WO2019129057A1 - 供油机构和具有该供油机构的卧式压缩机 - Google Patents

供油机构和具有该供油机构的卧式压缩机 Download PDF

Info

Publication number
WO2019129057A1
WO2019129057A1 PCT/CN2018/123893 CN2018123893W WO2019129057A1 WO 2019129057 A1 WO2019129057 A1 WO 2019129057A1 CN 2018123893 W CN2018123893 W CN 2018123893W WO 2019129057 A1 WO2019129057 A1 WO 2019129057A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
pump
supply mechanism
partition
oil supply
Prior art date
Application number
PCT/CN2018/123893
Other languages
English (en)
French (fr)
Inventor
梁胜
格林尼亚劳伦
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Priority to US16/957,698 priority Critical patent/US11603843B2/en
Priority to EP18893372.5A priority patent/EP3734076B1/en
Publication of WO2019129057A1 publication Critical patent/WO2019129057A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/025Lubrication; Lubricant separation using a lubricant pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • F04C2240/56Bearing bushings or details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/806Pipes for fluids; Fittings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/809Lubricant sump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation

Definitions

  • the present disclosure relates to the field of compressors and, more particularly, to a horizontal scroll compressor that is improved in terms of fuel supply mechanisms.
  • the compressor generally includes a housing, a compression mechanism housed in the housing, a motor that supplies power to the compression mechanism, a rotating shaft driven by the motor, and an oil supply mechanism that supplies lubricating oil to each movable part of the compressor.
  • an oil pool is usually provided at the bottom of the compressor housing and an oil pump is provided at the bottom end of the rotating shaft to pump the lubricating oil accumulated in the oil pool to the axially extending shaft in the rotating shaft. Oil holes to supply lubricating oil to the various moving parts of the compressor.
  • a partition may be provided to separate two compartments having a pressure difference (discharge pressure difference) in the high-pressure zone so that a pressure difference can be formed in a compartment having a lower pressure.
  • a rising oil sump to deliver high pressure lubricant to the oil pump (single oil pump) at the end of the rotating shaft.
  • the high-temperature high-pressure lubricating oil in the high-pressure zone can be introduced into the oil pump at the end of the rotating shaft, and the oil pool can be formed in the low-pressure zone by using the double-layered outer casing, or can be separated by vertical straightness. The pieces separate a separate oil sump in the low pressure zone.
  • Another object of the present disclosure is to provide an oil supply mechanism capable of reducing the overall size of a horizontal compressor in the case where the size of the oil storage chamber is the same.
  • Another object of the present disclosure is to provide an oil supply mechanism capable of achieving a reduction or minimization of free space in a motor chamber while allowing the spacer to be stably engaged with the housing.
  • Another object of the present disclosure is to provide an oil supply mechanism capable of achieving reliable and stable coupling and sealing of a partition and a bearing housing.
  • Another object of the present disclosure is to provide an oil supply mechanism capable of achieving a reduction or minimization of free space in a motor chamber while appropriately avoiding interference with related components around the bearing housing.
  • Another object of the present disclosure is to provide an oil supply mechanism that can easily perform a functional test on a pump structure.
  • Another object of the present disclosure is to provide an oil supply mechanism capable of avoiding an improper increase in the axial length of the pump-housing assembly.
  • Another object of the present disclosure is to provide a horizontal compressor associated with the above-described oil supply mechanism.
  • an oil supply mechanism for a horizontal compressor includes a housing, a motor, a rotating shaft driven by the motor, and a bearing housing that supports the rotating shaft.
  • the oil supply mechanism includes a partition having an annular shape having a central aperture allowing the bearing housing to pass therethrough, and the partition is disposed to separate the oil storage chamber from the housing and is provided with The motor chamber of the motor.
  • the partition is configured to have an annular groove that is open toward the oil reservoir.
  • a radially outer portion of the partition member is configured to be coupled to an inner peripheral surface of the housing and a radially inner portion of the partition member is configured to be coupled to an outer peripheral surface of the bearing housing.
  • the housing includes a housing body and an end cap, and a radially outer portion of the partition is configured to be coupled to both the housing body and the end cap.
  • the partition member includes a partition body, an inner flange portion extending radially away from the oil reservoir chamber as a radially inner portion of the partition member, and a radially outer direction of the partition member
  • An outer flange portion extending from the oil storage chamber and a curved portion protruding between the partition body and the inner flange portion toward the oil reservoir, thereby being separated by the partition body
  • the outer flange portion and the curved portion collectively define the annular groove.
  • the partition member includes a partition body, a radially inner inner flange portion as the partition member, and a radially outer outer flange portion as the partition member, the inner convex portion
  • the rim portion and the outer flange portion extend toward the oil reservoir such that the annular groove is collectively defined by the divider body, the inner flange portion, and the outer flange portion.
  • the oil supply mechanism further includes an annular seal member disposed between a radially inner portion of the partition member and an outer peripheral surface of the bearing housing.
  • a seal groove is formed at an inner circumferential surface of the radially inner portion of the partition member and/or an outer circumferential surface of the bearing housing, and the annular seal member is accommodated in the seal recess In the slot.
  • a ridge is formed at an outer peripheral surface of the radially outer portion of the partition member, and the ridge is interposed between the casing body of the casing and the end cover.
  • the partition member is an integral member which is formed by a deep drawing process.
  • the partition member is formed such that a partition body of the partition member defining the annular groove is positioned closer to an end of the motor toward the motor chamber.
  • the oil supply mechanism further includes a pump device attached to the bearing housing at one end of the rotating shaft such that the pump device and the bearing housing constitute a pump-housing assembly,
  • the pump device includes a first pump adapted to deliver lubricating oil in the motor chamber to the oil reservoir, and a drain tube for the first pump, the first port of the drain tube being connected to The pump-housing assembly and the second port of the oil drain tube enter the oil reservoir through an opening formed at the divider.
  • the oil supply mechanism further includes a pump device attached to the bearing housing at one end of the rotating shaft such that the pump device and the bearing housing constitute a pump-housing assembly
  • the pump device includes a first pump adapted to deliver lubricating oil in the motor chamber to the oil reservoir and a first pump adapted to deliver lubricating oil in the oil reservoir to an oil hole in the rotating shaft a second pump, and a first oil inlet pipe for the first pump and a second oil inlet pipe for the second pump are configured to be from the pump-housing assembly on the motor chamber side and the oil reservoir side, respectively A tube that extends generally vertically downward.
  • the first oil inlet pipe and/or the second oil inlet pipe are detachably coupled to the pump-housing assembly.
  • the first oil inlet pipe and/or the second oil inlet pipe have a threaded structure adapted to be screwed to the pump-housing assembly, or the first oil inlet pipe and/or
  • the second oil inlet tube is configured to be secured to the pump-housing assembly by a locating pin and a threaded fastener.
  • the horizontal compressor further includes a bearing housing bracket for fixing the bearing housing, and the partition member is a different member from the bearing housing bracket.
  • an oil supply mechanism for a horizontal compressor includes a housing, a motor, a rotating shaft driven by the motor, and a bearing housing that supports the rotating shaft.
  • the oil supply mechanism includes a partitioning member and a pumping device, the partitioning member partitioning an oil storage chamber and a motor chamber provided with the motor in the housing, the pump device being attached at one end of the rotating shaft To the bearing housing such that the pump device and the bearing housing form a pump-housing assembly, the pump device comprising a first pump adapted to deliver lubricating oil in the motor chamber to the oil reservoir.
  • An oil drain pipe for the first pump is provided, the first port of the oil discharge pipe being connected to the pump-housing assembly on a motor chamber side and the second port of the oil discharge pipe being formed from a motor chamber side An opening at the partition enters the oil reservoir.
  • a horizontal compressor has an oil supply mechanism as described above.
  • the horizontal compressor is a low pressure side scroll compressor.
  • the partition member defines an annular groove having a large depth opened toward the oil reservoir by, for example, a deep drawing process
  • the free space in the motor chamber can be reduced or minimized (useless free space)
  • the overall size (especially the axial dimension) of the horizontal compressor can be reduced with the same size of the oil storage chamber.
  • free space in the motor chamber can be achieved while allowing the partition to engage both the housing body and the end cap to achieve stable engagement. Reduced or minimized.
  • a reliable and stable coupling and sealing of the partition and the bearing housing can be allowed by the partition having the inner flange portion.
  • the partition having the curved portion protruding toward the oil reservoir the reduction or minimization of the free space in the motor chamber can be achieved while appropriately avoiding interference with the relevant components around the bearing housing.
  • the functional test (quality check) of the first pump can be conveniently performed by providing a separate oil discharge pipe located outside the pump-housing assembly, and the arrangement of the oil discharge passage inside the pump-housing assembly is provided.
  • the structure can also be simplified and the situation in which the axial length of the pump-housing assembly (especially the bearing housing) is improperly increased due to the provision of the oil discharge passage inside the pump-housing assembly can be avoided.
  • FIG. 1 is a longitudinal sectional view showing a horizontal compressor to which an oil supply mechanism according to an exemplary embodiment of the present disclosure is applied;
  • Figure 2 is an enlarged view of a portion of the longitudinal sectional view shown in Figure 1;
  • Figure 3 is an exploded perspective view of a portion of the horizontal compressor shown in Figure 1;
  • Figure 4 is an exploded perspective view of another portion of the horizontal compressor shown in Figure 1;
  • FIG 5 is a perspective view of the oil supply mechanism of the horizontal compressor shown in Figure 1 and related components thereof;
  • Figure 6 is another perspective view of the oil supply mechanism of the horizontal compressor shown in Figure 1 and related components thereof;
  • FIG. 7 is a longitudinal cross-sectional view showing a modification of the oil supply mechanism according to the present disclosure.
  • 8a and 8b are respectively an assembled perspective view and an exploded perspective view showing a modification of the oil supply mechanism according to the present disclosure
  • FIG. 9 is a schematic cross-sectional view showing another modification of the partition of the oil supply mechanism according to the present disclosure.
  • the horizontal compressor 10 is a low pressure side scroll compressor.
  • the oil supply mechanism 100 according to the present disclosure may also be applied to other horizontal compressors.
  • the horizontal compressor 10 may include a housing 20, a motor 30, a rotating shaft 40 driven by the motor 30, and a bearing housing 50 that supports the rotating shaft 40.
  • the housing 20 may include a housing body 20a and a first end cap 20b and a second end cap 20c respectively located at both ends of the housing body 20a.
  • the horizontal compressor 10 may further include a compression mechanism 60 and a partition (muffling plate) 70.
  • the compression mechanism 60 can be driven by the rotating shaft 40 to compress a working fluid, such as a refrigerant.
  • the partition 70 may partition the internal space defined by the housing 20 (specifically, by the housing body 20a, the first end cover 20b and the second end cover 20c) into a high pressure zone (as shown in FIG. 1 on the left side of the partition 70). The area) and the low pressure area (as in the area on the right side of the partition 70 in Fig. 1).
  • the oil supply mechanism 100 for the horizontal compressor 10 may include a partition 120 .
  • the divider 120 can be annular (e.g., generally circular) having a central aperture 129 that allows the bearing housing 50 to pass through.
  • the partition 120 may be disposed to partition the oil reservoir OC and the motor chamber MC provided with the motor 30 in the housing 20.
  • the oil reservoir OC on one side in the axial direction and the motor chamber MC on the other side in the axial direction are both located in the low pressure region.
  • the radially outer portion of the partition 120 may be configured to be coupled to the inner circumferential surface 22 of the housing 20 and the radially inner portion of the partition 120 may be configured to be coupled to the outer circumferential surface 52 of the bearing housing 50.
  • the radially outer portion of the divider 120 can be configured to be coupled to both the housing body 20a and the second end cap 20c. In this way, the housing body 20a, the second end cover 20c, and the spacer 120 can be more stably engaged.
  • the partition 120 is configured to have an annular groove 128 that opens toward the oil reservoir OC.
  • the partition 120 may include a partition body 121 , an inner flange portion 122 that extends radially away from the oil reservoir OC as a partition 120 , and a partition 120 as a partition 120 .
  • the annular groove 128 is collectively defined by the partition body 121, the outer flange portion 123, and the curved portion 124. That is, the annular groove 128 is reliably formed by the partition member 120 itself without the need of other members such as the bearing housing 50.
  • a ridge 123a may be formed at an outer peripheral surface of the radially outer portion of the partition member 120 (i.e., the outer flange portion 123).
  • the ridge 123a may be interposed between the housing body 20a of the housing 20 and the end cover 20c. In this way, after the housing body 20a and the second end cover 20c are assembled together, the housing body 20a, the second end cover 20c and the partition 120 can be conveniently disposed at the ridge 123a from the outside of the housing 20 For example, they are welded together.
  • the oil supply mechanism 100 may further include an annular seal member 140 disposed between the radially inner portion of the partition member 120 (ie, the inner flange portion 122) and the outer peripheral surface 52 of the bearing housing 50.
  • the spacer 120 and the bearing housing 50 may be coupled to each other via the annular sealing member 140 (here, the spacer 120 and the bearing housing 50 may be in contact with each other or may not be in contact with each other).
  • the coupling and sealing between the partition 120 and the bearing housing 50 can be simply via the annular sealing member 140. It does not need to be implemented by means of other fastening devices.
  • a seal groove 122a may be formed at an inner circumferential surface of the radially inner portion of the partition member 120 (ie, the inner flange portion 122), and the annular seal member 140 may be accommodated in In the seal groove 122a.
  • a seal recess 52a may be formed at the outer peripheral surface 52 of the bearing housing 50, and the annular seal member 140 may be received in the seal recess 52a.
  • a seal groove for accommodating the annular seal member 140 may be formed at both the radially inner inner peripheral surface of the partition member 120 and the outer peripheral surface 52 of the bearing housing 50. The coupling and sealing between the spacer 120 and the bearing housing 50 can be further reliably achieved due to the provision of the seal groove for accommodating the annular sealing member 140.
  • the spacer 120 is an integral component that is made by a deep drawing process.
  • the spacer 120 may be formed by a deep drawing process such that the spacer body 121 of the spacer 120 defining the annular groove 128 is offset toward the motor chamber MC (with respect to the flange portion or the curved portion toward the motor chamber MC) Offset) is positioned closer to one end of the motor 30.
  • the annular groove 128 of the spacer 120 can be made to have a greater depth.
  • the oil supply mechanism 100 may further include a pump device 160 attached to the bearing housing 50 at one end of the rotating shaft 40 (the end where the bearing housing 50 is disposed).
  • the pump device 160 can form a pump-housing assembly with the bearing housing 50 (which can be pre-assembled together).
  • the pump device 160 may include a first pump 162 adapted to deliver lubricating oil in the motor chamber MC to the oil reservoir OC.
  • An oil inlet pipe 162a and a drain oil pipe 162b for the first pump 162 may be provided.
  • the first port of the oil drain pipe 162b is connected to the pump-housing assembly on the motor chamber side and the second port of the oil discharge pipe 162b enters the oil storage chamber OC from the motor chamber side through the opening 127 formed at the partition 120 .
  • the first pump 162 can be conveniently tested for functionality (quality check) by providing a separate oil drain 162b located outside the pump-housing assembly, and the arrangement with the oil drain passage inside the pump-housing assembly In comparison, the structure can also be simplified and the situation in which the axial length of the pump-housing assembly (especially the bearing housing) is improperly increased due to the provision of the oil discharge passage inside the pump-housing assembly can be avoided.
  • the pump device 160 may also include a second pump 164 adapted to deliver lubricating oil in the reservoir OC to the oil holes 42 in the rotating shaft 40.
  • the first pump 162 and the second pump 164 can be combined (e.g., sharing a partition therebetween) to form a so-called dual pump configuration. Additionally, the capabilities of the first pump 162 (eg, displacement) may be greater than the capabilities of the second pump 164 (eg, displacement).
  • the first oil inlet pipe 162a for the first pump 162 and the second oil inlet pipe 164a for the second pump 164 may be configured to be slave pumps on the motor chamber side and the oil reservoir side, respectively.
  • a tube e.g., a straight tube
  • This double straight tube design allows for a more compact structure that reduces costs and allows for better quality control of the pump structure.
  • the first oil inlet tube 162a and/or the second oil inlet tube 164a may be removably coupled to the pump-housing assembly.
  • the first oil inlet pipe 162a and/or the second oil inlet pipe 164a may have a threaded structure adapted to be screwed to the pump-housing assembly, or the first oil inlet pipe 162a and/or the second oil inlet pipe.
  • 164a can be configured to be secured to the pump-housing assembly by positioning pins 172 and threaded fasteners 174. Thereby, assembly, disassembly, and quality inspection of the first oil inlet pipe 162a and the second oil inlet pipe 164a are facilitated.
  • the horizontal compressor 10 may also include a bearing housing bracket 59 for securing the bearing housing 50.
  • the partition 120 is a different component than the bearing bracket 59.
  • the partition 120 for defining the oil reservoir OC is independent of the bearing bracket 59 for supporting the bearing housing 50.
  • the oil reservoir OC can be formed more reliably and the stable support of the bearing housing 50 can be achieved more reliably, and also the coupling and sealing between the partition 120 and the bearing housing 50 can be simply via the annular sealing member. 140 is possible without the aid of other fastening means.
  • the partition member defines an annular groove having a large depth opened toward the oil reservoir by, for example, a deep drawing process
  • the free space in the motor chamber can be reduced or minimized (useless)
  • the free space) thus reduces the overall size (especially the axial dimension) of the horizontal compressor with the same size of the oil storage chamber.
  • a partition having an annular groove and an outer flange portion extending toward the oil reservoir free space in the motor chamber can be achieved while allowing the partition to engage both the housing body and the end cap to achieve stable engagement. Reduced or minimized.
  • a reliable and stable coupling and sealing of the partition and the bearing housing can be allowed by the partition having the inner flange portion.
  • the partition having the curved portion protruding toward the oil reservoir the reduction or minimization of the free space in the motor chamber can be achieved while appropriately avoiding interference with the relevant components around the bearing housing.
  • a modification of the oil supply mechanism 100 according to the present disclosure will be described below with reference to FIGS. 7, 8a, and 8b.
  • the partitioning member 120 of the oil supply mechanism 100 is not manufactured by a deep drawing process and the partition body 121 of the partitioning member 120 is substantially flat.
  • the first oil inlet pipe 162a for the first pump 162 and the second oil inlet pipe 164a for the second pump 164 do not employ a pipe extending substantially vertically downward from the pump-housing assembly ( For example, a straight tube) is a curved tube that is joined, for example, by brazing.
  • the partition member 120 is similarly configured to have the annular groove 128 that is open toward the oil reservoir OC, substantially the same advantageous effects as the above-described exemplary embodiment can be achieved.
  • the separate oil discharge pipe 162b located outside the pump-housing assembly is similarly provided, so that the first pump 162 can also be conveniently subjected to the functional test (quality inspection), and
  • the arrangement of the oil passages in the interior of the pump-housing assembly also simplifies the structure and avoids the axial direction of the pump-housing assembly (especially the bearing housing) due to the arrangement of the oil drain passage inside the pump-housing assembly. Improper length increases.
  • the spacer 120 is similarly an integral member made by a deep drawing process as compared with the above-described exemplary embodiment, except that the spacer 120 does not include the bent portion and the inner flange portion 122 'The direction of extension is different.
  • the partition member 120 includes a partition body 121, a radially inner inner flange portion 122' as the partition member 120, and a radially outer outer flange portion 123 as the partition member 120,
  • the inner flange portion 122' and the outer flange portion 123 extend toward the oil reservoir OC, so that the annular groove 128 is collectively defined by the divider body 121, the inner flange portion 122', and the outer flange portion 123.
  • substantially the same advantageous effects as the above-described exemplary embodiment can also be achieved.
  • the oil supply mechanism 100 also allows for various other possible variations.
  • the divider 120 may not be configured to have an annular groove 128 that is open toward the reservoir OC but rather to a drain 162b that is provided with a separate body located outside of the pump-housing assembly.
  • a separate oil discharge pipe 162b located outside the pump-housing assembly, one or more of the various technical points as described above may be combined, As long as this combination is technically compatible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)
  • Compressor (AREA)

Abstract

一种供油机构和具有该供油机构的卧式压缩机。一种用于卧式压缩机(10)的供油机构(100),卧式压缩机(10)包括壳体(20)、马达(30)、由马达(30)驱动的旋转轴(40)和支承旋转轴(40)的轴承座(50)。供油机构(100)包括分隔件(120),分隔件(120)呈具有允许轴承座(50)穿过的中央孔口(129)的环形,并且分隔件(120)设置成在壳体(20)中分隔出储油室(OC)与设置有马达(30)的马达室(MC)。分隔件(120)构造成具有朝向储油室(OC)敞开的环形凹槽(128)。该供油机构和具有该供油机构的卧式压缩机能够减小或最小化马达室中的自由空间并且/或者能够方便地对泵结构进行质量检查。

Description

供油机构和具有该供油机构的卧式压缩机
本申请要求以下中国专利申请的优先权:于2017年12月27日提交中国专利局的申请号为201721861898.7、发明创造名称为“供油机构和具有该供油机构的卧式压缩机”的中国专利申请。该专利申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及压缩机领域,更具体地,涉及在供油机构方面做出改进的卧式涡旋压缩机。
背景技术
压缩机一般包括壳体、容纳在壳体中的压缩机构、向压缩机构提供动力的马达、由马达驱动的旋转轴以及为压缩机的各个活动部件供给润滑油的供油机构等。对于立式压缩机而言,通常在压缩机壳体的底部设置有油池并且在旋转轴的底端设置有油泵,以将油池中积蓄的润滑油泵送至旋转轴中的轴向延伸的油孔,从而为压缩机的各个活动部件供给润滑油。
然而,在一些应用中,例如由于空间的限制,需要使用卧式压缩机。由于卧式压缩机不能在旋转轴的末端自然形成油池,因此提出了一些用于卧式压缩机的供油机构来实现润滑油的积蓄和泵送。例如,对于高压侧压缩机而言,可以设置隔板以在高压区中分隔出具有压力差(排出压力差)的两个隔室从而在压力较低的隔室中形成借助于压力差而能够上升的油池,以便将高压润滑油输送至旋转轴末端的油泵(单个油泵)中。然而,根据这种方式,由于在不同工况下压降不同,因此供油受到工况的影响较大,从而导致在整个压缩机运行范围中供油的一致性不良。又例如,对于低压侧压缩机而言,可以将高压区的高温高压润滑油引入到旋转轴末端的油泵中、可以利用双层外壳而低压区中形成油池、或者可以利用竖向平直分隔件在低压区中分隔出单独的油池。然而,在这些用于低压侧压缩机的供油方案中,由于需要从高压区引入高温高压润滑油而可能会对压缩机的运行性能造成不利影响或者导致需要设置结构复杂的用于限制供油量的限制结构,或者由于需要设置双壳体而导致至少径向尺寸不利地变大。而对于利用竖向平直分隔件在低压区中分隔出单独的油池的相关方案 而言,由于未考虑例如马达室中的自由空间的充分利用或者未考虑油泵的质量检查的容易程度等等而会存在一定问题。
这里,应当指出的是,本部分中所提供的技术内容旨在有助于本领域技术人员对本公开的理解,而不一定构成现有技术。
发明内容
在本部分中提供本公开的总概要,而不是本公开完全范围或本公开所有特征的全面公开。
本公开的一个目的是提供一种能够减小或最小化马达室中的自由空间的供油机构。
本公开的另一目的是提供一种能够在储油室的大小相同的情况下减小卧式压缩机的整体尺寸的供油机构。
本公开的另一目的是提供一种能够在允许分隔件与壳体稳定接合的同时实现马达室中的自由空间的减小或最小化的供油机构。
本公开的另一目的是提供一种能够实现分隔件与轴承座的可靠及稳定的联接和密封的供油机构。
本公开的另一目的是提供一种能够在适当地避免与轴承座周围的相关部件相干涉的同时实现马达室中的自由空间的减小或最小化的供油机构。
本公开的另一目的是提供一种能够方便地对泵结构进行功能性测试的供油机构。
本公开的另一目的是提供一种能够避免泵-轴承座组件的轴向长度不当增大的情况的供油机构。
本公开的其它目的在于提供一种与上述供油机构相关联的卧式压缩机。
为了实现上述目的中的一个或多个,根据本公开的一方面,提供一种用于卧式压缩机的供油机构。所述卧式压缩机包括壳体、马达、由所述马达驱动的旋转轴和支承所述旋转轴的轴承座。所述供油机构包括分隔件,所述分隔件呈具有允许所述轴承座穿过的中央孔口的环形,并且所述分隔件设置成在所 述壳体中分隔出储油室与设置有所述马达的马达室。所述分隔件构造成具有朝向所述储油室敞开的环形凹槽。
在上述供油机构中,所述分隔件的径向外部构造成接合至所述壳体的内周面而所述分隔件的径向内部构造成联接至所述轴承座的外周面。
在上述供油机构中,所述壳体包括壳体本体和端盖,以及,所述分隔件的径向外部构造成接合至所述壳体本体和所述端盖两者。
在上述供油机构中,所述分隔件包括分隔件本体、作为所述分隔件的径向内部的背离所述储油室延伸的内凸缘部、作为所述分隔件的径向外部的朝向所述储油室延伸的外凸缘部以及位于所述分隔件本体与所述内凸缘部之间的朝向所述储油室凸出的弯曲部,从而由所述分隔件本体、所述外凸缘部和所述弯曲部共同限定所述环形凹槽。
在上述供油机构中,所述分隔件包括分隔件本体、作为所述分隔件的径向内部的内凸缘部以及作为所述分隔件的径向外部的外凸缘部,所述内凸缘部和所述外凸缘部朝向所述储油室延伸,从而由所述分隔件本体、所述内凸缘部和所述外凸缘部共同限定所述环形凹槽。
在上述供油机构中,所述供油机构还包括设置在所述分隔件的径向内部与所述轴承座的外周面之间的环形密封构件。
在上述供油机构中,在所述分隔件的径向内部的内周面和/或所述轴承座的外周面处形成有密封件凹槽,所述环形密封构件容纳在所述密封件凹槽中。
在上述供油机构中,在所述分隔件的径向外部的外周面处形成有突脊,所述突脊插置在所述壳体的壳体本体与端盖之间。
在上述供油机构中,所述分隔件为通过深拉伸工艺而制成的一体部件。
在上述供油机构中,所述分隔件制成为使得所述分隔件的限定所述环形凹槽的分隔件本体朝向所述马达室偏移而定位成更靠近所述马达的一端。
在上述供油机构中:所述供油机构还包括在所述旋转轴的一端附接至所述轴承座的泵装置从而所述泵装置与所述轴承座构成泵-轴承座组件,所述泵装置包括适于将所述马达室中的润滑油输送至所述储油室的第一泵,以及,设置 有用于所述第一泵的排油管,所述排油管的第一端口连接至所述泵-轴承座组件而所述排油管的第二端口穿过形成在所述分隔件处的开口而进入所述储油室。
在上述供油机构中:所述供油机构还包括在所述旋转轴的一端附接至所述轴承座的泵装置从而所述泵装置与所述轴承座构成泵-轴承座组件,所述泵装置包括适于将所述马达室中的润滑油输送至所述储油室的第一泵和适于将所述储油室中的润滑油输送至所述旋转轴中的油孔的第二泵,以及,用于所述第一泵的第一进油管和用于所述第二泵的第二进油管构造为分别在马达室侧和储油室侧从所述泵-轴承座组件大致竖向向下延伸的管。
在上述供油机构中,所述第一进油管和/或所述第二进油管以可拆卸方式接合至所述泵-轴承座组件。
在上述供油机构中,所述第一进油管和/或所述第二进油管具有螺纹结构从而适于旋拧至所述泵-轴承座组件,或者,所述第一进油管和/或所述第二进油管构造成通过定位销和螺纹紧固件而固定至所述泵-轴承座组件。
在上述供油机构中,所述卧式压缩机还包括用于固定所述轴承座的轴承座支架,以及,所述分隔件为与所述轴承座支架不同的部件。
为了实现上述目的中的一个或多个,根据本公开的另一方面,提供一种用于卧式压缩机的供油机构。所述卧式压缩机包括壳体、马达、由所述马达驱动的旋转轴和支承所述旋转轴的轴承座。所述供油机构包括分隔件和泵装置,所述分隔件在所述壳体中分隔出储油室与设置有所述马达的马达室,所述泵装置在所述旋转轴的一端附接至所述轴承座从而所述泵装置与所述轴承座构成泵-轴承座组件,所述泵装置包括适于将所述马达室中的润滑油输送至所述储油室的第一泵。设置有用于所述第一泵的排油管,所述排油管的第一端口在马达室侧连接至所述泵-轴承座组件而所述排油管的第二端口从马达室侧穿过形成在所述分隔件处的开口而进入所述储油室。
为了实现上述目的中的一个或多个,根据本公开的另一方面,提供一种卧式压缩机。所述卧式压缩机具有如上所述的供油机构。
在上述卧式压缩机中,所述卧式压缩机为低压侧涡旋压缩机。
根据本公开,由于通过例如深拉伸工艺而使分隔件限定有朝向储油室敞开的具有较大深度的环形凹槽,因此能够减小或最小化马达室中的自由空间(无用的空闲空间)从而在储油室的大小相同的情况下能够减小卧式压缩机的整体尺寸(尤其是轴向尺寸)。另外,通过具有环形凹槽和朝向储油室延伸的外凸缘部的分隔件,能够在允许分隔件与壳体本体和端盖两者接合从而实现稳定接合的同时实现马达室中的自由空间的减小或最小化。另外,通过具有内凸缘部的分隔件,可以允许分隔件与轴承座的可靠及稳定的联接和密封。另外,通过具有朝向储油室凸出的弯曲部的分隔件,可以在适当地避免与轴承座周围的相关部件相干涉的同时实现马达室中的自由空间的减小或最小化。
另外,通过设置位于泵-轴承座组件外部的分体的排油管,可以方便地对第一泵进行功能性测试(质量检查),而且,与排油通道设置在泵-轴承座组件内部的方案相比,还可以简化结构并且可以避免由于在泵-轴承座组件内部设置排油通道而导致泵-轴承座组件(特别是轴承座)的轴向长度不当增大的情况。
附图说明
通过以下参照附图的描述,本公开的一个或多个实施方式的特征和优点将变得更加容易理解,在附图中:
图1为示出应用有根据本公开示例性实施方式的供油机构的卧式压缩机的纵剖图;
图2为图1所示的纵剖图的一部分的放大图;
图3为图1所示的卧式压缩机的一部分的分解立体图;
图4为图1所示的卧式压缩机的另一部分的分解立体图;
图5为图1所示的卧式压缩机的供油机构及其周围相关部件的立体图;
图6为图1所示的卧式压缩机的供油机构及其周围相关部件的另一立体图;
图7为示出根据本公开的供油机构的变型例的纵剖图;
图8a和图8b分别为示出根据本公开的供油机构的变型例的组装立体图和分解立体图;以及
图9为示出根据本公开的供油机构的分隔件的另一变型例的示意性剖视图。
具体实施方式
下面参照附图、借助具体实施方式对本公开进行详细描述。对本公开的以下详细描述仅仅是出于说明目的,而绝不是对本公开及其应用或用途的限制。
首先,参照图1概要地描述应用有根据本公开的供油机构100的卧式压缩机10的结构。
在图示的示例中,卧式压缩机10为低压侧涡旋压缩机。然而,应当理解,根据本公开的供油机构100也可以应用于其它卧式压缩机。
如图1所示,卧式压缩机10可以包括壳体20、马达30、由马达30驱动的旋转轴40和支承旋转轴40的轴承座50。壳体20可以包括壳体本体20a以及分别位于壳体本体20a的两端的第一端盖20b和第二端盖20c。另外,卧式压缩机10还可以包括压缩机构60和隔板(消音板)70。压缩机构60可以由旋转轴40驱动从而对工作流体(例如制冷剂)进行压缩。隔板70可以将由壳体20(具体地,由壳体本体20a、第一端盖20b和第二端盖20c)限定的内部空间分隔为高压区(如图1中位于隔板70的左侧的区域)与低压区(如图1中位于隔板70的右侧的区域)。
附加地参照图2至图4,用于卧式压缩机10的根据本公开示例性实施方式的供油机构100可以包括分隔件120。分隔件120可以呈具有允许轴承座50穿过的中央孔口129的环形(例如大致圆环形)。分隔件120可以设置成在壳体20中分隔出储油室OC与设置有马达30的马达室MC。这里,可以理解,位于轴向一侧的储油室OC和位于轴向另一侧的马达室MC均处在低压区中。
特别地,分隔件120的径向外部可以构造成接合至壳体20的内周面22而分隔件120的径向内部可以构造成联接至轴承座50的外周面52。由此,通 过分隔件120而简单地和可靠地在壳体20中分隔出储油室OC与马达室MC。
在图示的示例中,分隔件120的径向外部可以构造成接合至壳体本体20a和第二端盖20c两者。以此方式,可以使壳体本体20a、第二端盖20c和分隔件120这三者更加稳定地接合。
根据本公开,分隔件120构造成具有朝向储油室OC敞开的环形凹槽128。
在如图1至图4所示的示例中,分隔件120可以包括分隔件本体121、作为分隔件120的径向内部的背离储油室OC延伸的内凸缘部122、作为分隔件120的径向外部的朝向储油室OC延伸的外凸缘部123以及位于分隔件本体121与内凸缘部122之间的朝向储油室OC凸出的弯曲部124。由此,由分隔件本体121、外凸缘部123和弯曲部124共同限定环形凹槽128。亦即,由分隔件120本身而无需借助于例如轴承座50等其它部件来可靠地形成环形凹槽128。
在分隔件120的径向外部(即外凸缘部123)的外周面处可以形成有突脊123a。突脊123a可以插置在壳体20的壳体本体20a与端盖20c之间。以此方式,可以在壳体本体20a与第二端盖20c组装在一起之后,从壳体20外侧方便地在突脊123a处将壳体本体20a、第二端盖20c和分隔件120这三者例如焊接在一起。
供油机构100还可以包括设置在分隔件120的径向内部(即内凸缘部122)与轴承座50的外周面52之间的环形密封构件140。以此方式,分隔件120与轴承座50可以经由环形密封构件140而彼此联接(这里,分隔件120与轴承座50可以彼此接触也可以彼此不接触)。由此,尤其是在分隔件120的径向外部接合至壳体20的内周面22的情况下,分隔件120与轴承座50之间的联接和密封可以简单地仅仅经由环形密封构件140而无需借助于其它紧固装置来实现。
在一些示例中,可以在分隔件120的径向内部(即内凸缘部122)的内周面处形成有密封件凹槽122a(参见图7和图9),环形密封构件140可以容纳在密封件凹槽122a中。在其它示例中,则可以在轴承座50的外周面52处形成有密封件凹槽52a(参见图2),环形密封构件140可以容纳在密封件凹槽52a中。另外,可以理解,也可以在分隔件120的径向内部的内周面和轴承座 50的外周面52两者处均形成有用于容纳环形密封构件140的密封件凹槽。由于设置有用于容纳环形密封构件140的密封件凹槽,可以进一步可靠地实现分隔件120与轴承座50之间的联接和密封。
在优选的示例中,分隔件120为通过深拉伸工艺而制成的一体部件。
特别地,通过深拉伸工艺,可以将分隔件120制成为使得分隔件120的限定环形凹槽128的分隔件本体121朝向马达室MC偏移(相对于凸缘部或弯曲部朝向马达室MC偏移)而定位成更靠近马达30的一端。换言之,可以使分隔件120的环形凹槽128具有更大的深度。
附加地参照图5、图6、图8a和图8b,供油机构100还可以包括在旋转轴40的一端(设置有轴承座50的端部)附接至轴承座50的泵装置160。泵装置160可以与轴承座50构成泵-轴承座组件(可以预先组装在一起)。泵装置160可以包括适于将马达室MC中的润滑油输送至储油室OC的第一泵162。
可以设置用于第一泵162的进油管162a和排油管162b。特别地,排油管162b的第一端口在马达室侧连接至泵-轴承座组件而排油管162b的第二端口从马达室侧穿过形成在分隔件120处的开口127而进入储油室OC。通过设置位于泵-轴承座组件外部的分体的排油管162b,可以方便地对第一泵162进行功能性测试(质量检查),而且,与排油通道设置在泵-轴承座组件内部的方案相比,还可以简化结构并且可以避免由于在泵-轴承座组件内部设置排油通道而导致泵-轴承座组件(特别是轴承座)的轴向长度不当增大的情况。
泵装置160还可以包括适于将储油室OC中的润滑油输送至旋转轴40中的油孔42的第二泵164。第一泵162与第二泵164可以组合在一起(例如共用位于其间的隔板)从而构成所谓的双泵结构。另外,第一泵162的能力(例如排量)可以大于第二泵164的能力(例如排量)。
在如图1所示的示例中,用于第一泵162的第一进油管162a和用于第二泵164的第二进油管164a可以构造为分别在马达室侧和储油室侧从泵-轴承座组件大致竖向向下延伸的管(例如直管)。通过这种双直管设计,可以使结构更加紧凑从而降低成本并且也可以对泵结构进行更好的质量控制。
第一进油管162a和/或第二进油管164a可以以可拆卸方式接合至泵-轴承座组件。特别地,参照图6,第一进油管162a和/或第二进油管164a可以具有 螺纹结构从而适于旋拧至泵-轴承座组件,或者,第一进油管162a和/或第二进油管164a可以构造成通过定位销172和螺纹紧固件174而固定至泵-轴承座组件。由此,有利于第一进油管162a和第二进油管164a的组装、拆卸和质量检查。
卧式压缩机10还可以包括用于固定轴承座50的轴承座支架59。分隔件120为与轴承座支架59不同的部件。换言之,用于限定储油室OC的分隔件120独立于用于支撑轴承座50的轴承座支架59。由此,可以更加可靠地形成储油室OC并且可以更加可靠地实现轴承座50的稳定支撑,而且,也使得分隔件120与轴承座50之间的联接和密封可以简单地仅仅经由环形密封构件140而无需借助于其它紧固装置来实现成为可能。
根据上述示例性实施方式,由于通过例如深拉伸工艺而使分隔件限定有朝向储油室敞开的具有较大深度的环形凹槽,因此能够减小或最小化马达室中的自由空间(无用的空闲空间)从而在储油室的大小相同的情况下能够减小卧式压缩机的整体尺寸(尤其是轴向尺寸)。另外,通过具有环形凹槽和朝向储油室延伸的外凸缘部的分隔件,能够在允许分隔件与壳体本体和端盖两者接合从而实现稳定接合的同时实现马达室中的自由空间的减小或最小化。另外,通过具有内凸缘部的分隔件,可以允许分隔件与轴承座的可靠及稳定的联接和密封。另外,通过具有朝向储油室凸出的弯曲部的分隔件,可以在适当地避免与轴承座周围的相关部件相干涉的同时实现马达室中的自由空间的减小或最小化。
下面参照图7、图8a和图8b描述根据本公开的供油机构100的变型例。在该变型例中,供油机构100的分隔件120未采用深拉伸工艺制造并且分隔件120的分隔件本体121呈大致平直状。另外,在该变型例中,用于第一泵162的第一进油管162a和用于第二泵164的第二进油管164a未采用从泵-轴承座组件大致竖向向下延伸的管(例如直管)而是采用例如通过钎焊进行连接的弯曲管。然而,在该变型例中,由于分隔件120同样地构造成具有朝向储油室OC敞开的环形凹槽128,因此也能够实现与上述示例性实施方式基本相同的有益效果。另外,在该变型例中,同样地设置有位于泵-轴承座组件外部的分体的排油管162b,因此也可以方便地对第一泵162进行功能性测试(质量检查),而且,与排油通道设置在泵-轴承座组件内部的方案相比,也可以简化结构并且可以避免由于在泵-轴承座组件内部设置排油通道而导致泵-轴承座组 件(特别是轴承座)的轴向长度不当增大的情况。
下面参照图9描述根据本公开的分隔件120的另一变型例。在该另一变型例中,与上述示例性实施方式相比,分隔件120同样地为通过深拉伸工艺而制成的一体部件,只是分隔件120不包括有弯曲部并且内凸缘部122’的延伸方向不同。具体地,在另一变型例中,分隔件120包括分隔件本体121、作为分隔件120的径向内部的内凸缘部122’以及作为分隔件120的径向外部的外凸缘部123,内凸缘部122’和外凸缘部123朝向储油室OC延伸,从而由分隔件本体121、内凸缘部122’和外凸缘部123共同限定环形凹槽128。根据另一变型例,也能够实现与上述示例性实施方式基本相同的有益效果。
根据本公开的供油机构100还容许各种可行的其它变型。例如,分隔件120可以不构造成具有朝向储油室OC敞开的环形凹槽128而是关注于设置有位于泵-轴承座组件外部的分体的排油管162b。而且,在不具有环形凹槽128而是设置有位于泵-轴承座组件外部的分体的排油管162b的技术方案中,可以结合有如上文所描述的各个技术点中的一个或多个,只要这种结合在技术上是可兼容的。
虽然已经参照示例性具体实施方式对本公开进行了描述,但是应当理解,本公开并不局限于文中详细描述和示出的具体实施方式,在不偏离权利要求书所限定的范围的情况下,本领域技术人员可以对示例性具体实施方式做出各种改变。

Claims (18)

  1. 一种用于卧式压缩机(10)的供油机构(100),所述卧式压缩机(10)包括壳体(20)、马达(30)、由所述马达(30)驱动的旋转轴(40)和支承所述旋转轴(40)的轴承座(50),
    所述供油机构(100)包括分隔件(120),所述分隔件(120)呈具有允许所述轴承座(50)穿过的中央孔口(129)的环形,并且所述分隔件(120)设置成在所述壳体(20)中分隔出储油室(OC)与设置有所述马达(30)的马达室(MC),
    其特征在于,所述分隔件(120)构造成具有朝向所述储油室(OC)敞开的环形凹槽(128)。
  2. 根据权利要求1所述的供油机构(100),其中,所述分隔件(120)的径向外部构造成接合至所述壳体(20)的内周面(22)而所述分隔件(120)的径向内部构造成联接至所述轴承座(50)的外周面(52)。
  3. 根据权利要求1所述的供油机构(100),其中,所述壳体(20)包括壳体本体(20a)和端盖(20c),以及,所述分隔件(120)的径向外部构造成接合至所述壳体本体(20a)和所述端盖(20c)两者。
  4. 根据权利要求1所述的供油机构(100),其中,所述分隔件(120)包括分隔件本体(121)、作为所述分隔件(120)的径向内部的背离所述储油室(OC)延伸的内凸缘部、作为所述分隔件(120)的径向外部的朝向所述储油室(OC)延伸的外凸缘部(123)以及位于所述分隔件本体(121)与所述内凸缘部之间的朝向所述储油室(OC)凸出的弯曲部(124),从而由所述分隔件本体(121)、所述外凸缘部(123)和所述弯曲部(124)共同限定所述环形凹槽(128)。
  5. 根据权利要求1所述的供油机构(100),其中,所述分隔件(120)包括分隔件本体(121)、作为所述分隔件(120)的径向内部的内凸缘部以及作 为所述分隔件(120)的径向外部的外凸缘部(123),所述内凸缘部和所述外凸缘部(123)朝向所述储油室(OC)延伸,从而由所述分隔件本体(121)、所述内凸缘部和所述外凸缘部(123)共同限定所述环形凹槽(128)。
  6. 根据权利要求2至5中任一项所述的供油机构(100),其中,所述供油机构(100)还包括设置在所述分隔件(120)的径向内部与所述轴承座(50)的外周面(52)之间的环形密封构件(140)。
  7. 根据权利要求6所述的供油机构(100),其中,在所述分隔件(120)的径向内部的内周面和/或所述轴承座(50)的外周面(52)处形成有密封件凹槽(122a,52a),所述环形密封构件(140)容纳在所述密封件凹槽(122a,52a)中。
  8. 根据权利要求2至5中任一项所述的供油机构(100),其中,在所述分隔件(120)的径向外部的外周面处形成有突脊(123a),所述突脊(123a)插置在所述壳体(20)的壳体本体(20a)与端盖(20c)之间。
  9. 根据权利要求1至5中任一项所述的供油机构(100),其中,所述分隔件(120)为通过深拉伸工艺而制成的一体部件。
  10. 根据权利要求9所述的供油机构(100),其中,所述分隔件(120)制成为使得所述分隔件(120)的限定所述环形凹槽(128)的分隔件本体(121)朝向所述马达室(MC)偏移而定位成更靠近所述马达(30)的一端。
  11. 根据权利要求1至5中任一项所述的供油机构(100),其中:
    所述供油机构(100)还包括在所述旋转轴(40)的一端附接至所述轴承座(50)的泵装置(160)从而所述泵装置(160)与所述轴承座(50)构成泵-轴承座组件,所述泵装置(160)包括适于将所述马达室(MC)中的润滑油输送至所述储油室(OC)的第一泵(162),以及
    设置有用于所述第一泵(162)的排油管(162b),所述排油管(162b)的第一端口连接至所述泵-轴承座组件而所述排油管(162b)的第二端口穿过形成在所述分隔件(120)处的开口(127)而进入所述储油室(OC)。
  12. 根据权利要求1至5中任一项所述的供油机构(100),其中:
    所述供油机构(100)还包括在所述旋转轴(40)的一端附接至所述轴承座(50)的泵装置(160)从而所述泵装置(160)与所述轴承座(50)构成泵-轴承座组件,所述泵装置(160)包括适于将所述马达室(MC)中的润滑油输送至所述储油室(OC)的第一泵(162)和适于将所述储油室(OC)中的润滑油输送至所述旋转轴(40)中的油孔(42)的第二泵(164),以及
    用于所述第一泵(162)的第一进油管(162a)和用于所述第二泵(164)的第二进油管(164a)构造为分别在马达室侧和储油室侧从所述泵-轴承座组件大致竖向向下延伸的管。
  13. 根据权利要求12所述的供油机构(100),其中,所述第一进油管(162a)和/或所述第二进油管(164a)以可拆卸方式接合至所述泵-轴承座组件。
  14. 根据权利要求13所述的供油机构(100),其中,所述第一进油管(162a)和/或所述第二进油管(164a)具有螺纹结构从而适于旋拧至所述泵-轴承座组件,或者,所述第一进油管(162a)和/或所述第二进油管(164a)构造成通过定位销(172)和螺纹紧固件(174)而固定至所述泵-轴承座组件。
  15. 根据权利要求1至5中任一项所述的供油机构(100),其中,所述卧式压缩机(10)还包括用于固定所述轴承座(50)的轴承座支架(59),以及,所述分隔件(120)为与所述轴承座支架(59)不同的部件。
  16. 一种用于卧式压缩机(10)的供油机构(100),所述卧式压缩机(10)包括壳体(20)、马达(30)、由所述马达(30)驱动的旋转轴(40)和支承所述旋转轴(40)的轴承座(50),
    所述供油机构(100)包括分隔件(120)和泵装置(160),所述分隔件(120)在所述壳体(20)中分隔出储油室(OC)与设置有所述马达(30)的马达室(MC),所述泵装置(160)在所述旋转轴(40)的一端附接至所述轴承座(50)从而所述泵装置(160)与所述轴承座(50)构成泵-轴承座组件,所述泵装置(160)包括适于将所述马达室(MC)中的润滑油输送至所述储油室(OC)的第一泵(162),
    其特征在于,设置有用于所述第一泵(162)的排油管(162b),所述排油管(162b)的第一端口在马达室侧连接至所述泵-轴承座组件而所述排油管(162b)的第二端口从马达室侧穿过形成在所述分隔件(120)处的开口(127)而进入所述储油室(OC)。
  17. 一种卧式压缩机(10),其特征在于,所述卧式压缩机(10)具有如权利要求1至16中任一项所述的供油机构(100)。
  18. 根据权利要求17所述的卧式压缩机(10),其特征在于,所述卧式压缩机(10)为低压侧涡旋压缩机。
PCT/CN2018/123893 2017-12-27 2018-12-26 供油机构和具有该供油机构的卧式压缩机 WO2019129057A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/957,698 US11603843B2 (en) 2017-12-27 2018-12-26 Oil supplying mechanism, and horizontal compressor having same
EP18893372.5A EP3734076B1 (en) 2017-12-27 2018-12-26 Oil supplying mechanism, and horizontal compressor having same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721861898.7 2017-12-27
CN201721861898.7U CN207795583U (zh) 2017-12-27 2017-12-27 供油机构和具有该供油机构的卧式压缩机

Publications (1)

Publication Number Publication Date
WO2019129057A1 true WO2019129057A1 (zh) 2019-07-04

Family

ID=63279359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123893 WO2019129057A1 (zh) 2017-12-27 2018-12-26 供油机构和具有该供油机构的卧式压缩机

Country Status (4)

Country Link
US (1) US11603843B2 (zh)
EP (1) EP3734076B1 (zh)
CN (1) CN207795583U (zh)
WO (1) WO2019129057A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207795583U (zh) 2017-12-27 2018-08-31 艾默生环境优化技术(苏州)有限公司 供油机构和具有该供油机构的卧式压缩机
CN112930442B (zh) 2018-09-28 2024-02-09 谷轮有限合伙公司 压缩机油管理***
US11953001B2 (en) 2021-07-15 2024-04-09 Samsung Electronics Co., Ltd. Horizontal type rotary compressor and home appliance including the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1467378A (zh) * 2002-06-13 2004-01-14 松下电器产业株式会社 涡旋式压缩机
JP2007218214A (ja) * 2006-02-20 2007-08-30 Hitachi Ltd 密閉形スクロール圧縮機
EP2034187A1 (en) * 2006-06-27 2009-03-11 Sanden Corporation Compressor
JP2011157974A (ja) * 2011-05-13 2011-08-18 Hitachi Appliances Inc スクロール圧縮機およびそれを搭載した冷凍サイクル
CN205578273U (zh) * 2016-05-03 2016-09-14 艾默生环境优化技术(苏州)有限公司 泵油机构及具有该泵油机构的卧式压缩机
CN106812701A (zh) * 2015-12-02 2017-06-09 上海日立电器有限公司 压缩机壳体以及卧式压缩机
CN207795583U (zh) * 2017-12-27 2018-08-31 艾默生环境优化技术(苏州)有限公司 供油机构和具有该供油机构的卧式压缩机

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3434656A (en) * 1967-09-14 1969-03-25 Worthington Corp Lubrication system for rotary vane compressors
JP2895320B2 (ja) 1992-06-12 1999-05-24 三菱重工業株式会社 横型密閉圧縮機
JP3408309B2 (ja) * 1994-02-10 2003-05-19 株式会社東芝 密閉形コンプレッサならびにこのコンプレッサを用いた冷凍装置
TW316940B (zh) * 1994-09-16 1997-10-01 Hitachi Ltd
TW362142B (en) * 1996-05-23 1999-06-21 Sanyo Electric Co Horizontal compressor
JP3874469B2 (ja) * 1996-10-04 2007-01-31 株式会社日立製作所 スクロール圧縮機
JP3956432B2 (ja) * 1997-06-18 2007-08-08 松下電器産業株式会社 密閉型圧縮機
DE102008013784B4 (de) * 2007-03-15 2017-03-23 Denso Corporation Kompressor
JP5150564B2 (ja) * 2009-06-22 2013-02-20 日立アプライアンス株式会社 横置型密閉式圧縮機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1467378A (zh) * 2002-06-13 2004-01-14 松下电器产业株式会社 涡旋式压缩机
JP2007218214A (ja) * 2006-02-20 2007-08-30 Hitachi Ltd 密閉形スクロール圧縮機
EP2034187A1 (en) * 2006-06-27 2009-03-11 Sanden Corporation Compressor
JP2011157974A (ja) * 2011-05-13 2011-08-18 Hitachi Appliances Inc スクロール圧縮機およびそれを搭載した冷凍サイクル
CN106812701A (zh) * 2015-12-02 2017-06-09 上海日立电器有限公司 压缩机壳体以及卧式压缩机
CN205578273U (zh) * 2016-05-03 2016-09-14 艾默生环境优化技术(苏州)有限公司 泵油机构及具有该泵油机构的卧式压缩机
CN207795583U (zh) * 2017-12-27 2018-08-31 艾默生环境优化技术(苏州)有限公司 供油机构和具有该供油机构的卧式压缩机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3734076A4

Also Published As

Publication number Publication date
EP3734076B1 (en) 2023-12-20
EP3734076C0 (en) 2023-12-20
US20200362863A1 (en) 2020-11-19
EP3734076A4 (en) 2021-06-09
US11603843B2 (en) 2023-03-14
EP3734076A1 (en) 2020-11-04
CN207795583U (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
WO2019129057A1 (zh) 供油机构和具有该供油机构的卧式压缩机
US20150192124A1 (en) Electric compressor
US11286930B2 (en) Scroll compressor having recessed outer fixed scroll wall
US20150125330A1 (en) Compressor
US20150192126A1 (en) Electric compressor
CN109690082B (zh) 涡旋压缩机
CN113939655B (zh) 涡旋式压缩机
CN113646536B (zh) 涡旋式压缩机
US9951775B2 (en) Rotary compressor
US9885359B2 (en) Motor-driven compressor
US8118563B2 (en) Tandem compressor system and method
EP2236829B1 (en) Sealed-type scroll compressor
JP5943101B1 (ja) スクリュー圧縮機
US8087912B2 (en) Crankshaft having first and second eccentric portions
WO2018043329A1 (ja) スクロール圧縮機
JP2001050181A (ja) スクロール流体機械
JP2019190468A (ja) スクロール圧縮機
EP4212726A1 (en) Scroll compressor
US11668302B2 (en) Scroll compressor having oil supply passages in fluid communication with compression chambers
WO2023181362A1 (ja) ロータリー式圧縮機、および冷凍サイクル装置
US20230003427A1 (en) Rotary compressor and refrigeration cycle device
WO2022085443A1 (ja) 圧縮機、および冷凍サイクル装置
JP2019019682A (ja) スクリュー圧縮機
JP2006214399A (ja) 密閉型圧縮機
KR101828957B1 (ko) 스크롤 압축기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018893372

Country of ref document: EP

Effective date: 20200727