WO2019129018A1 - 参考信号的发送、接收方法、装置及设备 - Google Patents

参考信号的发送、接收方法、装置及设备 Download PDF

Info

Publication number
WO2019129018A1
WO2019129018A1 PCT/CN2018/123703 CN2018123703W WO2019129018A1 WO 2019129018 A1 WO2019129018 A1 WO 2019129018A1 CN 2018123703 W CN2018123703 W CN 2018123703W WO 2019129018 A1 WO2019129018 A1 WO 2019129018A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
time domain
csi
signaling
port
Prior art date
Application number
PCT/CN2018/123703
Other languages
English (en)
French (fr)
Inventor
梅猛
蒋创新
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019129018A1 publication Critical patent/WO2019129018A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset

Definitions

  • the present disclosure relates to the field of communications, for example, to a method and apparatus for transmitting and receiving a reference signal.
  • High-frequency communication is susceptible to phase noise and frequency offset. If the reference signal used for channel state estimation in the high frequency band is configured on different time-domain symbols, it will also be affected by the above two factors, resulting in the channel estimation process. A certain error occurs in this case, and when this error is large, the accuracy of the channel estimation is affected, thereby deteriorating the communication quality of the entire communication system.
  • phase noise phase noise
  • frequency offset frequency offset
  • the phase compensation of the data can solve the phase noise problem in the time-frequency domain of the data.
  • the reference signal for channel estimation for example, the channel state indication reference signal (CSI-RS) cannot solve the phase.
  • CSI-RS channel state indication reference signal
  • the embodiments of the present disclosure provide a method, an apparatus, and a device for transmitting and receiving a reference signal, so as to at least solve the problem that the channel estimation accuracy is low due to the influence of phase noise caused by the reference signal for performing channel estimation in the related art.
  • a method for transmitting a reference signal includes: a first transmission node transmitting a first reference signal and a second reference signal; wherein a time domain symbol of the second reference signal is A subset of the set of time domain symbols in which the first reference signal is located, the information transmitted by the second reference signal in each time domain symbol being the same.
  • a method for receiving a reference signal includes: receiving, by a second transmission node, a first reference signal and a second reference signal sent by a first transmission node; wherein the second reference signal The time domain symbol is a subset of the time domain symbol set in which the first reference signal is located, and the second reference signal transmits the same information in each time domain symbol.
  • a transmitting apparatus for a reference signal which is applied to a first transmitting node, and includes: a transmitting module, configured to send a first reference signal and a second reference signal; wherein the second The time domain symbol of the reference signal is a subset of the time domain symbol set of the first reference signal, and the second reference signal transmits the same information in each time domain symbol.
  • a receiving device for a reference signal which is applied to a second transmitting node, and includes: a receiving module, configured to receive a first reference signal and a second reference signal sent by the first transmitting node;
  • the time domain symbol of the second reference signal is a subset of the time domain symbol set of the first reference signal, and the information sent by the second reference signal in each time domain symbol is the same.
  • a computer readable storage medium having stored therein a computer program, wherein the computer program is configured to execute any of the methods described above at runtime The steps in the examples.
  • an apparatus comprising a memory and a processor, wherein the memory stores a computer program, the processor being configured to execute the computer program to perform any of the methods described above The steps in the examples.
  • the first transmission node sends the first reference signal and the second reference signal, where the second reference signal is located in a subset of the time domain symbol set of the first reference signal, and the second reference signal
  • the information sent in each time domain symbol is the same. That is, the information carried by the reference signal (the second reference signal) and the information of the channel state indication reference signal (the first reference signal) are the same, and the time domain symbols in which the channel state indication reference signal is located can be effectively estimated due to
  • the phase noise is a phase offset caused by a frequency offset or the like, and the channel state indication reference signal is phase-compensated by using the estimated phase offset, thereby solving the related art that the reference signal due to channel estimation cannot solve the influence of phase noise.
  • the problem of low channel estimation accuracy improves the accuracy of channel estimation.
  • FIG. 1 is a flowchart of a method of transmitting a reference signal according to an embodiment of the present disclosure.
  • FIG. 2 is a flow chart of a method of receiving a reference signal in accordance with an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a method of configuring a reference signal in accordance with an alternative embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram (1) of a method of configuring a reference signal according to an alternative embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram (2) of a configuration method of a reference signal according to an alternative embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram (3) of a configuration method of a reference signal according to an alternative embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram (4) of a configuration method of a reference signal according to an alternative embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram (5) of a configuration method of a reference signal according to an alternative embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram (6) of a configuration method of a reference signal according to an alternative embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram (7) of a configuration method of a reference signal according to an alternative embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram (8) of a configuration method of a reference signal according to an alternative embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram (9) of a configuration method of a reference signal according to an alternative embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram (10) of a configuration method of a reference signal according to an alternative embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram (11) of a configuration method of a reference signal according to an alternative embodiment of the present disclosure.
  • 15 is a structural block diagram of a transmitting apparatus of a reference signal according to an embodiment of the present disclosure.
  • 16 is a structural block diagram of a receiving device of a reference signal according to an embodiment of the present disclosure.
  • 17 is a hardware structure diagram of a device according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram of another hardware structure of a device in accordance with an embodiment of the present disclosure.
  • FIG. 1 is a flowchart of a configuration method of a reference signal according to an embodiment of the present disclosure. As shown in FIG. 1, the flow includes S102.
  • the first transmission node transmits the first reference signal and the second reference signal.
  • the time domain symbol of the second reference signal is a subset of the time domain symbol set of the first reference signal, and the information sent by the second reference signal in each time domain symbol is the same.
  • the foregoing first transit node includes, but is not limited to, a base station and a terminal.
  • the first transmitting node sends the first reference signal and the second reference signal, where the second reference signal is located in a subset of the time domain symbol set of the first reference signal, and the second reference signal
  • the information sent in each time domain symbol is the same. That is, the information carried by the reference signal (the second reference signal) and the information of the channel state indication reference signal (the first reference signal) are the same, and the time domain symbols in which the channel state indication reference signal is located can be effectively estimated due to
  • the phase noise is a phase offset caused by a frequency offset or the like, and the channel state indication reference signal is phase-compensated by using the estimated phase offset, thereby solving the related art that the reference signal due to channel estimation cannot solve the influence of phase noise.
  • the problem of low channel estimation accuracy improves the accuracy of channel estimation.
  • the port of the second reference signal is the same as the port of the first reference signal.
  • the above method further comprises S11.
  • the first transmitting node sends signaling to indicate that the second reference signal is enabled.
  • the signaling includes at least one of the following: a Radio Resource Control (RRC) signaling, a Media Access Control Control Element (MAC CE) signaling, and downlink control information (Downlink). Control information, referred to as DCI) signaling.
  • RRC Radio Resource Control
  • MAC CE Media Access Control Element
  • DCI Downlink control information
  • the solution of the above S11 solves the problem that the channel estimation accuracy is low due to the influence of the phase noise caused by the reference signal for channel estimation in the related art, and the accuracy of the channel estimation is improved.
  • S21 is further included before the first transmission node sends the first reference signal and the second reference signal.
  • the first transmission node configures a time domain density and/or a frequency domain density of the second reference signal.
  • the first transmission node configuring the time domain density and/or the frequency domain density of the second reference signal may include: configuring, by the first transmission node, a frequency domain density of the second reference signal according to the current bandwidth; or the first transmission node according to the The relationship between the second reference signal and the first reference signal configures a time domain density and/or a frequency domain density of the second reference signal; or the first transmission node configures a time domain density of the second reference signal by signaling And/or frequency domain density, the signaling includes at least one of the following: radio resource control signaling, media access control unit signaling, and downlink control information signaling.
  • phase shift between the time domain symbols in which the channel state indication reference signal is located due to phase noise or frequency offset or the like can be effectively estimated by the above S21.
  • the first transmission node configures a port number threshold and/or a time domain symbol number threshold of the first reference signal, where the port number threshold and/or the time domain symbol number threshold is set to indicate The first transmission node configures a maximum number of symbols in the time domain of the second reference signal.
  • the flexibility of the first transmission node to transmit the first reference signal and the second reference signal is improved by the foregoing manner, for example, the port number threshold and/or the time domain symbol number threshold of the channel state indication reference signal (first reference signal) exceeds
  • the first transmitting node sends the first reference signal and the second reference signal by using the sending method of the reference signal proposed in the embodiment.
  • the first transmission node pre-defines a multiplexing manner between different ports of the second reference signal and a multiplexing manner between different resource sets of the first reference signal.
  • the first transmitting node indicates, by at least one of the following signaling, a multiplexing relationship between different ports of the second reference signal: radio resource control signaling, media access control unit signaling, and downlink Control information signaling.
  • the first transmission node configures the second reference signal to have a higher transmission priority than the phase tracking reference signal; and the second reference signal and other reference signals When the collision occurs, the first transmission node configures the second reference signal to have a lower transmission priority than the other reference signals; wherein the other reference signals are reference signals other than the second reference signal and the phase tracking reference signal.
  • the time domain location and/or the frequency domain location where the second reference signal is located is determined by parameters of at least one of: a cell radio network temporary identifier, a cell identifier, an identifier for sequence initialization, and a reference for channel measurement.
  • the port location of the signal is determined by parameters of at least one of: a cell radio network temporary identifier, a cell identifier, an identifier for sequence initialization, and a reference for channel measurement.
  • the method further includes: the first transmission node pre-defining the physical resource block location of the second reference signal and the physical resource block location of the first reference signal.
  • the first transmitting node sends the first reference signal and the second reference signal to include S31.
  • the first transmission node performs transmission of the second reference signal according to the capability of the second transmission node.
  • the first transmission node pre-defines a subcarrier position of the second reference signal to a subcarrier position adjacent to the first reference signal configured by the first transmission node.
  • the first transmitting node configures different physical resource locations for the second reference signal at different times.
  • the first transmitting node determines a physical resource location of the second reference signal according to a frequency domain resource location allocated to the second transit node.
  • the pattern type of the second reference signal includes: a distributed pattern and a centralized pattern.
  • the pattern type of the second reference signal is indicated by at least one of the following signaling: radio resource control signaling, media access control unit signaling, and downlink control information signaling; physical resource block location and/or sub-portion of the second reference signal
  • the carrier location is indicated by at least one of the following signaling: radio resource control signaling, media access control unit signaling, and downlink control information signaling.
  • FIG. 2 is a flowchart of a receiving method of a reference signal according to an embodiment of the present disclosure. As shown in FIG. 2, the flow includes S202.
  • the second transmission node receives the first reference signal and the second reference signal sent by the first transmission node.
  • the time domain symbol of the second reference signal is a subset of the time domain symbol set of the first reference signal, and the second reference signal transmits the same information in each time domain symbol.
  • the foregoing second transmission node includes but is not limited to: a base station or a terminal.
  • the second transmission node receives the first reference signal and the second reference signal sent by the first transmission node, where the second reference signal is located in the time domain symbol of the second reference signal.
  • the information transmitted by the second reference signal in each time domain symbol is the same. That is, the information carried by the reference signal (the second reference signal) and the information of the channel state indication reference signal (the first reference signal) are the same, and the time domain symbols in which the channel state indication reference signal is located can be effectively estimated due to
  • the phase noise is a phase offset caused by a frequency offset or the like, and the phase offset is determined by using the estimated phase offset channel state indication reference signal, thereby solving the problem that the reference signal due to channel estimation cannot solve the phase noise effect in the related art.
  • the problem of low channel estimation accuracy improves the accuracy of channel estimation.
  • the port of the second reference signal is the same as the port of the first reference signal.
  • the first reference signal is a measurement reference signal.
  • the first reference signal is a Channel State Indication Reference Signal (CSI-RS).
  • the second reference signal is an additional CSI-RS.
  • the port of the additional CSI-RS is the same as one of the ports in a CSI-RS resource set.
  • the sequence of the additional CSI-RS is the same in each time domain symbol position, and may be a sequence of CSI-RS or a sequence of additional CSI-RS different from the CSI-RS configured by the base station, but the port of the additional CSI-RS configured is A port within the associated CSI-RS resource set.
  • the different resource sets of the CSI-RS in the following embodiments may also include CSI-RS ports having different Quasi Co-Location (QCL) relationships in the same resource set.
  • QCL Quasi Co-Location
  • the first transmission node transmits the first reference signal and the second reference signal.
  • the time domain symbol of the second reference signal is a subset of the time domain symbol set of the first reference signal, and the information sent by the second reference signal in each time domain symbol is the same.
  • the each time domain symbol is a different time domain symbol position on one subcarrier.
  • the information includes at least one of the following: a port and a sequence.
  • the second reference signal transmits the same port information or sequence information at different time domain symbol positions on one subcarrier.
  • the second reference signal may send different sequences in different time domain symbol positions on one subcarrier.
  • the information of the same channel state indication reference signal port is configured in multiple time domain symbol positions by signaling.
  • the signaling can be RRC, MAC CE or DCI signaling. This signaling is not enabled if the configured CSI-RS occupies only one time domain symbol.
  • the CSI-RS is enabled to copy a certain port information to other time domain symbol positions in the time domain symbol position.
  • the CSI-RS port information is copied by signaling, that is, the information of a certain port of the CSI-RS is copied to the CSI-RS.
  • the time domain symbol position is as shown in Figure 3.
  • a 32-port CSI-RS is configured, and the CSI-RS occupies 4 symbols in the time domain.
  • the same CSI-RS port information is configured in multiple time domain symbols.
  • the CSI-RS port P0 information shown in FIG. 3 is configured to the four time domain symbol positions occupied by the CSI-RS.
  • This configured reference signal is called additional CSI-RS, because the information carried by the reference signal and the information of a certain port of the CSI-RS are the same, so that the time domain symbols in which the CSI-RS is located can be effectively estimated. Due to phase noise or phase offset caused by frequency offset, etc., the estimated phase offset can effectively phase compensate the CSI-RS to solve the phase noise or the channel measurement error caused by the frequency offset.
  • the number of time domain symbols and the number of subcarriers occupied are different. Therefore, by default, the same number of additional CSI-RSs as the number of time domain symbols occupied by the CSI-RS can be configured, and the frequency domain location where the additional CSI-RS is located is related to the carrier location where the CSI-RS is located, that is, in the CSI-RS.
  • the configuration shown in FIG. 1 On the adjacent subcarriers, the configuration shown in FIG.
  • the additional CSI-RS is placed in the time domain symbol location where the CSI-RS is located, as shown in FIG. 4 Show.
  • a CSI-RS that fills all subcarrier positions is configured in the PRB0. Because the CSI-RS also has a certain period in the frequency domain, if the subcarrier position where the CSI-RS is not placed on the adjacent PRB, the same configuration can be configured. The number of symbols and the additional CSI-RS of the same symbol position.
  • the information carried by the additional CSI-RS is the same as the information of the corresponding CSI-RS port, two of the same symbol positions transmitting the same CSI-RS at the carrier position is a kind of information redundancy, in the CSI-RS.
  • the information sent by the port can be configured again without the same time domain symbol position of the additional CSI-RS. As shown in Figure 5.
  • the signaling uses the Phase Tracking Reference Signal (PTRS) to implement the function of transmitting the same port of the CSI-RS on multiple time-domain symbols.
  • PTRS Phase Tracking Reference Signal
  • the base station compensates the phase noise of the data by configuring the PTRS. Therefore, the phase noise of the CSI-RS multiple time domain symbol bits can be compensated by using the PTRS. As shown in Figure 6. At this time, the base station configures the PTRS, and the CSI-RS and the data have a QCL relationship, so the CSI-RS can calculate the relative phase difference between the multiple symbols by using the PTRS of the time domain symbol position, and thus is used for channel measurement. Phase compensation.
  • the PTRS-enabled signaling can be used to enable the CSI-RS to perform phase compensation.
  • the frequency domain density of the already configured PTRS, the PTRS orthogonality between multiple users and multiple base stations, the multiplexing mode, and the frequency domain location discrimination by using the UE-ID or the DMRS port number may be used for the pair.
  • the parameters for phase compensation by the CSI-RS may be used for the pair.
  • the frequency domain density of the additional CSI-RS is related to the frequency domain density of the CSI-RS: the maximum density of the frequency domain of the additional CSI-RS is the frequency domain density of the CSI-RS, and the frequency domain density interval of the additional CSI-RS is The change in the frequency domain density of the CSI-RS is proportional. It is assumed that the frequency domain density of the CSI-RS is 2 at this time, that is, the CSI-RS is configured once every two PRBs.
  • the frequency domain density of the additional CSI-RS is set to ⁇ 2, 4, 8 ⁇ based on the PRB, that is, the allocation CSI-RS can be configured once every 2, every 4, and every 8 PRBs;
  • the frequency domain density of the Additional CSI-RS can be set to ⁇ 1, 2, 4 ⁇ based on the frequency domain density of the CSI-RS.
  • the frequency domain density of the additional CSI-RS is set to 1, it indicates the same frequency domain density as the CSI-RS; when set to 2 or 4, the frequency domain density of the additional CSI-RS is set to the frequency domain density of the CSI-RS. 1/2 or 1/4. If the frequency domain density of the CSI-RS is set to transmit CSI-RS every 2 PRBs at this time, the above configuration is based on the CSI-RS frequency domain density as the reference ⁇ 1, 2, 4 ⁇ and the PRB number based ⁇ 2 , 4, 8 ⁇ are the same.
  • the frequency domain density of the additional CSI-RS is related to the allocated bandwidth.
  • the larger the bandwidth, the more sparse the frequency domain density of the additional CSI-RS, and the corresponding relationship between the frequency domain density of the additional CSI-RS and the allocated bandwidth is shown in Table 1.
  • BWthr is the threshold of the bandwidth
  • the frequency domain density of the additional CSI-RS is the same as the frequency domain density of the CSI-RS by default.
  • bw thr CSI-RS represents the Additional Bandwidth
  • ... BW thrM-1 and BW thrM represent the threshold bandwidth
  • den_CSI-RS represents the frequency domain of the CSI-RS density
  • den_CSI-RS indicates the frequency domain density of the additional CSI-RS.
  • the time domain density of the additional CSI-RS fills the number of time domain symbols occupied by all CSI-RS by default. Since the maximum number of ports currently supported by the CSI-RS is 32, which occupies four time domain symbols, the configured additional CSI is configured. - The maximum number of time domain symbols for the RS is 4.
  • the additional CSI-RS can also support a 1/2-density time domain configuration, that is, an additional CSI-RS is configured for every two time domain symbol positions.
  • the base station predefines a time domain density configuration of an additional CSI-RS, which is related to the number of ports of the CSI-RS and the number of time domain symbols occupied by the CSI-RS. For example, when the number of ports of the CSI-RS is less than 24, the configuration of the CSI-RS does not support occupying more than 2 symbols in the time domain. As shown in Table 2, when the number of ports of the CSI-RS is 8, 12 or 16. The CSI-RS occupies 2 symbols in the time domain.
  • the time domain density of the additional CSI-RS can only be configured to be 1, that is, the additional CSI-RS occupies the same number of symbols as the CSI-RS in the time domain;
  • the number of ports of the CSI-RS is 1, 2, 4, 8, or 12
  • the CSI-RS occupies 1 symbol bit in the time domain.
  • the additional CSI-RS does not exist in the time domain density (ie, in Table 2). Not present);
  • the number of CSI-RS ports is configured to be greater than or equal to 24, for example, the number of CSI-RS ports is configured to be 24 or 32, and the number of symbols occupied by the CSI-RS in the time domain may exceed 2 symbols, for example, when 32 is configured.
  • the time domain density of the additional CSI-RS only supports the density of 1, and when the port number is configured to be 24 or 32, the time domain density of the additional CSI-RS can be supported.
  • Two configurations, ⁇ 1, 1/2 ⁇ , are shown in Table 2.
  • the time domain density of the additional CSI-RS is configured to be 1/2, the additional CSI-RS occupies only two time domain symbols.
  • the time domain density of the Additional CSI-RS is configured by base station signaling, which may be high layer signaling or physical layer signaling.
  • the additional CSI-RS configured to phase compensate the channel measurement corresponding to the CSI-RS port 0 does not repeatedly transmit the information in the other subcarrier positions of the PRB in the time domain symbol position.
  • the transmission of the reference signal of one sign bit can be reduced. For example, when a 32-port CSI-RS is configured, if the time domain density of the additional CSI-RS is configured to be 1/2, then only one additional CSI-RS of the sign bit needs to be sent, as shown in FIG. 7.
  • the base station configures the time-frequency domain location of the additional CSI-RS according to the multiplexing mode of the CSI-RS.
  • the port configuration of the additional CSI-RS is related to the time domain symbol position of the CSI-RS port in the group.
  • the configuration of the additional CSI-RS is not affected. That is, if there are two CSI-RS groups: group1 and group2, group1 is configured to the 11th and 13th of the time slot. Symbolically, and group2 is configured on the 12th and 14th symbols of the slot, then the additional CSI-RS corresponding to CSI-RS group1 is placed on the 11th and 13th symbols, and the additional is corresponding to CSI-RS group2.
  • the CSI-RS is configured on the 12th and 14th symbols.
  • the additional CSI-RS When multiple groups of CSI-RSs are frequency division multiplexed, the additional CSI-RS also adopts frequency division multiplexing. As shown in Figure 8, the CSI-RS group1 where the CSI-RS port p0 is located and the CSI-RS group2 where the port p1 is located are frequency-division multiplexed. Therefore, the additional CSI-RS configured for the port p0 of the CSI-RS group1 at this time is shown. P0 and the additional CSI-RS p1 configured for port p1 of CSI-RS group 2 are also frequency division multiplexed.
  • TD-OCC Time Division-Orthogonal Covering Code
  • the additional CSI-RS configured by the base station may have multiple frequency domain location selection manners; the default additional CSI-RS frequency domain location is on the CSI-RS adjacent subcarriers, and at this time, only one set of CSI-RSs is configured. Additional CSI-RS port. Since the additional CSI-RS occupies only one subcarrier position at this time, the default configuration can effectively solve the phase noise compensation effect of the CSI-RS when the CSI-RS does not occupy all the subcarrier positions in the PRB.
  • the base station pre-defines a mapping rule to configure frequency domain locations of multiple sets of additional CSI-RSs.
  • the base station configures the subcarrier position of the additional CSI-RS according to the subcarrier position where the CSI-RS group is located, and configures a set of additional CSI-RSs of the CSI-RS configuration occupying the lower subcarrier position to the subcarrier with the lower subcarrier number.
  • the carrier position is configured to allocate an additional CSI-RS of a CSI-RS configuration with a higher subcarrier position to a subcarrier position with a higher subcarrier number.
  • the frequency domain density of the CSI-RS is set to not occupy all the PRB locations, it is assumed that the CSI-RS density is 1/2 at this time, and the CSI-RS is configured once every two PRBs as shown in FIG.
  • the additional CSI-RS can be configured in the PRB where the CSI-RS is not placed.
  • the CSI-RS is configured in the PRB0, and the additional CSI-RS can be configured on the PRB1 and configured in the subcarrier position of the corresponding CSI-RS port in the PRB0.
  • the CSI-RS can be effectively prevented from occupying one.
  • the PRB all subcarrier positions and the additional CSI-RS cannot be configured in the PRB position.
  • it can solve the problem that multiple sets of additional CSI-RS plus CSI-RS occupy subcarriers exceeding one PRB. It also avoids collision problems between additional CSI-RS and other reference signals.
  • Additional CSI-RS and other reference signals have multiplexing relationship of time division multiplexing or frequency division multiplexing
  • the CSI-RS can be configured with all time domain symbol positions within one subframe, which means that the CSI-RS may have a certain multiplexing relationship with other reference symbols.
  • the additional CSI-RS as an extension of the CSI-RS in the time domain and the frequency domain, is also multiplexed with other reference signals. Since the additional CSI-RS and the CSI-RS occupy the same time domain symbol position, the multiplexing relationship between the additional CSI-RS and other reference signals and the CSI-RS and other reference signals can be considered from the perspective of the time domain. identical.
  • the additional CSI-RS may have code division multiplexing.
  • the additional CSI-RS occupies one or more subcarriers compared with the subcarrier position occupied by the CSI-RS, there may be an collision between the additional CSI-RS and other reference signals in the frequency domain. Possible. If the additional CSI-RS and other reference signals collide in the frequency domain, the additional CSI-RS may be punctured, that is, only other reference signals are transmitted on the collision resource unit, and the additional CSI-RS is not sent.
  • the PTRS is punctured, that is, only the additional CSI-RS is sent on the resource unit of the collision, and the PTRS is not sent.
  • the additional CSI-RS may be moved to other subcarrier locations.
  • the processing is the same as the slot structure.
  • the structure of the communication system is not based on slot, that is, the number of symbols in each slot is not 14 symbols, that is, in the case of non-slot configuration, if CSI-RS is configured, the configuration of the above additional CSI-RS may be adopted. .
  • Different CSI-RS port configurations correspond to different additional CSI-RS configurations; for CSI-RSs occupying one time domain symbol position, there is no need to configure additional CSI-RS. It is assumed that for the 8-port CSI-RS, there are two ways to configure it: occupy 1 time domain symbol 8 subcarriers, or occupy 2 time domain symbols and configure 4 subcarriers on each symbol. There are also two configurations for the 12-port CSI-RS: occupy 1 time domain symbol 12 subcarriers, or occupy two time domain symbols and configure 6 subcarriers on each time domain symbol. The case where two time domain symbols are configured for the 8-port CSI-RS is as shown in FIG. In FIG.
  • the 8-port CSI-RS occupies 2 time-domain symbols, and 4 sub-carriers are arranged on each time-domain symbol.
  • the 12-port CSI-RS occupies two time domain symbols, as shown in FIG. In FIG. 10, the 12-port CSI-RS occupies 2 time domain symbols, and 6 subcarriers are arranged on each time domain symbol.
  • the CSI-RS port of the additional CSI-RS is located on the left time domain symbol (ie, the additional CSI)
  • the CSI-RS port of the RS is located on the first time-domain symbol of the two time-domain symbols occupied by the additional CSI-RS.
  • the configured additional CSI-RS only needs to configure one resource element (Resource Element, referred to as RE) is sufficient, that is, only the additional CSI-RS of the right time domain sign bit (referring to the position of the second time domain symbol of the two time domain symbols occupied by the additional CSI-RS) needs to be configured.
  • the additional CSI-RS configured at this time and the corresponding CSI-RS port send the same content, and the phase difference between the two can be calculated on different time domain symbols.
  • the current CSI-RS configuration also has 16 ports, 24 ports and 32 ports are more than 1 time domain symbol.
  • a description of the 32-port CSI-RS configuration has been made previously.
  • the configuration of the CSI-RS that occupies four time-domain symbols on the 24-port is similar to that of the 32-port, as shown in FIG. When the domain density configuration is 1/2, the CSI-RS pattern is shown in Figure 12.
  • the CSI-RS occupies four time domain symbol positions.
  • the 16-port CSI-RS configuration For the 16-port CSI-RS configuration, two time domain symbol positions are occupied. At this time, the 16-port CSI-RS occupies 8 subcarriers per time domain symbol. As shown in Figure 13.
  • the indication relationship of the time-frequency domain location of the additional CSI-RS between different users or different base stations is consistent with the CSI-RS. If the CSI-RSs of different base stations (transport nodes) need to indicate the time-frequency domain location by using the cell identity (CELL-ID), the same additional CELL-RS is indicated by the same CELL-ID.
  • CELL-ID cell identity
  • a frequency domain location of the reference signal a Cell Radio Network Temporary Identifier (C-RNTI), an ID for sequence initialization, a Cell-ID, and an associated The port position of the reference signal measured by the channel.
  • C-RNTI Cell Radio Network Temporary Identifier
  • SCID the ID used for sequence initialization is represented by SCID.
  • the SCIDs described below all represent an ID for sequence initialization.
  • MU-MIMO multiple user multiple input and multiple output
  • the reference signals between different UEs may be interfered if they are configured in the same subcarrier position. Therefore, In the scenario of multi-user MIMO, orthogonal reference signals can be configured to effectively avoid this situation.
  • the C-RNTI can be used to distinguish the RB level of the additional CSI-RS between different users. For example, for a scenario of two users, if the reference signals between two users are not distinguished, it is easy for two users to have additional CSI-RS configurations in the same frequency domain location, causing interference. Therefore, the frequency domain location should be differentiated for different users from the PRB level.
  • the UE-ID C-RNTI
  • different users' additional CSI-RSs are configured on different RBs.
  • the phase tracking reference signal of the UE1 is configured to the PRB0 according to the C-RNTI, and the phase tracking reference signal of the UE2 is configured to the PRB1. on.
  • Interferenceal CSI-RS from configurations of different base stations may also cause interference. Similar to the above principle, depending on the Cell-ID, the additional CSI-RSs that can be sent for different base stations are configured on different PRBs.
  • the additional CSI-RSs for different UEs are configured on different PRBs according to different UE-IDs.
  • the additional CSI-RSs of different base stations can be configured on different sub-carriers of the same PRB.
  • the additional CSI-RSs from the configuration of the two base stations are configured to different subcarrier positions according to different cell-IDs.
  • the additional CSI-RS configured by the base station 1 is configured on the subcarrier 0
  • the additional CSI-RS configured by the base station 2 is configured to the position of the subcarrier 1.
  • the additional CSI-RSs of different UEs are configured on different PRBs according to the UE-ID, and the additional CSI-RSs from different base stations are configured on different subcarriers of the same PRB by using different CELL-IDs. In this way, interference between different users and additional CSI-RSs of different base stations can be effectively avoided.
  • the use of the cell-ID to configure different PRB locations to place additional CSI-RSs from different base stations, and then use the UE-ID to configure different subcarrier locations within the same PRB to place additional users' additionals CSI-RS can also avoid interference between different base stations and additional CSI-RS between different users.
  • the additional CSI-RS configured by the base station is configured at different PRB positions at different times. For example, at different times, the location of the PRB where the additional CSI-RS is located is different. In the first subframe, the additional CSI-RS is configured at the position of PRB0, and in the second subframe, the additional CSI-RS is configured. The location of PRB1. In this case, in order to avoid interference between the different base stations or the additional CSI-RS between different terminals. Therefore, the physical resource locations of the additional CSI-RSs allocated by the base station to different terminals at different times or different base stations allocated to the same terminal are different at different times.
  • the base station needs to allocate the location of the material resource where the additional CSI-RS is located according to the frequency domain location occupied by the terminal. If the base station is configured with 8 physical resources of the PRB, according to the physical resource location of the previously reserved additional CSI-RS, for example, it is assumed that an additional CSI-RS is placed every 2 PRBs at this time, if the default additional CSI-RS is initial. The location is the first PRB. In this case, the additional CSI-RS is configured to place an additional CSI-RS in every 2 PRBs starting from PRB0. If the bandwidth used by the terminal is BWP (Bandwidth part), some PRBs in the middle are for example. 4 to the 7th PRB.
  • BWP Bandwidth part
  • the PTRS configured outside the bandwidth used by the terminal cannot compensate the phase noise of the terminal, and causes the corresponding additional CSI-RS due to the different frequency domain positions of the bandwidth used by the terminal.
  • the location of the physical resource block is different. Therefore, the base station needs to determine the physical resource location of the PTRS configured for the terminal according to the frequency domain location used by the terminal.
  • the base station performs the transmission of the reference signal according to the terminal capability; each terminal has different capabilities, and the configurations of the supported reference signals are also different.
  • the terminal 1 cannot support more than two subcarriers for the port in one PRB. Therefore, only one subcarrier or two subcarriers can be configured for the terminal 1 at this time. This also determines the number of physical resources of the terminal. And if there are some terminals that cannot perform excessive RRC signaling configuration, only the physical resource locations of the predefined reference signals can be used.
  • the pattern type of the second reference signal includes a distributed pattern and a centralized pattern.
  • the distributed pattern is a certain interval distribution on the BWP allocated to the terminal in the frequency domain different from the additional CSI-RS.
  • the centralized pattern is to concentrate the additional CSI-RSs corresponding to the same port into a certain PRB. Multiple subcarrier locations are either concentrated on multiple PRBs.
  • each PRB configures the CSI-RS.
  • the base station configures 100 PRBs for the terminal, and the CSI-RS is configured on the PRB0-PRB50, and all the sub-carriers on one PRB are configured with CSI-RS.
  • the RS is configured on the PRB that is configured with the CSI-RS for the terminal, such as the PRB 51.
  • the additional CSI-RS can occupy all the subcarrier positions of the entire PRB, or occupy several subcarrier positions, or occupy several subcarriers. position. As shown in Figure 14.
  • the base station can indicate whether the additional CSI-RS uses a centralized pattern by signaling, and the signaling can be at least one of the following signaling: RRC signaling, MAC CE signaling. And DCI signaling.
  • the PRB location of the centralized CSI-RS configured by default is the neighboring PRB of the PRB configuring the CSI-RS.
  • the occupied subcarrier position within a PRB defaults to the edge position of a PRB.
  • the subcarrier position of the centralized additional CSI-RS defaults to the edge position of one PRB, that is, the lowest sequenced subcarrier position or the highest sequenced subcarrier position.
  • the PRB location and subcarrier location of the centralized additional CSI-RS configuration may be configured by RRC signaling.
  • the port of the second reference signal and each port of the first reference signal are different.
  • the precoding of the additional CSI-RS may be that multiple precodings in the associated CSI-RS resource set are combined by a certain calculation method to obtain precoding, or may be configured by the first transmission node.
  • the port number is p0-p7.
  • the CSI-RS is not pre-coded.
  • a port is associated with the additional CSI.
  • the result of the -RS is not accurate enough, so the base station needs to configure the additional CSI-RS port to be p8, which is different from any one of the CSI-RS ports p0-p7.
  • a CSI-RS port When there are multiple sets of CSI-RS ports with QCL relationship in a CSI-RS resource set, if the QCL relationships of these CSI-RSs are the same, only one additional CSI-RS of the port needs to be configured, if there are different QCL relationships. For a CSI-RS port, you need to configure the corresponding number of additional CSI-RS ports based on the actual QCL relationship. For example, suppose that there are two sets of QSI-related CSI-RS ports in a CSI-RS resource set: p0-p3 is a QCL relationship, and p4-p7 is a QCL relationship. If the two QCL relationships are the same, then only one additional CSI-RS port needs to be configured for p0-p7. If the two QCL relationships are different and you need to configure the additional CSI-RS, you need to configure an additional CSI-RS port for p0-p3 and an additional CSI-RS port for p4-p7.
  • the method according to the foregoing embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware.
  • the technical solution of the present disclosure may be embodied in the form of a software product stored in a computer readable storage medium (such as a ROM/RAM, a magnetic disk, an optical disk), including a plurality of instructions for making
  • a terminal device which may be a mobile phone, a computer, a server, or a network device, etc. performs the method described in the embodiments of the present disclosure.
  • a device for transmitting a reference signal is provided, which is used to implement the foregoing embodiments and optional embodiments, and has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • FIG. 15 is a structural block diagram of a transmitting apparatus of a reference signal applied to a first transmission node, as shown in FIG. 15, including a transmitting module 152, according to an embodiment of the present disclosure.
  • the sending module 152 is configured to send the first reference signal and the second reference signal, where the time domain symbol of the second reference signal is a subset of the time domain symbol set of the first reference signal, and the second reference signal is in each The time domain symbol sends the same information.
  • the foregoing first transit node includes but is not limited to: a base station or a terminal.
  • the first transmitting node sends the first reference signal and the second reference signal, where the second reference signal is located in a subset of the time domain symbol set of the first reference signal,
  • the information transmitted by the two reference signals in each time domain symbol is the same. That is, the information carried by the reference signal (the second reference signal) and the information of the channel state indication reference signal (the first reference signal) are the same, and the time domain symbols in which the channel state indication reference signal is located can be effectively estimated due to
  • the phase noise is a phase offset caused by a frequency offset or the like, and the channel state indication reference signal is phase-compensated by using the estimated phase offset, thereby solving the related art that the reference signal due to channel estimation cannot solve the influence of phase noise.
  • the problem of low channel estimation accuracy improves the accuracy of channel estimation.
  • the port of the second reference signal is the same as the port of the first reference signal.
  • a receiving device for a reference signal is further applied to the second transmitting node. As shown in FIG. 16, the device includes a receiving module 162.
  • the receiving module 162 is configured to receive the first reference signal and the second reference signal sent by the first transmitting node, where the time domain symbol of the second reference signal is a subset of the time domain symbol set of the first reference signal, where the The information transmitted by the two reference signals in each time domain symbol is the same.
  • the second transmission node receives the first reference signal and the second reference signal sent by the first transmission node, where the second reference signal is located in the time domain symbol set in the first reference signal. a subset of the second reference signal transmitted in the same time in each time domain symbol. That is, the information carried by the reference signal (the second reference signal) and the information of the channel state indication reference signal (the first reference signal) are the same, and the time domain symbols in which the channel state indication reference signal is located can be effectively estimated due to
  • the phase noise is a phase offset caused by a frequency offset or the like, and the channel state indication reference signal is phase-compensated by using the estimated phase offset, thereby solving the related art that the reference signal due to channel estimation cannot solve the influence of phase noise.
  • the problem of low channel estimation accuracy improves the accuracy of channel estimation.
  • the port of the second reference signal is the same as the port of the first reference signal.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • Embodiments of the present disclosure also provide a computer readable storage medium having stored therein a computer program, wherein the computer program is configured to execute the steps of any one of the method embodiments described above.
  • the above storage medium may be set to store a computer program for executing S1.
  • the first transmission node sends the first reference signal and the second reference signal, where the time domain symbol of the second reference signal is a subset of the time domain symbol set of the first reference signal, where the The information transmitted by the two reference signals in each time domain symbol is the same.
  • the storage medium is also arranged to store a computer program for performing the following S2.
  • the second transmission node receives the first reference signal and the second reference signal sent by the first transmission node, where the time domain symbol of the second reference signal is a time domain symbol set of the first reference signal The subset, the information transmitted by the second reference signal in each time domain symbol is the same.
  • the computer readable storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (Random Access Memory).
  • ROM Read-Only Memory
  • Random Access Memory Random Access Memory
  • FIG. 17 is a schematic diagram showing the hardware structure of the device provided in this embodiment.
  • the device includes a memory 310 and at least one processor 320.
  • the structure of the device is illustrated by taking a processor 320 as an example in FIG.
  • a memory program is stored in the memory 310, the processor 320 being arranged to run a computer program to perform the steps in any of the method embodiments described above.
  • the memory 310 and the processor 320 may be connected by a bus or other means, as shown in FIG. 17 by way of a bus connection.
  • FIG. 18 is a schematic diagram of another hardware structure of the device provided in this embodiment.
  • the device may include a transmission device 330 and an input and output device in addition to the memory 310 and the processor 320. 340, wherein the transmission device 330 is connected to the processor 320, and the input/output device 340 is connected to the processor 320.
  • the processor 320 may be configured to execute S1 by a computer program.
  • the first transmission node sends the first reference signal and the second reference signal, where the time domain symbol of the second reference signal is a subset of the time domain symbol set of the first reference signal, where the The information transmitted by the two reference signals in each time domain symbol is the same.
  • the above processor may be further configured to execute S2 by a computer program.
  • the second transmission node receives the first reference signal and the second reference signal sent by the first transmission node, where the time domain symbol of the second reference signal is a time domain symbol set of the first reference signal The subset, the information transmitted by the second reference signal in each time domain symbol is the same.
  • modules or steps of the present disclosure may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices. Alternatively, they may be implemented by program code executable by a computing device such that they may be stored in a storage device by a computing device and, in some cases, may be executed in a different order than herein.
  • the steps shown or described are either made separately into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种参考信号的发送、接收方法、装置及设备。其中,该发送方法包括:第一传输节点发送第一参考信号和第二参考信号;其中,该第二参考信号所在时域符号为该第一参考信号所在时域符号集合的子集,该第二参考信号在每个时域符号发送的信息相同。

Description

参考信号的发送、接收方法、装置及设备
本申请要求在2017年12月29日提交中国专利局、申请号为201711484022.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及通信领域,例如涉及一种参考信号的发送、接收方法、装置及设备。
背景技术
高频通信容易受到相位噪声和频率偏移的影响,高频段用于进行信道状态估计的参考信号如果配置在不同的时域符号上,同样也会受到上述两种因素的影响,造成信道估计过程中出现一定的误差,当这个误差较大时会影响信道估计的准确性,从而造成整个通信***的通信质量恶化。
为了减小相位噪声(下文简称相噪)以及频率偏移(下文简称频偏)对通信***造成的影响,需要配置参考信号来进行相噪和频偏的补偿,而目前的相位追踪参考信号对数据进行相位补偿,能够解决数据时频域位置的相噪问题,但是针对进行信道估计的参考信号例如目前为信道状态指示参考信号(Channel State indication Reference Signal,简称为CSI-RS)并不能解决相噪的影响,如果相噪引起的影响较大,就会引起信道估计的不准确,从而影响通信的准确性。
针对相关技术中,由于进行信道估计的参考信号不能解决相噪的影响所导致的信道估计准确性低的问题,尚未提出有效的解决方案。
发明内容
本公开实施例提供了一种参考信号的发送、接收方法、装置及设备,以至少解决相关技术中由于进行信道估计的参考信号不能解决相噪的影响所导致的信道估计准确性低的问题。
根据本公开的一个实施例,提供了一种参考信号的发送方法,包括:第一传输节点发送第一参考信号和第二参考信号;其中,所述第二参考信号所在时域符号为所述第一参考信号所在时域符号集合的子集,所述第二参考信号在每个时域符号发送的信息相同。
根据本公开的另一个实施例,提供了一种参考信号的接收方法,包括:第二传输节点接收第一传输节点发送的第一参考信号和第二参考信号;其中,所述第二参考信号所在时域符号为所述第一参考信号所在时域符号集合的子集,所述第二参考信号在每个时域符号发送的信息相同。
根据本公开的另一个实施例,提供了一种参考信号的发送装置,应用于第 一传输节点,包括:发送模块,用于发送第一参考信号和第二参考信号;其中,所述第二参考信号所在时域符号为所述第一参考信号所在时域符号集合的子集,所述第二参考信号在每个时域符号发送的信息相同
根据本公开的另一个实施例,提供了一种参考信号的接收装置,应用于第二传输节点,包括:接收模块,用于接收第一传输节点发送的第一参考信号和第二参考信号;其中,所述第二参考信号所在时域符号为所述第一参考信号所在时域符号集合的子集,所述第二参考信号在每个时域符号发送的信息相同。
根据本公开的又一个实施例,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本公开的又一个实施例,还提供了一种设备,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
通过本公开,第一传输节点发送第一参考信号和第二参考信号;其中,该第二参考信号所在时域符号为该第一参考信号所在时域符号集合的子集,该第二参考信号在每个时域符号发送的信息相同。即,参考信号(第二参考信号)承载的信息和信道状态指示参考信号(第一参考信号)某端口的信息是相同的,可以有效地估计信道状态指示参考信号所在的时域符号之间由于相位噪声或者是频率偏移等引起的相位偏移,利用估计的相位偏移对信道状态指示参考信号进行相位补偿,进而解决相关技术中由于进行信道估计的参考信号不能解决相噪的影响所导致的信道估计准确性较低的问题,提高了信道估计的准确性。
附图说明
此处所说明的附图用来提供对本公开的理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。
图1是根据本公开实施例的参考信号的发送方法流程图。
图2是根据本公开实施例的参考信号的接收方法流程图。
图3是根据本公开可选实施例的参考信号的配置方法示意图。
图4是根据本公开可选实施例的参考信号的配置方法示意图(一)。
图5是根据本公开可选实施例的参考信号的配置方法示意图(二)。
图6是根据本公开可选实施例的参考信号的配置方法示意图(三)。
图7是根据本公开可选实施例的参考信号的配置方法示意图(四)。
图8是根据本公开可选实施例的参考信号的配置方法示意图(五)。
图9是根据本公开可选实施例的参考信号的配置方法示意图(六)。
图10是根据本公开可选实施例的参考信号的配置方法示意图(七)。
图11是根据本公开可选实施例的参考信号的配置方法示意图(八)。
图12是根据本公开可选实施例的参考信号的配置方法示意图(九)。
图13是根据本公开可选实施例的参考信号的配置方法示意图(十)。
图14是根据本公开可选实施例的参考信号的配置方法示意图(十一)。
图15是根据本公开实施例的参考信号的发送装置的结构框图。
图16是根据本公开实施例的参考信号的接收装置的结构框图。
图17是根据本公开实施例的设备的硬件结构示意图。
图18是根据本公开实施例的设备的另一种硬件结构示意图。
具体实施方式
下文中将参考附图并结合实施例来说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中提供了参考信号的配置方法,图1是根据本公开实施例的参考信号的配置方法流程图,如图1所示,该流程包括S102。
在S102中,第一传输节点发送第一参考信号和第二参考信号。
其中,所述第二参考信号所在时域符号为所述第一参考信号所在时域符号集合的子集,所述第二参考信号在每个时域符号发送的信息相同。
可选地,在本实施例,上述第一传输节点包括但并不限于:基站和终端。
通过上述S102,第一传输节点发送第一参考信号和第二参考信号;其中,该第二参考信号所在时域符号为该第一参考信号所在时域符号集合的子集,该第二参考信号在每个时域符号发送的信息相同。即,参考信号(第二参考信号)承载的信息和信道状态指示参考信号(第一参考信号)某端口的信息是相同的,可以有效地估计信道状态指示参考信号所在的时域符号之间由于相位噪声或者是频率偏移等引起的相位偏移,利用估计的相位偏移对信道状态指示参考信号进行相位补偿,进而解决相关技术中由于进行信道估计的参考信号不能解决相噪的影响所导致的信道估计准确性较低的问题,提高了信道估计的准确性。
可选地,上述第二参考信号的端口和上述第一参考信号的一个端口相同。
在一个可选地实施方式中,上述方法还包括S11。
在S11中,上述第一传输节点发送信令,指示该第二参考信号使能。
其中,该信令包括以下至少之一:无线资源(Radio Resource Control,简称为RRC)信令、媒体接入控制单元(Media Access Control Control Element,简称为MAC CE)信令、下行控制信息(Downlink Control information,简称为DCI)信令。
上述S11的方案解决了相关技术中由于进行信道估计的参考信号不能解决相噪的影响所导致的信道估计准确性较低的问题,提高了信道估计的准确性。
可选地,在第一传输节点发送第一参考信号和第二参考信号之前,还包括S21。
在S21中,第一传输节点配置该第二参考信号的时域密度和/或频域密度。
其中,第一传输节点配置该第二参考信号的时域密度和/或频域密度可以包括:第一传输节点根据当前带宽配置该第二参考信号的频域密度;或者第一传输节点根据该第二参考信号和该第一参考信号之间的关联关系配置该第二参考信号的时域密度和/或频域密度;或者第一传输节点通过信令配置该第二参考信号的时域密度和/或频域密度,该信令包括以下至少之一:无线资源控制信令、媒体接入控制单元信令和下行控制信息信令。
通过上述S21可以有效地估计信道状态指示参考信号所在的时域符号之间由于相位噪声或者是频率偏移等造成的相位偏移。
在一个可选地实施方式中,上述第一传输节点配置该第一参考信号的端口数阈值和/或时域符号数阈值,其中,该端口数阈值和/或时域符号数阈值设置为指示该第一传输节点配置该第二参考信号的时域最大符号数。
通过上述方式提高了第一传输节点发送第一参考信号和第二参考信号的灵活度,例如,在信道状态指示参考信号(第一参考信号)的端口数阈值和/或时域符号数阈值超过预设阈值时,第一传输节点才使用实施例中提出的参考信号的发送方法发送第一参考信号和第二参考信号。
可选地,上述第一传输节点预定义该第二参考信号不同端口之间的复用方式与该第一参考信号的不同资源集合之间的复用方式相同。
在一个可选地实施方式中,上述第一传输节点通过以下信令至少之一指示该第二参考信号不同端口间的复用关系:无线资源控制信令、媒体接入控制单元信令和下行控制信息信令。
其中,在上述第二参考信号和相位追踪参考信号发生碰撞时,上述第一传输节点配置该第二参考信号的发送优先级高于该相位追踪参考信号;在上述第二参考信号和其它参考信号发生碰撞时,上述第一传输节点配置该第二参考信号的发送优先级低于该其它参考信号;其中,该其它参考信号为除该第二参考信号和相位追踪参考信号之外的参考信号。
可选地,第二参考信号所在的时域位置和/或频域位置通过以下至少之一的参数确定:小区无线网络临时标识、小区标识、用于序列初始化的标识和用于信道测量的参考信号的端口位置。
在一个可选地实施方式中,上述方法还包括:第一传输节点预定义该第二参考信号的物理资源块位置和该第一参考信号的物理资源块位置相同。
可选地,第一传输节点发送第一参考信号和第二参考信号包括S31。
在S31中,第一传输节点根据第二传输节点的能力进行该第二参考信号的发送。
可选地,上述第一传输节点预定义该第二参考信号的子载波位置为第一传输节点配置的第一参考信号相邻的子载波位置。
可选地,上述第一传输节点在不同的时刻为该第二参考信号配置不同的物理资源位置。
可选地,在本实施例中,上述第一传输节点根据分配给第二传输节点的频域资源位置确定该第二参考信号的物理资源位置。
其中,在本实施例中,上述第二参考信号的图样类型包括:分布式的图样、集中式的图样。第二参考信号的图样类型通过以下信令至少之一进行指示:无线资源控制信令、媒体接入控制单元信令和下行控制信息信令;第二参考信号的物理资源块位置和/或子载波位置通过以下信令至少之一进行指示:无线资源控制信令、媒体接入控制单元信令和下行控制信息信令。
在本实施例中还提供了一种参考信号的接收方法,图2是根据本公开实施例的参考信号的接收方法流程图。如图2所示,该流程包括S202。
在S202中,第二传输节点接收第一传输节点发送的第一参考信号和第二参考信号。
其中,该第二参考信号所在时域符号为该第一参考信号所在时域符号集合的子集,该第二参考信号在每个时域符号发送的信息相同。
可选地,在本实施例中,上述第二传输节点包括但并不限于:基站或终端。
通过上述S202,第二传输节点接收第一传输节点发送的第一参考信号和第二参考信号;其中,该第二参考信号所在时域符号为该第一参考信号所在时域符号集合的子集,该第二参考信号在每个时域符号发送的信息相同。即,参考信号(第二参考信号)承载的信息和信道状态指示参考信号(第一参考信号)某端口的信息是相同的,可以有效地估计信道状态指示参考信号所在的时域符号之间由于相位噪声或者是频率偏移等引起的相位偏移,利用估计的相位偏移信道状态指示参考信号进行相位补偿,进而解决相关技术中由于进行信道估计的参考信号不能解决相噪的影响所导致的信道估计准确性较低的问题,提高了信道估计的准确性。
可选地,在本实施例中上述第二参考信号的端口和上述第一参考信号的一个端口相同。
下面结合可选实施例对本实施例进行举例说明。
可选实施例1
上述第一参考信号为测量参考信号,在本实施例中该第一参考信号为信道状态指示参考信号(Channel State Indication Reference Signal,简称为CSI-RS)。第二参考信号为额外(additional)CSI-RS。该additional CSI-RS的端口和一个CSI-RS资源集合内的一个端口相同。该additional CSI-RS的序列在每个时域符号位置相同,可以是CSI-RS的序列或者由基站配置不同于CSI-RS的additional CSI-RS的序列,但是所配置additional CSI-RS的端口为所关联的CSI-RS资源集合内的一个端口。
下面实施例中该的CSI-RS的不同资源集合,也可以包括同一个资源集合内具有不同准共址(Quaci Co-Location,简称为QCL)关系的CSI-RS端口。
第一传输节点发送第一参考信号和第二参考信号。其中,所述第二参考信号所在时域符号为所述第一参考信号所在时域符号集合的子集,所述第二参考信号在每个时域符号发送的信息相同。所述的在每个时域符号为在一个子载波上的不同时域符号位置。所述的信息包括以下至少之一:端口和序列。
第二参考信号在一个子载波上不同的时域符号位置发送相同的端口信息或者序列信息。
可选的,第二参考信号在一个子载波上不同的时域符号位置可以发送不同的序列。
通过信令指示,在多个时域符号位置配置同一个信道状态指示参考信号端口的信息。该信令可以是RRC、MAC CE或者DCI信令。如果配置的CSI-RS只占用一个时域符号时,此信令不使能。通过该信令指示,使能CSI-RS在时域符号位置上复制某端口信息到其它时域符号位置上。当CSI-RS在一个物理资源块中占用多个时域符号时,通过信令通知,进行CSI-RS某端口信息的复制,即将CSI-RS某个端口的信息复制到CSI-RS所占用的时域符号位置上,如图3所示。
图3中配置了32端口的CSI-RS,且该CSI-RS在时域上占用4个符号,根据基站发送的信令,使能在多个时域符号配置相同的CSI-RS端口信息。即将图3中所示的CSI-RS端口P0信息配置到CSI-RS所占用的四个时域符号位置上。将这种配置后的参考信号称为additional CSI-RS,因为这种参考信号承载的信息和CSI-RS某端口的信息是相同的,所以可以有效地估计CSI-RS所在的时域符号之间由于相位噪声或者是频率偏移等造成的相位偏移,利用估计的相位偏移可以有效地对CSI-RS进行相位补偿,解决相位噪声或者是频率偏移造成的信道测量的误差。
由于CSI-RS的端口配置不同,所占用的时域符号数以及子载波数存在不同。因此默认情况下可以配置和CSI-RS所占用时域符号数相同数量的additional CSI-RS,且additional CSI-RS所在的频域位置和CSI-RS所在的在载波位置相关,即在CSI-RS相邻的子载波上,如图3所示的配置。
如果存在CSI-RS所在的时域符号位置上在配置了CSI-RS的物理资源块(Physical Resource Block,简称为PRB)内不存在空余的子载波来放置该additional CSI-RS,如图4所示。在PRB0内配置了占满所有子载波位置的CSI-RS,因为CSI-RS在频域也存在一定的周期,所以如果相邻的PRB上没有放置CSI-RS的子载波位置处,可以配置相同符号数以及相同符号位置的additional CSI-RS。
由于additional CSI-RS所承载的信息与所对应CSI-RS端口的信息相同,所以相同符号位置上的两个在载波位置上发送相同的CSI-RS是一种信息的冗余,在CSI-RS端口发送的信息可以不再additional CSI-RS相同的时域符号位置再次配置。如图5所示。
可选实施例2
CSI-RS同数据存在QCL关系时,发送信令利用相位追踪参考信号(Phase  Tracking Reference Signal,简称为PTRS)实现CSI-RS同一个端口在多个时域符号上发送的功能。
当CSI-RS和数据存在QCL关系时,可以认为此时两者的在同一时刻的相位噪声是相同的。基站通过配置PTRS来进行数据的相噪的补偿,所以此时可以利用PTRS来实现CSI-RS多个时域符号位上的相位噪声的补偿。如图6所示。此时基站配置了PTRS,且CSI-RS和数据存在QCL关系,所以CSI-RS可以利用其所在时域符号位置的PTRS来计算多个符号间的相对的相位差,从而用于信道测量时的相位补偿。
此时可以利用触发PTRS使能的信令来用于触发CSI-RS进行相位补偿的使能。同样的,可以将已经配置好的PTRS时频域密度、多用户以及多基站间的PTRS正交、复用方式以及利用UE-ID或者DMRS端口序号进行频域位置的区分等等参数用于对CSI-RS进行相位补偿的参数。
可选实施例3
预定义additional CSI-RS时频域密度。所述additional CSI-RS的频域密度和CSI-RS的频域密度相关:additional CSI-RS的频域的最大密度为CSI-RS的频域密度,且additional CSI-RS的频域密度间隔是以CSI-RS的频域密度为比例的变化。假设此时CSI-RS的频域密度为2,即每两个PRB配置一次CSI-RS。那additional CSI-RS的频域密度设置为以PRB为基准的{2,4,8},即可以设置为每2个、每4个以及每8个PRB配置一次additional CSI-RS;
Additional CSI-RS的频域密度可以设置为以CSI-RS的频域密度为基准的{1,2,4}。additional CSI-RS的频域密度设置为1时,表示和CSI-RS的频域密度相同;设置为2或者4时,表示additional CSI-RS的频域密度设置为CSI-RS的频域密度的1/2或者1/4。如果此时CSI-RS的频域密度设置的为每2个PRB发送一次CSI-RS,则上述配置基于CSI-RS频域密度为基准的{1,2,4}和基于PRB数的{2,4,8}是相同的。Additional CSI-RS的频域密度和所分配的带宽相关,即带宽越大,additional CSI-RS的频域密度越稀疏,其中additional CSI-RS的频域密度和所分配带宽的对应关系如表1所示,其中BWthr为带宽的阈值,默认情况下additional CSI-RS的频域密度和CSI-RS的频域密度相同。
表1
所分配带宽 频域密度(和CSI-RS频域密度的比例关系)
bw thr<BW thr1 1×den_CSI-RS
BW thr1≤bw thr≤BW thr2 2×den_CSI-RS
BW thrM-1≤bw thr≤BW thrM 2 M-1×den_CSI-RS
其中,bw thr表示additional CSI-RS所分配带宽,BW thr1、BW thr2、...BW thrM-1和BW thrM分别表示带宽的阈值,den_CSI-RS表示CSI-RS的频域密度,1×den_CSI-RS、2×den_CSI-RS、...2 M-1×den_CSI-RS表示additional CSI-RS的频域密度。
Additional CSI-RS的时域密度默认情况下占满所有的CSI-RS占用的时域符号数,由于CSI-RS目前支持的最大端口数为32,占用四个时域符号,因此配置的additional CSI-RS的最大时域符号数为4。
除了时域全密度的情况外,additional CSI-RS还可以支持1/2密度的时域配置,即每两个时域符号位置配置一个additional CSI-RS。基站预定义一种additional CSI-RS的时域密度配置,此配置与CSI-RS的端口数以及CSI-RS占用的时域符号数相关。例如,当CSI-RS的端口数小于24时,CSI-RS的配置不支持在时域上占用超过2个符号,如表2所示,当CSI-RS的端口数为8,12或16时,CSI-RS在时域上占用2个符号,此时的additional CSI-RS的时域密度只能支持配置为1,即additional CSI-RS在时域上占用和CSI-RS相同的符号数;当CSI-RS的端口数为1,2,4,8或12时,CSI-RS在时域上占用1个符号位,此时的additional CSI-RS不存在时域密度(即表2中的not present);当CSI-RS端口数配置为大于等于24时,例如CSI-RS端口数配置为24或者32,CSI-RS在时域占用的符号数可能超过2个符号,例如当配置了32端口的CSI-RS时,此时只存在CSI-RS占用4个时域符号的情况。对于CSI-RS只占用2个时域符号的情况,additional CSI-RS的时域密度只支持密度为1,而当端口数配置为24或者32时,则additional CSI-RS的时域密度可以支持两种配置,即{1,1/2},对应关系如表2所示。当配置了additional CSI-RS的时域密度为1/2时,additional CSI-RS只占用两个时域符号。
表2
Figure PCTCN2018123703-appb-000001
Additional CSI-RS的时域密度通过基站信令配置,该信令可以为高层信令或者是物理层信令。
如图5所示的情况,为了对CSI-RS端口0对应的信道测量进行相位补偿而配置的additional CSI-RS在该时域符号位置该PRB的其它子载波位置不再重复发送这个信息,如果按照表2的对应关系,可以减少1个符号位的该参考信号的发送。例如当配置了32端口的CSI-RS时,如果additional CSI-RS的时域密度配置 为1/2,那么只需要发送1个符号位的additional CSI-RS即可,如图7所示。
可选实施例4
基站根据CSI-RS的复用方式配置additional CSI-RS的时频域位置。
当存在多个组的CSI-RS端口时,这些组之间存在一定的复用关系,例如频分复用,时分复用或者是码分复用。由于additional CSI-RS的端口配置和本组内的CSI-RS端口的时域符号位置相关。
当不同的CSI-RS组间为时分复用时,不会影响additional CSI-RS的配置,即如果存在两个CSI-RS组:group1和group2,group1配置到了该时隙的第11和第13符号上,而group2配置到了该时隙的第12和第14符号上,那么对应于CSI-RS group1的additional CSI-RS配置在第11和第13符号上,而对应于CSI-RS group2的additional CSI-RS配置在第12和第14符号上。
当多个组的CSI-RS为频分复用时,此时additional CSI-RS也采用频分复用的方式。如图8所示,CSI-RS端口p0所在的CSI-RS group1和端口p1所在的CSI-RS group2是频分复用的,所以此时为CSI-RS group1的端口p0配置的additional CSI-RS p0和为CSI-RS group2的端口p1配置的additional CSI-RS p1同样是频分复用的。
当多个组的CSI-RS是码分复用时,如果使能了additional CSI-RS功能,那么就说明此时的相位噪声影响相对较大,需要进行相位的补偿,那么此时的CSI-RS不同符号不能进行时分-正交掩码(Time Division-Orthogonal Covering Code,TD-OCC)的功能。因为进行TD-OCC的不同时域符号上承载的CSI-RS需要进行联合的信道测量计算,如果此时的相位噪声影响较大,那么就会对适用TD-OCC功能的符号间的信道测量计算造成较大的误差。所以,如果信令配置使能了additional CSI-RS的功能,那么此时CSI-RS不再使能TD-OCC的功能。
可选实施例5
预定义additional CSI-RS的频域位置。基站配置的additional CSI-RS可以存在多种频域位置的选择方式;默认的additional CSI-RS的频域位置为CSI-RS相邻的子载波上,此时针对只配置一组CSI-RS的additional CSI-RS端口。由于此时additional CSI-RS只占用1个子载波位置,对于CSI-RS不占用所在PRB内的全部子载波位置时,采用默认的配置能够有效的解决CSI-RS的相噪补偿影响。当存在多组CSI-RS需要配置additional CSI-RS端口时,基站预定义一种映射规则配置多组additional CSI-RS的频域位置。基站根据CSI-RS组所在的子载波位置,配置additional CSI-RS的子载波位置,将一组占用较低子载波位置的CSI-RS配置的additional CSI-RS配置到子载波序号较低的子载波位置,将占用子载波位置较高的CSI-RS配置的additional CSI-RS配置到子载波序号较高的子载波位置。
可选地,当CSI-RS的频域密度设置为不占用所有PRB位置时,假设此时的CSI-RS密度为1/2,如图4所示每两个PRB配置1次CSI-RS。此时可以配置 additional CSI-RS在没有放置CSI-RS的PRB内。例如PRB0内配置了CSI-RS,可以将additional CSI-RS配置到PRB1上,且配置在PRB0内对应的该组CSI-RS端口的子载波位置,此时可以有效的避免CSI-RS占满一个PRB所有子载波位置而additional CSI-RS不能配置在该PRB位置的问题,同时可以解决多组的additional CSI-RS加上CSI-RS所占用的子载波超出一个PRB的情况。还可以避免additional CSI-RS与其它参考信号的碰撞问题。
可选实施例6
additional CSI-RS和其它参考信号存在时分复用或者频分复用的复用关系
目前CSI-RS可以配置在一个子帧内的所有时域符号位置,意味着CSI-RS可能和其它的参考符号存在一定的复用关系。而additional CSI-RS作为CSI-RS在时域和频域位置的延伸,同样会和其它参考信号存在复用关系。由于additional CSI-RS和CSI-RS占用相同的时域符号位置,从时域方面考虑,可以认为additional CSI-RS和其它参考信号的复用关系同CSI-RS和其它参考信号的复用关系是相同的。
当CSI-RS不同资源集合间存在频分复用的关系,则additional CSI-RS可能存在码分复用。
在频域上,由于同CSI-RS占用的子载波位置相比,additional CSI-RS的配置占用了1个或者多个子载波,所以在频域上可能存在additional CSI-RS和其它参考信号发生碰撞的可能。如果additional CSI-RS和其它参考信号在频域上发生了碰撞,可以将additional CSI-RS进行打孔,即在碰撞的资源单元上只发送其它参考信号,不再发送additional CSI-RS。
但是如果是additional CSI-RS和PTRS在频域上发生了碰撞,则将PTRS打孔,即在碰撞的资源单元上只发送additional CSI-RS,不再发送PTRS。
可选地,如果additional CSI-RS和其它参考信号发生了碰撞,可以将additional CSI-RS移动到其它的子载波位置。
可选实施例7
针对non-slot结构的帧结构,处理过程同slot结构相同。
当通信***的结构不是基于slot时,即每个slot内的符号数不是14个符号时,即在non-slot配置情况下,如果配置了CSI-RS,就可以采用上述additional CSI-RS的配置。
可选实施例8
不同的CSI-RS端口配置,对应不同的additional CSI-RS配置;对于占用1个时域符号位置的CSI-RS不需要配置additional CSI-RS。假设针对8端口的CSI-RS,其配置存在两种方式:占用1个时域符号8个子载波,或者是占用2个时域符号每个符号上配置了4个子载波。对于12端口的CSI-RS同样存在两种配置: 占用1个时域符号12个子载波,或者是占用两个时域符号且每个时域符号上配置了6个子载波。对于8端口CSI-RS配置了两个时域符号的情况,如图9所示。在图9中,8端口的CSI-RS占用2个时域符号,且每个时域符号上配置4个子载波。对于12端口的CSI-RS占用两个时域符号时,如图10所示。在图10中,12端口的CSI-RS占用2个时域符号,且每个时域符号上配置6个子载波。
对于上述两种配置,根据上面所述的,如果需要配置additional CSI-RS占用两个时域符号,那么该additional CSI-RS的CSI-RS端口位于左侧的时域符号上(即该additional CSI-RS的CSI-RS端口位于additional CSI-RS占用的两个时域符号的第一个时域符号上),此时配置的additional CSI-RS只需要配置1个资源颗粒(Resource Element,简称为RE)即可,即只需要配置右侧时域符号位(指的是additional CSI-RS占用的两个时域符号的第二个时域符号的位置)的additional CSI-RS。此时配置的additional CSI-RS和对应的CSI-RS端口发送相同的内容,且在不同的时域符号上,可以计算出两者的相位差。
除此之外,目前的CSI-RS配置还存在16端口,24端口和32端口是超过1个时域符号。对于32端口的CSI-RS配置前面已经进行了图样说明。而对于24端口占用4个时域符号的CSI-RS的配置,同32端口类似,如图11所示。当时域密度的配置为1/2时,此时CSI-RS的图样如图12所示,CSI-RS占用了4个时域符号位置。
而针对16端口的CSI-RS的配置,占用两个时域符号位置,此时16端口的CSI-RS每个时域符号占用8个子载波。如图13所示。
不同用户或者不同基站间的additional CSI-RS的时频域位置的指示关系,同CSI-RS保持一致。如果不同基站(传输节点)的CSI-RS需要通过小区标识(CELL-ID)来进行时频域位置的指示,同理additional CSI-RS采用同样的CELL-ID来指示。
可选实施例9
利用下面至少一种信息指示所述参考信号的频域位置:小区无线网络临时标识(Cell Radio Network Temporary identifier,简称为C-RNTI)、用于序列初始化的ID、Cell-ID、相关联的用于信道测量的参考信号的端口位置。在长期演进计划(Long Term Evolution,简称为LTE)中,用于序列初始化的ID用SCID表示。下面所述的SCID都表示一种用于序列初始化的ID。
在多用户-多输入多输出(Multiple User Multiple input and Multiple output,简称为MU-MIMO)场景下,不同的UE之间的参考信号如果配置在相同的子载波位置可能会产生干扰,因此,在多用户MIMO的场景下,可以配置正交的参考信号可以有效的避免这种情况。
在不配置相位追踪参考信号的正交性时,为了避免多用户间的参考信号进行干扰,可以利用C-RNTI来进行不同用户间的additional CSI-RS的RB级别的区分。例如对于两个用户的场景,如果不对两个用户间的参考信号进行位置上的区分,容易造成两个用户可能存在additional CSI-RS配置在相同的频域位置, 造成干扰。因此应该从PRB级别针对不同的用户进行频域位置的区分。根据UE-ID(C-RNTI)不同,将MU-MIMO场景中,不同用户additional CSI-RS配置到不同的RB上。由于每个用户在某个PRB内配置的additional CSI-RS集合大小可能不同,所以根据C-RNTI不同,将UE1的相位追踪参考信号配置到了PRB0上,而将UE2的相位追踪参考信号配置到了PRB1上。
来自于不同基站的配置的additional CSI-RS也可能发生干扰。类似于上述的原理,根据Cell-ID的不同,可以为不同基站发送的additional CSI-RS配置在不同的PRB上。
针对在一个PRB内的不同子载波位置的additional CSI-RS的配置,同样需要区别不同的基站或者不同过得用户。
此时根据UE-ID的不同,将针对不同UE的additional CSI-RS配置到了不同的PRB上,此时对于来说不同基站的additional CSI-RS可以配置在同一个PRB的不同的子载波上。来自于两个基站的配置的additional CSI-RS根据cell-ID的不同配置到了不同的子载波位置。例如将基站1配置的additional CSI-RS配置到了子载波0上,基站2配置的additional CSI-RS配置到了子载波1的位置。这样就根据UE-ID将不同UE的additional CSI-RS配置到了不同的PRB上,而利用不同的CELL-ID,将来自不同基站的additional CSI-RS配置到了同一个PRB的不同的子载波上,这样就可以有效避免不同用户以及不同基站的additional CSI-RS之间的干扰。
如果利用前面所述的利用cell-ID来配置不同的PRB位置来放置来自不同基站的additional CSI-RS,再利用UE-ID来配置在同一个PRB内的不同子载波位置来放置不同用户的additional CSI-RS,同样也能避免来自不同基站以及不同用户之间的additional CSI-RS之间的干扰。
可选实施例10
当基站配置使用additional CSI-RS时,有可能造成additional CSI-RS之间的干扰,所以需要通过基站配置不同的物理资源块位置来避免additional CSI-RS之间的干扰。基站配置的additional CSI-RS在不同的时刻配置在不同的PRB位置。例如,不同的时刻,additional CSI-RS所在的PRB位置不同,在第一个子帧上,additional CSI-RS被配置在了PRB0的位置,在第二个子帧上,additional CSI-RS被配置在了PRB1的位置。此时为了避免不同的基站或者不同的终端之间的additional CSI-RS产生干扰。因此基站分配给不同终端的additional CSI-RS在不同的时刻或者不同的基站分配给同一个终端的additional CSI-RS的物理资源位置在不同的时刻不同。
基站需要根据终端占用不同的频域位置为该终端分配additional CSI-RS所在的物力资源位置。如果基站配置了8个PRB的物理资源,按照之前预定的additional CSI-RS的物理资源位置,例如,假设此时配置了每2个PRB放置一个additional CSI-RS,如果默认的additional CSI-RS初始位置为第一个PRB,此 时additional CSI-RS被配置在PRB0开始的每2个PRB放置一个additional CSI-RS,如果此时终端使用的带宽BWP(Bandwidth part)为中间的某一些PRB例如第4到第7个PRB,此时配置在终端使用的带宽外的PTRS不能对该终端起到补偿相位噪声的作用,而且造成了由于终端使用的带宽的频域位置不同而对应的additional CSI-RS的物理资源块位置不同。因此需要基站需要根据终端使用的频域位置来确定为该终端配置的PTRS的物理资源位置。
可选实施例11
基站根据终端能力进行所述参考信号的发送;每个终端能力不同,所支持的参考信号的配置也不同。例如终端1不能支持在1个PRB内为所述端口配置超过2个子载波,所以此时只能为终端1配置为1个子载波或者2个子载波。从而也决定了该终端的物理资源数量。且如果存在一些终端不能进行过多的RRC信令配置,因此只能采用预定义的所述参考信号的物理资源位置。
可选实施例12
所述第二参考信号的图样类型包括分布式的图样、集中式的图样。分布式的图样为将additional CSI-RS在频域上不同的为该终端分配的BWP上已一定间隔分布,所述集中式图样即将多个相同端口对应的additional CSI-RS集中到某个PRB内的多个子载波位置或者集中到多个PRB上。
当配置的CSI-RS在一个PRB内占满所有子载波位置时,且此时CSI-RS的频域密度为1,即在配置CSI-RS的BWP内,每个PRB都会配置CSI-RS,此时在该BWP内没有足够的子载波位置来配置additional CSI-RS,因此此时可以配置集中式的additional CSI-RS。假设此时基站为该终端配置了100个PRB的带宽,且CSI-RS被配置在PRB0-PRB50上,且在1个PRB上所有的子载波都配置了CSI-RS,此时可以将CSI-RS配置在为该终端配置的没有配置CSI-RS的PRB上,例如PRB51,此时additional CSI-RS可以占满整个PRB的所有子载波位置,或者占用其中几个子载波位置,或者占用几个子载波位置。如图14所示。
即使CSI-RS没有占满所有的子载波位置,基站可以通过信令指示additional CSI-RS是否使用集中式的图样,此信令可以为一下信令至少之一:RRC信令、MAC CE信令和DCI信令。
而配置的集中式additional CSI-RS的PRB位置默认为配置CSI-RS的PRB的相邻的PRB。而在一个PRB内的占用的子载波位置默认为一个PRB的边缘位置。
集中式additional CSI-RS的子载波位置默认为在一个PRB的边缘位置,即最低序号的子载波位置或者最高序号的子载波位置。
集中式additional CSI-RS配置的PRB位置和子载波位置可以RRC信令配置。
可选实施例13
所述第二参考信号的端口和所述第一参考信号的每个端口都不相同。
Additional CSI-RS的预编码可以是所关联的CSI-RS资源集合内的多个预编码通过一定的计算方式结合起来得到预编码,或者有第一传输节点配置得到。
对于非预编码(non-precoded)的CSI-RS,当CSI-RS配置了8个端口时,端口序号为p0-p7,此时CSI-RS没有经过预编码,通过此时一个端口关联additional CSI-RS的结果不够准确,所以需要基站配置additional CSI-RS端口为p8,不同于任何一个CSI-RS端口p0-p7。
当一个CSI-RS的资源集合内存在多组具有QCL关系的CSI-RS端口时,如果这些CSI-RS的QCL关系相同,则只需配置一个端口的additional CSI-RS,如果存在不同QCL关系的CSI-RS端口,则需要根据实际的QCL关系配置相应的additional CSI-RS端口数。例如假设一个CSI-RS资源集合里存在两组QCL关系的CSI-RS端口:p0-p3为一个QCL关系,p4-p7为一个QCL关系。如果这两个QCL关系相同,则只需要为p0-p7配置一个additional CSI-RS端口。如果这两个QCL关系不同,且都需要配置additional CSI-RS,则需要为p0-p3配置一个additional CSI-RS端口,同时为p4-p7配置一个additional CSI-RS端口。
通过以上的实施方式的描述,本领域的技术人员可以了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,本公开的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个计算机可读存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开实施例所述的方法。
实施例2
在本实施例中还提供了一种参考信号的发送装置,该装置用于实现上述实施例及可选的实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。
图15是根据本公开实施例的参考信号的发送装置的结构框图,应用于第一传输节点,如图15所示,该装置包括发送模块152。
发送模块152设置为发送第一参考信号和第二参考信号;其中,该第二参考信号所在时域符号为该第一参考信号所在时域符号集合的子集,该第二参考信号在每个时域符号发送的信息相同。
可选地,在本实施例,上述第一传输节点包括但并不限于:基站或终端。
通过图15所示装置,第一传输节点发送第一参考信号和第二参考信号;其中,该第二参考信号所在时域符号为该第一参考信号所在时域符号集合的子集,该第二参考信号在每个时域符号发送的信息相同。即,参考信号(第二参考信号)承载的信息和信道状态指示参考信号(第一参考信号)某端口的信息是相同的,可以有效地估计信道状态指示参考信号所在的时域符号之间由于相位噪声或者是频率偏移等引起的相位偏移,利用估计的相位偏移对信道状态指示参考信号进行相位补偿,进而解决相关技术中由于进行信道估计的参考信号不能 解决相噪的影响所导致的信道估计准确性较低的问题,提高了信道估计的准确性。
可选地,该第二参考信号的端口和该第一参考信号的一个端口相同。
在本实施例中还提供了一种参考信号的接收装置,应用于第二传输节点,如图16所示,该装置包括接收模块162。
接收模块162设置为接收第一传输节点发送的第一参考信号和第二参考信号;其中,该第二参考信号所在时域符号为该第一参考信号所在时域符号集合的子集,该第二参考信号在每个时域符号发送的信息相同。
通过图16所示装置,第二传输节点接收第一传输节点发送的第一参考信号和第二参考信号;其中,该第二参考信号所在时域符号为该第一参考信号所在时域符号集合的子集,该第二参考信号在每个时域符号发送的信息相同。即,参考信号(第二参考信号)承载的信息和信道状态指示参考信号(第一参考信号)某端口的信息是相同的,可以有效地估计信道状态指示参考信号所在的时域符号之间由于相位噪声或者是频率偏移等引起的相位偏移,利用估计的相位偏移对信道状态指示参考信号进行相位补偿,进而解决相关技术中由于进行信道估计的参考信号不能解决相噪的影响所导致的信道估计准确性较低的问题,提高了信道估计的准确性。
可选地,该第二参考信号的端口和该第一参考信号的一个端口相同。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本公开的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行S1的计算机程序。
在S1中,第一传输节点发送第一参考信号和第二参考信号;其中,所述第二参考信号所在时域符号为所述第一参考信号所在时域符号集合的子集,所述第二参考信号在每个时域符号发送的信息相同。
可选地,存储介质还被设置为存储用于执行以下S2的计算机程序。
在S2中,第二传输节点接收第一传输节点发送的第一参考信号和第二参考信号;其中,所述第二参考信号所在时域符号为所述第一参考信号所在时域符号集合的子集,所述第二参考信号在每个时域符号发送的信息相同。
可选地,在本实施例中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access  Memory,简称为RAM)、移动硬盘、磁碟或者光盘等多种可以存储计算机程序的介质。
本公开的实施例还提供了一种设备。图17是本实施例提供的设备的硬件结构示意图,如图17所示,该设备包括存储器310和至少一个处理器320,图17中以一个处理器320为例对该设备的结构进行说明。该存储器310中存储有计算机程序,该处理器320被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。存储器310和处理器320可通过总线或者其他方式连接,图17中以通过总线方式连接为例。
可选地,图18是本实施例提供的设备的另一种硬件结构示意图,如图18所示,上述设备除了包括存储器310和处理器320之外,还可以包括传输设备330以及输入输出设备340,其中,该传输设备330和上述处理器320连接,该输入输出设备340和上述处理器320连接。
可选地,在本实施例中,上述处理器320可以被设置为通过计算机程序执行S1。
在S1中,第一传输节点发送第一参考信号和第二参考信号;其中,所述第二参考信号所在时域符号为所述第一参考信号所在时域符号集合的子集,所述第二参考信号在每个时域符号发送的信息相同。
可选地,上述处理器还可以被设置为通过计算机程序执行S2。
在S2中,第二传输节点接收第一传输节点发送的第一参考信号和第二参考信号;其中,所述第二参考信号所在时域符号为所述第一参考信号所在时域符号集合的子集,所述第二参考信号在每个时域符号发送的信息相同。
可选地,本实施例中的示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的模块或步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。

Claims (27)

  1. 一种参考信号的发送方法,包括:
    第一传输节点发送第一参考信号和第二参考信号;
    其中,所述第二参考信号所在时域符号为所述第一参考信号所在时域符号集合的子集,所述第二参考信号在每个时域符号发送的信息相同。
  2. 根据权利要求1所述的方法,其中,所述第二参考信号的端口和所述第一参考信号的一个端口相同。
  3. 根据权利要求1所述的方法,还包括:
    所述第一传输节点发送信令,指示所述第二参考信号使能;
    其中,所述信令包括以下至少之一:无线资源控制信令、媒体接入控制单元信令和下行控制信息信令。
  4. 根据权利要求1所述的方法,在所述第一传输节点发送第一参考信号和第二参考信号之前,还包括:
    所述第一传输节点配置所述第二参考信号的时域密度和频域密度中的至少一个。
  5. 根据权利要求4所述的方法,其中,所述第一传输节点配置所述第二参考信号的时域密度和/或频域密度包括:
    所述第一传输节点根据当前带宽配置所述第二参考信号的频域密度;或者,
    所述第一传输节点根据所述第二参考信号和所述第一参考信号之间的关联关系,配置所述第二参考信号的时域密度和频域密度中的至少一个。
  6. 根据权利要求4所述的方法,其中,所述第一传输节点配置所述第二参考信号的时域密度和频域密度中的至少一个包括:
    第一传输节点通过信令配置所述第二参考信号的时域密度和频域密度中的至少一个,所述信令包括以下至少之一:
    无线资源控制信令、媒体接入控制单元信令和下行控制信息信令。
  7. 根据权利要求1所述的方法,还包括:
    所述第一传输节点配置所述第一参考信号的端口数阈值和/或时域符号数阈值,其中,所述端口数阈值和/或时域符号数阈值设置为指示所述第一传输节点配置所述第二参考信号的时域最大符号数。
  8. 根据权利要求1所述的方法,还包括:
    所述第一传输节点预定义所述第二参考信号不同端口之间的复用方式与所述第一参考信号的不同资源集合之间的复用方式相同。
  9. 根据权利要求1所述的方法,还包括:
    所述第一传输节点通过以下信令至少之一指示所述第二参考信号不同端口 间的复用关系:
    无线资源控制信令、媒体接入控制单元信令和下行控制信息信令。
  10. 根据权利要求1所述的方法,还包括:
    在所述第二参考信号和相位追踪参考信号发生碰撞时,所述第一传输节点配置所述第二参考信号的发送优先级高于所述相位追踪参考信号;以及
    在所述第二参考信号和其它参考信号发生碰撞时,所述第一传输节点配置所述第二参考信号的发送优先级低于所述其它参考信号;
    其中,所述其它参考信号为除所述第二参考信号和相位追踪参考信号之外的参考信号。
  11. 根据权利要求1所述的方法,其中,所述第二参考信号所在的时域位置和/或频域位置通过以下至少之一的参数确定:
    小区无线网络临时标识、小区标识、用于序列初始化的标识和用于信道测量的参考信号的端口位置。
  12. 根据权利要求1所述的方法,还包括:
    所述第一传输节点预定义所述第二参考信号的物理资源块位置和所述第一参考信号的物理资源块位置相同。
  13. 根据权利要求1所述的方法,其中,所述第一传输节点发送第一参考信号和第二参考信号包括:
    所述第一传输节点根据第二传输节点的能力进行所述第二参考信号的发送。
  14. 根据权利要求1所述的方法,还包括:
    所述第一传输节点预定义所述第二参考信号的子载波位置为第一传输节点配置的第一参考信号相邻的子载波位置。
  15. 根据权利要求1所述的方法,还包括:
    所述第一传输节点在不同的时刻为所述第二参考信号配置不同的物理资源位置。
  16. 根据权利要求1所述的方法,还包括:
    所述第一传输节点根据分配给第二传输节点的频域资源位置确定所述第二参考信号的物理资源位置。
  17. 根据权利要求1所述的方法,其中,所述第二参考信号的图样类型包括:分布式的图样和集中式的图样。
  18. 根据权利要求1或17所述的方法,其中,所述第二参考信号的图样类型通过以下信令至少之一进行指示:
    无线资源控制信令、媒体接入控制单元信令和下行控制信息信令。
  19. 根据权利要求12或14所述的方法,其中,所述第二参考信号的物理资源块位置和/或子载波位置通过以下信令至少之一进行指示:
    无线资源控制信令、媒体接入控制单元信令和下行控制信息信令。
  20. 一种参考信号的接收方法,包括:
    第二传输节点接收第一传输节点发送的第一参考信号和第二参考信号;
    其中,所述第二参考信号所在时域符号为所述第一参考信号所在时域符号集合的子集,所述第二参考信号在每个时域符号发送的信息相同。
  21. 根据权利要求20所述的方法,其中,所述第二参考信号的端口和所述第一参考信号的一个端口相同。
  22. 一种参考信号的发送装置,应用于第一传输节点,包括:
    发送模块,设置为发送第一参考信号和第二参考信号;
    其中,所述第二参考信号所在时域符号为所述第一参考信号所在时域符号集合的子集,所述第二参考信号在每个时域符号发送的信息相同。
  23. 根据权利要求22所述的装置,其中,所述第二参考信号的端口和所述第一参考信号的一个端口相同。
  24. 一种参考信号的接收装置,应用于第二传输节点,包括:
    接收模块,设置为接收第一传输节点发送的第一参考信号和第二参考信号;
    其中,所述第二参考信号所在时域符号为所述第一参考信号所在时域符号集合的子集,所述第二参考信号在每个时域符号发送的信息相同。
  25. 根据权利要求24所述的装置,其中,所述第二参考信号的端口和所述第一参考信号的一个端口相同。
  26. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至19任一项或者权利要求20至21任一项中所述的方法。
  27. 一种设备,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至19任一项或者权利要求20至21任一项中所述的方法。
PCT/CN2018/123703 2017-12-29 2018-12-26 参考信号的发送、接收方法、装置及设备 WO2019129018A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711484022.X 2017-12-29
CN201711484022.XA CN109995487A (zh) 2017-12-29 2017-12-29 参考信号的发送、接收方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2019129018A1 true WO2019129018A1 (zh) 2019-07-04

Family

ID=67066614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123703 WO2019129018A1 (zh) 2017-12-29 2018-12-26 参考信号的发送、接收方法、装置及设备

Country Status (2)

Country Link
CN (1) CN109995487A (zh)
WO (1) WO2019129018A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944685A (zh) * 2013-01-18 2014-07-23 华为技术有限公司 扩展参考信号的方法、设备和通信***
WO2015020505A1 (ko) * 2013-08-09 2015-02-12 주식회사 팬택 무선 통신 시스템에서 참조 신호를 전송하는 방법 및 장치
CN106330789A (zh) * 2015-07-01 2017-01-11 上海朗帛通信技术有限公司 一种基于多用户叠加传输的pmch传输方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112039566B (zh) * 2013-05-10 2022-07-29 华为技术有限公司 确定预编码矩阵指示的方法、用户设备和基站
EP2985923B1 (en) * 2013-05-10 2019-04-03 Huawei Technologies Co., Ltd. Method for determining precoding matrix indicator, user equipment, and base station
KR101928879B1 (ko) * 2013-06-26 2018-12-13 후아웨이 테크놀러지 컴퍼니 리미티드 참조 신호를 전송하는 방법 및 장치
WO2017000263A1 (zh) * 2015-06-30 2017-01-05 华为技术有限公司 一种参考信号发送方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944685A (zh) * 2013-01-18 2014-07-23 华为技术有限公司 扩展参考信号的方法、设备和通信***
WO2015020505A1 (ko) * 2013-08-09 2015-02-12 주식회사 팬택 무선 통신 시스템에서 참조 신호를 전송하는 방법 및 장치
CN106330789A (zh) * 2015-07-01 2017-01-11 上海朗帛通信技术有限公司 一种基于多用户叠加传输的pmch传输方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "CSI-RS Design in NR", 3GPP TSG RAN WG1 MEETING #90BIS R1-1717305, 13 October 2017 (2017-10-13), pages 1 - 4, XP051340495 *
LG ELECTRONICS: "On CSI-RS Design", 3GPP TSG RAN WG1 MEETING 91 R1-1719911, 1 December 2017 (2017-12-01), pages 1 - 7, XP051369624 *

Also Published As

Publication number Publication date
CN109995487A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
US10903955B2 (en) Method, device and system for transmitting enhanced downlink control channel
US11553476B2 (en) Enhanced physical downlink control channel transmission method and apparatus
JP7293191B2 (ja) 基準信号構成情報を示すための方法、基地局、及び端末
US10122497B2 (en) Device and method for communicating channel state information reference signal (CSI-RS) in wireless communication system
JP7114640B2 (ja) 通信装置および通信方法
EP3739800A1 (en) Pilot signal generation method and apparatus
CN106788926B (zh) 一种降低网络延迟的无线通信方法和装置
CN108989008B (zh) 参考信号的传输方法、装置和设备
IL267415B (en) A method for transmitting data, a network device and a terminal device
US20200136679A1 (en) Method and apparatus for determining precoding granularity
US10177938B2 (en) Device and method for adaptive channel estimation
EP3573274A1 (en) Communication method and network device
AU2015409983A1 (en) Data transmission method and apparatus
WO2018137460A1 (zh) 一种参考信号配置方法、基站和终端
JP6721710B2 (ja) 参照信号送信方法、参照信号受信方法、装置、及びシステム
WO2017167158A1 (zh) 导频配置信息的传输方法、装置及***
CN109687946B (zh) 一种参考信号图样的传输方法及其装置
WO2019129018A1 (zh) 参考信号的发送、接收方法、装置及设备
WO2018126965A1 (zh) 参考信号的资源确定方法及装置、设备
WO2019128805A1 (zh) 相位追踪参考信号的发送、接收方法及装置
JP5871626B2 (ja) 無線リソース割当装置、及び無線リソース割当プログラム
EP3515024A1 (en) Method of transmitting control channel, network device and terminal device
WO2017028071A1 (zh) 下行控制信息的接收、发送方法及装置
KR102377840B1 (ko) 셀룰러 통신 시스템에서 중첩 전송을 지원하는 통신 노드의 동작 방법
JP2022141909A (ja) 通信装置および通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.11.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18895691

Country of ref document: EP

Kind code of ref document: A1