装置であるといえる。本変形例によれば、構成の自由度を拡張できる。 In the present embodiment, the frequency detection unit 600 to the transmission unit 606 are included in the first power management system server 14a. However, not limited to this, for example, the frequency detection unit 600 to the transmission unit 606 may be included in the control device 216 of the storage system 40. In that case, it can be said that the control device 216 is a power control device. According to this modification, the degree of freedom of the configuration can be expanded.
 10 上位システムサーバ、 12 群管理システムサーバ、 14 電力管理システムサーバ(電力制御装置)、 16 需要家、 18 ネットワーク、 30 電力系統、 32 スマートメータ、 34 分電盤、 36 負荷、 40 蓄電システム、 42 配電線、 100 VPPシステム、 210 SB、 212 SB用DC/DC、 214 双方向DC/ACインバータ、 216 制御装置(電力制御装置)、 300 サービス連携部、 302 制御部、 510 受信部、 512 送信部、 600 周波数検出部、 602 記憶部、 604 生成部、 606 送信部、 608 受信部。 10 upper system server, 12 group management system server, 14 power management system server (power control device), 16 consumers, 18 networks, 30 power grids, 32 smart meters, 34 distribution boards, 36 loads, 40 power storage systems, 42 Distribution line, 100 VPP system, 210 SB, DC / DC for 212 SB, 214 bidirectional DC / AC inverter, 216 control unit (power control unit), 300 service cooperation unit, 302 control unit, 510 reception unit, 512 transmission unit , 600 frequency detection unit, 602 storage unit, 604 generation unit, 606 transmission unit, 608 reception unit.
 本開示によれば、電力需要の変動に応じて電力の変動速度を制御できる。 According to the present disclosure, it is possible to control the rate of change of power according to the change in power demand.

Claims (5)

  1.  需要家に設置され、かつ電力系統に接続された蓄電システムを制御する電力制御装置であって、
     前記電力系統の周波数、あるいは基準周波数に対する前記電力系統の周波数の差異を検出する周波数検出部と、
     前記周波数検出部において検出した前記周波数あるいは前記差異をもとに、前記蓄電システムに充放電させる電力と、前記蓄電システムに充放電させる電力値の変化割合に関する情報を生成する生成部と、
     を備える、電力制御装置。
    A power control apparatus for controlling a storage system installed in a consumer and connected to a power system,
    A frequency detection unit that detects a difference in frequency of the power system with respect to a frequency of the power system or a reference frequency;
    A generation unit that generates, based on the frequency detected by the frequency detection unit or the difference, electric power to be charged to or discharged from the storage system and information on a change ratio of an electric power value to be charged to or discharged from the storage system;
    A power control device comprising:
  2.  前記電力系統の周波数、あるいは基準周波数に対する前記電力系統の周波数の差異に対して、前記蓄電システムに充放電させる電力と、前記蓄電システムに充放電させる電力値の変化割合とを関連づけた関連情報を保持する記憶部をさらに備え、
     前記生成部は、前記周波数検出部において検出した前記周波数あるいは前記差異と、前記記憶部において保持した前記関連情報とをもとに、前記蓄電システムに充放電させる電力と、前記蓄電システムに充放電させる電力値の変化割合に関する情報を生成する、
     請求項1に記載の電力制御装置。
    The related information in which the power for charging and discharging the storage system and the change rate of the power for charging and discharging the storage system are associated with the frequency of the power system or the difference in the frequency of the power system with respect to the reference frequency. It further comprises a storage unit to hold,
    The generation unit is configured to charge and discharge the power storage system based on the frequency detected by the frequency detection unit or the difference and the related information stored in the storage unit, and charge and discharge the power storage system. Generate information on the rate of change of the power value
    The power control device according to claim 1.
  3.  前記電力系統の周波数、あるいは基準周波数に対する前記電力系統の周波数の差異に対して、前記蓄電システムに充放電させる電力と、前記蓄電システムに充放電させる電力値の変化割合とを関連づけた関連情報を、前記電力系統を監視する上位のシステムから受信する受信部をさらに備える、
     請求項2に記載の電力制御装置。
    The related information in which the power for charging and discharging the storage system and the change rate of the power for charging and discharging the storage system are associated with the frequency of the power system or the difference in the frequency of the power system with respect to the reference frequency. And a receiver configured to receive from a higher-level system that monitors the power system.
    The power control device according to claim 2.
  4.  需要家に設置され、かつ電力系統に接続された蓄電システムを制御する電力制御装置における制御方法であって、
     前記電力系統の周波数、あるいは基準周波数に対する前記電力系統の周波数の差異を検出するステップと、
     検出した前記周波数あるいは前記差異をもとに、前記蓄電システムに充放電させる電力と、前記蓄電システムに充放電させる電力値の変化割合に関する情報を生成するステップと、
     を備える、電力制御方法。
    A control method in a power control apparatus for controlling a storage system installed in a consumer and connected to a power system,
    Detecting the frequency of the power system relative to the frequency of the power system or a reference frequency;
    Based on the detected frequency or the difference, generating information relating to a change ratio of the power for charging / discharging the storage system and the value of the power for charging / discharging the storage system;
    Power control method.
  5.  需要家に設置され、かつ電力系統に接続された蓄電システムを制御する電力制御装置におけるプログラムであって、
     前記電力系統の周波数、あるいは基準周波数に対する前記電力系統の周波数の差異を検出するステップと、
     検出した前記周波数あるいは前記差異をもとに、前記蓄電システムに充放電させる電力と、前記蓄電システムに充放電させる電力値の変化割合に関する情報を生成するステップとをコンピュータに実行させるためのプログラム。
    A program in a power control apparatus for controlling a storage system installed in a consumer and connected to a power system,
    Detecting the frequency of the power system relative to the frequency of the power system or a reference frequency;
    A program for causing a computer to execute, based on the detected frequency or the difference, electric power for charging / discharging the storage system, and generating information on a change ratio of power value for charging / discharging the storage system.
PCT/JP2018/046184 2017-12-27 2018-12-14 Power control device, power control method, program WO2019131228A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017251346A JP7065393B2 (en) 2017-12-27 2017-12-27 Power control device, power control method, program
JP2017-251346 2017-12-27

Publications (1)

Publication Number Publication Date
WO2019131228A1 true WO2019131228A1 (en) 2019-07-04

Family

ID=67066489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046184 WO2019131228A1 (en) 2017-12-27 2018-12-14 Power control device, power control method, program

Country Status (2)

Country Link
JP (1) JP7065393B2 (en)
WO (1) WO2019131228A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154360A (en) * 2006-12-18 2008-07-03 Mitsubishi Heavy Ind Ltd Power storage unit, and hybrid distributed power system
JP2009027797A (en) * 2007-07-18 2009-02-05 Meidensha Corp Output variation relaxation system for new energy power generation system
US20130321040A1 (en) * 2012-05-31 2013-12-05 General Electric Company Method and system for using demand response to provide frequency regulation
JP2014039353A (en) * 2012-08-10 2014-02-27 Toshiba Corp Charge/discharge instruction device, and program
US20170104449A1 (en) * 2015-10-08 2017-04-13 Johnson Controls Technology Company Photovoltaic energy system with solar intensity prediction
JP2017153193A (en) * 2016-02-22 2017-08-31 富士電機株式会社 Control device for power storage system, system with the control device, and control method for power storage system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154360A (en) * 2006-12-18 2008-07-03 Mitsubishi Heavy Ind Ltd Power storage unit, and hybrid distributed power system
JP2009027797A (en) * 2007-07-18 2009-02-05 Meidensha Corp Output variation relaxation system for new energy power generation system
US20130321040A1 (en) * 2012-05-31 2013-12-05 General Electric Company Method and system for using demand response to provide frequency regulation
JP2014039353A (en) * 2012-08-10 2014-02-27 Toshiba Corp Charge/discharge instruction device, and program
US20170104449A1 (en) * 2015-10-08 2017-04-13 Johnson Controls Technology Company Photovoltaic energy system with solar intensity prediction
JP2017153193A (en) * 2016-02-22 2017-08-31 富士電機株式会社 Control device for power storage system, system with the control device, and control method for power storage system

Also Published As

Publication number Publication date
JP7065393B2 (en) 2022-05-12
JP2019118202A (en) 2019-07-18

Similar Documents

Publication Publication Date Title
US11128165B2 (en) Behind-the-meter charging station with availability notification
US20200127459A1 (en) Method and apparatus for coordination of generators in droop controlled microgrids using hysteresis
CA2819169C (en) Systems, methods and controllers for control of power distribution devices and systems
JP6732193B2 (en) Management method, control device, and communication processing device
WO2013082698A1 (en) System, method and controller for managing and controlling a micro-grid
JP2013017284A (en) Power control system, electric apparatus and charge/discharge control section
WO2018225456A1 (en) Power management system, apparatus, reception method, and program
JP2013247792A (en) Power management device, power management system, and power management method
WO2018225458A1 (en) Group management system, power management system, receiving method and program
WO2019131229A1 (en) Power control device, power control method, and program
JP2016015864A (en) Power conditioner and power control method
WO2019117071A1 (en) Group management system, power control device, transmission method, and program
WO2019131228A1 (en) Power control device, power control method, program
WO2019117070A1 (en) Group management system, power control device, transmission method, and program
JP7165874B2 (en) Power control method, program, power control system, aggregation system, and communication terminal
WO2018225455A1 (en) Power management system, power storage system, transmission method, and program
JP2019126157A (en) Power management system and power management method
WO2018225457A1 (en) Group management system, power management system, power storage system, transmission method and program
JP7016060B2 (en) Control system, control method, program
WO2019131227A1 (en) Power control device, power control method, and program
JP6827205B2 (en) Group management system, power control device, power storage system
WO2019116711A1 (en) Group management system, power control device, and power storage system
JP2018207629A (en) Power management system, fuel cell system, reception method and program
JP2019068513A (en) Power management device and power management method
EP2721574A1 (en) Method and apparatus for performing a local control of an energy resource

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893362

Country of ref document: EP

Kind code of ref document: A1